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Multiple Faults Estimation in Dynamical Systems: Tractable
Design and Performance Bounds

Chris van der Ploeg , Mohsen Alirezaei , Nathan van de Wouw , Fellow, IEEE,
and Peyman Mohajerin Esfahani

Abstract—In this article, we propose a tractable nonlinear fault
estimation filter along with explicit performance bounds for a class
of linear dynamical systems in the presence of both additive and
nonlinear multiplicative faults. We consider the case, where both
faults may occur simultaneously and through an identical dynami-
cal relationship, a setting that is relevant to several application do-
mains, including automotive driving, aviation, and chemical plants.
The proposed filter architecture combines tools from model-based
approaches in the control literature and regression techniques
from machine learning. To this end, we view the regression oper-
ator through a system-theoretic perspective to develop operator
bounds that are then utilized to derive performance bounds for the
proposed estimation filter. In the case of constant, simultaneously,
and identically acting additive and multiplicative faults, it can be
shown that the estimation error converges to zero with an exponen-
tial rate. The performance of the proposed estimation filter in the
presence of incipient faults is validated through an application on
the lateral safety systems of SAE level 4 automated vehicles. The
numerical results show that the theoretical bounds of this study
are indeed close to the actual estimation error.

Index Terms—Convex optimization, fault estimation, regression.

I. INTRODUCTION

Fault detection and isolation in dynamical systems are fundamental
problems for safety–critical applications. In the detection task, the
objective is to detect the presence of a fault in real-time while being
insensitive to natural disturbances [1] and/or model uncertainty [2] to
prevent false positives. Considering the occurrence of multiple faults
at the same time, we typically refer to isolation as the task to identify,
which one of the faults occurs. A classical approach toward isolation
is to treat the problem as a special case of detection in which all the
possible faults are viewed as natural disturbances. This methodology
is found in a great variety of model settings, e.g., from single nonlinear
systems [3] toward multiagent, possibly large-scale, systems [4]–[6].
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A more integral approach for detection and isolation of faults is an
unknown-input type estimator, which decouples the effect of unknown
state measurements and disturbances (or faults) from the residual
through an algebraic approach [7], [8] or approaches using the gen-
eralized inverse [9], [10].

A follow-up step to fault detection and isolation is fault-tolerance
(or fault-resilience) control in which the objective is to counteract and
mitigate the faults in real-time. To this end, estimation of the exact
value of the fault signal is a vital aspect. When assuming a linear or
linearized system description, additive faults can be estimated using
standard system-theoretic tools [11]. When the fault is multiplicative,
estimation is a more challenging task due to the nonlinear impact of the
fault. A possible approach to deal with multiplicative dynamics is to
borrow tools from the machine learning literature (e.g., regression [12]),
or by reformulating multiplicative faults as additive faults [13]. The
combined estimation problem of both additive and multiplicative faults,
acting on the same system, can be considered a form of simultaneous
state and parameter estimation. This problem is relevant in a broad
range of application domains (e.g., automotive as illustrated later
in this work, aviation [14] and chemical plants [15]), where actua-
tors/sensors, which can inhibit simultaneously a bias (i.e., an additive
fault) or loss-of-effectiveness (i.e., a multiplicative fault) [16], are used
in safety–critical applications. This problem has been considered in
several different settings, an example of which is the simultaneous
appearance of multiplicative input faults and additive output faults [17],
i.e., the faults are assumed to appear linearly independent. Other works
consider additive and multiplicative faults acting through the same
dynamical relationship (i.e., linearly dependent) [16]. The problem
is, however, largely unexplored when both additive and multiplicative
fault types act simultaneously in the system while assuming this linear
dependence between the faults.

The central problem, defined and solved in this manuscript, is to
estimate the fault signals (rather than only acknowledging/detecting
their presence) in real-time when both additive and multiplicative
faults are present and act simultaneously through identical dynamical
relationships. Due to the dynamical inseparability of the additive and
multiplicative faults, the estimates of such faults will, by definition,
be affected by one another. It is, therefore, vital to determine an
explicit performance bound that quantifies these effects. In this light,
the following problem is the main focus of this study.

Problem: Consider a linear dynamical system with the available
measurement signal z and the multivariate signal f = [fa, fm] compris-
ing possibly both additive (fa) and multiplicative (fm) faults that are not
dynamically separable. We aim to design an estimation filter that turns
the signal z to an estimation signal f̂ = [f̂a, f̂m] (i.e., a causal dynamic
mapping z �→ f̂ ) such that the additive and multiplicative faults can be
estimated separately, where the combined estimation error ‖f − f̂‖2 is
bounded by

‖f(k)− f̂(k)‖2 ≤ C(Cz, Cf , k − k0) (1)

where the constant C is an explicit bound depending on the dynamical
model, the parameters Cz and Cf representing characteristics of the
measurement z and fault signals f , and the time difference k − k0 in
which k0 denotes the discrete starting sample of the fault signal f and k
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Fig. 1. Block diagram of the proposed estimation filter.

is the current time instance. The signals characteristics can, for instance,
include the information of the average and variance of the respective
signals.

Let us emphasize that a performance bound in the form of (1)
provides a real-time estimation error for every single element of the
multivariate signal f .

Our Contributions: The distinct feature of the problem above that
makes it particularly challenging is the combination of three aspects:
(i) real-time estimation of a multivariate fault signal, (ii) the presence of
inseparable1 additive and multiplicative faults, and hence a (particular)
form of nonlinear dynamics, (iii) explicit, rigorous performance bounds
for fault detection. To our best of knowledge, no approach in the existing
literature addresses all these aspects at the same time. Our proposed
solution method leverages concepts from the system theory literature
concerning the aspects (i) and (iii) while using tools from the machine
learning literature to deal with the aspect (ii). This combination yields
an estimation filter with three components as depicted in Fig. 1. More
specifically, the technical contributions of this work are summarized as
follows.

(i) We develop system-theoretic (error) bounds for the regression
operator, a well-known scheme borrowed from the machine learn-
ing literature (see Proposition 3.3). These bounds are crucial to
quantify the performance of the proposed estimation filter.

