Adaptive RF Front-End Circuits

Proefschrift

ter verkrijgen van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. dr. ir. J. T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op maandag 25 april 2005 om 13:00

door

Aleksandar TASIĆ

Electrical Engineer van Universiteit van Niš, Servie,
geboren te Niš, Servie.
Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. J. R. Long

Samenstelling promotiecommissie:

<table>
<thead>
<tr>
<th>Prof. dr.</th>
<th>J.R. Long</th>
<th>Technische Universiteit Delft, promotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. ir.</td>
<td>W.A. Serdijn</td>
<td>Technische Universiteit Delft, toegevoegd promotor</td>
</tr>
<tr>
<td>Prof. dr.</td>
<td>J.N. Burghartz</td>
<td>Technische Universiteit Delft</td>
</tr>
<tr>
<td>Prof. dr. ir.</td>
<td>A.H.M. van Roermund</td>
<td>Technische Universiteit Eindhoven</td>
</tr>
<tr>
<td>Prof. dr. ir.</td>
<td>B. Nauta</td>
<td>Universiteit Twente</td>
</tr>
<tr>
<td>Prof. dr. ir.</td>
<td>L. Larson</td>
<td>University California San Diego</td>
</tr>
<tr>
<td>Dr. ir.</td>
<td>M. Sanduleanu</td>
<td>Philips Eindhoven</td>
</tr>
<tr>
<td>Prof. dr. ir.</td>
<td>J.H. Huijsing</td>
<td>Technische Universiteit Delft, reservelid</td>
</tr>
</tbody>
</table>

ISBN 90-9019348-0

Copyright © 2005 by A. Tasić

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without prior written permission from the author.

Printed in the Netherlands by Print Partners IPSkamp.
to the missed opportunities,

to the missed moments of joy,

to the sleepless nights,

to you, I owe most.

Аца
CONTENTS

CONTENTS ... I

LIST OF ABBREVIATIONS .. VII

1 INTRODUCTION .. 1
 1.1 Why Silicon? 1
 1.2 Why Wireless And RF? 2
 1.3 Why Low-Power And Adaptive RF? 4
 1.4 Why Multi-Standard And Adaptive RF? 7
 1.5 Thesis Objectives 8
 1.6 Thesis Outline 8
 References 10

2 PERFORMANCE PARAMETERS OF RF CIRCUITS 13
 2.1 Gain Parameters 13
 2.1.1 Stability 15
 2.1.2 Matched Gain Parameters 16
 2.2 Nonlinearity Parameters 18
 2.2.1 Intermodulation 20
 2.2.1.1 Third-order intercept point 21
 2.2.1.2 Second-order intercept point 23
 2.3 Noise Figure 23
 2.4 Phase Noise 26
 2.5 Dynamic Range 28
 2.6 RF Front-End Performance Parameters 30
2.7 Conclusions 33

References 33

3 SPECTRUM-SIGNAL TRANSFORMATION 39

3.1 Transceiver Architectures 40

3.1.1 Heterodyne Architectures 40

3.1.2 Homodyne Architectures 42

3.1.2.1 Image-reject zero-IF architectures 43

3.1.2.2 Drawbacks of zero-IF architectures 45

3.1.3 Low-IF Architectures 45

3.1.4 Wireless Standards and Employed Architectures 46

3.2 Signal and Spectral Transformations 47

3.3 Mixer-Oscillator Models 52

3.3.1 Double-Real Mixer-Oscillator Model 53

3.3.2 Single-Complex Mixer-Oscillator Model 55

3.3.2.1 Real-to-complex transformation 55

3.3.2.2 Complex-to-real transformation 57

3.3.3 Double-Complex Mixer-Oscillator Model 58

3.4 Image-Rejection Ratio Model 62

3.5 IRR Model of Double-Quadrature Downconverters 64

3.6 Conclusions 67

References 68

4 SELECTION OF PERFORMANCE PARAMETERS FOR RF FRONT-END CIRCUITS 77

4.1 System Considerations 78

4.2 Independent Selection of NF And IIP3 Specifications 80

4.3 Mutually Dependent Selection of NF And IIP3 Specifications 85

4.3.1 The Optimality Criterion 85
5 ADAPTIVITY OF LOW-NOISE AMPLIFIERS 101
5.1 Adaptivity Phenomena of Amplifiers 102
5.2 Performance Parameters of Inductively-Degenerated Low-Noise Amplifiers 103
5.2.1 Input-Impedance Model 104
5.2.2 Gain Model 106
5.2.3 Noise Model 107
5.2.3.1 Noise factor 107
5.2.3.2 Minimum noise factor 109
5.2.3.3 Optimum-minimum noise factor 109
5.2.4 Linearity Model 110
5.3 Adaptivity Models for Low-Noise Amplifiers 112
5.4 Conclusions 116
References 116

6 ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS . . 119
6.1 Adaptivity Phenomena of Oscillators 120
6.1.1 Phase-Noise Tuning 120
6.1.2 Frequency-Transconductance Tuning 120
6.2 An Adaptive Quasi-Tapped Voltage-Controlled Oscillator 121
6.3 Phase-Noise Model of Quasi-Tapped Voltage-Controlled Oscillators

6.3.1 Time-Varying Transfer Function 126
6.3.2 Base-Resistance Noise 127
6.3.3 Transconductor Shot Noise 129
6.3.4 Tail-Current Noise 129
6.3.5 Total Oscillator Noise 131
6.3.6 Resonant-Inductive Degeneration of Tail-Current Source 132
 6.3.6.1 Base resistance noise transformation of the resonant-inductive degenerated tail-current source 133
 6.3.6.2 Base- and collector-current shot noise transformations of the resonant-inductive degenerated tail-current source 134
 6.3.6.3 Total output noise of the resonant-inductive degenerated tail-current source 136
6.3.7 Resistive Degeneration of Tail-Current Source 136
6.3.8 Adaptive Phase-Noise Model 138
 6.3.8.1 Linear Phase-Noise Model 138

6.4 Phase-Noise Performance of Quasi-Tapped Voltage-Controlled Oscillators 141

6.5 Adaptivity Figures of Merit of Voltage-Controlled Oscillators 143

6.5.1 Phase-Noise Tuning Range 143
6.5.2 Frequency-Transconductance Sensitivity 144

6.6 K-rail Diagrams – Comprehensive Performance Characterization of Voltage-Controlled Oscillators 147

6.6.1 K-Rail Diagram 148
6.6.2 K-Rails Diagram 149
6.6.3 K-Loop Diagram 151
6.6.4 An All-Round Example 153

6.7 Conclusions 155

References 156
7 DESIGN OF ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS AND ADAPTIVE RF FRONT-ENDS 159

7.1 An Adaptive Low-Power Voltage-Controlled Oscillator 160
 7.1.1 Design for Adaptivity of Voltage-Controlled Oscillators 160
 7.1.2 Circuit Parameters of the Adaptive Voltage-Controlled Oscillator 161
 7.1.3 Measurement Results for the Adaptive Voltage-Controlled Oscillator 162

7.2 A Multi-Standard Adaptive Voltage-Controlled Oscillator 166
 7.2.1 Designing for Adaptivity of Multi-Standard Voltage-Controlled Oscillators 167
 7.2.2 Circuit Parameters of the Multi-Standard Adaptive Voltage-Controlled Oscillator 169
 7.2.3 Measurement Results for the Multi-Standard Adaptive Voltage-Controlled Oscillator 170

7.3 Multi-Standard Adaptive RF Front-Ends 174
 7.3.1 System Considerations for Multi-Standard Adaptive RF Front-Ends 175
 7.3.1.1 System requirements for a multi-standard receiver 176
 7.3.2 A Multi-Standard Adaptive Quadrature Signal Generator 178
 7.3.3 A Multi-Standard Adaptive Quadrature Downconverter 179
 7.3.3.1 Mixer circuit parameters 182
 7.3.4 Experimental Results for the Multi-Standard Adaptive RF Front-End 183

7.4 Conclusions 188

References 189

8 CONCLUDING REMARKS 193

8.1 Summary 193
A Real-to-Complex-to-Real Transformation 197

B Transformed-Feedback Degeneration of Low-Noise Amplifiers ... 201

List of Publications .. 209

Conclusies ... 213

Acknowledgements .. 217

Biography ... 219
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog to Digital Converter</td>
</tr>
<tr>
<td>AFOM</td>
<td>Adaptivity Figure of Merit</td>
</tr>
<tr>
<td>BB</td>
<td>Baseband</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CGM</td>
<td>Frequency-Transconductance Tuning</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processor Unit</td>
</tr>
<tr>
<td>D (subscript)</td>
<td>Desired</td>
</tr>
<tr>
<td>DC-MO</td>
<td>Double-Complex Mixer-Oscillator</td>
</tr>
<tr>
<td>DCS1800</td>
<td>Digital Cellular Communications</td>
</tr>
<tr>
<td>DECT</td>
<td>Digital Enhanced Cordless Telecommunications</td>
</tr>
<tr>
<td>DR</td>
<td>Dynamic Range</td>
</tr>
<tr>
<td>DR-MO</td>
<td>Double-Real Mixer-Oscillator</td>
</tr>
<tr>
<td>DSB</td>
<td>Double-Side Band</td>
</tr>
<tr>
<td>E (subscript)</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>EQ (subscript)</td>
<td>Equivalent</td>
</tr>
<tr>
<td>F</td>
<td>Noise Factor</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency-Division Duplex</td>
</tr>
<tr>
<td>G (g)</td>
<td>Gain</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum-Shift Keying</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>ID</td>
<td>Inductive Degeneration</td>
</tr>
<tr>
<td>IDR</td>
<td>Inverse Dynamic Range</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate Frequency</td>
</tr>
<tr>
<td>IM2</td>
<td>2nd-Order Intermodulation</td>
</tr>
<tr>
<td>IM3</td>
<td>3rd-Order Intermodulation</td>
</tr>
<tr>
<td>IIP3TR</td>
<td>Input-Referred 3rd-Order Intercept Point Tuning Range</td>
</tr>
<tr>
<td>IIITR</td>
<td>Imaginary-Impedance Tuning Range</td>
</tr>
<tr>
<td>IP2</td>
<td>2nd-Order Intercept Point</td>
</tr>
<tr>
<td>IP3</td>
<td>3rd-Order Intercept Point</td>
</tr>
<tr>
<td>IRR</td>
<td>Image-Rejection Ratio</td>
</tr>
<tr>
<td>LC</td>
<td>Inductance-Capacitance</td>
</tr>
<tr>
<td>LNA</td>
<td>Low-Noise Amplifier</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TFD</td>
<td>Transformed-Feedback Degeneration</td>
</tr>
<tr>
<td>TDD</td>
<td>Time-Division Duplex</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage-Controlled Oscillator</td>
</tr>
<tr>
<td>VG</td>
<td>Voltage Gain</td>
</tr>
<tr>
<td>VGTR</td>
<td>Voltage-Gain Tuning Range</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>16QAM</td>
<td>16 Symbol Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>2G</td>
<td>2<sup>nd</sup>-Generation</td>
</tr>
<tr>
<td>3G</td>
<td>3<sup>rd</sup>-Generation</td>
</tr>
</tbody>
</table>
INTRODUCTION

One emerging worldwide vision of communication is that wireless communications and ambient intelligence will be highly advantageous in satisfying our yearning for information at any time and anywhere. Electronics that is sensitive to people’s needs, personalized to their requirements, anticipatory of their behavior and responsive to their presence is one visionary conception of ambient intelligence [1]. Ambient intelligence technologies are expected to combine concepts of ubiquitous computing and intelligent systems. Technological breakthroughs will allow people to integrate electronics into more friendly environments: roll-up displays [2], intelligent mobiles [3], internet-enabled furniture [4]. People will relate to electronics in a more natural and comfortable way than they do now.

1.1 WHY SILICON?

The Greek messenger Phidippides set off for 42km with news of his nation's victory over the invading Persian army at the battle of Marathon in 490 BC, uttering the words "be joyful, we win" on arrival, before promptly dropping dead of exhaustion [5]. Since then, it took humanity some 2400 years to find a harmless way to send a spoken message over a distance.

The technique of using radio waves to send information, exercised by Heinrich Hertz in 1888, and later by Nikola Tesla [6], was demonstrated in 1895 by Guglielmo Marconi [7], who successfully established the first transatlantic radio contact. This event is often referred to as the beginning of wireless communications [8].

At the beginning of the 20th century, Lee De Forest developed a triode vacuum tube that allowed for the amplification of an applied signal [9]. Around his amplifier vacuum tube, he developed the first radio- and audio-frequency amplifiers [8]. In the 1930s, scientists at Bell Labs, seeking improved RF demodulation, resorted to the antiquated crystal detector, paving the way to a reliable semiconductor material, silicon.
The unreliability, heat dissipation problems and relatively large power consumption of vacuum tubes initiated a search for new means of amplification. In 1947, Walter Brattain and John Bardeen observed that a germanium crystal in touch with wires 0.002 inches apart could amplify an applied signal [10,11]. The point-contact transistor was born. Somewhat later, the junction (sandwich) transistor and field-effect transistor were implemented by William Shockley [12,13]. This trio was awarded the Nobel Prize for the invention of the transistor in 1956. The first commercial use of the transistor was in telephone equipment in the early 1950s [8].

The first transistorized radio appeared in 1954, and was the fastest selling retail object of that time. Using discrete components in those days, transistor circuits occupied a number of printed circuit boards the size of postcards. The idea of integrating a complete circuit on a single slice of silicon was implemented independently in 1958 by Jack Kilby [14] and Robert Noyce [15].

Thanks to techniques such as photolithography and computer-aided design, millions of transistors and other electronic components can be compactly integrated onto a silicon die smaller in size than a cornflake. Integrated circuits (IC) have paved the way to low-cost mass production of electronic equipment. A continuous reduction of the minimum feature sizes, i.e., scaling of microelectronic devices, reduces the cost per function by 25% per year and promotes IC market growth with 17% per year. Doubling of the number of components per chip every 18 months (Moore’s Law) [16] has led to improved productivity and improved quality of human life through the proliferation of consumer and industrial electronics.

1.2 WHY WIRELESS AND RF?

Progress in silicon IC technology and innovations in IC design have enabled mobility of wireless consumer products and services.

Having started out with limited performance capabilities beyond simple telephony, mobile communications technologies are now entering all aspects of our lives. Mobile equipment today is shaped by user and application demands on the one hand and enabling semiconductor process technologies as well as radio frequency microelectronics on the other. Main drivers for mobile wireless devices are related to:

- **cost**, which depends on volume of production, size of mobile units, power consumption, and performance.
1. Introduction

- **power consumption**, which depends on available frequency spectrum, functionality, and performance.

- **performance**, which depends on applications, standards and protocols.

The factors that make an integrated piece of silicon a desirable item are: mobility, high performance (voice, text and video transfer), low cost (advances in IC processing technology) and long lifetime (low power consumption).

An example of the enormous expansion of the wireless market is shown in Fig. 1.1. At this moment (late 2004), the total number of global mobile users amounts to 1.52 billion, whereas the number of GSM (Global System for Mobile communications) users is estimated at 1.25 billion (82% of the total) [17]. By 2007, the worldwide wireless telephone market is projected to grow to more than 2 billion subscribers [18].

![GSM growth for the period 1992-2004.](image)

Figure 1.1: GSM growth for the period 1992-2004.

Global handset sales will grow 14% in 2004 to 596 million units, and 11% to 662 million units in 2005, as demand continues in mature markets and surges in developing markets [19]. GSM sales are projected to grow at a Compound Annual Growth Rate of 11% through 2009, as color-, MMS- (Multimedia Messages Service), camera- and Java-enabled devices become widely available, and the cost of wireless services declines [19].
Despite the expansive sales growth of wireless devices, the use of wireless services generates even greater profit for telecom companies. For example, more than 15 billion SMS (Short Messaging System) messages were sent per month across Europe in 2004 [17]. Furthermore, even larger growth requires many new services provided by mobile equipment: MMS, web access, and e-mail. The use of cellular phones for web access is forecast to exceed the use of personal computers as terminals by 2006 [20].

By introducing third-generation (3G) systems [21], more spectrum for voice services has become available, whilst enabling a wider variety of data and multimedia services. 3G handset sales account for 21% of total global sales in 2004. 98% of handsets sold worldwide in 2009 will be 3G devices, with the remainder being primarily GSM handsets sold into emerging markets and very cost sensitive segments of the mature markets [17].

Aside from the mobile phone market [16,21], there are many other wireless applications. Wireless connections to wired computer networks have become feasible. Wireless systems allow for cost-effective installation and deployment of electronics equipment by obviating the need for wires and cables. Wireless RF systems will undoubtedly spawn telemedicine, that is, remote, wireless medical monitoring. An intelligent transportation system that allow for communication and traffic control on the highway is yet another example of a mass market for wireless technology in future. Finally, to support all these applications, more sophisticated RF devices are required.

1.3 WHY LOW-POWER AND ADAPTIVE RF?

The communication devices of today and the future will not only have to support applications ranging from text, telephony, audio, and graphics to video, but they will also have to maintain connections with many other devices in a variety of environments (and not only with a single base station). Moreover, they should be position aware, and perhaps wearable rather than just portable.

Both the lifetime and size of mobile equipment critically depends on the battery. Low-power circuits (e.g., an order of mW for analog front-end circuits [22]) prolong battery lifetime while meeting the performance requirements [22,23]. However, for wearable devices that require the use of the highest-volume and highest-weight density batteries [24], even a low-power design strategy can offer only limited savings.

A combination of multiple functional requirements and a small energy supply is an argument for the design of both adaptive low-power (i.e., power-
1. Introduction

Aware (i.e., adaptive) hardware and adaptive low-power software. Simply stated, as consumer demands outstrip the cost benefits achieved by Moore’s Law and low-power circuit design, a new design direction is found in adaptivity. This eventually leads to smaller physical size, longer standby and active times, and enhanced functionality of mobile wearable devices.

The quality of service of mobile devices changes with the position and speed of mobile users. It also depends on the application, the number of users in a cell as well as their activity. A mobile device must handle the variable context efficiently due to scarce resources, especially limited battery power.

A power-aware (i.e., adaptive) RF design approach poses unique challenges: from hardware design to application software, throughout all layers of the underlying communication protocol (i.e., the processing technology, device level, circuit level, system level, as well as protocol level, software and application levels).

A block diagram of the receive part of a typical mobile device is shown in Fig. 1.2. This receiver consists of an analogue RF front-end, an analog baseband (analogue processing of the received signal), and a digital back-end consisting of a dedicated central processing unit (CPU) and a memory.

Whereas the transceiver circuits determine instantaneous power consumption, the average consumption depends on the power management of the complete system [25]. This implies that not only local, but also global (in all layers and at all time) power optimization and awareness are important for extending “lifetime” of mobile devices (time between battery recharges).

![Figure 1.2: Block diagram of an adaptive receiver.](image)
RF and power management have become the fastest growing segments in wireless IC revenue, due to the integration and increasingly complex power requirements, which are driven by advancing functionality (e.g., video, text) and transmission speeds in wireless devices [26]. The RF portion is estimated at $3.8 billion or 19% of the wireless IC market [26].

Setting the performance parameters of an RF front-end by means of adaptive RF front-end circuitry [27] is a way to manage power consumption in the RF path of a receiver. Adaptive RF front-end circuits (shown in Fig. 1.2), viz., an adaptive low-noise amplifier, an adaptive voltage-controlled oscillator and an adaptive mixer, allow efficient use of scarce battery resources, thereby extending the lifetime of a mobile device. Furthermore, power-conscious adaptive analogue baseband circuits and digital back-end circuits enable complete hardware adaptivity. The theory and design of adaptive RF front-end circuits and adaptive RF front-ends is elaborated in detail in this thesis.

RF front-end robustness can be further improved by control of symbol rates, antenna beam patterns, transmitter power levels, and by control of circuit noise and linearity levels. For example, adaptive modulation and adaptive coding strategies [28], where the system can choose an optimal modulation and coding technique based on the temporal circumstances, can ameliorate the effects of multi-path fading, shadow fading, and path loss.

Graphical interaction with our direct environment combined with mobility is another intriguing concept in which low-power RF circuit design plays an important role [29]. If a lightweight video camera is attached to a mobile display for position tracking and recording of video, the hardware complexity must be reduced in order to keep the power consumption low. Since the RF front-end cannot operate with scarce resources, the power consumption can be reduced by limiting the processing and memory capabilities of the headset unit. In turn, this requires “clever” (power-aware) processing of received and transmitted data.

At an even higher hierarchical level, an example of a power-aware software implementation is the efficiency of a compiled code [30]. An example of application-level adaptivity is scaling the operating power and clock frequency in a general-purpose CPU under the control of power-aware applications, such as video and audio decoding software. Here, dynamic adjustment of the supply voltage can be traded for processor speed, allowing considerable power savings in the digital circuitry [31].

A framework for the exchange of performance and power consumption information between RF receiver, hard disk, CPU, operating system and the application has been developed within the Ubiquitous Communications project [25]. It is an example of a fully adaptive low-power mobile system.
1.4 WHY MULTI-STANDARD AND ADAPTIVE RF?

Trends such as the provision of various services (text, audio, video) using different standards and smooth migration towards higher data rates and higher capacities for multimedia applications require designs that work across multiple standards, can easily be reused, and consume the minimum required power.

The increase of the performance per price ratio of radio-frequency integrated circuits (Moore’s Law) drives the rapid development of wireless communication systems. The minimum required performance of a certain wireless system is determined by the standard that it implements. By enhancing performance of a system to cover multiple standards, its functionality increases as well. However, more performance for the same price can be achieved if the system hardware can be shared among different standards and adapted to different conditions and requirements [27].

The coexistence of numerous cellular systems requires multi-mode, multi-band, and multi-standard mobile terminals [27]. To prolong talk time, it is desirable to share and/or switch transceiver building blocks in these handsets, without degrading the performance compared to that of single-standard transceivers.

Multi-standard front-ends typically use duplicate circuit blocks, or even entire radio front-ends for each standard. Although this approach is simpler to implement, it is neither optimal in cost nor in power consumption [32]. When different standards do not operate simultaneously, circuit blocks of a multi-standard handset can be shared. By using circuits that are able to trade off power consumption for performance on the fly, i.e., adaptive multi-standard circuits, considerable power can be saved. There is currently an apparent migration in RF IC design towards multi-mode multi-band integrated modules for low-noise amplifiers [33], oscillators [34], power amplifiers [12] and transceivers [27]. Design of multi-standard oscillators and multi-standard front-ends is discussed in detail in this thesis.

In addition to multimode capability at radio frequencies, adaptivity should be implemented at baseband frequencies as well. After a signal is downconverted to the baseband, it must be filtered, amplified and digitized. In order to accommodate multiple radio standards with different bandwidths and modulation schemes, such receivers require different channel, and image-reject filter bandwidths and different analogue-to-digital converter (ADC) resolutions. For example, a variable-bandwidth baseband filter and variable-resolution ADC can be used to alternate between different modes of operation [35].
Finally, because adaptive multi-standard low-power RF front-ends are able to share building blocks across different standards, they have advantages over their predecessors: they use a smaller chip area, and most importantly, have a potential for lower overall cost.

1.5 THESIS OBJECTIVES

The overall goal of this thesis is to develop design methodologies and a proof-of-concept for analog RF front-end circuits that trade performance for power consumption in an adaptive way. This results in a transceiver front-end that either consumes less average power for a given performance or offers better performance for a given average power compared to a conventional transceiver front-end. For low-noise amplifiers and mixers, this comes down to trading off dynamic range for power consumption, whereas for oscillators a trade-off between phase noise or even oscillation frequency and power consumption is possible.

When exploring the fundamental and practical limits of an adaptive radio frequency implementation for multiple communication standards, we have examined basic aspects of the physical mechanisms underlying the operation of adaptive RF front-end circuits, and have developed design methodologies for their structured synthesis.

The techniques and methodologies developed in this project [36] have been validated by specifying requirements and implementing adaptive wireless receiver circuits and an adaptive wireless receiver front-end for multiple communication standards.

1.6 THESIS OUTLINE

After this introductory chapter, basic definitions of RF performance parameters are reviewed in Chapter 2, viz., gain, linearity and noise parameters.

Chapter 3 discusses spectrum and signal (SS) transformation in various downconverter topologies. Classification of mixer-oscillator (MO) models is then introduced. Using the introduced SS presentation and the MO models, an all-encompassing analysis of a number of RF front-end architectures and RF front-end phenomena is performed.

A procedure to select noise and linearity specifications for RF system blocks is described in Chapter 4. Furthermore, an outline is given for the
assigning of the mutually dependent noise and linearity performance parameters to RF front-end circuits. In addition, we derive conditions for the optimal dynamic range of a receiver, and for the equal noise and linearity improvements with respect to the required performance. Finally, some design trade-offs between performance parameters in a single RF circuit are described by means of a K-rail diagram: this diagram describes graphically the relationships between performance parameters of RF circuits.

Chapter 5 introduces amplifier adaptivity models (i.e., adaptivity figures of merit). They give insight into how low-noise amplifiers can trade performance (noise figure, gain, and linearity) for power consumption in an adaptive way. The performance trade-offs in adaptive low-noise amplifiers are discussed using amplifier K-rail diagrams.

The application of adaptivity concepts to voltage-controlled oscillators is discussed in Chapter 6. The concepts of phase-noise tuning and frequency-transconductance tuning are first introduced. An adaptive oscillator and an adaptive phase-noise model are then presented. The adaptivity figures of merit are derived, viz., the phase-noise tuning range and frequency-transconductance sensitivity. The subject of last section is a comprehensive performance characterization of voltage-controlled oscillators by means of K-rail diagrams. Numerous relationships and trade-offs between oscillator performance parameters, such as voltage swing, tank conductance, power consumption, phase noise, and loop gain, are qualitatively and quantitatively described. Furthermore, the oscillator adaptivity figures of merit are captured using K-rail diagrams.

Adaptivity proofs-of-concept are discussed in Chapter 7. An 800MHz voltage-controlled oscillator design is presented with a phase-noise tuning range of 7dB and a factor 3.3 saving in power consumption. In addition, the chapter discusses an adaptive, multi-standard, second/third-generation (2G/3G) voltage-controlled oscillator design that satisfies the requirements of DCS1800, WCDMA, WLAN, Bluetooth and DECT standards. Finally, the results of an exploratory circuit design for a multi-standard, adaptive RF receiver front-end (MSAFE) are described. The multi-standard adaptive RF front-end (oscillator and mixers) satisfies the requirements of both 2nd and 3rd generation standards. This design allows adaptation between different standards by trading RF performance for current consumption. A supply current range from 9.9mA in the relaxed mode (2.4GHz DECT) to 20.2mA in the highest performance mode of operation (1.8GHz DCS1800) is realized.

Chapter 8 concludes and summarizes the thesis.
REFERENCES

1. Introduction

Performance Parameters of RF Circuits

Interdisciplinarity is essential to RF circuit design. An RF designer is a system designer, an analogue circuit designer, a microwave circuit designer, and a passive and active component designer.

Gain, noise figure, phase noise, distortion, and dynamic range are only a few of the parameters of interest to an RF IC designer, which are reviewed in this chapter. The determination of RF front-end performance parameters closes this chapter.

2.1 Gain Parameters

Current, voltage and power are fundamental circuit design quantities. The choice of the input and output quantities determines the transfer function of a two-port network [1]: power gain, voltage gain, current gain, transconductance gain and transimpedance gain. Usually, signal power is taken as a design variable when maximum power transfer (i.e., conjugate impedance match) is desired [2]. This is required at input of a receiver, because of the impedance match to the receive antenna (in order to avoid signal reflection), between RF front-end circuits in heterodyne receivers, and also when interconnect dimensions are on the order of the signal wavelength (microwave circuit design). On the other hand, voltage and/or current quantities can be the preferable design choice for RF front-end circuits in homodyne receivers where stages reside on-chip and power matching is not required (e.g., the interface between very large and very small impedances).

For a two-port network connected to load impedance \(Z_L \), source impedance \(Z_S \), and characterized by a scattering matrix \([S]\) [3-10] and/or chain matrix \([ABCD]\) (see Fig. 2.1), a number of gain definitions are in use [11-15].

The \textit{transducer} power gain \((g_T)\) stands for the ratio of the power delivered to the load \((P_L)\) and the power available from the source \((P_{AVS})\). If \(\Gamma_{IN} \) and \(\Gamma_{OUT} \) are the input and the output reflection coefficients (which characterize quality of input and output two-port impedance matching) and \(\Gamma_S \) and \(\Gamma_L \) the
reflection coefficients of the source and the load respectively, this gain definition becomes [12]:

\[
g_T = \frac{P_L}{P_{AVS}} = \frac{|S_{21}|^2 (1-|\Gamma_L|^2)(1-|\Gamma_S|^2)}{|1-\Gamma_{IN}\Gamma_S|^2|1-S_{22}\Gamma_L|^2}
\]

(2.1)

where \(S_{11} - S_{22} \) are the parameters of the two-port scattering matrix \([S] \). The \(S \)-parameters can be directly measured with a vector network analyzer, and are especially useful at high frequencies (e.g., order of GHz) where it is difficult to measure currents and voltages.

\[
|Z_S| |Z_L|
\]

\[
\Gamma_S, \Gamma_{IN}, \Gamma_{OUT}, \Gamma_L
\]

\[
V_{IN}, V_O, [S], [ABCD]
\]

\[
V, V_O, [S]
\]

\[
\Gamma_{IN}, \Gamma_L
\]

\[
A, B, C, D
\]

Figure 2.1: A two-port network.

From the relationship between the \(S \)-parameters and chain-matrix parameters \((A,B,C,D) \) [13,14], the transducer power gain can also be expressed as:

\[
g_T = \frac{4R_LR_S}{|AZ_L + B + CZ_SZ_L + DZ_S|^2}
\]

(2.2)

where \(R_S \) and \(R_L \) are the real parts of the source and load impedances, respectively, and \(A, B, C \) and \(D \) are the parameters of the chain matrix. This matrix is especially useful for characterization of a cascade connection of two-port networks (e.g., a receiver) by multiplying the individual \(ABCD \) matrices of the individual two-ports. In a similar manner, the impedance \(Z \)-parameters and the admittance \(Y \)-parameters can be used to describe the
Performance Parameters of RF Circuits

relationship between total voltages and currents at network ports. Whereas analogue circuit designers are more familiar with voltages and currents (i.e., Z-, Y-, $ABCD$-parameters), microwave circuit designers prefer S-parameters.

The transducer power gain depends on both the source and the load impedances (i.e., mismatches Γ_S and Γ_L). This gain parameter can be easily extracted from measurements (required impedance match with signal generator only). Moreover, a maximum operation frequency (f_{MAX}) of a device can be directly estimated from the measured unilateral ($S_{12}=0$) transducer power gain.

In the case of matched input and output impedances for a two-port network, the available power gain (g_A) can be defined. It stands for the ratio of the power available from the two-port network and the power available from the source (P_{AVS}). The transducers power gain equals the available power gain when the input and output are power matched simultaneously.

Throughout the thesis we refer to the transducer power gain if only the input power match condition is satisfied. For a simultaneous input and output power match, we refer to the available power gain (that in this case only equals the transducers power gain).

If V_S is the signal voltage swing at the source and V_0 is the output voltage swing (at the load; see Fig. 2.1), the relationship between the transducer power gain and the voltage gain (v_g, from the source) can be determined:

$$v_g^2 = \frac{V_0^2}{V_S^2} = \frac{V_0^2}{V_S^2} \frac{R_L}{4R_S} = g_T \frac{R_L}{4R_S},$$

where the input power match, and real source and load impedances (R_S and R_L) are assumed. When we consider the voltage gain from the input of the two-port network (i.e., not with respect to V_S), voltage and power gain definitions are equal when expressed in decibels for $R_L=R_S$.

2.1.1 STABILITY

Two types of stability are distinguished: unconditional and conditional stability [12,16-18]. If Γ_{IN} and Γ_{OUT} are always below one, the two-port is unconditionally stable. If Γ_{IN} and Γ_{OUT} are less than one only for a range of source and load impedances, then the two-port network is conditionally stable, because impedances outside of this range may cause oscillations (i.e., the real part of either the input or output two-port impedance has a negative real part).
A device is unconditionally stable if Rollet’s condition [19] (Eq. (2.6)) is satisfied.

$$K = \frac{1 - \left| S_{11} \right|^2 - \left| S_{22} \right|^2 + \left| \Delta \right|^2}{2 \left| S_{21} S_{12} \right|} > 1 \quad \Delta = S_{11} S_{22} - S_{12} S_{21} < 1. \quad (2.6)$$

As this condition involves constraints on two different parameters, it is difficult to compare the stability of different devices. However, the μ test [20,21] for the unconditional stability can be used for both testing and comparison, and is given by Eq. (2.7).

$$\mu = \frac{1 - \left| S_{11} \right|^2}{\left| S_{22} - S_{11} \Delta + S_{12} S_{21} \right|} > 1. \quad (2.7)$$

This condition reads as: the larger the μ, the better the stability. Generally, figures expressed with S-parameters can be conveniently mapped and followed using Smith charts [10].

If there is feedback in a circuit, the stability criteria can be related to loop gain and loop phase shift [15].

2.1.2 MATCHED GAIN PARAMETERS

Referring to Eq. (2.1), we can distinguish between the gain factors of the source matching network g_S, Eq. (2.8), of the designed two-port network (Fig. 2.1) g_0, Eq. (2.9), and of the load matching network g_L, Eq. (2.10) [11,12].

$$g_S = \frac{1 - \left| \Gamma_S \right|^2}{\left| 1 - \Gamma_{IN} \Gamma_S \right|^2} \quad (2.8)$$
2. Performance Parameters of RF Circuits

\[g_0 = |S_{21}|^2 \]
\[g_L = \frac{1 - |\Gamma_L|^2}{|1 - S_{22}\Gamma_L|^2}. \]

For the maximum power transfer, the input impedance of the two-port network must be conjugate matched to the impedance of the source-matching network, and the output impedance of the two-port network must be conjugate matched to the impedance of the load-matching network [12]. This condition is satisfied if:

\[\Gamma_{IN} = \Gamma_S^* \quad \Gamma_{OUT} = \Gamma_L^*. \]

Input and output power match design practice is common to circuits of a heterodyne receiver. If the matching conditions are violated at either the input or the output of an external (usually 50Ω terminated) image-reject or channel-select filter, the passband and stopband characteristics of the filter will exhibit loss and ripples [2].

However, for an ideal voltage or current amplification, different requirements result, as shown in Table 2.1. For example, infinite impedance at the input of the two-port is expected for the maximum voltage gain (\(\Gamma_{IN}=1\)), whereas zero impedance enables the maximum current gain (\(\Gamma_{IN}=-1\)). This design practice is common to circuits where power matching is not required (e.g., homodyne receiver circuits).

<table>
<thead>
<tr>
<th>input voltage (Z_{IN} \rightarrow \infty), (\Gamma_{IN}=1)</th>
<th>input current (Z_{IN}=0), (\Gamma_{IN}=-1)</th>
</tr>
</thead>
</table>

Table 2.1: Reflection coefficients for ideal current (\(Z_{IN}=0\)) and voltage (\(Z_{IN} \rightarrow \infty\)) quantities; \(Z_{IN}\) is the input impedance of a two-port network.
2.2 NONLINEARITY PARAMETERS

As a minimal detectable signal at the input of wireless receivers can be an order of microvolt large, it must be heavily amplified (without distortion) for further processing.

If a system is linear and memoryless, then its output can be presented as:

$$y(t) = ax(t), \quad (2.12)$$

where \(x(t) \) is an input signal and \(y(t) \) is the output signal.

For memoryless nonlinear systems, the input-output relationship has the form

$$y(t) = a_0 + a_1x(t) + a_2x(t)^2 + ... \quad (2.13)$$

The parameters \(a_i \) are time dependent for time-varying systems.

Whereas a linear model can approximate an RF circuit for small input signals (e.g., -100dBm), for large input signals (e.g., -10dBm) or for heavily amplified signals, an RF circuit is characterized by a nonlinear model.

By inspecting the response to a sinusoidal excitation (\(x(t)=A\cos\omega t \)) using the nonlinear model (Eq. (2.13)), we can describe numerous nonlinearity phenomena (from Eq. (2.14)).

$$y(t) = \frac{a_2A^2}{2} + (a_1A + \frac{3}{4}a_3A^3)\cos\omega t + \frac{a_2A^2}{2}\cos2\omega t + \frac{1}{4}a_3A^3\cos3\omega t + ... \quad (2.14)$$

In the remainder of this section we will comment on gain compression, desensitization, cross modulation and intermodulation [22-39].

In a symmetric system (odd-order terms eliminated) dominated by the 3rd-order term [22,23] (i.e., higher-order terms neglected as they are small compared to lower-order terms), from Eq. (2.14), the gain \(g \) of the nonlinearly modeled system is:

$$g = a_1 + \frac{3}{4}a_3A^2. \quad (2.15)$$

If \(a_3<0 \), the gain is a decreasing function of amplitude \(A \). The 1-dB compression point quantifies this gain reduction effect [2]. It is defined as the input signal level at which the gain \(g \) is reduced by 1dB compared to the
linear gain term \((a_1)\). From Eq. (2.15), this point is:

\[
A_{\text{dB}} = 0.145 \left| \frac{a_1}{a_3} \right|. \tag{2.16}
\]

Note that the signal at the output of an analogue circuit is a result of the combination of the factors: nonlinear model (2.13) as well as bias conditions. Therefore, for very large input signals, the gain can even become zero, because either the output signal is limited by the bias supply quantity (see Fig. 2.2), or \(a_3<0\) (see Eq. (2.15)).

![Figure 2.2: A relationship between the input and output signal amplitudes under the constraint of bias (supply) conditions in a nonlinear system.](image_url)

In the presence of a strong interferer, the desired signal may experience a very small gain. If the signal applied at the input of a nonlinear system has the form (a desired signal at an angular frequency \(\omega_1\) and an interferer at \(\omega_2\)):

\[
x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t ,
\]

the gain of the desired signal can be calculated after combining Eqs. (2.13) and (2.17). The term representing the content of the output signal around the angular frequency \(\omega_1\) becomes:

\[
y(t) \approx (a_1 + \frac{3}{2} a_3 A_2^2) A_1 \cos \omega_1 t .
\]
For sufficiently large A_2, the gain term may also drop to zero. This effect is referred to as blocking [2]. The interferer leading to this effect is called the blocking signal.

If the amplitude of a strong interferer is modulated and applied to the input of a nonlinear system along with a desired signal, then at the output the desired signal experiences the effect of a modulated interferer. This phenomenon is called cross modulation [2,24,25].

2.2.1 INTERMODULATION

When signals of different frequencies are applied to the input of a nonlinear system, not only does the output exhibit components that are harmonics of the input signals, but also of their combinations. This phenomenon is referred to as intermodulation [2,26,27]. If the input signal is given by Eq. (2.17), the following terms are generated at the output of the system (2.13):

\[
\text{desired component: } (a_1 + \frac{3}{4}a_3 A_1^2 + \frac{3}{2}a_3 A_2^2)A_1 \cos \omega_1 t \tag{2.19}
\]

\[
\text{2}^{\text{nd}}\text{-order distortion component: } a_2 A_1 A_2 \cos(\omega_1 - \omega_2) t \tag{2.20}
\]

\[
\text{3}^{\text{rd}}\text{-order distortion component: } \frac{3}{4}a_3 A_1^2 A_2 \cos(2\omega_1 - \omega_2) t \tag{2.21}
\]

These are the fundamental component, Eq. (2.19), the second-order intermodulation component, Eq. (2.20), and the third-order intermodulation component, Eq. (2.21).

