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Summary for laypersons
Before the Renaissance, geometry and arithmetic were considered separate branches of mathematics.
In the Renaissance these two were united, this union has lead to major advances in mathematics and
its applications. Numbers can be used in geometry by means of a coordinate system. In this thesis
the relation between geometrical axioms and axioms for fields (generalised number systems that make
up a coordinate system) are investigated. It is shown how to construct a coordinate system based
solely on geometrical concepts and that this coordinate system is isomorphic (i.e. it has the same form,
all geometric terms and relations can be expressed in the coordinate system) to the original plane.
Additionally, it is shown that there are geometric axioms that have a direct counterpart in the field
axioms.
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Summary
In 1908, the mathematician Felix Klein published a book Elementary Mathematics from an Advanced
Standpoint: Geometry. This title aptly characterizes the focus of this thesis. This thesis introduces
the axioms for Euclidean and projective plane geometry. Afterwards an arithmetic of lengths, based
solely on these axioms, is constructed. By establishing a connection between the geometric axioms
and the field axioms, it is demonstrated that these lengths form a field. It is shown that the original
geometric plane is isomorphic to the Cartesian plane of lengths. Additionally, the thesis highlights the
direct relation between two geometric propositions, Pappos’ theorem and Desargues’ theorem, and
commutativity and associativity of the induced field of lengths.
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Introduction
Mathematics, as a formal scientific discipline, originated in Greece around 600 BC. Mathematical prob-
lems had been studied and solved by multiple civilisations for centuries at that time, originating from
practical day-to-day situations like measuring land, calculating taxes or creating calendars. The Greeks
studied such problems systematically and took mathematics further than anyone else had done. In the
(relatively) short period of about 400 years, they laid the foundations of mathematics as a scientific
discipline. They identified the basic branches of mathematics and established important results in all
of them. Moreover, they developed a method of proving mathematical propositions that remains at the
heart of mathematics: the axiomatic method, that starts with axioms and demonstrates its results on
the exclusive basis of deductions from these axioms.

One of several climaxes of Greek mathematics is Euclid’s Elements, written around 300 BC. Its
influence on the development and study of mathematics is unrivalled, even into the 20th century the
Elementswas the standard textbook to teachmathematics from1 and its ability to demonstrate profound
results through a ruthless adherence to logical reasoning served as inspiration for humankind’s greatest
scientists.

If a contemporary reader opens the Elements, they might be surprised to see that there are no
numbers anywhere in Euclid’s books on geometry. Euclid, and the Greeks more broadly, did not mix
geometry and numbers in theoretical mathematics. Geometry dealt with magnitudes in space, which
are continuous and (infinitely) divisible, whereas numbers dealt with multitudes, which are discrete and
indivisible. Their concept of ‘number’ included only counting numbers.

They were of course aware that these fields are related. They identified Pythagorean triplets like
32 + 42 = 52 and they also used numbers for counting within geometry, for example by considering a
line segment that is three times (or any other multitude) that of another. Also in practical applications,
numbers were used to measure lengths, areas and time. But within geometry as a theoretical discipline,
there were no numerical measurements. In geometry, things were measured (i.e., quantitatively related
to each other) by means of lines and circles.

In modern geometry, the numerical and geometrical perspectives are deeply intertwined. The per-
spective of 𝑦 = 𝑥2 as a parabola is just as familiar, maybe even more familiar, than the Greek perspec-
tive of a parabola as a certain intersection of a cone and a plane.

Demonstrating geometrical propositions directly by reasoning about points, lines and shapes is done
by means of the axiomatic approach. In this thesis, I will relate this to the practice of solving geometrical
problems by means of numbers and algebraic calculation (coordinate geometry). After giving a general
introduction to geometry in chapter 1, I will spend three chapters on Euclidean geometry. I will start
with the axiomatic approach in chapter 2, I will construct an arithmetic of lengths on the basis of such
axioms in chapter 3 and I will relate this arithmetic to coordinate geometry in chapter 4. Afterwards I
will go through these steps again for projective geometry in chapters 5 to 7.

The fundamental structure of this thesis and many of the propositions demonstrated for Euclidean
geometry are based on Hartshorne’s Geometry: Euclid and Beyond. Hartshorne uses Hilbert’s axioms
for Euclidean geometry and sometimes I will make use of the primary source: Hilbert’s Foundations of
Geometry. For projective geometry I made use of Stillwell’s The Four Pillars of Geometry and Heyting’s
Axiomatic projective geometry. For the historical aspects, I primarily used Kline’sMathematical Thought
from Ancient to Modern Times.

1(Wilson, 2009, p.278)
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1
What is geometry?

“And geometry can boast that with so few principles
obtained from other fields, it can do so much.”

— Isaac Newton

1.1. Position, shape and geometry
Before discussing geometric axioms, let us consider what geometry is. I do not intend to give a com-
prehensive overview or a full answer, nor do I indent to present all the different historical views. The
goal is to present some ideas that will aid our investigation and form the context for the later chapters.
I will start with the view of geometry before 19th century developments and use that as a framework to
discuss some important changes in the 19th and 20th century that formed the modern field.

Let us take an Aristotelian approach and start with what we see whenwe open our eyes. We observe
entities interacting with their surroundings: some move, some grow and some dissolve. Entities have
two attributes relevant to geometry: position and shape. If I take a book from the shelf and put it on
a table, then it changes position but not shape; if I mold a piece of clay on my desk, then it changes
shape but not position.

Position Aristotle identified that position is a relational concept. (He used ‘place’ instead of ‘position’,
I take these to be the same thing.) He thought that an entity’s position consists, not of something within
the entity, but of something outside the entity: its relation to the surrounding entities.1 For example, the
position of my book is on the shelf in between these other two books.

For Aristotle, there is no such a thing as space. ‘Space’ is just the totality of all positions. We can
use space to refer to such a totality, but we should recognize that it is not a ‘thing’ (the view of space
as a container) but a relation among things. Fundamental concepts in the study of space are those of
distance and direction, which relate two positions to each other.

Shape What about shape? Shape too is an aspect of entities. It is not the entity as a whole — a
book has a publication date and an owner, but these are not part of its shape — but only one central
aspect that determines many of its physical properties. Important concepts related to shapes are: solid,
surface, line, angle, size, etc…

Aristotle thought that a point is ’a unit having position’.2 It cannot be analysed further by breaking
it down into different shapes. Line segments, surfaces or figures like triangles also have a position but
can also be broken down into other shapes.

The traditional realist view is that geometry studies the properties of geometrical shapes in position.
Two different views were offered on the nature of these shapes. Plato thought that they existed as actual
1(Morison, 2002)
2(Mendell, 2019, sec.7 )
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4 1. What is geometry?

objects in another realm and that the shapes we observe around us are merely imperfect reflections of
those objects. Aristotle thought that they were aspects of actual entities and that they have no separate
existence outside these entities. A physical stroke on paper can be considered qua line by considering
its extension in one direction at a given position and considering its width and the molecular departures
from straightness as immaterial. This does not imply that there exist strokes without any width in reality,
or more broadly that geometrical characteristics exist independent from their objects in reality. It is a
selective focus on some characteristics as against others. For Aristotle, geometrical shapes exist, but
they are actual shapes considered from an abstract perspective.

There were fierce disagreements between Platonists and Aristotelians on the reality of geometry,
but there was agreement that, whatever the ultimate nature of geometry was, geometric axioms were
fundamental and indubitable truths that described it and geometry concerned itself with studying geo-
metrical objects.

A major problem with this view becomes evident when we consider where geometrical shapes come
from. Geometrical shapes are not found in nature, they are found in human civilization. Triangles,
cylinders and rectangles are the shapes that make up buildings, phones and kitchenware, not forests,
rivers or rocks.

Why do we create them? Two reasons: to measure other objects, the straight line is the shape
of a ruler and the square is the shape by which we measure areas; or when designing man-made
objects. When creating objects with geometrical shapes, the role of geometry is that of demonstrating
that a given shape has a desirable quantitative property. If we want a heating pipe to lose as little heat
as possible, a circular shape makes sense, as a circle maximizes the area for a given perimeter (a
geometrical proposition). If we want to fit as many containers as possible in a ship then it makes sense
to make them rectangular and not circular.

Geometry, properly speaking, is not about describing shapes, but about measuring them. It bases
itself on facts about space, but geometry does not give an account of the shapes around us; it creates
shapes, with demonstrable characteristics, to measure the shapes around us. Other sciences then use
these concepts to measure, among other things, the distances between cities, the size of the earth and
the motion of the planets.

Geometry is not about the physical process of measurement, like how to use a ruler, draw a circle
or use a telescope, it is about the cognitive process of measurement: the use of some physical mea-
surements to infer others that are not measured directly. Newton wrote the following about how these
two relate:

“To describe straight lines and to describe circles are problems, but not problems in ge-
ometry. Geometry postulates the solution of these problems from mechanics and teaches
the use of the problems thus solved. And geometry can boast that with so few principles
obtained from other fields, it can do so much.”3

This view of geometry that I just described bases itself completely on geometry before 19th century
developments. I chose to start here because I think that it is the proper context for understanding the
transformative developments of geometry in the 19th century.

1.2. Non-Euclidean geometry
One of Euclid’s axioms stood out from the rest and had been scrutinized thoroughly from the start: the
parallel postulate.

”That, if a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles.”4

Its form seems more like that of a theorem, not an axiom. For centuries mathematicians had tried
to derive — and some had claimed to derive — the parallel postulate from Euclid’s other axioms.
This turned out to be in vain, in the 19th century mathematicians developed a model of non-Euclidean
geometry. In such a model all Euclid’s axioms hold, except the parallel postulate. Though properties
3(Newton, 1999, p.382)
4(Euclid, 2008, p.7)



1.2. Non-Euclidean geometry 5

of figures in this model were counterintuitive — for example, triangles having an angle sum larger
or smaller than two right angles — they were not contradictory. This development caused people to
challenge the fundamentality of Euclidean geometry.

Gauss recognized that the question of whether space is Euclidean or non-Euclidean is a physical
question, to be determined by experiment, not something that can be established by mathematical
reasoning.5 If you thought that geometry describes objects in space and/or that Euclidean geometry is
in some sense the intrinsic nature of space, à la Kant, then the development of non-Euclidean geometry
is a major blow to your worldview. One of the indubitable truths on which you have based all your
reasoning turns out to be not so fundamental and its denial gives rise to interesting mathematics.

But if you think that geometry is about the measurement of shapes, then the axioms are properly
speaking not truths, they are a starting point for logical inference. Euclid’s axioms already express this
attitude. His Postulate 1 reads: “to draw a straight-line from any point to any point.” For geometric
theory, this means that, given these axioms — given the ability to draw straight lines between points
— this is what I can measure. On such a view the development of non-Euclidean geometry is merely
the development of a new toolkit, not a challenge of the fundamental nature of space. This toolkit turns
out to be essential for measuring shapes and distances at an astronomical scale.

When we talk about a space being Euclidean, what we actually mean is that measurement bymeans
of Euclid’s propositions is possible. As a contrast, consider a photo. If one want to measure shapes on
the basis of a photo, then Euclidean geometry is not appropriate, one needs projective geometry (we
will discuss this extensively in chapter 5). The usage of Euclidean geometry does base itself on actual
facts about space around us, but that does not make that space inherently Euclidean. If you want to
make your life unnecessarily difficult (but not impossible), you can also study distances and shapes at
a small scale using non-Euclidean geometry.

The development of coordinate systems also loosened the relationship between geometry and phys-
ical space. Traditionally, spacemeant position-space, points were units with position. It was recognised
that coordinate systems can be used for many things that have nothing to do with position, like a chart
of the stock market. We can however also consider the underlying things of the chart as a space.
Consider the possible orientations of an object with three axes of rotation. As we did with the total-
ity of all positions, we can consider the totality of all such orientations and consider them to form a
space. Geometrically, this would be the space of a 3-torus (the three-dimensional equivalent of the
1-dimensional circle and 2-dimensional torus). The methods of geometry are just as applicable to this
orientation-space as they were to position-space. One can form a space by considering objects with re-
spect to any multiple dimensions of (quantiative) variation. This gives rise to ten-dimensional Euclidean
spaces6 that might be used to measure the state of a robot, which has other relevant characteristics to
its functioning beyond position. Position-space is a (very important) geometrical space, but conversely,
geometrical space is not necessarily position-space.

The philosopher of science Tim Maudlin makes a fundamental distinction that is worth mentioning
here. He distinguishes between a geometric space and a metaphorical space. He argues that things
like Euclidean space and the non-Euclidean spaces of Riemanninan geometry are geometrical spaces,
but that things like the set of integers or ℝ3 are not literal spaces, but spaces in a metaphorical sense.

“The points of Euclidean space, being all intrinsically identical, form a space only because
of structure that is not a function of their intrinsic features. Euclidean space is therefore
an instance of what I mean by a geometrical space. […] In contrast, the set of integers,
or of real numbers, do not form a geometrical space: the elements are not all intrinsically
alike and the “geometrical” notion of, for example, proximity is determined by the different
intrinsic natures. The sense in which the number 2 is “closer” to the number 1 than it is to
the number 100, or sense in which the number 2 ”lies between” 1 and 100, has to do with
the arithmetic nature of these objects, not with any extrinsic structure that unites them.”7

I take the difference between metaphorical and actual space to be between the use of numbers
(or things based on numbers, like a probability or function space) or not. Therefore I do think that the
5(Kline, 1972, p.872)
6Euclidean space is a more general concept than position-space, it is any space where the Euclidean axioms apply. Moreover, at
astronomical distances position-space is non-Euclidean. However, to ease the use of language, I take position-space to mean
a Euclidean space unless indicated otherwise.

7(Maudlin, 2014, p.7)
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different orientations of an object or the ten-dimensional robot space are actual geometrical spaces. If
we consider the state of a robot as a set of numbers however, then we are considering the space of
states in a metaphorical sense.8

1.3. Axiomatic geometry
Let us now turn to axiomatic geometry, which considers geometrical propositions by reducing them (or
trying to reduce them) to a set of axioms that form the basis for all inferences. This is contrasted with
doing geometry by means of numbers, where one demonstrates a claim by reducing it to an arithmetical
computation and where the validity of the claim rests on the validity of the axioms for numbers and the
validity of interpreting a proposition in numerical terms, this latter approach will be studied in-depth in
chapter 4.