(ii) We propose a general estimation architecture as in Fig. 1 that
comprises three intertwined components. When the component
prefilter is a simple identity operation, we develop an explicit,
computable performance bound in terms of the average and vari-
ance of the fault signals (see Theorem 3.5). In the special case of
constant faults, the proposed performance bound provides insight
regarding the convergence and boundedness of the estimation
error (see Corollary 3.6).

(iii) Building on the insight obtained from the performance of the
static prefilter, we propose an alternative design utilizing a
dynamic prefilter and develop the corresponding performance
bound (see Theorem 3.7). We further show that in the special case
of constant fault the estimation error decays to zero exponentially
fast (see Corollary 3.8).

Furthermore, we also develop two technical results concerning
the output bounds of linear time-invariant systems with zero steady-
state gain (see Lemma 3.4) and the variance of product signals (see
Lemma 4.1) that facilitate the proof of the main results highlighted
above. While these results admittedly seem standard, we, however, did
not find them in the literature in the present form as needed for the
main results of this study. The proof of these lemmas is relegated to an
extended version of this work [18] due to the space limitation.

The rest of this article is organized as follows. Section II introduces
a detailed problem description and challenges of the research topic;
furthermore, an outline of the proposed approach is given. Following the
problem description, the main theoretical results of the work are given
in Section III. The theoretical results are backed by technical proofs,
which are given in Section IV. In Section V, the theoretical results
are accompanied by numerical simulations, showing the contributions

1See Section II-B for a more precise definition of this terminology.

of the set of developed theorems in more practical daylight. Finally,
Section VI concludes this article.

Notation: The symbols N and R represent the set of integers
and real numbers and the symbol R+ represents the set of nonneg-
ative real numbers. The ones column vector with the length n is
denoted by 1n := [1, 1, . . . , 1]ᵀ. The p-norm of a vector v is de-
noted by ‖v‖p, where p ∈ [1,∞]. Given a square matrix A with
strictly real eigenvalues, we denote by λ ∈ R and λ ∈ R the maximum
and minimum eigenvalue values of the matrix, respectively. Given
a matrix A ∈ Rn×m, its transpose is denoted by Aᵀ ∈ Rm×n, the

norm ‖A‖2 = σ(A) =
√

λ(AᵀA) is the largest singular value, and

A† := (AᵀA)−1Aᵀ is the pseudoinverse. Given two matrices with an
equal dimension A,B ∈ Rm×n, the operator A ◦B ∈ Rm×n denotes
the element-wise (also known as Hadamard) product of two matrices.
The operators μn[x] and Vn[x] map R-valued discrete-time signals
to R-valued discrete-time signals, and are defined as the first mo-
ment μn[x](k) :=

1
n

∑n−1
i=0 x(k − i) and the centered second moment

V 2
n[x](k) :=

1
n

∑n−1
i=0 x

2(k − i)− μ2
n[x](k) of the signal x over the

last n time instants. Throughout this study, we reserve the bold sub-
scripted by n xn as the concatenated version of the signal x over the

last n time instants: xn(k) :=
[
x(k), x(k − 1), . . . , x(k − n+ 1)

]ᵀ
.

The symbol q represents the shift operator, i.e., q[x(k)] = x(k + 1).

II. PROBLEM DESCRIPTION AND OUTLINE OF THE

PROPOSED APPROACH

In this section, a formal description of the generic model class along
with the basic principles of existing FDI schemes is given. Using this
class of models, a high-level problem can be formulated. We further
elaborate on the challenges and shortcomings of the current literature.
Finally, an outline of the proposed solution is provided, addressing the
challenges in the preceding parts.

A. Model Description

Throughout this study, we consider dynamical systems described via
a discrete-time nonlinear differential-algebraic equation (DAE) of the
form

H(q)[x] + L(q)[z] + F (q) [fa +E(z)fm] = 0 (2)

where x, z, fa, fm represent discrete-time signals, indexed by the
counter k [e.g., x(k)], taking values in Rnx ,Rnz ,Rnf , respectively.
The mappingE : Rnz → RnE is a static algebraic mapping capturing
the nonlinearity of the fault dynamics, which is assumed known and,
depending on the application, can be obtained through first-principle
modeling (see Section V). The dependency on the signal z of the
mapping E can be extended to other unknown signals x through the
use of additional state estimators. Let nr represent the number of rows
in (2), and the matrices H(q), L(q), F (q) are polynomial functions
with nr rows and nx, nz, nf columns in the variable q, which repre-
sents the shift operator. As such, these matrices may be cast as linear
operators in the space of discrete-time signals. The signal x contains all
unknown signals in the DAE system, typically comprising the internal
states and unknown exogenous disturbances. The signal z is composed
of all known signals, including the control inputs u and the output
measurements y. The signal fa represents an additive fault while the
signal fm is considered to be a multiplicative fault or intrusion, which
interacts nonlinearly with the signal E(z). The overall contribution of
both fault signals can then be seen in the term fa +E(z)fm, to which
we may refer as the “aggregated fault signal” hereafter. Note that, for
the sake of generality in this work, the location of the faults fa and fm
is not restricted to any particular location and hence could represent
among others the notions of, e.g., sensor faults or actuator faults as
widely adopted in the FDI literature.

The modeling framework (2) encompasses a large class of dynamical
systems. A motivating example to show its level of generality is the set
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of nonlinear ordinary difference equations (ODE) described by⎧⎪⎪⎪⎨⎪⎪⎪⎩
GX(k + 1) = AX(k) +Buu(k) +Bdd(k)

+Bf (fa(k) +EX (BXX(k), u(k)) fm(k))

y(k) = CX(k) +Duu(k) +Ddd(k)

+Df (fa(k) +EY (BYX(k), u(k)) fm(k))

(3)

where u is the input signal, d the unknown exogenous disturbance,
X the internal state of the system, Y the measurable output, fa the
additively acting set of faults or intrusions, and finally fm the set of
faults acting as a multiplication on a nonlinear combination of the
internal states and input. The matricesG,A,Bu,Bd,Bf ,BX ,BY ,C,
Du, Dd, and Df are constant matrices with appropriate dimensions.
The following fact provides a simple-to-check condition under which
the ODE model (3) falls into the category of our nonlinear DAE
model (2).