Due to mismatches in real designs, the distortion that originates from the second-order nonlinearities must be taken into account, even in differential circuits (even components fractional matching below 1% can be critical [28]). Especially, circuits that transform a high-frequency input spectrum to the baseband would suffer from this type of the distortion (e.g., homodyne receivers). This phenomenon is referred to as second-order intermodulation distortion [29].

As third-order intermodulation products are located near the desired signal, it is often difficult to filter them out without affecting the information content. It is therefore expected that such in-band products will distort the output signal. The associated phenomenon is referred to as third-order intermodulation distortion [2,26,27].
Second- and third-order intercept points characterize the introduced intermodulation distortion phenomena. They are derived in the remainder of this section.

2.2.1.1 Third-Order Intercept Point

Referring to Eqs. (2.19) and (2.21), and assuming $A_1 = A_2 = A$, it can be seen that the output power of the third-order products increases with the cube of the input power, whereas the fundamental output power is proportional to the input power [23]. This effect is shown in Fig. 2.3.

A hypothetical intersection point where the first-order power product (P_O) and the third-order power product (P_{OIM3}) are equal is called third-order intercept point (IP3). Table 2.2 describes the notation that is used throughout this thesis.

![Figure 2.3: Input-output power relationship of a nonlinear device.](image)

If the corresponding power definitions are given by Eq. (2.22),

$$P_O = \frac{1}{2} a_1^2 A^2 \quad P_{OIM3} = \frac{1}{2} \left(\frac{3}{4} a_3^2 A^2\right) = \frac{9}{32} a_3^2 A^6,$$

(22)
the amplitude of the input-referred 3rd-order intercept point (A_{IIP3}) becomes
\begin{equation}
A_{\text{IIP3}} = \sqrt[4]{\frac{4a_1}{3a_3}}.
\end{equation}

Once the parameters a_0, a_1, \ldots of the corresponding circuit are determined, the intercept point can be calculated. What is more, the effects of distortion can be fully encompassed only by analysis at the circuit level, after all circuit nonlinearity contributors are taken into account [30-37]. For example, A_{IIP3} for a single bipolar transistor, as derived from Eq. (2.23) using the simplified exponential characteristic [38], is $A_{\text{IIP3}} = \sqrt[4]{8V_T}$ (V_T is the thermal voltage).

<table>
<thead>
<tr>
<th>parameter\presentation</th>
<th>amplitude</th>
<th>power</th>
<th>dB scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd-order input-intercept point</td>
<td>A_{IIP3}</td>
<td>P_{IIP3}</td>
<td>IIP3</td>
</tr>
<tr>
<td>3rd-order output-intercept point</td>
<td>A_{OIP3}</td>
<td>P_{OIP3}</td>
<td>OIP3</td>
</tr>
<tr>
<td>3rd-order input-intermodulation point</td>
<td>A_{IIM3}</td>
<td>P_{IIM3}</td>
<td>IIM3</td>
</tr>
<tr>
<td>3rd-order output-intermodulation point</td>
<td>A_{OIM3}</td>
<td>P_{OIM3}</td>
<td>OIM3</td>
</tr>
<tr>
<td>input desired signal</td>
<td>A</td>
<td>P</td>
<td>P [dB]</td>
</tr>
<tr>
<td>output desired signal</td>
<td>A_O</td>
<td>P_O</td>
<td>P_O [dB]</td>
</tr>
</tbody>
</table>

The equivalent IIP3 of, most generally, an n-stage cascaded network equals [2,39,40]
\begin{equation}
\frac{1}{A_{\text{IIP3}}^2} = \frac{1}{A_{\text{IIP3,1}}^2} + \frac{a_1^2}{A_{\text{IIP3,2}}^2} + \frac{a_1^2b_1^2}{A_{\text{IIP3,3}}^2} + \ldots,
\end{equation}

where $A_{\text{IIP3,1}}, A_{\text{IIP3,2}}, \ldots$ are the third-order input-intercept amplitudes and a_1, b_1, \ldots are the linear gain coefficients of the corresponding blocks in a receive chain (similar to Eq. (2.13)).

An important conclusion that can be derived from the above result is the inverse proportionality of the first-stage linear gain a_1 and the overall IIP3. Namely, a larger gain of the first stage results in a larger intermodulation product that is responsible for an even larger distortion at the output of the second stage.
Note that IIP3 cannot be obtained directly from measurements, but as an intersection between the extrapolated linear and third-order intermodulation responses (Fig. 2.3), which are, however, obtained for small input signals. The reason for this is that IIP3 is often far beyond the maximal signal range of the system.

2.2.1.2 Second-Order Intercept Point

A hypothetical intersection point of the first-order product \(a_1 A\) and the second order product \(a_2 A^2\) is *second-order intercept point* (IP2) [29]. The amplitude of the input-referred IP2 is defined as:

\[
A_{\text{IP2}} = \frac{a_1}{a_2}
\]

(2.25)

Similar to the derivation of the cascaded IIP3, the cascaded IIP2 can be expressed as:

\[
\frac{1}{A_{\text{IP2}}} = \frac{1}{A_{\text{IP2},1}} + a_1 \frac{1}{A_{\text{IP2},2}} + a_1 b_1 \frac{1}{A_{\text{IP2},3}} + \ldots ,
\]

(2.26)

where \(A_{\text{IP2},i}\) are the input-referred second-order intercept amplitudes of the corresponding cascaded stages.

2.3 Noise Figure

The reduction in signal-to-noise ratio (SNR) throughout a two-port network is characterized by the *noise factor* [41].

\[
F = \frac{\text{SNR}_I}{\text{SNR}_O} = \frac{S_I / N_I}{S_O / N_O}
\]

(2.27)

Here, \(\text{SNR}_I\) and \(\text{SNR}_O\) are the input and output signal-to-noise ratios, respectively. \(S_I\) and \(N_I\) are the input signal power and the input noise power, and \(S_O\) and \(N_O\) are the output signal and noise power (see Fig. 2.4). When expressed in decibels (dB), this ratio is called the *noise figure*.

The general expression for noise factor is given below [42-47],
Adaptive RF Front-End Circuits

\[F = F_{\text{MIN}} + \frac{R_N}{G_S} \left[(G_S - G_{\text{OPT}})^2 + (B_S - B_{\text{OPT}})^2 \right], \quad (2.28) \]

where \(F_{\text{MIN}} \) is the minimum noise factor, \(R_N \) the equivalent noise resistance, \(G_S \) and \(B_S \) the source conductance and susceptance, and \(G_{\text{OPT}} \) and \(B_{\text{OPT}} \) the optimum source admittance parameters corresponding to the minimum noise factor. The source admittances that minimize noise factor and maximize power transfer (impedance match) of a two-port network are usually not the same. Therefore, orthogonal optimization for noise figure and power transfer is required if one wants to enjoy simultaneous noise and power match (if possible). Whereas \(F_{\text{MIN}} \) stands for the noise factor achieved under noise-matched conditions, noise resistance \(R_N \) characterizes the sensitivity of the minimum noise figure to changes in the source impedance.

\[|Z_S| \quad |Z_L| \]

\[\begin{align*}
S_{\text{IN}} & \quad N_i \\
\text{Noisy two-port} & \\
\text{S} & \quad \text{N} \end{align*} \]

\[Z_L \quad \begin{align*}
S_{\text{OUT}} & \\
N_o & \end{align*} \]

Figure 2.4: A noisy two-port network.

On the other hand, microwave designers are more familiar with the noise-factor definition that is related to reflection coefficients of a two-port network, Eq. (2.29) [4],

\[F = F_{\text{MIN}} + 4 \frac{R_N}{Z_0} \frac{|\Gamma_S - \Gamma_{\text{OPT}}|^2}{(1 - |\Gamma_S|^2) \left| 1 + \Gamma_{\text{OPT}} \right|^2}, \quad (2.29) \]

where \(\Gamma_{\text{OPT}} \) is the optimum reflection coefficient corresponding to the optimum source admittance that provides the minimum noise factor, and \(\Gamma_S \) is the source reflection coefficient.

The noise parameters, \(F_{\text{MIN}}, R_N, \) and \(\Gamma_{\text{OPT}} \), are characteristics of the device,
and they can be measured with a noise-figure test set, or determined from the device S-parameters.

Another noise figure of merit is the noise temperature, T_E [48]. By referring to Fig. 2.4, we can establish the relationship between the noise factor and noise temperature as follows.

Parameters of the two-port network are the power gain g, the bandwidth B, and the noise temperature T_E. The noise temperature of the source is T_0. If the input noise power corresponding to the matched condition and temperature $T_0=290K$ equals $N_0=K T_0 B$, the output noise power is:

$$N_O = K B (T_0 + T_E) g.$$ \hspace{1cm} (2.30)

Now, the relationship between the noise figure and the equivalent noise temperature can be obtained by combining Eqs. (2.27) and (2.30) as:

$$F = 1 + \frac{T_E}{T_0} \quad T_E = (F-1)T_0.$$ \hspace{1cm} (2.31)

The use of the noise factor is in some situations error prone. Namely, the noise factor for an RF receiver is defined for the input noise level of $K T_0 B$, i.e., the source temperature T_0. However, as the noise originating from the source (i.e., an antenna with a noise temperature T_A) is generally $K T_A B$, the calculation of the output noise power using the noise factor (Eq. (2.32)) is correct only if $T_A=T_0$.

$$N_O = N_0 F \frac{S_O}{S_I} = N_0 F g = K T_A B F g$$ \hspace{1cm} (2.32)

Finally, the equivalent noise factor F for the cascaded connection of the stages is given by Friis formula [49],

$$F = F_1 + \frac{F_2 - 1}{g_1} + \frac{F_3 - 1}{g_1 g_2} + ...$$ \hspace{1cm} (2.33)

where g_i and F_i are the power gain and noise factor values of the corresponding stages. Similarly, the equivalent noise temperature T_E of an n-stage cascaded system has a form [49]:

$$T_E = T_{E1} + \frac{T_{E2}}{g_1} + \frac{T_{E3}}{g_1 g_2} + ...$$ \hspace{1cm} (2.34)
2.4 PHASE NOISE

Power of an oscillation signal (e.g., $v(t)$) is ideally concentrated at one frequency (f_0), so that

$$v(t) = V_0 \cos \omega_0 t$$ \hspace{1cm} (2.35)

However, as the oscillation signal is generated by non-ideal (thus noisy) circuit components [46,49-51], the actual power spreads over a number of frequency components (i.e., a frequency range), as shown in Fig. 2.5.

![Figure 2.5: Spectra of an ideal and a real (noisy) oscillation signal.](image)

The oscillation-signal skirt is responsible for the mixing of a number of components (desired and undesired) to the same frequency. For example, a desired signal (f_{RF}) converts with an oscillation signal (f_0) to a low frequency ($\Delta f=f_{RF}-f_0$). On the other hand, an undesired interferer at frequency $f_{RF}+\Delta f$ converts with the component of the oscillation signal at $f_0+\Delta f$ to the same frequency Δf. This phenomenon is referred to as reciprocal mixing [2], and it is responsible for the deterioration of the converted desired signal content.

The real (noisy) oscillation signal (Fig. 2.4) has a form,

$$v(t) = V_0(1 + A(t))\cos(\omega_0 t + \Phi(t))$$ \hspace{1cm} (2.36)

where $A(t)$ is an amplitude-modulated (AM) component and $\Phi(t)$ is a phase-
modulated (PM) component [52]. The spectral component of the oscillation signal and the corresponding AM and PM noise components at certain offset frequency Δf from the carrier are depicted by Fig. 2.6.

![Diagram of AM and PM components of an oscillation signal.]

As the AM component can be easily removed by, for example, an amplitude control mechanism of an oscillator [53, 54], the PM component determines a deviation from the ideal case (Eq. (2.36)).

Therefore, the noisy nature of oscillators (random variation of oscillation phase) is described by the phase noise. This figure of merit is defined as the ratio of the noise power in a 1Hz bandwidth at an offset frequency (Δf) from the carrier and the signal power (at f_0) (see Fig. 2.6) [55, 56]. Intuitive Leeson’s formulae [56], Eq. (2.37), shows the relationships between the phase noise L of a harmonic oscillator and its design parameters, i.e., oscillator noise factor F, oscillation signal power P, quality of resonator Q, and frequency parameters (K is Boltzman’s constant and T is absolute temperature).

$$L = F \frac{KT}{2PQ^2} \left(\frac{f_0}{\Delta f}\right)^2 \quad (2.37)$$
The capability to process both the weakest and the strongest signals is referred to as dynamic range. Among a number of definitions two are most used, viz., the linear and spurious free dynamic range (SFDR).

The linear dynamic range is defined as a difference between the input signal level that causes 1dB gain compression and the minimum input signal level that can be distinguished from the noise. This is a useful figure for power amplifier designers.

For low-noise amplifiers and mixers, however, operation may be limited by noise at the low end, and the maximum power level for which distortion becomes unacceptable at the high end.

The range where the spurious response is minimal is referred to as spurious free dynamic range. The higher end of the SFDR is determined by the signal power level \(P_{\text{MAX}} \) at which the (output) third-order intermodulation product is equal to the noise level \(N_0 \). The lower end is related to the minimum detectable signal, i.e., a signal power level \(P_{\text{MIN}} \) that allows for detection with a desired signal-to-noise ratio and accordingly desired error probability (or bit error rate). The SFDR is defined by Eq. (2.38), whereas a graphical interpretation is given by Fig. 2.7.

\[
\text{SFDR}[\text{dB}] = P_{\text{MAX}}[\text{dB}] - P_{\text{MIN}}[\text{dB}] \tag{2.38}
\]

In order to calculate the SFDR, we will first determine the relationship between the linear product \(P_O \) and the IM3 product \(P_{\text{OIM3}} \) of a nonlinear system (e.g., Eq. (2.13)).

With the aid of Eqs. (2.22) and (2.23), the power of the output 3\(^{rd}\)-order intermodulation product (see Table 2.1) can be expressed as:

\[
P_{\text{OIM3}} = \frac{9}{32}a_3^2A^6 = \frac{a_1^6A^6}{4a_1^6/9a_3^2} = \frac{P_O^3}{P_{\text{OIP3}}} \tag{2.39}
\]

Transforming Eq. (2.39) into a dB-scale, the linear input-referred power product becomes:

\[
P[\text{dB}] = \frac{2IIP3 + IIIM3}{3} \tag{2.40}
\]
2. Performance Parameters of RF Circuits

Now, the maximum input power level \(P_{MAX} \) is obtained by equating the \(IIM3 \) with the input-referred system noise floor \((nf) \) in accordance with the definition of the \(SFDR \):

\[
P_{MAX} [dB] = \frac{2IIP3 + nf}{3},
\]

where

\[
f = 10\log KTB + NF.
\]

\(K \) is Boltzmann’s constant, \(T \) is the absolute temperature, and \(NF \) is the noise figure.

On the other hand, the minimum input power \((P_{MIN}) \) refers to the signal power that provides a system with a desired minimal (output) signal-to-noise ratio \(SNR_{O,MIN} \). This is given by Eq. (2.43).

\[
P_{MIN} = nf + SNR_{O,MIN} [dB]
\]

Finally, the \(SFDR \) is obtained (Eq. (2.44), [2]) as a difference between \(P_{MAX} \) and \(P_{MIN} \).
Adaptive RF Front-End Circuits

\[
SFDR[\text{dB}] = \frac{2}{3}(\text{IIP3} - nf) - \text{SNR}_{O,MIN}[\text{dB}] \tag{2.44}
\]

As the output noise power is \(N_O = g \cdot nf = gkBT_0F \) (assuming a gain \(g \) and an antenna temperature \(T_0 \)), Eq (2.44) transforms into:

\[
SFDR[\text{dB}] = \frac{2}{3}(\text{OIP3} - N_O[\text{dB}]) - \text{SNR}_{O,MIN}[\text{dB}] . \tag{2.45}
\]

This equation allows for the estimation of the distortion-free dynamic range (in 3rd-order intermodulation distortion dominated systems) once the output IP3, the output noise power and the minimum signal-to-noise ratio are known.

2.6 RF FRONT-END PERFORMANCE PARAMETERS

A block diagram of a part of an RF receiver front-end, consisting of a low-noise amplifier (LNA), a filter, and a mixer, is shown in Fig 2.8. Given the circuit block specifications, a number of receiver performance parameters will be determined, viz., the gain, the noise figure, the linearity, the dynamic range.

In order to put the previously defined parameters into the context of RF front-end circuit design, we will use an example. Let us therefore assume the following operation conditions and circuits’ parameters:

- The operation frequency is \(f = 1850 \text{MHz} \), the channel bandwidth \(B = 200 \text{kHz} \), the bit rate \(R_B = 14.4 \text{kb/s} \), the desired error probability \(P_E = 10^{-5} \), and the modulation GMSK type [2].
2. Performance Parameters of RF Circuits

- The transmit power is $P_T [\text{dBm}] = 30$, the transmit antenna gain $G_T = 1 \text{dB}$, the minimum distance between receiver and transmitter $R_{\text{MIN}} = 10 \text{m}$, the receive antenna gain $G_R = 1 \text{dB}$, and the antenna noise temperature $T_A = 900 \text{K}$.

- The power gains G_i, noise figures N_{F_i} and output intercept points O_{IIP3_i} of the corresponding blocks (see Fig. 2.8) are given in Table 2.3.

Table 2.3: Performance parameters of the receiver circuits.

<table>
<thead>
<tr>
<th>Performance Blocks</th>
<th>LNA</th>
<th>RF Filter</th>
<th>Mixer</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>15dB</td>
<td>-2dB</td>
<td>4dB</td>
</tr>
<tr>
<td>N_{F}</td>
<td>2dB</td>
<td>2dB</td>
<td>14dB</td>
</tr>
<tr>
<td>O_{IIP3}</td>
<td>15dBm</td>
<td>-</td>
<td>10dBm</td>
</tr>
</tbody>
</table>

Referring to the definitions and calculations of the previous sections, we can determine the receiver performance parameters as follows.

- The system power gain is
 \[G = G_1 + G_2 + G_3. \]
 (2.46)

Substituting values given in Table 2.4, results into $G = 17 \text{dB}$.

- The system noise factor is
 \[F = F_1 + \frac{F_2 - 1}{g_1} + \frac{F_3 - 1}{g_1 g_2}, \]
 (2.47)

where g_1 and g_2 are the linear gain terms (total gain $g = g_1 g_2$). For the given noise-figure values, $N_{F} = 10 \log F = 4.6 \text{dB}$.

- The system $IIP3$ is
 \[IIP3 = -10 \log \left(10^{\frac{O_{IIP3}}{10}} + 10^{\frac{O_{IIP3}}{10}} + 10^{\frac{O_{IIP3}}{10}} \right). \]
 (2.48)
For the given OIP_3 values, $IIP_3 = -2.1$ dBm.

- The output noise power is
 \[N_O = K[T_A + (F - 1)T_0]Bg. \]
 \[(2.49) \]

- The minimum output SNR \[^{[52]}\] is
 \[SNR_{O,MIN} = \frac{R_B E_B}{B n_O}, \]
 \[(2.50) \]
 where the energy-per-bit-to-noise ratio, E_B/n_O, can be determined from:
 \[P_E = \frac{1}{2} \text{erfc}(\sqrt{\frac{E_B}{n_O}}) \]
 \[(2.51) \]

- The spurious free dynamic range \[^{[2]}\] is
 \[SFDR[dB] = \frac{2}{3}(OIP_3 - N_0[dB]) - SNR_{O,MIN}[dB]. \]
 \[(2.52) \]

- The minimum detectable input signal (the receiver sensitivity) \[^{[2]}\] is
 \[S_I = P_{MIN} = SNR_{O,MIN} \frac{N_0}{g} = SNR_{O,MIN}KB[T_A + (F - 1)T_0]. \]
 \[(2.53) \]

- The required receiver dynamic range (DR) \[^{[12]}\] is
 \[P_{MIN} = S_I \quad P_R \bigg|_{R=R_{MIN}} = \frac{g_R g_T P^2}{4\pi R_{MIN}^2 \lambda^2} \]
 \[(2.54) \]
 \[DR = P_R \bigg|_{R=R_{MIN}} [dB] - P_{MIN} [dB]. \]
 \[(2.55) \]

P_R is the receive signal power (a more accurate model can be found in \[^{[57]}\]), λ the signal wavelength, and g_T and g_R the corresponding linear gain terms.

As the sensitivity depends on the minimum SNR, which depends on the ratio of the bit energy and the noise-power spectral density, where the latter is
related to the desired probability of error, this implies that the dynamic range is dependent on both the modulation type and the SNR.

- The maximum range of operation, R_{MAX}, is

$$R_{\text{MAX}} = \frac{P_T g_T g_R \lambda^2}{(4\pi)^2 P_R}, \quad (2.56)$$

if the required receive signal power equals

$$P_R = E_B R_B = \frac{E_B}{n_0} n_0 R_B = \frac{E_B}{n_0} K[T_A + (F - 1)T_0] R_B. \quad (2.57)$$

2.7 CONCLUSIONS

A number of definitions essential to RF design are outlined in this chapter. The gain, nonlinearity and noise parameters are revisited, followed by a discussion on the dynamic range and the RF system performance.

The reviewed parameter definitions form a base for the characterization of the RF circuits and systems.

REFERENCES

2. Performance Parameters of RF Circuits

2. Performance Parameters of RF Circuits

[48] F. Friis, “Noise Figure of Radio Receivers”, *Proceedings IRE*, vol. 32, pp. 419-422, July 1944.

CHAPTER 3

SPECTRUM-SIGNAL TRANSFORMATION

For the last few decades, there haven’t been significant breakthroughs at RF front-end system-level design, as frequently only a few architectures have been exploited: high-IF [1,2] and zero-IF topologies [3,4], and lately low-IF topologies [5]. Even though a small number of different topologies are in use, the high-level RF front-end characterization lacks a unique presentation, which in turn prevents research of new design strategies and architectures at the system level.

Moreover, most of the existing system studies on RF front-ends [6,7,8] fail to present how signals and spectra are transformed from an antenna input to the backend of the receiver in a consistent way. Without an understanding of the signal and spectrum transformations throughout a front-end, it is difficult to grasp all design concepts at the RF system level and the RF circuit level.

Therefore, a unique presentation of spectral and signal transformation in RF front-ends is introduced in this chapter. The approach presented here gives insight into high-level modelling of RF front-ends [9], and accordingly can lead to new design strategies. Various mixer-oscillator models are introduced that allow for an all-encompassing interpretation of both signal and spectral transformations in different receiver architectures.

This chapter is organized as follows. First, the existing RF front-end architectures are briefly outlined followed by a description of the signal and spectral (SS) transformations in a quadrature downconverter topology. Different mixer-oscillator (MO) models are then introduced. Using the presentation of transformation of signals and their spectra, and MO models, a comprehensive analysis of a number of RF front-end topologies is performed. Finally, the mixer-oscillator models and the SS presentation are applied to the calculation of the image-rejection ratio of quadrature receiver topologies, illustrating their utility.
3.1 TRANSCEIVER ARCHITECTURES

The increasing use of communication equipment imposes strict regulation on communication standards, and accordingly RF circuit and system designs. To provide users with good quality of service (QoS), a number of issues in various disciplines must be considered. Designers search for more efficient coding techniques and modulation schemes, better transmission and reception schemes, higher-performance circuits and systems, lower-power and higher-speed baseband signal processing, more efficient protocols, and higher energy-density batteries. We will focus on the RF system-level issues in this chapter.

The role of an analogue RF front-end is to downconvert a signal received by a receive antenna to a digital back-end. The receiver architecture is called a high-IF architecture [1,2,10-22] if an intermediate frequency (IF) prior to the back-end processing unit doesn’t fall into the range of the baseband signal-processing capabilities of the current era (tens of MHz at the time of writing). The architecture is known as a homodyne or zero-IF [3,4,23-49] for a zero intermediate frequency, and as a low-IF architecture [5,7,50-56] for a low IF (a frequency that falls into the baseband processing capabilities, i.e., on the order of kHz and/or MHz at the current era). The system-level design considerations for these architectures will be outlined in the following sections.

3.1.1 HETERODYNE ARCHITECTURES

A simplified model of a heterodyne receiver architecture [1,2] is shown in Fig. 3.1. It consists of a band-select filter, a low-noise amplifier, an image-reject filter, a mixer, a local-oscillator, and a channel select filter.

![Figure 3.1: A heterodyne receiver.](image-url)
The RF front-end first selects the spectrum that is allocated to users of a particular standard (band selection), and subsequently it selects the spectrum allocated to a particular user (channel selection) while suppressing interfering signals.

The transformation of the spectra traversing a part of the heterodyne receiver (Fig. 3.1) is shown in Fig. 3.2 (only positive frequencies are shown).

Here, f_0 stands for the local-oscillator (LO) frequency, f_{RF} the frequency of the desired signal, f_{IM} the image-signal frequency, and f_{INT} the frequency of the nearby (adjacent-channel) interferer. If $f_0 < f_{RF}$, we refer to “low-side injection”. Otherwise ($f_0 > f_{RF}$), it is high-side injection.

A trade-off between suppression of the near and the far interferers (images) dictates the choice of the IF for the illustrated downconversion scheme (see Fig 3.2). Namely, the higher the IF is chosen, the more frequency “space” (bandwidth) there is to filter the image. In contrast, when a lower IF is chosen, only a small portion of an image signal will be suppressed, whereas nearby interferers will be easily removed because higher-order filters can be integrated more easily at low intermediate frequencies.

High-quality image-reject and channel-select filters are required for the efficient suppression of undesired signals. However, as these filters are often implemented with discrete, external components, the increased complexity (e.g., parts count) and large power consumption (50Ω matching between filters and front-end circuits) of high-IF receivers are due.

The selection/sensitivity problem, i.e., channel selection and image rejection, is somewhat alleviated in superheterodyne receivers [10] by performing the downconversion in a few steps rather than in one step (see Fig. 3.3).

A higher intermediate frequency after the first downconversion allows for better image suppression, even with moderate-Q filters. On the other hand, a lower final IF allows for better suppression of nearby interferers, having available high-Q filters at this frequency. However, more (discrete) IF filters
Adaptive RF Front-End Circuits

are necessary when more IF stages are used, which increases circuit-board and chip-packaging complexity and increases overall cost.

![Figure 3.3: A superheterodyne receiver.](image)

3.1.2 HOMODYNE ARCHITECTURES

In homodyne or zero-IF receivers [3,4], an intermediate frequency of 0Hz is chosen. At the cost of degraded performance, the external bulky filters can be eliminated, obviating the need for the “power-expensive” 50Ω inter-stage matching.

An input high-frequency RF signal (f_{RF}) is downconverted to the baseband after the mixing with an oscillation signal $f_0=f_{RF}$ in a zero-IF receiver (Fig. 3.1 with $f_0=f_{RF}$). The signal spectra before and after the downconversion with a single oscillation signal (e.g., cosine) are given in Fig. 3.4 (only positive frequencies are shown).

![Figure 3.4: Zero-IF spectral conversion.](image)

The lower band (LB) of the spectrum of the desired signal overlaps with the upper band (UB) of the spectrum after the downconversion. In order to avoid loss of information, a zero-IF downconversion with a single LO signal requires identical LB and UB of the signal spectrum (e.g., double side-band amplitude modulated signal) [6,8].
However, frequency- and phase-modulated signals (most often employed modulation techniques in mobile communication systems [57]) don’t carry the same information in the lower and the upper parts of the spectra [6,8,58]. Therefore, a certain degree of image rejection is necessary for the correct signal detection in homodyne receivers [6,8], where we can consider that the LB of the information spectrum (Fig. 3.4) is an image of the UB of the spectrum.

3.1.2.1 Image-Reject Zero-IF Architectures

In order to avoid the successive and extensive filtering found in heterodyne receivers, without compromising the selectivity and sensitivity of the receiver, other techniques of coping with the image problem have been devised. Two well-known image-reject architectures are those of Hartley [59] and Weaver [60], shown in Figs. 3.5 and 3.6, respectively.

By processing the desired signal and the image signal in a different way, both architectures reject the image signal and transfer the desired signal. Namely, by mixing the incoming signal with two quadrature-phase oscillation signals (sine and cosine) and subsequently adding the downconverted signals in quadrature (90\(^0\) shift in Fig. 3.5a), the desired signal adds constructively whereas the image signal is cancelled.

![Figure 3.5: The Hartley architecture: (a) a functional description, (b) a practical implementation.](image)

An implementation of Hartley architecture is shown in Fig. 3.5b. Image suppression is achieved by means of complex polyphase filters [61,62] that can distinguish between positive and negative phase sequences, i.e., positive and negative frequencies, and accordingly transfer/suppress parts of spectra.
The image signal can also be suppressed by two consecutive downconversions with quadrature LO signals. This is shown in Fig. 3.6.

Image suppression using a double-quadrature downconverter [6-8] is shown in Fig. 3.7. After the first quadrature downconversion, signals are again converted in quadrature to lower frequencies, allowing for the image cancellation and transfer of the desired signal.

Section 3.2 describes in detail the transformation of signals and their spectra in image-reject architectures (Figs. 3.5-3.7).

3.1.2.2 Drawbacks of Zero-IF Architectures

Although zero-IF receivers offer a higher degree of the integration as well as reduced complexity and reduced power consumption, there are also
drawbacks to this architecture [44,45]. As the RF signals are directly converted to the baseband, any DC and low-frequency signals other than the desired signal cause information distortion.

Firstly, due to finite isolation between the LO and RF ports of a mixer, a portion of the local-oscillator signal is mixed with itself, producing a large undesired DC component. The leakage of the LO signal is the result of the capacitive and substrate coupling, or for externally provided LO signals, bond-wire coupling. Even more problematic is self-mixing of LO signals radiated by the antenna and reflected back to the receiver. In such situations, a time-varying DC component is generated due to time variations between the oscillator signals. Not only does this DC component fall into the band of the desired signal, but it can also saturate the receiver through a subsequent amplification. A way to circumvent the problem of DC offset is to apply DC-free coding schemes [49] or, at circuit level, by filtering [6] and cancellation techniques [46-48].

Secondly, second- and third-order distortion products degrade the performance of zero-IF receivers, both falling into the band of the downconverted desired signal (i.e., baseband). The 2nd-order distortion [39,63] can be due to a finite isolation between the IF and RF ports of a mixer, allowing for a feedthrough of the second-order intermodulation products. Second-order intermodulation can be alleviated with differential circuits, albeit at the expense of increased power consumption.

Flicker noise (1/f noise) is another source of hazard. Namely, the 1/f noise of devices (situated at low frequencies) can corrupt the desired signal at baseband. Effects of the 1/f noise are more influential for CMOS technologies than for bipolar technologies, due to the inherently higher 1/f-noise cut-off frequency of CMOS devices.

3.1.3 LOW-IF ARCHITECTURE

To circumvent the detrimental effects of DC-offset and to still benefit from a high degree of integration of zero-IF topologies, the final IF can be modified to other than a zero frequency, i.e., a low IF falling into the range of the baseband signal processing capabilities [5]. However, as an image signal, e.g., a nearby interferer, can now be a lot stronger than the desired signal, receivers with a low intermediate frequency (low-IF receivers) employ the quadrature image-reject architectures shown in Figs. 3.5-3.7.

Though low-IF receivers require more rigorous image filtering, they are relieved from problems that arise from the LO self-mixing and the 2nd-order intermodulation.
Signals and spectra undergo the same transformations in low-IF topologies as in zero-IF topologies. A detailed treatment of signal and spectral transformations is given in Section 3.2.

3.1.4 WIRELESS STANDARDS AND EMPLOYED ARCHITECTURES

The performance of wireless services are determined by the standardization committees [64,65]. The functionality requirements influence the choice of the receiver architecture.

An overview of wireless standards [66-74] is given in Table 3.1.

<table>
<thead>
<tr>
<th>standard</th>
<th>range(GHz)</th>
<th>duplex</th>
<th>data rate</th>
<th>modulation</th>
<th>architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>0.935-0.96</td>
<td>FDD</td>
<td>14.4Kb/s</td>
<td>GMSK</td>
<td>zero-IF/low-IF/high-IF</td>
</tr>
<tr>
<td>DCS1800</td>
<td>1.805-1.88</td>
<td>FDD</td>
<td>14.4Kb/s</td>
<td>GMSK</td>
<td>1. zero-IF 2. low-IF/high-IF</td>
</tr>
<tr>
<td>IS-95</td>
<td>1.93-1.99</td>
<td>FDD</td>
<td>14.4Kb/s</td>
<td>QPSK, OQPSK</td>
<td>high-IF</td>
</tr>
<tr>
<td>WCDMA</td>
<td>2.11-2.17</td>
<td>FDD, TFD</td>
<td>2-10Mb/s</td>
<td>QPSK, 16QAM, 8PSK</td>
<td>zero-IF</td>
</tr>
<tr>
<td>DECT</td>
<td>2.4-2.48</td>
<td>TDD</td>
<td>1.152Mb/s</td>
<td>GFSK</td>
<td>1. low-IF 2. zero-IF/high-IF</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>2.4-2.48</td>
<td>TDD</td>
<td>0.7232Kb/s</td>
<td>GFSK</td>
<td>low-IF/zero-IF</td>
</tr>
<tr>
<td>802.11b(g)</td>
<td>2.4-2.48</td>
<td>TDD</td>
<td>11(54)Mb/s</td>
<td>BPSK, QPSK (OFDM)</td>
<td>1. zero-IF 2. low-IF/high-IF</td>
</tr>
<tr>
<td>802.11a</td>
<td>5.15-5.825</td>
<td>TDD</td>
<td>54Mb/s</td>
<td>BPSK, QPSK</td>
<td>1. zero-IF 2. low-IF/high-IF</td>
</tr>
<tr>
<td>UWB</td>
<td>3-10</td>
<td>-</td>
<td>600Mb/s</td>
<td>BPSK, QPSK, OFDM</td>
<td>-</td>
</tr>
</tbody>
</table>

For example, mobile devices implementing the GSM standard employ zero-IF [26,34,37,41], low-IF [52,54] and high-IF [21] architectures. On the other hand, mobile devices that implement the WCDMA standard employ mostly a zero-IF topology [30,34,35,38,40,41] as the problem of DC-offset is relaxed due to a large channel bandwidth (5MHz).

3.2 SIGNAL AND SPECTRAL TRANSFORMATIONS

Combining complex signal processing techniques with signal and spectral presentations is a powerful tool to both characterize and understand various phenomena related to RF front-ends [6,8]. An all-encompassing spectral analysis method in the form of a spectrum and signal transformation [9] is introduced in this section. It addresses the issue of consistent presentation of signals and their spectra in the receive path of an RF front-end. The spectral and signal transformation broadens the insight into the high-level modelling of the RF front-ends, and can be used as a useful shorthand that facilitates the analysis of RF front-end systems of any complexity.

The transformation of signals and spectra is derived for the quadrature downconverter model shown in Fig. 3.8.

\[s(t) = A(t)\cos\omega_{RF}t - B(t)\sin\omega_{RF}t + C(t)\cos\omega_{IM}t - D(t)\sin\omega_{IM}t \quad (3.1) \]

Eq. (3.1) can be used for the representation of various modulation schemes. For example, a QPSK (digitally-modulated) signal is generated by using a carrier that is modulated by the digital signal components \(A(t) \) and \(B(t) \) [58]. Most of today’s wireless communication systems use digital modulation schemes (e.g., QPSK, MSK, GMSK, GFSK, 16QAM) [57,58].

A visualisation of the spectrum of the signal \(s(t) \) is shown in Fig. 3.9. A continuous spectrum around the corresponding central frequencies (\(\omega_{RF} \) and \(\omega_{IM} \)) can be assumed [57,58,76-78] for digital modulation schemes. For the
sake of clarity, we have chosen a triangle-like spectrum for the desired signal and a square-like spectrum for the image signal.

![Figure 3.9: The spectra of the desired and the image signals.](image)

The spectra of the quadrature local-oscillator signal components are shown in Fig. 3.10, where ω_0 is the oscillator angular frequency. The spectrum of the cosine function is referred to the real axis, and the spectrum of the orthogonal sine function to the imaginary axis [6] (see Eq. (3.2)).

![Figure 3.10: Spectra of the local oscillator signals: (a) $\cos \omega_0 t$, (b) $\sin \omega_0 t$.](image)
3. Spectrum-Signal Transformation

For the sake of brevity, we will simplify the notation with \(A = A(t) \), \(B = B(t) \), \(C = C(t) \) and \(D = D(t) \). To facilitate the mathematical representation of the signal transformation, the following well-known identities (Eqs. (3.2)-(3.3)) are applied:

\[
2 \cos \omega_0 t = e^{j \omega_0 t} + e^{-j \omega_0 t} \quad j2 \sin \omega_0 t = e^{j \omega_0 t} - e^{-j \omega_0 t}, \quad (3.2)
\]

\[
R = \sqrt{A^2 + B^2}, \quad \theta = \text{atan} \frac{B}{A} \quad M = \sqrt{C^2 + D^2}, \quad \psi = \text{atan} \frac{D}{C}. \quad (3.3)
\]

With the aid of Eq. (3.2), the complex notation \([61,62]\) of the input signal \(s(t) \) becomes:

\[
2s(t) = (A + jB)e^{j \omega_0 t} + (A - jB)e^{-j \omega_0 t} + (C + jD)e^{j \omega_{im} t} + (C - jD)e^{-j \omega_{im} t}, \quad (3.4)
\]

whereas with the aid of Eq. (3.3) the complex notation transforms into:

\[
2s(t) = R \cdot e^{j(\omega_{im} t + \theta)} + R \cdot e^{-j(\omega_{im} t + \theta)} + M \cdot e^{j(\omega_{im} t + \psi)} + M \cdot e^{-j(\omega_{im} t + \psi)}. \quad (3.5)
\]

Components \(A + jB \) and \(C + jD \) are often referred to as complex envelopes of the modulated signals \([58]\).

In the following analysis, we will independently investigate the \(I \) and \(Q \) paths (i.e., the downconversion with the \(\cos \omega_0 t \) and \(\sin \omega_0 t \), respectively).

After the mixing of the input signal \(s(t) \) (Eq. (3.5)) with the quadrature components of the oscillation signal (Eq. (3.2)), the downconverted in-phase (\(I \)) and quadrature-phase (\(Q \)) components become:

\[
2I = \text{LowPassFilter}[s(t)(e^{j \omega_0 t} + e^{-j \omega_0 t})] = R \cdot \cos(\omega_{IF} t + \theta) + M \cdot \cos(\omega_{IF} - \psi), \quad (3.6)
\]

\[
2Q = \text{LowPassFilter}[s(t)(e^{j \omega_0 t} - e^{-j \omega_0 t})] = -R \cdot \sin(\omega_{IF} t + \theta) + M \cdot \sin(\omega_{IF} - \psi) \quad (3.7)
\]

where \(\omega_{IF} = \omega_{RF} - \omega_b \) is an angular intermediate frequency.

