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ABSTRACT

Context. In a Keplerian system, a large number of bodies orbit a central mass. Accretion disks, protoplanetary disks, asteroid belts,
and planetary rings are examples. Simulations of these systems require algorithms that are computationally efficient. The inclusion of
collisions in the simulations is challenging but important.
Aims. We intend to calculate the time of collision of two astronomical bodies in intersecting Kepler orbits as a function of the orbital
elements. The aim is to use the solution in an analytic propagator (N-body simulation) that jumps from one collision event to the next.
Methods. We outline an algorithm that maintains a list of possible collision pairs ordered chronologically. At each step (the soonest
event on the list), only the particles created in the collision can cause new collision possibilities. We estimate the collision rate, the
length of the list, and the average change in this length at an event, and study the efficiency of the method used.
Results. We find that the collision-time problem is equivalent to finding the grid point between two parallel lines that is closest to the
origin. The solution is based on the continued fraction of the ratio of orbital periods.
Conclusions. Due to the large jumps in time, the algorithm can beat tree codes (octree and k-d tree codes can efficiently detect
collisions) for specific systems such as the Solar System with N < 108. However, the gravitational interactions between particles can
only be treated as gravitational scattering or as a secular perturbation, at the cost of reducing the time-step or at the cost of accuracy.
While simulations of this size with high-fidelity propagators can already span vast timescales, the high efficiency of the collision
detection allows many runs from one initial state or a large sample set, so that one can study statistics.

Key words. gravitation – methods: analytical – methods: statistical – celestial mechanics – planets and satellites: formation –
protoplanetary disks

1. Introduction

Simulations of the mechanical motion of many bodies are gener-
ally computationally expensive. Consider the N-body problem.
Here, each of the N particles moves under the influence of the
gravitation of all other particles and each particle can collide
with any other particle. Therefore, there are N2 interactions to
account for. Various methods have been invented to speed up the
simulation or increase the particle count: (i) direct N-body sim-
ulations with dynamic time-steps (see Dehnen & Read 2011, for
an overview); (ii) the octree code for collision detection (Bentley
1975; Meagher 1980); (iii) the Barnes-Hut algorithm (Barnes &
Hut 1986; Barnes 1990; Hamada et al. 2009; Burtscher & Pingali
2011) for mutual gravity, where nearby particles are grouped so
that their effect on a distant particle can be combined, which
requires O(N log N) computational steps; (iv) the fast multi-
pole Greengard and Rokhlin method (FMM), where higher order
moments of the particle groups are included (Rokhlin 1985;
Greengard 1990); (v) parallelization of these methods (Warren
& Salmon 1993); (vi) particle mesh methods, where the N force
vectors are calculated using the Newton potential and the Poisson
Equation for the potential is solved numerically with fast Fourier
transforms (Bodenheimer et al. 2007); (vii) the finite-elements
method (FEM); and finally, (viii) for a Keplerian system (with a
large central mass), where the particles move in slowly precess-
ing Kepler ellipses described by the Laplace-Lagrange equations
for the orbital elements (Murray & Dermott 2009); because the
Kepler ellipses change slowly over time, the time-step in these
numerical integration propagators can be many orbital periods.

In astronomy, collision detection is the problem of finding
the precise moment at which asteroids, planets, or satellites col-
lide. Here the difficulty in predicting collisions, or calculating
the collision probability, stems from the fact that the objects are
very small compared to the size of their orbits. In numerical
simulations the number of nearby particles that need to be con-
sidered is a function of the step size. Because the particles travel
during each time-step, the volume of space around the particle
that needs to be probed for collision partners has a radius of the
time-step times velocity. In order to limit the number of colli-
sion partners, this volume needs to remain small. Therefore, the
step size decreases as O(N−1/3) and the total number of steps
for a fixed simulation time grows as O(N1/3). Efficient codes,
such as octree codes (Meagher 1982) or spatial hashing codes,
have an algorithmic efficiency of O(N log N) per time-step. If
these are used in collision detection, the number of steps grows
as O(N4/3 log N). This makes the problem of collision detec-
tion in astronomy even more challenging than pure gravitational
evolution without collisions (see Dehnen & Read 2011, for a
comparison between codes with and without collision detection).

In this paper, we apply collision detection to Keplerian sys-
tems, such as astrophysical disks, where all particles feel a
dominant gravity force from one heavy central mass. Each par-
ticle is in a Kepler orbit given by parameters a, ε, $, I, �,
and ν (see Table 1 for the symbols). However, the advantage
of implementing collision detection in an analytic propagator is
that the algorithm can be very efficient. In Sect. 2, we analyze
the timescales, evaluate the numerical efficiency, and compare
it with algorithms based on tree code. As there is no numerical

A97, page 1 of 15
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202243754
mailto:p.m.visser@tudelft.nl
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


A&A 669, A97 (2023)

Table 1. List of symbols and notation.

Symbol Quantity

t Time
dt Time-step, small time interval
x, y, z Cartesian coordinates
V Volume
h = ∆a Thickness of spherical shell

r =

x
y
z

 Position vector

r Radial distance
u = ṙ Velocity vector
v Speed
d = r2 − r1 Difference position
d Distance
u = u2 − u1 Difference velocity
u Relative speed
w = u1 × u2

G Newton’s constant
M Mass of central body
S Radius of central body
m Particle mass
s Particle radius
t0 Particle creation time
T Orbit time
ω = 2π/T Mean motion
Tcoll Time between collisions
Tscat Time between close encounters
Tprec Precession period/time scale
Tsim Total simulated time
a, b Semimajor-, semiminor-axis
c = aε Semi-focal separation
` Semi-latus rectum
r0 Particle creation point
S Spin angular momentum
L Orbital angular momentum
K = L1 × L2 Direction of nodal line
ε Eccentricity vector
$ Argument of periapsis
� Ascending node
I Inclination
ν True anomaly
E Eccentric anomaly
R Rotation matrix
N Number of particles
κ Number of fragments
i, j Particle indices
k, l Rounds to collision
n Counter

Notes. Symbol and significance of the physical quantities used. The
symbol $, which usually represents the longitude of the periapsis is
here used for the argument of periapsis, so that we can reserve the
symbol ω for the angular frequency or mean motion.

integration of the orbits, many physical effects are neglected (see
Sect. 2.3).

We describe (in Sect. 3) the algorithm for an N-body code
with collision detection in detail. Initially, it compares particles
sorted by radial distance using equations from the seminal paper
by Öpik (1951); see Fig. 1. This is effectively an implementation

x

y

a1 + c1

a1 − c1

a2 − c2

a2 +
c2

O

Fig. 1. Two orbits separated by a sphere (dashed). Orbit 1 (blue) has
apoapsis a1 + c1 and orbit 2 (purple) has periapsis a2 − c2. Filtering out
such collision-avoiding apoapsis–periapsis pairs is an efficient sweep
and prune method.

of the apoapsis/periapsis filter of Hoots et al. (1984) and an
example of a sweep and prune method. The algorithm then uses
analytic evaluation of the points of collision (near the nodal line
in Fig. 2, following Hoots et al. 1984; Manley et al. 1998, as
explained in Sect. 4), of the earliest crossing time (Sect. 5), and
of the time of collision (derived in Sect. 6). The algorithm keeps
track of pairs of particles that are on a collision course, from
the earliest to the latest moment of collision. Each step of the
simulation involves only the calculation of the next collision,
and updating the list. In the method, time-steps increase with
decreasing s, which allows long simulation times. Indeed, for
the limiting case s −→ 0, the algorithm stops after initialization,
as it finds that there are no collisions. In contrast, collision
detection using a numerical integration propagator always
requires a nearest-neighbor search for every particle. The time
spent on this search is independent of s.

To our knowledge, the idea of bookkeeping a list of future
possible collisions has not been studied elsewhere. The algo-
rithm relies on a novel method to quickly find the exact collision
times. We derived new expressions, Eqs. (11) and (12), for the
difference in the eccentric anomaly between two given points
on an orbit that are also accurate at small eccentricities, when
the eccentric anomalies themselves are ill defined. These formu-
las were needed to calculate the time for a particle to get to the
collision point.

2. Applications and estimates of timescales

The algorithm is intended for simulation of the dynamical evo-
lution of a large planetary ring system or a debris disk around a
star. In the latter, nearby passages also occur, where one planet
is inside the sphere of gravitational influence of another. The
resulting gravitational scattering may be modeled with an elastic
collision. These systems therefore have four different timescales:
the orbit time T , the collision time Tcoll, the scattering time Tscat,
and the secular time Tprec.