Fact 2.1 (From ODE to DAE): Consider the ODE (3) and suppose
there exist matrices KX ,KY such that{

BX = KXC, KXDf = 0, KXDd = 0

BY = KY C, KYDf = 0, KYDd = 0.
(4)

Then, the ODE model can be viewed as a DAE model (2) by introducing

x =

[
X

d

]
, z =

[
y

u

]
, E(z) =

[
EX(KX(Y −Duu), u)

EY (KY (Y −Duu), u)

]

H(q) =

[
−qG+ABd

C Dd

]
, L(q) =

[
0 Bu

−I Du

]
, F (q) =

[
Bf

Df

]
.

Note that from a computational point of view checking the existence
condition in (4) is a linear programming (LP) problem, which can be
certified highly efficiently.

Throughout this study, the following assumption holds, which serves
as a necessary and sufficient condition for the detectability of the
aggregated fault signal fa +E(z)fm in (2).

Assumption 2.2 (Detectability): The polynomial matrices H(q)
and F (q) in (2) satisfy the rank condition Rank {[H(q), F (q)]} >
Rank {H(q)}. For simplicity of the exposition, we further assume that
F (q) is a polynomial column vector, i.e., nfa = nfm = 1.

Assumption 2.2 paves the way to acknowledge whether the ag-
gregated fault signal is nonzero. However, differentiating the exact
contribution between additive fault fa and the multiplicative fault
fm introduces challenges that we shall discuss in the following
section.

B. Current Approach and Open Challenges

In order to design a residual generator for the system (2), fulfilling the
desired conditions of fault detection, it suffices to introduce a linear filter
polynomial N(q), which can be characterized through the following
polynomial arguments:

N(q)H(q) = 0 (5a)

N(q)F (q) 	= 0. (5b)

The first condition (5a) is concerned with the rejection of the natural
disturbances and the unknown states, while the second condition (5b)
ensures a nonzero response of the residual generator when the fault is
nonzero. In the light of Assumption 2.2, we restrict our attention to a
proper LTI estimation filter of the form

r := a−1(q)N(q)L(q)[z] (6)

where the polynomial row vector N(q) fulfills the requirements (5),
and the stable transfer function a−1(q) is intended to make the residual
generator proper [i.e., the degree of a(q) is not less than the degree of
N(q)L(q) and stable (i.e., all the zeros of the polynomials a(q) reside
inside in the unit circle]. Following the definition of the residual (6) and

the DAE model (2), it holds that the mapping from the signals fa, fm
to the residual r can be described by

r = T [E(z)fm + fa] , where T := −N(q)F (q)

a(q)
. (7)

A typical approach to isolate multiple faults (fa, fm) from one another
is to introduce all the faults but one as natural disturbances encoded in
the signal d. However, this technique fails for the DAE systems of the
form (2) since Assumption 2.2 does no longer hold in that case. In fact,
by virtue of (7), one can see that the residual r is linearly dependent on
both fault signals fa, fm. Due to this linear dependency, the residual can
only be sensitive to the aggregated fault signalfa +E(z)fm and it is not
possible to isolate this combination utilizing linear filters, an important
scenario, which we define in this work as dynamical inseparability.
This is the central fault isolation challenge studied in this work.

C. Outline of the Proposed Approach

As mentioned in the preceding section, the key challenge of fault
isolation is to estimate the additive fault fa and multiplicative fault fm
when their impact on the dynamics [i.e., the corresponding dynamic
matrix F (q)] are linearly dependent. In this study, we aim to address
this challenge by leveraging tools from the regression theory, a well-
known concept from the Machine learning literature [19]. However, to
integrate those tools in a dynamical system setting and provide rigorous
performance guarantees, it is required to view these tools from a system-
theoretic perspective and treat them as a dynamical system. This is the
main part of the focus of this study.

More specifically, our proposed “estimation filter” comprises three
blocks, see Fig. 1. The first block is called “fault detection” and its role
is to estimate the aggregated signal fa +E(z)fm. This is essentially
adopted from the current literature of fault detection with a slight
extension that the residual signal r is expected to estimate the behavior
of fa +E(z)fm (rather than only acknowledging the existence of a
fault). We call the second block “fault isolation” that aims at isolating
and estimating the contribution of the additive fault signal fa and the
multiplicative one fm. This block is essentially a (nonlinear) regression
operator that also receives an additional signal e, a required regressor
signal containing the information of E(z). As we will discuss in detail
later, the dynamics of the system [and as such the dynamics of E(z)]
have a nontrivial impact on the performance of the fault isolation block.
This effect motivates the inclusion of the third block, to which we refer
as the “prefilter.” With regards to the prefilter, we consider two cases
in which one is a trivial identity (i.e., e = E(z)), and the second case
is a linear transfer function with the input E(z), aiming to compensate
for the dynamical behavior between the true aggregated signal and the
residual.

III. ESTIMATION FILTER DESIGN: MAIN RESULTS

As sketched in Fig. 1, the proposed estimation filter in this study
comprises three blocks: 1) fault detection, 2) fault isolation, and
3) prefilter, which will be elaborated in detail in this section. Here,
we only discuss the main results and their implications, and we will
present the technical preliminaries and proofs in Section IV.

A. Fault Detection: Linear Residual Generators

The following lemma is a slight specialization of [8, Lemma 4.2]
that characterizes the class of linear residual generators with a desired
asymptotic behavior. In this refined lemma, a steady-state condition on
the residual is introduced. This serves as the basis for the detection
block whose main objective is to detect and track (i.e., estimate) the
aggregated fault signal fa +E(z)fm.