The mixing of the LO signal and the modulated signal \(s(t) \) is equivalent to a convolution of the spectral representation of the \(\cos \omega_0 t \) and \(\sin \omega_0 t \) functions (Fig. 3.10) with the spectral representation of the input signal (Fig. 3.9). The
downconverted spectra of the I and Q paths obtained are given by Figs. 3.11 and 3.12.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{spectrum_I_channel.png}
\caption{The spectrum in the I channel after low-pass filtering.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{spectrum_Q_channel.png}
\caption{The spectrum of the Q channel after the low-pass filtering.}
\end{figure}

It is tacitly assumed that each portion of the downconversion is followed by a portion of the filtering (low pass or band-pass). This implies that only the downconverted parts of the spectra are considered.

Finally, the complex downconverted signal that consists of the orthogonal I and Q components becomes:

$$2(I + jQ) = (A - jB)e^{-j\omega_{IF}t} + (C - jD)e^{j\omega_{IF}t}.$$ \hspace{1cm} (3.8)

We will refer to Eq. (3.8) as the \textit{signal-presentation} model. Here, the term \textit{signal} is referred to the \textit{mathematical representation} of the signal. According to Eq. (3.8), the downconverted signals are situated at the negative frequencies (desired signal) and the positive frequencies (image signal), respectively.
After the transformation of the Q-spectrum (Fig. 3.12) into the jQ-spectrum, which is similar to the mathematical transformation of the Q path, the resulting spectral presentation referring to the complex signal presentation $I+jQ$ is obtained (Fig. 3.13).

![Figure 3.13: The spectrum of the downconverted signal ($I+jQ$).](image)

By combining Eq. (3.8), (signal presentation) and Fig. 3.13 (spectral presentation), an explicit relationship between the spectral and the mathematical presentations of the signal transformed, called the spectrum-signal (SS) presentation, is obtained. The SS presentation is shown in Fig. 3.14. Transformation of signals and spectra using SS presentation is referred to as the SS transformation.

![Figure 3.14 : The spectrum-signal presentation.](image)

After frequency conversion, the desired signal is situated around an angular frequency $-\omega_{IF}$ and its complex presentation has a form $(A-jB)e^{j\omega_{IF}t}$ (the complex envelope and the carrier), where $A-jB$ is a mathematical interpretation of the desired quadrature signal entering the receiver. The complex-envelope $C-jD$ is referred the image signal situated around the positive intermediate angular frequency, ω_{IF}.
Not surprisingly, this form is the same as that of the signal entering the receiver. The components of the signal can be still distinguished as signal orthogonality is preserved. The desired signal is characterized by both a spectrum position (a centre angular intermediate frequency ω_{IF}) and its content (the orthogonal modulation signals $A(t)$ and $B(t)$).

To keep track of both the spectrum and the signal content, the spectrum-signal presentation of Fig. 3.14 can be applied to the analysis of receiver topologies of any complexity. SS presentation can be considered as a quadrature-downconverter "shorthand", facilitating a description of the complex RF front-end architectures. Different receiver topologies will be analyzed in the next section using the SS presentation.

3.3 MIXER-OSCILLATOR MODELS

Prior to detection (demodulation), an input receive signal is downconverted to an intermediate (low) frequency in accordance with one of the schemes outlined in Section 3.1.

A high-IF receiver (Fig. 3.1) downconverts a receive signal (e.g., $s(t)$ in Eq. (3.1)) by an oscillation signal (e.g., $\cos \omega_0 t$) to an IF.

On the other hand, a quadrature receiver (Figs. 3.4 and 3.6) downconverts an input signal with two oscillation signals ($\sin \omega_0 t$ and $\cos \omega_0 t$) that are in quadrature. The downconverted IF signal consists of two orthogonal (quadrature) components. What is more, a double-quadrature downconverter (Fig. 3.6) converts an IF quadrature signal (obtained after the first quadrature downconversion) to a baseband quadrature signal.

In order to facilitate the mathematical description of these various downconversion schemes, a complex notation is introduced [8]. Accordingly, the quadrature (orthogonal) signals are represented with two-dimensional vectors [9,58,75], i.e., complex variables (see Eq. (3.8)). For example, $A + jB$ stands for a quadrature-modulating signal (complex-modulating envelope), whereas $I + jQ$ is a quadrature downconverted signal.

The mixer-oscillator (MO) models are introduced in this section relying on the (complex) spectrum-signal presentation. They allow for a compact description and a high-level modelling of the receiver topologies. The MO models are classified based on the type of the signal (real or complex) before and after the mixer-oscillator (down)conversion.

- Double-real mixer-oscillator (DR-MO) converts a real input into a real output.
• Single-complex mixer-oscillator (SC-MO) converts a real (complex) input into a complex (real) output.

• Double-complex mixer-oscillator (DC-MO) converts a complex input into a complex output.

The MO models allow for a comprehensive analysis of various RF front-end topologies. Moreover, a number of receiver phenomena can be straightforwardly interpreted by means of the presented MO models, as will be subsequently shown.

3.3.1 DOUBLE-REAL MIXER-OSCILLATOR MODEL

A double-real mixer-oscillator (DR-MO) structure is shown in Fig. 3.15. This simple model can be found in (super)heterodyne architectures (Fig. 3.1). Common to this architecture, the desired signal and the image signal cannot be distinguished after the first downconversion without previous image filtering. This will be exemplified by using the SS transformation.

![Figure 3.15: A double-real mixer-oscillator model.](image)

If SS forms of the input signal \(s(t) \) and the LO signal \(\cos \omega_0 t \) are shown in Fig. 3.16, the SS form after the downconversion will be as shown in Fig. 3.17. The DR-MO transforms a real input signal into a real output signal, accordingly performing a \textit{real-to-real} transformation. As can be seen from Fig. 3.17, the spectra of the desired and the image signals overlap after the downconversion, i.e., the image distorts the desired information.

This can be apprehended by referring to the content of the signal. Namely, the signal consists of the components at both the positive and the negative frequencies.
In the case of the DR-MO, the output signal component (RO in Fig. 3.15) will be:

$$2RO = (A - jB)e^{-j\omega_{IF}t} + (C - jD)e^{j\omega_{IF}t} + (A + jB)e^{j\omega_{IF}t} + (C + jD)e^{-j\omega_{IF}t}, \quad (3.9)$$

$$RO = (A + C) \cdot \cos \omega_{IF}t - (B - D) \sin \omega_{IF}t. \quad (3.10)$$

Eq. (3.10) shows that the desired information indeed cannot be recovered with a single downconversion without previous image filtering (see Fig. 3.1).

Note that in the context of the transformation of the spectra, the term signal is referred to the mathematical representation of the signal. Further, the complex representation $A+jB$ implies that the modulating signals $A(t)$ and $B(t)$ are orthogonal, thus distinguishable. On the other hand, $A+B$ refers to an non-orthogonal signal, where it can not be distinguished between the components $A(t)$ and $B(t)$. In this case, the information about these components is lost and cannot be retrieved.

The first generation Motorola cordless phone [22] is an example of a superheterodyne architecture where the DR-MO models can be employed.
3.3.2 SINGLE-COMPLEX MIXER-OSCILLATOR MODEL

For real input and complex output signals, a real to complex transformation model is introduced, whereas for complex input and real output signals, a complex to real transformation is considered.

3.3.2.1 Real-to-Complex Transformation

A real input signal can be transformed into a complex output signal by means of two DR-MOs, as shown in Fig. 3.18a. A symbol of the single-complex mixer-oscillator model (SC-MO), i.e., quadrature downconverter, is shown in Fig. 3.18b.

![Diagram](image)

Figure 3.18: (a) Single-complex mixer-oscillator model, (b) symbol.

The “shorthand” for the quadrature downconverter is already discussed in Section 3.1 (the SS form shown in Fig. 3.14). In this section we will just briefly summarize the properties of the SC-MO model.

![Diagram](image)

Figure 3.19: SC-MO spectrum-signal form before downconversion.
The SS form of the input signal (Fig. 3.19) is transformed by the complex LO signal $e^{j\omega_0 t}$ into the output SS form, as shown in Fig 3.20.

The content of the output complex signal (Fig. 3.20) can be found as:

$$CO = \frac{A - jB}{2} e^{-j\omega_{f\text{-}t}} + \frac{C - jD}{2} e^{j\omega_{f\text{-}t}}. \quad (3.11)$$

Referring to either negative or positive frequencies, the frequency independent complex presentation of the signal content becomes:

$$CO@(-\omega_{f\text{-}r}) = (A - jB + C + jD)/2. \quad (3.12)$$

This suggests that the phase sequences [62] of the desired signal ($A-jB$) and the signal of image ($C+jD$) are of different polarities. The phase sequence of the desired signal is positive, whereas that of the image signal is negative. Polyphase filters (see Fig 3.6) can distinguish between the desired and image signals after the quadrature downconversion as they discriminate between the opposite phase sequences of these signals.

![Figure 3.20: SC-MO spectrum-signal form after downconversion.](image)

The polyphase filters are both the phase and the frequency discriminative. Fig. 3.20 and Eqs. (3.11) and (3.12) just prove that, whichever domain we refer to, the image can still be filtered out after the quadrature downconversion, i.e., it is still distinguishable. For example, the Hartley image-reject architecture (Fig. 3.5b) consists of a SC-MO topology and a polyphase filter (90º shifter) that is responsible for the final image rejection.

A zero-IF Philips receiver for paging applications [43] is an example where the SC-MO model can be used for the description of the spectral transformations.
3. Spectrum-Signal Transformation

3.3.2.2 Complex-to-Real Transformation

A complex input signal can be transformed into a real signal as shown in Fig. 3.21a. The accompanying symbol of this single-complex mixer-oscillator is shown in Fig. 3.21b. This intuitive symbol infers a transformation of a complex input signal (square in the symbol) into a real output signal (circle in the symbol). Other symbols are constructed applying the same rules.

If the complex input signal and the complex LO signal are shown in Fig. 3.22, the final downconverted signal will be as shown in Fig. 3.23. In this example, the input complex signal is situated around an angular frequency ω_{IF}, the oscillation signal at an angular frequency ω_{O2} and the downconverted signal around an angular frequency ω_{IF2}.

![Figure 3.21: (a) Single-complex mixer-oscillator model, (b) symbol.](image)

Note that the signal content referred to Fig. 3.19 is real, whereas the signal content shown in Fig. 3.22 is complex. Therefore, the input of a complex-to-real SC-MO model can be provided as the output of a real-to-complex SC-MO model.

![Figure 3.22: SC-MO spectrum-signal form before downconversion.](image)
The complex-to-real SC-MO model have application in both upconversion and downconversion architectures. It can be used for a single-sideband (SSB) modulation of the input signals if the input signal I_{IN} is a Hilbert transform counterpart (90° phase-shifted equivalent) of the input signal Q_{IN} [58]. On the other hand, various digital modulation schemes can be obtained if I_{IN} and Q_{IN} (Fig. 3.21) are the binary signals [58]. Finally, SC-MO model of Fig. 3.21 can be employed for the final downconversion in the Weaver receiver architecture (see Fig. 3.5).

3.3.3 DOUBLE-COMPLEX MIXER-OSCILLATOR MODEL

Fig. 3.24 shows a part of a double-quadrature downconverter that is shown in Fig. 3.7. This double-complex mixer-oscillator (DC-MO) topology transforms an input complex signal, e.g., obtained after a quadrature downconversion with a SC-MO, into a complex signal at the output. The symbol of the DC-MO is shown in Fig. 3.24b.

![Diagram of DC-MO](image)

Figure 3.24: (a) Double-complex mixer-oscillator model, (b) symbol.
In this section we will introduce a “shorthand” for the DC-MO model and then examine it with the already validated DR-MO and SC-MO models.

First, let us derive the relationship between the input and output complex signals. By mixing and combining I_{IN} and Q_{IN} with $\cos \omega_0 t$ and $\sin \omega_0 t$, as shown in Fig. 3.24, the output signals I_{OUT} and Q_{OUT} can be calculated as:

$$2I_{OUT} = 2I_{IN} \cos \omega_0 - 2Q_{IN} \sin \omega_0 t = I_{IN}(e^{j\omega_0 t} + e^{-j\omega_0 t}) + jQ_{IN}(e^{j\omega_0 t} - e^{-j\omega_0 t}),$$

(3.13)

$$2Q_{OUT} = 2I_{IN} \sin \omega_0 + 2Q_{IN} \cos \omega_0 t = -jI_{IN}(e^{j\omega_0 t} - e^{-j\omega_0 t}) + Q_{IN}(e^{j\omega_0 t} + e^{-j\omega_0 t}),$$

(3.14)

$$I_{OUT} + jQ_{OUT} = (I_{IN} + jQ_{IN})e^{j\omega_0 t}.$$

(3.15)

As suggested by Eq. (3.15) the two quadrature LO signals (Fig. 3.24) can be presented with the complex LO signal $e^{j\omega_0 t}$ [8]. This further implies that the same transformation rules can be applied for both the SC-MO (real-to-complex; Fig. 3.22) and the DC-MO models. Fig. 3.25a shows the spectrum-signal form of the complex input signal and the complex LO signal, where it is assumed that the first downconversion has already been done with a quadrature downconverter (Section 3.3.2.1 and Fig. 3.20). The SS form referring to the complex downconverted signal is now simply obtained as shown in Fig. 3.25b.

The SS presentation “shorthand” for the DC-MO model will be verified through an all-encompassing spectral analysis of a double-quadrature downconverter, shown in Fig. 3.23a, by applying the SS transformation rules of the DR-MO and SC-MO models.

![Figure 3.25: DC-MO SS form: (a) after the quadrature conversion, (b) after the double-quadrature conversion.](image-url)
A double-quadrature downconverter can be equivalently represented with two DR-MOs and two SC-MOs, as shown in Fig. 3.26b. The spectrum-signal form of the input signal $s(t)$ and the LO signal is shown in Figs. 3.9 and 3.10. Applying the transformation rules of the DR-MO model, the SS form of the real signals I_{MID} and Q_{MID} is obtained (Figs. 3.27a and 3.27b).

Applying the SS transformation rules of the SC-MO (see Figs. 3.19 and 3.20) to the SS form of Fig. 3.27 results into the complex signals $C_{OUT1}=I_{O1}+jQ_{O1}$ and $C_{OUT2}=I_{O2}+jQ_{O2}$, shown in Figs. 3.28a and 3.28b, and the output complex signal $I_{OUT}+jQ_{OUT}=C_{OUT1}+jC_{OUT2}$, shown in Fig. 3.29.

Expectedly, the image is suppressed after the final downconversion. Furthermore, the equality of the resulting spectra of Figs. 3.29 and 3.25b proves the validity of the proposed spectrum-signal form of the DC-MO model.
With the advantage of the DC-MO model (Fig. 3.25) we can manipulate content and spectra of signals in a simpler manner compared to the transformations shown in Figs. 3.27, 3.28 and 3.29, or even more complicated analysis found in [6,7].

3.4 IMAGE-REJECTION RATIO MODEL

The spectrum-signal presentation models allow for a straightforward derivation of various RF receiver performance parameters. Accordingly, this section elaborates on the image-rejection-ratio (IRR) of a quadrature downconverter [79] by means of MO models.

First, let us denote ε and ϕ as the amplitude and the phase mismatch of the oscillation signal, as shown in Fig. 3.30a.

Taking mismatch into account, the complex LO signal presentation becomes:

$$
(1 + \varepsilon)\cos(\omega_B t + \phi) + j\sin(\omega_B t) = [X_1(\varepsilon, \phi)e^{j\omega_B t} + X_2(\varepsilon, \phi)e^{-j\omega_B t}],
$$

(3.16)
where X_1 and X_2 represent the desired and undesired (parasitic) complex LO signals, respectively.

![Diagram of Quadrature Downconverter and IRR Model](image)

Figure 3.30: (a) Quadrature downconverter, (b) IRR model.

\begin{align}
X_1(\varepsilon, \varphi) &= (1 + \varepsilon)e^{j\varphi} + 1 \\
X_2(\varepsilon, \varphi) &= (1 + \varepsilon)e^{-j\varphi} - 1
\end{align}

Without loss of generality, the constants $\frac{1}{2}$ and 2 that originate from the mixing with the LO signal are omitted, as we are only interested in the form of the signals as well as the position of their spectra, which is not affected using this simplification. Also, this does not affect the ratio of the signal contents.

The IRR model is presented in Fig. 3.30b with the aid of Eq. (3.16) and a SC-MO model. We will determine the IRR by using a strictly mathematical interpretation of signals. Then, a method that relies on the spectrum-signal presentation and transformation will be described proving to be simpler and more intuitive.

By mixing the input signal $s(t)$ (Eq. (3.1)) and the LO signal (Eq. (3.16)) the low-filtered version of the output signal becomes:

\begin{align}
I + jQ &\propto RX_1(\varepsilon, \varphi)e^{-j(\omega_L t + \theta)} + MX_2(\varepsilon, \varphi)e^{-j(\omega_M t - \varphi)} + \\
&+ RX_2(\varepsilon, \varphi)e^{j(\omega_L t + \theta)} + MX_1(\varepsilon, \varphi)e^{j(\omega_M t - \varphi)}
\end{align}

where R and M are the magnitudes of the desired and the mirror signals, respectively (see Eq. (3.3)). The ratio of the power of the image and desired signals at either positive or negative frequencies can be now calculated as:
Not surprisingly, the well-known expression for the IRR [6] is obtained.

Let us now examine the same phenomenon by using the spectrum-signal analysis method described in the previous sections.

The SS forms of the input signal before the conversion and the SS form of the complex LO signal are presented in Fig. 3.31. The SS form of the downconverted signal is shown in Fig. 3.32. From Fig. 3.32 it can be straightforwardly determined to what extent the image signal affects the desired signal. Referring to an angular frequency ω_{IF}, the IRR can readily be calculated by Eq. (3.22).

$$IRR = \frac{1-2(1+\varepsilon)\cos\phi + (1+\varepsilon)^2}{1+2(1+\varepsilon)\cos\phi + (1+\varepsilon)^2}.$$ \hspace{1cm} (3.21)

$$IRR = \left| \frac{X_2(\varepsilon,\phi)e^{-j(\omega_{IF}-\omega_{RF})}}{X_1(\varepsilon,\phi)e^{-j(\omega_{IF}+\theta)}} \right|^2 = \left| \frac{-1+(1+\varepsilon)e^{-j\phi}}{1+(1+\varepsilon)e^{j\phi}} \right|^2,$$ \hspace{1cm} (3.20)

Figure 3.31: Spectrum-signal form before downconversion.

Figure 3.32: Spectrum-signal form after downconversion.
Calculation of the IRR without the model proposed would be complicated if we consider the deviation in both quadrature LO signals, viz., the amplitude and the phase deviation (ε_1 and ϕ_1) of the I-phase and the amplitude and the phase deviation (ε_2 and ϕ_2) of the Q-phase components. However, by means of the functions X_1 and X_2 of the form:

$$X_1(\varepsilon_1, \phi_1, \varepsilon_2, \phi_2) = (1 + \varepsilon_1)e^{j\phi_1} + (1 + \varepsilon_2)e^{j\phi_2}, \quad (3.23)$$

$$X_2(\varepsilon_1, \phi_1, \varepsilon_2, \phi_2) = (1 + \varepsilon_1)e^{-j\phi_1} - (1 + \varepsilon_2)e^{-j\phi_2}, \quad (3.24)$$

the IRR can be easily determined from Fig. 3.32 and Eq. (3.22).

The IRR model of Fig. 3.32 allows for efficient calculation of IRR in various quadrature topologies.

3.5 IRR MODEL OF DOUBLE-QUADRATURE DOWNCONVERTERS

All the properties of the spectrum-signal presentation model can be examined with the image-reject, double-quadrature downconversion architecture, shown in Fig. 3.26a (standard form) and Fig. 3.26b (mixer-oscillator model).

We will focus only on the derivation of the IRR by using the SS presentation.

Using the introduced mixer-oscillator models, a rather complex double-quadrature downconverter structure, especially for the calculation of IRR, reduces to the topology shown in Fig. 3.33b (Weaver topology). The obtained IRR model consists of a real-to-complex SC-MO and a complex-to-real SC-MO.

![Figure 3.33: (a) A double-quadrature downconverter, (b) an IRR model.](image-url)
The result of the first downconversion with a SC-MO is already shown in Figs. 3.31 and 3.32. Final downconversion to the baseband is done with the second complex LO signal \((X_3, X_4)\), as shown in Figs. 3.34 and 3.35.

\[
(1 + \varepsilon_1)\cos(\omega_0 t + \varphi_1) + j \sin \omega_0 t = [X_1(\varepsilon_1, \varphi_1)e^{j\omega_0 t} + X_2(\varepsilon_1, \varphi_1)e^{-j\omega_0 t}], (3.25)
\]

\[
X_1(\varepsilon_1, \varphi_1) = (1 + \varepsilon_1)e^{j\varphi_1} + 1, \quad (3.26)
\]

\[
X_2(\varepsilon_1, \varphi_1) = (1 + \varepsilon_1)e^{-j\varphi_1} - 1, \quad (3.27)
\]

\[
(1 + \varepsilon_2)\cos(\omega_{02} t + \varphi_2) + j \sin \omega_{02} t = [X_3(\varepsilon_2, \varphi_2)e^{j\omega_{02} t} + X_4(\varepsilon_2, \varphi_2)e^{-j\omega_{02} t}],
\]

\[
X_3(\varepsilon_2, \varphi_2) = (1 + \varepsilon_2)e^{j\varphi_2} + 1, \quad (3.29)
\]
the resulting IRR can be calculated from the SS from of the finally
downconverted signal, shown in Fig. 3.35. This is given by Eqs. (3.31) and
(3.32).

\[
IRR = \frac{X_2X_3 + \overline{X_1X_4}^2}{X_1X_3 + X_2X_4}
\] (3.31)

\[
IRR = \frac{1-2(1+\varepsilon_1)(1+\varepsilon_2)\cos(\varphi_1 - \varphi_2) + (1+\varepsilon_1)^2(1+\varepsilon_2)^2}{1+2(1+\varepsilon_1)(1+\varepsilon_2)\cos(\varphi_1 + \varphi_2) + (1+\varepsilon_1)^2(1+\varepsilon_2)^2}
\] (3.32)

As stated in Section 3.3.1, the components that originate from the opposite
frequencies are added in complement (Fig. 3.35) in Eq. (3.31). This result is in
accordance with [6], which proves the validity of the application of the mixer-
oscillator models for estimation of IRR.

The SS presentation, MO models, and IRR model are useful tools
(“shorthands”) for the signal and spectral analysis in receiver topologies of
any complexity.
3.6 CONCLUSIONS

Combining complex signal processing techniques with signal and spectral presentations is a powerful tool to both characterize and understand various phenomena related to RF front-ends.

An all-encompassing spectral analysis method called the spectrum-signal transformation has been introduced in this chapter. It addresses the issue of consistent presentation of transformation of signals and their spectra in the receive path of an RF front-end.

The mixer-oscillator models proposed in this chapter are based on the spectrum-signal formulation and offer a full interpretation of how signals and spectra are transformed from an RF range at the input up to a lower-frequency range at the output of different receiver topologies. Table 3.2 summarizes the classification of the mixer-oscillator models introduced in this chapter.

The mixer-oscillator models allow for examination of various RF system phenomena. The application of these models to the calculation of the image-rejection ratio in quadrature downconverters is an example of their utility.

Table 3.2: Mixer-oscillator models.

<table>
<thead>
<tr>
<th>DOUBLE-REAL MO-MODEL</th>
<th>[cos \omega_f]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-IN (\times) Real-OUT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SINGLE-COMPLEX MO-MODEL</th>
<th>(e^{j2\pi f})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-IN (\times) Real-OUT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOUBLE-COMPLEX MO-MODEL</th>
<th>(e^{j\omega})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-IN (\times) Complex-OUT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOUBLE-COMPLEX MO-MODEL</th>
<th>(e^{j\omega})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex-IN (\times) Complex-OUT</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

3. Spectrum-Signal Transformation

3. Spectrum-Signal Transformation

3. Spectrum-Signal Transformation

[66] “European Digital Cellular Telecommunications System (Phase 1); Radio Transmission and Reception”, *European Telecommunications Standard*

[67] ETSI 300 190 (GSM 05.05 version 5.4.1): Digital Cellular Communication System (Phase 2), Radio Transmission and Reception, European Telecommunications Standards Institute, August 1997.

[70] ETSI EN 300 175-2: "Digital Enhanced Cordless Telecommunications (DECT); Common Interface (CI); Part 2: Physical Layer (PHL)", http://docbox.etsi.org/Reference.

In the last decades, a rigorous procedure to select specifications for individual blocks in a radio receiver system has not been established: it rather relies on the judgement of an experienced designer [1,2]. Therefore, performance selection criteria are introduced in this chapter [3], resulting in a procedure for assigning the specifications to the receiver circuits.

One way to optimize performance is to design each RF circuit independently for minimum noise figure and good linearity. However, this approach requires more power than necessary. An alternative method to allocate each performance parameter to RF front-end blocks is introduced in this chapter, resulting in equal performance (noise, linearity) contributions of all circuits – equilibrium criterion.

On the other hand, noise figure (\(\text{NF}\)) and 3\(^{rd}\)-order input-intercept point (\(\text{IIP}_3\)) optimization procedures are not independent, as both the noise and linearity performance of a circuit depend on its gain. By optimizing the system performance with respect to the ratio \(\frac{\text{F}}{\text{PIIP}_3}\) (the noise factor over the 3\(^{rd}\)-order power intercept point), a mutually dependent noise-linearity allocation procedure is developed in this chapter, resulting in the noise and linearity requirements satisfied – optimality criterion. Furthermore, the assignment of the specifications to the receiver circuits for the equal system noise and linearity margins with respect to the requirements is proposed – equality criterion.

This chapter is organized as follows. Some system considerations are discussed in the next section. Section 4.2 describes a procedure for selecting individual noise and linearity specifications for RF system blocks. The allocation of the mutually dependent noise and linearity performance parameters to RF front-end receiver circuits is outlined in Section 4.3. Subsequently, the condition for the optimal dynamic range of a receiver is derived. The criterion for equal contribution of the noise and the linearity to the receiver dynamic range (i.e., \(\text{IIP}_3-\text{NF}\)) is also derived. The chapter continues with a discussion on the “cost” (i.e., power consumption) of these
design criteria. Finally, some design trade-offs between performance parameters of a single RF circuit are described by means of a K-rail diagram.

4.1 SYSTEM CONSIDERATIONS

For the sake of simplicity, we will refer to an RF receiver as a system consisting of an LNA, a mixer, and baseband (BB) circuitry (with channel selection included), as shown in Fig. 4.1. \(F \), \(P_{\text{IIP3}} \) and \(g \) are the noise factor, input-referred 3rd-order power intercept point and power gain of the corresponding RF blocks. Their logarithmic equivalents are indicated in Fig. 4.1: \(G \) is power gain in dB, \(NF \) noise figure and \(IIP3 \) 3rd-order input intercept point. Eqs. (4.1) and (4.2) express the equivalent system noise and linearity performance (see Chapter 2).

![Figure 4.1: A simplified RF front-end receiver model.](image)

\[
F = F_1 + \frac{F_2 - 1}{g_1} + \frac{F_3 - 1}{g_1 g_2} + ...
\]

\[
\frac{1}{P_{\text{IIP3}}} = \frac{1}{P_{\text{IIP3,1}}} + \frac{g_1}{P_{\text{IIP3,2}}} + \frac{g_1 g_2}{P_{\text{IIP3,3}}} + ...
\]

Typical \(G \), \(NF \), and \(IIP3 \) values for the receiver blocks are shown in Table 4.1 [4,5,6].

The blocks preceding the LNA (between LNA and antenna), viz., a T/R switch (TDD), an RF preselect filter (TDD/FDD) and a duplexer (FDD), are not considered in the analysis (and Fig. 4.1) as the noise/linearity parameters of these passive circuits are known prior to the integration (e.g., Tab. 4.1) of the RF circuits and the allocation of the specifications.
referred to the input of the LNA implicitly take into account the specifications of these blocks by adding/subtracting them from those referred to the antenna.

Table 4.1: Typical performance parameters of the receiver blocks.

<table>
<thead>
<tr>
<th></th>
<th>T/R switch</th>
<th>RF filter</th>
<th>duplexer</th>
<th>LNA</th>
<th>mixer</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF [dB]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1–3</td>
<td>10–20</td>
<td>20–10</td>
</tr>
<tr>
<td>$IIP3$ [dBm]</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>-5–2</td>
<td>-5–5</td>
<td>20–10</td>
</tr>
</tbody>
</table>

Design of receiver circuits imposes trade-offs between gain, noise, linearity, and power consumption. Goals of this multi-objective design problem are:

- provision of a sufficiently large gain in order to minimize noise contribution of the receiver circuits, while ensuring a signal large enough to drive an analogue-to-digital converter.
- provision of a sufficiently small gain in order not to degrade linearity of a system, i.e., to avoid saturation and clipping.
- operation at a low power-consumption level in order to ensure long battery life in a mobile device.

The selection of g, F, and P_{IIP3} for each receiver stage is usually solved by extensively exercising Eqs. (4.1) and (4.2) for a large number of (g,F,P_{IIP3}) combinations until all the requirements are satisfied. The final choice is consciously directed towards the apriori known capabilities of the employed technology (e.g., an LNA $NF<2$dB as a starting point).

Another possibility is (over)designing of the RF front-end circuits, i.e., optimizing each circuit independently for the best noise figure, linearity and gain [7], with penalties in power consumption.

In the following sections alternative criteria for the selection of performance parameters are proposed:

- the equilibrium criterion (point): separate (input-referred) contributions of the noise (linearity) performance parameters of each receiver block are equal.
4.2 INDEPENDENT SELECTION OF NF AND IIP3 SPECIFICATIONS

A procedure for the allocation of each performance parameter to the RF front-end blocks is introduced in this section.

As we can apply the same analysis procedure to calculate both the noise and linearity properties of a system, we introduce the following notation: n_i refers to the noise factor and/or the input-referred 3rd-order power intercept point. Using this notation, Eqs. (4.1) and (4.2) become:

$$n_i = n_i^1 + n_i^2 + n_i^3 = \alpha \cdot n_i^E + \beta \cdot n_i^E + \gamma \cdot n_i^E.$$

(4.3)

Here, n_i^1, n_i^2 and n_i^3 stand for the noise (linearity) contribution of each block in the receive chain (see Fig. 4.1) after being transformed to the input of the receiver. The coefficients α, β and γ represent the noise (linearity) deviation of the LNA, mixer and baseband circuitry from the equilibrium point n_i^E, respectively. The n_i^E point is calculated as:

$$n_i^E = n_i^D / n ,$$

(4.4a)

or in dB as (NI is a dB counterpart of n_i; NI refers to the noise figure and/or the 3rd-order input-intercept point):

$$NI_E = NI_D - 10 \log n ,$$

(4.4b)

where n_i^D and NI_D are the desired (required) performance parameters of the complete RF front-end, and n is the number of the considered front-end circuits (in this case $n=3$). The noise (linearity) equilibrium point (n_i^E and NI_E) refers to the condition when the noise (linearity) contributions of all receiver blocks are equal [5]. It is calculated from Eq. (4.3) when $\alpha=\beta=\gamma=1$.

- the optimality criterion (point): mutual optimization of the system noise and linearity performance via the ratio F/P_{IIP3}.
- the equality criterion (point): equal system noise and linearity performance improvements with respect to the requirements.
Generally, when circuit noise (linearity) parameters deviate from the equilibrium point, then in order to satisfy the required system specifications \((N_I=N_I_D)\), condition (4.5a) must be satisfied \((N_I=N_I_D)\),

\[
\frac{N_I_D}{10^{10}} = 10^{10 \log_{10}^{n+N_I_E}} = 10^{10^{A+N_I_E}} + 10^{10^{B+N_I_E}} + 10^{10^{C+N_I_E}},
\]

where \(A=10\log_{10} \alpha\), \(B=10\log_{10} \beta\) and \(C=10\log_{10} \gamma\) (dB scale). For a three-block system, condition (4.5a) can be transformed into Eq. (4.5b).

\[
B = 10\log\left(3 - 10^{A/10} - 10^{C/10}\right)
\]

The relationship between the deviations \(A\) and \(B\) is graphically shown in Fig. 4.2, \(C\) being the parameter. Even though rather simple, Eq. (4.5) and Fig. 4.2 determine a design space and a design central point for RF front-end circuits. As the circuits’ noise (linearity) parameters depend equally on \(\alpha\) \((A)\) and \(\beta\) \((B)\) (Eq. (4.3)), also the dependency of the deviation \(A\) with respect to the deviation \(B\) is the same as the dependency of the parameter \(B\) with respect to the parameter \(A\). Accordingly, the central design point satisfies equality (4.15):

\[
\frac{\partial A}{\partial B} \bigg|_{C=\text{const}} = \frac{\partial B}{\partial A} \bigg|_{C=\text{const}}.
\]

Solving Eq. (4.6) with the aid of Eq. (4.5) results in the central design point:

\[
A = B.
\]

The slopes of both dependences are the same at this point: \(A\) and \(B\) are in balance at this point (see Fig. 4.2). However, as the explicit solution of Eq. (4.5) depends also on the performance of the baseband circuitry, i.e., parameter \(C\), two cases are distinguished.

First, if \(C=0\), i.e., the noise (linearity) parameters of the baseband block are in the equilibrium, the central design point satisfies \(A=B=0\) (point \(O\) in Fig. 4.2), being the already defined equilibrium point.

In case of a negligible contribution of baseband circuitry to the equivalent (input) noise (linearity) parameter of the receiver \((C\to\infty)\), Eqs. (4.5) and (4.6) result in \(A=B=1.76\) (equilibrium for a two-block system) as the central design point (point \(N\) in Fig. 4.2).
The result of Eq. (4.7) can also be justified as follows. Negative deviation from the equilibrium point \(A<0, B<0, \) and/or \(C<0 \) results in an improvement of a block performance that is always smaller than an improvement in the overall receiver performance. For example, improving the \(NF (IIP3) \) of an LNA by 3dB \((A=-3dB; \) point \(L)\) with respect to the equilibrium design point relaxes the \(NF (IIP3) \) requirement of a mixer for \(B=1.76dB \) (if \(C=0\)). This results in \(3dB-1.76dB=1.24dB \) “waste” of the noise (linearity) performance for the same desired receiver noise figure (linearity) \(NF_D (IIP3_D) \). On the other hand, relaxing the \(NF (IIP3) \) of an LNA for \(A=3dB \) would require an infinite noise-figure (linearity) improvement of a mixer (if \(C=0\)). Furthermore, for an over-designed noise (linearity) parameter of the LNA \((A<<0)\), the corresponding parameter of the mixer is just slightly relaxed \((B<3)\).

![Figure 4.2: Deviation of the NF (IIP3) of a mixer from the equilibrium point with respect to the NF (IIP3) deviation of an LNA from the equilibrium point.](image)

As discussed above, the rather common practice of taking into account only the noise (linearity) parameters of the LNA and mixer (i.e., \(C->-\infty\)) would result in the 1.76dB relaxed required \(NF (IIP3) \) performance of the very same blocks (point \(N)\), when assigning the specifications. This under-estimation could in the end lead to a design not satisfying the specifications of a complete receiver chain, i.e., an LNA-mixer-baseband configuration.
Given Eq. (4.5b), the blocks’ input-referred (i.e., at the input of the receiver in Fig. 4.1) noise (linearity) parameters \((NI)\) can be calculated as:

\[
NI_1 = NI_E + A, \quad (4.8)
\]
\[
NI_2 = NI_E + B, \quad (4.9)
\]
\[
NI_3 = NI_E + C. \quad (4.10)
\]

For the noise figure, Eqs. (4.8)-(4.10) read:

\[
NF_1 = NF_E + A_{NF}, \quad (4.11)
\]
\[
NF_2 = NF_E + G_1 + B_{NF}, \quad (4.12)
\]
\[
NF_3 = NF_E + G_1 + G_2 + C_{NF}, \quad (4.13)
\]

whereas for the third-order input-intercept point, Eqs. (4.8)-(4.10) become:

\[
IIP3_1 = IIP3_E - A_{IIP3}, \quad (4.14)
\]
\[
IIP3_2 = IIP3_E + G_1 - B_{IIP3}, \quad (4.15)
\]
\[
IIP3_3 = IIP3_E + G_1 + G_2 - C_{IIP3}. \quad (4.16)
\]

Indices \(NF\) and \(IIP3\) refer to the deviations from the equilibrium of noise figure and 3\(^{rd}\)-order input intercept point, respectively. Eqs. (4.5b) and (4.11)-(4.16) establish the relationship between the noise (linearity) parameters of the receiver circuit blocks, satisfying the required system performance.

Whether the equilibrium design point is also power efficient depends on the power budget and the chosen circuit topology. Only at the circuit level the relationship between the gain, linearity, noise, and power consumption can be explicitly determined.

For example, it can be that an LNA topology with fewer components (transistors) than a mixer topology is still power efficient even if \(A<<0\). In this case it would be advantageous to relax the mixer performance (though \(B\) would not increase much; e.g., \(A->-\infty\) and \(C=0\) result in \(B=3\) only), decreasing the absolute power consumption of a system.
Example 4.1:

Let us consider an example with the NF and IIP3 over-designed LNA.

Given the NF and IIP3 of both the RF front-end (as given in Fig. 4.1) and the LNA as $NF_D=10\,\text{dB}$, $IIP3_D=-10\,\text{dBm}$, $NF_1=2\,\text{dB}$, $IIP3_1=-1\,\text{dBm}$, we will allocate the noise figure and the 3rd-order intercept point to the mixer, following the analysis outlined above.

With the aid of Eq. (4.4), the equilibrium NF and $IIP3$ equal $NF_E=5\,\text{dB}$ and $IIP3_E=-5\,\text{dBm}$. If we assume $G_1=12\,\text{dB}$, and $C_{NF}=-10\,\text{dB}$ and $C_{IIP3}=-10\,\text{dB}$, noise and linearity parameters of the mixer will be, as calculated from Eqs. (4.5), (4.10) and (4.13), $IIP3_2=2.85\,\text{dB}$ and $NF_2=21\,\text{dB}$. These specifications satisfy the system requirements.

This noise and the linearity over-designed LNA allows for the relaxed noise and linearity performance of the mixer, while still satisfying the required specifications. The contribution of the mixer noise figure and 3rd-order input-intercept point at the input of the receiver (input of the LNA) are $9\,\text{dB}>>NF_1$ and $-9.15\,\text{dBm}<<IIP3_1$, respectively.

In order to determine the gain of the mixer, let us assume that the baseband circuitry hardly affects the equivalent input noise figure or linearity (i.e., $\gamma<<1$, e.g., $\gamma=0.1$ and $C=-10\,\text{dB}$). Now, from Eq. (4.11), $G_2=8\,\text{dB}$ for NF_3 to be negligible, and from Eq. (4.14), $G_2=-2\,\text{dB}$ for $IIP3_3$ to be dominant. Here, we assumed typical values for the baseband performance parameters, being $NF_3=15\,\text{dB}$, $IIP3_3=15\,\text{dBm}$ and $G_3=70\,\text{dB}$ [8,9).