The axioms put forward by Euclid in the Elements formed the foundation for geometry for millennia,
until the developments of the 19th century. At that time mathematicians sought to revise them in light
of the new developments. Why did Euclid need a revision?

First of all, it was recognized that Euclid’s axioms were incomplete. An important figure in bringing
this fact to the full attention of mathematicians was Moritz Pasch (1843-1930), who had proposed
concepts and axioms that Euclid had not considered, most importantly those about the order of points
on a line.9

But the addition of missing axioms was a relatively minor revision. Their addition did not invalidate
the geometric propositions that had been used throughout the centuries and the validity and necessity
of their content would likely be recognized even by the Greeks if it had been pointed out to them.

The most radical change happened in ideas about the nature of axiomatic geometry itself. The
explosion of different kinds of geometries (most importantly non-Euclidean geometry, but also projec-
tive geometry) lead Hilbert (1862-1943) to make a fundamental dichotomy between content and form,
between the ultimate meaning of geometrical terms and the methods of reasoning used in geometry.
For Hilbert, mathematics should not deal with what ’triangle,’ ’line’ or ’point’ mean, the content; but only
with the form, the way some sentences follow from others, ultimately based on a set of undefined terms
whose meaning is not part of mathematics at all. Historian Kline writes the following:

“The axioms merely express the rules by which formulas follow from one another. All signs
and symbols of operation are freed from their significance with respect to content. Thus
all meaning is eliminated from the mathematical symbols. In his 1926 paper Hilbert says
that the objects of mathematical thought are the symbols themselves. The symbols are the
essence; they no longer stand for idealized physical objects. The formulas may imply intu-
itively meaningful statements, but these implications are not part of mathematics.”10

For Hilbert and the formalists, geometry did not merely establish its results by means of formal
axiomatic systems, it is about such systems. Any external meaning you cared to give to the symbols
should not be part of mathematics proper.

The formal axiomatic approach swept across mathematics in the 20th century. All branches were
put on such a foundation under the impression that this would guarantee their validity. The ambition to
base all of mathematics on exclusively formal reasoning, independent of observation or intuition, was
shattered in the 1930s when Gödel proved that any formal system is limited: in any formal system that
is powerful enough to do arithmetic, one can construct a sentence (i.e. string of symbols) that cannot
be proved within that system.

I started off this chapter by distinguishing the view of geometry as a descriptive science and ge-
ometry as a science of measurement. The formalists were dealing with this same issue, they also
recognized that geometry is not a description of nature. But the formalists took this too far when they
argued that this means that geometry is therefore without meaning and concerns itself only with internal
structure. It is true that geometry is not essentially about what the terms mean. Geometry is about how
to infer measurements from others, what follows from what. Such inference can be done in different
contexts for different types of spaces, but that does not mean that geometry is not about any of those
spaces.
8I am not sure if Maudlin shares this way of looking at the difference between actual and metaphorical space.
9(Stillwell, 2005, p.44)
10(Kline, 1972, p.1204)



1.4. Terminology 7

Consider the following analogy:11 suppose the only kind of triangles that you knew were equilateral
triangles. If you then discover the existence of isosceles and scalene triangles, then that does not make
the term ’triangle’ refer to neither equilateral, isosceles or scalene triangles. It means a triangle can be
either equilateral, isosceles or scalene. Similarly, the geometric terms should have somemeaning and
they refer to things in some space, but this may be in any number of different spaces. The meaning of
the terms differs depending on what particular application you consider. The wonderful fact is that we
can use the same geometrical theory to reason about different spaces, so our formal theory need not
specify a particular application of the theory.

What is the cash value of all this? Poincaré objected to Hilbert’s system that “we do not know from
whence [the axioms] come.”12 Indeed, the idea that geometry is about what follows from arbitrarily
chosen primitive terms and axioms without any meaning, makes one wonder why the axioms are what
they are. But if one recognises that the terms must have some meaning, but may have any number of
different meanings depending on the space we consider, then we can take two different perspectives
on what we are doing: the ‘purpose perspective’ and the ‘formal perspective’.

The purpose perspective. From this perspective we have in mind the space to which we want to
apply a formal system of geometrical axioms. In this chapter we work towards a formalisation of Eu-
clidean position-space, therefore we can use this goal to motivate our choices and explain what facts
about physical space around us these axioms reflect and why they are necessary.

The formal perspective. From this perspective, we consider the generality of our formal system and
its applicability beyond any specific space one might have in mind. Wemake sure to only use the things
that we have explicitly postulated through axioms or proved on their bases. This ensures that we do
not bring assumptions into the formal system are theory that are not explicitly mentioned and thereby
unknowingly limit its applicability.

I will take Hilbert’s axiomatisation of Euclidean geometry as the starting point. But instead of ignoring
intuition as the formalists would like us to, I will make extensive use of physical observations to motivate
our terms and axioms (the purpose perspective) without any feeling of guilt for using such ’intuitions’,
while sharing the goal of making all assumptions explicit using axioms (the formal perspective).

1.4. Terminology
Let us end this chapter by giving a summary of some of the important terms I used.

Geometrical and metaphorical space
Geometrical space is a constellation of objects in multiple dimensions, these can be shapes in physical
space but also orientations in an orientation-space (an orientation is not an object, but an object can
be considered with respect to its orientation).

Geometrical spaces were contrasted with metaphorical spaces, which do not consist of actual ob-
jects but of numbers. Metaphorical spaces are very related to spaces, as we can use numbers to mea-
sure objects in space. Most importantly, the coordinate spaces that we will discuss in chapter 4 are an
extremely powerful tool for measurement in geometrical spaces. They are themselves metaphorical
spaces, but they have given rise to considering new geometric spaces.

Formal geometric theory and models
A formal geometric theory is a hierarchical organisation of geometric propositions in which each propo-
sition is based only on axioms or previously demonstrated results. Such a theory is characterised by a
set of primitive terms and axioms. Formal geometric theories are used for inferring measurements of
things within a space. The specific space is left unspecified in the formal theory, hence the terms and
relationships are not defined.

In the context of formal geometric theories, there exists another important thing: a model. Mod-
els are specific spaces in which all axioms of a given formal theory are satisfied. Most models are
metaphorical spaces, ℝ2 is for example a model for the Euclidean plane.
11Adapted from (Binswanger, 2014, p.118)
12(Reid, 1996, p.63)



8 1. What is geometry?

Important other concepts in the study of axiomatic systems are independence: are the axioms in-
dependent of each other or can some be derived from others? Consistency: do the axioms contradict
each other? And categoricalness: is there a unique model that satisfies a set of axioms (up to isomor-
phism)? These properties are studied by means of models. For example, by giving a model for a set
of axioms, one proves that they are consistent.



2
Axiomatic Euclidean geometry

To present a formal theory of Euclidean geometry, we use five primitive terms: point and line, together
with three relations: that of incidence, a relation between points and lines; of betweenness, a relation
between three points; and of congruence, a binary relation that exists in two forms: between line
segments and between angles. (Line segments and angles will be defined later in terms of the primitive
terms and relations). Symbolically they are defined using a pair 𝑆, 𝐿 where 𝑆 is the set of points, which
is our universe, and to which we might refer as ‘the plane’ and 𝐿 is a set of lines.

Today is customary to define lines in 𝐿 as subsets of 𝑆, this is what Hartshorne does. One can raise
objections to defining lines as sets of points, as opposed to merely stating that lines contain points.1
This is not strictly necessary for formal geometry, as all axioms will establish how points and lines relate.
Hilbert did not do this, he simply postulates the points and lines as two different things.2 This same
issue will come up when trying to define line segments and angles in terms of the primitive terms. Here
again, Hilbert did not define line segments as the set of points between them but as pairs of two points
(the extremities) and did not define angle as the union of points on two rays but simply as the pair of
two rays. However, Hilbert did define circles as sets of points. I will follow Hartshorne and define all
such curves as sets of points because it offers better consistency and simpler expressions within the
formal system.

When we want to refer to the collection of points, lines, relations and axioms as a whole we refer to
it as a (plane) geometry Π. Formally we can write this as:
Definition 2.1. A Plane Geometry Π is described by:

• A set of points 𝑆, a set of lines 𝐿 (subsets of 𝑆), 𝑛 relations between and within elements of 𝑆 and
𝐿 symbolised by 𝑅1, ..., 𝑅𝑛. The total can be symbolised as

⟨𝑆, 𝐿, 𝑅1, ..., 𝑅𝑛⟩

• A set of axioms about points, lines and their relations.

2.1. Axioms of Incidence
The axioms of incidence form the first group of Hilbert’s axioms. They characterise the relationship
between points and lines through the concept of incidence. They are the most fundamental, the in-
cidence relationship is sufficient to form a geometry, but without incidences, there is no geometrical
structure. Hilbert also gave axioms that relate points and lines to planes. These axioms are necessary
for three-dimensional geometry. We are doing plane geometry and do not discuss geometry beyond a
single plane, so I have omitted these.

Axiom (I.1). For any two distinct points, there exists a unique line incident with them.

Axiom (I.2). Every line is incident with at least two points.
1See for example (Mendell, 2019, sec. 9) for some interesting comments by Aristotle on this issue.
2See (Hilbert, 1971) for Hilbert’s definitions.

9
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Axiom (I.3). There exist three non-collinear3 points.

When I say a point lies on a line or that a line contains a point, I mean the same thing as that the line
and the point are incident with each other. In an application to Euclidean planes, ‘lines’ are infinitely
extended straight lines. In space around us, we can determine a direction between two points; straight
lines are lines of constant direction, so they are determined by two points. We see these facts reflected
in (I.1) (while there is a concept of direction in position-space, geometry is also applicable to spaces
without such a concept, therefore we do not use it). If singular points were lines, then the concept
line loses its meaning and there would be no way to distinguish points from lines, which is reflected in
(I.2). (I.3) is a non-degeneracy axiom, if all points were on the same line there is no plane geometry or
geometrical properties to study.

A sphere, considered as a geometrical space, is a space where one of these axioms is violated:
going in any constant direction from the north pole will get you to the south pole, so (I.1) does not hold.

As an indication of the value of this abstract approach let us consider a geometric space that is
wildly different from the Euclidean plane. The geometry stems from Kirkman’s schoolgirl problem:

Example 2.1 (Kirkman). ‘Fifteen young ladies in a school walk out in rows of three for seven days in
succession: it is required to arrange them daily so that no two shall walk twice in the same row.’4

One can consider this as a geometrical problem as follows: consider the ladies as points, groups of
them as lines, and each day as a set of lines. Different constellations of girls form a geometric space.
The axioms are determined by the conditions specified in the problem. We need (I.1) and (I.3) and

(K.1) All lines contain three points.

(K.2) Each line is contained in a unique set of five lines.

(K.1) is a further restriction of (I.2) and (K.2) is the specific axiom that makes us consider only
spaces that form solutions to the original problem. There are multiple solutions to this problem5 and
hence multiple spaces that satisfy these axioms. Consider the model of this geometry displayed in
fig. 2.1, where lines of the same colour form a set.

Figure 2.1: A model for a geometrical solution to the Kirkman problem; note that the figure is not symmetric under rotations.
Source: (Weisstein, n.d.)

One can visually check that all axioms are satisfied, hence that these pencils form a solution for
the original problem. The points and lines in this plane are vastly different from those in a Euclidean
plane. a Euclidean plane is a continuum that is infinitely extended in all directions, while the Kirkman
model contains a finite number of points (to reiterate the terminology: points and lines in figure form a
3not on the same line
4Adapted from (Falcone & Pavone, 2011)
5See (Falcone & Pavone, 2011) for different solutions
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model for the geometrical plane of ladies in rows on different days); a point in a Euclidean plane has
a position, in the model a point has a position too, but in a much more derivative sense (of a lady in a
specific row of three on a specific day).

The Kirkman geometry demonstrates the wide applicability of geometric axiomatic systems. For this
problem we started with something that might not have a solution: we need to check for the consistency
of our axioms, that they are not in contradiction with each other. By providing a concrete model, we
have proved the consistency of the axioms. The fact that more than one model exists demonstrates
that the axioms are non-categorical.

2.2. Axioms of Order
The axioms of order are about the order of points on a line, which is characterised by means of the
concept ‘betweenness’. Euclid did not consider any such axioms of order at all. The axioms will give our
lines the topological structure (i.e. sub-metrical structure) of lines that is familiar to us from Euclidean
geometry: infinite in extent (beyond any point there is a next one), infinite in divisibility (between any
points there is another one) and the existence of a linear order.

Definition 2.2. A linear order on a set 𝑆 is a relation, symbolized by ‘<’, such that for all 𝑎, 𝑏, 𝑐 ∈ 𝑆:
1. Not 𝑎 < 𝑎 (irreflexive)

2. If 𝑎 ≠ 𝑏, either 𝑎 < 𝑏 or 𝑏 < 𝑎 (anti-symmetric and total)

3. If 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐 (transitive)
Linear orders can be defined for arbitrary sets, we are interested in establishing them for the points

on a single line. Points on a line do not have an intrinsic orientation, for two points on a line, there is no
way in which 𝐴 is intrinsically greater than 𝐵, a linear order however, does have a specified orientation.
This is a reason we use the concept of betweenness as the axiomatic concept. We will construct a
linear order afterwards.

We encourage the reader to consider whether infinite in extent, infinite divisibility and the existence
of a linear order actually characterise the topology of a Euclidean line (i.e. a line in Euclidean space)
but save critical questions about divisibility and continuity for section 2.5, when we discuss the axioms
of continuity. This will further narrow our formal geometry and exclude application to spaces with lines
that are finite or not ordered at all (like in the Kirkman geometry) and spaces with lines that have a
cyclic order (like lines on a circle or a cylinder).

Axiom (O.1). If three points 𝐴, 𝐵, 𝐶 lie on a line so that 𝐵 lies between 𝐴 and 𝐶 (𝐴 ∗ 𝐵 ∗ 𝐶), then 𝐵 also
lies between 𝐶 and 𝐴 (𝐶 ∗ 𝐵 ∗ 𝐴).
Axiom (O.2). For two points 𝐴, 𝐵 on a line there exists a point 𝐶 on that line such that 𝐵 is between 𝐴
and 𝐶.
Axiom (O.3). For three distinct points on a line one, and only one, is between the other two.

(O.2) might seem to imply infinite extensibility, but a betweenness defined for points on a circle
also satisfies this. (O.3) excludes circles, so together they establish infinite extensibility. For infinite
divisbility and a linear order, we will have to do more work. Most importantly, we need a fourth axiom of
order. To state this axiom, we first introduce some definitions of concepts familiar to us from Euclidean
geometry.