In order to estimate how many collisions happen per unit
of time, we first consider a thin disk with a completely ran-
domized (homogeneous) distribution of particles in near-circular
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nodal line

x

y

z

m1
m2

Fig. 2. Orbits of two planetoids m1, m2 in their orbital planes. Because
the bodies are much smaller than the orbits, s j � a j, collisions hap-
pen near the mutual nodal line of intersection of the orbital planes,
even for small inclinations. The tangent vectors (gray) indicate the linear
approximation that may be used to find the collision point.

orbits. A particle with radius s traces a cylindrical volume of size
(2πa/T )πs2 per unit of time. The disk is a cylinder of radius a
and height 2Ia, meaning that the particle density is N/2πIa3.
Accounting for the N2/2 pairs, the rate of collisions is estimated
to be

1
Tcoll

=
2πa
T︸︷︷︸

velocity

· π(2s)2︸︷︷︸
effective

cross section

· N
2πIa3︸ ︷︷ ︸
density

· N
2︸︷︷︸

pairs

=
2πN2s2

Ia2T
.

If we want to include close encounters, we may substitute s
into the formula for the radius of the sphere of influence s =
(m/M)2/5a. The timescales are therefore

Tscatt =
I

2πN2

( M
m

)4/5
T, Tcoll =

Ia2

2πN2s2 T, Tprec =
4M
Nm

T.

The formula for the precession is taken from Murray & Dermott
(2009). If we model the early inner Solar System by N = 106

planetesimals of characteristic size s = 100 km in a disk with
a = 4 au and I = .1, we have

Tscatt ≈ 45 min, Tcoll ≈ 35 yr, Tprec ≈ 105 yr, T ≈ 10 yr.

Next, we consider a ring system around a planet. If we assume
its radius is only a few times that of the planet and the ring par-
ticles have the same density as the planet, the collision time is
comparable to the scattering time. For the Uranus ring system,
we take N = 1013, s = 1 m, and a = 105 km, which results in

Tscatt ≈ Tcoll ≈ 10−9 s, Tprec ≈ 190 d, T ≈ 1 d.

The precession is now entirely due to planet oblateness (J2 =
3×10−3). We now estimate the deflection angle due to scattering.
When the scattering at impact parameter b is integrated over all
values, for a path length of 2πa we find that

deflection
orbit

=
N

2πIa3︸ ︷︷ ︸
density

·
s∫

0

2am
bMε2︸︷︷︸

deflection

· 2πa 2πbdb︸       ︷︷       ︸
volume shell

=
4πN
Iε2

( m
M

)7/5
.

Fig. 3. Pairs vs. particle radius s for a homogeneous disk with a ≤
amax = 2au, I ≤ 10−3, ε ≤ 10−3, and with N = 104, from Aliberti
(2022a,b). Orange: twice the number of pairs that needed to be checked
in the apoapsis/periapsis filter. Blue: actual number of collision possibil-
ities. The guideline with slope 1 (dashed) shows the approximate linear
dependence of the collision pairs on s. The influence of the planet size
can be seen in the apoapsis/periapsis filter for large s. Because there are
two collision possibilities for each pair, the blue dots lie below or on the
orange dots.

The orbital eccentricity ε accounts from the fact that the relative
velocity is roughly

√
GM/aε, which becomes small for orbits

with the same sense of rotation. Although there are many close
encounters where the mutual gravity takes over the central force,
the (very crude) estimate of the deflection angle is about 10−5

and 10−7 per orbit for the inner Solar System and the Uranus
ring system, respectively, mainly due to high relative velocities.

The algorithm maintains a list of all particle pairs that are on
a collision course. As any pair can only collide near the line of
intersection (in Fig. 2) of the two orbital planes, any random pair
has the probability ≈2s/a of being on a collision trajectory. An
estimate of the number of pairs on a collision course, or “colli-
sion pairs”, is therefore N2s/a. The results of simulations shown
in Figs. 3 and 4 validate these estimates.

As the algorithm steps from one collision to the next, the
(average) time-step is equal to the collision time Tcoll. Although
exact precision is already lost in one orbit if corrections for sec-
ular motion are not included, we expect collision detection using
the Kepler orbits to be able to give reliable statistical results for
T/N < Tcoll < Tprec.

2.1. Comparing time-steps

We are interested in comparing this approach with numeri-
cal integration propagators with collision detection. In order to
detect a collision in numerical integration, one must find nearest
neighbors. In the tree code, one uses boxes of volume dx3 of a
sufficiently small size to contain only one or a few particles. In
one time-step, dt, the change in position should not move the par-
ticle too many boxes away from its original position; otherwise,
it becomes impossible to select neighbors. Alternatively, in an
algorithm that uses a sorted list of the coordinates (so-called spa-
tial hashing codes), a particle coordinate, say x, can overtake the
values of other particles when its position changes by dx. In this
latter case, the number of particles that one particle overtakes in
one step should also remain small in order to limit the number
of neighboring particles that need to be inspected. As a result,
numerical integration with collision detection requires not only
several time-steps for one orbital period (dt / T ) but also spa-
tial steps of the order of the inter-particle distance (dx / ri j). We
may estimate the average distance by assuming a homogeneous
distribution of the particles. We then find for a disk with a = 4au,
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Fig. 4. Pairs vs. particle count N, as in Fig. 3, but with particle radius
s = 2 × 10−3au. Orange: number of pairs that needed to be checked in
the apoapsis/periapsis filter. Blue: actual number of collision pairs (that
could ultimately collide). These determine the runtime and memory for
the creation of the collision list; see Table 2. Solid lines: N(N − 1)/2.
Dashed line: guideline with a slope of 2.

I = .1:

ri j = aΓ( 4
3 )

( 3I
2N

)1/3
=

2au
N1/3 , dt /

TΓ( 4
3 )

2π

( 3I
2N

)1/3
=

220d
N1/3 .

Clearly, the time-steps for numerical integration actually need to
be quite small.

2.2. Efficiency of the algorithm

Apart from the advantage of having large time-steps, another
benefit of our method is that only the collision products need
to be tested for possible future collisions with the set of existing
particles. This involves ∝ N computations per collision. How-
ever, a list of collision possibilities needs to be maintained. The
length of this list is expected to be of the order N2s/a. This list
takes up memory and therefore requires careful manipulation. At
the creation or the removal of a particle, an average number of
2Ns/a new collision possibilities is added or removed, respec-
tively. Hence, after N/2 collisions the list has mostly changed.
This is understandable, because then most particles are replaced
by new particles. It also means that for Ns/a � 1, most possibil-
ities do not actually happen. Figure 4 shows the initial list length
and Fig. 5 shows how this length changes during the simulation.

Table 2 sums up the efficiencies in the various steps of the
algorithm. Figure 6 shows the measured runtime for a large set
of simulations with different particle numbers. As we did not
include defragmentation but only mergers, Fig. 7 shows the val-
ues of particle radius s and particle count N for which the Kepler
collision detection is more efficient than the algorithmic effi-
ciency (Tsim/dt)N log N ∝ N4/3 log N of numerical integration
with nearest neighbor search using a tree code.

In order to make another comparison between the meth-
ods, consider a Solar System with a fixed amount of material
volume. We take a disk with a = 4au, I = .1, and a mass
Nm = 3MEarth and with particles of the density of Earth. We
thus have Ns3/a3 = 10−15. The resulting average s is also plot-
ted in Fig. 7. The efficiencies for collision detection for the cases

Fig. 5. Length of the list of collision pairs vs. particle count (same
parameters as in Fig. 4). Only mergers are simulated, and consequently
the N value decreases by one at every step. The graph shows 64 runs.

Table 2. Algorithmic efficiency.

Algorithmic step Runtime Memory
∝ O(·) ∝ O(·)

Create particle list N N
Sort particle list N log N 1

Create collision list N2ε
N2s

a

Sort collision list
N2s

a
log

N2s
a

1

Reduce particle list log N 0
Ereate κ fragments κ κ
Sort κ fragments κ log κ 1
Merge particle lists N + κ 1

Reduce collision list
Ns
a

log
N2s

a
0

Create new collision list κN
κNs

a

Merge collision lists
N2s

a
+
κNs

a
1

Total simulation N2ε +
N4s3

Ia3

N2s
a

+
N4s3

Ia3

Notes. Order estimations, in big O, of the time and memory require-
ment in Keplerian collision detection. The top shows the initialisation,
the middle rows show the managing of one collision, and the bottom is
for the full simulation. This total is found because there are an expected
O(N2 s2/Ia2) collisions in any fixed simulation time. For comparison,
the time complexity for tree codes scales as O(N4/3I−1/3 log N). The
parameter κ is the number of fragments produced in a collision.

without and with precession are then (N2s/a)(T/Tcoll) ∝ N3 and
N2T/Tprec ∝ N2, respectively. These are shown in Fig. 8, and are
also compared with the algorithmic efficiency numerical inte-
gration with a tree code. For a Solar System model with these
parameter values, the octree code is faster for N > 108.