Choosing $G_2=8\,\text{dB}$ results in $C_{IIP3}=0\,\text{dB}$ and $C_{NF}=-10\,\text{dB}$, with the required value for $IIP3_2=5\,\text{dBm}$ and $NF_2=21\,\text{dB}$. For $G_2=-2\,\text{dB}$, $C_{NF}=0\,\text{dB}$ and $C_{IIP3}=-10\,\text{dB}$, the requirements are $NF_2=18.75\,\text{dB}$ and $IIP3_2=2.85\,\text{dBm}$. The $(G_2,NF_2,IIP3_2)$ combination ($8\,\text{dB},21\,\text{dB},5\,\text{dBm}$) requires a larger gain, a better linearity, and allows for a higher noise figure than the combination ($-2\,\text{dB},18.75\,\text{dB},2.85\,\text{dBm}$). The designer will make the final choice for the mixer performance parameters, having available circuit topology and power consumption information. This issue is discussed in more detail in Section 4.4.

Finally, we can conclude that by improving receiver block specifications by more than a few dB from the equilibrium point (O and N in Fig. 4.2), the requirements for the other blocks in the receive chain don’t relax much (e.g., $A\rightarrow-\infty$ results only in $B<3$). This implies that (over)design, i.e., design for the best NF and $IIP3$, for each circuit can outperform a rather moderate design with an equal specification selection scheme, but with penalties in power consumption ($A\rightarrow-\infty$ may have penalty in power consumption; more detail in Section 4.4).
This completes the discussion on the independent selection of performance parameters for the RF circuits, where in the end the performance selection procedure has been illustrated referring to the example of the NF and IIP3 over-designed LNA.

4.3 MUTUALLY DEPENDENT SELECTION OF NF AND IIP3 SPECIFICATIONS

When assigning the system specifications to each block in the receive chain, it is common practice to consider each performance parameter separately [10,11]. However, as both the noise and the linearity performance depend on the gain of the corresponding blocks, optimizations of noise figure and 3rd-order intercept point are not mutually exclusive. Because there has not yet been developed an exact optimization procedure, Eqs. (4.1) and (4.2) are employed for a large number of \((g,F,P_{\text{IIP3}})\) combinations, until all the requirements are satisfied. As there are many combinations that satisfy the desired specifications, the experience of the designer is what usually guides to the final decision.

We will develop a procedure for assigning NF and IIP3 specifications not by optimizing the system performance to NF and IIP3, but to the ratio \(F/P_{\text{IIP3}}\) (\(NF-IIP3\) in dB). This appears to be a logical optimization parameter, establishing a direct relationship with the spurious free dynamic range (SFDR; Chapter 2) of the system that is proportional to \(P_{\text{IIP3}}/F\) (IIP3-NF in dB). Being inversely proportional to the SFDR, we will refer to the \(F/P_{\text{IIP3}}\) as to the inverse dynamic range (linear term \(idr\); logarithmic term \(IDR=NF-IIP3\)).

4.3.1 THE OPTIMALITY CRITERION

For the sake of easier interpretation of the optimization procedure, we will resort to a two-block RF front-end, consisting of an LNA and a mixer (e.g., assuming an ideal baseband block). Combining Eqs. (4.1) and (4.2), the inverse dynamic range (for 3rd-order intermodulation-distortion dominated systems) can be expressed as:

\[
idr = \frac{F}{P_{\text{IIP3}}} = \left(F_1 + \frac{F_2 - 1}{g_1} \right) \left(\frac{1}{P_{\text{IIP3},1}} + \frac{g_1}{P_{\text{IIP3},2}} \right).
\]

(4.17)
Assuming that for any \((NF_1, IIP_3)_1\) and \((NF_2, IIP_3)_2\) performance parameters combination there exists an optimal gain value \(g_{1,\text{OPT}}\), it can be found by solving Eq. (4.18).

\[
\left. \frac{\partial \text{idr}}{\partial g_1} \right|_{g_1=g_{1,\text{OPT}}} = 0
\]

(4.18)

This optimum gain \(G_{1,\text{OPT}}\) (in dB) equals:

\[
G_{1,\text{OPT}}[dB] = \frac{NF_2 + IIP_3_2 - NF_1 - IIP_3_1}{2}.
\]

(4.19)

Substituting the optimum gain into Eq. (4.17), the optimum inverse dynamic range \(IDR_{\text{OPT}} (NF-IIP_3)\) becomes:

\[
IDR_{\text{OPT}} = 20\log \left(10^{\frac{NF_1-IIP_3_1}{20}} + 10^{\frac{NF_2-IIP_3_2}{20}} \right).
\]

(4.20)

The optimum gain \(G_{1,\text{OPT}}\) of an LNA, Eq. (4.19), provides the RF front-end with the optimum inverse dynamic range, Eq. (4.20) (i.e., the maximum spurious free dynamic range). The lower the \(IDR\), the larger the spurious-free dynamic range.

Fig. 4.3 shows an inverse dynamic range (IDR) diagram for an optimal dynamic range design point. The IDR diagram describes graphically the selection of noise and linearity parameters throughout the receive chain. Each step in the IDR diagram corresponds to one stage of the receive chain, where the sloped transition indicates a transformation (gain) between the stages. For example, the NF and IIP3 of the mixer \((NF_2\) and \(IIP_3_2)\) transform with the gain \(G_{1,\text{OPT}}\) to the input of the LNA as \(NF_{2\rightarrow1}\) and \(IIP_{3_2\rightarrow1}\).

As can be seen from Fig. 4.3, all input referred noise-figure and third-order intercept point combinations (or \(IDR_1, IDR_2\)) balance the equivalent IDR, and accordingly the dynamic range of the system [12,13].

Let us now elaborate in more detail on the simultaneous noise and linearity performance optimization procedure, i.e., IDR optimization. The optimum IDR design point doesn’t always satisfy the individual noise and linearity specifications, even though it provides the RF front-end (prior to the LNA) with the maximum dynamic range. The condition that provides optimum IDR and satisfies system specifications can be derived from Eqs. (4.1) and (4.2). Namely, with the aid of Eq. (4.19), the system’s \(F\) and \(P_{IIP3}\) can be written as:
Selection of Performance Parameters for RF Front-End Circuits

\[F = \sqrt{F_1 P_{IIP3,1}} \left[\frac{F_1}{P_{IIP3,1}} + \frac{F_2}{P_{IIP3,2}} \right], \quad (4.21) \]

\[\frac{1}{P_{IIP3}} = \frac{1}{\sqrt{F_1 P_{IIP3,1}}} \left[\frac{F_1}{P_{IIP3,1}} + \frac{F_2}{P_{IIP3,2}} \right]. \quad (4.22) \]

\[NF_{OBT} \quad NF_1 \]
\[IDR_{OPT} \quad IDR_1 \quad IDR_2 \]
\[IIP_{3_{2-to-1}} \quad IIP_{3_1} \]
\[IIP_{3_{2-to-1}} \quad IIP_{3_{2-to-1}} \quad IIP_{3_{2-to-1}} \]

\[NF_{OBT} = NF_1 + IIP_3_1 + IDR_{OPT} < 2NF_D, \quad (4.23) \]

\[2IIP_{3_{OBT}} = NF_1 + IIP_3_1 - IDR_{OPT} > 2IIP_{3_D}, \quad (4.24) \]

Figure 4.3: The inverse dynamic range diagram for an optimal dynamic range design point.

The condition for the \(IDR_{OPT} \) that also satisfies the system requirements is obtained by substituting Eq. (4.20) into Eqs. (4.21) and (4.22), which gives:

\[2NF_{OBT} = NF_1 + IIP_3_1 + IDR_{OPT} < 2NF_D, \quad (4.23) \]

\[2IIP_{3_{OBT}} = NF_1 + IIP_3_1 - IDR_{OPT} > 2IIP_{3_D}, \quad (4.24) \]

\(NF_{OBT} \) and \(IIP_{3_{OBT}} \) are the obtained noise and linearity parameters.

Suppose that the noise and the linearity performance of the LNA are known, then the above conditions (and Eq. (4.20)) can be transformed into Eqs. (4.25)
and (4.26) that give an explicit relationship between the \((NF_1, IIP_{31})\) and \((NF_2, IIP_{32})\) pairs.

\[
NF_2 - IIP_{32} < 20\log\left(\frac{2NF_D - NF_1 - IIP_{31}}{20} - 10 \right) - 10 \frac{NF_1 - IIP_{31}}{20} \tag{4.25}
\]

\[
NF_2 - IIP_{32} < 20\log\left(\frac{-2IIP_{3d} + NF_1 + IIP_{31}}{20} - 10 \right) - 10 \frac{NF_1 - IIP_{31}}{20} \tag{4.26}
\]

Conditions (4.23)-(4.26) obey condition (4.27) as well.

\[
NF_1 + IIP_{31} = NF_{OBT} + IIP_{3_{OBT}} \tag{4.27}
\]

In the remainder of this chapter we will often refer to the above conditions as the optimality criterion.

Given partly the specifications of receiver blocks, the optimality criterion allows the selection of undetermined performance parameters for maximal dynamic range.

Example 4.2:

Let us clarify the outlined selection procedure with an example (in this case a noise-figure limited system).

Given \(NF_D = 10\, \text{dB}, IIP_{3d} = -10\, \text{dBm}, NF_1 = 9\, \text{dB}, IIP_{31} = 5\, \text{dBm}\), the noise figure and 3rd-order input-intercept points of the mixer must satisfy the inequality \(NF_2 - IIP_{32} < -7.7\, \text{dB}\) (Eqs. (4.25) and (4.26)), in order to provide the system with the desired specifications. Pair \(NF_2 = 10\, \text{dB} \) and \(IIP_{32} = 17.7\, \text{dBm}\) can be, for example, an IDR optimal design point, resulting in an optimum gain \(G_{1,OPT} = 6.85\, \text{dB}\) and \(IDR_{OPT} = 6\, \text{dB}\). As will be explained in the next section, for a system with poor noise or linearity performance, as it is the case in this example (poor noise figure), the optimum design point can be rather unrealistic with respect to the requirements that it imposes on the system blocks.

4.3.2 THE EQUALITY CRITERION

In this section we will consider the criterion for the equivalent improvements in the noise and linearity from the desired (required) RF front-end specifications \(NF_D\) and \(IIP_{3D}\) (referred to the input of the LNA).
4. Selection of Performance Parameters for RF Front-End Circuits

The IDR equivalent-contribution gain $G_{1,\text{EQ}}$ can be found from Eqs. (4.28) and (4.29), which can also be expressed as Eq. (4.30).

\[NF_D - NF_{OBT} = -\Delta \]
\[IIP3_{OBT} - IIP3_D = -\Delta \]
\[NF_{OBT} + IIP3_{OBT} = NF_D + IIP3_D \]

Here, $\Delta < 0$ (in dB) stands for the improvement (margin) in both the NF and the IIP3 of the RF front-end, with the obtained specifications being always better than the desired ones, i.e., $NF_{OBT} < NF_D$ and $IIP3_{OBT} > IIP3_D$. The range of the margin Δ is:

\[\Delta \in (\max\{IIP3_D - IIP3_1, NF_1 - NF_D\}, 0] \]

Given, for example, NF_1 and $IIP3_1$, the range of $NF_2 - IIP3_2$ values can be determined by modifying Eqs. (4.1) and (4.2), as given by Eqs. (4.32) and (4.33):

\[\frac{F_2}{g_{1,\text{EQ}}} \approx \delta F_D - F_1, \]
\[\frac{g_{1,\text{EQ}}}{P_{IIP3,2}} = \frac{\delta}{P_{IIP3,D}} - \frac{1}{P_{IIP3,1}}, \]

where $\Delta = 10\log \delta$. Now, a combination of the noise figure and the linearity of the mixer that satisfies the system specifications can be determined from Eq. (4.34), which is obtained by combining Eqs. (4.32) and (4.33).

\[NF_2 - IIP3_2 = 10\log \left(\frac{\Delta + NF_D}{10} - \frac{NF_1}{10} \right) + 10\log \left(\frac{\Delta - IIP3_D}{10} - \frac{IIP3_1}{10} \right) \]

Similarly, the equivalent gain $G_{1,\text{EQ}}$ of the first receiver block (LNA) is calculated from Eqs. (4.32) and (4.33), and given by Eqs. (4.35) and (4.36).
If the performance parameters of the LNA and mixer are selected as suggested by Eqs. (4.34)-(4.36), both the noise and linearity contribute equally to the desired dynamic range (i.e., the obtained NF and $IIP3$ are equally improved by Δ as given by Eqs. (4.28) and (4.29)). This is illustrated by the following example and the IDR diagram shown in Fig. 4.4.

\[
G_{1,EQ} = NF_2 - 10 \log \left(\frac{10^{\Delta + NF_D}}{10} - 10^{\frac{NF_1}{10}} \right) \quad (4.35)
\]

\[
G_{1,EQ} = IIP3_2 + 10 \log \left(\frac{10^{\Delta - IIP3_D}}{10} - 10^{\frac{-IIP3_1}{10}} \right) \quad (4.36)
\]

Figure 4.4: The inverse dynamic range diagram for the equivalent noise and linearity improvements with respect to the desired inverse dynamic range.

Example 4.3:
Referring to the example for the optimum design point (Example 4.2), the following is obtained: $NF_2 - IIP3_2 = 1.6$ dB for the chosen $\Delta = -0.9$ dB ($\Delta \in (-1,0]$).
One solution, $\text{NF}_2=10\text{dB}$ and $\text{IIP}_3=8.4\text{dBm}$ with the gain $G_{1,\text{EQ}}=17.3\text{dB}$, provides the system with the IDR$_{\text{EQ}}=18.2\text{dB}$ ($\text{NF}_{\text{OBT}}=9.1\text{dB}$ and $\text{IIP}_3=9.1\text{dBm}$), i.e., an equal improvement of 0.9dB for both the noise figure and the 3rd-order input-intercept point. The corresponding performance parameters are shown in Fig. 4.4.

4.3.3 OPTIMALITY VS. EQUALITY

As suggested in Example 4.2, for systems with poor noise and/or linearity from one circuit, the optimum design point can be rather unrealistic, i.e., “expensive” with respect to the requirements that it imposes on other circuits. This becomes obvious if we look at the IDR diagram of Example 4.2 that is shown in Fig. 4.5.

In this noise-limited system (i.e., a poor NF of the LNA) the optimum IDR point, which also satisfies the system performance, requires a mixer with very high linearity, $\text{IIP}_3=17.7\text{dBm}$, and a moderate noise figure $\text{NF}_2=10\text{dB}$ (see Table 4.2). As given by Example 4.2, this results in $G_{1,\text{OPT}}=6.85\text{dB}$, IDR$_{\text{OPT}}=6\text{dB}$, and the system noise figure and linearity $\text{NF}_{\text{OBT}}=10\text{dB}$ and $\text{IIP}_3=4\text{dBm}$. As the system just satisfies the noise requirement, it is over-designed for linearity.

However, by choosing for a moderate linearity of the mixer, $\text{IIP}_3=8.4\text{dB}$, as suggested by Example 4.3, and $\text{NF}_2=10\text{dB}$ results in $G_{1,\text{OPT}}=2.2\text{dB}$, IDR$_{\text{OPT}}=8.9\text{dB}$, and $\text{NF}_{\text{OBT}}=11.5\text{dB}$ and $\text{IIP}_3=2.6\text{dBm}$ (see Table 4.2). This suggests that violating condition (4.25) results in the unsatisfactory noise performance of the system.

Table 4.2: Block performance for NF$_D=10\text{dB}$, IIP$_3=-10\text{dBm}$, NF$_3=9\text{dB}$, IIP$_3=5\text{dBm}$. OP-1: optimum design point for satisfied system requirements; OP-2: optimum design point for unsatisfied system requirements; EQ: equality design point for satisfied system requirements.

<table>
<thead>
<tr>
<th>NF_2 [dB]</th>
<th>IIP_3 [dBm]</th>
<th>G_1 [dB]</th>
<th>NF_{OBT} [dB]</th>
<th>IIP$_3$ [dBm]</th>
<th>IDR$_{\text{OBT}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP-1</td>
<td>10</td>
<td>17.7</td>
<td>6.85</td>
<td>10</td>
<td>4 dBm</td>
</tr>
<tr>
<td>OP-2</td>
<td>10</td>
<td>8.4</td>
<td>2.2</td>
<td>11.5</td>
<td>2.6 dBm</td>
</tr>
<tr>
<td>EQ</td>
<td>10</td>
<td>8.4</td>
<td>17.4</td>
<td>9.1</td>
<td>-9.1 dBm</td>
</tr>
</tbody>
</table>

These findings imply that the optimum design point imposes moderate requirements on circuit blocks only in the vicinity of conditions (4.27) and
(4.30). The further from these conditions, the more demanding the design requirements result from Eqs. (4.25) and (4.26). Therefore the design requirements from the equality criterion should be considered in such situations (Example 4.3).

\[\begin{align*}
NF_{2} & = 9dB \\
IIP_{31} & = 5dBm \\
IIP_{32} & = 17.7dBm \\
IIP_{32\text{-to-1}} & = 10.85dBm \\
NF_{2\text{-to-1}} & = 3.15dB \\
G_{1,OPT} & = 6.85dB \\
NF_{OBT} & = 10dB \\
IIP_{3} & = 4dBm \\
IIP_{3\text{-OBT}} & = -10dBm
\end{align*} \]

\[\begin{align*}
IIP_{2} & = 17.7dBm \\
G_{1,OPT} & = 6.85dB \\
NF_{2} & = 10dB \\
NF_{1} & = 9dB \\
IIP_{3} & = 5dBm \\
G_{1,OPT} & = 6.85dB \\
NF_{2\text{-to-1}} & = 3.15dB \\
NF_{OBT} & = NF_{D} = 10dB \\
IIP_{31} & = 5dBm \\
IIP_{32} & = 17.7dBm
\end{align*} \]

\[\begin{align*}
G_{1,OPT} & = 6.85dB \\
NF_{2} & = 10dB \\
IIP_{31} & = 5dBm \\
IIP_{32} & = 17.7dBm \\
IIP_{32\text{-to-1}} & = 10.85dBm \\
NF_{2\text{-to-1}} & = 3.15dB \\
NF_{OBT} & = 10dB \\
G_{1,OPT} & = 6.85dB
\end{align*} \]

Figure 4.5: IDR diagram for an “expensive” optimum design point.

4.4 EQUILIBRIUM, OPTIMALITY AND EQUALITY CRITERIA

With the aid of Eq. (4.27), being the optimality criterion, and Eq. (4.30), being the equality criterion, the condition where these criteria meet has a form:

\[NF_{1} + IIP_{31} = NF_{D} + IIP_{3D}. \] (4.37)

with conditions (3.23), (3.24), (3.28) and (3.29) satisfied.

This condition can be simply obtained by substituting the optimal design point, Eqs. (4.23) and (4.24), into the conditions for the equivalent performance improvements, Eqs. (4.28) and (4.29). Accordingly, the simultaneous optimality and equality criteria impose the condition:

\[NF_{D} = \frac{NF_{1} + IIP_{31} + IDR_{OPT}}{2} = \frac{NF_{1} + IIP_{31} - IDR_{OPT} - IIP_{3D}}{2}, \] (4.38)
which is equal to Eq. (4.37), as expected.

A property of this optimality-equality condition (Sections 4.3.1 and 4.3.2) is that it coincides with the condition for the independent selection of performance parameters (Section 4.2). Namely, if condition (4.37) is satisfied, the equilibrium design point (the equal contribution of each block performance parameter to the system performance) encompasses the optimum design point (maximum inverse dynamic range) and the equality point (equal contribution of the noise figure and the 3rd-order input-intercept point to the IDR). The IDR diagram, corresponding to the simultaneously satisfied equilibrium-optimum-equality condition is shown in Fig. 4.6.

Complying with Eq. (4.37), the allocation of all the specifications to each of the blocks in the RF front-end receive chain is rather simple and fully controlled by means of Eqs. (4.5), (4.8)-(4.10), (4.19), (4.25), (4.26) and (4.34)-(4.36).

Example 4.4:
We will illustrate the aforementioned findings by an example. The required specifications are: $NF_D=10\text{dB}$, $IIP_{3D}=-10\text{dBm}$.

![Diagram](image)

Figure 4.6: The inverse dynamic range diagram for the simultaneously satisfied equilibrium-optimum-equality conditions.

The performance parameters allocated to the LNA according to Eqs. (4.4) and (4.8) result in a design point satisfying all the design criteria, i.e., the
optimal distribution of both the individual and the mutually dependent specifications. From Eq. (4.4), $NF=7\text{dB}$ and $IIP3=-7\text{dBm}$, if $n=2$ (LNA and mixer). Referring to Eq. (4.8), the performance parameters of the LNA become $NF=7\text{dB}$ and $IIP3=-7\text{dBm}$.

From Eq. (4.34), the equality condition is $NF2-IIP32=14\text{dB}$. Choosing, for example, for $NF2=16\text{dB}$ and $IIP32=2\text{dBm}$ results in $G1,\text{EQ}=9\text{dB}$.

On the other hand, the optimum IDR condition is determined from Eq. (4.25) to be $NF2-IIP32<19\text{dB}$. The already chosen mixer parameters automatically satisfy this condition. From Eq. (4.19), the optimum gain equals $G1,\text{OPT}=9\text{dB}$, being the same as $G1,\text{EQ}$.

Finally, referring the noise and linearity properties of the mixer to the input of the receiver we obtain: $NF2=16-9=7\text{dB}$ and $IIP32=2-9=-7\text{dBm}$, being the equilibrium quantities already calculated by Eq. (4.4).

4.5 NOTES ON POWER CONSUMPTION

In the foregoing discussion, the selection of specifications for receiver circuits is considered without explicitly addressing the power consumption issue. Namely, whether the equilibrium point, the optimum point and the equality point are also power-consumption efficient depends upon a number of factors. The available power budget and the chosen circuit implementation are just some of them.

In Sections 4.2 and 4.3 it has been advocated for the desired $(NF,IIP3,G)$ combination of each circuit block. However, only at the circuit level, the relationship between the four parameters, viz., NF, $IIP3$, G, and power consumption, can be exactly determined. Whether the obtained specifications coincide the desired specifications depends on the available power budget (i.e., power consumption).

Just like a picture says more than a thousand words, an example says more than a hundred pages of theory.

Example 4.5:
Let us consider a two-block system, consisting of an inductively degenerated single-ended low-noise amplifier [14,15] and a Gilbert mixer [16]. Referring to Example 4.4, the equilibrium point of the LNA is $NF=7\text{dB}$, $IIP3=7\text{dBm}$, $G=9\text{dB}$ and power consumption $PC1$. The mixer equilibrium point is determined to be $NF2=16\text{dB}$, $IIP3=2\text{dBm}$ (Example 4.4,) with power consumption $PC2$. We will assume that $PC2>>PC1$, as the mixer has more transistor branches compared to the LNA, which has only one branch.
4. Selection of Performance Parameters for RF Front-End Circuits

As the LNA power consumption is rather low (poor performance LNA), even by increasing it a few times it is still relatively small in comparison with the power consumption of the mixer. For a factor 3 increase in power consumption \((PC_1'=3PC_1)\) for the LNA, the new specifications would be, for example, \(NF_1'=2\text{dB}, IIP_3_1'=3\text{dBm}, G_1'=16\text{dB} \) [15,17,18]. As now the deviation \(A_{NF}=-5\text{dB}\), the noise figure of the mixer referred to the input of the system will be relaxed for \(B_{NF}=-2.26\text{dB} \) \((\text{Eq. (4.5)})\). On the other hand, \(A_{IIP_3}=-10\text{dB}\) results in \(B_{IIP_3}=-2.78\text{dB}\).

The mixer performance parameters that satisfy the system requirements, i.e., \(NF_D=10\text{dB}, IIP_3_D=-10\text{dBm}\), are finally obtained from Eqs. (4.11)-(4.16) as: \(NF_2'=25.26\text{dB}\) and \(IIP_3_2'=6.22\text{dBm}\). Concerning the \(NF\) requirement of the mixer, this implies a considerable reduction or its power consumption. However, the linearity requirement implies an increase in power consumption if a realistic assumption is acquired, viz., noise figure and linearity improve with power consumption, being contradictory to the mixer \(NF\) requirement.

What is more, a choice of \(NF_2'=25.26\text{dB}\) and \(G_1=G_{1,OPT}=16\text{dB}\) results in the mixer optimum linearity point \(IIP_3_{2,OPT}=11\text{dBm}\). However, by reducing the mixer power consumption, the obtained mixer linearity will be even more degraded \((<<IIP_3_2=2\text{dBm}<<IIP_3_{2,OPT})\). This will finally lead not only away from the equilibrium, the optimum and/or the equality design point, but also to unsatisfactory linearity behaviour of the complete system.

4.6 PERFORMANCE TRADE-OFFS IN A SINGLE RF CIRCUIT

There is just a rough impression of how RF circuits trade power consumption for performance. Moreover, if the key circuit parameters are set by a communication system in an adaptive way and not fixed by a hardware design, many concepts fail due to incomplete knowledge of how the change of one parameter is reflected in the others.

Various phenomena and concepts related to RF circuits can be both qualitatively and quantitatively interpreted by means of the K-rail diagrams that are introduced in this section. K-rail diagrams allow for the performance characterization of RF circuits, and describe (visualize) relationships and trade-offs between their performance parameters: these are voltage swing, tank conductance, power consumption, phase noise and loop gain for oscillators as well as noise figure, linearity, gain and power consumption for amplifiers.
In the remainder of this section, trade-offs between the performance parameters of an inductively-degenerated (ID) [15] low-noise amplifier are discussed with the aid of the K-rail diagram, shown in Fig. 4.7. The design of LNAs imposes many trade-offs between gain, noise figure, linearity, and power consumption. Some of the challenging goals of the multi-objective LNA design procedure are:

- provision of a sufficient gain in order to minimize noise contribution of the receiver circuits proceeding an LNA, while not degrading system linearity.
- optimization of amplifier’s noise figure with simultaneous noise and power match at input of an LNA.
- operation at low power-consumption levels in order to ensure long battery life of a mobile device.

The relationships between the noise figure, linearity, gain, optimum source resistance, input impedance and power consumption of an ID-LNA are described in Fig. 4.7 [18].

The arrows in the diagram perpendicular to the corresponding axes represent lines of constant gain, NF, IIP3, input impedance, optimum source impedance, and power consumption. Namely, each point in the design space (in this case a line; the k-rail) corresponds to a set of design parameters that are obtained as a normal projection of the design point on the rail to the indicated axes.

For example, a point that corresponds to the optimum of the minimum noise figure (minimum noise figure under noise-matched conditions) is shown as OPT-MIN. Parameters of this point are noise figure \(NF_{OPT-MIN} \), voltage gain \(VG_{OPT-MIN} \), linearity \(IIP3_{OPT-MIN} \), and optimum (noise) source resistance and input impedance \(R_S \) (both equal to source resistance). A parameter \(k_{OPT-MIN} \) is related to power consumption.

With the aid of the K-rail diagram, we can describe the effects of a particular design choice on the performance of amplifiers.

Consider a situation where radio-channel conditions improve, i.e., a receive signal is much larger than noise and interferers (large input signal-to-noise-and-interference ratio). Here, the LNA doesn’t have to operate with the best noise figure and gain and accordingly waste power. It is possible to operate at a moderate gain to the extent that the noise figure and sensitivity of an RF front-end system are not degraded, with considerable power savings in turn. This situation corresponds to point LOW in the K-rail diagram.
On the other hand, a weak receive signal requires large amplification and low noise figure from an LNA in order to achieve the desired signal-to-noise ratio at the end of a receive chain. In this situation, a HIGH design point can be chosen.

Finally, point OPT-MIN has the advantage of lower NF and power consumption, but at the cost of lower gain and IIP3 compared to point HIGH. Compared to point LOW, better gain, NF and linearity and higher power consumption result.

Similarly, design trade-offs for other RF circuits can be mapped onto corresponding K-rail diagrams [19]. K-rail diagrams for low-noise amplifiers and voltage-controlled oscillators are detailed in Chapters 5 and 6, respectively.

4.7 CONCLUSIONS

The procedure for allocation of the performance parameters to the RF front-end circuits has been introduced in this chapter. By optimizing the system performance with respect to the ratio F/P_{IIP3}, the optimal dynamic range design point can be found which satisfies both the noise and the linearity requirements.

It has been shown that there exists an equilibrium design point for which the contributions of each block performance parameter to the equivalent system
performance parameter are equal. Furthermore, the equilibrium design choice coincides with both design for the optimal dynamic range and design for the equal margins of each performance parameter with respect to the required specifications. Finally, some design trade-offs in a single RF circuit are discussed using the K-rail diagram.

REFERENCES

4. Selection of Performance Parameters for RF Front-End Circuits

The wireless telecommunication transceivers of both today and the future have to be broadband [1], low power [2], and adaptive [3]. Broad bandwidth supports the high data rates demanded by emerging applications. Adaptivity accommodates varying channel conditions and application requirements, while consuming as little energy as possible ensures long talk time on one battery charge.

However, analog RF front-end circuits are typically designed to perform one specific task, while key parameters such as dynamic range, bandwidth and selectivity are fixed by hardware design and not by the communication system in an adaptive way. As a result, today’s receiver topologies are designed to function under the most stringent conditions, which increases circuit complexity and power consumption.

The variant nature of radio-channel conditions and accordingly variable requirements imposed on RF circuits in the direct signal path urge for designs that can respond to such changes “on-the-fly” (adaptive designs).

Adaptivity figures of merit (AFOM) (i.e., adaptivity models) of low-noise amplifiers are derived in this chapter. They reveal the relationships and trade-offs between the performance parameters, being noise figure, gain, linearity and power consumption, of an adaptive low-noise amplifier. Moreover, adaptivity models form the basis for the design of low-noise amplifiers (LNAs) that operate across multiple standards.

This chapter is organized in the following way. Adaptivity of amplifiers is discussed next. The subject of Section 5.2 is performance characterization of low-noise amplifiers: input-impedance (power-matching) model, gain-model and noise-model parameters are determined. Adaptivity models are derived in Section 5.3, giving insight into the extent to which LNA performance parameters can vary while still not degrading overall performance. The relationships between the performance and power consumption of adaptive low-noise amplifiers are graphically described by means of the amplifier K-rail diagram.
5.1 ADAPTIVITY PHENOMENA OF AMPLIFIERS

In order to understand how the change in one parameter is reflected to the others, adaptivity phenomena and their models are introduced [4].

Some of the low-noise amplifier adaptivity phenomena are: noise-figure, linearity, gain, and input-impedance tuning. Corresponding adaptivity figures of merit are shown in Fig. 5.1 on the amplifier K-rail diagram: input- and optimum source-resistance tuning ranges \((RITR\) and \(RSTR\)), voltage-gain tuning range \((VGTR)\), noise-figure tuning range \((NFTR)\), and tuning range of input-referred 3rd-order intercept point \((IIP3TR)\). Adaptivity phenomena and their figures of merit describe the change of circuit performance with respect to power consumption (which is related to parameter \(k\)). For example, \(NFTR\) relates to noise-figure difference for different biasing conditions.

The amplifier K-rail diagram is constructed for an inductively-degenerated low-noise amplifier (ID-LNA) [5,6], shown in Fig. 5.2, following the rules outlined in the previous chapter. This amplifier topology allows for simultaneous input power and noise matching: optimum source (noise) resistance and amplifier input resistance can be adjusted independently, whereas their imaginary parts cancel simultaneously [6].

![K-rail diagram for an adaptive LNA](image)

Figure 5.1: K-rail diagram for an adaptive LNA.

Points LOW and HIGH of the K-rail diagram have already been defined in Section 4.6. We refer to the noise-figure difference between points HIGH and OPT-MIN (or OPT-MIN and LOW) as the noise-figure tuning range: it corresponds to change of amplifier’s noise figure with respect to power.
5. Adaptivity of Low-Noise Amplifiers

consumption. Designing for noise figure of an amplifier that covers a noise-figure tuning range \(NF_{HIGH} - NF_{OPT-MIN} \) (shown as \(NF_{TR} \) in Fig. 5.1) accounts for different operating conditions and satisfies LNA’s performance over a certain range rather than in a fixed design point. This is an example of the application of the design for adaptivity to amplifiers.

Furthermore, this K-rail diagram shows that an increase in power results in an improvement of noise figure and voltage gain, but only to the levels determined by \(k_{OPT-MIN} \) (point OPT-MIN), and \(k_{HIGH} \) (point HIGH corresponds to maximum transit frequency of input transistor \(Q_1 \) in Fig. 6.2), respectively. Due to shallow nature of the noise figure (small \(NF_{TR} \)) near the optimum-minimum noise-figure point for ID-LNAs, considerable power savings (point LOW) as well as linearity improvements (point HIGH) can be achieved.

\[\text{Figure 5.2: Inductively-degenerated LNA: } L_E \text{ and } L_B \text{ stand for the emitter and base matching inductors; biasing not shown.} \]

The adaptivity models (and adaptivity tuning ranges) are described analytically later in this chapter. Relationships between power consumption and input impedance, gain, noise figure and linearity are determined. The procedure proposed forms a base for design of adaptive LNAs.

5.2 PERFORMANCE PARAMETERS OF INDUCTIVELY-DEGENERATED LOW-NOISE AMPLIFIERS

In this section, we will derive adaptivity models for an ID-LNA. This amplifier topology, shown in Fig. 5.2, is a traditional cascode configuration, where \(Y \) stands for the load admittance of the amplifier, and \(L_E \) and \(L_B \) for the
Degenerative emitter and base inductors, respectively. Performance of this amplifier topology (i.e., gain, noise, and linearity) is characterized. The following analytical models are derived: an input-impedance model, a gain model, and a noise model. Finally, an intuitive linearity model is elaborated.

5.2.1 INPUT-IMPEDANCE MODEL

The input circuit of the ID-LNA is shown in Fig. 5.3 (base resistance and inductance are not shown). Here, Y_{Π} is the base-emitter admittance (dominated by capacitance C_{Π} for high frequencies), C_μ the Miller capacitance, g_m the transconductance of input bipolar transistor Q_1, Y_L the input admittance of the cascoding stage (in this case the input admittance of the common-base transistor Q_2), and Y_E is the equivalent admittance in series with emitter of transistor Q_1. The transconductances of both transistors are assumed equal.

![Figure 5.3: Input circuit of an ID-LNA (L_B not shown).](image)

Applying Kirchoff’s current law to the circuit shown in Fig. 5.3, the admittance at the input of transistor Q_1, Y_{IN-Q1}, is calculated as:

$$Y_{IN-Q1} = Y_{\Pi} (1-V_3/V_1) + sC_\mu (1-V_2/V_1). \quad (5.1)$$

With the assumption that at the frequency of interest,

$$\omega C_\mu << g_m, \quad \omega C_\mu << Y_L = g_m, \quad (5.2)$$
the admittance Y_{IN-Q1} becomes:

$$Y_{IN-Q1} = Y_{II} \cdot f(Y_E) + sC_\mu[1 + g_m f(Y_E)/Y_L],$$ \hspace{1cm} (5.3)

where $f(Y_E)$ is the feedback function equal to:

$$f(Y_E) = 1 - V_3/V_1.$$ \hspace{1cm} (5.4)

The input impedance can be estimated from Eq. (5.2) (it accounts for the feedback over capacitance C_μ) by determining the function $f(Y_E)$ (which neglects the Miller effect). From Fig. 5.3, the feedback function reads:

$$f(Y_E) = \frac{Y_E}{Y_{II} + Y_E + g_m},$$ \hspace{1cm} (5.5)

and hence the input impedance Z_{IN}, neglecting the Miller effect ($C_\mu=0$), and taking into account the base inductance L_B (see Fig. 5.2), becomes:

$$Z_{IN} = \omega_T L_E + j \left[\omega (L_E + L_B) - \frac{\omega_T}{\omega} \frac{1}{g_m} \right].$$ \hspace{1cm} (5.6)

The condition for the power matching at the input of the amplifier can be derived from Eq. (5.6). The power matching condition can be transformed into two corresponding conditions: the real part of input impedance equals the source resistance (R_S), and the imaginary part of input impedance is canceled (the source impedance is assumed real). This is given by Eqs. (5.7) and (5.8) (transistor’s parasitic resistances are neglected).

$$\text{Re}\{Z_{IN}\} = 2 \pi f_T L_E = R_S$$ \hspace{1cm} (5.7)

$$\text{Im}\{Z_{IN}\} = \omega_0 (L_E + L_B) - \frac{\omega_T}{\omega} \frac{1}{g_m} = 0$$ \hspace{1cm} (5.8)

Another option for power matching is discussed in Appendix B.
5.2.2 GAIN MODEL

From Figs. 5.2 and 5.3, and the feedback function given by Eq. (5.5), the effective transconductance \(g_{\text{EFF}} \) and voltage gain \(v_g \) (from the source) can be expressed as:

\[
\begin{align*}
g_{\text{EFF}} & = -g_m \frac{(1-V_3/V_1)}{1+Y_{II}/Y_S(1-V_3/V_1)} = -g_m \frac{f(Y_E)}{1+Y_{II}/Y_S f(Y_E)}, \\
v_g & = -g_m Z \frac{(1-V_3/V_1)}{1+Y_{II}/Y_S(1-V_3/V_1)} = -g_m Z \frac{f(Y_E)}{1+Y_{II}/Y_S f(Y_E)},
\end{align*}
\]

(5.9)

(5.10)

where \(Y_S \) represents the source resistance and base inductance, and \(Z \) is the load impedance (see Fig. 5.2).

For the input power match, given by conditions (5.7) and (5.8), the effective transconductance and the voltage gain of the ID-LNA become (for the sake of simplicity, the source and load impedances are assumed identical \(Z=R_S \)):

\[
\begin{align*}
g_{\text{EFF}} & = -\frac{g_m}{Y_{II}} \frac{1}{Z_{IN} + Z_S} = -\frac{1}{2} \frac{\omega_T}{R_S}, \\
|v_g| & = \left| \frac{g_m}{Y_{II}} \frac{Z}{Z_{IN} + Z_S} \right| = \frac{1}{2} \frac{\omega_T}{\omega}.
\end{align*}
\]

(5.11)

(5.12)

It is very convenient to relate the performance parameters of ID-LNAs to the ratio \(\omega_T/\omega \), as it establishes a direct relationship between the gain and other performance parameters (e.g., noise figure). Eq. (5.13) refers to this ratio as \(x \):

\[
x = \frac{\omega_T}{\omega}.
\]

(5.13)

The voltage gain transforms simply into:

\[
|v_g| = \frac{1}{2} x.
\]

(5.14)
5. Adaptivity of Low-Noise Amplifiers

5.2.3 NOISE MODEL

In the following sections, we will calculate the noise-related parameters that are used for derivation of adaptivity models of ID-LNAs. These are the noise factor \(F \), the optimum source resistance providing minimum noise factor \(R_{S,OPT} \), the minimum noise factor \(F_{MIN} \) (see Chapter 2), and the optimum of the minimum noise-factor \(F_{OPT-MIN} \); the minimum noise factor under the noise-matched condition \(R_S = R_{S,OPT} \).

5.2.3.1 Noise Factor

The corresponding noise circuit model of the amplifier is shown in Fig. 5.4, where \(V_N \) and \(I_N \) are the equivalent input noise sources of a transistor in common-emitter configuration [6-8].