We will symbolise the line through the points 𝐴, 𝐵 as ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐵. This line is infinite in extent, we will
now introduce finite line segments. Such segments preceded infinite lines in Euclid’s original axioms.
Some geometrical spaces lack line segments however (because they lack betweenness) and because
we seek a general framework, we choose to go the other way around. Nevertheless, the change in
attitude between Euclid and Hilbert is noteworthy: while Euclid’s axioms are formulated in such a way
as to not mention any kind of infinity at all, Hilbert starts with infinite lines and defines line segments in
terms of them.

Definition 2.3. A line segment 𝐴𝐵 is the set of points containing 𝐴, 𝐵 such that, a point is in 𝐴𝐵 if and
only if it is a point in ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐵 between 𝐴 and 𝐵 or it is 𝐴 or 𝐵 itself.
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There is only one such line segment for a given 𝐴 and 𝐵 by (I.1) and 𝐴𝐵 is the same as 𝐵𝐴 by (O.1).

Definition 2.4. A separation of a plane 𝑆 by a point 𝓁 defines a pair of subsets 𝑆1, 𝑆2 of 𝑆, two half-
planes, such that:

• Any 𝐴 and 𝐵 are in the same set if, and only if, 𝐴𝐵 does not intersect 𝓁.

• Any 𝐴 and 𝐵 are in different sets if, and only if, 𝐴𝐵 intersects 𝓁.

Axiom (O.4). Any line separates the plane.

Hilbert did not use (O.4) as an axiom, we will first introduce his axiom and show that it is equivalent
to (O.4) (i.e. they imply each other). The axiom that Hilbert used is due to Pasch, who was a central
figure in bringing the axioms of order into formal geometry. Pasch’s axiom will help us in demonstrating
the topological properties of our lines.

Definition 2.5. For three distinct points 𝐴, 𝐵, 𝐶, a triangle △𝐴𝐵𝐶 is the union of three line segments 𝐴𝐵,
𝐵𝐶 and 𝐴𝐶. 𝐴, 𝐵, 𝐶 are called its vertices and 𝐴𝐵, 𝐵𝐶, 𝐴𝐶 are called its sides.

Axiom (Pasch). Let 𝐴, 𝐵, 𝐶 be the vertices of a triangle and 𝓁 a line not containing 𝐴, 𝐵, 𝐶. If 𝓁 contains
a point 𝐷 on the segment 𝐴𝐵, then it must also contain a point on either 𝐵𝐶 or 𝐴𝐶, but not both.

A B

C

D
•

Figure 2.2: Pasch’s axiom

Pasch’s axiom in ordinary language states that if a line enters a triangle, then it must also exit it.

Proposition 2.1. (O.4) and (Pasch) imply each other in the context of (I.1) to (I.3) and (O.1) to (O.3).

Proof. Let us prove that (O.4) implies (Pasch), the other implication can be found in (Hartshorne, 2000,
p.74).

Assume the conditions of (Pasch) hold for points 𝐴, 𝐵, 𝐶, 𝐷 and a line 𝓁. Let the pair ⟨𝑆1, 𝑆2⟩ be a
separation of the plane by 𝓁. 𝐴𝐵 intersects 𝓁 in 𝐷, therefore 𝐴 and 𝐵 are in different sets, without loss
of generality let 𝐴 ∈ 𝑆1 (and thus 𝐵 ∈ 𝑆2). 𝐶 is not on 𝓁 so it belongs either to 𝑆1 or 𝑆2. If 𝐶 belongs to
𝑆1 then 𝐴𝐶 does not intersect 𝓁 and 𝐵𝐶 intersects 𝓁; if 𝐶 belongs to 𝑆2 then 𝐴𝐶 does intersect 𝓁 and 𝐵𝐶
does not intersect 𝓁.

Therefore if 𝓁 contains a point 𝐷 on 𝐴𝐵, then it must also contain a point on either 𝐵𝐶 or 𝐴𝐶, but not
both: (O.4) implies (Pasch).

The choice of (O.4) gives rise to the same geometrical theory as Hilbert’s choice of (Pasch). Our
particular choice stems from the fact that the existence of such a separation is much more obvious for
Euclidean space than is Pasch’s axiom. The formal statement is also shorter. Greater clarity at no cost
of generality is a win. In the proof of the other topological properties of the line, we will use both.

Proposition 2.2. For any points 𝐴, 𝐶 on a line 𝓁, there exists a point 𝐷 on 𝓁 between them (𝐴 ∗ 𝐷 ∗ 𝐶).

Proof (Adapted from Hilbert). Choose 𝐸 not on 𝓁 (I.3), take 𝐹 on ⃖⃗ ⃗⃗⃗⃗𝐴𝐸 such that 𝐴∗𝐸 ∗𝐹 (O.2). Similarly,
take 𝐺 on ⃖⃗⃗⃗⃗⃗𝐹𝐶 such that 𝐹 ∗ 𝐶 ∗ 𝐺, then 𝐺 is not between 𝐹 and 𝐶 (O.3). ⃖⃗ ⃗⃗ ⃗⃗𝐺𝐸 intersects the △𝐴𝐶𝐹 in 𝐸,
thus by (Pasch) ⃖⃗ ⃗⃗ ⃗⃗𝐺𝐸 must also intersect 𝐴𝐶 in some point 𝐷. Therefore there exists a point between 𝐴
and 𝐶.
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Figure 2.3: Proposition 2.2

The following lemma will enable us to establish the linear order of lines.6

Lemma 2.3. Let 𝐴, 𝐵, 𝐶, 𝐷 be four distinct points on a line 𝓁.

• If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐴 ∗ 𝐶 ∗ 𝐷 then 𝐴 ∗ 𝐵 ∗ 𝐶 ∗ 𝐷7

• If 𝐵 ∗ 𝐶 ∗ 𝐷 and 𝐴 ∗ 𝐵 ∗ 𝐷 then 𝐴 ∗ 𝐵 ∗ 𝐶 ∗ 𝐷

• If 𝐴 ∗ 𝐵 ∗ 𝐶 and 𝐵 ∗ 𝐶 ∗ 𝐷 then 𝐴 ∗ 𝐵 ∗ 𝐶 ∗ 𝐷

A• B• C• D•
E•

Figure 2.4: Lemma 2.3

Proof. We will prove only the first case as all three are very similar. Suppose for arbitrary and distinct
𝐴, 𝐵, 𝐶, 𝐷 on 𝓁 such that 𝐴 ∗𝐵 ∗𝐶 and 𝐴 ∗𝐶 ∗𝐷. Choose 𝐸 not on 𝓁 (I.3). Divide the plane by the line ⃖⃗ ⃗⃗⃗⃗𝐸𝐶
(O.4). 𝐴, 𝐷 are on opposite sides as 𝐶 is in between them, so ⃖⃗ ⃗⃗⃗⃗𝐸𝐶 intersects 𝐴𝐷. 𝐴, 𝐵 are on the same
side as 𝐶 is not in between 𝐴, 𝐵 thus 𝐴𝐵 does not intersect ⃖⃗ ⃗⃗⃗⃗𝐸𝐶. 𝐵,𝐷 are therefore on opposite sides of
⃗⃗ ⃗⃗ ⃗⃗𝐸𝐶 as the two sides are disjunct. We conclude 𝐵 ∗ 𝐶 ∗ 𝐷, which means 𝐴 ∗ 𝐵 ∗ 𝐶 ∗ 𝐷.

Theorem 2.4. For any line 𝓁, (O.1) to (O.4) induce a well-defined linear order.

Proof. Choose two arbitrary points 𝐴, 𝐵 ∈ 𝓁 to define an orientation by setting 𝐴 < 𝐵. Then for 𝐶 ∈ 𝓁:

• If 𝐴 ∗ 𝐵 ∗ 𝐶, define 𝐴 < 𝐶 and 𝐵 < 𝐶

• If 𝐴 ∗ 𝐶 ∗ 𝐵, define 𝐴 < 𝐶 and 𝐶 < 𝐵

• If 𝐶 ∗ 𝐴 ∗ 𝐵, define 𝐶 < 𝐴 and 𝐶 < 𝐵

We now define the relation for two arbitrary points 𝐷, 𝐸 ∈ 𝓁 that are distinct from 𝐴, 𝐵 as 𝐷 < 𝐸 if one of
the following holds:

• 𝐷 ∗ 𝐸 ∗ 𝐴 ∗ 𝐵

• 𝐷 ∗ 𝐴 ∗ 𝐸 ∗ 𝐵

• 𝐷 ∗ 𝐴 ∗ 𝐵 ∗ 𝐸

• 𝐴 ∗ 𝐷 ∗ 𝐸 ∗ 𝐵

• 𝐴 ∗ 𝐷 ∗ 𝐵 ∗ 𝐸

• 𝐴 ∗ 𝐵 ∗ 𝐷 ∗ 𝐸

Irreflexivity follows from the fact that betweenness is only defined for distinct points and totality/anti-
symmetry follows from (O.3). Transitivity follows from Lemma 2.3, we omit the details.

We do not claim the uniqueness of this order, because it is not unique. One can define new linear
orders on the basis of the one used in the proof by taking two points and interchanging their position in
the order. There are however only two that actually reflect the order of points in the line, the order such
that 𝐴 ∗ 𝐵 ∗ 𝐶 ⟹ 𝐴 < 𝐵 < 𝐶 or 𝐶 < 𝐵 < 𝐴. We call these two orders the canonical linear orders of
6These are adapted from (Beifang, 2013)
7A betweenness relation between four points is defined by all the resulting betweenness relations of three points resulting from
the removal of one point.
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a line. The two different orders two are related by the choice of orientation. One can define the other
orientation <̃ by 𝐴<̃𝐵 ⟺ 𝐴 > 𝐵.

From the axioms of order and incidence, we have derived that all lines we consider have the topology
of the Euclidean line: infinitely extensible and divisible and they admit a linear order. In the next section,
we will establish the metric properties for lines in our geometry. Let us first define some more concepts
that are familiar from Euclidean geometry and that we will use in the later axioms. Analogous to our
separation of the plane, we define:

Definition 2.6. A separation of a line 𝓁 by a point 𝐴 defines a pair of subsets 𝓁1, 𝓁2 of 𝓁, the two sides,
such that:

• 𝐵, 𝐶 are on the same side of 𝐴 if and only if 𝐴 is not between 𝐵 and 𝐶

• 𝐵, 𝐶 are on the opposite side of 𝐴 if and only if 𝐴 is between 𝐵 and 𝐶

The side of a line separated by a point together with that point is also called a ray ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐵 from 𝐴. Note
that you need at least one other point to determine a line, and thus a ray. Different points 𝐵 can be
chosen to designate the same ray from 𝐴 however.

Definition 2.7. An angle is a pair of two rays, ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴 and ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵, emanating from the same point 𝑂 where 𝐴
and 𝐵 do not lie on the same line, we write ∠𝐴𝑂𝐵 or ∠𝛼, if the specific points are unspecified.

Following both Euclid and Hilbert, we do not include the degenerate angles (angles between the
same ray or between rays that form a line together) in our definition. In contrast with Euclid, but following
Hilbert, we only define angles for two straight lines that meet and not for two curves in general. Let us
conclude this paragraph by giving another model related to the axioms discussed so far that is different
from Euclidean space.

Figure 2.5: A lattice

Example 2.2 (Lattice). Consider a lattice fig. 2.5. We introduce a model for a lattice using integers.
Consider ℤ2 whose elements define our points, and define all lines by the solutions to equations of the
form 𝑝𝑥 + 𝑞𝑦 + 𝑟 = 0 for 𝑝, 𝑞, 𝑟 ∈ ℤ.

Lines in our lattice are not infinitely divisible, so we expect some of the axioms to be violated.
Interestingly ℤ2 satisfies all axioms except (O.4)! (Because it does not satisfy the equivalent axiom
(Pasch).) We will give a counterexample, the reader can check for themselves that all other axioms
are satisfied. Consider the triangle with vertices (0, 0), (0, 1), (2, 0) and the line 𝑥+2𝑦−1 = 0. This line
cuts the triangle in (1, 0), but nowhere else! It ‘floats’ through the other side. (Pasch) has an important
role in establishing infinite divisibility of lines, we will return to that topic when we discuss the axioms
of continuity because (O.4) alone is not enough to prevent other types of curves from ‘floating’ through
a line.

2.3. Axioms of Congruence
The axioms of congruence characterise the relation of equality in magnitude, which means the same
thing as congruence. We denote this relationship by the symbol ≅, both for lines and for angles as they
share the same conceptual genus (‘congruent to’). Bear in mind that congruence of lines is different
from congruence of angles and one cannot compare a line to an angle.
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Definition 2.8 (Adding line segments). The addition of a line segment 𝐶𝐷 to a line segment 𝐴𝐵 (𝐴𝐵 +
𝐶𝐷) defines the line segment 𝐴𝐸, where 𝐸 is a point on the ray ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐵 with 𝐴 ∗ 𝐵 ∗ 𝐸 so that 𝐵𝐸 ≅ 𝐶𝐷. We
call 𝐴𝐸 the sum of 𝐴𝐵 and 𝐶𝐷.
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Figure 2.6: Addition of two line segments

Note that this definition is not a definition of adding lengths, but of adding line segments. 𝐴𝐵 + 𝐶𝐷
and 𝐶𝐷+𝐴𝐵 define line segments incident with different points, though they are congruent. To consider
length independent of any particular line segment requires another level of abstraction, which will be
considered in chapter 3. This is also why the axioms are stated in terms of facts about line segments,
not in terms of lengths. That such a point 𝐸 as specified in the definition exists follows from (C.1), to
which we turn now.

Axiom (C.1). Given a line segment 𝐴𝐵 and a ray ⃗⃗⃗⃗⃗⃗⃗𝐶𝐷, there exists a unique point 𝐸 on ⃗⃗⃗⃗⃗⃗⃗𝐶𝐷 such that
𝐴𝐵 ≅ 𝐶𝐸.

Axiom (C.2). Line segments congruent to the same segment are congruent to each other.

Axiom (C.3). If congruent line segments are added to congruent line segments, their sums are con-
gruent.