2.3. Applications and neglected effects

We can think of the following applications: (i) gravity assists
at planetary flybys of a probe traversing the Solar System: the
collision detection scheme calculates the times of passage using
the sphere of influence. (ii) The tracking of a comet as its orbit
is perturbed at close encounters by the planets. (iii) The rings of
Saturn, with contact collisions and/or the gravitational influence
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Fig. 6. Initialisation- (orange) and simulation runtime (blue) vs. particle
count N, as in Fig. 4. Dashed lines are guidelines with slopes of 1, 2,
and 3. The initialization time is respectively linear and quadratic in N
for N < 1/ε and N > 1/ε, in accordance with the estimates in Table 2.
However, because only mergers were simulated, there were at most N
collisions, which results in a runtime of O(N3) instead of O(N4).

102 103 104 105 106 107 108 109 1010

102

103

104

105

106

107

108

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10

1

s/km s/amax

N

Fig. 7. Particle radius s vs. particle count N for a disk system with I ≤ .1
and a ≤ 4au. Above the black line, the numerical integration propagator
with tree code for collision detection beats the analytic propagator using
Kepler orbits (in terms of time efficiency). Precession due to a Jupiter
has a small effect above the orange line, where Tcoll = Tprec, and has
a negligible effect above the orange dashed line, aTcoll = sTprec. If the
mass of three Earths is distributed over equal-sized planetoids (of Earth
density), one is constrained to the blue line. On this line, precession is
small for N > 103 but only attains the much smaller error of s per orbit
for N > 109. Clearly, tree-code is better for these high number densities.

of shepherd moons. (iv) Growth by merging planetesimals into
protoplanets, in young planetary systems. (v) A simple model
to study the Kessler syndrome, where artificial satellites break
apart due to impacting space debris.

Because of the approximations, collision detection with
Kepler orbits is often inaccurate. However, sometimes accuracy
is not the aim, or not even possible due to the chaotic nature of
the problem. Instead, we may simply want to find out what could

102 103 104 105 106 107 108 109 101010−6

10−3

103

106

109

1012

1015

1018

1

# steps

N

Fig. 8. Theoretical algorithmic efficiency: number of computational
steps (big O) for one orbital period vs. particle count N. Blue: inter-
secting Kepler orbits without secular dynamics. Orange: with secular
dynamics. The blue dotted line indicates where precession due to sec-
ular dynamics cannot be neglected. The black line shows the estimated
number of steps for a tree code and/or spatial hashing. The slopes of the
lines are 3, 2, and 4/3, respectively.

happen, and calculate the probabilities of the various outcomes.
The speedup allows sampling of initial states, either by adding
many small perturbations to one initial state or by adding one
perturbing body with many initial states from a large phase-space
volume. Analytic propagation with collision detection based on
the Kepler orbits neglects the following effects: (i) orbital pre-
cession due to mutual gravity or oblateness of the central body
(as discussed in Sect. 6.3), (ii) three-body gravitational scatter-
ing, (iii) planetary migration due to interaction with the gas in
the protoplanetary disk, (iv) capture of planets in mean-motion
resonances, (v) the Kozai mechanism, (vi) moons and binaries,
(vii) atmospheric and (viii) tidal drag, (ix) solar wind, and (x) the
Poynting-Robertson effect.

3. The algorithm

3.1. Initialization

We have a system of planets, or particles orbiting a central mass.
The particles are numbered j = 1, . . . ,N. For each particle, we
store the following set of variables:{
t0

j , a j, c j, s j, m j, r0
j , L j, ε j, ω j

}
. (1)

Here, t0 is the time of creation, a, c are the orbital radius and
focal distance, s is the particle radius, m is the particle mass, r0 is
its position, L its angular momentum vector, ε is the eccentricity
vector, and ω is the frequency.

An initial state would consist of many particles in nearly cir-
cular orbits and therefore with small ε. If one draws random
numbers for the mean anomaly from the interval [0, 2π], the
resulting (smoothed) phase-space distribution will become sta-
tionary; if the values of $, � are sampled from [0, 2π], the
distribution will become axisymmetric; if also cos I is drawn
from [0, 1], it will become spherically symmetric (see Savransky
et al. 2011). To simulate a thin disk, one takes small values for I.
Equations (B.6) and (B.7) give the vectors L and ε in terms of a
and ε and the angles I, $, and �.

A97, page 5 of 15



A&A 669, A97 (2023)

We then sort the particle list by increasing value of periap-
sis. This will allow the implementation of the apoapsis/periapsis
filter (Baraff & Witkin 1992). The next step is to consider all
particle pairs, and list the pairs that can collide. For these, we
also store the calculated collision time t1

(i, j). If sufficient mem-
ory is available, it is possible to store the parameters in Eq. (1)
for the new particle that would be formed after the collision. The
soonest collision is at the top of the list.

3.2. Main loop

1. If the collision list is empty, end the simulation.

2. Take the pair (i, j) with the soonest collision: the first in
the list.

3. Update the time t to the time t1
(i, j) of the collision.

4. Remove any pair containing i and any pair containing j
from the pairs list.

5. Remove the particles i and j from the particle list.

6. If the orbit of the new particle intersects the central mass
or is unbound, go to the next collision on the list.

7. Create new particle(s) defined by{
t1
(i, j), a, c, s,m, r

0, L, ε, ω
}
.

8. For any new particle, consider the other particles and
decide if the pair is on a collision course. If this is the case,
calculate the time of the earliest collision.

9. Make a sorted list of the new collision possibilities with a
record of the collision time and the pair, soonest collision first.

10. Merge this sorted list with the existing sorted list of col-
lision possibilities into a full list of pairs, sorted by time of the
collision event, soonest collision first.

3.3. Determining if a pair is on a collision course

At the initialization, pairs of particles need to be considered for a
possible future collision. Also, during the simulation, each time
a new particle is created, all existing particles need to be paired
with the new particle and considered for a possible future colli-
sion. However, as we implement the sweep and prune method,
only pairs need to be considered with an overlap in the range
of radial motion. The radial coordinate for each particle i ranges
over the interval from the periapsis to the apoapsis:[
ai − ci − si, ai + ci + si

]
,

including an extension si of the size of the particle, or with
the substitution of its gravitational reach si = (mi/M)2/5ai. It
is sufficient to compare each particle i with the particles j =
i+1, j = i+2, . . .. Because the list is sorted, we have ai−ci− si ≤
a j − c j − s j. As long as ai + ci + si ≥ a j − c j − s j, the intervals
for i and j overlap and the pair is a candidate for collision. Once
we encounter the first j where ai + ci + si < a j − c j − s j, there are
no more particles that can interact with i and we can go to parti-
cle i + 1. If ε is the average eccentricity, only a fraction of 2ε of
the total number of pairs N2/2 need to be checked. The resulting
reduced number of checks in our numerical simulations is shown
in Figs. 4 and 6.

For a particle i created during the simulation, the selection
of pairs is slightly different. Again, it is sufficient to consider

only particles j with periapsis smaller than the apoapsis of i.
However, this time we have to start at j = 1.

1. Consider a pair, say (i, j) = (1, 2); we assume that a1 > a2.
First we need to find the minimal orbit intersection distance to
decide whether or not there can be a collision. For this, retrieve
m1, L1, ε1, and m2, L2, ε2. Then calculate the direction of the
nodal line (see Fig. 2), the semi-latus recti, the intersection
points, and the velocities at these points:

K = L1 × L2,

K =
√

K • K,

`1 =
L1 • L1

GMm2
1

, `2 =
L2 • L2

GMm2
2

,

r1 =
K`1

±K + ε1 • K
, r2 =

K`2

±K + ε2 • K
, (2)

r1 =
√

r1 • r1, r2 =
√

r2 • r2,

u1 =
L1

m1`1
×

(
ε1 +

r1

r1

)
, u2 =

L2

m2`2
×

(
ε2 +

r2

r2

)
. (3)

We write G for Newton’s constant. Equation (2) for the inter-
section points is derived in Sect. 4.1. Equation (3) is Eq. (B.1).
The two pairs (r1, r2) at the opposite sides are indicated with
the plus/minus symbol. The steps that now follow must be
performed on both of the pairs.

2. Next, calculate for both particles the (approximate) points
on the orbits where the distance is minimal:

d = r2 − r1,

w = u1 × u2,

(w2) = w • w,

r′1 = r1 +

(
d • u2 × w

(w2)

)
u1, r′2 = r2 +

(
d • u1 × w

(w2)

)
u2, (4)

r1 = r′1, r2 = r′2,
d = r2 − r1,

d =
√

d • d.