Applying the Blakesley transformation to the voltage noise source and splitting the current noise source, at the same time keeping track of their orientation, the voltage noise source at the input of the LNA is calculated.

\[
\overline{V}_{N,EQ} = \overline{V}_N + (Z_S + Z_E + Z_B)\overline{I}_N
\]
(5.15)

\(Z_S = R_S \), \(Z_E = j\omega L_E \) and \(Z_B = j\omega L_B \).

Figure 5.4: Noise model of the ID-LNA.

The equivalent common-emitter transistor noise sources are given by Eqs. (5.16)-(5.18) [7]:
Adaptive RF Front-End Circuits

\[
\bar{V}_N = -B_N \bar{I}_C + (r_B + r_E)(\bar{I}_B - D_N \bar{I}_C), \tag{5.16}
\]

\[
\bar{I}_N = \bar{I}_B - D_N \bar{I}_C, \tag{5.17}
\]

\[
\bar{I}_B = 2qI_B \quad \bar{I}_C = 2qI_C \quad \bar{V}_B = 4KT(r_B + r_E), \tag{5.18}
\]

where \(\bar{I}_B \) is the base-current shot noise, \(\bar{I}_C \) the collector-current shot noise, \(\bar{V}_B \) the base and emitter resistance \((r_B + r_E)\) thermal noise. \(I_B \) and \(I_C \) are the input transistor base and collector currents, \(B_N = -1/g_m \) and \(D_N = -(1/\beta_F + j\omega/\omega_T) \) the input transistor transmission parameters [7], \(K \) is Boltzmann’s constant and \(T \) the absolute temperature. Yet, \(B_F(\approx \beta_F) \) and \(\beta_F \) are the DC and AC transistor’s current gain factors, respectively.

With the aid of Eqs. (5.15)-(5.18), the adaptive noise-factor model is determined [8].

\[
F = \frac{\bar{V}_{N, EQ}^2}{4KTR_S} = 1 + k \delta + \frac{g_m}{2} \delta R_S + \frac{1 + 2k + k^2 \delta + \delta L_G^2}{2g_m R_S} - \frac{L_G \omega}{2\omega_T} \tag{5.19}
\]

\[
k = r_{EF} g_m (1 + 1/\beta_F) \tag{5.20}
\]

\[
L_G = g_m \omega L_{EB} (1 + 1/\beta_F) \quad \delta = \frac{1}{\beta_F} + \left(\frac{\omega}{\omega_T}\right)^2 \tag{5.21}
\]

\[
r_{EF} = r_B + r_E \quad L_{EB} = L_E + L_B \tag{5.22}
\]

This model is parameterized with respect to power consumption via the biasing parameter \(k \), Eq. (5.20). The introduced biasing parameter \(k \) is the corner-stone adaptivity parameter. Assuming \(r_{EF} \) is independent of current and \(\beta_F >> 1 \), parameter \(k \) is proportional to the biasing condition, i.e., power consumption, via \(k \approx g_m I_C \). Amplifier performance parameters, viz., gain, noise, and linearity, are controlled by the bias current \(I_C \), shown in Fig. 5.2. This allows for adaptation of the amplifier performance to different conditions.
5. Adaptivity of Low-Noise Amplifiers

5.2.3.2 Minimum Noise Factor

A source resistance R_s that satisfies condition (5.23),

$$\left. \frac{dF}{dR_s} \right|_{R_s=R_{S,OPT}} = 0,$$ \hspace{1cm} (5.23)

is the optimum source resistance $R_{S,OPT}$, providing an amplifier with the minimum noise factor at the desired frequency (optimum source reactance $(X_{S,OPT})$ and reactive part of input impedance of an ID-LNA are equal: this implies that $X_{S,OPT}$ is canceled [6,9], if the matching condition, Eq. (5.8), is satisfied). From Eq. (5.23), the most comprehensive form for $R_{S,OPT}$ becomes:

$$R_{S,OPT} = \frac{1}{g_m \sqrt{\delta}} \sqrt{1 + 2k + \frac{(1+k)^2}{\beta_F} + \frac{k^2}{x^2} + \delta L_G^2 - \frac{L_G}{2x}}.$$ \hspace{1cm} (5.24)

Assuming $\beta_F >> 1$, Eq. (5.24) simplifies to:

$$R_{S,OPT} = \frac{1}{g_m} \sqrt{(r_{EF} g_m)^2 + \frac{1+2r_{EF} g_m}{1/\beta_F + (\omega/\omega_t)^2}}.$$ \hspace{1cm} (5.25)

With the aid of Eqs. (5.19) and (5.24), the minimum noise factor can be calculated:

$$F_{MIN} \approx 1 + k\delta + \sqrt{\delta \left[1 + 2k + \frac{(1+k)^2}{\beta_F} + \frac{k^2}{x^2} \right]},$$ \hspace{1cm} (5.26)

which after some simplifications (i.e., $\beta_F >> 1$ and $k\delta<<1$) reduces to:

$$F_{MIN} \approx 1 + \sqrt{(1+2r_{EF} g_m)\left[\frac{1}{\beta_F} + \left(\frac{\omega}{\omega_t} \right)^2 \right]}.$$ \hspace{1cm} (5.27)

5.2.2.3 Optimum-Minimum Noise Factor

Once the noise-matching parameters are found, viz., the optimum noise resistance and the minimum noise factor, the optimum of the minimum noise
factor can finally be obtained for a certain biasing condition. Namely, solving Eq. (5.28) results in a bias current (i.e., transconductance) providing the optimum of the noise factor under the noise-matched condition (i.e., optimum of F_{MIN}).

$$\left. \frac{dF_{MIN}}{dg_m} \right|_{g_m = g_{m,OPT-MIN}} = 0$$

(5.28)

With the aid of Eqs. (5.27) and (5.28), the simplified condition for the optimum of the minimum noise factor becomes:

$$g_{m,OPT-MIN} \approx \omega C_{II} \sqrt{\beta_f \left[1 + \frac{1}{r_{EF} g_{m,OPT-MIN}} \right]}.$$

(5.29)

The solution for the transconductance $g_{m,OPT-MIN}$ can be found iteratively from this equation.

The optimum-minimum source resistance can be written as:

$$R_{S,OPT-MIN} = \frac{1}{g_{m,OPT-MIN}} \sqrt{\frac{1}{\beta_f} (1 + k_{OPT-MIN})},$$

(5.30)

where $k_{OPT-MIN} = r_{EF} g_{m,OPT-MIN}$.

From Eqs. (5.26)-(5.29), the optimum of the minimum noise factor equals:

$$F_{OPT-MIN} = 1 + \frac{k_{OPT-MIN} (1 + 2k_{OPT-MIN})}{\beta_f (1 + k_{OPT-MIN})} + \sqrt{\frac{k_{OPT-MIN} (1 + 2k_{OPT-MIN})^2}{\beta_f (1 + k_{OPT-MIN})^2} + \frac{(1 + 2k_{OPT-MIN})^2}{\beta_f (1 + k_{OPT-MIN})}}.$$

(5.31)

or when simplified:

$$F_{OPT-MIN} = 1 + \frac{1 + 2r_{EF} g_{m,OPT-MIN}}{\sqrt{\beta_f (1 + r_{EF} g_{m,OPT-MIN})}}.$$

(5.32)

After solving Eq. (5.29) for the optimum transconductance, i.e., optimum current density of a minimum dimension transistor, the final transistor
dimensions as well as its current consumption are determined from Eq. (5.24) (e.g., by setting the resistance $R_{S,OPT}$ to a certain value, typically 50Ω). This is because parameters k and ω_T are assumed independent of transistor dimensions for the same current density.

However, the current for the optimum of the minimum noise factor does not coincide with the peak gain for the ID-LNA [9], and therefore if more gain is desired, the minimum noise factor will not be at its optimum. Moreover, a 50Ω noise match (i.e., $R_{S,OPT}=50$Ω) often requires a large input transistor, and accordingly large current consumption for the determined optimum bias point (see Example 5.1). The choice of a smaller transistor would result in a larger $R_{S,OPT}$ and lower current consumption for the optimum of the minimum noise factor at the cost of the minimum noise factor increased [9]. If a degradation of noise factor is tolerable, a slight increase of the bias current provides a larger gain, and accordingly reduces the cascaded noise factor of a system.

5.2.4 LINEARITY MODEL

Algebraic expressions describing the 3rd-order intercept point (IP3, linearity performance parameter) of an ID-LNA consist of many multidimensional terms: base-emitter diffusion capacitance, base-emitter junction capacitance, base resistance, emitter degenerative inductance, load impedance, and DC bias current [10]. Even though the dominant nonlinearities can be identified using the Volterra-series method [10-12], the relationships between these parameters and linearity are often not clear to the designer. However, the level of detail required to accurately describe transistor nonlinearity is adequately captured in modern CAD tools.

Some conclusions found in literature are reviewed here [12]. Emitter degeneration improves linearity of common-emitter transistors (i.e., the larger the inductance L_E (see Fig. 5.2), the better the linearity, but the lower the gain). The 3rd-order intermodulation product for an inductively-degenerated common-emitter bipolar stage is inversely proportional to the cube of the DC bias current. When high linearity is desired, the bias current of an ID-LNA should be increased.

Example 5.1:
The introduced amplifier performance models are examined by comparing simulated and calculated performance of an inductively-degenerated LNA.

Referring to a 50GHz SiGe technology and frequency of operation $f=2.4$GHz, the dimensions of the amplifier transistors are 0.4x5um² (20 transistors), the collector current is 7mA, and the inductors in the emitter and
Adaptive RF Front-End Circuits

base of the input transistor are $L_B=3.2\,\text{nH}$ and $L_E=0.36\,\text{nH}$ (this is an example of a power consuming $50\,\Omega$ noise match). The simulation results of the ID-LNA performance are shown in Table 5.1. The results predicted by the calculations are shown in Table 5.2 (given the transistor dimensions, its parameters are determined).

Referring to these results, the validity of the introduced performance models is due. They can be readily used for the estimation of amplifier performance prior to extensive simulations.

<table>
<thead>
<tr>
<th>$f_t,[\text{GHz}]$</th>
<th>$V_G,[\text{dB}]$</th>
<th>$R_{S,\text{OPT}},[\Omega]$</th>
<th>$N_{\text{FMIN}},[\text{dB}]$</th>
<th>$I_{\text{IP3}},[\text{dBm}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>16</td>
<td>60</td>
<td>1.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 5.2: Calculated parameters of the matched ID-LNA.

<table>
<thead>
<tr>
<th>$f_t,[\text{GHz}]$</th>
<th>$V_G,[\text{dB}]$</th>
<th>$R_{S,\text{OPT}},[\Omega]$</th>
<th>$N_{\text{FMIN}},[\text{dB}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.6</td>
<td>15.8</td>
<td>59.3</td>
<td>1</td>
</tr>
</tbody>
</table>

5.3 ADAPTIVITY MODELS FOR LOW-NOISE AMPLIFIERS

Amplifier performance models, Eqs. (5.11), (5.12), (5.25), (5.27), (5.30) and (5.32), are used to derive the following adaptivity figures of merit (adaptivity models; tuning models): noise-factor, gain, linearity, and input-impedance tuning ranges. These figures describe the relationship between performance parameters and power consumption: by changing power consumption, the noise factor, input impedance, gain, and linearity of amplifiers can be adapted to different operating conditions (e.g., different standards).

We will first introduce the gain related tuning parameters. From Eqs. (5.7) and (5.8), the tuning ranges of the real (R_{ITR}) and the imaginary part (I_{ITR}) of the ID-LNA input impedance, for a $k/k_{\text{OPT-MIN}}$ times change in a biasing condition (i.e., power consumption), are found to be:

$$R_{\text{ITR}}(k,k_{\text{OPT-MIN}}) = \left(\frac{x}{x_{\text{OPT-MIN}}} - 1\right)R_S,$$

(5.33)
Adaptivity of Low-Noise Amplifiers

\[IITR(k, k_{\text{OPT-MIN}}) = \frac{x}{g_m} - \frac{x_{\text{OPT-MIN}}}{g_{m,\text{OPT-MIN}}}, \quad (5.34) \]

where index OPT-MIN refers to optimum-minimum condition (5.29).

The voltage-gain tuning range \((v_{\text{gTR}})\), for the same power-consumption range \((P_{\text{CR}} = k/k_{\text{OPT-MIN}})\), can be found from Eq. (5.12) as:

\[v_{\text{gTR}}(k, k_{\text{OPT-MIN}}) = \frac{x}{x_{\text{OPT-MIN}}}. \quad (5.35) \]

On the other hand, the noise related tuning parameters, being optimum noise-resistance tuning range \((R_{\text{STR}})\) and optimum noise-factor tuning range \((F_{\text{TR}})\), can be found from Eqs. (5.25) and (5.30) as well as Eqs. (5.27) and (5.32), respectively.

\[R_{\text{STR}}(k, k_{\text{OPT-MIN}}) = \frac{k_{\text{OPT-MIN}}}{k} \sqrt{\frac{1+2k}{\beta_{F,\text{OPT-MIN}}(1+k_{\text{OPT-MIN}})(\beta_F^{-1} + x^{-2})}} \quad (5.36) \]

\[F_{\text{TR}}(k, k_{\text{OPT-MIN}}) = \frac{1+\sqrt{(1+2k)(\beta_F^{-1} + x^{-2})}}{1+(1+2k_{\text{OPT-MIN}})/\sqrt{\beta_{F,\text{OPT-MIN}}(1+k_{\text{OPT-MIN}})}} \quad (5.37) \]

From the discussion of the previous section, the linearity parameter \((I_{\text{IP3}})\) increases roughly by 5dB [12,13] when bias current is doubled in an ID-LNA.

In order to determine the range of tuning (adaptivity), the maximum and the minimum values of the biasing parameter \(k\) must be determined.

Accordingly, the minimum biasing point \(I_{\text{C,LOW}}(k_{\text{LOW}})\) depends on both LNA and RF front-end system specifications: it is the power level that provides acceptable dynamic range and sensitivity of a complete system, with satisfactory noise figure, voltage gain and linearity of the amplifier. This mode of operation can be chosen when environmental (channel) conditions improve, i.e., a receive desired signal is stronger and interference signals are weaker.

On the other hand, the maximum biasing point \(I_{\text{C,HIGH}}(k_{\text{HIGH}})\) depends on RF front-end worst-case condition specifications as well as the system power budget: how much power can be “burned” in the amplifier and RF system. This mode of operation can be chosen when, for example, a receive signal is rather weak.
The introduced adaptivity figures of merit (tuning ranges) provide a full control over the LNA performance parameters in any mode of operation. These tuning models show how low-noise amplifiers can trade performance for power consumption in an adaptive way. Moreover, tuning models form the basis for the design of LNAs that can operate across multiple standards: multi-standard low-noise amplifiers.

Example 5.2:
The introduced adaptivity figures of merit are determined in this example.

From the elaborated criteria for determining upper and lower bounds of the amplifier operation, the power-consumption ranges are $PCR_{\text{LOW}}=1/2$ and $PCR_{\text{HIGH}}=2$ (with respect to the optimum-minimum biasing point, Eq. (5.29)). Namely, for a 2.2V supply voltage, and 50Ω load impedance, cascoded transistors (see Fig. 6.2) operate in active region for bias currents lower than $I_{C,\text{HIGH}}=14\text{mA}$ (i.e., $PCR_{\text{HIGH}}=2$). On the other hand, $I_{C,\text{LOW}}$ is a current level between 0 and the optimum biasing condition $I_{C,\text{OPT-MIN}}=7\text{mA}$. For the sake of simplicity, we choose for $I_{C,\text{LOW}}=3.5\text{mA}$ (i.e., $PCR_{\text{LOW}}=1/2$). Note that high power consumption is due to the (close to) simultaneous 50Ω noise and power match in this example. Some design trade-offs are discussed in Section 5.2.3.

Referring to the ID LNA (Fig. 5.2), an operation frequency $f=2.4\text{GHz}$ and dimensions of transistor Q_1 as $20\times(0.4\times5)\text{um}^2$, the parameters of the optimum-minimum point are: $f_T=29.6\text{GHz}$, $C_{\Pi}=1.45\text{pF}$, $\beta_F=105$ and $r_{EF}=5.2\Omega$. The (50Ω) power-matching parameters are $L_B=2.8\text{nH}$ and $L_E=0.28\text{nH}$.

For a $k_{\text{OPT-MIN}}/k_{\text{LOW}}=2$ times reduction and a $k_{\text{HIGH}}/k_{\text{OPT-MIN}}=2$ times increase in power consumption, the corresponding tuning ranges of real and imaginary part of the input impedance, voltage gain, optimum noise resistance and optimum noise figure are calculated as given by Table 5.3 (for 50Ω source and load impedances). The performance of the optimum-minimum design point resembles the results shown in Tables 5.1 and 5.2, though they refer to somewhat different matching parameters.

Table 5.3: ID-LNA tuning ranges.

<table>
<thead>
<tr>
<th>Range \ $(k, k_{\text{OPT-MIN}})$</th>
<th>$(0.7, 1.4)$</th>
<th>$(2.8, 1.4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RITR$ [Ω]</td>
<td>-17</td>
<td>25</td>
</tr>
<tr>
<td>$IITR$ [Ω]</td>
<td>12</td>
<td>-12</td>
</tr>
<tr>
<td>$VGTR$ [dB]</td>
<td>-2.2</td>
<td>1.3</td>
</tr>
<tr>
<td>$RSTR$ [Ω]</td>
<td>11</td>
<td>-15</td>
</tr>
<tr>
<td>$NFTR$ [dB]</td>
<td>0.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Altogether, over the whole range of the operation, i.e., 6dB change in power-consumption, the change in $\text{Re}\{Z_{\text{IN}}\}$ is around 40Ω, voltage gain around 3.5dB, noise figure around 0.15dB, and $IIP3$ around 10dB. Tuning ranges from Table 5.3 are indicated in Fig. 5.1.

To illustrate the relationships between the amplifier performance parameters and adaptivity models, an LNA K-loop diagram is shown in Fig. 5.5 [14] (a K-rail diagram with a “loop” formed between points 0 and 6). We will map different design requirements (resulting from different operating conditions or different standards) onto the design space of this diagram, and show how adaptivity can be employed to cover (satisfy) variable amplifier specifications.

The diagram in Fig. 5.5 has two rails (k_1 and k_2) that correspond to different dimensions of amplifier input transistors and accordingly different power-matching degenerative inductances: $L_{E,0}$ is a low-impedance (e.g., 50Ω source) power-matching inductance with the optimum-minimum noise figure of ID-LNA (i.e., its input transistor) at point (0); $L_{E,\text{HIGH}}$ is a large-impedance (e.g. 100Ω) power matching inductance with the optimum of the minimum noise figure at point (1). We assume that load impedances equal source impedances in both situations.

Let us focus on three characteristic points of the diagram, points (0), (1) and (2). Compared to noise and power matched point (0) (see Example 5.1),
operating at point (1) has an advantage of lower power consumption and rather same voltage gain (Eq. (5.14)), at the cost of slightly degraded noise figure and worse linearity [9]. This low-power mode of operation can be chosen when a front-end receive signal is rather weak, necessitating a higher gain and a lower over-all noise figure.

On the other hand, operating at point (2) can be chosen when better linearity is required at the cost of increased power consumption compared to point (1). This design choice provides larger gain, and somewhat worse noise figure compared to design point (1) [9].

Operating at point (2) can be a design choice for the linearity (and power) demanding WCDMA standard, whereas point (6) can be a choice for the noise and linearity (and accordingly power consumption) relaxed DECT standard.

The K-loop diagram and Eqs. (5.33)-(5.37) provide control over amplifier performance parameters for designer. Given the tuning ranges (interpreted as tolerable performance degradations for single standard applications or as requirements for multi-standard applications), the relationships between power consumption and performance parameters can be determined.

5.4 CONCLUSIONS

The varying nature of radio channels, and accordingly varying operating conditions of RF circuits promote a design concept that responds to such changes by simultaneously offering considerable power savings. The introduced amplifier adaptivity figures of merit show how low-noise amplifiers can trade performance for power consumption in an adaptive environment. It has also been shown what are the extremes of the performance tuning ranges within which an LNA is still functional.

Furthermore, the presented impedance, gain, noise, and linearity models and the K-rail diagrams provide full control for designers over the amplifier performance parameters for a number of operating conditions.
REFERENCES

CHAPTER 6

ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS

The accommodation to varying radio channel conditions is usually addressed by switching between different circuits [1-3]. Indeed, this approach is simpler to implement, but is neither optimal in cost nor in power consumption.

On the other hand, adaptive RF front-end circuits offer reduced power consumption, chip area and over-all cost by sharing functional blocks ([4], Chapter 7). Concept of designing for adaptivity of oscillators is introduced in this chapter. It establishes a procedure for performance characterization of adaptive oscillators with qualitative and quantitative descriptions of the relationships and trade-offs between oscillator performance parameters.

The organization of the chapter is as follows. The adaptivity of oscillators is discussed in the following section. Section 6.2 introduces an adaptive quasi-tapped (QT) voltage-controlled oscillator (VCO). The phase-noise model of the adaptive QT-VCO is then described in Section 6.3. Section 6.4 discusses the phase-noise performance of the adaptive VCO. Adaptivity figures of merit, viz., phase-noise tuning range and frequency-transconductance sensitivity, are derived in Section 6.5. The subject of Section 6.6 is a comprehensive performance characterization of voltage-controlled oscillators by means of K-rail diagrams.
6.1 ADAPTIVITY PHENOMENA OF OSCILLATORS

The importance of low-voltage and low-power design has resulted in circuits operating at the very edge of the required performance. Generally, analog RF front-end circuit designs are aimed at fulfilling a set of specifications resulting from specific, worst-case radio-channel conditions. However, radio channels are not fixed but variant. This should be taken into account in the design of RF circuits. Concept of designing for adaptivity [5] is suitable for mobile equipment that supports various services and operates with variable workloads in a variety of environments.

Designing for adaptivity of oscillators encompasses phase-noise tuning and frequency-transconductance tuning phenomena. These are elaborated in the remainder of this section.

6.1.1 PHASE-NOISE TUNING

If the radio-channel conditions improve (or a relaxed communication standard is active), poorer phase noise of oscillators may be tolerable, leading to power savings. Responding to such a new situation, designing for adaptivity appears to be a solution as a standard, fixed design [6] is “blind” and “deaf” for volatile specifications set by communication systems.

By trading phase noise for power consumption, oscillators and oscillating systems can be adapted to varying conditions and satisfy the requirements of the complete RF front-end system as well. The concept of phase-noise tuning [7] shows explicitly how phase noise and power consumption trade between each other in an adaptive way.

The analytical description of this adaptivity phenomenon is presented later in this chapter.

6.1.2 FREQUENCY-TRANSCONDUCTANCE TUNING

For low-power voltage-controlled oscillators a design is usually aimed at a loop gain slightly larger than the necessary minimum of one (e.g., two). In such cases, an increase in the capacitance of the oscillator’s LC-tank varactor in order to lower the oscillation frequency results in an increase of the effective tank conductance. If the design is “fixed” rather than adaptive, the oscillation condition deteriorates as the loop gain is lowered. Accordingly, this can bring an RF front-end to a halt, as there might be no oscillations.
In situations where power consumption is of less concern than oscillator phase noise, the repercussions are different but not less detrimental. The oscillation condition is rather relaxed, as the loop gain can be much larger than two. However, the voltage swing over the LC-tank will be reduced due to the increase in the effective tank conductance (reduced varactor capacitance), resulting in potentially poorer phase-noise performance.

In both of these examples, the oscillator could still fulfill the requirements if the bias conditions of the transconductor transistors were adapted (i.e., modified in a controlled fashion). Thus, *frequency-transconductance* \((C\cdot g_m)\) tuning \([8]\) is the control mechanism compensating for the change in the VCO LC-tank characteristic (conductance is changed due to frequency tuning) by varying the oscillator’s bias conditions (e.g., transconductance \(g_m\)).

A figure of merit related to this adaptivity phenomenon is analytically described in Section 6.5.

6.2 AN ADAPTIVE QUASI-TAPPED VOLTAGE-CONTROLLED OSCILLATOR

The quasi-tapped bipolar VCO \([9]\), shown in Fig. 6.1, is used to implement the adaptive oscillator. It consists of a resonant LC tank and a cross-coupled transconductance amplifier \((Q_1, Q_2)\). The bias tail-current source provides current \(I_{TAIL}\) and includes degenerative impedance \(Z_D\).

The relationships between the parameters of the oscillator are summarized in Table 6.1. \(L\) is the tank inductance, \(C_V\) the tank varactor capacitance, \(R_L\) and \(R_C\) model the inductors and varactors series losses, \(G_{TK}\) the effective tank conductance, \(n\) the quasi-tapping factor, \(-G_M\) the small-signal transconductance of the active part of the oscillator, \(-G_{M,TK}\) the small-signal conductance seen by the LC-tank, \(k\) the small signal loop gain, \(g_m\) the transconductance of bipolar transistors, \(C_{JE}\) the base-emitter capacitance of the transistors \(Q_1\) and \(Q_2\), \(\omega_0\) the oscillation angular frequency and \(V_T\) the thermal voltage.

QT-VCO is the second-order, negative resistance oscillator with a feedback via capacitors \(C_A\) and \(C_B\) between the resonant LC-tank and the transconductor. The capacitive feedback has a manifold role. First, it maximizes the voltage swing across the LC tank, while active devices \(Q_1\) and \(Q_2\) remain far from heavy saturation. Moreover, freedom to set base bias \(V_B\) lower than the supply voltage \(V_{CC}\) allows for an even larger tank voltage, approaching the voltage swing of a CMOS implementation. Capacitors \(C_A\) and \(C_B\) allow direct coupling of the oscillation signal (oscillator) to the interfacing
circuitry, obviating the need for decoupling capacitors. Finally, they determine the performance (power consumption, frequency, phase noise) of the oscillator together with the other elements in the ac signal path.

\[\text{Figure 6.1: A quasi-tapped LC-oscillator.} \]
Table 6.1: Parameters of a QT-VCO.

<table>
<thead>
<tr>
<th>parameter</th>
<th>expression</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{TK}</td>
<td>$\frac{R_L}{(\omega_0 L)^2} + R_C (\omega_0 C_V)^2$</td>
<td>(6.1a)</td>
</tr>
<tr>
<td>n</td>
<td>$1 + \frac{C_A + C_M / 2}{C_B}$</td>
<td>(6.1b)</td>
</tr>
<tr>
<td>G_M</td>
<td>$\frac{g_m}{2}$</td>
<td>(6.2a)</td>
</tr>
<tr>
<td>$G_{M,TK}$</td>
<td>$\frac{G_M}{n}$</td>
<td>(6.2b)</td>
</tr>
<tr>
<td>k</td>
<td>$\frac{G_{M,TK}}{G_{TK}}$</td>
<td>(6.2c)</td>
</tr>
<tr>
<td>g_m</td>
<td>$\frac{I_{TAIL}}{2V_T}$</td>
<td>(6.2d)</td>
</tr>
<tr>
<td>L_{TOT}</td>
<td>L</td>
<td>(6.3a)</td>
</tr>
<tr>
<td>C_{TOT}</td>
<td>$C_V + \frac{C_A C_B}{C_A + C_B}$</td>
<td>(6.3b)</td>
</tr>
<tr>
<td>ω_0</td>
<td>$\frac{1}{\sqrt{L_{TOT} C_{TOT}}}$</td>
<td>(6.3c)</td>
</tr>
</tbody>
</table>

A simplified model of the quasi-tapped oscillator is shown in Fig. 6.2. The oscillation condition is satisfied when the equivalent LC-tank loss conductance G_{TK} is compensated by the equivalent negative small-signal transconductance of the active part $-G_M$, after being transformed to the resonating tank over the quasi-tapping capacitances, i.e., $G_{M,TK} = G_{TK}$. This condition is often referred to as the start-up condition of the oscillations. The safe operation of the oscillator is guaranteed for $G_{M,TK}/G_{TK} = k > 1$ [10].
Figure 6.2: Simplified model of the quasi-tapped oscillator.

6.3 PHASE-NOISE MODEL OF QUASI-TAPPED VOLTAGE-CONTROLLED OSCILLATORS

Phase noise (\mathcal{L}) of an oscillator is defined as the ratio of the noise power in a 1Hz bandwidth at an offset frequency $f_0 + \Delta f$ to the carrier power [11]:

$$\mathcal{L} = \frac{\overline{V}_{TK,TOT}^2}{v_s^2} = \frac{\overline{V}_{TK,TOT}^2}{Z(f_0 + \Delta f)^2} = \frac{\overline{I}_{TK,TOT}^2}{(4\pi C_{TOT}\Delta f)^2}. \quad (6.4)$$

$\overline{V}_{TK,TOT}$ and $\overline{I}_{TK,TOT}$ stand for the total voltage and current noise spectral densities at the output of the oscillator (LC-tank), $Z(f_0 + \Delta f)$ is the equivalent tank impedance at an offset frequency Δf from the resonant frequency f_0, and v_s is the amplitude of the voltage swing across the LC-tank.

The noise sources of the QT-VCO with an undegenerated tail-current source (see Fig. 6.3) are given in Table 6.2. These are the tank conductance noise \overline{I}_{GT}, the base-resistance (r_B) thermal noise \overline{V}_B, the collector \overline{I}_C, and the base \overline{I}_B current shot noise sources, and the equivalent input voltage noise \overline{V}_{CS} of the current source transistor Q_{CS} (Eqs. (6.5-6.7)).
Figure 6.3: QT-VCO noise sources.

Table 6.2: Oscillator noise parameters.

<table>
<thead>
<tr>
<th>parameter</th>
<th>expression</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{I}_{GT}^2</td>
<td>$4KTG_{TK}$</td>
<td>(6.5)</td>
</tr>
<tr>
<td>\overline{V}_B^2</td>
<td>$4KT_{TB}$</td>
<td>(6.6a)</td>
</tr>
<tr>
<td>\overline{I}_C^2</td>
<td>$2qI_C$</td>
<td>(6.6b)</td>
</tr>
<tr>
<td>\overline{I}_B^2</td>
<td>$2qI_B$</td>
<td>(6.6c)</td>
</tr>
<tr>
<td>\overline{V}_{CS}^2</td>
<td>$4KT\frac{1}{2g_{m,CS}}\left[1+2r_{B,CS}g_{m,CS}\right]$</td>
<td>(6.7)</td>
</tr>
</tbody>
</table>
I_C and I_B stand for the collector and base currents, $g_{m,CS}$ is the transconductance and $r_{B,CS}$ the base resistance of transistor Q_{CS}, and K Boltzmann’s constant.

The transformations of the indicated noise sources to the LC-tank ($\overline{I_{TK,TOT}}$) must be known for estimation of the phase noise of the QT-VCO. Considering the transconductor as a nonlinear voltage-to-current converter (limiter) [12] allows for the inclusion of all the noise generating mechanisms in the oscillator. Namely, phenomena such as switching of the transconductor noise and the noise of the tail-current source, both resulting in the folding of noise [12,13], can be comprehended.

6.3.1 TIME-VARYING TRANSFER FUNCTION

The nonlinear voltage-to-current transfer function (referred to the LC-tank) of the transconductor and its equivalent time-varying transconductance in the presence of a large driving signal are shown in Fig. 6.4 [12].

As long as limiting of the oscillation signal (v_{IN}) doesn’t occur, the transfer function of an accompanying small signal has a constant value, g. When limiting occurs, the small-signal (e.g., noise) gain reduces to zero. If the large signal oscillation period is $1/f_0$, the period of a small signal time-varying gain (g_{IN}) is $1/2f_0$. Considering the transformation from the bases to the collectors of the transconductor Q_1-Q_2, the small-signal gain g is $g_{m}/2$.

![Figure 6.4: V-to-I and time-varying transfer functions.](image)
6. Adaptive Voltage-Controlled Oscillators

Let us first estimate the duty cycle \(d \) (Fig. 6.4) of the time-varying gain, before evaluating the contribution of the various noise sources to the phase noise of the oscillator.

If \(v_{S,B} \) is the voltage swing of the oscillation signal across the bases of the transconductor, and \(\pm 2\alpha V_T \) is the linear region of the transconductor, the duty cycle of the time-varying gain can be expressed as:

\[
d = \frac{2}{\pi} \arcsin \left(\frac{2\alpha V_T}{v_{S,B}} \right).
\] (6.8)

With the aid of Eq. (6.2), the voltage swing across the tank (a product of the tank resistance \(1/G_{TK} \) and the first Fourier coefficient of the tail current \(I_{TAIL} \)) equals:

\[
v_s = \frac{8}{\pi} nk V_T = n v_{S,B},
\] (6.9)

where \(k \) is for the small-signal loop gain of the oscillator and \(v_{S,B} \) is the voltage swing of the oscillation signal across the bases of the transconductor transistors. Assuming a 100mV (\(\pm 2V_T \)) transconductor linear region [14] and a large loop-gain value \((k\gg1) \), the duty cycle \(d \) can be approximated as:

\[
d = 1/2k.
\] (6.10)

6.3.2 BASE-RESISTANCE NOISE

The noise from transistors \(Q_1 \) and \(Q_2 \) (both contributions) is switched on/off with the frequency of the time-varying gain \(g_{IN} \) (2\(f_0 \)). Consequently, noise folding occurs, i.e., noise from a number of frequencies is converted into the noise at one frequency. The harmonic components of the noise from the base resistance (multiples of \(f_0 \)) and the harmonic components of the time-varying gain are shown in Fig. 6.5.

As a result of the noise folding, the base noise \((2r_B) \) at odd multiples of the oscillation frequency is converted to the LC-tank at the resonance frequency, as given by Eqs. (6.11) and (6.12).

\[
\bar{I}_{TK,VB}^2 = 2 \left(g_0^2 + 2 \sum_{m=1}^{\infty} |g_{2m}|^2 \right) \bar{V}_B^2
\] (6.11)
\[
\sum_{m=-\infty}^{\infty} |g_{2m}|^2 = \frac{1}{T_2} \int_{-T_2/2}^{-T_2/2} g_{IN}^2(t)dt
\] (6.12)

\(g_{2m}\) are the (complex) Fourier coefficients and \(T_2\) is the period of the transfer function \(g_{IN}\) (\(g=g_m/2\)).

Figure 6.5: Base resistance noise folding.

With the aid of Eq. (6.2), the base resistance noise density transferred to the LC-tank equals:

\[
\bar{I}_{TK,VB}^2 = 4KT \cdot kn^2 r_B G_{TK}^2 .
\] (6.13)

Now, the contribution of the base-resistance noise at the output (LC-tank) becomes:

\[
\frac{\bar{I}_{TK,VB}^2}{4KTG_{TK}} = nc \cdot \frac{k}{2} .
\] (6.14)
where \(c = r_B g_{ms-up} \) and \(g_{ms-up} \) is the start-up \((k=1)\) small-signal transconductance of the active devices \(Q_1 \) and \(Q_2 \). This result is obtained from equality (6.15):

\[
r_B G_{TK} = \frac{c}{2n},
\]

that is derived from Eq. (6.2).

6.3.3 TRANSCONDUCTOR SHOT NOISE

By splitting the current noise sources, the collector and base current shot noise transform to the resonator as given by Eq. (6.16).

\[
\tilde{I}_{TK,ICB}^2 = \frac{I_C^2}{2} d + \frac{1}{n^2}(1 - \frac{d}{2})I_B^2
\]

(6.16)

The noise sources of both transistors are active for a fraction \(d \) of the period \(T_0 \) \((1/f_0)\), whereas for the rest of the period the noise sources of only one transistor are active. With the aid of Eqs. (6.6), (6.10) and (6.16), the contribution of the transconductor’s shot noise sources becomes:

\[
\frac{\tilde{I}_{TK,ICB}^2}{4K T G_{TK}} = \frac{n}{4}.
\]

(6.17)

The same result would be obtained if averaging of the equivalent shot noise were considered. Namely, the transconductor shot noise when both transistors are active turns on and off with the rate of the transfer function \(g_{IN} \) (Fig. 6.4 with \(g=1 \)). Referring to Eq. (6.12), this would lead to Eq. (6.17) as well.

6.3.4 TAIL-CURRENT NOISE

The harmonic components of the equivalent tail-current noise (multiples of \(f_0 \)) and the harmonic components of an ideal switch (square-wave time function) are shown in Fig. 6.6.

The noise of the biasing current source is modulated by the oscillator switching action. Therefore, the tail-current noise (TCN) around even
multiples of the resonant frequency is folded back to the resonator at the oscillation frequency [15], as given by Eq. (6.18).

\[
-\overline{I}_{TK,CS}^2 = \frac{1}{4} 2(1-d) \sum_{m=0}^{\infty} a_{2m+1}^2 \overline{I}_{CS}^2 \\
-\overline{I}_{CS}^2 = g_{m,CS}^2 \overline{V}_{CS}^2 \quad (6.18)
\]

Here, \(\overline{I}_{CS}^2 \) is the output current noise density of the tail-current source and \(a_{2m+1} \) relate to the (complex) harmonic components of the square-wave.

To account for the finite switching time, a factor \(1-d \) is added, as the tail-current noise doesn’t contribute to the phase noise when transistors \(Q_1 \) and \(Q_2 \) are simultaneously active. The factor \(\frac{1}{4} \) originates from the active part transistor’s load impedance \((1/2G_{TK}) \).

Combining Eqs. (6.7) and (6.18), and using the well know weights of the square-wave amplitude components [16],

\[
\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} \ldots,
\]
6. Adaptive Voltage-Controlled Oscillators

the tail-current noise converts to the resonant LC-tank as:

$$\xi_{TK,CS}^2 = KTg_m [1 + 2r_g g_m]. \quad (6.20)$$

Finally, with the aid of Eqs. (6.2), (6.15) and (6.20), the contribution of the tail-current noise to the phase noise becomes:

$$\frac{\xi_{TK,CS}^2}{4KTG_{TK}} \approx \frac{n_k}{2} (1 + 2k_c). \quad (6.21)$$

6.3.5 TOTAL OSCILLATOR NOISE

When assumed to be uncorrelated, all noise sources, viz., the tank conductance noise, the base resistance noise, the transconductor shot noise and the tail-current noise add to the equivalent output noise, as given by Eq. (6.22),

$$\xi_{TK,TOT}^2 = \xi_{TK,GT}^2 + \xi_{TK,JB}^2 + \xi_{TK,ICB}^2 + \xi_{TK,CS}^2,$$ \quad (6.22)

where $\xi_{TK,GT}^2 = 4KTG_{TK}$ is the tank conductance noise. The noise factor F of the oscillator is now calculated as:

$$F = \frac{\xi_{TK,TOT}^2}{4KTG_{TK}} = 1 + \frac{n}{4} + \frac{nc}{2} k + \frac{n}{2} k(1 + 2k_c). \quad (6.23)$$

We observe from Eq. (6.23) that the contribution of the tail-current source noise to the phase noise of the voltage-controlled oscillator (Fig. 6.3) is larger than all other contributions together [17,18]. Denoting the contribution of the active part noise and the LC-tank resistance noise as $1 + A_{AP}$, and the contribution of the tail-current noise as A_{CS}, we define the phase-noise difference (PND) as the ratio of the corresponding noise contributions:

$$PND = 1 + \frac{A_{CS}}{1 + A_{AP}}. \quad (6.24)$$

Referring to Eqs. (6.14), (6.17) and (6.21), the PND of the QT-VCO becomes:
The PND compares the contributions of the TCN and all other noise sources. If $n=1.4$ and $c=0.1$ (VCO design data, [9]), then for a loop gain $k=10$, $PND=11.2$: the tail-current source degrades the phase-noise performance of this VCO by 10.5dB.