Axiom (C.4). Given an angle ∠𝐵𝐴𝐶 and a ray ⃗⃗⃗⃗⃗⃗⃗𝐷𝐹, there exists a ray ⃗⃗⃗⃗⃗⃗⃗𝐷𝐸 on a given side of ⃗⃗⃗⃗⃗⃗⃗𝐷𝐹 such
that ∠𝐵𝐴𝐶 ≅ ∠𝐸𝐷𝐹.

Axiom (C.5). Angles congruent to the same angle are congruent to each other.

Both (C.1) and (C.4) are propositions that Euclid proves. Instead of (C.1), Euclid assumes that we
can draw circles (Book I Postulate 3). The lines of the midpoint of a circle to a point on the circle are by
definition congruent, so in fact, his axiom requires 𝐶 to be the same point as 𝐴. Through construction,
he then proves that one can construct a congruent line segment on any other line. The same goes
for (C.4), which corresponds to the Elements Book I Proposition 23. (C.2) and (C.5) are two separate
cases of Euclid’s Common Notion 1. One could condense it into Euclid’s single axiom ‘things congruent
to the same thing are congruent to each other’, understanding that ‘thing’ means either ‘line’ or ‘angle.’

Though these differences in choices between Euclid and Hilbert are interesting, we choose not to
discuss them because there are other axioms (most notably (Pasch), (SAS) and (P)) that are more
important, and discussing the different merits and proving the equivalences for all axioms would make
us go too far astray of the goal of this thesis. Therefore we will simply take Hilbert’s version for the sake
of completeness. Hilbert does not assume uniqueness for (C.1) but does for (C.4) and then proves
uniqueness for (C.1) on the basis of an axiom that is to follow. We will just postulate uniqueness for
both.

(C.3) is an adaptation of Euclid, who postulated it in general as a common notion. We restrict it
to line segments because we only defined addition for them and it is the only thing we need. With a
definition of congruence, we also define an inequality of line segments.

Definition 2.9. 𝐴𝐵 is less than 𝐶𝐷 (𝐴𝐵 < 𝐶𝐷) if there is a point 𝐸 in between 𝐶𝐷 such that 𝐴𝐵 ≅ 𝐶𝐸.
We also say 𝐶𝐷 is greater than 𝐴𝐵 (𝐶𝐷 > 𝐴𝐵).

The five axioms of congruence introduced so far are not sufficient for Euclidean geometry, we need
another axiom. Let us consider (a modern formulation of) Book I Proposition 4 of the Elements.

Axiom (SAS). Given triangles △𝐴𝐵𝐶 and △𝐷𝐸𝐹, if 𝐴𝐵 ≅ 𝐷𝐸 and 𝐴𝐶 ≅ 𝐷𝐹 and ∠𝐵𝐴𝐶 ≅ ∠𝐸𝐷𝐹 then
the triangles are congruent, i.e. 𝐵𝐶 ≅ 𝐸𝐹, ∠𝐴𝐵𝐶 ≅ ∠𝐷𝐸𝐹 and ∠𝐴𝐶𝐵 ≅ ∠𝐷𝐹𝐸.
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The proposition is often referred to as side-angle-side (SAS) as it states that the congruences of a
triangle are characterised by a given side-angle-side combination. Euclid claimed to prove this propo-
sition by means of superposition: the method of placing the congruent side-angle-side combination on
top of each other and arguing why the other side and angles must be congruent as well. Throughout
history, mathematicians and philosophers have raised objections to this method, because the process
of superposition involves motion and seems much more physical than the other axioms. Nevertheless
one cannot escape the fact that this proposition is independent of all other axioms. Hilbert took (SAS)
as an axiom, we are going to do something different.

The fundamental fact that gives rise to the need for this axiom is the homogeneity of space: shapes
are independent of any particular position. (SAS) establishes this for triangles. Given a SAS-combination,
there is only one way in which a third line segment can be drawn to connect the other two (I.1). (SAS)
then establishes that the other parts of the two triangles must also be congruent, hence that the two
shapes are actually the same. This can only be the case if the plane is homogeneous. However, one
cannot just take a proposition like ‘the plane is homogeneous’ as an axiom in our formal system, we
have to precisely define what homogeneity is in this context. We will do this by postulating the existence
of certain symmetries as axioms in our space.

The idea of using a group of symmetries to characterise a geometry stems from Felix Klein’s (1849-
1925) Erlangen program. His essential idea is that one can characterise a geometric space by the
existence of certain symmetries in the geometry: transformations under which figures remain invariant.
A symmetry is always a symmetry of certain properties. Until now we have discussed incidences,
betweenness and congruences, which will be our invariants. This kind of symmetry is called Euclidean
isometry (or ‘rigid motion’, but I personally do not like this term, because it suggests that we are actually
talking about moving things whereas this isometry can also just be a more abstract kind of relating).
Mathematically, we can define it as follows.

Definition 2.10. Let Π be a geometry consisting of the primitive terms of point, line, betweenness and
congruences, we define an Euclidean isometry to be a map 𝜙 ∶ Π → Π such that:

1. 𝜙 is a 1-to-1 mapping of points onto itself

2. 𝜙 sends lines to lines

3. 𝜙 preserves betweenness of collinear points

4. For any two points 𝐴𝐵 ≅ 𝜙(𝐴)𝜙(𝐵)
5. For any angle ∠(𝐵𝐴𝐶) ≅ ∠(𝜙(𝐵)𝜙(𝐴)𝜙(𝐶))
A Euclidean isometry preserves all properties we have discussed so far. Note that beyond the

isometry of mapping each point to itself (the identity), there is no guarantee that such isometries exist
in a given geometry. Let us demonstrate that a geometry might lack symmetries by an example.

Example 2.3. Consider the following the metric space (ℝ2, 𝑑(⋅, ⋅)) with

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = √(𝑥2 − 𝑥1)4 + (𝑦2 − 𝑦1)2

This is a model based on a Euclidean plane such that all distances grow quadratically faster with
respect to a given origin and direction (the 𝑥−axis). (Why would we ever measure distances differently
for Euclidean space? I cannot possibly give a full answer to such a broad question here, but think about
the following interesting application: in designing a world for Virtual Reality (VR), it is desirable to have
a space that has the topology of physical space around us, but that the distances are altered in such
a way that walking around in VR world will keep you within the limited domain of a VR setup). We will
not consider all attributes, just the congruence of line segments. Congruences between line segments
can be measured via the distance function: two line segments are congruent if the distance between
their endpoints is the same. A translation does not change the distance between two 𝑥−coordinates.
A rotation does change them, so there exist no rotational symmetries. The metric we defined is still
relatively regular, but as the possible application to VR indicates, such metrics can be highly irregular.

Characteristic for Euclidean space is that moving things around, rotating them and flipping them
over does not change the congruences of lines and angles. Therefore let us introduce the existence of
Euclidean isometries (EEI) axiom.
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Axiom (EEI).
Translation: For any two points, 𝐴, 𝐴′ there is an isometry that maps 𝐴 to 𝐴′.
Rotation: For any three points 𝑂, 𝐴, 𝐴’ there is an isometry that maps the ray ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴 to the ray ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴’.
Reflection: For any line there is an isometry such that any point on that line gets mapped to itself, but
the separation of the line changes sides.

As an example of a symmetry that does not exist in the geometry defined so far, take the oper-
ation of scaling the whole space with respect to a center point. Scaling preserves (1)-(3) and (5) of
Definition 2.10, but it does not preserve congruences.

Proposition 2.5 (Hartshorne 17.1). (EEI) and (SAS) imply each other in a plane satisfying (I.1) to (I.3),
(O.1) to (O.4) and (C.1) to (C.5).

Proof. (EEI) ⟹ (SAS): Suppose that for two triangles △𝐴𝐵𝐶 and △𝐴′𝐵′𝐶′, 𝐴𝐵 ≅ 𝐴′𝐵′ and 𝐴′𝐶′ ≅ 𝐴′𝐶′
and ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶′. First note that the composition of isometries is an isometry (C.2) and (C.5).
Define an isometry by first mapping 𝐴′ to 𝐴 (translation), then mapping the rays ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐵′ to ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐵 leaving
𝐴 = 𝐴’ in place (rotation) and lastly reflecting in 𝐴𝐵 if 𝐶 and 𝐶′ are on different sides of 𝐴𝐵 (else leaving
them in place). This isometry sends 𝐴′ to 𝐴, 𝐵′ to the ray ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐵 and 𝐶′ to the same side of that line as 𝐶.
𝐴′ = 𝐴, thus 𝐴𝐵 ≅ 𝐴𝐵′ and as 𝐵 and 𝐵′ are on the same ray from 𝐴, 𝐵′ = 𝐵 (C.1). ∠𝐵𝐴𝐶 ≅ ∠𝐵𝐴𝐶′,
thus ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐶 and ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝐴𝐶′ are the same ray (C.4). Now again by congruence of 𝐴𝐶 and 𝐴𝐶′, 𝐶 = 𝐶′ (C.1) which
completes one direction of the proof.

(EEI) ⟸ (SAS): The direction of this proof can be found in (Hartshorne, 2000, Proposition 17.4).

Taking (EEI) as an axiom has a certain merit: it makes much more explicit what the underlying
assumptions about space are. It is also closer to the kind of assumption that we make implicitly when
thinking about space around us and it will make it easier to relate the axiomatic and coordinate-based
approach to each other. Nevertheless, it is true that this axiom has a completely different form from
the other axioms and that (SAS) is a simpler statement if the goal is to stay as close as possible to the
formalism.

2.4. Axiom of Parallels
Now we turn to the most famous of Euclid’s axioms: the parallel postulate. In the introduction we
discussed some of the mathematical history surrounding it, here we will elaborate on some of the
conceptual and physical underpinnings of the parallel postulate.

This axiom is very central to the nature of Euclidean space and what differentiates it from other
geometrical spaces, most of the other geometrical spaces studied in mathematics and used in physics
are non-Euclidean. In position-space, what ability does this axiom presuppose? It is the ability to
consider direction and position independently, the same direction that exists between 𝐴 and 𝐵’s can
exist between 𝐶 and other 𝐷’s. In position-space parallel lines are lines with the same direction8, at
different positions. In other spaces where the parallel postulate does not hold, directions from different
starting points are not comparable. Multiple or no parallel lines might exist from a point outside the line,
so there is no way to determine the same direction at a different position (or the concept direction loses
its meaning because there are multiple that are ‘the same’). By means of the concept of parallelism and
the parallel postulate, we can form an abstraction of direction that is independent of a specific position.
This observation will become even clearer in chapter 5 when we discuss projective spaces and where
‘direction’ can be characterised by a point on the horizon. Let us start with a formal definition of parallel
lines.

Definition 2.11. Two lines are parallel if they do not intersect.

We also consider a line to be parallel to itself, as a degenerate case. In an arbitrary geometry, there
might exist parallel lines or none at all, outside the degenerate case. The modern form of the parallel
postulate is due to Playfair:

Axiom (P). Let 𝓁 be a line and A a point not on 𝓁, then there is a unique line through 𝐴 parallel to 𝓁.
8Here we consider the opposite directions 𝐴 to 𝐵 and 𝐵 to 𝐴 as equivalent.
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It is not strictly necessary to assume the existence of such a line, that can be proven,9 but postulating
uniqueness is absolutely necessary. Let us finish this section by introducing another geometry where
parallel lines play an important role.

Example 2.4. An affine plane is a plane satisfying (I.1) to (I.3) and (P). We will consider an example
of a real-world space that is affine. Consider the motion of a particle moving in a single dimension
over time.10 In the two-dimensional space (one of position one of time) ‘points’ have significance, they
are the state of the particle at a given point in time, ‘lines’ have significance as well, they are the path
of a particle over time at constant velocity. However, there is no significance to congruences of line
segments nor of angles, because the two different dimensions cannot be compared directly. Only when
one chooses a unit to measure and relate the displacement and time dimensions do these properties
become meaningful. (There is the small exception that parallel lines can be compared in terms of
congruences.) It might not come as a big surprise, given this example, that affine spaces will arise very
naturally when considering coordinate geometry.

2.5. Axioms of Continuity
The most famous example of something Euclid assumed but that cannot be derived from his axioms
is the fact that if circles overlap, then they have points of intersection. He uses this fact immediately in
Proposition 1, but it is not derivable from his axioms. In section 2.2 we claimed that we had derived all
topological structure of the Euclidean line. Here we swept the differences between infinite divisibility
and continuity under the rug. Let us now consider this subject.

(O.4) or (Pasch) gives an infinite divisibility induced by triangles: we can intersect our line by con-
structing a triangle with a point outside our line. The existence of such intersections does not necessarily
imply the existence of intersections between two circles. Coordinate geometry is a very appropriate
setting to explain what gives rise to this difference, so we defer such explanations to chapter 4, here
we will just state the axiom.

Definition 2.12. A circle with centre 𝑂 and radius 𝑂𝐴 is the set of points such that a point 𝐵 is in the
set if and only if 𝑂 ∗ 𝐵 ∗ 𝐴, 𝐵 = 𝑂 or 𝐵 = 𝐴.

A point 𝐵 is inside the circle if for 𝐴 on the circle 𝑂𝐵 < 𝑂𝐴, it is outside the circle if 𝑂𝐵 > 𝑂𝐴. Two
circles 𝑐1, 𝑐2 overlap if there exist points 𝐴, 𝐵 on 𝑐1 so that 𝐴 is inside and 𝐵 is outside 𝑐2. That 𝑐1, 𝑐2
overlap is the same as that 𝑐2, 𝑐1 overlap.
Axiom (CCI). If two circles overlap, then they intersect.

With all axioms considered so far, one can prove all of Euclid’s propositions from Book I-IV of the
Elements that do not use area, which we have not defined or axiomatised. For the other books of
Euclid, one needs additional axioms that are necessary to develop a theory of proportion (starting in
Euclid’s Book V). Let us state the most important of these axioms: Archimedes’ axiom. It states that
any length can be used to measure any other length.

Axiom (A). If 𝐴𝐵 and 𝐶𝐷 are any segments, then there exists a number 𝑛 such that 𝑛 segments 𝐶𝐷
placed next to each other will be greater than 𝐴𝐵.

With these axioms, one is equipped to prove all of Euclid’s propositions about plane geometry.
That does not exhaust plane geometry however…Modern developments include the real numbers and
the formalisation of continuity, to integrate with this theory we need another axiom. Hilbert chose the
following axiom:

Axiom (Line Completeness). It is impossible to extend the set of points of a line with its order and
congruence relations that would preserve the relations existing among the original elements as well as
the fundamental properties of line order and congruence that follow from (I.1) to (I.3), (O.1) to (O.4),
(C.1) to (C.5), (EEI), (CCI) and (A).