Equation (4) for the collision points r′1 and r′2 is derived in
Sect. 4.2.

3. Retrieve a1, s1 and a2, s2. Decide whether or not an
interaction can take place.

d < s1 + s2 =⇒ 1 and 2 collide.

d < (m1/M)2/5a1 =⇒ 1 can perturb orbit 2.

d < (m2/M)2/5a2 =⇒ 2 can perturb orbit 1.

If there is no contact or perturbation: go to the next pair.

3.4. Deterministic collision time

We now give the steps in the calculation of the exact collision
moment.

1. Retrieve t0
1, ω1, r0

1 and t0
2, ω2, r0

2 of the particles
involved (with ω1 < ω2). Calculate the first time a particle
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passes the crossing point in Fig. 2. These times are denoted
by t1

1, t1
2.

(ε2
1 ) = ε1 • ε1,

(ε2
2 ) = ε2 • ε2,

r1 =
√

r1 • r1,

r2 =
√

r2 • r2,

z =

( r1

a1
− ir1u1

a2
1ω1

)
•
( r0

1 − ε1 ε1•r0
1

a1 − (ε2
1 )a1

+ ε1

)
+

r0
1•ε1

a1
+ (ε2

1 ), (5)

∆E1 = arg z, 0 ≤ ∆E1 < 2π,

z =

( r2

a2
− ir2u2

a2
2ω2

)
•
( r0

2 − ε2 ε2•r0
2

a2 − (ε2
2 )a2

+ ε2

)
+

r0
2•ε2

a2
+ (ε2

2 ),

∆E2 = arg z, 0 ≤ ∆E2 < 2π,

t1
1 = t0

1 +
∆E1

ω1
− ε1 × (r1 − r0

1)

1 − (ε2
1 )

• L1

GMm1
, (6)

t1
2 = t0

2 +
∆E2

ω2
− ε2 × (r2 − r0

2)

1 − (ε2
2 )

• L2

GMm2
.

These equations are derived in Sect. 5. Equation (5) is obtained
by combining Eqs. (11) and (12). The complex number has
unit modulus. Equation (6) for the passage times follows from
Eq. (10).

2. Evaluate the small dimensionless parameter.

u = u2 − u1,

δ =
1

|t1
1 − t1

2 |

√
u • u

(s1 + s2)2 − d2

(w2)
. (7)

3. Next calculate the exact number of periods k that planet 1
makes before colliding with planet 2. The method uses the
continued fraction of the ω2/ω1. Initialize the loop:

q0 =
2π

ω1|t1
1 − t1

2 |
, k0 = 1,

q1 =
2π

ω2|t1
1 − t1

2 |
, k1 = 0.

4. Start loop counter at n = 0. The loop creates integer
sequences αn, kn and the positive sequence qn. These are the dig-
its, the denominators of the convergents, and the remainders of
the continued fraction (we do not need the numerators, denoted
ln). The loop performs the iterations

α2n =

⌊ q2n

q2n+1

⌋
, q2n+2 = q2n − α2nq2n+1,

if q2n+2 = 0 =⇒ next pair
k2n+2 = k2n − α2nk2n+1,

α2n+1 =

⌊q2n+1

q2n+2

⌋
, q2n+3 = q2n+1 − α2n+1q2n+2,

if q2n+3 = 0 =⇒ next pair
k2n+3 = k2n+1 − α2n+1k2n+2.

We use the notation b·c and d·e for the floor and the ceiling func-
tion. The time Tsim to be simulated sets an upper bound for the
solution:

xmax =
(Tsim − t1

1)ω1
2π q2n+1 − (1 + δ)k2n+1

k2nq2n+1 − q2nk2n+1
.

We then test the points with coordinates

x =

⌈1 − δ
q2n

⌉
, . . . ,

⌊1 + δ

q2n+2

⌋
,

if x > xmax =⇒ next pair

y = max
(
0,

⌈q2nx − 1 − δ
q2n+1

⌉)
.

If for any of these points 1 − δ < xq2n − yq2n+1, then we have
found the solution. If not, we increase n by 1 and check this next.

5. The solution is

k = xk2n − yk2n+1, t0 = t1
1 +

2πk
ω1

. (8)

Equation (8) for the deterministic collision time is derived in
Sect. 6.1.
The solution k = 0 means that the pair (1, 2) is about to collide
within the present period. If a gravitational scattering between
the same pair (1, 2) has happened at the previous time-step, the
solution k = 0 corresponds to the scattering that was just simu-
lated, and therefore is invalid. However, for a different pair where
one particle participated in this last scattering, the solution k = 0
is valid, as it implies an immediate collision with a third particle.
For three (or more) bodies inside each others sphere of influence,
the multi-body gravitational scattering will therefore be treated
as three (or more) successive two-body interactions.

3.5. Stochastic collision time

Although the time of collision between two bodies is uniquely
determined by the initial conditions, it is highly sensitive to
the precise values of the creation times and the orbital periods.
Therefore, if the physical or numerical error in the (initial) values
is bigger than s/a, the collision time becomes unpredictable.

If the collision process is assumed to be stochastic, one may
adopt the following Monte Carlo method. First, a random num-
ber ξ is drawn from the interval [0, 1]. The moment of collision
is calculated with
u = u2 − u1,

t0 = t1
1 +

(− log ξ)(2π)2

2GM

√
(w2)
u • u

a3
1a3

2

(s1 + s2)2 − d2 . (9)

Equation (9) is derived in Sect. 6.2.

3.6. The collision

In order to simulate the collision or scattering event, a physical
model of the merger or break-up of the particles needs to be
implemented. In the case of pure gravitational scattering (close
passage), one can use the formulas from Appendix C for the
momentum exchange. This elastic collision is depicted in Fig. 9.
We now outline how to find the orbit of the new particle in case
of a merger between particles 1 and 2.
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u1

u1

u′1

u2

u2

u′2

b1 + b2

2b1

2b2

c1 − a1

c2 − a2

2b2

O

Fig. 9. Gravitational scattering between particles 1 and 2 in the center-
of-mass frame. The initial velocities u1, u2 are scattered in the directions
u′1, u′2 along the asymptotic lines (dotted). The actual orbits are hyper-
bolas (blue, purple). The focal points (black dots), with O being the
common focal point of the orbits, lie on the orange circles. The four
points of intersection of a circle with the asymptotes form rectangles
with dimensions of the transverse axis 2a j by the conjugate axis 2b j
(Adams & Essex 2021). The impact parameter is the sum b = b1 + b2.

1. For a simple merger, the new particle has radius, mass,
position, velocity, and angular momentum1 calculated from the
basic conservation laws:

s = (s3
1 + s3

2)1/3 (material volume),
m = m1 + m2 (mass),

r =
m1r1 + m2r2

m
(center-of-mass motion),

u =
m1u1 + m2u2

m
(momentum),

L = mr × u (angular momentum).

2. Decide whether or not the new particle collides with the
central body. We suppose that it is a sphere of radius S .

` =
L • L

GMm2 ,

r =
√

r • r,

ε =
u × L
GMm

− r
r
,

ε =
√
ε • ε.

In the general case that several collision fragments are created
in the collision, there are five cases, with three outcomes (see
Fig. 10) for a fragment. First, consider the cases where there is
no crossing:

` > (1 + ε)S and ε < 1 =⇒ new particle stays.
` > (1 + ε)S and ε ≥ 1 =⇒ particle escapes.

In the remaining cases, ` ≤ (1 + ε)S and the orbit crosses the
central body.

ε ≥ 1 and r • u > 0 =⇒ particle escapes.
ε ≥ 1 and r • u ≤ 0 =⇒ collides with M.
ε < 1 =⇒ collides with M.

1 As pointed out by the referee, orbital angular momentum is not
strictly conserved, because it is transferred into spin for oblique col-
lisions: this spin becomes S = S1 + S2 + (m1m2/m)d × u, provided
|S| < (2/5)

√
Gm3 s.

(a)

ε < 1 x

y

m

M

(b)

ε < 1 x

y

m

M

(c)

ε ≥ 1
r • u < 0

x

y

m

M

(d)

ε ≥ 1
r • u > 0

x

y

m

M

(e)

ε ≥ 1 x

y

m

M

Fig. 10. Five cases for the obit of a collision fragment. (a) The parti-
cle is bound. (b), (c) The particle collides with the central mass. (d),
(e) The particle leaves the system. For long intervals between collisions
(Tcoll � T ), cases ((b)-(e)) can be dealt with by removing the parti-
cle. Otherwise, the fragments need to be stored and paired in a similar
manner to the bound particles.

Only in the first case does the particle stay in a bound orbit, and
we continue; otherwise, the particle is removed.