Lemma 3.1 (LP Characterization of Fault Detection): Consider a
polynomial row vector N(q) =

∑dN
i=0Niq

i, and the system (2) with
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the model polynomial matrices

H(q) =

dH∑
i=0

Hiq
i, F (q) =

dF∑
i=0

Fiq
i, a(q) =

da∑
i=0

aiq
i

where dH , dF , dN , da denote the degree of matrices H(q), F (q),
N(q), a(q), respectively. Let us define the matrices

H :=

⎡⎢⎢⎢⎢⎢⎣
H0 H1 . . . HdH 0 . . . 0

0 H0 H1 . . . HdH 0
...

...
. . .

. . .
. . . 0

0 . . . 0 H0 H1 . . . HdH

⎤⎥⎥⎥⎥⎥⎦

F :=

⎡⎢⎢⎢⎢⎢⎣
F0 F1 . . . FdF 0 . . . 0

0 F0 F1 . . . FdF 0
...

...
. . .

. . .
. . . 0

0 . . . 0 F0 F1 . . . FdF

⎤⎥⎥⎥⎥⎥⎦
N :=

[
N0 N1 . . . NdN

]
, a :=

[
a0 a1 . . . ada

]
.

Under Assumption 2.2, the linear program{
N H = 0

N F1dN×dF = −a1da

(8)

is feasible and any solution N is an admissible fault detector filter
with zero-steady state error from the aggregated fault to the residual.
For any constant fault signals (fa, fm) and filter initial conditions, the
residual (7) fulfills limt→∞ fa +E(z(t))fm − r(t) = 0.

The proof is omitted as it is a straightforward adaptation from [20,
Lemma 4.6].

B. Fault Isolation: Nonlinear Regression

Next, we present the design of the fault isolation block. A central
object of this part is the regression operator, a well-known scheme
adopted from the machine learning literature [19]. This operator rep-
resents the fault isolation block whose domain and range spaces are
discrete-time signals with appropriate dimensions.

Definition 3.2 (Regression Operator): Given an integern and scalar-
valued signals e and r, we define

Φn[e, r](k) := φ†
n[e](k) rn(k)

where φn[e](k) := [en(k),1n] ∈ Rn×2 (9)

with the operator † as the pseudoinverse (i.e., A† := (AᵀA)−1Aᵀ).
In the context of the fault estimation scheme in Fig. 1, the out-

put Φn[e, r](k) of the nonlinear regression operation in Definition 3.2
is, in fact, equal to the fault estimate f̂ . The nonlinear regression
operator in Definition 3.2 enjoys certain regularity properties that are
key for the results we will develop later. The following proposition
provides input–output bounds of the regression operator. These bounds
will be utilized later to develop a performance bound for the proposed
estimation filter.

Proposition 3.3 (Regression Bounds): Consider the regressor oper-
ator in Definition 3.2. For all discrete-time scalar-valued signals r, e,
and y = [y(1), y(2)]ᵀ, at each time instant k ∈ N, where Vn[e] 	= 0 it
holds that ∥∥Φn[e, y

(1) + e y(2)]− μn[y]
∥∥
2
≤

Cn(en)

Vn[e]

(
Vn

[
y(1)
]
+ Vn

[
y(2)
]
‖en‖∞

)
(10a)

∥∥Φn[e, r]
∥∥
2
≤ Cn(en)√

nVn[e]
‖rn‖2 (10b)

where the constant is defined as Cn(en) :=
√
V 2
n[e]+μ

2
n[e]+1.

Proof: Due to the space limitation, we relegate the proof to the
extended version [18, Proposition III.3 in our arXiv paper]. �

We emphasize that the bounds in (10) hold for each time instant
k ∈ N, but to avoid clutter we drop the time-dependency of the
signals (e.g., Φn[e, r] instead of Φn[e, r](k)). We also note that the
parameter Cn only depends on the signal e (more precisely, on the
last n time instants of the signal e denoted by en). In this view, the
inequality (10b) indeed represents an operator norm for the linear
mapping r �→ Φn[e, r]. Let us elaborate further on how the bounds as
in (10) are the first stepping-stones toward our main goal in this study.
Measuring the “aggregated” signal y(1) + e y(2), one can utilize (10a)
to bound the error on the estimation of the average of the multivariate
signal y = [y(1), y(2)]ᵀ (i.e., μn[y]) via the regression operator. It is
worthwhile to note that when the signal y is constant, then y = μn[y]
and Vn[y

(1)] = Vn[y
(2)] = 0, and that the estimation error reduces to

zero provided that Vn[e] 	= 0. The second result (10b) allows us to
bound the output of the nonlinear regression operator given a bounded
input, which can be viewed as a means to bound estimated faults given
the dynamically filtered residual r as an input. The bounds (10) offer a
rigorous framework to treat the isolation block as a nonlinear dynamical
system whose induced gain, and as such the boundedness of its output,
is determined by Vn[e], the variance of signal e over a horizon with the
length n.

C. Prefilter: Dynamic Compensator

In this section, we focus on the prefilter block in Fig. 1. Before
presenting the main results of this article, we first need to proceed with
a basic preparatory lemma on the output bound of LTI systems. To
improve the flow of this article, we skip the technical proofs of the
results in this section and defer them to Section IV.

Lemma 3.4 (Zero Steady-State LTI Output Bound): Consider a
proper LTI system with the numerator b(q) =

∑d
i=0 biq

i, and the
denominator a(q) =

∏d
i=1(q− pi), where the poles are distinct and

the dominant one (i.e., the one closest to the unit circle) is p with
|p| < 1. Suppose the steady-state gain of the filter is 0 [i.e., b(1) = 0],
the internal state (in the Jordan canonical form) is initiated at X(0),
and the input signal u(t) is 0 until time k0 and takes possibly nonzero
values for t ≥ k0. Then, the output signal y(t) satisfies the bound

‖yn‖2 ≤ C0‖X(0)‖2|p|k−n + C1‖μk−k0
[u] ‖2|p|k−n−k0

+ C2
√
k − k0Vk−k0

[u]

where the constants C0, C1, C2 are defined as

ri =
b(−pi)∏

j 	=i(pj − pi)
, C0 =

√√√√n d∑
i=1

r2i

C1 =

√
nd
∑d

i=1 r
2
i

1− |p| , C2 = |bd|+
d∑

i=1

|ri|
1− |pi|

.