In essence, this axiom states that the line is ‘complete’, we cannot add extra points to a line to con-
struct a new line that would preserve all original properties of the line. This axiom implies Archimedes’
9See for example Elements Book I Proposition 27.
10This example is inspired by the introduction to affine planes in (Bamberg & Sternberg, 1991).
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axiom and (CCI). We state it separately, because taking it as an axiommasks distinctions that are worth
studying. Hartshorne did not take (Line Completeness) as an axiom and instead took an alternative
axiom, Dedekind’s axiom:

Axiom (Dedekind). Suppose the points on a line are divided into a partition 𝑆, 𝑇 such that no point of
𝑆 is between points of 𝑇, and no point of 𝑇 is between points of 𝑆. Then there exists a unique point 𝑃
such that for any 𝐴 ∈ 𝑆 and any 𝐵 ∈ 𝑇, either 𝐴 = 𝑃 or 𝐵 = 𝑃 or 𝐴 ∗ 𝑃 ∗ 𝐵.

Dedekind’s axiom says that any ‘cut’ of the line defines a unique point. We will not try to demonstrate
that these two are equivalent as it goes too far astray from our theme. We will see later that either one
of these two axioms is necessary to get a categorical model of Euclidean geometry.

This concludes the axioms. We have now built up Euclidean geometry synthetically using Hilbert’s
axioms. We finish with two definitions of planes that interest us.

Definition 2.13. A Hilbert plane Π is a geometry that satisfies the axioms (I.1) to (I.3), (O.1) to (O.4),
(C.1) to (C.5) and(EEI).

A Hilbert plane does not necessarily satisfy (P) and (CCI). We also define the Euclidean plane,
which is the plane for which Euclid’s propositions about plane geometry hold.

Definition 2.14. An Euclidean plane Π is a Hilbert plane satisfying (P) and (CCI).





3
Geometrical arithmetic

3.1. Synthesis versus Analysis
After a long period of stagnation and decline during the Dark Ages, mathematics revived again in
Europe when the Greek works were rediscovered. The new renaissance of geometry reached a first
culmination in the work of Descartes.1 In this chapter we will reproduce an essential ingredient of his
achievement but in the framework of Hilbert’s axioms.

In Euclid’s Elements, all propositions are proved by giving a construction that bases itself purely
on established (or postulated) knowledge. We reason from the known to the unknown. But, we could
object to Euclid’s construction in the same way Poincarè objected to Hilbert’s axioms: ‘we do not know
from whence they come.’ How did the Greeks come up with their constructions?

It was known that next to synthetic constructions, Greek geometry also consisted of something they
called analysis. This is what the Greek mathematician Pappos (c. 290 - c. 350 AD) had to say about it:

“[A]nalysis is the path fromwhat one is seeking, as if it were established, by way of its conse-
quences, to something that is established by synthesis. That is to say, in analysis we assume
what is sought as if it has been achieved, and look for the thing from which it follows, and
again what comes before that, until by regressing in this way we come upon some one of
the things that are already known, or that occupy the rank of a first principle. We call this
kind of method ‘analysis,’ as if to say anapalin lysis (reduction backward). In synthesis, by
reversal, we assume what was obtained last in the analysis to have been achieved already,
and, setting now in natural order, as precedents, what before were following, and fitting
them to each other, we attain the end of the construction of what was sought. This is what
we call ‘synthesis.”’2

Analysis3is a method of finding solutions by reasoning backwards from a supposed solution, synthesis
is a deductive demonstration of solutions on the exclusive basis of axioms, without reference to un-
known facts or assumptions. Synthesis is Euclid’s method in the Elements, but analysis is precisely
this missing element that explains where the constructions come from. Pappos also makes the impor-
tant observation that analysis precedes synthesis. One first needs to find a solution, which in general
is not trivial at all and requires a methodological approach, before one can demonstrate the validity of
such a solution.

Unfortunately, most of the Greek works presented synthetic constructions without any reference to
the analysis that preceded it and most of that analysis has been lost. We can only awe in imagination at
the kind of methods they must have had to find solutions to new mathematical problems. Some works
did survive, see for example Euclid’s Data.4

As a philosopher, Descartes was very concerned with method. In mathematics too, his goal was
to create general methods to solve all mathematical problems. In his work La Géométrie (1637), he
1For an extensive study of this development, see (Bos, 2012).
2(Bos, 2012, p.95)
3The modern usage of the term ‘analysis’ in mathematics is different, I will therefore limit my usage of this term.
4(Euclid, 1993)
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developed a new method to solve geometrical problems: analytic geometry. In Descartes’ analytic
geometry, one assigns symbols to different line segments — known and unknown —- and one deter-
mines the length of the unknown line segments based on the relationships in length of the different
line segments and the arithmetical operations (addition, multiplication, subtraction, division and root
extraction) defined for lengths. It is a form of analysis that works using algebra.

Algebra originated in the Islamic world as a method of analysis for numerical problems, not geomet-
rical problems. Descartes’ achievement is a full application and integration of this method in geometry.
Algebra works by means of the arithmetical operations, however, so before discussing such a thing as
algebra in geometry, let us introduce arithmetic in geometry.

3.2. Arithmetic of lengths
Hilbert’s axioms include the congruence relationship, which for line segments means equality in length.
But congruence itself is a relationship between line segments, not between lengths. To compare lengths
directly without any reference to positions of line segments, one needs to consider lengths abstracted
from any specific line segment. We need to introduce a second level of abstraction.

Euclid presents the theory of proportions in Book V, which provides a general framework to compare
magnitudes, including length. It could be used for this. But to develop a full theory of magnitudes with
the same level of rigour and understanding we have today, one basically needs to develop the real
numbers. Moreover, it can be a very interesting pedagogical lesson into the nature of numbers and
their applications to see what we can do based on only the geometry we have defined so far and to
develop an arithmetic that is specifically made for lengths only. We are going to take inspiration from
(constructions of) line segments themselves and develop an arithmetic of lengths directly, without any
reference to numbers.

Length is an attribute of line segments. To consider the length of the line segment, we have to
abstract away from its other attributes. In modern mathematics, this can be done by means of an
equivalence class. One could define the length of a line segment to be the equivalence class of con-
gruent line segments. But such a definition raises some real philosophical objections as it blurs the
distinction between classification and description, and thus between attributes and groups.5 We take
a different approach of simply defining an attribute6length that line segments have and define how
different lengths relate to each other.

Definition 3.1. A length 𝑎 is an attribute of a line segment 𝐴𝐵 such that for any other line segment 𝐶𝐷
with length 𝑏, 𝑎 = 𝑏 ⟺ 𝐴𝐵 ≅ 𝐶𝐷.

We define inequalities of lengths in the same way, based on inequalities for line segments. We
defined the addition of two line segments as the line segment constructed by putting one next to the
other, we can use this to induce a definition for the addition of lengths.

Definition 3.2. Given two lengths 𝑎, 𝑏, we define their sum (𝑎 + 𝑏) to be the following length 𝑐. For
collinear points 𝐴, 𝐵, 𝐶 such that segments 𝐴𝐵 and 𝐵𝐶 have lengths 𝑎 and 𝑏 respectively the line seg-
ment 𝐴𝐶 has length 𝑐.

That the sum of lengths 𝑎, 𝑏 produces a unique length 𝑐 follows from (C.3). A length is an abstraction,
so it cannot exist independently of any line segment. Therefore, in our definition of the addition of
lengths, we used specific line segments 𝐴𝐵, 𝐵𝐶. Our definition does not depend on these specific
line segments, any other congruent line segment could be substituted for them and by (C.2) this is
equivalent.

Addition is the operation of combining quantities of the same kind along their domain of commen-
surability (adding lengths to lengths, time to time, area to area, units to units), inducing a definition of
addition for lengths can easily be done based on the established geometrical properties of line seg-
ments alone. Multiplication, however, introduces more difficulties. Multiplication is the operation of
interrelating two quantities of a different kind and results in a quantity different from the other two:
multiplying length and width produces area, multiplying speed and time produces distance, multiplying
weight by acceleration produces force.

5See (Binswanger, 2014, p.175-178) for the importance of this issue).
6This can be taken as a primary concept for knowledge in general, attributes are things that entities are made of.
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Figure 3.1: Multiplication of lengths through equality in area

The simplest case is that of using length7and width to produce area, as this does not involve the
choice of any fixed unit. If one wants to measure the product by the same unit by which one measures
one of the factors, one needs the selection of a unit, however. Consider the case of counting the
number of items 𝑛 in a group and counting the total number of groups 𝑚. The total number of items
is then 𝑛 × 𝑚, if the groups are uniform. That is, if 𝑛 is not only the number of items in the counted
group but 𝑛 is also the number of items in the other groups. This fact enables one to go from ‘𝑛 items
in the counted group’ to ‘𝑛 items per group’ and multiply the number of items per group by the number
of groups to obtain a number of items. We will see that if we are going to go from a length to another
length, we will have to fix a unit along the way.

Multiplying two lengths has no natural definition, what that would require is a way to relate two line
segments uniquely to a third line segment. The closest thing to a product of two lengths arises from
considering one of the lengths as a width and producing an area by multiplying them. One could then
relate this area back to a unique length by choosing a unit width (see fig. 3.1).

This is arguably the simplest way to think about it, but it is not what we are going to do, mainly for
pedagogical reasons. It is an interesting lesson both about the nature of multiplication and its meaning
and about the nature of formal systems to do it in a way that avoids the usage of axioms and propositions
for areas.

Let us first state the way Hartshorne defined multiplication for line segments, which is the simplest
way within our formal system.8

Definition 3.3 (Triangle-multiplication). Given two lengths 𝑎, 𝑏 and a unit length 1. We define their
product 𝑎 ⋅ 𝑏 as follows. First, make a right triangle △𝐴𝐵𝐶 with 𝐴𝐵 length 1 and 𝐵𝐶 length 𝑎 with the
right angle at 𝐵. Let 𝛼 be the angle ∠𝐵𝐴𝐶. Now make a new right triangle △𝐷𝐸𝐹 with 𝐷𝐸 length 𝑏 and
having angle 𝛼 at 𝐷. Then we define 𝑎 ⋅ 𝑏 to be the length of 𝐸𝐹 on this new triangle.

This way of defining the multiplication of line segments is also very similar to the way Hilbert and
Descartes did it.9 There is however something unsatisfying with this definition because it is not clear
why it works. Why is this a valid definition for multiplication? Let us, therefore, give an interpretation
of this definition, after we have demonstrated two results about this multiplication.

Lemma 3.1. For lengths 𝑎, 𝑏, 𝑐, 𝑑 with respect to a unit length 1 the following equivalences hold: 𝑎 <
𝑏 < 𝑐 ⟺ 𝑎𝑑 < 𝑏𝑑 < 𝑐𝑑 and 𝑎 = 𝑒 ⟺ 𝑎𝑑 = 𝑒𝑑.10

Proof. On a ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼 consider the points 𝐴, 𝐵, 𝐶 with 𝑂𝐴 length 𝑎, 𝑂𝐵 length 𝑏 and 𝑂𝐶 length 𝑐. By
definition, 𝐴∗𝐵∗𝐶. If we now consider the point 𝐼′ with𝑂𝐼′ length 1 and∠𝑂𝐴𝐼′ a right angle, then we have
the three triangles△𝑂𝐼′𝐴,△𝑂𝐼′𝐵,△𝑂𝐼′𝐶. Moreover, it is clear that 𝐴∗𝐵∗𝐶 ⟺ ∠𝑂𝐼′𝐴 < ∠𝑂𝐼′𝐵 < ∠𝑂𝐼′𝐶.
If 𝐷 lies on the ray ⃗⃗ ⃗⃗ ⃗⃗⃗𝑂𝐼′ such that 𝑂𝐷 has length 𝑑, then the three points with the multiplied lengths lie
on ⃗⃗ ⃗⃗ ⃗𝑂𝐼. Now the angles of these triangles stay the same, hence the order of the points as well. The
7‘Length’ is used in two ways: in the wide sense as a concept for 1-dimensional extension and in a narrow sense in contrast
with width and height, the other two 1-dimensional extensions. Normally we use it in the wide sense, but here it is used in the
narrow sense.

8Hartshorne treats lengths as equivalence classes of lines, which we do not take over.
9(Hilbert, 1971, p.52) and (Bos, 2012, ch.21)
10Note that these are not identities for number in general. They are for our lengths, which correspond to positive numbers.
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Figure 3.2: Triangle-multiplication

relevant implications are all both ways so 𝑎 < 𝑏 < 𝑐 ⟺ 𝑎𝑑 < 𝑏𝑑 < 𝑐𝑑. The second statement is by
definition true.

Let us now consider an operation that directly relates line segments to line segments: stretching.
We are going to relate any line segment by its length to a unique stretching operation and use this
stretch to stretch another line segment. The length of the resulting line segment is the product of the
two lengths. We will start by defining a stretch for a ray, for which we use the more formal term of
dilation.

Definition 3.4. A linear dilation of a ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼 is a map 𝜙 ∶ ⃗⃗ ⃗⃗⃗𝑂𝐼 → ⃗⃗⃗⃗⃗𝑂𝐼 such that for fixed 𝐼, 𝐴 ∈ ⃗⃗ ⃗⃗⃗𝑂𝐼 with 𝑂𝐼 of
length 1 and 𝑂𝐴 of length 𝑎 (which is by definition also the magnitude of the dilation):
1. 𝜙 is a bijection

2. 𝑂 = 𝜙(𝑂), 𝐴 = 𝜙(𝐼)

For any 𝐵, 𝐶, 𝐷, 𝐸 ∈ ⃗⃗ ⃗⃗⃗𝑂𝐼,

3. 𝐵 ∗ 𝐶 ∗ 𝐷 ⟺ 𝜙(𝐵) ∗ 𝜙(𝐶) ∗ 𝜙(𝐷) (preservation of order)

4. 𝐵𝐶 ≅ 𝐷𝐸 ⟺ 𝜙(𝐵)𝜙(𝐶) ≅ 𝜙(𝐷)𝜙(𝐸) (preservation of line congruences)
Notice how the magnitude of a linear dilation is directly related to the length 𝑎. In ordinary language,

linear dilation is the ray you get by holding 𝑂 in place and pulling 𝐼 to 𝐴 while keeping the order and
relative lengths the same. One could define multiplication by means of this stretch:

Definition 3.5 (Dilation-multiplication). Given two lengths 𝑎, 𝑏 and a unit length 1. We define their
product 𝑎 ⋅ 𝑏 to be the following length 𝑐. Consider the line segment 𝑂𝐼 with length 1. On the ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼
consider the line segment 𝑂𝐴 with length 𝑎. Define the linear dilation 𝜙 on the ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼 determined by 𝑏
with respect to 1 and consider the point 𝐶 ∶= 𝜙(𝐴). Then we define the product 𝑎 ⋅ 𝑏 to be the length of
𝑂𝐶.