For a merger, there is only one collision product, and the
newly formed particle will always have ε < 1 because (total)
energy can only decrease.

3. Calculate the required orbital parameters of the new
particle:

a =
`

1 − ε2 , c = aε, ω =

√
GM
a3 .

4. Register
{
t0, a, c, s,m, r, L, ε, ω

}
of the new particle.

5. Sort the list of new particles by increasing a − c − s.
6. Merge these new-particle lists with the existing-particle

list.
Go to the next time-step.

4. Calculating points of closest approach

In this section, we derive an approximation for the points on two
Kepler orbits with minimal separation. This distance is called
the minimum orbit intersection distance (MOID). As we are
considering possible collisions between planets, we are inter-
ested in the case where the MOID for the orbits of planet 1 and
planet 2 is less than s1 + s2. We assume that the planet radii s j
are many orders of magnitude smaller than the orbital radii a j.
Then, for an angle I between the orbital planes of larger than
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(a)

x

y
r1

r0

aε

(b)

∆E

x

y
r̃1

r̃0

bε

Fig. 11. Elliptical Kepler orbit (a) and orbit squeezed into a circle (b)
from scaling the x-axis by b/a. The travel time from r0 to r1 is equal to
the ratio of the swept (cyan) area in (a) to πab times the period. In (b),
this ratio is the (yellow) circle segment plus the (gray) triangle minus the
image of the (gray) triangle in (a) over πb2. The circle segment has area
∆Eb2/2, with ∆E = E1 − E0 being the difference in eccentric anomaly.

(s1 + s2)/(a1 + a2), the MOID will be close to the line of inter-
section of the orbital planes (Hoots et al. 1984; Manley et al.
1998). This principle is illustrated in Fig. 2: outside a cylinder
with radius (s1 + s2)/(2 sin I

2 ) about the “mutual nodal line”, all
points in orbit 1 are separated by more than s1 + s2 from points
in orbit 2. Any collision must therefore happen inside the cylin-
der. The cylinder is only large for very small inclinations. If the
system is a disk with an average inclination angle Ī, these small
inclinations are rare for N < Īa2/s2.

Because the range for gravitational scattering can be larger,
our approach will only work for low-mass planets. The iterative
scheme converging to the MOID that projects the points onto
the orbit followed by linearization is described in Hoots et al.
(1984). Various other methods to obtain the MOID have been
found (see e.g. Gronchi 2005; Milisavljević 2010; Segan et al.
2011; Wiźniowski & Rickman 2013; Hedo et al. 2018).

4.1. Intersecting orbit 1 with orbital plane 2

The Kepler orbit of a planet is entirely determined by its angu-
lar momentum L and eccentricity vector ε (Goldstein 1964). The
angular momentum is normal to the place of the orbit and the
vector aε points from the center of the ellipse to the focal point
where the central mass is located (see Fig. 11). Now let us con-
sider two orbits, for planet 1 and planet 2, specified by L1, ε1 and
L2, ε2, respectively. The line of intersection of the two orbital
planes, or the nodal line, can be found as follows. Because the
angular momenta L1 and L2 are both perpendicular to the nodal
line, a direction vector of the nodal line is

K = K K̂ = ±L1 × L2.

The plus/minus symbol indicates the two opposite directions in
which the intersection points with an orbit are found. Because
the eccentricity vector ε of an orbit points from the central mass
towards the periapsis, the true anomaly ν of the intersection point
in the direction K is given by

cos ν =
ε • K̂
ε

.

The point of intersection can now be found from the formula for
the orbit Eq. (B.3). We find

r = rK̂ =
(1 − ε2)a

1 + ε cos ν
K̂ =

(1 − ε2)a
1 + ε • K̂

K̂ =
(1 − ε2)a
K + ε • K

K.

Therefore, for the two pairs of intersection points, we obtain

r1,± =
(1 − ε2

1 )a1L1 × L2

±|L1 × L2| + ε1 • (L1 × L2)
,

r2,± =
(1 − ε2

2 )a2L1 × L2

±|L1 × L2| + ε2 • (L1 × L2)
.

4.2. Pair of closest points between two orbits

Next, we approximate the points where the MOID is found. In
order to do so, we consider the tangent lines of the orbits at the
points r1 and r2 of intersection with the nodal line. The tangent
lines point in the direction of the velocities u1 and u2 at r1 and
r2. These can be found using Eq. (B.1). The distance between the
two lines is given by

d =

∣∣∣∣∣(r2 − r1) • (u1 × u2)
|u1 × u2|

∣∣∣∣∣.
This is the projection of the difference vector onto the direction
of shortest distance. We refer to the two points on the lines where
the distance is minimal as r′1 and r′2. These positions are given
by

r′1 = r1 +

[
(r2 − r1) • |u2|2u1 − (u1 • u2)u2

|u1|2|u2|2 − (u1 • u2)2

]
u1,

= r1 +

[
(r2 − r1) • u2 × (u1 × u2)

|u1 × u2|2
]
u1,

r′2 = r2 +

[
(r2 − r1) • u1 × (u1 × u2)

|u1 × u2|2
]
u2.

One may verify that (r′2− r′1)• u1 = (r′2− r′1)• u2 = 0. This proves
that the minimal distance between the lines is realized at the
points r′1 and r′2. We also have that (r′2 − r′1) • (r2 − r1) = d2,
implying that |r′2 − r′1| = d < |r2 − r1|.

If the inclination between the orbital planes, which is given
by I ≈ K/L1L2, is not much larger than (s1 + s2)/(a1 + a2), the
linear approximation is inaccurate. One can improve this approx-
imation by reducing the lengths of r′i , so that the points lie on the
respective orbits, and then finding the shortest distance between
the tangent lines to the orbits at these new points. Here, one may
iterate as in the method of Newton Raphson.

5. Calculating the earliest passage of the crossing

In this section, we derive expressions for the time it takes a par-
ticle on a Kepler orbit to go from r0 to r1. In the algorithm, r0

is the particle’s creation point and r1 is the collision point. A
standard approach is to use the eccentric anomaly E values at
these points. However, E becomes ill defined for small eccen-
tricities2. Here, we derive the exact expression, Eq. (6), that does
not depend on the value of E; only the difference between the
values of E enters the derivation.

Kepler’s second law states that the position vector sweeps
out equal areas in equal times. The swept area can be decom-
posed into a segment of the ellipse (with an angle determined by
the eccentric anomaly) plus the triangle between −aε, 0, and r0

minus the triangle between −aε, 0, and r1 in Fig. 11a. Therefore,

area =
(E1 − E0)ab

2︸         ︷︷         ︸
ellipse segment

+
aε × r0

2
• L̂︸        ︷︷        ︸

added triangle

− aε × r1

2
• L̂︸        ︷︷        ︸

subtracted triangle

.

2 The need for the following calculations was pointed out by Soliman
(2022).
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Kepler’s second law therefore implies that the time it takes a
body to move from r0 to r1 is equal to

t1 − t0 =
area
πab

T =
2 area
ωab

=
E1 − E0

ω
− ε × (r1 − r0)

ωb
• L̂. (10)

As the ellipse has its major axis pointing in the direction of ε, we
can transform the elliptic orbit into the circle in Fig. 11b with the
linear transformation

r
squeeze−−−−−→

(
1 − ε ε

T

ε2 +
b
a
ε εT

ε2

)
r = r − aε • r

a + b
ε.

This squeezes the semimajor axes by a factor b/a, and leaves the
semiminor axes intact. The eccentric anomaly is defined with
respect to the center of the circle. We therefore require the vector
pointing from the center to the point on the squeezed r. This
vector is found by

r
translate−−−−−−→ r + (aε)

squeeze−−−−−→
(
r − aε • r

a + b
ε
)

+ (bε).

When r is on the orbit, the transformed vector has a length of
b. The cosine of the difference in eccentric anomalies is the dot
product between the directions of the squeezed vectors:

cos(E1 − E0) =
1
b2

(
r1 − aε

ε • r1

a + b
+ bε

)
•
(
r0 − aε

ε • r0

a + b
+ bε

)
.

This simplifies to

cos(E1 − E0) =
r1 • r0

b2 +
(r1 + r0) • ε

a
− r1 • ε ε • r0

b2 + ε2. (11)

By noting that the cross product between the two direction
vectors gives us the sine, we find in terms of the position vectors:

sin(E1 − E0) =
r0 × r1

ab
• L̂ +

ε × (r1 − r0)
b

• L̂.

If we combine this with Eq. (10), we obtain Eq. (2.69) in Murray
& Dermott (2009) for the so-called g-function:

t1 − t0 =
E1 − E0 − sin(E1 − E0)

ω
+

m(r0 × r1) • L
L2︸            ︷︷            ︸

g-function

.