Proof: Due to the space limitation, we relegate the proof to the
extended version [18, Lemma 3.4 in our arXiv paper]. �

The statement of Lemma 3.4 is rather classical and is not unexpected.
However, we need such an assertion with explicit, computable bounds
for the main results of this study, which to our best knowledge does not
exist in this form in the literature.

We further propose two possible designs for the prefilter, each of
which comes along with certain pros and cons. The first, and simplest,
design option is the static identity block. The next theorem presents a
performance bound for this static prefilter design.

Theorem 3.5 (Performance Bound: (I) Static Prefilter): Consider
the system (2) and the fault estimation filter in Fig. 1, where the
fault detection block is characterized by the linear program (8) and a
denominatora(q)with distinct and real-valued poles. The fault isolation
block is the regression operator in (9) with the horizon n. Suppose the
prefilter block is identity [i.e., e = E(z)], and the fault signal starts at
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time k0. Then, at each time instant k ∈ N, we have

∥∥∥f̂ − μn[f ]
∥∥∥
2
≤ 1

Vn[e]

(
α0|p|k−k0 + α1Vk−k0

[fa]

+α2Vk−k0
[fm] + α3

)
(11a)

where the constant p ∈ R is the dominant pole of the denominator a(q)
and the involved constants are defined as

α0 = C1
Cn(en)√

n

(
|μk−k0

[fa] |+ |μk−k0
[efm] |

)
(11b)

α1 = C2Cn(en)

√
k − k0
n

(11c)

α2 = C2Cn(en)

√
k − k0
n

(√
k − k0Vk−k0

[e]

+ |μk−k0
[e] |
)

(11d)

α3 = Cn(en)

(
Vn[fa] + Vn[fm] ‖en‖∞

+ C2
√
k − k0
n

|μk−k0
[fm] |Vk−k0

[e]

)
. (11e)

in which Cn(en) is defined in Proposition 3.3 and the constants C1, C2
are defined in Lemma 3.4.

Proof: The proof is provided in Section IV. �
By Theorem 3.5, one can inspect how different aspects of the

proposed design contribute to the fault estimation error. The most
critical term is Vn[e] in the denominator of the right-hand side of (11a).
This challenging dependency is, however, an inherent limitation of the
desired isolation task. In fact, one can show that when the signal E(z)
is constant (i.e., Vn[e] ≡ 0), separation of the two faults (fa, fm) is
even theoretically impossible. To reinforce this statement, consider the
case Vn[e] ≡ 0 with arbitrary faults fa and fm. It can be observed
that the regression operator (9) contains the inverse of a degenerate
component φn[e]

ᵀφn[e] which, by definition, does not exist in such
a case. This result shows that the signal e, over horizon n, does then
not span the behavior of the aggregated fault over the same horizon,
a concept close to the well-known persistence of excitation property
for LTI systems [21]. The term α0 in (11b) reflects the contribution of
the average behavior of fault signals. In (11b), it can be seen that this
term diminishes exponentially fast after the start of the fault signal due
to its proportionality with the exponentially decaying term containing
the dominant pole p of the stable denominator a(q). In this light, we
can deduce that the impact of these average behaviors on performance
is negligible. The terms concerning α1 and α2 in (11) are mainly
influenced by the variance of the fault since the beginning of the fault.
The contribution of these variances in combination with the dynamics
constants C1, C2 from Lemma 3.4 is also an inevitable factor in the
estimation error, since the regression model in Definition 3.2 assumes
constant contributions of the faults fa and fm appearing through the
transfer function (7) in the residual r over a horizon n. Finally, the
last term involving α3 is a critical and potentially persistent source of
error. In particular, the variance signal Vk−k0

[e] introduces a nonzero
estimation error even in the case of constant fault signals. The next
corollary highlights this effect.

Corollary 3.6 (Constant Faults: Part I): Consider the system and
the estimation filter as in Theorem 3.5. Suppose the fault signals are
constant f = (f̄a, f̄m), starting from the time k0. Then, for any time
instant k ≥ k0 + n, we have

∥∥∥f̂ − f
∥∥∥
2
≤ Cn(en)√

nVn[e]

(
C1
(
|f̄a|+ |f̄m|μk−k0

[e]
)
|p|k−n−k0

+ C2
√
k − k0|f̄m|Vk−k0

[e]
)
. (12)

Proof: The proof is a direct application of Theorem 3.5. Under
the assumption that the fault signals are constants after time k ≥ k0,
we know thatVk−k0

[fa] = Vk−k0
[fm] = 0. Moreover, assuming further

that k ≥ n+ k0, we can also conclude that Vn[fa](k) = Vn[fm](k) =
0. In addition, the average terms of the signal reduces toμk−k0

[fa] = f̄a
and μk−k0

[fm] = f̄m. Substituting these quantities in the bound (11)
concludes (12). �

As noted above, the variance of the signal e is a persistent factor
contributing to the performance bound, which is captured by the last
term on the right-hand side of the inequality (12). This is somehow
expected due to the causality effect of the system dynamics. More
specifically, the residual r, the output of the fault detection block, opts
to follow the aggregated fault signal fa +E(z)fm but it relies on the
dynamics T (q) [cf., (7)]. However, when the prefilter is set to identity
(i.e., e = E(z)), the information of the signal is provided instantly for
the isolation block (due to the static identity prefilter), rendering some
persistent potential error, that is proportional to Vk−k0

[e]. This error
exists because the fault isolation block assumes a static mapping e �→ r
for the static prefilter case, whereas this mapping is inherently dynamic
due to the dynamics of the system and the fault detection block (7).
This dynamical misalignment in the fault isolation block manifests
itself in the estimation error, even for constant faults, as shown in (12).
Next, we aim to address this issue by filtering the information of the
signalE(z) through the same dynamics that the residual of the detection
filter experiences. This novel viewpoint brings us to the second choice
of prefilter next.