This definition has an important advantage from the viewpoint of understanding multiplication. Like
defining it by using area, it makes clear what it means to multiply two line segments. Any such multipli-
cation involves relating one line segment to a map (the dilation), only that map relates a line segment
back to another line segment.

A problem arises if one wants to put this into a formal system, however. While it is easy to understand
what such a dilation map means and that these are actually the requirements that induce a unique
stretch for each length (something we will demonstrate), proving the existence of such a function from
the axioms alone is a lot of work and will involve using the triangle-definition of multiplication. From
the formalist standpoint, it might be better to see dilation-multiplication as giving an application of the
definition of multiplication. Let us prove that such a dilation exists and is unique based on triangle-
multiplication (that line segment exists by direct construction). Let us start with another definition.
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Definition 3.6. A circular dilation of a plane Π with respect to a point 𝑂 and with magnitude 𝑎 is a map
𝜙 ∶ Π → Π such that any ray from 𝑂 gets mapped to itself, and the restriction of 𝜙 to a ray is a linear
dilation of magnitude 𝑎.

Again, we still have not proved that such a function exists but it is easily seen how circular and
linear dilations are uniquely related to each other. We will use circular dilations to prove the existence
of linear dilations.
Theorem 3.2 (Existence of circular dilation). Given a length 𝑏 and a unit length 1. Consider a center
𝑂 for two circles: 𝑐1 with radius 1 and 𝑐𝑏 with radius 𝑏. Define a function 𝜙 with 𝜙(𝑂) = 𝑂 and for
any 𝐴 ≠ 𝑂 with 𝑂𝐴 length 𝑎, define 𝜙(𝐴) as the point on the ray 𝑂𝐴 with length 𝑎 ⋅ 𝑏 (defined by
triangle-multiplication). Then 𝜙 is a circular dilation.

Proof. By definition, any point 𝐴 gets mapped to another point on the ray 𝑂𝐴. We have to show that the
restriction of 𝜙 to such a single ray is a linear dilation. Let us pick a point 𝐴 and consider the restriction
of 𝜙 to the ray ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴. We check all conditions of the definition:
1. That 𝜙 is a bijection is obvious.

2. By definition 𝜙(𝑂) = 𝑂 and if 𝐼 is the point on ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴 such that 𝑂𝐼 has length 1, then 𝜙(𝐼) = 𝐴 also
by definition.

Let 𝐵, 𝐶, 𝐷, 𝐸 ∈ ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴
3. 𝐵∗𝐶∗𝐷 ⟺ 𝜙(𝐵)∗𝜙(𝐶)∗𝜙(𝐷). This follows from the related identity for Hartshorne’smultiplication

proved in Lemma 3.1.

4. 𝐵𝐶 ≅ 𝐷𝐸 ⟺ 𝜙(𝐵)𝜙(𝐶) ≅ 𝜙(𝐷)𝜙(𝐸). This also follows from Lemma 3.1.

Lemma 3.3. A circular dilation maps any line to a parallel line
Proof. Given is a circular dilation 𝜙 with respect to a point 𝑂 of magnitude 𝑎. If 𝑎 = 1 then every
point gets mapped to itself and the result is trivial. So, suppose 𝑎 ≠ 1, we do a proof by contradiction.
Suppose a line 𝓁 gets mapped to a non-parallel line 𝓁′, then they intersect in a point 𝐴. But then on the
ray ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴, 𝜙(𝐴) = 𝐴 which implies every point on the ray gets mapped to itself, so the magnitude of the
linear dilation is 1, but the magnitude of the linear dilation equals that of the circular dilation which is
≠ 1, a contradiction. We conclude that any line gets mapped to a parallel line.

Proposition 3.4 (Elements Book I, Prop. 29). A straight-line falling across parallel straight-lines makes
the alternate angles equal to one another, the external (angle) equal to the internal and opposite (angle),
and the (sum of the) internal (angles) on the same side equal to two right-angles.11

This last proposition is taken directly from Euclid, hence its language somewhat differs from ours
but its meaning should be familiar to anyone who has done high-school geometry (they are sometimes
called ‘F-angles’).
Theorem 3.5. A given ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼, a magnitude 𝑎 and unit 1 uniquely determine a linear dilation.
Proof. Suppose there were two functions 𝜙,𝜓 that are both linear dilations of the same ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼 with the
same magnitude 𝑏. Let 𝑂𝐵 on ⃗⃗ ⃗⃗ ⃗𝑂𝐼 have length 𝑏. Take an arbitrary point 𝐴 ∈ ⃗⃗⃗⃗⃗𝑂𝐼 such that 𝑂𝐴 has length
𝑎. We prove that 𝜙(𝐴) = 𝜓(𝐴) which implies 𝜙 ≡ 𝜓.

Any linear dilation determines a unique circular dilation, so we consider the same maps 𝜙,𝜓 ex-
tended uniquely to a ray perpendicular to ⃗⃗ ⃗⃗ ⃗𝑂𝐼.

On this ray, there exists a point 𝐼′ such that 𝑂𝐼′ has length 1. By definition 𝜙 and 𝜓 send 𝐼 to 𝐵. So
they must both send 𝐼′ to a point 𝐵′ such that 𝑂𝐵 ≅ 𝑂𝐵′.

A parallel line gets mapped to a parallel line, so the line ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐼′ gets mapped to a parallel line 𝐶𝐵′ for
some 𝐶. And by the parallel postulate, 𝐶 is the same point for 𝜙 and 𝜓. As 𝐴 was an arbitrary point,
this is the case for any point on ⃗⃗ ⃗⃗ ⃗𝑂𝐼, 𝜙 and 𝜓 are identical.

Dilation-multiplication is equivalent with triangle-multiplication. This follows directly because we
have shown that there exists a dilation that agrees with triangle-multiplication and it is unique, one can
also just look at how 𝑂𝐶 is defined and see that 𝑂𝐶 has length 𝑎 ⋅ 𝑏.
11(Euclid, 2008, p.32)
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Figure 3.3: Dilation-multiplication

Without ever considering a general theory of magnitude and using numbers, we have defined ad-
dition and multiplication for lengths, giving rise to arithmetic for lengths. With arithmetic of lengths, one
has the language to use algebra to solve geometric problems. This is done by thinking of the problem
as solved and all lines as drawn, assigning the letters 𝑎, 𝑏, 𝑐, ... to the known lengths and 𝑧, 𝑦, 𝑥, ... to
unknown ones (yes, this convention stems from Descartes!), then one uses the geometric relations
in length specified by the problem to define equations. The famous example of an algebraic relation
that can be induced from geometric relations is the Pythagorean theorem: 𝑎2 + 𝑏2 = 𝑐2. Using such
equations one can then express the unknown length in terms of known ones. Note that in our arith-
metic 𝑎2 does not mean a square, but another line segment with length 𝑎2. Deriving equations that
correspond to geometric relations is a whole field in itself and hence we will not go into detail of how to
solve geometric problems in this way. Examples of how to do this can be found in secondary literature
or Descartes’ original work.12

Lengths alone are not enough to do geometry. The attribute is an aspect of shape and is inde-
pendent of position (at what points the line segment with the given length in question exists), so with
lengths alone, it is not possible to determine the (relative) position of different line segments and there-
fore no geometry is possible. By specifying a standard position and relating all other positions to it, we
can create a system in which we can determine both lengths and positions, that is what we do with a
coordinate system.

1𝑥 𝐴𝑥
𝑥

1𝑦

𝐴𝑦

𝑦

•A

O

Figure 3.4: A simple coordinate system

We consider a standard position, the origin, and take two perpendicular lines on it. For both lines,
we choose a unit length by choosing two unit points 1𝑋 and 1𝑌 respectively.

Each point 𝐴 in the geometrical space can be identified by mapping the point on the axes using
perpendicular lines to 𝐴𝑋 and 𝐴𝑌 respectively and considering the pair of lengths of the line segments
𝑂𝐴𝑋 and 𝑂𝐴𝑌.

There is one problem, however, a problem that can be seen both from the geometric and algebraic
perspective. The coordinate system works well if all line segments we consider exist in the upper right
quadrant, but currently, each coordinate has four referents. It is not possible to distinguish this point
from three points in other quadrants.

A related problem arises from the algebra. We have not yet formally defined subtraction, but it is
not hard to do so on the basis of addition. Subtraction is not problematic if one subtracts smaller from
bigger lengths, if one however subtracts a bigger from a smaller length then the expression becomes
meaningless.
12See for example chapter 22 in (Bos, 2012) or (Descartes, 1925).
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This problem is inescapable in Euclidean geometry, because in Euclidean geometry lines are in-
finitely extendable in both directions. If our lines were mere circles, like a clock, there would be no
need for negative lengths as we could simply select an orientation point and restart our coordinates if
we reach this point again. If we have selected an origin for Euclidean geometry however, this does not
work. Nor is it practical (or elegant) to select a point as the origin such that all relevant points in an
application lie in one quadrant. Let us therefore define oriented lengths.

3.3. Oriented lengths
The problem we ran into with creating a coordinate system based on lengths is that on a line there are
two line segments with the same length with respect to a point. We want to differentiate these two.
The solution is of course the idea of having positive and negative lengths. We could simply introduce
a ‘−’ symbol for lengths on one side and use the familiar rules for negative and positive numbers.

From a modern viewpoint, no one would be surprised if we were to do this, but I think that by doing
this we are stepping over some of the historical opposition that existed against negative numbers. What
does it mean to have a length less than zero, and why is it justified to introduce something like this?
Let us, therefore, stay true to our mission of defining numerical concepts in purely geometrical terms
and introduce negative lengths on the basis of actual geometrical facts of our space.

With the concept of length, we only considered the congruence of line segments and treated line
segments equivalent with respect to all other properties. To differentiate the two segments that lead to
equal lengths, we want to also consider the orientation of the line segment so that one is ‘opposite’ that
of another.

Let us start by clarifying two properties of line segments: position and direction. We will not give
formal definitions of them, but just consider two things that characterise them in relation to other line
segments.

On a segment multiple positions can be differentiated, all the points on the line are at different
positions. We can consider the position of the segment as a whole by picking a specific point on it,
e.g. one of its extremities or the middle. Translating a line segment changes its position. If we pick a
point on it as its position and rotate the segment around that point, then the position does not change.

Direction is a relationship between points, in the context of a line segment between the extremities
of a line segment. We can measure differences in direction by the angle formed between two lines
(or segments). In section 2.4 we discussed how in the context of (P), direction can be considered
independent of position. This applies to line segments as well. In the context of (P), the direction of a
line segment does not change under translations, but it does change under rotations. This is exactly
the opposite of what happens with position.

(When we used direction for infinite lines we treated two possible directions, the two rays into op-
posite directions as equivalent. This is a consequence of considering direction for infinite lines and
will come up again in the context of projective geometry in chapter 5 where the extremities of a line
converge to the same point. For line segments, however, it is exactly these two directions that we want
to differentiate)

Let us stress here and now that we do not want to consider direction in general in our arithmetic, we
only want to differentiate two directions of line segments. Considering direction in general can be done
and that would lead to the complex numbers, but defining such multiplication is very involved and is not
necessary for our goal of building a coordinate system. What we want to consider is only two possible
directions: the two that are each other’s opposite. This will mean that our arithmetic of directed line
segments will have some restrictions, let us indicate why this is necessary.

When we defined addition for lengths, we defined their sum by putting the line segments next to
each other on the same line. One way to view this is that we used an isometry that placed one in the
extension of the other on the same line. Within this isometry, there exist two possible components: a
translation and a rotation.

The translation is no problem, as we do not consider the position of line segments in the arithmetic.
A rotation however, changes the direction of a line. If we are defining addition of lengths with respect
to an orientation, then we cannot join two line segments with different directions to create a new line
segment, as that would require changing the direction of one. Oriented length arithmetic will therefore
be restricted to line segments that can be put next to each other through translation alone. This means
line segments that lie on parallel lines.
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Here we see the value of identifying that (P) enables a comparison of directions independent of
positions. If (P) did not hold, then it would not make sense to develop this arithmetic on parallel lines, as
it means that some line segments might have to be rotated to add them and others not. The restriction
to parallel lines will not be a real restriction in the end, because in a coordinate system we break up a
line segment into components that are parallel to the axes.

In summary, oriented arithmetic exists within a given class of parallel lines. We therefore choose
a class of parallel lines and start our journey here. Note that we will at no point use any particular
property of this class, only the fact that we remain in the same class of parallel lines. So our definitions
are applicable to any class of parallel lines. Let us first define what a class of parallel lines is.

Definition 3.7. A class of parallel lines with respect to a line 𝓁 is the set of lines 𝑃𝓁 such that any line
in it is parallel to 𝓁.

The reader can check that parallelism is an equivalence relation, thus that any line within a class of
parallel lines can be used to define that class. One can easily extend a linear order of a line to a relation
on the class of parallel lines by considering points equivalent if they lie on the same perpendicular line.

Definition 3.8. A linear quasi-order on a class of parallel lines 𝑃𝓁 is a relation <𝑃 with the following
properties. If<𝑃 is restricted to any particular line, then it is a linear order of that line. If two points 𝐴, 𝐵 lie
on different lines, let 𝐶 be the point on the same line as 𝐴 in this parallel class that is uniquely determined
by a line that contains 𝐵 and is perpendicular to any line in the class,13 then 𝐴 <𝑃 𝐵 ⟺ 𝐴 <𝑃 𝐶.

It is not possible to compare two points that are cut by the same perpendicular line, so it is not a
real linear order. Our definition defines a relation between two arbitrary points that lie on lines in the
same parallel class, the definition also directly demonstrates the existence of such an order. We will
use the linear order of a parallel class to define an orientation between two points, i.e. the two possible
directions.