Although this Equation is remarkable because it does not contain
ε or the values a, b, we will not need it.

Differentiating Eq. (11) with respect to time t1 in the end-
point gives another equation:

−ωa
r1 sin(E1 − E0) =

u1 • r0

b2 +
u1 • ε

a
− u

1 • ε ε • r0

b2 . (12)

These results can be verified by direct substitution of Eqs. (B.4),
(B.5), and (B.7) into the right-hand side of Eq. (12). Equa-
tion (10) with the smallest non-negative value for E1 − E0 that
satisfies Eqs. (11) and (12) gives the time to get from r0 to r1.

6. Calculating the time to collision

We consider two planets 1 and 2, with a MOID of less than
s1 + s2, and we want to determine the time at which the planets
collide. To this end, let r1 be the point on orbit 1 with minimal
distance to orbit 2, and r2 the corresponding point on orbit 2
that is closest to r1. Let u1 and u2 be the respective velocities of
the planets if they pass these points. Now, assume that there is a
possible collision:

|r2 − r1| < s1 + s2.

Let t1
1 be the first time that planet 1 passes r1, and t1

2 be the first
time planet 2 passes r2. A collision occurs at time t(k, l) when
both planets are near the points where the distance to the other
ellipse is minimal. At that time, planet 1 then passes the point
for the kth time, and planet 2 for the lth time. The collision is
therefore at

t(k, l) = t1
1 + T1k + dt1 = t1

2 + T2l + dt2.

Here k and l are integers and dt1 and dt2 are small shifts that
allow for the fact that the planets only need to be close to the
point where the distance between the orbits is minimal. Because
the algorithm moves forward in time,

k ≥ 0, l ≥ 0.

The shifts in time from the point of closest approach are
therefore

dt1 = t(k, l) − t1
1 − T1k, dt2 = t(k, l) − t1

2 − T2l, (13)

and these need to be small. We linearize the motion about the
collision time t(k, l), as

r1 + u1dt1, r2 + u2dt2.

By solving for the closest approach between the two particles
(in contrast to the MOID, the smallness of the differentials
will be a consequence of the fact that the minimal distance for
colliding particles is smaller than s1 + s2. For this, we introduce
the difference vectors

r12(t) = r2 + u2dt2 − r1 − u1dt1, u12 = u2 − u1.

We note that dt1 and dt2 need to be considered as functions
of the collision time t. At this time t, the distance is minimal,
which is at (see Eq. (A.1))

t(k, l) =
−u12 • r12(0)

v2
12

,

with v12 = |u12|. The value of the distance must be smaller than
the sum of the planet radii (see JeongAhn & Malhotra 2017):

|u12 × r12(0)|
v12

< s1 + s2.

When we expand this equation, we find∣∣∣∣(r2 − r1 − u2t1
2 − u2T2l + u1t1

1 + u1T1k
)
× u12

∣∣∣∣ < (s1 + s2)v12.

Because (r2 − r1) • u1 = (r2 − r1) • u2 = 0, this is equivalent to∣∣∣∣(u1t1
1 + u1T1k − u2t1

2 − u2T2l
)
× u12

∣∣∣∣ < √
(s1 + s2)2 − |r2 − r1|2v12.
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x

y

O

(k, l)

(q, p)

b0

b2

b4

b6

b1

b3

b5

Fig. 12. Search space. The problem of finding the collision time for two
planets is equivalent to finding the grid point (k, l) in the small blue band
that is closest to the origin. The horizontal and vertical axes are given by
x = (t − t1

1)/T1 and y = (t − t1
2)/T2 in Eq. (13), respectively. The slope is

the ratio p/q = T1/T2 of orbital periods. The center of the intersection
with the horizontal axis is T2/|t1

1 − t1
2 |, where |t1

1 − t1
2 | is the difference

between the time-of-passage of the collision point for the two planets.
The width of the band depends on the minimal distance of the orbits
and the planet radii. The solution can be rapidly found using the bases{
b2n, b2n+1

}
.

Using u12 = u2 − u1, this can be further simplified to∣∣∣∣t1
1 + T1k − t1

2 − T2l
∣∣∣∣ < √

(s1 + s2)2 − |r2 − r1|2v12

|u1 × u2| .

We need to find the smallest non-negative integers k, l for which
this inequality is satisfied. We can now recast the problem of the
time to collision as finding the smallest integers k, l, so that

1 − δ < kp − lq < 1 + δ. (14)

In this inequality, we use dimensionless parameters p, q, δ, which
are defined as

p =
T1

|t1
1 − t1

2 |
, q =

T2

|t1
1 − t1

2 |
, δ =

√
(s1 + s2)2 − |r2 − r1|2v12

|t1
1 − t1

2 ||u1 × u2|
.

The linearization of the motion around the crossing points of the
nodal line translates the collision problem into integer linear pro-
gramming (in two dimensions). We can find the exact solution in
a few steps, even if k and l turn out to be very large numbers.

We assume, without loss of generality, that T1 > T2. Conse-
quently, p > q > 0 and p > 1. Equation (14) says that we need
an integer linear combination of the irrationals p and q that is
within a distance δ from 1. We therefore need to find the point in
the grid N2 closest to the origin that lies in between the lines

x =

( q
p

)
y +

1 − δ
p

and x =

( q
p

)
y +

1 + δ

p

in the first quadrant of the xy-plane (R2). This is shown in
Fig. 12. The (horizontal) width of the narrow band is δ/p, which
will be of order of magnitude of s/a. For the following solu-
tion method to give the correct values of k and l, the numerical
accuracy needs to be smaller than this number.

6.1. Deterministic collision time

Here we present an iteration scheme that finds (k, l) in log(q/δ)
steps. We will need the continued-fraction representation of p/q.

This is found from the recursion relation that calculates the
successive remainders:

q0 = p, q1 = q, qn+2 = (qn mod qn+1), for n = 0, 1, 2, . . .

This is similar to the Euclidian algorithm for finding the greatest
common divisor. For rational p/q, the sequence becomes zero in
finite steps, and for irrational p/q the sequence decreases to zero
(Khinchin 1964; Rockett & Szüsz 1992):

0 < qn+1 < qn −→ 0, as n −→ ∞.
The qn are all integer linear combinations of p, q, and are there-
fore elements of Z-span

{
p, q

}
. When we write qn = kn p − lnq,

then the rationals ln/kn are precisely the successive convergents
of the continued-fraction representation.

Next, we define the bases
{
bn, bn+1

}
for Z2, with slopes equal

to the fractions:

bn = (−1)n
(kn
ln

)
,

l2n

k2n
<

p
q
<

l2n+1

k2n+1
.

The slopes of the even base vectors increase and the slopes of
the odd base vectors decrease to p/q. This is shown in Fig. 12.
The sequence of remainders may be found from(qn+2
qn+1

)
=

(−bqn/qn+1c 1
1 0

)(qn+1
qn

)
,

and base vectors can be found from the recursion relation:

b0 =

(1
0

)
, b1 =

(0
1

)
, bn+2 = bn +

⌊ qn

qn+1

⌋
bn+1.

Therefore, each basis is related to the preceding basis by the
transformation(
bn+1

∣∣∣∣∣bn+2

)
=

(
bn

∣∣∣∣∣bn+1

)(0 1
1 bqn/qn+1c

)
.

The transformation matrix is unimodular, which implies that
the transformation is a bijection between the points of Z2. The
integer coordinates (xn, yn) in each base are defined by(x
y

)
= xnbn + ynbn+1,

which means that x0 = x and y0 = y. Substitution in Eq. (14)
gives us the inequalities

1 − δ < x0 p − y0q = (−1)n(xnqn − ynqn+1) < 1 + δ.

Consider the following bases, which are composed of the
successive even- and odd-numbered vectors:{
b0, b2

}
,

{
b1, b3

}
,

{
b2, b4

}
,

{
b3, b5

}
, . . .