6.3.6 RESONANT-INDUCTIVE DEGENERATION OF THE TAIL-CURRENT SOURCE

It is known that both the low-frequency and the high-frequency noise sources of the tail-current source have the most detrimental effect [17,18] on the phase noise of the oscillator. In particular, the tail-current noise at twice the oscillation frequency has the largest impact after being downconverted by the switching of the oscillator active part.

Therefore, the noise-optimization procedure is performed at twice the oscillation frequency. The basic idea lies in the resonant-matching [19] of the inductor (L_{RID}) in the emitter of the biasing transistor Q_{CS} to its base-emitter capacitance ($C_{Π,CS}$) at twice the oscillation frequency.

![Noise sources of the tail-current source transistor.](image)

Figure 6.7: Noise sources of the tail-current source transistor.

The reduction of the equivalent output current noise density of the tail-current source results into the reduction of the “noise-portion” that is
transferred to the resonator. We will consider separately the transformation (reduction) of the base resistance noise, base-current shot noise and collector-current shot noise of the resonant-inductive degenerated tail-current transistor Q_{CS}, shown in Fig. 6.7.

6.3.6.1 Base Resistance Noise Transformation of the Resonant-Inductive Degenerated Tail-Current Source

As the input impedance of an inductively degenerated transistor equals [20, Chapter 5]:

$$Z_{IN,CS}(f) = 2\pi f_{T,CS} L_{RID} + j \left[2\pi f L_{RID} f T,CS \frac{1}{g_m,CS} \right],$$ \hspace{1cm} (6.26)

the matching condition at $2f_0$, i.e., the imaginary part is set to zero at $2f_0$, is determined:

$$R_{IN,CS} g_{m,CS} = \left(\frac{f_{T,CS}}{2f_0} \right)^2,$$ \hspace{1cm} (6.27)

where $f_{T,CS}$ is Q_{CS}’s transit frequency, and $R_{IN,CS}=2\pi f L_{RID}$ is the real part of the impedance seen at the base of the current-source transistor.

The equivalent transconductance of the RID current-source transistor at $2f_0$ equals [20, Chapter 5]:

$$g_{EQ,CS} \approx -\frac{1}{g_{m,CS}} \frac{f_{T,CS}}{2f_0},$$ \hspace{1cm} (6.28)

whereas the part of the base resistance noise into the output current noise density of the degenerated tail-current source becomes:

$$\overline{T^2_{CS,VB,RID}} = g_{EQ,CS}^2 \overline{V^2_{CS,VB}} = \left(\frac{2f_0}{f_{T,CS}} \right)^2 4K T r_{B,CS}.$$

$$\overline{T^2_{CS,VB,RID}} = g_{EQ,CS}^2 \overline{V^2_{CS,VB}} = \left(\frac{2f_0}{f_{T,CS}} \right)^2 4K T r_{B,CS}.$$ \hspace{1cm} (6.29)
6.3.6.2 Base- and Collector-Current Shot Noise Transformations of the Resonant-Inductive Degenerated Tail-Current Source

The RID tail-current source transistor Q_{CS} operates in a common-base-like configuration at twice the oscillation frequency. Therefore, the collector-current shot noise is suppressed while the base-current shot noise is completely transferred to the output of the current source. This intuitive observation can be analytically proved by determining the transfer functions of the corresponding noise sources. A detailed circuit model is shown in Fig. 6.8.

Let us first determine the transfer function from the position of the collector-current shot noise $I_{C,IN}$ to the output of the current source I_{OUT} (superposition applied, i.e., $I_{B,IN}=0$). Kirchoff’s current law equation applied to node E yields:

$$I_{C,IN} + g_{m,CS} V_{BE} = \frac{V_E}{sL_{RID}} - sC_{IT,CS} V_{BE},$$

(6.30)

where $V_{BE} = V_B - V_E$. Analyzing BE branch, Eq. (6.31) results.

$$\frac{V_E}{r_{B,CS}} = -V_{BE} \left(\frac{1}{r_{B,CS}} + sC_{IT,CS} \right)$$

(6.31)

Figure 6.8: RID tail-current source; detailed circuit model.
Substituting Eq. (6.31) into Eq. (6.30), the relationship between the base-emitter voltage and the current $I_{C,IN}$ becomes:

$$I_{C,IN} = -V_{BE} \left[g_{m,CS} + j\omega C_{II,CS} + \frac{1}{j\omega L_{RID}} + \frac{C_{II,CS}r_{B,CS}}{L_{RID}} \right], \quad (6.32)$$

At the resonance ($2f_0$) between L_{RID} and $C_{II,CS}$, the expression simplifies to:

$$I_{C,IN} = -V_{BE} \left[g_{m,CS} + \frac{C_{II,CS}r_{B,CS}}{L_{RID}} \right]. \quad (6.33)$$

Finally, from the current-law equation for node C,

$$I_{OUT} = I_{C,IN} + g_{m,CS}V_{BE}, \quad (6.34)$$

and Eq. (6.33), the transfer function from the collector current noise source to the output of the TCS is calculated as given by Eq. (6.35).

$$\frac{I_{OUT}}{I_{C,IN}}(2f_0) = 1 - \frac{1}{1 + r_{B,CS}g_{m,CS} \left(\frac{2f_0}{f_{T,CS}} \right)^2} \approx 0 \quad (6.35)$$

As $r_{B,CS}g_{m,CS}$ is a small constant, and $2f_0/f_{T,CS}<<1$, it becomes obvious that the collector-current shot noise is fully suppressed from the equivalent output current noise of the TCS.

In a similar manner, the transformation of the base-current shot noise to the output of the TCS can be calculated from Fig. 6.8 ($I_{C,IN}=0$). The resulting transfer function becomes:

$$\frac{I_{OUT}}{I_{B,IN}}(2f_0) = \frac{1}{1 + r_{B,CS}g_{m,CS} \left(\frac{2f_0}{f_{T,CS}} \right)^2} \approx 1, \quad (6.36)$$

suggesting that the complete base-current shot noise is transferred to the output of the tail-current source.
6.3.6.3 Total Output Noise of the Resonant-Inductive Degenerated Tail-Current Source

Combining Eqs. (6.29) and (6.36), i.e., the base resistance noise and the base-current shot noise contributions, the total output current noise density of the resonant-inductive degenerated tail-current source becomes:

\[
\overline{I}_{CS,RID}^2 = 4KT \frac{g_{m,cs}}{2} \left[\frac{1}{\beta_F} + 2r_{b,cs}g_{m,cs} \left(\frac{2f_0}{f_{T,cs}} \right)^2 \right].
\]

(6.37)

This implies that by applying resonant-inductive degeneration, the contribution of the tail-current noise at \(2f_0\) is reduced by more than a factor \((f_{T,cs}/2f_0)^2\). It becomes clear after Eq. (6.37) is rewritten as:

\[
\overline{I}_{CS,RID}^2 = \left(\frac{2f_0}{f_{T,cs}} \right)^2 4KT \frac{g_{m,cs}}{2} \left[\left(\frac{f_{T,cs}}{2f_0} \right)^2 \frac{1}{\beta_F} + 2r_{b,cs}g_{m,cs} \right] < \left(\frac{2f_0}{f_{T,cs}} \right)^2 \overline{I}_{CS}^2.
\]

(6.38)

Referring to \(n=1.4, c=0.1\) and \(k=10\) (VCO design data, [9]), the simulations predict an improvement of 7dB for the applied \(RID\) and this loop-gain value.

6.3.7 RESISTIVE DEGENERATION OF TAIL-CURRENT SOURCE

Unlike resonant-inductive degeneration, which is effective in suppressing tail-current noise at twice the oscillation frequency, resistive degeneration [22] of a tail-current source is equally effective at all frequencies. However, as the resistor in the emitter of the TCS transistor requires some voltage headroom, this method of noise suppression has limited use (i.e., suitable for systems with large supply voltages).

The circuit diagram of the resistive degeneration (RD) TCS is shown in Fig. 6.9. Its effectiveness is discussed next.

The collector-current shot noise of the resistively-degenerated TCS is suppressed while the base-current shot noise is transferred to the output of the current source, as in the case of the RID TCS (Section 6.3.6.2). Moreover, the base-resistance noise and the degenerative-resistor \((R_{RD})\) noise are transferred to the output of the current-source transistor with the equivalent transconductance \(g_{EQ,CS}=1/R_{RD}\), assuming \(R_{RD} \gg 1\).
Accordingly, the output current-noise density of the RD TCS becomes:

$$\overline{I}^2_{CS,RD} = 4KT \frac{g_{m,CS}}{2} \left[\frac{1}{\beta_F} + 2r_{b,CS} \frac{1}{g_{m,CS}R_{RD}} \left(\frac{1}{r_{b,CS}} + \frac{1}{R_{RD}} \right) \right].$$ \hspace{1cm} (6.39)

The effectiveness of the two noise-reduction procedures can be determined by comparing Eqs. (6.37) and (6.39). The resonant-inductive degeneration is more effective than the resistive degeneration, if condition (6.40) is satisfied.

$$\left(\frac{f_{T,CS}}{2f_0} \right)^2 \frac{1}{r_{b,CS}g_{m,CS}} > g_{m,CS}R_{RD}$$ \hspace{1cm} (6.40)

As $r_{b,CS}g_{m,CS}$ is a small constant, and $2f_0/f_{T,CS}>>1$, the resonant-inductive degeneration can be considered as a better solution than the resistive degeneration in a low-voltage environment (e.g., $V_{CC}<3.3$V), as the latter requires a large resistor R_{RD} and accordingly a large supply voltage. If a high supply voltage is available (e.g., $V_{CC}>5$V), the RD is preferable [19,22], as its implementation is rather straightforward.
6.3.8 ADAPTIVE PHASE-NOISE MODEL

For larger loop-gain values (in [9] $k_{MAX}=19$), and accordingly larger transit frequencies (f_T) of transistors, a factor of 100 bias-noise suppression of RID TCS is expected, making its noise contribution almost negligible. Therefore, the noise factor of the VCO with resonant-inductive degeneration of the bias tail-current source reduces to:

$$F = 1 + \frac{n}{4} + \frac{nc}{2} k . \quad (6.41)$$

When the noise contributed by the bias circuit is negligible, the oscillator phase-noise performance depends on the components in the ac signal path, viz., transconductance cell and resonator. With the aid of Eqs. (6.4), (6.9), (6.22) and (6.41), the adaptive phase-noise model now becomes:

$$L \propto \frac{1 + n/4 + nck/2}{n^2 k^2} . \quad (6.42)$$

This model is parameterized with respect to power consumption via the small-signal loop gain k. Unlike fixed, hardware determined design parameters, the loop gain and voltage swing can be varied by changing current I_{TAIL}, shown in Fig. 6.1. This allows adaptation of the oscillator’s phase noise to different conditions. Parameter $k=G_{MTK}/G_{TK}$ defines how far the oscillator is from the start-up condition. As this is a key parameter used in the forthcoming analysis, let us explaining in more detail its meaning and importance.

In its simplest form k is the small-signal loop gain of the oscillator considered as a positive feedback amplifier. In addition, k relates to the excess of the negative conductance necessary for the compensation of the losses in the LC-tank. Namely, if the tank conductance is G_{TK}, then for the start-up of the oscillations, the equivalent negative conductance seen by the LC-tank must be $G_{MTK}=kG_{TK}$, with k larger than one (for a guaranteed start-up usually set to a value of two).

6.3.8.1 Linear Phase-Noise Model

The performance of the oscillator can be also determined if a linear analysis method is applied. Therefore, we will assume (in this sub-section) that the
oscillator operates in a near-linear fashion \([11,24]\) such that noise close to the carrier contributes larger to the total oscillator noise, compared to other contributors such as base-band noise and the noise obtained after mixing from the other harmonics.

The oscillator phase-noise performance depends mainly on the components in the ac signal path, e.g., the transconductance cell and resonator, when noise contributed by the bias circuit is made negligible \([19]\). Moreover, linear operation regime assumes that transconductor devices \(Q_1\) and \(Q_2\) are active at all times (Fig. 6.1), and therefore there is no contribution of the tail-current noise being rejected as a common mode signal. These assumptions \([24]\) enable easier interpretation of the rather complex noise generating mechanism in VCOs when used for qualitative inspection of the oscillators’ phenomena.

We have denoted the main noise sources in the oscillator as shown in Fig. 6.9a. In order to switch to the equivalent model of Fig. 6.9b, it is necessary to transform the indicated noise sources to the corresponding LC-tank, \(Z(\Delta\omega)\). Because of symmetry, only one-half of the oscillator circuit is depicted. However, in the following calculations, the complete oscillator is analyzed.

\[
\bar{I}_{\text{LTK,TOT}}^2 = \bar{I}_{\text{LTK,GT}}^2 + \bar{I}_{\text{LTK,IB}}^2 + \bar{I}_{\text{LTK,IC}}^2 + \bar{I}_{\text{LTK,VB}}^2 \quad (6.43)
\]
The corresponding “linear” noise contributions equal:

\[
\bar{I}_{LTK,VB}^2 = 2\bar{V}_B^2 n^2 G_{TK}^2, \quad (6.44)
\]

\[
\bar{I}_{LTK,IB}^2 = \bar{I}_B^2 / (2n^2), \quad (6.45)
\]

\[
\bar{I}_{LTK,IC}^2 = 1/2\bar{I}_C^2, \quad (6.46)
\]

\[
\bar{I}_{LTK,GT}^2 = 4KTG_{TK}. \quad (6.47)
\]

With the aid of Eq. (6.4), the output voltage noise spectral density equals:

\[
\bar{V}_{N,TOT}^2 = KT \frac{G_{TK}}{(\omega_0 C_{TOT})^2} \left(\frac{\omega_0}{\Delta \omega} \right)^2 [1 + \frac{qI_C}{4KTG_{TK}} + 2n^2 r_b G_{TK} + \frac{qI_B}{n^2 4KTG_{TK}}] , \quad (6.48)
\]

\[
\bar{V}_{N,TOT}^2 = KT \frac{G_{TK}}{(\omega_0 C_{TOT})^2} (1 + A_T) \left(\frac{\omega_0}{\Delta \omega} \right)^2 , \quad (6.49)
\]

\[
A_T = 2n^2 r_b G_{TK} + g_m (1 + 1/\beta_F) / 4G_{TK}. \quad (6.50)
\]

From Eq. (6.2) and assuming \(\beta_F \gg 1 \), the noise factor \(A_T \) of the active part can be re-written for the start-up condition \((k=1) \) as:

\[
A_{T,S-UP} = n(1/2 + r_B g_{ms-up}), \quad (6.51)
\]

or for reliable (safety) start-up, corresponding to the case with an excess loop gain larger than one \((k>1) \), in this case \(k \), it is given as:

\[
A_{T,S,S-UP} = n(k/2 + r_B g_{ms,s-up}/k) = n(k/2 + r_B g_{ms,s-up}). \quad (6.52)
\]

Note that indexes \(S-UP \) and \(S_S-UP \) correspond to the start-up and the safety (guaranteed) start-up conditions of the oscillations.

Combining Eqs. (6.4) and (6.50), the “linear”-analysis phase noise of the quasi-tapped oscillator becomes:
6. Adaptive Voltage-Controlled Oscillators

\[L \propto \frac{1+2n^2r_BG_{TK} + g_m/4G_{TK}}{\nu_S^2}. \]
(6.53)

With the aid of Eqs. (6.2) and (6.9), and for an arbitrary distance from the start-up condition, the “linear” phase-noise model reads:

\[L \propto 1+n \cdot (k/2 + r_Bg_{ms-up}) \] .
(6.54)

This phase-noise model can be used for the analysis of VCOs with lower loop-gain values [24], as their operation can be fairly approximated with the linear model. On the other hand, if the oscillator is designed for the large loop gain [9], the linear model is not suitable, as the oscillator operates deeply in the non-linear region. In that situation, the adaptive phase-noise model is applied (Eq. (6.42)).

6.4 PHASE-NOISE PERFORMANCE OF QUASI-TAPPED VOLTAGE-CONTROLLED OSCILLATORS

The performance of the quasi-tapped VCO will be characterized by comparing a quasi-tapped VCO and a non-tapped VCO. A non-tapped (NT) VCO is an oscillator with a directly coupled LC-tank and active part \((n=1)\), i.e., the oscillator shown in Fig. 6.1 with \(C_A=\infty\) and \(C_B=0\). The LC-tanks of both oscillator types are assumed identical.

Referring to Eq. (6.42), the phase noise of a QT-VCO \((n>1)\) and an NT-VCO \((n=1)\) can be written as:

\[L_{QT} \propto \frac{1+n/4 + nc_{QT}k/2}{n^2k^2}, \]
(6.55)

\[L_{NT} \propto \frac{1+1/4 + c_{NT}k/2}{k^2}, \]
(6.56)

where \(c_{QT}=nc_{NT}=nr_Bg_{ms-up,NT}\), with \(g_{ms-up,NT}\) being the start-up \((k_{NT}=1)\) small-signal transconductance of an NT-VCO.

Now, the ratio between the phase noise of a non-tapped and a quasi-tapped oscillator, \(PNR(k_{QT},k_{NT})\), can be defined as:
Adaptive RF Front-End Circuits

\[
PNR(k_{QT}, k_{NT}) = \frac{L_{QT}(k_{QT})}{L_{NT}(k_{NT})},
\]

(6.57)

\[
PNR(k_{QT}, k_{NT}) = \frac{1 + n/4 + nc_{NT}k_{QT}/2}{n^2k_{QT}^2} \frac{k_{NT}^2}{1 + 1/4 + c_{NT}k_{NT}/2}.
\]

(6.58)

For \(n=1 \) and \(k_{QT}=k_{NT} \), the QT-VCO reduces to the NT-VCO, and obviously, the ratio \(PNR \) becomes equal to one.

The operating conditions used for the comparison of oscillators are: \(k_{NT}=nk_{QT} \) (the same power consumption), and \(k_{NT}=k_{QT} \) (the same distance from the start-up condition). The latter because loop gain is an important oscillator parameter.

From Eq. (6.58), the phase-noise ratio for the same power consumption, \(k_{NT}=nk_{QT}=nk \), equals:

\[
PNR(k,nk) = \frac{1 + n/4 + n^2c_{NT}k/2}{1 + 1/4 + nc_{NT}k/2}.
\]

(6.59)

Ratio (6.59) implies that a non-tapped oscillator has better performance than a quasi-tapped oscillator, with respect to the phase noise for the same power consumption. For example, if \(n=2, k=2 \) (the safety start-up condition), \(r_B=40\Omega \) and \(g_{ms-up,NT}=4.1mS \), there is a \(PNR=1.3dB \) difference in phase noise in favor of the non-tapped oscillator. This result can be considered as a design tip. Namely, as quasi-capacitive tapping already allows for an increased voltage swing across the LC-tank by an independent base biasing of transconductor transistors, the reduced power consumption and better phase noise can be achieved by setting \(n \) close to one.

In a similar manner, the phase-noise ratio for the same excess negative conductance (\(k_{NT}=k_{QT}=k \)) is given as:

\[
PNR(k,k) = \frac{1 + n/4 + n^2c_{NT}k/2}{n^2(1 + 1/4 + c_{NT}k/2)}.
\]

(6.60)

This result shows that a quasi-tapped oscillator has better performance than a non-tapped oscillator, with respect to the phase noise for the same loop gain. Referring to \(r_B=40\Omega, g_{ms-up,NT}=4.1mS, n=2 \) and \(k=6 \), the QT-VCO has \(PNR=3dB \) better phase noise than the NT-VCO.
6. Adaptive Voltage-Controlled Oscillators

6.5 ADAPTIVITY FIGURES OF MERIT OF VOLTAGE-CONTROLLED OSCILLATORS

Adaptivity phenomena can be qualitatively and quantitatively described by means of their figures of merit. Phase-noise tuning range describes phase-noise adaptivity of an oscillator with respect to power consumption. Frequency-transconductance sensitivity describes the effect of compensating for the change in the LC-tank characteristic due to frequency tuning. Both metrics are analytically derived in the remainder of this section.

6.5.1 PHASE-NOISE TUNING RANGE

Before detailing on the phase-noise tuning, let us broaden the meaning of the corner-stone parameter k. As in the oscillator under consideration, the start-up condition is also referred to the minimum power condition, apart from defining how far an oscillator is from this state, the parameter k also characterizes the increase in power consumption. Namely, k-times larger negative conductance of the active part of the oscillator requires a k-times increase in power consumption, with respect to the start-up condition. Power consumption is controlled by the tail current I_{TAIL}, shown in Fig. 6.1.

The figure of merit describing the oscillator’s adaptivity to phase noise is the phase-noise tuning range ($PNTR$). For a k_2/k_1-times change in power consumption, and with the aid of Eq. (6.42), the phase-noise tuning range for the QT-VCO is defined as:

$$PNTR(k_1,k_2) \propto \frac{k_1^2}{k_2^2} \frac{1 + n/4 + nck_2/2}{1 + n/4 + nck_1/2}.$$ \hspace{1cm} (6.61)

We will first determine the loop gain k_{MAX} (related to the best phase noise) in order to estimate the achievable phase-noise tuning range. The start-up condition corresponds to $k_{MIN}=1$, whereas the guaranteed start-up to $k_{MIN}=2$.

For the maximum voltage swing across the LC tank that satisfies:

$$v_{S,QT,MAX} \leq \frac{2n}{n+1} (V_{CC} - V_B + V_{BE} - V_{CE,SAT}),$$ \hspace{1cm} (6.62)

the detrimental effects of both hard saturation of the transistors in the active part of the oscillator and the additional current noise of their forward biased base-collector junctions are circumvented [25,26]. Here, V_{CC} is the supply
Adaptive RF Front-End Circuits

voltage, V_B the base potential of the core transistors, V_{BE} their base-emitter voltage and $V_{CE,SAT}$ their collector-emitter saturation voltage. Assuming that the bases of the transistors are, for the sake of the simplicity, at the maximum supply voltage, i.e., $V_{CC}=V_B$, the maximum voltage swing across the LC-tank ($V_{CE,SAT}=0\text{V}$) equals $v_{S,MAX_1}=1.5n/(n+1)$ (it is assumed that $V_{BE}=0.75\text{V}$). On the other hand, the maximum voltage swing corresponding to the non-saturation condition ($V_{CE,SAT}=0.3\text{V}$) is $v_{S,MAX_2}=0.9n/(n+1)$. Compromising between larger voltage swing on the one hand and weaker saturation on the other we opt for a maximum voltage swing across the tank $v_{S,MAX}=(v_{S,MAX_1}+v_{S,MAX_2})/2$.

Now, with the aid of Eq. (6.9), and for $n=2$, the maximal loop-gain value is found to be $k_{MAX}=6$.

For example, if $k_{MIN}=2$ (the safety start-up condition) and $k_{MAX}=6$ (expected best phase noise), $c=0.65$ (design data, Section 7.1.1), and $n=2$, the control ranges of power consumption and phase noise are:

$$\frac{P_{MAX}}{P_{MIN}} = \frac{k_{MAX}}{k_{MIN}} = 3,$$

$$PNTR(2,6)[dB] = \frac{L_{MIN}}{L_{MAX}} = 6.7 ,$$

P_{MAX} and P_{MIN} stand for maximum and minimum power consumption, and L_{MAX} and L_{MIN} represent the maximum and the minimum phase noise corresponding to the values of k_{MAX} and k_{MIN}, respectively.

This result shows that for the oscillator under consideration and with equal supply and transconductor base voltages, a phase-noise tuning range in excess of 6dB can be expected with a factor of 3 reduction (change) in power consumption.

6.5.2 FREQUENCY-TRANSCONDUCTANCE SENSITIVITY

Because of a change in frequency due to tuning of the LC-tank varactor capacitance (C_V), the loop gain, the voltage swing and the phase noise of the oscillator change as well [27]. If the oscillator is designed at the very edge of the required specifications, the change of the oscillation condition (i.e., reduced loop gain), or the change of the noise produced (i.e., degraded phase noise), puts the oscillator out of correct operation. In order to preserve desired operation of oscillators, it is necessary to apply a control mechanism to the bias current I_{TAIL} (i.e., g_m).
The concept of $C-g_m$ tuning illustrates the relationship between the varactor diode tuning voltage U_T and the biasing tail current I_{TAIL}, both indicated in Fig. 6.1. The objective is to find the relationship between the tuning voltage U_T and the effective tank conductance G_{TK} on the one hand and the relationship between the tank conductance and the biasing tail current I_{TAIL} on the other. The resulting sensitivity of the tail current to the tuning voltage will show to what extent the biasing condition should be changed in response to a change in the frequency, in order to keep the oscillator operating under the specified conditions.

The sensitivity of the LC-tank conductance to a change in a tuning voltage is defined as:

$$S_{G_{TK}}^{U_T} = \left. \frac{\partial G_{TK}}{\partial U_T} \right|_{U_T=U_{T0}} \frac{\partial C_v}{\partial U_T},$$

(6.65)

where tuning voltage U_{T0} corresponds to the resonant frequency f_0.

With the aid of Eqs. (6.1) and (6.3), the sensitivity of the LC-tank conductance to a change in varactor capacitance C_v can be expressed in terms of LC-tank parameters:

$$S_{G_{TK}}^{C_v} = \omega_0^2 \left[2 C_v R_C \left(1 - \frac{C_v}{2 C_{TOT}} \right) + C_{TOT} R_L \right].$$

(6.66)

If the varactor capacitance is related to a tuning voltage U_T as:

$$C_v(U_T) = \frac{C_{v0}}{ \left(1 + \frac{V_{CC} - U_T}{\phi} \right)^{1/a} },$$

(6.67)

where C_{v0}, ϕ and a are the parameters of the varactor shown in Fig. 6.1, the sensitivity of the varactor capacitance to a tuning voltage equals:

$$S_{C_v}^{U_T} = \frac{C_v}{ a(V_{CC} - U_{T0} + \phi) }.$$

(6.68)

Note that the capacitance C_v is related to the tuning voltage U_{T0} and the frequency f_0.

Linearizing the sensitivity characteristics calculated around resonance, the change in the effective tank conductance can be related to the change in the tuning voltage as:

\[\Delta G_{TK} = S_{UT}^{G_{TK}} \Delta U_T, \] (6.69)

where the relating sensitivity has a form:

\[S_{UT}^{G_{TK}} = \frac{2}{a(V_{CC} - U_{TO} + \phi)} \left[R_C \left(1 - \frac{C_T}{2C_{TOT}} \right) + \frac{C_{TOT} R_L}{2C_T} \right] (\omega_C V_T)^2. \] (6.70)

To compensate for such a change in the tank characteristic, the conductance seen by the tank (-\(G_{M,TK}\)) should be changed by the same amount. From Eq. (6.2), the relationships between the tail current, the transistors’ transconductance and the conductance seen by the LC-tank are determined:

\[\Delta I_{TAIL} = 2V_T \Delta g_m, \] (6.71)

\[\Delta g_m = 2k \cdot \Delta G_{M,TK}. \] (6.72)

Combining these results, the change in the tail current relates to the change in the absolute value of the conductance seen by the LC-tank as:

\[S_{G_{M,TK}}^{I_{TAIL}} = 4n \cdot V_T. \] (6.73)

Satisfying the condition (see Eq. (2)),

\[\Delta G_{M,TK} = k \Delta G_{TK}, \] (6.74)

the sensitivity of the tail current to the tuning voltage, referred to the increase or the reduction in the tail current (power consumption) in order to sustain the desired loop-gain value (oscillation condition) is calculated as:

\[S_{UT}^{I_{TAIL}} = S_{UT}^{I_{TAIL}} S_{G_{M,TK}}^{G_{M}} S_{UT}^{G_{TK}}. \] (6.75)

With the aid of Eqs. (6.70), (6.73), (6.74) and (6.75), we finally obtain:
6. Adaptive Voltage-Controlled Oscillators

\[
S_{U_T}^{t_{\text{rail}}} = \frac{8k \cdot n \cdot V_T}{a(V_{CC} - U_{TO} + \phi)} \left[R_C \left(1 - \frac{C_V}{2C_{TOT}} \right) + \frac{C_{TOT}R_L}{2C_V} \right] (\omega_b C_V)^2. \quad (6.76)
\]

For the oscillator under consideration, we can now estimate to what extent the tail current should be changed, as a result of a change in the tuning voltage, i.e., frequency, so as to keep the oscillator operating under the required conditions.

For example, a sensitivity \(S_{U_T}^{t_{\text{rail}}} = 0.25 \text{mA/V} \) infers that in order to sustain the oscillations under the same condition (i.e., the same loop gain) the tail current should be either increased or reduced (depending on the direction of the frequency tuning) by 0.25mA for a 1V change in a varactor voltage. The counterpart of the C-gm tuning in the circuitry is a simple amplitude control mechanism, as constant loop gain means constant amplitude of the signal across the LC-tank of the oscillator.

6.6 K-RAIL DIAGRAMS – COMPREHENSIVE PERFORMANCE CHARACTERIZATION OF VOLTAGE-CONTROLLED OSCILLATORS

The existing figures of merit [28,29], giving insight into the performance of oscillators operating under fixed conditions, have been reformulated in order to be useful for the performance characterization of adaptive circuits: phase-noise tuning range [7] and frequency-transconductance sensitivity [8]. These adaptivity figures of merit as well as other phenomena related to voltage-controlled oscillators can be both qualitatively and quantitatively interpreted by means of the K-rail diagrams. There are two types of oscillator K-rail diagrams: \(K\)-rails and \(K\)-loop diagrams, both using the construction rules outlined in Chapter 4.

The K-rails diagram is used as a tool for the comprehensive performance \(\text{comparison} \) of different voltage-controlled oscillators. In this section, a non-tapped VCO and a quasi-tapped VCO are used as an example.

The K-loop diagram is used for the performance \(\text{characterization} \) of adaptive voltage-controlled oscillators. Namely, K-loop diagrams show how the oscillator performance parameters (e.g., phase noise, loop gain, power consumption, voltage swing and tank conductance) relate to each other at any point of the design space. Moreover, these diagrams describe the effects of the particular design choice on the performance of oscillators.
In the following section, the concept of phase-noise tuning is described with a K-rail diagram. Then, a qualitative comparison of different VCOs is made using the K-rails (multiple K-rail) diagram. The concept of frequency-transconductance tuning and the accompanying K-loop diagram close the discussion on oscillators’ K-rail diagrams. Finally, an example is presented that shows how performance parameters of an oscillator can be mapped onto these diagrams.

6.6.1 K-RAIL DIAGRAM

In the following analysis, we will refer to the adaptive quasi-tapped oscillator shown in Fig. 6.1. Parameters of the oscillator have already been defined in Section 6.2, and Eqs. (6.1)-(6.3).

Generally, K-rail diagrams reveal trade-offs between performance parameters of an oscillator. As suggested by the name K-rail, the parameter k is given the role of the cornerstone parameter in the analysis. Defined as $k=\frac{G_{M,TK}}{G_{TK}}$, it equally represents the small-signal loop gain, the excess conductance seen by the LC-tank as well as the excess power consumption. For the start-up condition it has a value of $k=1$, while for guaranteed (safe) oscillation a value $k>1$.

Let us consider phase-noise tuning range ($PNTR$), an adaptivity performance parameter aimed not at a particular, but rather a set of operating conditions. Given by Eq. (6.61), this adaptivity figure of merit (AFOM) stands for a change in the oscillator’s phase noise between two different biasing (design) points.

This phenomenon can be qualitatively described by means of the K-rail diagram [30] shown in Fig. 6.11. It is illustrated how the oscillator performance parameters, being loop gain, power consumption, phase noise and signal amplitude, relate to each other in an adaptive manner.

The arrows perpendicular to the corresponding axes represent lines of constant loop gain, phase noise and power consumption. Namely, each point in the design space (in this case a line; the k-rail) corresponds to a set of design parameters that are obtained as a normal projection of the design point on the rail to the indicated axes. Take, for example, point MAX on the k-rail. Its corresponding parameters are phase noise PN_{MAX}, loop gain k_{MAX}, and voltage swing v_{MAX}, respectively.
6. Adaptive Voltage-Controlled Oscillators

The phase-noise tuning range shown in Fig. 6.11 between the points PN_{MIN} and PN_{MAX}, where PN_{MIN} (L_{MAX}) and PN_{MAX} (L_{MIN}) represent the maximum and minimum phase noise, corresponds to the values k_{MAX} and k_{MIN}. In addition, some well known phenomena can also be recognized. For example, it is seen that an increase in power results in an improvement in the phase noise, but only up to a level determined by k_{MAX}. Increasing the loop gain beyond this value only wastes power, as the phase noise no longer improves.

Finally, the diagram helps one to grasp the basic concepts regarding behavior and functionality of VCOs without plunging into the “sea” of figures of merit, theories and expressions.

6.6.2 K-RAILS DIAGRAM

The K-rails diagram [30] is used for the performance comparison of different voltage-controlled oscillators. In this section, we will construct a K-rail diagram by comparing non-tapped and quasi-tapped VCOs.

The operating conditions that are used for the construction of the K-rails diagrams are the same power consumption condition ($k_{NT}=nk_{QT}$) and the same distance from the start-up condition, i.e., the same loop gain condition ($k_{NT}=k_{QT}$).
The phase-noise ratio for the same power consumption (Eq. (6.59)) shows that a non-tapped oscillator has better performance than a quasi-tapped oscillator.

This expression can be qualitatively mapped onto the K-rails diagram shown in Fig. 6.12. The arrows L_1, L_2 and L_3, perpendicular to the corresponding axes, represent lines of constant loop gain, phase noise and power consumption, respectively. Apart from the indicated loop gain, phase noise and power (amplitude) axes, this diagram has two k-rails, each referring to the oscillators’ design space (i.e., “design lines”). Here, the left rail corresponds to the non-tapped and the right rail to the quasi-tapped oscillator. For example, the design parameters of point A on the left-most rail (NT-VCO) are the phase noise P_{NT}, loop gain k_{NT} and voltage swing v_{NT}.

Following the diagram construction rules, it can be seen that for the same power consumption $P_{NT}=P_{QT}$, and accordingly $k_{NT}=nk_{QT}$ (points A and B), it holds $P_{NT}>P_{QT}$. That is to say, the phase noise ($L=1/PN$) of a non-tapped oscillator is better than the phase noise of a quasi-tapped VCO (as already indicated by Eq. (6.57)).

In a similar manner, the phase-noise ratio for the same excess negative conductance ($k_{NT}=k_{QT}$) that is given by Eq. (6.60) shows that a quasi-tapped
VCO has better performance than a non-tapped VCO in this case. This operating condition is depicted in Fig. 6.13, where for the phase noise corresponding to the points A and B \((k_{NT}=k_{QT}=k)\) holds \(PN_{NT}<PN_{QT}\).

![Figure 6.13: K-rails diagram for the same loop gain of NT- and QT-VCOs.](image)

Finally, we can stress that the presented diagrams give a qualitative comparison between differently tapped VCOs. A number of parameters can simultaneously be compared, as it can also be seen to what extent the change in one parameter is reflected in other parameters.

6.6.3 K-LOOP DIAGRAM

The K-loop diagram [30] is used for a full performance characterization of adaptive oscillators. While in the case of the K-rails diagram it is assumed that the LC-tanks of the oscillators are fixed, phenomena related to the change in the resonating tank are described by K-loop diagrams.

The phenomenon of C-gm tuning (Section 6.4) and the resulting sensitivity of the tail current \(I_{TAIL}\) to the tuning voltage \(U_T\) (see Eq. (6.76) and Fig. 6.1) are qualitatively described by means of the diagram that is shown in Fig. 6.14.

Compared to K-rail diagrams, one more axis is added. It refers to the LC-tank conductance and the oscillation frequency. In addition, two more rails are
added \((k_2\text{ and } k_3)\), each corresponding to a different LC-tank, viz., a tank at a lower \((f_L)\) and a tank at an upper oscillation frequency \((f_U)\).

To explain the use of K-loop diagrams we will make one loop, for example, from point (0) to point (4) in the diagram, shown in Fig. 6.14.

Increasing the varactor capacitance results in a lower oscillation frequency \(f_L\) as well as a larger effective tank conductance \(G_{TK,L}\), both related to the right-most rail \(k_2\) in the diagram. The new operating point of the oscillator is found at the intersection of the new k-rail \((k_2)\) and the power consumption level \((P_0)\). As the tail current inserted is at the same level, i.e., \(I_{TAIL0}\), the oscillator state is therefore changed from point (0) to point (1). It can be noticed that at point (1), the voltage swing across the resonator, the loop gain and the phase noise are all decreased.

![Figure 6.14: K-loop diagram for QT-VCOs.](image)

To compensate for such deterioration in performance, the power level (tail current) must be increased for the amount indicated by Eq. (6.76). This corresponds to the next position in the diagram, point (2). At this operating point, the loop gain and the amplitude of the oscillation signal are restored to their previous levels (i.e., before the tuning action; \(v_0\) and \(k_0\)). Moreover, the phase noise can even improve compared to the starting operating point \(PN_0\).
On the other hand, the reduction of the varactor capacitance, and according increase of the oscillation frequency and reduction of the tank conductance, corresponds to point (3) on the middle k-rail, k. As the phase noise, the loop gain, the amplitude of the voltage swing, and the power consumption are at unnecessarily higher levels, the tail current can be reduced for an amount given by Eq. (6.76) so that all specifications are satisfied again. This brings us to point (4). As shown in the diagram, point (4) corresponds to starting point (0). In a similar manner, the left loop is constructed, consisting of points (4) to (8).

On a journey throughout the K-loop diagram, not only can all the previously addressed phenomena be recognized, but also all the trade-offs between power consumption, phase noise and loop gain can be qualitatively interpreted. Ending this journey, let us just name this particular phenomenon “frequency-transconductance tuning for a constant loop gain”. Note that the counterpart of the preceding concept in the circuitry is a simple amplitude control mechanism, as constant loop gain means constant amplitude of the signal across the LC-tank of the oscillator.

6.6.4 AN ALL-ROUND EXAMPLE

An example is now presented addressing the concepts introduced in this chapter and showing usefulness of the K-loop diagram for both qualitative and quantitative representation of the adaptivity phenomena. As in the previous sections, we will refer to the quasi-tapped bipolar VCO (shown in Fig. 6.1) in the forthcoming analysis.

The values of the oscillator parameters are: $f_0=900\text{MHz}$, $2C_t=2\text{pF}$, $Q_L=15$, $L/2=12.5\text{nH}$, $Q_t=4$, $2C_a=1\text{pF}$, $2C_b=1\text{pF}$, $V_{CC}=2\text{V}$, $U_{T0}=1\text{V}$, $\phi=0.5\text{V}$, $a=2$, and $k=2$, where Q_C and Q_L are the quality factors of the corresponding varactors and inductors.