Theorem 3.7 (Performance Bound: (II) Dynamic Prefilter): Con-
sider the system (2) and the fault estimation filter in Fig. 1, where
the fault detection block is characterized by the linear program (8)
and a denominator a(q) with distinct and real-valued poles. The fault
isolation block is the regression operator in (9) with the horizon n.
Suppose the prefilter block is the linear system T as defined in (7) (i.e.,
e = T [E(z)]) with the internal states denoted byXp. If the fault signal
starts at time k0, then at each time instant k, we have∥∥∥f̂ − μn[f ]

∥∥∥
2
≤ 1

Vn[e]

(
β0|p|k−k0 + β1Vk−k0

[fa]

+β2Vk−k0
[fm] + β3

)
(13a)

where the constant p ∈ R is the dominant pole of the denominator a(q)
and the involved constants are defined as

β0 =
Cn(en)√

n

(
C1
(
|μk−k0

[E(z)fm]− μk−k0
[E(z)]μn[fm] |

)
+C0|μn[fm] |‖Xp(k − k0)‖2 + |μn[fa] |) (13b)

β1 = C2Cn(en)

√
k − k0
n

(13c)

β2 = C2Cn(en)

√
k − k0
n

(√
k − k0Vk−k0

[e]+|μk−k0
[e] |
)

(13d)

β3 = Cn(en)

(
Vn[fa] + Vn[fm] (‖en‖∞ + ‖en −E(zn)‖∞)

+C2
√
k − k0
n

∣∣μk−k0
[fm]−μn[fm]

∣∣Vk−k0
[E(z)]

)
. (13e)

in which Cn(en) is defined in Proposition 3.3, the constants
C0, C1, C2 are defined in Lemma 3.4, and the vector-valued signalE(zn)
is understood as the evaluation of the function E(·) on each of the
elements of the vector zn.
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Proof: The proof is provided in Section IV. �
In a comparison with Theorem 3.5, one can see that the main differ-

ence in the fault estimation error bound appears in the last coefficient of
the error bounds [cf, α3 in (11a) and β3 in (13a)]. In particular, the idea
of an appropriate dynamic prefilter allows us to shift the contribution
of the variance signal Vk−k0

[e] to the third term related to β2 in (13d),
which is multiplied by the variance of the multiplicative faultVk−k0

[fm].
This shift has a significant impact on the performance when the fault
signals are constant during the activation time (i.e., k ≥ k0). Before
proceeding with the simplification of the result, in this case, let us note
that the dynamic prefilter does not necessarily outperform the static
one proposed by Theorem 3.5 due to the difference in the term Vn[e].
Indeed, the filtered signal T [E(z)] may have a lower variance, which
has a negative impact on the performance bounds.

Corollary 3.8 (Constant Faults: Part II): Consider the system and
the estimation filter as in Theorem 3.7. Suppose the fault signals are
constant (f̄a, f̄m) starting at time k0. Then, for any time instant k ≥
k0 + n

‖f̂ − f‖2 ≤ Cn(en)√
nVn[e]

(
C1|f̄a|+C0|f̄m|‖Xp(k0)‖2

)
|p|k−k0 . (14)

Proof: In parallel to Corollary 3.6, the proof is a direct application of
Theorem 3.7 when the fault signals are constants after timek ≥ n+ k0,
and as such Vk−k0

[fa] = Vk−k0
[fm] = 0, Vn[fa](k) = Vn[fm](k) = 0,

μk−k0
[fa] = f̄a and μk−k0

[fm] = f̄m. Besides, we also note that the
term μk−k0

[fm]− μn[fm] = 0 vanishes as well. Substituting these
quantities in the bound (13) concludes (14). �

In the case of constant faults, Corollary 3.8 indicates that the fault
estimation error goes to zero exponentially fast if the filtered signal e
behaves “nicely” (i.e., Vn[e] is uniformly away from zero). In compari-
son with the assertion of Corollary 3.6, this outcome highlights the role
of the dynamic prefilter on the estimation performance.

The following remark provides insight on the computational com-
plexity of the used fault estimation methods.

Remark 3.9 (Computational Complexity): Given the fact that the
optimal fault-detection filter (6) and prefilter (7) are computed offline,
the computational complexity of the real-time running algorithm, for
both Theorems 3.5 and 3.7, is governed by the fault isolation block. Due
to the regression operation, as defined in Definition 3.2, this method
will have a time computational complexity of O(4n+ 8), where n
represents the prediction horizon of the fault isolation filter.

Let us close this section with a summary of the results. In this
section, a general estimation architecture has been proposed. System
theoretic bounds for the regression operator (see Definition 3.2) and
the LTI bound (see Lemma 3.4) have been used for the construction
of guaranteed performance bounds for two prefilter variants within
this estimation architecture. The insights gained from the first prefilter
variant (i.e., the identity block in Theorem 3.5) and its behavior for
constant faults (see Corollary 3.6), have been leveraged to propose a
second design variant (i.e., the dynamic prefilter in Theorem 3.7), which
has been proven to have an exponentially decaying performance bound
for constant faults (see Corollary 3.8).

IV. TECHNICAL PRELIMINARIES AND PROOFS OF MAIN RESULTS

This section presents the technical proofs of the theoretical results in
Section III. Before proceeding with the proofs of the main theorems, we
need first to provide a useful additional lemma concerning the variance
of the product of two signals. The results of this section will later
facilitate the proofs of the main theorems.