The positive spans (linear combinations) of these pairs parti-
tion the first quadrant of R2 into segments (see again Fig. 12).
As we may assume that (k, l) = (0, 0) is not a solution, the
band intersects the y-axis at negative y and therefore lies below
the segments spanned by the odd bases. However, in any even
basis, the intersection of the band with a segment is a trapezoid.
Because the union of all segments is the entire first quadrant, the
solution of Eq. (14) must lie in one of the trapezoids. However,
the pairs of even and odd base vectors do not form a unimodular
matrix, and therefore they do not necessarily span Z2. For this
reason, we must instead search in the original bases

{
bn, bn+1

}
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Fig. 13. Numerical checks needed to calculate the exact collision
time for random collision pairs. Here we show the number of checks
(orange), the number of iterations (black), and the average number of
checks per iteration (blue) performed by the algorithm. On the hori-
zontal axis is the number of orbits k before the collision, which is the
solution calculated by the iteration scheme. The gray line is #checks =
k1/2 and shows the trend.

inside the parallelogram of the strip between y′ = 0 and the y′-
value where the bottom of the strip intersects span

{
bn+2

}
. This is

the top-right point and the bottom-right point of the subsequent
parallelogram. The parallelogram has corner points:
(x′, y′) =

(
1−δ
qn
, 0

)
,

(
1−δ
qn

+
(1+δ)(qn−qn+2)

qnqn+2
, (1+δ)(qn−qn+2)

qn+1qn+2

)
,(

1+δ
qn
, 0

)
,

(
1+δ
qn+2

, (1+δ)(qn−qn+2)
qn+1qn+2

)
,

where n is even and the coordinates are defined by(x
y

)
= x′bn + y′bn+1 =

(x′kn − y′kn+1
x′ln − y′ln+1

)
.

Successive parallelograms overlap. One needs to search one
entire parallelogram first before going to the next, because the
integer point closest to the origin will be found at the earliest
occasion. Also, for each y′-value, only the lowest integer x′-value
to the right of the left line segment needs to be checked3.

When the calculated orbital periods T1 and T2 have a ratio
close to that of two small integers, the planets could be in mean-
motion resonance and may never collide (as is the case with
Neptune and Pluto). The method neglects these cases, and will
erroneously find a collision at a high k number. If the continued
fraction is actually finite (because p/q is rational), the strip has
an integer slope at the final step. Figure 13 shows the results of a
numerical test with random collision pairs. We find that the total
number of checks grows as k1/2, while the number of iterations
grows as log k with the solution k.

6.2. Stochastic collision times

For small δ and irrational p/q, a generic solution (k, l) will form
a pair of large integers, with

l
k
≈ p

q
.

The precise value depends very sensitively on q and p. If we
assume that we cannot obtain the required numerical accuracy

3 It was pointed out by Schouten (2022) that by looping through the
integer x values instead of the integer y values the number of checks is
significantly lower.

to find the exact solution, we may use a statistical approach. The
integer points (k, l) are uniformly distributed over the plane. If we
assume that the points are statistically independent (this it clearly
an approximation valid for δ � 1), the distribution is that of a
Poisson point process. The probability that there is a grid point
(k, l) between the lines with k in the interval [x, x + dx] is equal to
the area of the small parallelogram. This area is (2δ/q)dx. Now,
the area between the lines below k = x is given by

2δ
q

x − 2δ − 4δ2

pq
≈ 2δ

q
x, for x � 1.

Therefore, the respective probabilities for the solution k to be
found above x and below x are
Prob(k > x) = lim

dx−→0

(
1 − 2δ

q dx
)x/dx

= e−2xδ/q,

Prob(k ≤ x) = 1 − e−2xδ/q.

The latter formula is the cumulative distribution function for k.
We obtain a realization by generating a random real number ξ
inside the interval [0, 1] and use

k =
(− log ξ)q

2δ
, l =

(− log ξ)p
2δ

− 1
q
.

Because these values are large, rounding off to the nearest integer
is not important. The time of the collision is then given by

t = t1
1 + kT 1 = t1

1 +
(− log ξ)T1T2|u1 × u2|

2
√

(s1 + s2)2 − |r2 − r1|2v12

.

The formula for the average waiting time kT 1 is precisely the
reciprocal of the collision probability for one orbit. The fact that
this reproduces the formula Eq. (23) in Öpik (1951), Eq. (29) in
JeongAhn & Malhotra (2017), and Eqs. (2) and (3) in Diserens
et al. (2020) for this probability P validates our Eq. (14).

The Monte Carlo method for finding the collision time also
follows from assuming homogeneous distributions of the mean
anomalies of two fixed Kepler orbits, as in Öpik’s scheme. This
method assumes large k, implying that the initial crossing time
t1 cannot be precisely known (due to numerical inaccuracy or
neglected physics effects). However, when the system contains
one or more large planets, the collision or nearby passage could
happen after a few revolutions, that is, for small k.

6.3. Including orbital precession

Our method for calculating the collision time outlined in the pre-
vious subsection assumes perfect Kepler orbits. However, if one
intends to make accurate predictions over long timescales, the
slow precession of the periapsis and of the orbital plane can-
not be neglected. For example, the perihelion shift for the planet
Jupiter in one revolution is about twice the planet’s diameter (see
Fig. 14 for the precession rates for the Solar System planets). For
a planet ring system, precession is mainly due to the oblateness
of the planet. Hence, if one is not just interested in statistical aver-
ages, then the secular dynamics must be included on the orbital
timescale.

A method to remedy this problem is to numerically prop-
agate the Laplace-Lagrange equations. The time-steps are now
set by the secular timescale dt / Tprec. There are N2 terms in
the system of differential equations and there are N2ε/2 colli-
sion possibilities, which need to be evaluated. The theoretical
algorithmic efficiency is shown by the orange curve in Fig. 8.
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Fig. 14. Timescale vs. particle count N. The horizontal lines are the
orbital periods T j and the precession periods Tprec j of the Solar Sys-
tem planets (gray, brown, blue, red, coral, golden, turquoise, azure are
Mercury through Neptune) from Murray & Dermott (2009). The black
curve shows the collision time Tcoll estimated for a disk with a = 4au,
I = .1, and a mass of three Earths containing N particles of Earth den-
sity. For N < 10, the collision time is comparable to the precession time
(105yr). The radius of gravitational influence is roughly 103 times the
planet radius s; this determines Tscatt, the dashed curve.

It may be possible to include the collision detection in the
following way. At each time-step (now shorter than the collision
time), one calculates the instantaneous change is the orbital ele-
ments ε,$, I,�. One expresses the resulting linear change in the
points r j and velocities u j near the points of closest approach,
as linear functions in the passage numbers k and l. The step
where the minimal distance d is compared with the sum si + s j
is skipped. Instead one directly uses the modified inequality
Eq. (14). This would then lead to a problem from integer lin-
ear programming, as before. For this modified case, we would
expect the two lines bounding our search domain to be nonparal-
lel. The solution for the collision problem has a spatial accuracy
of less than a planet radius on the longer timescale where the per-
ihelion shift can be approximated as linear motion. A thorough
development of this idea is a possible direction for follow-up
research.

7. Conclusions

We describe an algorithm that simulates collisional Keplerian
systems: N bodies in the Coulomb potential of a central mass.
The method uses the orbital elements and has three basis ingre-
dients, of which the third is novel: (i) for a new particle i, a small
set of possible collision candidates j is selected using the apoap-
sis/periapsis filter. (ii) The MOIDs between the particle pairs
(i, j) can be approximated numerically. (iii) For the pairs (i, j)
on a collision trajectory, one can obtain the collision time t(i, j)
with integer linear programming. During the simulation, sorted
lists of the particles and the collision pairs are maintained. The
algorithm steps from one collision to the next as it updates the
particle orbits and collision possibilities.

We show that the problem of finding the collision time is
mathematically equivalent to the problem in integer linear pro-
gramming of finding the grid point (k, l) in N2 between two
parallel lines that is closest to the origin. The exact solution uses

the continued-fraction representation of the ratio Ti/T j of the
orbital periods.

Because at most N new collision possibilities have to be
added to the list, less than N interactions need to be consid-
ered at each step. The length of the collision list is O(N2s/a)
and the total number of collisions is O(N2s2/a2), resulting in
an algorithmic efficiency of O(N4s3/a3). This may be compared
to the efficiency O(N4/3 log N) of a numerical integration prop-
agator with collision detection (tree code or spatial hashing),
which is independent of the particle radius s. In the astro-
nomical applications, the radii are usually small compared to
the orbits. The collisions are therefore rare, and the proposed
collision-detection method can be fast. However, the perturba-
tions we neglect become increasingly important, and, at the same
time, the result becomes progressively sensitive to the initial
state. Needless to say, including collisions is important, even if
they are rare. Studying statistics of outcomes of the dynamics
requires many simulations with near-identical initial states. For
relatively small particle numbers, say for N < 106, the individual
realizations can be fast.

Acknowledgements. The author would like to thank John Chambers for acting as
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Appendix A: Closest approach

Consider two non-interacting particles in linear motion:

r1(t) = r1 + u1t, r2(t) = r2 + u2t.

We call the intitial distance vector and the relative velocity:

d = r2 − r1, u = u2 − u1.

We want to decide if there is a collision in the interval [0, dt].
Therefore, we calculate the distance between the particles at t =
0 and at t = dt to see if there is a collision at the endpoints:

|d| < s1 + s2, |d + u dt| < s1 + s2.