To see what are the effects of both the voltage tuning and the corresponding C_gm tuning, we will use the diagram shown in Fig. 6.15 for the analysis. In addition, it will be shown how the loop gain, the tail current, the effective tank conductance and the phase noise values can be found at any point of the diagram.
First, we will determine the values of the tank conductance for the lower, the central and the upper oscillation frequency. From Eq. (6.1), it is found that the tank conductance equals $G_{TK}=2.05\,\text{mS}$ at the frequency $f_0=900\,\text{MHz}$, while from Eq. (6.2) the tail current is found to be $I_{TAIL}=0.85\,\text{mA}$. For a maximum voltage tuning range of 1V, from Eq. (6.76) the maximum change in the tail current is expected to be $S_{U,T}=0.25\,\text{mA/V}$. In order to sustain oscillations under the same condition (i.e., the loop gain of two), the tail current should be either increased or reduced by this amount as a response to frequency tuning.

Keeping the order of points the same as in Fig. 6.14, points (2) and (3) of the diagram correspond to a tail current of 1.1mA, while points (6) and (7) correspond to a current of 0.6mA. Knowing the loop gain at operating point (2) and referring to the tail current of 1.1mA as the safety start-up current for a new LC-tank, we can calculate the new tank conductance from Eq. (6.2). Corresponding to a lower resonant frequency $f_L=780\,\text{MHz}$, its value is $G_{TK,L}=2.64\,\text{mS}$. This holds for a tuning range of ±120MHz. The loop gain for point (3) is $k=2.6$, after the tuning system is linearized near the loop gain point $k=2$. The parameters of the left loop ((4) to (8)) are calculated following the same procedure.
Finally, the phase-noise ratio PNR and the phase-noise tuning range $PNTR$ can easily be found and allocated to the points of the K-loop diagram. From Eqs. (6.59) and (6.60), the ratio PNR between points (0) and (2) is estimated to be around 1dB, while from Eq. (6.61), the $PNTR$ between points (0) and (3) is calculated to be around 2dB.

6.7 CONCLUSIONS

Enhancing performance of wireless devices to cover multiple standards and provide more services offers more functionality to communication systems, but better performance only if systems can be adapted (i.e., respond actively to varying channel conditions). This necessitates a new design philosophy for analog RF front-end circuits. Therefore, a concept of designing for adaptivity has been introduced in this chapter, establishing a procedure for performance characterization of adaptive oscillators with qualitative and quantitative descriptions of the relationships and trade-offs between oscillator performance parameters.

The concept of phase-noise tuning explains how the designers can trade off RF performance for power consumption of an oscillator in an adaptive way. The extremes of the phase-noise tuning range and the power consumption reduction have been illustrated.

Furthermore, the concept of frequency-transconductance tuning has been presented. The analytical expressions derived show how this concept can be employed in order to achieve full control over the operation of the oscillator. Finally, the performance characterization of oscillators using conceptual K-rail diagrams has been presented. It has been shown how K-rail diagrams can be used to interpret adaptivity phenomena and adaptivity figures of merit of oscillators.
REFERENCES

6. Adaptive Voltage-Controlled Oscillators

Today’s portable communication devices enable a growing variety of applications, ranging from text messaging, telephony and MP3 audio to full video. These devices must maintain connectivity while running multiple applications, they must track position, and (in the near future) be wearable rather than just portable. However, the energy supply for portables is fixed by the size and weight of the batteries in a hand-held device. Consequently, the current consumption of circuitry in hand-holds must be reduced in order to meet these increasing functional and concurrent operational requirements. Limited gains can be made through further improvements in circuit efficiency, radio architectures, and by sharing circuit blocks wherever possible. Another potential solution is circuit adaptivity. This requires scaling parameters such as current consumption to the demands of the signal-processing task at hand.

Demands for new telecom services requiring higher capacities and higher data rates have motivated the development of broadband, third-generation wireless systems. The coexistence of second- and third-generation cellular systems requires multi-mode, multi-band, and multi-standard mobile terminals. To prolong talk time, it is desirable to share and/or switch transceiver building blocks in these handsets, without degrading the performance compared to single-standard transceivers.

In multi-standard terminals, power can be saved by using adaptive circuits that are able to trade off power consumption for performance on the fly [1]. Adaptive RF circuits allow for reduced area, reduced power consumption, and most importantly, have the potential for lower cost in both single-standard and multi-standard terminals.

In this chapter, three design examples of adaptive circuits and systems for hand-held transceivers are presented: a low-power 800MHz voltage-controlled oscillator, a multi-standard second/third-generation (2G/3G) voltage-controlled oscillator, and a multi-standard 2G/3G front-end.
7.1 AN ADAPTIVE LOW-POWER VOLTAGE-CONTROLLED OSCILLATOR

In portable devices, oscillators and other RF circuits are exposed to worst-case conditions only for a short period during operation. Over-designing for the worst-case condition is therefore inefficient. On the other hand, circuit adaptation to varying channel conditions and application requirements ensures lower cost as the adaptivity allows for power savings, reduced silicon area, and longer battery life. Design of an 800MHz adaptive low-power voltage-controlled oscillator is presented in this section.

Operating from a 3V supply, the oscillator achieves -135.8dBc/Hz phase noise at 10MHz offset from the 800MHz oscillation frequency at a current consumption level of 5mA, and a phase noise of -128.6dBc/Hz at 10MHz offset and 1.5mA bias current. This oscillator achieves a phase-noise tuning range of 7dB with a factor 3.3 change in power consumption [2]. For a 0V-3V tuning voltage, a frequency tuning range of 120MHz is achieved (i.e., from 715MHz and 835MHz).

7.1.1 DESIGN FOR ADAPTIVITY OF VOLTAGE-CONTROLLED OSCILLATORS

The quasi-tapped voltage-controlled oscillator [1,2], shown in Fig. 7.1, consists of a resonating LC tank, two capacitive voltage dividers and a cross-coupled transconductance amplifier. \(L \) stands for the tank inductance, \(C_V \) the varactor capacitance, \(C_A \) and \(C_B \) the quasi-tapping capacitances and \(R_D \) the tail-current source degenerative resistance. This oscillator topology is extensively discussed in Chapter 6.

Selection of design parameters for an adaptive oscillator is discussed next. The phase-noise adaptivity figure of merit (Eq. (6.61)) that accounts for a number of oscillator operation conditions and required specifications forms a base for design of adaptive oscillators [3]. For given phase-noise tuning range (PNTR), the maximum loop gain \((k_{MAX}) \) can be determined from Eq. (6.61) (the minimum loop gain is already known, e.g., \(k_{MIN}=2 \)). On the other hand, if the maximum and minimum loop gain values are known, the obtainable PNTR can be determined from Eq. (6.61) (i.e., the range of oscillator adaptation with respect to phase noise).

Furthermore, from the maximum phase-noise requirement and the frequency tuning range requirement, the LC-tank parameters can be determined, i.e., coil inductance and varactor capacitance. Once the resonator
7. Design of Adaptive Oscillators and RF Front-Ends

components are known, the equivalent tank conductance \(G_{TK} \) and the minimum power consumption (current \(I_{TAIL,MIN} \)) can be determined from Eqs. (6.1) and (6.2), respectively.

Finally, from the maximum loop gain on the one hand and the maximum tail current on the other, the minimum power consumption (tail current) and power consumption range can be estimated that provide an oscillator with the required phase-noise tuning range.

For \(k_{MIN}=2 \) (guaranteed start-up condition), \(k_{MAX}=6 \) (expected best phase noise for \(V_B=V_{CC} \)), a quasi-tapping ratio \(n=2 \), and a parameter \(c=r_{BG_{ms-up}} \) of 0.65, a phase-noise tuning range \(PNTR \) of 6.7dB is estimated from Eq. (6.61). For oscillators operating at low loop-gain values, the “linear” phase-noise model, Eq. (6.54), can also be used for estimation of the phase-noise tuning range (Section 6.2.8.1).

![Figure 7.1: An adaptive LC-oscillator.](image-url)
7.1.2 CIRCUIT PARAMETERS OF THE ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR

For a quasi-tapping ratio of $n=2$, the quasi-tapping capacitances $C_A=1\text{pF}$ and $C_{II}+C_B=1\text{pF}$ have been chosen, C_{II} being the base-emitter junction capacitance of devices Q_1 and Q_2 in Fig 7.1.

The reverse biased base-collector junctions of available transistors have been used for variable capacitors (varactors). The quality factor of the varactors is estimated at 15 from simulations (around 800MHz).

Optimized for low-power operation, a relatively large inductance value of 12nH is chosen, which was laid out in 1μm thick top (second) metal layer. The low quality factor of the inductor ($Q=2$) in 800MHz band is the result of the 6Ωcm substrate resistivity, operating frequency and relatively thin metal windings close to the substrate. The 6.25-turn inductor has an outer diameter $d_{OUT}=360\mu\text{m}$, metal width $w=18.5\mu\text{m}$, and metal spacing $s=1\mu\text{m}$.

The equivalent lumped-element model of the on-chip spiral inductor is shown in Fig. 7.2. The model consists of an ideal inductance L, a series resistance R_L (representing the losses in the coil) and an inter-winding capacitance C_L. The oxide capacitance between the spiral and the silicon substrate is modeled by C_{OX}. The substrate resistance and capacitance R_{SUB} and C_{SUB} are added as well, representing the RF signal flow through the silicon substrate.

![Lumped-element model of spiral inductor on silicon.](image)

The model parameters of the inductor are estimated with the phase-noise-inductance (PNL) calculator [4]. The results are shown in Table 7.1.
Table 7.1: Model parameters of the employed integrated inductor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>12nH</td>
</tr>
<tr>
<td>R_L</td>
<td>18Ω</td>
</tr>
<tr>
<td>C_L</td>
<td>80fF</td>
</tr>
<tr>
<td>C_{OX}</td>
<td>0.8pF</td>
</tr>
<tr>
<td>C_{SUB}</td>
<td>40fF</td>
</tr>
<tr>
<td>R_{SUB}</td>
<td>150Ω</td>
</tr>
</tbody>
</table>

A two-stage common collector buffer has been used as an interfacing stage between the VCO and measurement equipment. Its current consumption is 2mA.

A good match is obtained between the results predicted by calculations and simulations on the one hand and the measurement results on the other, validating the design procedure.

7.1.3 MEASUREMENT RESULTS FOR THE ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR

The chip micrograph of the adaptive oscillator is shown in Fig. 7.3. It occupies an area of 1mm2, including bondpads. Wire-bonded into a 20-lead package, it is placed in a commercial test fixture.

For a 3V tuning voltage, a frequency tuning range of 120MHz is achieved, between 715MHz and 835MHz, as shown in Fig. 7.4.

Using a technology with a peak transit frequency $f_T=8GHz$, the VCO achieves a phase noise of -135.8dBc/Hz at 10MHz offset from the 800MHz oscillation frequency at a current consumption of 5mA. A phase noise of -128.6dBc/Hz at 10MHz offset is measured at a current of 1.5mA. The plots of the maximal and the minimal phase noise are shown in Fig. 7.5.

The phase-noise tuning range of 7dB is achieved for a 3.3 times change in power consumption. A phase-noise tuning range of 7.3dB is calculated for the ratio k_{MAX}/k_{MIN} of 3.3 using the “linear” model (Eq. (6.54)).

The frequency-transconductance tuning phenomenon (Section 6.5; [5]) can also be recognized in the oscillator under consideration. Fig. 7.6 depicts the C-g_m tuning.
Figure 7.3: The 800MHz oscillator chip micrograph.

Figure 7.4: Oscillation frequency vs. tuning voltage for the adaptive VCO.
Figure 7.5: Maximum and minimum phase noise at 10MHz offset from the 800MHz oscillation frequency at 5mA and 1.5mA tail currents, respectively.

Figure 7.6: Frequency-transconductance tuning from 800MHz to 715MHz oscillation frequency at 2.5mA tail current.

In this case, the oscillator is tuned to the resonant frequency $f=800$MHz at a tail-current $I_{TAIL}=2.5$mA. The measured output signal power is -19dBm, and it corresponds to a loop gain value k equal to 3. By tuning the resonant frequency to 740MHz, the output power of the oscillation signal changes to
-26dBm, and the VCO’s loop gain k becomes one. Any further reduction of the oscillation frequency at the same power consumption results in disappearance of oscillations as the loop gain k is less than one. This is shown in Fig. 7.6 at left (-70dBm marker). The corresponding points in the K-loop diagram (Fig. 6.11) are point 1 (-70dBm) and point 5 (-19dBm).

Finally, let us stress that in this single-standard application, the adaptivity is utilized as a power saving mechanism by trading performance (7dB of phase noise) for power consumption (factor of 3.3 saving).

7.2 A MULTI-STANDARD ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR

Multi-standard modules (MSMs) can be implemented in various ways:

- MSMs can be implemented as standalone fixed circuits that are designed for the worst-case condition of the most demanding standard [6]. Even though operating conditions might improve or a less demanding standard might be active, they always operate at the highest power consumption levels. This design approach is therefore power inefficient.

- MSMs can be implemented as multiple circuits, i.e., one per standard [7]. Even though simple to implement, this approach requires more silicon area, and is therefore area inefficient. Moreover, when multiple standards operate simultaneously, power consumption increases.

- MSMs can be implemented as standalone, adaptive circuits, by sharing circuit functions across multiple standards. This allows for reduced area and power consumption and, most importantly, has the potential for reduced cost.

An adaptive, multi-standard/multi-band (MS/MB) voltage-controlled oscillator that satisfies phase-noise requirements of both 2nd and 3rd generation wireless standards (DCS1800/WCDMA/WLAN–Bluetooth-DECT) is described in this section. A factor of 12 reduction in power consumption is realized, with a phase-noise tuning range of 20dB by adapting the VCO bias to the desired application. The VCO achieves -123dBc/Hz, -110dBc/Hz and -103dBc/Hz phase noise at 1MHz offset in a 2.1GHz band at supply currents of 6mA, 1.2mA and 0.5mA, respectively.
7. Design of Adaptive Oscillators and RF Front-Ends

The design procedure for the multi-standard adaptive VCO, i.e., the design for the certain phase-noise tuning range, is outlined next. Parameters selection for the multi-standard oscillator and measurement results are discussed afterwards.

7.2.1 DESIGNING FOR ADAPTIVITY OF MULTI-STANDARD VOLTAGE-CONTROLLED OSCILLATORS

The receiver phase-noise requirements (dBc/Hz at 1MHz offset) for five different standards (i.e., DCS1800/WCDMA/WLAN–Bluetooth–DECT) are listed in Table 7.2 [8-12]. We will refer to the DCS1800 standard as a phase-noise demanding (PN-D) standard, to the WCDMA, WLAN and Bluetooth standards as phase-noise moderate (PN-M) standards, and to the DECT standard as a phase-noise relaxed (PN-R) standard.

Table 7.2: Multi-standard/multi-band VCO requirements.

<table>
<thead>
<tr>
<th>MSVCO</th>
<th>DCS1800</th>
<th>WCDMA</th>
<th>WLAN</th>
<th>Bluetooth</th>
<th>DECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN@1MHz [dBc/Hz]</td>
<td>-123</td>
<td>-110</td>
<td>-110</td>
<td>-110</td>
<td>-100</td>
</tr>
</tbody>
</table>

The quasi-tapped bipolar VCO [1] shown in Fig. 7.7 is used to implement the multi-standard adaptive oscillator. Compared to the oscillator of Fig. 7.1, the resonant-inductive degenerated (RID) tail-current source in Fig. 7.7 is implemented with degeneration inductor \(L_{RID} \). Degeneration of the current source is necessary to minimize the phase noise contributed by the bias circuit (Section 6.2.6; [13]). The oscillation signal is delivered to the measurement equipment (50Ω impedance) using an on-chip open-collector buffer and an external transformer balun, \(TR \). Buffering the output from the bases of the transconductor transistors rather than from the LC-tank, the buffer can share the base bias voltage, thereby eliminating output coupling capacitors. Gain of the buffer is set by the emitter-degeneration resistance \(R_E \).

Given the phase-noise requirements listed in Table 7.2, the phase-noise range between the demanding (PN-D) and moderate (PN-M) modes is \(PNTR = 123 - 110 - 20\log(2.4\text{GHz}/1.8\text{GHz}) = 11\text{dB} \). Taking into account the relaxed DECT mode (PN-R), the \(PNTR \) increases to 123-100-20log(2.4/1.8) = 21dB. Therefore, a \(PNTR \) of 21dB is targeted.

After the effects of the noise from the biasing tail-current source are eliminating by means of RID (Eq. (6.27)), the minimum and the maximum
loop gain and tail current can be estimated from Eq. (6.61). Accordingly, a PNTR of 17.4dB can be realized between the loop gain $k_{\text{MIN}}=2$ and $k_{\text{MAX}}=19$. However, if k_{MIN} is 1.5, the tuning range extends to PNTR=21.4dB, which is sufficient to accommodate multiple standards.

Figure 7.7: A resonant-inductive degenerated oscillator with an open-collector buffer.
Once the maximum loop gain is known, the oscillator bias point can be determined. The choice of the base-bias voltage V_B is a compromise between a large output voltage swing and saturation of transconductor devices Q_1 and Q_2 (Fig. 7.7). For maximum loop gain and lowest phase noise, a voltage swing across the bases of the transconductor devices of $v_{S,B,\text{MAX}}=1.2\text{V}$ is estimated from Eq. (6.9). Further, to avoid the saturation of the transistors in the active part of the oscillator, $v_{S,B}$ should satisfy Eq. (6.62), for the convenience given by Eq. (7.1) as well.

$$v_{S,B,\text{MAX}} \leq 2 \frac{V_{CC} - V_B + V_{BE} - V_{CE,\text{SAT}}}{n + 1}$$

(7.1)

The worst-case condition is derived assuming the largest base and the lowest collector potential, and therefore insures proper operation of the transistors in the active part at all times. $V_{CC}=3\text{V}$ is the supply voltage, V_{BE} is the base-emitter voltage, and $V_{CE,\text{SAT}}$ is the collector-emitter saturation voltage. For a capacitive quasi-tapping ratio n of 1.4, a base potential V_B of 2.1V is finally obtained from Eq. (7.1).

7.2.2 CIRCUIT PARAMETERS OF THE MULTI-STANDARD ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR

Tank inductor $L=3\text{nH}$ is chosen as a compromise between low power consumption and high quality factor in the 2.1GHz band. The inductor is fabricated using 4um thick aluminum top metal in a 50GHz SiGe technology. The 3-turn inductor has outer diameter $d_{OUT}=320\text{um}$, metal width $w=20\text{um}$ and metal spacing $s=5\text{um}$. The differentially-shielded symmetric inductor uses a ladder metal filling scheme as shown in Fig. 7.8 [14]. This improves the peak Q-factor by 40\% ($Q_L=25$ around 2.1GHz), but has only a minor effect on the inductor self-resonant frequency. It also satisfies the aggressive metal fill restrictions in modern VLSI backend technologies without compromising RF performance.

The quality-factor of the varactor can also limit the overall tank Q-factor in an integrated oscillator. The quality factor of the collector-base varactor is estimated at $Q_{C}=40$ from simulation. The varactor consists of 2 base-collector diodes with 32 fingers, each 4um wide and 20um long.
The metal-insulator-metal capacitances $C_A=150fF$ ($C_T=90fF$) and $C_B=600fF$ are chosen for a quasi-tapping ratio of 1.4. For effective suppression of the tail-current source noise, L_{RID} is set to 3.4nH using the resonant-tuning design method outlined in Section 6.2.6. The degeneration inductor is realized in 0.85um thick second metal layer, as quality factor for this inductor is not of concern. The inductor outer diameter is $d_{OUT}=140um$, metal width $w=6um$, metal spacing $s=1um$ and it has seven turns.

Finally, the open-collector output buffer is designed with a linearization resistor R_E of 750Ω and a bias current I_B of 1.1mA.

7.2.3 MEASUREMENT RESULTS FOR THE MULTI-STANDARD ADAPTIVE VOLTAGE-CONTROLLED OSCILLATOR

The chip photomicrograph of the multi-standard VCO is shown in Fig. 7.9. It occupies an area of 700x970um², including bondpads. Wire-bonded in a 20 lead RF package, the chip is tested in a metal fixture with filtering on all bias and supply lines, as shown in Fig. 7.10. On the test board, three-stage low-pass LC filters remove low-frequency noise originating from the power supply and bias interconnections. Heavy filtering of the supply and bias lines is needed to remove spurs from the VCO output caused by pick-up from the supply and tuning lines. This unwanted interference would otherwise modulate the VCO in both phase and frequency making accurate phase-noise measurements impossible without filtering.
Figure 7.9: The photomicrograph of the multi-standard VCO.

Figure 7.10: Packaged VCO IC on PCB in test fixture.
For a 3V supply, a frequency tuning range of 600MHz (i.e., output from 1.8GHz to 2.4GHz) is measured, as shown in Fig. 7.11. In order to relax the requirement of a large frequency tuning range from a variable capacitor, switched capacitor banks can be used [15]. They allow for switching between frequency bands (standards), whereas varactors perform fine frequency tuning within a band. For example, the complete 2.4GHz band can be covered using this method.

![Figure 7.11: \(f_0 \)-tuning curve for a 3V tuning voltage.](image1)

![Figure 7.12: Phase noise at 1MHz offset in the 2.1GHz band.](image2)
Plots of the measured phase noise at 1MHz offset in the 2.1GHz mid-frequency band is shown in Fig. 7.12. Due to low gain in the output buffer, an output signal in order of -20dBm (maximum) is measured in a 50Ω system. This results in a noise floor for the phase-noise measurement of -130dBc/Hz, as seen in Fig. 7.12.

The operating conditions accompanying the measurements shown in Fig. 7.12 are listed in Table 7.3. As can be seen from this table, by adapting the bias tail current between 0.5mA/0.9mA and 6mA, a phase-noise tuning range of 20dB/15dB is achieved. This satisfies the requirements of five different wireless standards, as desired. Note that by following the measured phase-noise slope in the range 100KHz-1MHz, a phase noise better than -133dBc/Hz at a 3MHz offset is expected, fulfilling the stringent DCS1800 receiver requirement at this offset as well.

Table 7.3: Oscillator Performance in 2.1GHz band.

<table>
<thead>
<tr>
<th>PhaseNoise@1MHz</th>
<th>Loop gain</th>
<th>I_TAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-123dBc/Hz</td>
<td>20</td>
<td>6mA</td>
</tr>
<tr>
<td>-108dBc/Hz</td>
<td>3</td>
<td>0.9mA</td>
</tr>
<tr>
<td>-103dBc/Hz</td>
<td>1.7</td>
<td>0.5mA</td>
</tr>
</tbody>
</table>

The power-consumption figure of merit,

\[FOM_1 = L (\Delta f_{OFFSET} / f_0) 2V_{CC}I_{TAIL} = 178, \]
and the tuning-range figure of merit,

\[FOM_2 = FOM_1(f_0 / \Delta f_{TUNE})^2 = 167, \]
of the oscillator under consideration are compared with other designs from the recent literature [16-19] in Table 7.4 (modulus dB). \(L \) stands for phase noise, \(\Delta f_{OFFSET} \) offset frequency, and \(\Delta f_{TUNE} \) tuning range. The adaptive VCO [1] shows a good compromise between phase-noise and frequency-tuning performance. Referring to Leeson’s phase-noise formula [20], Eq. (7.4),

\[L = F \frac{KT}{2P_{SIGNAL}Q_{TANK}^2}(\frac{f_0}{\Delta f_{OFFSET}})^2. \]
FOM2 appears to be a useful VCO figure of merit. It accounts for the frequency dependency of the phase noise as well as the power consumption and the tuning range of the oscillator, the latter related to the LC-tank Q-factor.

Table 7.4: Power-consumption and tuning-range figures of merit.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Process</th>
<th>$FOM1$ [dB]</th>
<th>$FOM2$ [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[16]</td>
<td>SiGe</td>
<td>178</td>
<td>148</td>
</tr>
<tr>
<td>[17]</td>
<td>SiGe</td>
<td>174</td>
<td>148</td>
</tr>
<tr>
<td>[18]</td>
<td>CMOS</td>
<td>172</td>
<td>152</td>
</tr>
<tr>
<td>[19]</td>
<td>CMOS</td>
<td>183</td>
<td>150</td>
</tr>
<tr>
<td>This work</td>
<td>SiGe</td>
<td>178</td>
<td>167</td>
</tr>
</tbody>
</table>

The procedure of designing for adaptivity can be applied to any standard. The standards chosen in this exploratory design serve a proof of concept of designing for adaptivity and validate the feasibility of the design procedure outlined.

7.3 MULTI-STANDARD ADAPTIVE RF FRONT-ENDS

Transceivers for multi-mode and multi-standard telephony are mostly implemented by replicating the RF front-end for each operating band or standard [7]. This allows applications such as GSM and WCDMA to operate concurrently (i.e., one can receive or make a call with either system at any time). Although high integration levels are possible in RF IC technologies, the increase in RF hardware required to implement this type of multi-standard radio increases the total current consumption, thereby reducing the overall talk time. In such situations, the ability to share circuit functions between different standards in an adaptive multi-standard RF front-end offers the advantages of reduced power consumption, less chip area, longer talk time, and, most importantly, has the potential for lower cost.

In this section, the results of an exploratory circuit design for a multi-standard adaptive RF receiver front-end (MSAFE) are described. The multi-standard adaptive RF front-end (oscillator and mixers) satisfies the requirements of the considered 2nd and 3rd generation standards. This design allows for adaptation between different standards by trading RF performance
for current consumption, which ranges from 9.9mA for the relaxed mode (2.4GHz DECT) to 20.2mA for the highest performance mode of operation (1.8GHz DCS1800). The quadrature downconverter (single-complex mixer-oscillator) has I_{IP3} of +5.5dBm, single-side band (SSB) N_F of 13.9dB (50Ω) and conversion gain (voltage and/or power) of -1.6dB, while drawing 10mA from a 3V supply. The adaptive VCO achieves -123dBc/Hz and -103dBc/Hz phase noise at 1MHz offset in a 2.1GHz band for bias current levels of 6mA and 0.5mA, respectively.

The following section describes the selection of performance for multi-standard adaptive RF front-end circuits. The design of the quadrature downconverter circuits used in the experimental implementation is then described. Finally, the measurement results are presented demonstrating that a 2:1 saving in power consumption is possible when adaptivity is employed.

7.3.1 SYSTEM CONSIDERATIONS FOR MULTI-STANDARD ADAPTIVE RF FRONT-ENDS

Concurrent operation of different wireless standards using a common RF receiver poses demands on performance (e.g., band selection, image-rejection and noise/power match prior to low-noise amplification) that are difficult to meet using a single RF path [21]. Therefore, multi-standard receivers typically use duplicate circuit blocks, or even multiple RF front-ends (i.e., one for each standard).

![Multi-standard receiver](image7_13.png)

Figure 7.13: A multi-standard receiver.
The multi-standard receiver, shown in Fig. 7.13, is a compromise between these two approaches. Impedance matching, packaging and prefiltering requirements are relaxed and simplified by using multiple low-noise amplifiers. A single quadrature or image-reject downconverter can then be used to interface the RF and baseband sections of the receiver. An RF switch is used to select the standard of interest. If the VCO and mixer performance are adequate to cover the range of signals anticipated for each application, the downconverter enables a multi-standard receiver realization with a single circuit block (the MSAFE IC in Fig. 7.13).

Analog and digital baseband signal processing functions could be used to monitor quality of service (e.g., error rate of the detected bit sequences) and adjust the receiver parameters (e.g., tune a single bias current or multiple currents) in real-time to meet the requirements of a given standard.

For this work, the multi-standard adaptive downconverter is intended to operate as part of a zero-IF receiver for all standards except DCS1800, where low-IF operation is assumed. The MSAFE test circuit consists of an adaptive voltage-controlled oscillator, oscillator buffers, a two-stage poly-phase filter to generate in-phase (I) and quadrature-phase (Q) local oscillator signals, mixer buffer amplifiers and dual balanced mixers, as illustrated in Fig. 7.13.

Using mixer-oscillator models (Section 3.3), a single-channel representation of the adaptive RF front-end (Fig. 7.13) is shown in Fig. 7.14, consisting of an LNA, a single-complex mixer-oscillator (SC-MO; quadrature-downconverter) and (quadrature) baseband circuitry. Referring to Fig. 7.14, we will discuss the procedure for the selection of the specifications for to the multi-standard receiver blocks.

![Figure 7.14: Simplified RF front-end receiver model.](image)

7.3.1.1 System Requirements for a Multi-Standard Receiver

The noise (noise figure and phase noise) and linearity requirements (IIP3) for 1.8GHz-DCS1800, 2.1GHz-WCDMA and 2.4GHz-WLAN(802.11b)/Bluetooth/DECT standards are listed in Table 7.5 [8-12, 22-25]. These
standards are chosen to shown the feasibility of the adaptivity design concept for multi-standard applications. The procedure of designing for adaptivity can be applied to any standard.

The MSAFE operating modes are classified as: demanding (D), moderate (M), and/or relaxed (R) with respect to phase noise, noise figure and linearity requirements. Table 7.6 summarizes the noise and linearity requirements for different modes of operation for the system shown in Fig. 7.14 (thus prior to an LNA).

Table 7.5: Requirements for different standards prior to an LNA.

<table>
<thead>
<tr>
<th>MSAFE</th>
<th>DCS1800</th>
<th>WCDMA</th>
<th>WLAN</th>
<th>Bluetooth</th>
<th>DECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0 [GHz]</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>9 (D/M)</td>
<td>6 (D)</td>
<td>10 (M)</td>
<td>23 (R)</td>
<td>18 (R)</td>
</tr>
<tr>
<td>$IIP3$ [dBm]</td>
<td>-9 (D)</td>
<td>-9 (D)</td>
<td>-12 (M)</td>
<td>-16 (R)</td>
<td>-20 (R)</td>
</tr>
<tr>
<td>$PN@1MHz$</td>
<td>-123 (D)</td>
<td>-110 (M)</td>
<td>-110 (M)</td>
<td>-110 (M)</td>
<td>-100 (R)</td>
</tr>
</tbody>
</table>

Table 7.6: Performance requirements for different modes (desired specs).

<table>
<thead>
<tr>
<th>desired specification / mode</th>
<th>D (demanding)</th>
<th>M (moderate)</th>
<th>R (relaxed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF_D [dB]</td>
<td>6</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>$IIP3_D$ [dBm]</td>
<td>-9</td>
<td>-12</td>
<td>-16</td>
</tr>
</tbody>
</table>

Specifications for the multi-standard receiver blocks will be determined with the aid of Eqs. (4.3)-(4.5), (4.8)-(4.16), and the procedure outlined in Chapter 4. Accordingly, the noise and linearity equilibrium points are determined first. Using Eq. (4.4) and the inputs of Table 7.6, the equilibrium parameters are calculated as given by Table 7.7 (a three-block system of Fig. 7.14 is considered; $n=3$).

Table 7.7: Receiver equilibrium performance.

<table>
<thead>
<tr>
<th>specification/mode</th>
<th>demanding</th>
<th>moderate</th>
<th>relaxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF_E [dB]</td>
<td>1</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>$IIP3_E$ [dBm]</td>
<td>-4</td>
<td>-7</td>
<td>-11</td>
</tr>
</tbody>
</table>
Required specifications for receiver blocks in different modes of operation will be determined in the following sections with the aid of the equilibrium design requirements given in Table 7.7.

Design procedure for an adaptive multi-standard circuit is different from design for a single standard. Figures of merit referring to a number of operating conditions and specifications are required for multi-standard designs, i.e., the adaptivity figures of merit (AFOM). For oscillators, the phase-noise tuning range \(PNTR \) (Section 6.4 and [3]) is used to specify the difference between the maximum and minimum achievable phase noise. Useful AFOM for mixers and amplifiers are the ranges of noise figure and the intercept point that are realized when a particular parameter, e.g., bias current, is adjusted (refer to Section 6.3).

Referring to Table 7.6 and Section 7.2.1 (Table 7.2), the phase-noise tuning range \(PNTR \), the noise-figure tuning range \(NFTR \), and the 3\(^{rd}\)-order input-intercept point tuning range \(IIP3TR \) are given in Table 7.8 for the MSAFE system.

\[
\begin{array}{|c|c|c|}
\hline
PNTR & NFTR & IIP3TR \\
21 \text{ dB} & 12 \text{ dB} & 7 \text{ dB} \\
\hline
\end{array}
\]

7.3.2 A MULTI-STANDARD ADAPTIVE QUADRATURE SIGNAL GENERATOR

The VCO shown in Fig. 7.7 (Section 7.2 and [1]) is used to implement the adaptive oscillator (without open-collector buffers shown in Fig 7.7). As the procedure for the selection of parameters of this adaptive VCO has already been discussed in detail in Section 7.2.1, in this section we will focus on the circuitry proceeding the VCO: two common-collector buffers, a polyphase filter (PPF) and two differential amplifiers, as shown in Fig. 7.15.

The common-collector buffers \(Q_{cc} \) are added as an interface between the polyphase filter and the oscillator (from bases of \(Q_1, Q_2 \) in Fig. 7.7). They consist of 0.5x1.7um\(^2\) transistors and consume 1mA each.

The quadrature signals used to drive the mixers are derived from a two-stage polyphase filter. The first and second stage \(R-C \) filter sections provide rejection at 1.75 and 2.15GHz, respectively. This allows for more image-rejection in the 1.8GHz band where low-IF operation is presumed. Image-
rejection requirements are relaxed around 2.4GHz, as the zero-IF operation is assumed in this band.

The inevitable attenuation of the passive polyphase filter necessitates a differential buffer amplifier for the oscillation signal before driving the mixer quad (Fig. 7.15). The buffer provides 160mVpk oscillation signal swing across 150Ω load resistors while consuming 1.1mA of bias current.

![Figure 7.15: Buffers, a polyphase filter, and differential amplifiers.](image)

7.3.3 A MULTI-STANDARD ADAPTIVE QUADRATURE DOWNCONVERTER

In order to determine the required specifications for the MSAFE quadrature downconverter blocks, we will apply the following procedure (see Chapter 4):

I. determine the deviation \(A \) from the noise and linearity equilibrium performance for an LNA using Eqs. (4.11) and (4.14).

II. determine the deviation \(B \) from the noise and linearity equilibrium performance for the quadrature downconverter (single-complex mixer-oscillator, SC-MO) using Eq. (4.5) and the deviation \(A \).
III. determine the noise and linearity performance for the quadrature
downconverter using Eqs. (4.12) and (4.15) and the deviations A and B.

Without loss of generality, we will assume that the noise and linearity
performance of the (quadrature) baseband circuitry is at equilibrium, i.e.,
$C_{NF}=C_{IIP3}=0$. Typical LNA performance is assumed (see Table 4.1):
$NF_1=2$dB, $IIP3_1=1$dBm and voltage gain (from source) $VG_1=13$dB (for
example, for 50Ω source and load impedances).

In accordance with the design procedure proposed (steps I-III), deviations
from the equilibrium of the LNA noise and linearity performance in different
modes of operation are calculated from Table 7.7 (step I). The results are
shown in Table 7.9.

Table 7.9: NF and $IIP3$ deviations from the LNA equilibrium point in
different modes of operation.

<table>
<thead>
<tr>
<th>deviation/mode</th>
<th>demanding</th>
<th>moderate</th>
<th>relaxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{NF} [dB]</td>
<td>1</td>
<td>-3</td>
<td>-11</td>
</tr>
<tr>
<td>A_{IIP3} [dB]</td>
<td>-5</td>
<td>-8</td>
<td>-12</td>
</tr>
</tbody>
</table>

Table 7.10 is generated from Table 7.9 (step II). It shows the difference
between the desired and equilibrium performance for the quadrature
downconverter.

Table 7.10: NF and $IIP3$ deviations from the equilibrium points of the
quadrature downconverter in different modes of operation.

<table>
<thead>
<tr>
<th>deviation/mode</th>
<th>demanding</th>
<th>moderate</th>
<th>relaxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{NF} [dB]</td>
<td>-1.3</td>
<td>1.75</td>
<td>2.8</td>
</tr>
<tr>
<td>B_{IIP3} [dB]</td>
<td>2.26</td>
<td>2.65</td>
<td>2.87</td>
</tr>
</tbody>
</table>

Finally, from the inputs of Tables 7.8, 7.9 and 7.10, the required noise and
linearity performance of the quadrature downconverter (Fig. 7.14) are
determined as given in Table 7.11 (step III).
Table 7.11: Required performance for the quadrature downconverter.

<table>
<thead>
<tr>
<th>Specification/Mode</th>
<th>Demanding</th>
<th>Moderate</th>
<th>Relaxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NF_2) [dB]</td>
<td>12.7</td>
<td>19.75</td>
<td>28.8</td>
</tr>
<tr>
<td>(IIP_3) [dBm]</td>
<td>6.74</td>
<td>3.35</td>
<td>-0.87</td>
</tr>
</tbody>
</table>

Now, the \(NFT_R \) and \(IIP_{3TR} \) of the quadrature downconverter (SC-MO) can be determined from Table 7.11. When the NF and IIP3 of the SC-MO are adapted between 12.7dB and 28.8dB, and 6.74dBm and -0.87dBm, respectively, the quadrature downconverter satisfies the requirements of the considered standards: \(NFT_{R2} \) is 16dB, and \(IIP_{3TR2} \) is 7.6dB.

Assuming a voltage gain \(VG_2 \) of 0dB for the quadrature downconverter (from signal source; see Section 2.1), the typical performance for the baseband block (demanding mode) are obtained from Eqs. (4.13) and (4.16): \(NF_3 \) of 14dB and \(IIP_{33} \) of 9dBm \((C_{NF} = C_{IIP}_{3} = 0\text{dB})\) [26].

The results obtained confirm that the proposed specification-selection scheme imposes realistic (realizable) requirements on the receiver circuits, covering all the standards of interest.

After the downconverted low-frequency signals (low-IF operation) are summed, the image signal will be removed as well as the noise residing in the frequency band of the image signal. As a result of this quadrature combining, the signal power increases 2 times, whereas the noise power stays the same (noise from 2 channels in a \(\frac{1}{2} \) bandwidth compared to the bandwidth of one a single quadrature channel) [27]. Accordingly, the SNR of the complete quadrature downconversion block (e.g., mixers, filters, variable-gain amplifiers) increases 2 times after quadrature combining [27]. The 3dB net gain in SNR corresponds to halving the noise contribution of quadrature circuits.

Therefore, the noise figure requirement for the quadrature downconverter relaxes 3dB when referred to the output of a quadrature mixer (e.g., the NF requirement for the SC-MO (thus for a single-channel) is 12.7dB, whereas the SSB noise-figure requirement for the mixer in a quadrature configuration is 15.7dB; Table 7.11). For zero-IF operation, only one noise bandwidth contributes to the noise figure (the noise in the band of signal), and therefore the double-side band (DSB) noise figure is considered in this case (which is equal to SSB noise figure after the rejection of the image (noise) band). More detail on the noise performance of the quadrature downconverter is given later in this chapter (Section 7.3.4, interpretation of measurement results).

Before closing the discussion on the selection of the specifications, we will shortly pinpoint the effects of 2\(^{nd}\)-order intermodulation distortion on the
linearity of the system. As IM2 products fall close to DC, they interfere with the desired signal in zero-IF receivers (together with IM3 products).