Lemma 4.1 (Variance of Product Signals): Consider the discrete-
time signals a, b over time-horizon n. At each time instant, we have

|V 2
n [a+ b]− V 2

n [a]− V 2
n [b] |

≤ 2min {‖an‖2Vn[b] , ‖bn‖2Vn[a]} (15a)

Vn[ab] ≤
√
nVn[a]Vn[b] + |μn[a] |Vn[b] + |μn[b] |Vn[a] . (15b)

Proof: Due to the space limitation, we relegate the proof to the
extended version [18, Lemma IV.1 in our arXiv paper]. �

Proof of Theorem 3.5: Let us first introduce the shorthand notation

G := T − I, δ(k) := fa + efm(k), e = E (z(k)) (16)

where the transfer function T is as defined in (7) and I is the identity
transfer function. Notice that in this part the prefilter is the static
gain identity, and that its output signal e is indeed the measurement
signal E(z) (cf. Fig. 1). Based on the definition of the estimated fault
and the regression operator in Definition 3.2, we have

f̂ = Φn[e, r] = Φn[e, r − δ] + Φn[e, δ]− μn[f ] + μn[f ]

where the second equality simply follows from the linearity of the
regression operator in the second argument. Let moving the term μn[f ]
to the left-hand side and taking the two-norm on both sides of the above
equality. Using the triangle inequality and the regression bounds from
Proposition 3.3, we arrive at

‖f̂ − μn[f ] ‖2 ≤ ‖Φn[e, r − δ]‖2 + ‖Φn[e, δ]− μn[f ] ‖2

≤ Cn(en)√
nVn[e]

‖rn − δn‖2

+
Cn(en)

Vn[e]
(Vn[fa] + Vn[fm] ‖en‖∞) (17)

where the first and second bounds in (17) follow from (10b) and (10a),
respectively. It then remains to bound the term ‖rn − δn‖2 on the right-
hand side of (17). Following the definitions of the residual r in (7), and
the signal δ and the transfer function G in (16), we have

r − δ = T [fa +E(z)fm]− (fa + efm) = G [fa] + G [efm] .

Note that by construction the transfer function G has a zero steady-
state gain since the transfer function T has unit steady-state gain (see
Lemma 3.1). As such, we can apply Lemma 3.4 to the right-hand side
of the above relation. This leads to

‖rn − δn‖2 ≤ C1
(
|μk−k0

[fa] |+ |μk−k0
[efm] |

)
|p|k−k0

+ C2
√
k − k0

(
Vk−k0

[fa] + Vk−k0
[efm]

)
≤ C1

(
|μk−k0

[fa] |+ |μk−k0
[efm] |

)
|p|k−k0

+ C2
√
k − k0

(
Vk−k0

[fa]+|μk−k0
[fm] |Vk−k0

[e]

+
√
k − k0Vk−k0

[fm]Vk−k0
[e]

+|μk−k0
[e] |Vk−k0

[fm]
)

where in the last line we apply (15b) from Lemma 4.1 to the variance
of the product signals Vk−k0

[efm]. Substituting the above bound in (17)
results in

‖f̂ − μn[f ] ‖2

≤ Cn(en)√
nVn[e]

(
C1
(
|μk−k0

[fa] |+ |μk−k0
[efm] |

)
|p|k−k0

+ C2
√
k − k0

(
Vk−k0

[fa] + |μk−k0
[e] |Vk−k0

[fm]

+Vk−k0
[e]
(√

k − k0Vk−k0
[fm] + |μk−k0

[fm] |
)))

+
Cn(en)

Vn[e]
(Vn[fa] + Vn[fm] ‖en‖∞) .

Finally, it suffices to factor out the right-hand side of the above
inequality to the exponentially decaying term and the variance
terms Vk−k0

[fa], Vk−k0
[fm], as well as the remaining parts, including

Vn[fa], Vn[fm], Vk−k0
[e]. This concludes the desired assertion (11).

Authorized licensed use limited to: TU Delft Library. Downloaded on September 05,2022 at 09:38:40 UTC from IEEE Xplore.  Restrictions apply. 



4922 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 9, SEPTEMBER 2022

Proof of Theorem 3.7: The key difference between the setting of this
theorem with Theorem 3.5 is the choice of prefilter, and as such, the
definition of the signal e. Consider the same definitions of the transfer
function G and the signal δ as in (16), where the output of the prefilter
is defined as

e = T [E(z)] , with the internal statesXp. (18)

Note that the relation (17) still holds in the setting here as well. We then
only need focus on the term ‖rn − δn‖2. In the rest of the proof, we
fix the time instant k ∈ N and define the average of the multiplicative
fault fm over the horizon [k − n, k] as the constant denoted by

fm := μn[fm] (k). (19)

Let us emphasize that we view the value fm as constant over the entire
time horizon prior to k. We further introduce the shorthand notation of
the step function

Uk0
(k) :=

{
0 k < k0
1 k ≥ k0 .

With straightforward but tedious algebraic computation, the signal r −
δ can be rewritten as

r − δ = G [fa] + G
[
E(z)(fm − fmUk0

)
]

+ fmT [E(z)(Uk0
− 1)]Uk0

− G [E(z)] (fm − fmUk0
).

(20a)

Recall that G = T − I is a stable transfer function with zero steady-
state gain. Also, note that for k ≥ k0 the third term T [E(z)(Uk0

− 1)]
in (20a) is in fact the contribution of the internal states Xp(k0) of the
transfer function T when the input signal is E(z) (Uk0

− 1 = 0 for
all k ≥ 0). Therefore, we can apply Lemma 3.4 to each term on the
right-hand side in (20a) and obtain the bound

‖rn − δn‖2 ≤ C1|fa||p|k−k0 + C2
√
k − k0Vk−k0

[fa]

+ C1|μk−k0

[
E(z)(fm − fmUk0

)
]
||p|k−k0

+ C2
√
k − k0Vk−k0

[
E(z)(fm − fmUk0

)
]

+ |fm|C0‖Xp(k0)‖2|p|k−k0

+ ‖en −E(zn)‖∞
√
nVn[fm] . (21)

We first note that in (21) we can simplify the first term of the second line
as μk−k0

[E(z)(fm − fmUk0
)] = μk−k0

[E(z)fm]− μk−k0
[E(z)]fm.

