

Student: Martine Schüll 4429508 First mentor: Nico Tillie Second mentor: Mo Smits Examinator: Pierijn van der Putt

BUILDING A PRODUCTIVE, FUTURE PROOF LANDSCAPE

exploring a potential landscape in the watershed of brook 'De Dommel' which:

moves towards a future proof water system by 2050 provides local, natural materials for the future building program

CONTEXT

Introduction Context Fascination Problem field & problem statement

Methodology Approach & Method

Design research Design principles

Design results Regional framework Local design Site explorations

Conclusion

Recommendations

CONTEXT

Urban ecology & ecocities lab in collaboration with State Forestry

INTRODUCTION. METHODOLOGY. DESIGN RESEARCH. DESIGN. CONCLUSION. RECOMMENDATIONS

MY FASCINATION

The cultural landscape of North-Brabant

Mer

PROBLEM FIELD

drought

HOUSING ASSIGNMENT

Short term & long term demand

INTRODUCTION. METHODOLOGY. DESIGN RESEARCH. DESIGN. CONCLUSION. RECOMMENDATIONS

2040: + 154.000 houses

2100: + ... houses

DROUGHT

Consequences

agriculture

nature

INTRODUCTION. METHODOLOGY. DESIGN RESEARCH. DESIGN. CONCLUSION. RECOMMENDATIONS

DROUGHT

Vulnerability to drought

limited water supply & storage

sandy soil

knmi, 2022

precipitation shortage

MY FASCINATION Inspiration by Van Gogh

MY FASCINATION

Beneficial influence of historical civilization on nature

Van Gogh's period

Restoring the local connection. Houses that integrate instead of invade...

CONCLUDING PROBLEM STATEMENT

A spatial framework is lacking for the watershed of the Dommel as part of North-Brabant to move towards a future proof water system that simultaneously provides local, natural construction materials for the future building program.

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS 12 / 50

DEFINITIONS

of key aspect

Drainage basin = watershed

The whole area that is drained by the Dommel

13 / 50 **INTRODUCTION**. METHODOLOGY. DESIGN RESEARCH. DESIGN. CONCLUSION. RECOMMENDATIONS

Contours of the Dommel watershed

DEFINITIONS

of key strategies

Local, natural building materials (by Bouwtuin) =

- Trees
- Grass & fibers
- Earth, stone & shells
- Algae and fungi

Can be composted at the end of lifespan

Future proof water system (by Waterboard De Dommel)=

- Groundwater recharge and extraction are balanced
- Groundwater level shows a positive trend

METHOD

overview of steps taken

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

15

CURRENT WATERSYSTEM

Natural system

16 / 50 INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

CURRENT WATERSYSTEM

Influenced by todays landuse

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

large extractions

pine & mixed forest

HISTORICAL USE OF LOCAL, NATURAL MATERIALS

Dominant material use

main landscape elements

forests, grassland & small settlements

first settlements

branches + loam + straw

roof & facade

frame / body

straw

wooden slats

wooden planks

sods

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

large settlements, new forest

now

wooden planks 18 / 50

Strategies

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

Main potentials

current production forests

frame

short term local use

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

Scots pine

sylvestris

facade /roof

(isolation) board

Suitable trees for improving

long(er) term local use

Suitable trees for increasing litter*

*according to Bosgroep Zuid Nederland

wet

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

loam layer

former brick factory

loam in top layer, WUR

Potentials

current agricultural fields

current reed fields

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS 23 / 50

COMBINED STRATEGIES

Title

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

REGIONAL FRAMEWORK

DESIGN OBJECTIVES & HIERARCY

Regional program

the Dommel watershed

By Van Gogh national park:

- robust, connected and resilient nature areas
- attractive agricultural landscapes
- climate-robust brook valleys
- visibility and readability of the Brabant brook landscape
- perspectives for farmers and sustainable (food) production for a future-proof agriculture
- strong connection between producers and consumers (city-country)
- city and countryside structurally connected and developed in conjunction
- Nature and landscape to the heart of the city and village
- Development of nature experience and sustainable (cultural) tourism
- Recreational value for both residents and visitors
- Experience of accessible nature, landscape and heritage
- Education and recreation connected

Supplemented by strategy from theory:

- generate a nature/culture intertwined, productive landscape
- blue infrastructure at the basis

blue infrastructure

main infiltration zones

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

robust nature network - heath

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

raised farmland

- brook bed valley

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

experience of heritage

drift sand

surface sand ridge

surface sand plane

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

raised farmland

- brook bed valley

accessible countryside

drift sand

surface sand ridge

surface sand plane

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

raised farmland

- brook bed valley

drift sand

surface sand ridge

surface sand plane

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

raised farmland

- brook bed valley

IMPRESSION OF CITY EDGE

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

OVERVIEW

A new productive landscape

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

TIMING availability over time

by cultivation

• increasing reed swamps

- logging of pine
- planting of additional poplar (amongst other species)
- winter grains

- wool by increasing grazing sheep
- excavating loam for water bassins

LOCAL SITE

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

mixed dry forest & heath/grassland

SITE 1: BROOK VALLEY BED

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS 39 / 50

brook bed valley

SITE 1: CURRENT & PROJECTED LANDSCAPE

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS 40 / 50

WATER SYSTEM

now

adapted water system

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

CONCLUSION

STRATEGIES

key findings

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

VALUES OF STRATEGY

Landscape outcome

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS 46 / 50

RECOMMENDATIONS

STATE FORESTRY

State Forestry properties

<image>

Planting strategy

INTRODUCTION . METHODOLOGY . DESIGN RESEARCH . DESIGN . CONCLUSION . RECOMMENDATIONS

POTENTIAL OUTPUT

by Leenderbos of State Forestry

Timber frame

Calculation:

- small house (56 m2 gross)
- 3000 m3 quality beam wood
- 5 m3 wood per house

± 600 houses

State Forestry properties

6000 m3 per year (scots pine)

CLT

Calculation:

- large house (120 150 m2)
- 1500 m3 quality wood for CLT & timber frame
- 60 m3 wood per house

± 25 houses

Restoring the local connection. Houses that integrate instead of invade...