If not, the only possibility for a collision on the interval is that
the distance obtains a minimum on the (interior) of the interval.
This means that the relative velocity in the direction between the
particles is first decreasing and then increasing:

u • d < 0, u • (d + u dt) > 0.

The time of minimal distance is at

t =
−u • d

u2 , (A.1)

which is then indeed between 0 and dt. We then decide if the dis-
tance at this time t is smaller than the sum of the radii. When we
substitute t back into the Equation for the distance, we find that
it is equal to the component of d perpendicular to the direction
of u. Hence, the condition for a collision is equivalent to:

|u × d|
|u| < s1 + s2.

Appendix B: Orbital elements

Consider a single particle of mass m in a Kepler orbit about the
central mass M. The orbit is an ellipse in a fixed plane. The
angular momentum vector is defined by

L = r × mu.

The Laplace-Runge-Lenz vector is proportional to the dimen-
sionless eccentricity vector:

ε =
LRL

GMm2 =
u × L
GMm

− r
r
.

The orbit is fixed by the orthogonal pair of vectors L and ε.
For the problem of solving the MOID, we need a formula

that expresses the velocity u along the orbit as a function of the
position r and the orbital elements. Given L, ε, r, we equate

L ×
(
ε +

r
r

)
=

L × (u × L)
GMm

=
L2u

GMm
,

and therefore the velocity can be expressed as:

u =
GMm

L2 L ×
(
ε +

r
r

)
. (B.1)

The Equation for the energy is called the vis-viva equation

Energy
m

=
v2

2
− GM

r
= −GM

2a
.

With this Equation and Kepler’s third law,

ω2a3 = GM,

the orbital elements a, ε and mean motion ω can be calculated
from position and velocity:

a =
1

1 − ε2

L2

GMm2 =
1

2
r
− v2

GM

, ω =

√
GM
a3 .

The orbit is parametrized by the true anomaly ν or the eccen-
tric anomaly E. If we know the eccentric anomaly, we can
calculate the time since periapsis from the Kepler equation

t =
E − ε sin E

ω
. (B.2)

The formula for the radial distance in terms of the parameters is

r =
b2

a + c cos ν
= a − c cos E. (B.3)

The semimajor axes, a and b, the distance from the center to a
focus, c, and eccentricity ε are related by

b =
√

1 − ε2a, c = εa, a2 = b2 + c2.

The position vector and the velocity vector can now be expressed
as:

r =

x
y
z

 = rR

cos ν
sin ν

0

 = R

a cos E − c
b sin E

0

 , (B.4)

and, using Eqs. (B.2) and (B.3),

u = ṙ =
ωa
r

R

−a sin E
b cos E

0

 =
ωa
b

R

 −a sin ν
a cos ν + c

0

 . (B.5)

In the expressions Eqs. (B.4) and (B.5), R is a constant rotation
matrix, which can be expressed as a product of three elementary
rotations

R =

cos� − sin� 0
sin� cos� 0

0 0 1


1 0 0
0 cos I − sin I
0 sin I cos I


cos$ − sin$ 0
sin$ cos$ 0

0 0 1

 .
Here, $ is the argument of perihelion, I is inclination, and� is
the ascending node. We have for the angular momentum and the
eccenticity vectors,

L = LR

00
1

 = L

 sin� sin I
− cos� sin I

cos I

 , L = mωab, (B.6)

and

ε = εR

10
0

 = ε

cos$ cos� − sin$ sin� cos I
cos$ sin� + sin$ cos� cos I

sin$ sin I

 , ε =
c
a
.

(B.7)

These five orbital elements a, ε, $,�, I represent five indepen-
dent conserved quantities. They can be found from the position
and velocity vectors as follows. The equations at the beginning
of this section give us L and ε in terms of r, u. Then, the compo-
nent l = L3 can give us the angle I. The component L1 can give
us �, and ε3 can give us the angle $.
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Appendix C: Elastic collisions

When planets approach each other so closely that the gravity they
exert on each other is of the same strength as the gravity from
the star, the mutual gravitational interaction cannot be neglected.
The close encounter can be approximated as a scattering event.
Here, for the short duration of the encounter, we neglect the grav-
ity from the central star (and of all other particles in the system).
As no energy is dissipated, the process is an elastic collision.
It is described by a hyperbolic orbit for the relative coordinate
r2 − r1. The hyperbola has parameters a, b, c, and is given by the
following equations in Cartesian and in polar coordinates

(x − c)2

a2 − y
2

b2 = 1, x ≤ c − a, r =
b2

a + c cos ν
.

The parameter a is the semi-transverse axis of the hyperbola. It
is a characteristic distance where the gravity between the two
bodies becomes noticeable given the relative velocity. The semi-
conjugate axis b of the hyperbolic orbit is equal to the impact
parameter. The semi-focal separation is c (see Fig. 9). We have

a =
G(m1 + m2)

u2 , b = d = |d|, c2 = a2 + b2.

When the scattering between two planets is significant, the veloc-
ities of the two planets will change. The center-of-mass moves
with velocity

u =
m1u1 + m2u2

m1 + m2
.

In the center of mass frame, both velocities rotate over an angle
π − 2 arctan(b/a). This is described by:

u′ =
b2 − a2

c2 u − 2au
c2 d,

u′1 = u − m2

m1 + m2
u′,

u′2 = u +
m1

m1 + m2
u′.

Appendix D: Mathematica code

The following Mathematica code tests the deterministic
collision-time algorithm. It first finds the solution by considering
all integers k, and then uses the continued-fraction representa-
tion. Both procedures give the same result for random orbital
periods.

tmax = 100 ;
T1 = RandomReal [ tmax ] ;
T2 = RandomReal [ tmax ] ;
I f [ T1 < T2 , T1 = tmax − T1 ; T2 = tmax − T2 ] ;
t 1 = RandomReal [ T1 ] ;
t 2 = RandomReal [ T2 ] ;
d e l t a t = Abs [ t 1 − t 2 ] ;
p = T1 / d e l t a t
q = T2 / d e l t a t
d e l = d e l t a t / 10 ^5

q l i s t = {p , q } ;
n = 1 ;
While [ q l i s t [ [ n + 1 ] ] > de l ,

qnm = q l i s t [ [ n ] ] ;
n ++;
qn = q l i s t [ [ n ] ] ;

AppendTo [ q l i s t , qnm − F l o o r [ qnm / qn ] qn ]
]

q l i s t

For [ k = 1 , k < 10^6 , k ++ ,
l = C e i l i n g [ p k / q − (1 + d e l ) / q ] ;
I f [ l < p k / q − (1 − d e l ) / q , Break [ ] ]
]

P l o t [
{p x / q − (1 − d e l ) / q , p x / q − (1 + d e l ) / q } ,
{x , k − de l , k + d e l } ,
P lo tRange −> { l − de l , l + d e l } ,
G r i d L i n e s −> {{ k } , { l }} ,
A s p e c t R a t i o −> 1 , Axes −> None ,
Frame −> None
]

k
l

q0 = p ; q1 = q ;
k0 = 1 ; k1 = 0 ;
l 0 = 0 ; l 1 = −1;
p l o t = { } ;
found = F a l s e ;
For [ n = 0 , Not [ found ] , n ++ ,

a0 = F l o o r [ q0 / q1 ] ;
q2 = q0 − a0 q1 ;
I f [ q2 == 0 , Break [ ] ] ;
k2 = k0 − a0 k1 ;
l 2 = l 0 − a0 l 1 ;
a1 = F l o o r [ q1 / q2 ] ;
For [ x = C e i l i n g [ ( 1 − d e l ) / q0 ] ,

x < (1 + d e l ) / q2 , x ++ ,
y = Max [ 0 , C e i l i n g [ ( q0 x − 1 − d e l ) / q1 ] ] ;
I f [1 − d e l < x q0 − y q1 ,
k = x k0 − y k1 ;
l = x l 0 − y l 1 ;
found = True ;
Break [ ]
]

] ;
q3 = q1 − a1 q2 ;
I f [ q3 == 0 , Break [ ] ] ;
k3 = k1 − a1 k2 ;
l 3 = l 1 − a1 l 2 ;
q0 = q2 ; q1 = q3 ;
k0 = k2 ; k1 = k3 ;
l 0 = l 2 ; l 1 = l 3 ;
]

k
l

P l o t [
{p x / q − (1 − d e l ) / q , p x / q − (1 + d e l ) / q } ,
{x , k − de l , k + d e l } ,
P lo tRange −> { l − de l , l + d e l } ,
G r i d L i n e s −> {{ k } , { l }} ,
A s p e c t R a t i o −> 1 , Axes −> None ,
Frame −> None
]
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