Definition 3.9. An orientation 𝑜 of points 𝐴, 𝐵 on lines within a parallel class 𝑃𝓁 with linear quasi-order
<𝑃, is a relation between two points 𝐴, 𝐵 defined as 𝑜(𝐴, 𝐵) ∼ +1 if 𝐴 < 𝐵 and 𝑜(𝐴, 𝐵) ∼ −1 if 𝐵 < 𝐴.

The ‘1’ used in orientation is just a symbol for unit, it is not a length. Notice that 𝑜(𝐴, 𝐵) ∼ −𝑜(𝐵, 𝐴).
With the concept of orientation, we can define oriented line segments.

Definition 3.10. An oriented line segment 𝐴𝐵 on a line within a parallel class 𝑃𝓁 with linear quasi-order
<𝑃 is the line segment 𝐴𝐵 with an orientation 𝑜(𝐴, 𝐵).

We use the bar as a symbol on top of the two points to indicate that an oriented line segment is not
the same as a line segment. We also can use short-hand notation and write 𝐴𝐵 ∈ 𝑃𝓁 to signify that 𝐴𝐵
lies on a line within the parallel class 𝑃𝓁, similarly we can say 𝐴 ∈ 𝑃𝓁 if 𝐴 lies on a line in 𝑃𝓁.

Definition 3.11. An oriented length ±𝑎 is an attribute of an oriented line segment 𝐴𝐵 ∈ 𝑃𝓁 such that
for any other oriented line segment 𝐶𝐷 ∈ 𝑃𝓁 with oriented length ±𝑐, ±𝑎 = ±𝑐 ⟺ 𝐴𝐵 ≅ 𝐶𝐷 and
𝑜(𝐴, 𝐵) ∼ 𝑜(𝐵, 𝐶). We write +𝑎 or 𝑜(𝑎) ∼ +1 if 𝑜(𝐴, 𝐵) ∼ +1 and −𝑎 or 𝑜(𝑎) ∼ −1 if 𝑜(𝐴, 𝐵) ∼ −1.

We see that an oriented length is made up of two independent attributes, length and orientation.
By definition, these determine a unique oriented length. We can consider these separately and in the
context of an oriented length 𝑎, we will refer to the first as the absolute length |𝑎| and the second as
the orientation + or −. The word ‘absolute’ is merely used to differentiate it from oriented length, but it
is the same attribute as ‘length’ and for absolute length, we can use addition and multiplication defined
for lengths. We will define the addition and multiplication of oriented lengths through its two attributes
of absolute length and orientation. Generally, we will only use the orientation symbol in the case of a
negative length and in other cases omit it. The sum of two oriented lengths now is as follows:

Definition 3.12. Given two oriented lengths 𝑎, 𝑏 that stem from line segments in the same parallel
class, we define their sum 𝑎 + 𝑏 to be the following oriented length.

• If 𝑎, 𝑏 have the same orientation, then |𝑎 + 𝑏| = |𝑎| + |𝑏| and 𝑜(𝑎 + 𝑏) ∼ 𝑜(𝑎) ∼ (𝑏).
13That such a line exists follows from the existence of a unique perpendicular line through a given point
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• If 𝑎, 𝑏 have opposite orientation consider oriented line segments 𝑂𝐴 with oriented length ±𝑎 and
𝐵𝐴 with oriented length ∓𝑏 that lie on the same line, then 𝑐 is defined as the oriented length of
oriented line segment 𝑂𝐵.
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Figure 3.5: Addition of two lengths with opposite orientation

Proposition 3.6. The sum of two oriented lengths 𝑎, 𝑏 with opposite orientation and |𝑎| > |𝑏| has the
same orientation as 𝑎.

Proof. Consider the oriented line segment 𝑂𝐵 from the definition. As |𝑎| > |𝑏|, the line segment 𝑂𝐵 is
smaller than 𝑂𝐴 thus 𝑂 ∗ 𝐵 ∗ 𝐴. Now consider the linear order of the line. Either 𝑂 < 𝐴, in which case
also 𝑂 < 𝐵, by theorem 2.4; or 𝑂 > 𝐴, in which case 𝑂 > 𝐵 , by theorem 2.4 again. Therefore, 𝑂𝐵 will
have the same orientation as 𝑂𝐴

Definition 3.13. The (oriented) length of a point 𝐴 = 𝐴𝐴 = 𝐴𝐴 is defined as 0.

Note that for any (oriented) length 𝑎, 0 + 𝑎 = 0 + 𝑎 = 𝑎. We can now also define subtraction.

Definition 3.14. Given two oriented lengths 𝑎, 𝑏, we define their difference 𝑎 − 𝑏 to be the sum of 𝑎
with the length 𝑏′ that has absolute length 𝑏 but opposite orientation (𝑎 + 𝑏′).

When multiplying two lengths, we thought of one of the lengths as a stretch. When multiplying two
oriented lengths, we can think of a length with opposite orientation as switching the underlying line
segment (and thus the orientation) around. This gives the effect of the following binary operation. The
operation xAND (⊙) is a binary operation used in computer science defined as follows:

𝑜(𝑎) 𝑜(𝑏) 𝑜(𝑎) ⊙ 𝑜(𝑏)
+1 +1 +1
+1 −1 −1
−1 +1 −1
−1 −1 +1

We use it to define the multiplication of two oriented lengths.

Definition 3.15. Given two oriented lengths 𝑎, 𝑏, we define their product 𝑎 × 𝑏 to be the following
oriented length. |𝑎 × 𝑏| = |𝑎| × |𝑏| and 𝑜(𝑎 × 𝑏) ∼ 𝑜(𝑎) ⊙ 𝑜(𝑏)

Now we have enriched our arithmetic of lengths enough to define a coordinate system, but before
we do that let us go completely the other route, leave geometry behind and only consider numbers. We
will work towards a coordinate system from this opposite direction and end the next chapter by seeing
how these two perspectives come together into a coordinate system.





4
Coordinate geometry

4.1. What is a field?
We considered the fundamental concepts that give rise to a coordinate system from within geometry,
what we essentially have done is develop a system that makes measurement within a geometrical
space possible. Now consider the situation that we have measured some quantities and we want to
study how these quantities relate to each other. This is what we do when we form a coordinate system
directly out of quantities to study these quantities, not in isolation, but in relation to each other.

Therefore, we will start with something called a field, which for our purposes we can think of as a
generalised number system that can be used to measure quantities. The elements of our fields will
be numbers, but what numbers exactly are part of our field might differ, what will be important is that
the system as a whole satisfies some axioms. (In general, a field need not consist of numbers. For
example, it can also consist of functions and finite fields are ‘cyclical’, so quantity might not be the
correct way to describe what they measure.)

We will not give fields and their axioms the same thorough introduction and treatment as we gave
the geometrical axioms, because fields themselves are not our primary subject. But let us say at least
some things that are of interest to us.

In chapter 3 we introduced themethod of analysis, which consisted of backward reasoning bymeans
of algebra. Introducing axioms for fields (something they did not have in the 17th century), makes the
distinction between analysis and synthesis different from that of geometry versus algebra, as the same
synthetic axiomatic approach of geometry can be used in algebra as well. In using algebraic reasoning
for geometry two issues are relevant for us.

The first relates to the combining of different numbers by means of the arithmetical operations, such
operations ought to characterise a new number if we are to use them in reasoning about lengths. We
spent a lot of time defining oriented lengths to make sure this is the case for the operation of subtraction.
A system in which operations on numbers produce other numbers is the setting in which one can use
them generally for reasoning about oriented lengths.

Next to that, we use the algebra itself to relate lengths to each other, what kind of identities can we
use to reason about our lengths and relate them to each other For numbers in ℝ we know all kinds of
identities like 𝑎 × 𝑏 = 𝑏 × 𝑎 and 𝑎 × (𝑏 + 𝑐) = 𝑎 × 𝑏 + 𝑎 × 𝑐 that can be used to infer that two numbers
are equal, but if we are in a more general setting can we still use all of those?

4.2. Formal definition of a Field and a Cartesian plane
In chapter 3 we worked laboriously to identify the meaning of addition and multiplication for lengths
and derive them from a geometry. Here we take a completely opposite route and take the context of
a set of numbers for which such operations are defined as the starting point. Here again, we see an
application of the idea that the referents of a formal system need to have some meaning (for example
the interpretation of dilation we gave to multiplication) but may have any meaning and in the context of
algebra we are not concerned with any particular meaning of multiplication. Let us formally introduce
a field:

31
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Definition 4.1. A field is a triple ⟨𝐹, (+, 0), (×, 1)⟩ consisting of an set of elements 𝐹 that contains two
special elements 0, 1 and two binary operations +,× such that:

1. ⟨𝐹, +, 0⟩ forms an Abelian group:
For 𝑥, 𝑦, 𝑧 ∈ 𝐹

(a) 𝑥 + 𝑦 ∈ 𝐹 (closure under addition)
(b) 𝑥 + 0 = 𝑥 (additive identity)
(c) 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 (associativity)
(d) 𝑥 + 𝑦 = 𝑦 + 𝑥 (commutativity)
(e) ∃(−𝑥) ∈ 𝐹 such that 𝑥 + (−𝑥) = 0 (existence of inverses)

2. ⟨𝐹∗, ×, 1⟩ forms an Abelian group:
For 𝑥, 𝑦, 𝑧 ∈ 𝐹∗ ∶= 𝐹 ⧵ {0}

(a) 𝑥 × 𝑦 ∈ 𝐹∗ (closure under multiplication)
(b) 𝑥 × 1 = 𝑥 (multiplicative identity)
(c) 𝑥 × (𝑦 × 𝑧) = (𝑥 × 𝑦) × 𝑧 (associativity)
(d) 𝑥 × 𝑦 = 𝑦 × 𝑥 (commutativity)
(e) ∃𝑥−1 ∈ 𝐹∗ such that 𝑥 × 𝑥−1 = 0 (existence of inverses)
For 𝑥, 𝑦, 𝑧 ∈ 𝐹

3. 𝑥 × (𝑦 + 𝑧) = (𝑥 × 𝑦) + (𝑥 × 𝑧) (distributivity of × over +)
Subtraction and division are not explicitly defined by the axioms, but obviously, we can define sub-

traction as the addition of the additive inverse of a number and division as multiplication with the mul-
tiplicative inverse of a number. Instead of working through all axioms as we did for the geometrical
axioms in chapter 2, I will just give some examples of fields and non-fields.

Example 4.1. Examples of fields are:

• ℝ,ℚ, ℂ
• The constructible numbers: the lengths of line segments that can be constructed in Euclidean
fashion by compass and straightedge. This field can be useful in demonstrating that certain
constructions are impossible.

• ℤ/𝑝ℤ where 𝑝 is a prime number. One can think of these as a clock that takes 𝑝+1many values.
• ℚ(√2), that is, {𝑞 + 𝑝√2 ∶ 𝑞, 𝑝 ∈ ℚ}

Example 4.2. Examples of non-fields are:

• ℤ, it forms a group under addition, but multiplicative inverses do not exist in general. It does not
form a group under multiplication.

• The positive real numbers ℝ+, it forms a group under multiplication, but additive inverses do not
exist in general.

Lastly for contrast, let us give an example of an operation under which a field is not closed: square
roots.

Example 4.3. If 𝑎 ∈ 𝐹 then √𝑎 need not be in 𝐹, that is, there need not be 𝑏 ∈ 𝐹 such that 𝑏 × 𝑏 = 𝑎.
As we are working towards plane geometry, it might not come as a surprise that we are going to

create a two-dimensional coordinate system out of our field. Let us consider the Cartesian product 𝐹2
of our field, which we will call the Cartesian plane Π𝐹 over the field 𝐹. (This is a metaphorical plane)

Our plane inherently has a lot of structure that it derives from the field axioms. In the next section,
we will show which of Hilbert’s axioms are implied by the field axioms and what additional restrictions
we need to put on our field to obtain all of Hilbert’s axioms.
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4.3. Geometry from field
4.3.1. Basic definitions and incidence
The elements of our Cartesian plane Π (we omit the subscript 𝐹 if it is not relevant) identify points. We
identify lines by means of linear equations of the form 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 for 𝑎, 𝑏, 𝑐 ∈ 𝐹 and 𝑎, 𝑏 not both
0. Let us also consider a different expression for all lines. All lines can also be expressed either in the
form 𝑦 = 𝑝𝑥+𝑞 or 𝑥 = 𝑞, with 𝑝, 𝑞 ∈ 𝐹. In the first case, we call 𝑝 the slope of the line and in the second
case we say that the line has a slope of ∞ (this is not an element of our field, it is merely is a symbol).

With definitions for points and lines, we can demonstrate the following result:

Proposition 4.1. If 𝐹 is any field, the Cartesian plane Π𝐹 satisfies Hilbert’s (I.1) to (I.3) and (P).

Proof. Consider 𝑎, 𝑏, 𝑐 ∈ 𝐹 such that they characterise a line (so 𝑎, 𝑏 not both 0) (I.1) to (I.3) follow easily.
Parallel lines are lines that do not intersect (unless they are equal), the only way this can happen is if
the two lines have the same slope. But given a slope, a point uniquely determines a line. So there is
always a unique parallel line through a point outside the line: the line with an equal slope.

With these four axioms, we can identify that a Cartesian plane is an affine plane.

4.3.2. Ordered fields
Let us now turn to Hilbert’s axioms of order. Like the linear ordering of a line, we will start by introducing
an ordered field. This will exclude fields like ℤ/𝑝ℤ which behaves like a clock or other fields where there
does not even exist a cyclic order.

Definition 4.2. An ordered Field is a Field 𝐹 together with a linear order < (see Definition 2.2) such
that for any 𝑎, 𝑏 ∈ 𝐹 and 0 < 𝑎, 0 < 𝑏:

• 0 < 𝑎 + 𝑏

• 0 < 𝑎 × 𝑏
Proposition 4.2. If 𝐹 is a field and in the Cartesian planeΠ𝐹 a betweenness relation is defined satisfying
(O.1) to (O.4), then 𝐹 is an ordered field. Conversely, if 𝐹 is an ordered field, we can define betweenness
in Π𝐹 to satisfy (O.1) to (O.4).