However, the distribution of IIP_2 to the receiver building blocks is somewhat different from the IIP_3 distribution. Namely, the IM3 products lying in the desired signal band pass from an LNA to a mixer, whereas the IM2 products from an LNA are filtered by, for example, a resonating LNA load or AC-coupling between the LNA and mixer. Therefore, the IIP_2 specifications of the mixer (or SC-MO in Fig. 7.14) determine this type of distortion for a complete receiver. Typically, a receiver IIP_2 in excess of 45dBm would suffice for the standards under consideration (i.e., a SC-MO IIP_2 of 58dBm for the assumed LNA gain) [28].

7.3.3.1 Mixer Circuit Parameters

The schematic of the double-balanced mixer that is used to implement the quadrature downconverter (SC-MO) is shown in Fig. 7.16 [29].

![Mixer schematic](image)

Figure 7.16: Mixer schematic.
The mixer consists of a class-AB input stage (Q_{M1-M4}) for improved linearity [30], cascoded by the switching quad Q_{M5-M8}. The single-ended input is converted into a differential current via common-base stage Q_{M1} and current mirror Q_{M2}, Q_{M3}. Distortion is further suppressed and the RF input impedance match improved by resistors $R_{M1}-R_{M4}$. Transistor Q_{M4} improves isolation in the input stage and attenuates local oscillator leakage to the RF input.

The transistors and resistors are sized to optimize conversion gain, noise figure, and linearity. For the mixer input stage, transistors Q_{M1-M4} have a length/width ratio of 40um/0.5um and resistors R_{M1-M4} are 21Ω. For the switching quad, transistors Q_{M5-M8} have a length/width ratio of 8um/0.5um. The mixer performance parameters can be adaptively adjusted by changing the mixer bias current, which is set by the voltage applied to the bases of Q_{M1} and Q_{M4}.

Simulations show that a factor of two reduction in power consumption can be achieved between the moderate and demanding modes of operation for the mixer.

7.3.4 EXPERIMENTAL RESULTS FOR THE MULTI-STANDARD ADAPTIVE RF FRONT-END

The 0.65x1.0mm² MSAFE testchip (excluding bondpads), shown in Fig. 7.17, is wirebonded into a 32-pin quad package for testing [31].

A custom printed-circuit board (see Fig. 7.18) with bias and supply line filtering was designed for testing. The differential quadrature IF signals (I and Q) are converted to single-ended form via external transformers with a 2:1 turns ratio, giving an effective mixer load of 200Ω. A 50Ω quadrature hybrid (70MHz IF) is then used for final IF (intermediate frequency) signal combining.

The VCO performance was characterized using a separate test circuit [1]. Operating from a 3V supply, the adaptive VCO achieves a tuning range of 600MHz, ranging from 1.8GHz to 2.4GHz. A plot of the phase noise measured in the 2.1GHz band is shown in Fig. 7.18. The operating conditions are summarized in Table 7.12.

Table 7.12: Measured multi-standard VCO performance in a 2.1GHz band.

<table>
<thead>
<tr>
<th>PhaseNoise@1MHz</th>
<th>-123dBc/Hz</th>
<th>-110dBc/Hz</th>
<th>-103dBc/Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Ttail} [mA]</td>
<td>6 (D)</td>
<td>1.2 (M)</td>
<td>0.5 (R)</td>
</tr>
</tbody>
</table>
Figure 7.17: MSAFE IC photomicrograph.

Figure 7.18: Packaged IC on PCB test fixture.
By adapting the bias tail current between 0.5mA and 6mA, a phase-noise tuning range of 20dB is achieved, which satisfies the requirements of five different standards. In addition, the VCO allows a factor of 12 reduction in power consumption when tuned from the 1.8GHz D-mode to the 2.4GHz R-mode.

After de-embedding the measurement results of the test set-up (Fig. 7.20), the MSAFE performance parameters (i.e., SC-MO in Fig. 7.14) have been determined (as they will be in a complete receiver).

The corresponding test set-up gain parameters (voltage gain and power gain) and noise parameters (noise power) are indicated for each block in Fig. 7.20 [25,27]. The signal voltage is denoted as V, the signal power as P, the source noise power as N, the mixer noise power as N_M (we assume that I-mixer and Q-mixer noise contributions are equal and uncorrelated), BW stands for the occupied signal bandwidth, and α and β for the voltage and power gain from the input to the output of the quadrature mixers, respectively. As a 10dB noise figure of a mixer already corresponds to a 500Ω equivalent noise resistance, which is much larger than the noise power of a 50Ω source, we can assume that $N_M \gg N$. Note that the linearity parameter (IIP_3) is not shown in the diagram, as both the signals (1st- and 3rd-order components) and the gain proceeding mixers scale equally.

Based on the transformations shown in Fig. 7.20, the test set-up performance (power addition), the performance converted to the quadrature mixers in the test set-up and the performance converted to the mixers in the
single-channel representation (i.e., SC-MO) of the receiver (see Section 7.3.3) are compared in Table 7.13.

The actual image rejection (in the low-IF mode) prior to detection is accounted for in the noise figure result of the quadrature downconverter (SC-MO). However, its gain corresponds to that of a single mixer in the test set-up (not the setup in Fig. 7.20, but the quadrature mixer output drives one of the quadrature baseband circuits in a complete receiver; see Section 7.3.3). G_M stands for the measured (test set-up) power gain, NF_M the measured noise figure and $IIP3_M$ the measured 3rd-order input-intercept point of the test set-up (VG_M stands for the voltage gain from the source of the measurement system).

The noise figure of the SC-MO (the SSB noise figure with the rejection of the image noise band and referred to 50Ω) is 13.9dB (the single signal path,
Fig. 7.14. For zero-IF operation, the noise bandwidth is the same as in the low-IF mode after image (noise) rejection. The reported noise figure for the test set-up (low-IF) is also the noise figure for the zero-IF mode (13.9dB).

The linearity is characterized by an IIP_3 of 5.5dBm. IIP_3 can be traded off for NF, a larger oscillator voltage swing reduces mixer noise figure, but can degrade its linearity, whereas a lower gain of the LNA improves receiver linearity but degrades its noise figure.

The measured IIP_{22}, important for zero-IF operation, is 51dBm. An improvement of around 5dB can be expected after low-frequency baseband filtering [24,25]. Moreover, increasing the amplitude of the applied quadrature VCO signals (at the cost of increased power consumption of the VCO and/or differential amplifiers) improves the 2nd-order intermodulation distortion [32].

On-package capacitors on the output signal lines (10pF at each IF output) filter high-frequency output signals, and for the 70MHz IF used in testing, they attenuate the desired signal. Therefore, at the IF of the standards considered (MHz order), the gain of the quadrature blocks is 3dB better and equals -1.6dB. An even larger gain can be achieved if larger mixer load impedance is used (e.g., 2x150Ω mixer load in a receiver setup would result into mixer voltage gain of 1.9dB).

The measured image-rejection of 20dB is satisfactory for all standards except DCS-1800 when it employs a low-IF architecture. However, it could be improved if the quadrature combining is implemented on-chip at baseband (or in a digital back-end), or if a 3-stage polyphase filter is implemented for oscillator quadrature signal generation.

Isolation between the oscillator port of the quadrature downconverter and the input (RF) port is 45dB.

The quadrature downconverter consumes 10mA (2 mixers) in the D-mode.

Control of the circuits’ bias currents could be realized by additional baseband circuitry.

The hypothetical multi-standard receiver has the potential to meet the system specifications in the demanding mode as summarized in Table 7.14 (see Section 7.3.3).

<table>
<thead>
<tr>
<th>Performance</th>
<th>LNA</th>
<th>SC-MO</th>
<th>BB</th>
</tr>
</thead>
<tbody>
<tr>
<td>VG [dB]</td>
<td>13</td>
<td>1.9 (-1.6)</td>
<td>-</td>
</tr>
<tr>
<td>NF [dB]</td>
<td>2</td>
<td>13.9</td>
<td>13 (10)</td>
</tr>
<tr>
<td>IIP_3 [dBm]</td>
<td>1</td>
<td>5.5</td>
<td>11 (8)</td>
</tr>
</tbody>
</table>
Due to relaxed requirements in the 2.4GHz band (R-mode), a considerable power consumption reduction can be realized with sufficient functionality. Table 7.15 indicates to what extent the MSAFE performance can be relaxed while satisfying the required specifications.

The total power consumption of the MSAFE testchip (VCO, 2 mixers and buffers) is varied from standard to standard, as indicated in Table 7.15. By trading power consumption for performance in an adaptive way, this multi-standard adaptive front-end offers more than a factor of 2 reduction in power/current consumption when switched between demanding (D) and relaxed (R) modes of operation.

Table 7.15: MSAFE power consumption in different modes of operation.

<table>
<thead>
<tr>
<th></th>
<th>DCS1800</th>
<th>WCDMA</th>
<th>WLAN</th>
<th>Bluetooth</th>
<th>DECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{tot} [mW]</td>
<td>>60.6</td>
<td>>48.6</td>
<td><46.2</td>
<td><31.2</td>
<td><29.7</td>
</tr>
</tbody>
</table>

7.4 CONCLUSIONS

In single-standard applications, adaptivity can be utilized as a power saving mechanism, thereby enhancing the overall RF system performance. In multi-standard applications, sharing functional blocks between different standards using adaptive multi-band/multi-standard circuits offer reduced power consumption and chip area, and may reduce overall cost.

A proof-of-concept 800MHz adaptive voltage-controlled oscillator design has been described in this chapter, allowing for a phase-noise tuning range of 7dB and more than a factor three saving in power consumption.

A $2^{nd}/3^{rd}$ generation multi-standard adaptive VCO design - operating in DCS1800, WCDMA and WLAN-Bluetooth-DECT modes - has also been presented. It satisfies the phase-noise requirements of five different standards at 18mW, 3.6mW and 1.5mW power consumption, respectively.

The exploratory $2^{nd}/3^{rd}$ adaptive multi-standard front-end test circuit design satisfies the requirements of DCS1800, WCDMA, WLAN, Bluetooth, and DECT standards at current consumption levels of 20.2mA, 16.2mA, 15.4mA, 10.4mA and 9.9mA, respectively.
REFERENCES

Adaptive RF Front-End Circuits

7. Design of Adaptive Oscillators and RF Front-Ends

CONCLUDING REMARKS

The communication devices of both today and the future will have not only to allow for a variety of applications, ranging from simple characters, via speech, audio, and graphics to video, but they will also have to maintain connection with many other devices rather than with a single base station, in a variety of environments. Extension of capabilities of wearable and wireless devices depends critically on battery endurance, as batteries continue to determine both the lifetime and size of mobile equipment.

The combination of huge functionality requirements on the one hand and a small energy supply on the other argues for the development of both adaptive low-power hardware and adaptive low-power software. Simply, as consumers’ demands outstrip the cost benefits achieved by Moore’s Law and low-power RF design, further improvements can be found in adaptivity. This eventually leads to even smaller sizes, longer standby and active times and enhanced functionality of mobile devices.

To support telecom trends such as provision of various services from different standards (text, audio, video, telephony), smooth migration towards future generation of wireless standards with higher capacities and higher data-rates for multimedia applications, and device wearability, integrated designs are required that can operate across multiple standards within one device. By sharing building blocks, adaptive multi-standard low-power RF front-ends gain advantage over their predecessors: they use a smaller chip area, consume less power, and have a potential for lower overall cost.

8.1 SUMMARY

RF-design phenomena have been investigated both at the level of RF-system design and RF-circuit design. In the remainder of this section, an overview of the results achieved is given.
8.1.1 INTRODUCTION

The thesis “case” has been made in Chapter 1. “Why adaptive, why multi-standard, and why low-power RF design?” is a corner-stone question of the thesis, encompassing various issues relevant to RF design. Many system and circuit level design challenges related to the “case” have been systematically treated throughout the thesis.

8.1.2 RF CIRCUIT PERFORMANCE PARAMETERS

A number of definitions essential to RF design have been outlined in Chapter 2. Gain, nonlinearity and noise parameters have been revisited, followed with a discussion on the dynamic range and over-all performance of RF systems.

8.1.3 SPECTRUM-SIGNAL TRANSFORMATION

Combining complex signal processing techniques with signal and spectral presentations allows designers to both characterize and understand various phenomena related to RF front-ends.

An all-encompassing spectral analysis method in the form of a spectrum-signal transformation has been introduced in Chapter 3, addressing the issue of consistent presentation of transformation of signals and their spectra in the receive path of an RF front-end.

Mixer-oscillator models have been defined, offering a full interpretation of how both signals and spectra are transformed from the input to the output of different receiver topologies.

Finally, the application of mixer-oscillator models has been extended for the calculation of image-rejection ratio in quadrature downconverters.

8.1.4 SELECTION OF PERFORMANCE PARAMETERS FOR RF FRONT-END CIRCUITS

In Chapter 4, a procedure for allocation of the performance parameters to RF front-end circuits has been proposed. By optimizing the system performance with respect to the ratio F/P_{iIP3} (the noise factor over the input-referred 3rd-order power intercept point), an optimal dynamic range design point has been determined, satisfying both the noise and the linearity requirements of the system.
It has been shown that there exists an equilibrium design point for which the contributions of each block performance parameter to the equivalent system performance parameter are equal. Furthermore, the equilibrium design point coincides with both design point for the optimal dynamic range and design point for the equal improvement of noise and linearity performance with respect to the requirements. Finally, some design trade-offs in a single RF front-end circuit are outlined using the K-rail diagram. Referring not only to one, but rather to a set of operating conditions and a set of design points, these diagrams describe relationships and trade-offs between performance parameters of RF circuits.

8.1.5 ADAPTIVITY OF LOW-NOISE AMPLIFIERS

Chapter 5 discusses adaptivity phenomena of low-noise amplifiers. Adaptivity figures of merit (i.e., tuning ranges) have been introduced, viz., input-resistance tuning range, voltage-gain tuning range, noise-figure tuning range, and tuning range of input-referred 3rd-order intercept point. These figures have illustrated how low-noise amplifiers can trade performance for power consumption in an adaptive manner. Amplifier K-rail diagrams have been used to describe conceptually design trade-offs in low-noise amplifiers.

8.1.6 ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS

A concept of design for adaptivity of oscillators has been outlined in Chapter 6. It establishes a procedure for performance characterization of adaptive oscillators with qualitative and quantitative descriptions of the relationships and trade-offs between oscillator performance parameters.

The concept of phase-noise tuning has been introduced, explaining how oscillators can trade performance for power consumption in an adaptive way. The extremes of the phase-noise tuning range and the achievable power consumption reduction have been shown.

The concept of frequency-transconductance tuning has been further elaborated on. The derived analytical expressions show how this concept can be employed in order to achieve control over the operation of the oscillator that is being changed because of the frequency tuning.

Conceptual K-rail diagrams have been used for the characterization of the oscillator performance. It has been shown how K-rail diagrams can be used for interpreting various phenomena and various adaptivity figures of merit of oscillators. Trade-offs between oscillator parameters, such as voltage swing,
LC-tank conductance, power consumption, phase noise and loop gain, have been both qualitatively and quantitatively described using K-rail diagrams.

8.1.7 DESIGN OF ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS AND ADAPTIVE RF FRONT-ENDS

In single-standard applications, adaptivity can be utilized as a *power saving mechanism*, thereby enhancing the overall RF system performance. By sharing functional blocks between different standards, adaptive circuits for multi-band/multi-standard applications offer reduced power consumption, smaller chip area and may reduce overall cost. Chapter 7 has illustrated these issues with two oscillator IC designs and an RF front-end design.

A proof-of-concept 800MHz adaptive voltage-controlled oscillator design has been described. For a phase-noise tuning range of 7dB, more than a factor three saving in power consumption has been achieved.

In addition, a 2nd-generation/3rd-generation multi-standard adaptive voltage-controlled oscillator design has also been presented, operating in DCS1800, WCDMA and WLAN-Bluetooth-DECT modes. It satisfies the phase-noise requirements of five different standards at 18mW, 3.6mW and 1.5mW power consumption, respectively.

Finally, an exploratory 2nd-generation/3rd-generation adaptive multi-standard front-end test circuit design has been presented. The design satisfies the requirements of DCS1800, WCDMA, WLAN, Bluetooth, and DECT standards at current consumption levels of 20.2mA, 16.2mA, 15.4mA, 10.4mA and 9.9mA, respectively.
REAL-TO-COMPLEX-TO-REAL TRANSFORMATION

An application of the introduced SC-MO models is found in the Weaver architecture [1] shown in Fig. A.1a. Using two SC-MO models, this topology can be presented by Fig. A.1b. Here both conversions take place, i.e., a real-to-complex and a complex-to-real conversion with the corresponding SC-MO models.

![Diagram](a) (b)

Figure A.1: (a) The Weaver architecture, (b) mixer-oscillator model.

Applying the SC-MO SS presentation models, the input real signal is downconverted first into a complex signal and then back into a real signal, as shown in Fig. A.2. The final SS form is a complex presentation of the real output signal. As expected, the desired signal component can be successfully detected from the downconverted signal \((A-jB) \).

The validity of the SC-MO models will be examined by performing the conversion using SR-MO models according to the scheme that is shown in Fig. A.1a.

First, the real input signal \(s(t) \) (Fig. 3.9) is converted by the LO signal (Fig. 3.10) into two real signal \((I_{\text{MID}} \) and \(Q_{\text{MID}} \)) as shown in Figs. 3.11 and 3.12 as well as Figs. A.3a and A.3b (SS presentation).

The SS form of \(I \) and \(Q \) signals \((I_{\text{OUT}} \) and \(Q_{\text{OUT}} \)) after the second down-conversion with SR-MO, but before the summation is shown in Fig. A.3.

Finally, combining the signals \(I_{\text{OUT}} \) and \(Q_{\text{OUT}} \) (their contents) from Fig. A.3, the finally downconverted signal has the SS form as given in Fig. A.4.

As the obtained result (the signal content is \((A-jB)/2 \) in Fig. A.4) is the same as the result shown in Fig. A.2 (the signal content is \((A-jB)/2 \)), the validity of the introduced SC-MO models is proved.
Finally, the content of the output real signal shown in Fig. A.5 is:

\[
RO = \frac{A - jB}{4} e^{-j\omega_{IF}t} + \frac{A + jB}{4} e^{j\omega_{IF}t},
\]
(A.1)
A. Real-to-Complex-to-Real Transformation

\[RO = \frac{A}{2} \cos \omega_{IF2} t - \frac{B}{2} \sin \omega_{IF2} t, \] \hspace{1cm} (A.2)

where \(\omega_{IF2} \) is the final intermediate angular frequency. As can be seen from Eq. (A.2), only the desired signal is obtained while the image signal is rejected, as expected from the Weaver architecture.

Figure A.4: Spectrum-signal form after the second downconversion
a) \(I_{OUT} \) path, b) \(Q_{OUT} \) path.

Figure A.5: \(I_{OUT} - Q_{OUT} = I_{OUT} + j(Q_{OUT}). \)

REFERENCES

TRANSFORMER-FEEDBACK DEGENERATION OF LOW-NOISE AMPLIFIERS

The technique of transformer-feedback degeneration (TFD) is described, offering the possibility for low-noise amplifiers to achieve matching of both the real and the imaginary part of the input impedance in an orthogonal way [1]. The schematic (model) of a transformer-feedback degenerated low-noise amplifier is shown in Fig. B.1 (without a complete bias scheme).

\[\text{Figure B.1: A Model of a transformer-feedback degenerated LNA.} \]

This amplifier topology is a traditional cascode configuration, with the addition of the feedback around the input transistor, which is realized by means of a voltage-follower (VF) (e.g., a single transistor in a common-collector configuration) and a transformer TR (orientation of the transformer is not shown; either negative or positive coupling is realized).

Controlling the amount of feedback, the TFD-LNA achieves orthogonal match of input impedance to source impedance. What is more, the power match is rather independent of the transistor transit frequency \(f_T \), accordingly allowing for the matching even at very high \(f_T \)s [2].

In the remainder of this appendix, we will derive input-impedance and power-matching models for a TFD-LNA.
B.1 INPUT-IMPEDANCE MODEL FOR TRANSFORMER-FEEDBACK DEGENERATED LOW-NOISE AMPLIFIERS

The input circuit of the TFD-LNA is shown in Fig. 6.2, where for the TFD topology, Y_E stands for the equivalent admittance seen at the emitter of transistor Q_1.

The equivalent circuit of the transformer-feedback degenerated LNA that is used for the calculation of the feedback function f, with a simplified transformer model [3,4], is shown in Fig. B.2: L_1 and L_2 are the transformer primary and secondary inductors, n is the transformer turn ratio, and k the coupling factor between the transformer inductors.

As the primary and the secondary inductors of the transformer TR are by definition related as $L_2/L_1=n^2/k^2$, it is straightforward to calculate the voltage transfer function from node V_1 to node V_3, and subsequently derive the function $f(Y_1,Y_2)$ as:

$$f(Y_1,Y_2) = \frac{Y_1 + n^2Y_2}{Y_{II} + Y_1 + n^2Y_2 + g_m(1\pm nY_2/Y_L)}, \quad (B.1)$$

with $Y_1=1/sL_1$ and $Y_2=1/s(1-k^2)L_2$.

Depending on the orientation of the transformer, the feedback can be either negative or positive, which is the origin of the \pm sign in Eq. (B.1). Note that the properties of the function $f(Y_1,Y_2)$ depend on the transformer parameters.

Figure B.2: Detailed schematic of a TFD-LNA.
With the aid of Eqs. (6.1) and (B.1), the input impedance \(Z_{IN} = 1 / Y_{IN} \) (with the condition \(C_\mu = 0 \)) becomes:

\[
Z_{IN} \big|_{C_\mu = 0} = R + j \left[\frac{\omega}{\omega_T} R \pm \frac{\omega_T k^2}{\omega n g_m} - \frac{\omega_T 1}{\omega g_m} \right].
\] (B.2)

\(R = \omega_T (1-k^2)L_1 \) stands for the real part of the input impedance, with \(\omega_T = 2\pi f_T \) and \(\omega = 2\pi f \) being the angular transit and desired signal frequencies.

A circuit equivalent of Eq. (B.2) is shown in Fig. B.3: Fig. B.3a for a positive feedback, and Fig. B.3b for a negative feedback.

\[X_{C_h} = \frac{\omega_T}{\omega} \frac{1}{g_m} \]

\[X_{FD_+} = \frac{\omega_T k^2}{\omega} \frac{1}{n g_m} \]

\[X_L = \frac{\omega}{\omega_T} R \]

\[X_{C_h} = -\frac{\omega_T}{\omega} \frac{1}{g_m} \]

\[X_{FD_-} = -\frac{\omega_T k^2}{\omega} \frac{1}{n g_m} \]

\[X_L = -\frac{\omega}{\omega_T} R \]

(a) \hspace{3cm} (b)

\[R \]

Figure B.3: Input impedance for \(C_\mu = 0 \)
(a) a positive feedback model, (b) a negative feedback model.

Fig. B.3 shows that the effect of the transformer feedback is the additional reactance at the input of the TFD-LNA, i.e., a capacitance in case of negative feedback and an inductance in case of positive feedback.

We will calculate loop gain of the TFD-LNA to examine its stability (this topology employs a positive feedback for an additional feedback inductance (\(X_{FD} \) in Fig. B.3a). In order to evaluate the loop gain of the TFD-LNA, shown
in Fig. B.1, we will refer to the detailed schematic of Fig. B.2, with a
difference of a source resistance R_S added at the input and the voltage-
controlled current source $g_m V_{BE}$ replaced with a uncontrolled current source I.

The loop gain can be determined from the transfer function between the
current source I and the base emitter voltage V_{BE}. For the “critical” positive
feedback, the loop gain (modulus squared) is calculated as:

$$|LG|^2 = \left| \frac{g_m V_{BE}}{I} \right|^2 = \frac{(k/n)^2 + (g_m R \omega / \omega_T)^2}{1 + (g_m R \omega / \omega_T)^2}.$$ \hspace{1cm} \text{(B.3)}

As for safe operation of the amplifier its loop gain should be below one, this
condition reduces to:

$$k^2/n < 1,$$ \hspace{1cm} \text{(B.4)}

which indicates that for stable amplifier operation, the transformer turn ratio
should be larger than the square of the coupling coefficient k.

\section*{B.2 POWER-MATCHING CONDITION FOR TRANSFORMER-FEEDBACK DEGENERATED LOW-NOISE AMPLIFIERS}

With the aid of the input-impedance model for a slightly positive feedback
(Fig. B.3b), the equivalent input circuit of the amplifier can be shown as
depicted by Fig. B.4, where R_S is the impedance of the source (e.g., antenna).

The condition for the match of the real part of the input impedance to the
source impedance is derived from Eq. (B.2) as:

$$\omega_T (1 - k^2) L_1 = R_S.$$ \hspace{1cm} \text{(B.5)}

The impedance match is possible even at high f_Ts for a moderate value of
primary inductance L_1 (with a larger coupling coefficient k).

On the other hand, setting the imaginary part of the input impedance to zero
is facilitated, simply because the feedback-resulting inductance L_{FD} (Fig. B.3a
and Eq. (B.6)) enables the cancellation of the transistor’s reactive part, i.e., the
capacitance C_{π}.

The matching condition is derived from Eq. (B.2), by setting the imaginary part to zero:

\[L_{FD} = \frac{\omega_r}{\omega} \frac{k^2}{n} \frac{1}{g_m} \]

(B.6)

This condition implies that the stability criterion (Eq. (B.4)) is not violated. What is more, a small input bond-wire inductance, relaxes the loop-gain constraint to the extent that inherent stability is achieved.

For example, for a 50Ω input impedance match, using technology with \(f_r = 100 \text{GHz} \), an inductance of 0.075nH is required for an ID-LNA, whereas in case of a TFD-LNA with a transformer’s coupling coefficient \(k = 0.9 \), a primary inductance of 0.39nH is required.
B.2.1 Transformer Power-Matching Model

Another property of the proposed topology is the orthogonal match of real and imaginary parts of input impedance to source impedance. As indicated by Eq. (B.5), by choosing a certain value for the coupling factor k and the primary inductance of the transformer L_1, the real part of the impedance is matched. On the other hand, by choosing the right value for the transformer turn ratio n, according to Eq. (B.7), the imaginary part is set to zero (for the power match to a real source impedance).

The matching conditions (Eqs. (B.5) and (B.7)) can be translated into a transformer-parametric model that is shown in Fig. B.5, where model parameters E and D are expressed as:

$$E = \frac{R_S}{\omega_T},$$ \hspace{1cm} (B.8)

and

$$D = 1 - g_m R_S \left(\frac{\omega}{\omega_T} \right)^2.$$ \hspace{1cm} (B.9)

This transformer model is suitable for simulation (design) purposes, where the real part of the input impedance is controlled by the parameter E, and the imaginary part depends on the parameter D.

![Figure B.5: Transformer power-matching model (s=j\omega).](image)

A favorable property of the transformer-feedback degeneration is that once the values for E and D are properly chosen, amplifier matching becomes
independent of the coupling coefficient \(k \). Namely, from the model shown in Fig. B.5, the choice of \(k \) determines only the primary and secondary inductance values. Only if \(k=0 \), i.e., there is no coupling, the transformer-feedback degeneration reduces to the inductive degeneration.

The drawn conclusions are examined with an example.

Example B.1:
The operating conditions for the TFD-LNA are: a transition frequency \(f_T=24\text{GHz} \), a frequency of operation \(f=2.4\text{GHz} \) and a collector current \(I_C=7\text{mA} \).

With the aid of Eqs. (B.5) and (B.7), the corresponding 50Ω matching parameters are given by Table B.1.

<table>
<thead>
<tr>
<th>LNA \ parameter</th>
<th>(k)</th>
<th>(E) [\text{e-9}]</th>
<th>(D)</th>
<th>(L_1) [nH]</th>
<th>(L_2) [nH]</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFD1</td>
<td>0.9</td>
<td>0.33</td>
<td>0.86</td>
<td>1.74</td>
<td>1.9</td>
<td>0.95</td>
</tr>
<tr>
<td>TFD2</td>
<td>0.7</td>
<td>0.33</td>
<td>0.86</td>
<td>0.66</td>
<td>0.47</td>
<td>0.6</td>
</tr>
<tr>
<td>TFD3</td>
<td>0.5</td>
<td>0.33</td>
<td>0.86</td>
<td>0.44</td>
<td>0.16</td>
<td>0.3</td>
</tr>
</tbody>
</table>

The results show that in the case of the transformer degeneration, power matching is possible not only for one, but for a number of different transformer’s parameters values. In addition, the parameters \(E \) and \(D \) of the transformer power-matching model (Fig. B.5) are indeed constant and the final choice of a primary and a secondary inductance of a transformer depends only on the factor \(k \).

REFERENCES

LIST OF PUBLICATIONS

Journal Publications:

Conference Publications:

A. Tasić, W. A. Serdijn and J. R. Long, “Concept of Noise-Figure Tuning of Bipolar Low-Noise Amplifiers”, *Proceedings ECCTD*, Krakow, Poland, September 2003.

CONCLUSIES

De communicatiemiddelen van vandaag en de toekomst zullen niet alleen een verscheidenheid aan toepassingen mogelijk moeten maken, variërend van simpele karakters, spraak, audio en grafische voorstellingen tot video, maar ze zullen eveneens in verbinding moeten staan met een groot aantal andere apparaten in plaats van alleen met een enkel basisstation, in een verscheidenheid aan omgevingen. Uitbreiding van de functionaliteiten van mobiele en draadloze apparaten is afhankelijk van het uithoudingsvermogen van de batterijautonomie, omdat de batterij nog steeds bepalend is voor zowel de levensduur als de afmetingen van mobiele apparatuur.

De combinatie van toenemende functionaliteit enerzijds en een beperkte energievoorraad anderzijds (bijv. werking op batterijen) pleit voor de ontwikkeling van zowel adaptieve laagvermogenhardware als -software. Simpel gezegd, omdat de wensen van de consument uitstijgen boven het kostenvoordeel dat voortkomt uit Moore’s Law en laagvermogen RF ontwerp, kunnen verdere verbeteringen worden gevonden door het aanwenden van adaptiviteit. Dit zal uiteindelijk leiden tot mobiele apparatuur met nog kleinere afmetingen, nog langere standby- en gebruikstijden en verbeterde functionaliteit.

Om trends in telecommunicatie te ondersteunen zoals het leveren van velerlei diensten met verschillende standaarden (tekst, audio, video, telefonie), evenals een vloeiende overgang naar de volgende generatie draadloze standaarden met een hogere capaciteit en hogere datasnelheden voor multimediale toepassingen, en draagbaarheid van het apparaat, zijn geïntegreerde ontwerpen nodig die met meerdere standaards in één apparaat kunnen werken. Omdat ze bouwstenen delen, hebben adaptieve multi-standaard laagvermogen RF front-ends een aantal voordelen ten opzichte van hun voorgangers: ze verbruiken minder vermogen, beslaan een kleiner chipoppervlak en bieden bovenal de mogelijkheid om de totale kosten te reduceren.
SAMENVATTING

Verschillende aspecten van RF-ontwerp zijn onderzocht op zowel het niveau van het gehele systeem als dat van de circuits. In de rest van dit hoofdstuk wordt een overzicht van de behaalde resultaten gegeven.

INLEIDING

De probleemstelling van dit proefschrift is beschreven in Hoofdstuk 1. “Waarom multi-standaard laagvermogen RF ontwerp?” is de hoofdvraag van dit proefschrift, welke verschillende relevante punten van RF ontwerp behelst. Veel uitdagingen op het niveau van het ontwerp van systemen en circuits zijn systematisch behandeld in dit proefschrift.

FUNCTIONELE PARAMETERS VAN RF-SCHAKELINGEN

De definities die belangrijk zijn voor RF ontwerp zijn gegeven in Hoofdstuk 2. Parameters van versterking, nietlineariteit en ruis zijn opnieuw behandeld, gevolgd door een discussie over het dynamische bereik en de werking van RF systemen.

SPECTRAAL-SIGNAAL TRANSFORMATIE

Het combineren van complexe signaalbewerkingstechnieken met de presentatie van signalen en spectra biedt mogelijkheden om verschillende verschijnselen met betrekking tot RF front-ends te karakteriseren en begrijpen.

Een alomvattende methode voor de spectraal-analyse in het vorm van de spectraal-sig-naal transformatie is geïntroduceerd in Hoofdstuk 2. De methode biedt een consistente presentatie van de transformatie van de signalen en spectra in de ontvanger van een RF front-end.

Modellen van de mixer-oscillator combinatie zijn gedefinieerd en deze bieden een volledige interpretatie van de manier waarop de signalen en spectra worden getransformeerd van ingang naar uitgang in verschillende ontvanger-topologieën.

Tenslotte is de toepassing van de mixer-oscillator modellen uitgebreid voor het berekenen van de spiegel-onderdrukkingsverhouding in quadratuurontvangers.
Conclusies

SELECTIE VAN DE FUNCTIONELE PARAMETERS VOOR RF FRONT-END SCHAKELINGEN

In Hoofdstuk 4 is een procedure geïntroduceerd voor het toewijzen van functionele parameters aan RF front-end schakelingen. Met behulp van optimalisatie van de prestatie van een RF systeem met betrekking tot F/P_{IIP3} (de ruisfactor gedeeld door het 3de-orde intercept-punt van het ingangsvermogen) is het optimale dynamische bereik gevonden, en is er tegelijkertijd voldaan aan de eisen ten aanzien van ruis en lineariteit.

We toonden aan dat er een evenwichtspunt bestaat waar alle bijdragen van de circuitparameters aan de systeemparameters gelijk zijn. Daarnaast is het zo dat de keuze van de waarden voor dit evenwichtspunt overeen komt met ontwerp voor een optimaal dynamisch bereik en ontwerp voor gelijke vermindering van de ruis en verbetering van het lineaire gedrag. Tenslotte zijn een paar ontwerp-compromissen voor RF circuits geschetst met behulp van K-rail diagrammen. Omdat ze niet slechts naar één maar naar een aantal werkingsvoorwaarden verwijzen, beschrijven deze diagrammen de relaties en compromissen tussen de functionele parameters in RF circuits.

ADAPTIVITEIT VAN VERSTERKERS MET LAGE RUIS

Hoofdstuk 5 behandelde adaptiviteits-fenomenen van versterkers met lage ruis. Maatstaven die de kwaliteit aangeven van de adaptiviteit (d.w.z. het bereik van de aanpassing) zijn geïntroduceerd, namelijk die voor de ingangsweerstand, de spanningsversterking, het ruisgetal en het 3de-orde intercept punt van het ingangsvermogen. Deze laten zien hoe versterkers met lage ruis op een adaptieve manier functionele eigenschappen kunnen uitwisselen tegen vermogensverbruik. K-rail diagrammen van versterkers zijn gebruikt voor een conceptuele beschrijving van de ontwerp-compromissen in versterkers met lage ruis.

ADAPTIEVE SPANNINGSGESTUURDE OSCILLATOREN

Het concept van ontwerp voor adaptiviteit van oscillatoren is beschreven in Hoofdstuk 6. Dit bewerkstelligt een procedure voor het karakteriseren van het gedrag van adaptieve oscillatoren samen met de kwalitatieve en kwantitatieve beschrijving van de relaties en compromissen tussen de functionele parameters van oscillatoren.
Het geïntroduceerde concept van faserruis-aanpassing beschrijft hoe oscillatoren op adaptieve wijze prestatie kunnen uitwisselen tegen vermogensverbruik. De extremen van het bereik van de faserruis-aanpassing werden beschreven evenals de haalbare reductie van het vermogensverbruik.

Daarnaast werd het concept van het aanpassen van frequentie-transconductantie uitgelegd. De afgeleide formules laten zien op welke manier dit concept kan worden gebruikt om de oscillatorwerking onder controle te krijgen die veranderd is door aanpassing van de frequentie.

De conceptuele K-rail diagrammen zijn gebruikt om de gedrag van de oscillatoren te beschrijven. We lieten zien hoe deze diagrammen kunnen worden gebruikt om verschillende fenomenen en maatstaven voor de kwaliteit van de adaptie van de oscillatoren te interpreteren. Compromissen tussen de oscillatorparameters, zoals spanningszwaaiv, LC-kring conductantie, vermogensverbruik, faserruis en lusversterking, zijn kwalitatief en kwantitatief beschreven op een makkelig te begrijpen manier met behulp van K-rail diagrammen.

ONTWERP VAN ADAPTIEVE SPANNINGSGESTUURDE OSCILLATOREN EN ADAPTIEVE FRONT-ENDS

In applicaties met één standaard kan adaptiviteit worden gebruikt als mechanisme voor vermogensbesparing, hetgeen de prestatie van het gehele RF systeem verbetert. Door functionele bouwstenen te combineren voor verschillende standaarden bieden adaptieve schakelingen voor meerdere standaarden en meerdere banden een verlaagd vermogensverbruik, een kleiner chip-oppervlak, en lagere totale kosten. Hoofdstuk 7 demonstreerde deze zaken via twee oscillator-IC ontwerpen en een RF front-end ontwerp.

Daarnaast werd een 800MHz adaptieve spanningsgestuurde oscillator beschreven. Door de faserruis over een bereik van 7dB te regelen werd een vermogensbesparing gerealiseerd van meer dan een factor drie.

Verder is het ontwerp van een 2de-generatie/3de-generatie multi-standaard spanningsgestuurde oscillator geïntroduceerd die werkt in DCS1800, WCDMA en WLAN-Bluetooth-DECT modes. Deze oscillator voldoet aan de faserruis-eisen van vijf verschillende standaarden met een vermogensverbruik van 18mW, 3.6mW en 1.5mW, respectievelijk.

Tenslotte is het ontwerp van een experimenteel 2de-generatie/3de-generatie adaptief multi-standaard front-end beschreven. Het ontwerp voldoet aan de eisen van de DCS1800, WCDMA, WLAN, Bluetooth, en DECT standaarden en verbruikt respectievelijk 20.2mA, 16.2mA, 15.4mA, 10.4mA en 9.9mA.
<table>
<thead>
<tr>
<th></th>
<th>WORK</th>
<th>LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>guidance</td>
<td>support</td>
</tr>
<tr>
<td></td>
<td>discussion</td>
<td>love</td>
</tr>
<tr>
<td></td>
<td>technical support</td>
<td>friendship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>discussion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>support</td>
</tr>
<tr>
<td>Myself</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Wouter</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>RPG</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Vojkan²</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Family</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>John</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Koen</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CvB&AB</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ChrisV</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Wil/Luc</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Marion*</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Jaap</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Aleksandar Tasić was born on the 25th of September 1974 in Niš, Serbia. He started primary school when he was almost seven years old. During his school years, he received many awards for best pupil and was often elected as the class representative by his classmates.

Aleksandar started his degree at the Faculty of Electronics Engineering of the University of Niš in 1993. During his studies, he was involved in many education and social activities. After having participated in the demonstrations following the Serbian election fraud in 1997, he began preparing for departure. Despite unearthly conditions in all those years, he graduated successfully within 5 years and received the Electrical Engineer degree.

Power cuts, the booms of fighter planes breaking the sound barrier and the whistling of bombs, accompanying his postgraduate period, made him even more resolute to continue his career abroad.

After an interview at the Delft University of Technology, the Netherlands, in 2000, Aleksandar joined the Electronics Research Laboratory as a PhD student.

In his spare time he is a football referee for the Dutch Royal Football Association. Aleksandar intends to apply for Dutch citizenship and become a Dutch citizen of Serbian origin.