We further borrow the results of Lemma 4.1 to bound the terms
involving the product of two signals in (21). More specifically, we have

Vk−k0

[
E(z)(fm − fmUk−k0

)
]

≤
√
k − k0Vk−k0

[E(z)]Vk−k0
[fm]

+ |μk−k0

[
fm − fmUk0

]
|Vk−k0

[E(z)]

+ |μk−k0
[E(z)] |Vk−k0

[fm]

=
√
k − k0Vk−k0

[E(z)]Vk−k0
[fm]

+ |μk−k0
[fm]− fmUk0

|Vk−k0
[E(z)]

+ |μk−k0
[E(z)] |Vk−k0

[fm] . (22)

It now suffices to substitute the upper bounds (22) in (21), and then
invoke the resulting bound on ‖rn − δn‖2 in (17). Finally, it remains
to factor out the right-hand side of the inequality to the exponentially
decaying term, the variance terms Vk−k0

[fa], Vk−k0
[fm], as well as the

remaining parts including Vn[fa], Vn[fm], Vk−k0
[E(z)]. This concludes

the desired assertion (13). �

Fig. 2. Visual representation of the bicycle model.

V. CASE STUDY: LATERAL CONTROL OF AUTONOMOUS VEHICLES

In this section, the presented theory is illustrated using a fault
isolation problem in the scope of the lateral control of autonomous
vehicles. In this context, fault detection and isolation are increasingly
important in the automotive industry. The lateral dynamics of the
vehicle are modeled using the bicycle model [22, eq. (1)] (depicted in
Fig. 2). This model represents a linearization of the full nonlinear lateral
dynamics of an automated vehicle. The state of the vehicle is chosen
as X = [vy, ψ̇, ye, ψe]

ᵀ, where vy represents the lateral velocity, ψ̇
represents the yaw-rate, ye represents the lateral error from the lane
centre and ψe represents the heading error from the lane centre. The
disturbance vector is chosen as d = [sin(φ), κ], where φ represents
the banking angle of the road (as depicted by cross-section S1 − S2 in
Fig. 2) andκ represents the curvature of the road. The inputu represents
the steering wheel angle of the front wheels of the vehicle. In this
case study, we consider additive and multiplicative faults acting on the
steering input signalu. These faults could realistically occur as an offset
in the steering column, fa, or a loss of actuator efficiency, fm. These
faults may result in unexpected transient and steady-state tracking errors
and hence result in dangerous situations for the vehicle passengers
if not estimated and mitigated independently. The model description
with its states, disturbances, faults, and input can be written in the
continuous-time equivalent of the linear difference equation from (3),
with system matrices [22, eq. (1)]

Ā =

⎡⎢⎢⎢⎣
Cf+Cr

vxm

lfCf−lrCr

vxm
− vx 0 0

lfCf−lrCr

vxI

l2
f
Cf+l2rCr

vxI
0 0

−1 0 0 vx
0 −1 0 0

⎤⎥⎥⎥⎦ ,

B̄u = B̄f =

⎡⎢⎢⎢⎣
−Cf

m

− lfCf

I

0

0

⎤⎥⎥⎥⎦
G = I4, B̄d =

[
g 0 0 0

0 0 0 vx

]ᵀ
, C =

[
0 I3

]
where I3 and I4 represent the identity matrix of size 3 and 4, respec-
tively. Furthermore, Cf = 1.50 · 105 N · rad−1, Cr = 1.10 · 105 N ·
rad−1, lf = 1.3 m, lr = 1.7 m, vx = 19 m · s−1, m = 1500 kg,
I = 2600 kg ·m2, and finally g = 9.81 m · s−2. The physical intuition
behind these constants is omitted for the sake of brevity and can be found
in [22]. In order to fit the discrete-time model setting employed in this ar-
ticle, we first exactly discretize the dynamical system by calculating the
discrete-time states-space matrices as A = eĀh and B =

∫ h
0
eĀsB̄ds

(for all matrices B̄u, B̄f , and B̄d). For which the sampling interval h
is chosen as h = 0.01s and f = fmu+ fa represents the aggregated
fault signal. Note, that the discretized system matrices can be written
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Fig. 3. True estimation error in comparison with the corresponding
performance bounds in (12) and (14).

in the DAE framework by virtue of Fact 2.1 when setting KX = 0,
KY = 0, and EX = u. For the synthesis of the fault detection filter,
the degree of the filter N(q) is set to dN = 3. The denominator a(q)
is selected as a(q) = (q+ 0.60)(q+ 0.59)(q+ 0.58). The filterN(q)
can be found by solving the linear program in (8). For the synthesis of
the fault isolation filter, the time horizonn is initially chosen asn = 10.
The input signal u to the system dynamics is selected to be a sinusoidal
signal with an amplitude of 2.3 · 10−3 radians at a frequency of 0.3 Hz.
The frequency content of the input signal is inspired by experimental
data of an automated vehicle, driving in-lane using a PD-type controller,
while being excited by natural disturbances [22]. For this simulation
study, the additive fault and the multiplicative fault are selected as
incipient fault functions fa = π/1800 · 10−2k, fm = −0.2 · 10−2k,
reaching their final values after 1s, starting from time instances 0.1s
and 1.9s, respectively.

Fig. 3 depicts the estimation errors [left-hand side of (11a) and (13a)
for the static prefilter and the dynamic prefilter, respectively] and their
simulated performance bounds [right-hand side of (11a) and (13a) for
the static prefilter and the dynamic prefilter, respectively]. As expected
(according to Corollary 3.6), the performance bound and estimation
error for the static prefilter remain nonzero for as long as the input
signal u is excited, which is inherently needed for separation of the
fault terms. The dynamic prefilter follows the result from Corollary 3.8,
where the performance bound and estimation error converge to zero in
finite time. This allows the automated vehicle to act upon two different
fault-types accordingly, as opposed to having to conservatively act on
the presence of an aggregated fault signal fa + efm without knowing
the separate contributions of the faults.

VI. CONCLUSION

In this work, a fault estimation architecture for the estimation of ad-
ditive and multiplicative faults, acting simultaneously through identical
dynamical relationships is presented. Simulation results in the domain
of SAE level 4 automated driving show the practical value and the
potential of the proposed approach in relevant future-proof applications.
Future work includes incorporating model uncertainty, nonlinearities,
delays, and closed-loop fault mitigation.
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