Proof. In theorem 2.4 we have shown that (O.1) to (O.4) imply the existence of a linear order on a line
based on the betweenness axioms. On line 𝑦 = 0 in Π𝐹, every point identifies a unique element of our
field 𝐹. Using the canonical linear order of the line we induce a linear order < for the field (we define its
orientation by means of (0, 0) < (0, 1), which means 0 < 1 for the elements in the field). The axioms of
order imply the existence of a separation of the line 𝑦 = 0 by the point (0, 0), from which we can only
take the 𝑥−coordinate. One side of this separation consists of all elements 𝑥 ∈ 𝐹 with 𝑥 > 0. Both
𝑎 + 𝑏 and 𝑎 × 𝑏 are in this set,1 so 𝑎 + 𝑏 > 0 and 𝑎 × 𝑏 > 0.

If 𝐹 is an ordered field, we define betweenness for points 𝑎, 𝑏, 𝑐 ∈ 𝐹 as 𝑎 ∗ 𝑏 ∗ 𝑐 if 𝑎 < 𝑏 < 𝑐 or
𝑐 < 𝑏 < 𝑎. (O.1) is by definition true, (O.2) follows from taking either the sum or the difference (i.e. sum
with the inverse) of the two elements. (O.3) follows from the anti-symmetry and totality of a linear order.
For (O.4), take a line 𝑎𝑥+𝑏𝑦+𝑐 = 0, then 𝑎𝑥+𝑏𝑦+𝑐 > 0 and 𝑎𝑥+𝑏𝑦+𝑐 < 0 form such a separation
(we will leave it for the reader to check this).

4.3.3. Congruence of line segments and angles
Within an ordered field, we can use the definitions for line segments and angles that were introduced
in the axiomatic construction. Any line segment can be specified by its two endpoints, because we
are reasoning from numbers we would like to leverage our knowledge of magnitudes and define two
line segments as congruent by means of a measure of the distance between them. For this, we will
take inspiration from the Pythagorean theorem: 𝑎2+𝑏2 = 𝑐2. Note that this does not necessarily have
anything to do with geometrical squares in this context. Like with oriented arithmetic, we are simply
relating numbers multiplied by themselves (which are themselves numbers).

Definition 4.3. A Pythagorean Field is an ordered field 𝐹 for which 𝑎, 𝑏 ∈ 𝐹 implies that √𝑎2 + 𝑏2 ∈ 𝐹
1Unfortunately I was not able to find a concise formulation of why this has to be the case. That it is true can be seen from the
length arithmetic, but using that relies on results not yet demonstrated.
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A Pythagorean field is a field such that in the Cartesian plane generated by it, we can measure the
distance between any two points in a plane by means of a number corresponding to the length of the
line between them.

Definition 4.4. For two points 𝐴 = (𝑎1, 𝑎2), 𝐵 = (𝑏1, 𝑏2) in a Cartesian plane Π𝐹 generated by a
Pythagorean field 𝐹, the distance between 𝐴 and 𝐵 is defined as

𝑑(𝐴, 𝐵) ∶= √(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2

The square distance is defined as 𝑑2(𝐴, 𝐵) = (𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2.
The square distance exists in each field, so it can be used in the case of non-Pythagorean fields.

Squaring the distances will not change the existing congruences, so the definition of square distances
could be substituted to give a universal definition.

Definition 4.5. Two line segments 𝐴𝐵 and 𝐶𝐷 in an Cartesian plane over an ordered field 𝐹 are con-
gruent if 𝑑(𝐴, 𝐵) = 𝑑(𝐶, 𝐷)

Let us define a measure for the congruence of angles as well. An angle was defined using two rays.
Consider the two lines 𝓁, 𝓁′ on which the rays lie. If their respective 𝑝, 𝑝′ are such that 𝑝×𝑝′ = −1, then
we call the angle that they form a right angle (if one of the slopes is ∞, consider the angle is a right
angle if the other line has a slope of 0). If an angle is contained in a right angle, it is called acute and if
it contains a right angle it is called obtuse.

With right angles, we can use a right-angled triangle to measure angles using the traditional tangent
function (opposite over adjacent). Because an opposite angle is uniquely related to an acute angle (the
angle on the opposite side of one of the lines), we can use that acute angle to define a measure for
obtuse angles as well.

Definition 4.6. In a Cartesian plane over a Pythagorean field consider an angle 𝛼, formed by two
distinct rays ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴, ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵. Consider three cases:

• If 𝛼 is acute, then consider a third line through 𝐵 that forms a right angle with ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵 and intersects
⃗⃗ ⃗⃗ ⃗⃗𝑂𝐴 in 𝐶. We define the tangent of 𝛼 as:

tan𝛼 = 𝑑(𝑂, 𝐶)
𝑑(𝑂, 𝐵)

• If 𝛼 is obtuse, consider 𝐶 on ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐴 such that 𝐶 ∗𝑂 ∗ 𝐴. Then ⃗⃗ ⃗⃗ ⃗⃗𝑂𝐶 and ⃗⃗⃗⃗⃗⃗⃗𝑂𝐵 form an acute angle 𝛽. We
define the tangent of 𝛼 as − tan(𝛽).

• If the angle is a right angle we say that the tangent is ∞.
That such a point 𝐶 from the definition exists follows from the fact that (1) the angle 𝛼 is an acute

angle and (2) our field is Pythagorean, so all square roots exist. The definition of tangents for obtuse
angles makes sense because these angles are ‘the opposite’ of the acute angle that complements it.

C

B
𝛼O

Figure 4.1: Defining the tangent of an acute angle

We will end this section by stating some propositions from Hartshorne’s book,2 the proofs can be
found there as well.
2(Hartshorne, 2000, Chapter 3)
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Proposition 4.3 (Hartshorne 16.1). Let 𝐹 be an ordered Pythagorean field and let Π𝐹 be the associated
Cartesian plane. Then Π𝐹 satisfies (C.1) to (C.5) and (EEI).

Proposition 4.4 (Hartshorne 16.2). Let Π𝐹 be the Cartesian plane over an ordered field 𝐹. The follow-
ing three conditions are equivalent:

• Π𝐹 satisfies the circle-circle intersection property (CCI).

• Π𝐹 satisfies the line-circle intersection property (LCI).

• The field 𝐹 is a Euclidean ordered field (𝑎 ∈ 𝐹 implies √𝑎 ∈ 𝐹).

From the algebraic perspective, a difference between the intersection of circles and intersections
of lines becomes apparent: lines are first-degree equations, they are linear. Circles on the other hand
are second-degree equations (𝑥2 + 𝑦2 = 𝑟2).

Proposition 4.5 (Hartshorne 16.4). Let 𝐹 be the set of all real numbers that can be obtained from the
rational numbers by a finite number of operations +,−,×,÷ and √𝑎 for 𝑎 > 0. Then K is a Euclidean
ordered field.

Theorem 4.6 (Hartshorne 17.3). If 𝐹 is a Pythagorean ordered field, then the plane Π𝐹 is a Hilbert
plane satisfying (P). The plane Π𝐹 will be Euclidean if and only if 𝐹 is Euclidean.

4.4. Field from geometry
In the last section, we have developed a coordinate system that is suited to reason about geometry. We
have seen that by creating a Cartesian plane out of a field, we obtain something that is very suited to rea-
son about the geometry of a plane. By narrowing the kind of fields we consider (ordered, Pythagorean,
Euclidean), we obtained a field such that the associated Cartesian plane is powerful enough to reason
about all of Euclidean geometry, it describes a plane that satisfies all of Hilbert’s axioms. Let us now
go the other way and instead of starting with a field and demonstrating its applicability to geometry, we
start with a geometry and finish our construction of a coordinate system by constructing a field within
the geometry. Then we will show that the obtained coordinate system is isomorphic to the original
geometry: no information about the plane is lost by adopting a coordinate system.

Definition 4.7. Let Π and Π′ be two Hilbert planes. An isomorphism between Π and Π′ is a map 𝜙 that
preserves all terms and relationships:

• 𝜙 is a bijection

• 𝓁 is a line in Π if and only if 𝜙(𝓁) is a line in Π′

Given points 𝐴, 𝐵, 𝐶, 𝐷 ∈ Π:

• 𝐴 ∗ 𝐵 ∗ 𝐶 if and only if 𝜙(𝐴) ∗ 𝜙(𝐵) ∗ 𝜙(𝐶) in Π′.

• 𝐴𝐵 ≅ 𝐶𝐷 if and only if 𝜙(𝐴)𝜙(𝐵) ≅ 𝜙(𝐶)𝜙(𝐷).

• Given two 𝑂,𝑂′ ∈ Π ∠𝑂𝐴𝐵 ≅ ∠𝑂′𝐶𝐷 ⟺ ∠𝜙(𝑂)𝜙(𝐴)𝜙(𝐵) ≅ ∠𝜙(𝑂′)𝜙(𝐶)𝜙(𝐷).

As we can see, the definition of an isomorphism has many similarities to that of Euclidean isometry
(Definition 2.10). They both use the same concepts, but the difference is that the Euclidean isometry
establishes a congruence relationship between segments and angles before and after the map, this
only makes sense if the isometry is a map of the plane to itself. An isomorphism on the other hand does
not compare a plane with itself, it can compare two different planes with each other and there need not
be any meaning to comparing elements of one to that of the other. As an example outside geometry,
the possible rotations of a cube are isomorphic to the permutations of four beads. Any two rotations
of a cube are intrinsically related to each other by a third rotation, but relating a rotation of a cube with
an order of marbles only makes sense after establishing an isomorphism. This example also indicates
that isomorphism is a broader term, here we only consider isomorphisms between Hilbert planes.

Let us now bring back the oriented lengths of chapter 3 and relate them to the fields we have
discussed.
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Theorem 4.7. The set of oriented lengths of a geometry Π forms a field.

Proof. We will defer the proof of associativity and commutativity to chapter 7, where these will play a
special role. We prove the others.

1(a) Closure under addition. This follows from(C.1) and the definition of the addition of lengths.

1(b) Additive identity. Any point has length 0 by definition, so there exists an additive identity.

1(e) Additive inverses. For any oriented length, the same line segment with opposite orientation gives
the additive inverse.

2(a) Closure under multiplication. This follows from (C.1) and the definition of multiplication of lengths.

2(b) The definition of multiplication required us to select a unit length 1, which is the multiplicative
identity.

2(e) Multiplicative inverses. For a given length 𝑥 define a linear dilation 𝜙−1 that maps 𝑥 to 1. Then
the magnitude of the linear dilation, 𝑎−1, is associated with a length such that 𝑥 × 𝑎−1 = 1

3 Distributivity. Let us demonstrate this with a picture, the result does not depend on the particular
lengths in the picture but it is much clearer than writing out the symbols and the relevant equalities
are straightforward.3

1

a
𝛼

𝑏 𝑐

𝑎𝑏

𝑎𝑐

𝛼

𝛼

𝑎𝑏
𝑐

A B D

E

F

C

Figure 4.2: Proof of distributivity

It can be seen that 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐.

As the lengths of a geometry form a field, the pairs of lengths form a Cartesian plane. We obtain a
profound result:

Theorem 4.8 (Hartshorne). Let Π be a Hilbert Plane satisfying (P). Let 𝐹 be the ordered field of oriented
lengths in Π. Then 𝐹 is Pythagorean, and Π is isomorphic to the Cartesian plane 𝐹2 over the field 𝐹.

Wewill state how to construct the isomorphism, but wewill not demonstrate that it is an isomorphism,
the reason is that with all results established so far, it is relatively straightforward to check it, but working
out all the details will take up multiple pages that can also be spend on more interesting mathematics.4

3This drawing is adapted from (Hartshorne, 2000, p.172).
4The details are all worked out in (Hartshorne, 2000, p.187-191).
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Figure 4.3: Defining coordinates for points

Proof. Define the map 𝜙 ∶ Π → 𝐹2 based on how we defined coordinates. We start by choosing two
perpendicular lines as axes and identify each point by projecting it on the axis. This maps a point 𝑃 to
a unique pair of oriented lengths (±𝑎,±𝑏). 𝜙 now defines an isomorphism.

Theorem 4.9. A geometry Π satisfying (I.1) to (I.3), (O.1) to (O.4), (C.1) to (C.5), (EEI), (P), (Dedekind)
is isomorphic to ℝ2, the geometry is categorical.

Proof. The axiom (Dedekind) can be interpreted as an axiom for the elements of the field as well. For
elements of our field, this axiom establishes the existence of Dedekind cuts, which implies the field is
isomorphic to the real numbers (we will not demonstrate this fact). Using theorem 4.8, Π is isomorphic
to 𝐹2 which is isomorphic to ℝ2.

4.5. Conclusion of chapters 2 to 4
In the past three chapters, we have taken a deep delve into Euclidean geometry. We have demon-
strated two different approaches: the axiomatic approach which starts with geometrical axioms and
bases all proofs of propositions on these axioms alone, and the approach of coordinate geometry
which demonstrates geometrical propositions by algebraic calculation and rests on the field axioms.

Moreover, we have constructed an arithmetic of oriented lengths based purely on geometric axioms.
This result was in part Hilbert’s goal. He sought to establish the consistency of the axioms for Euclidean
geometry.5 Such a demonstration was crucial for formalist mathematics, because if the formal system
has no inherent meaning then there is nothing that guarantees that the axioms are consistent. By
demonstrating that arithmetic can be constructed from within geometry, we have proven the relative
consistency of Euclidean geometry: if arithmetic is consistent, then Euclidean geometry is too. Little
did Hilbert know at this time that proving the consistency of arithmetic without reference to another
formal system is a vain dream, something Gödel demonstrated later. If one however adopts the view
that these axioms are not arbitrary and meaningless, but merely general methods of inference, then
the axioms are ultimately based on observations and facts. This makes proving the consistency of the
axioms not that interesting.

The most important result we have demonstrated is the isomorphism between a geometrical plane
and the coordinate system of oriented lengths that is based on it. The coordinate system can measure
every position and relationship we have defined in the plane. Given the enormous power of algebraic
reasoning, it is no surprise that this integration greatly widened the study of geometry.

5(Kline, 1972, p.1014)
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Projective coordinate geometry

5.1. Introduction
By studying the relations between axiomatic and coordinate geometry in the context of Euclidean ge-
ometry, we have laid a foundation to study this issue in a different context: projective geometry.

Euclidean geometry is about measuring the intrinsic geometrical properties of shapes. Everything
from houses, cars, and smartphones to skyscrapers is built based on such knowledge. When we
observe the world around us, however, we do not just intuit the shape of objects, we always perceive
them from a given perspective. This perspective alters the way objects appear to us. If you look at a
railroad track that extends far in the distance, the parallel lines of the tracks seem to converge, even
though you know that in fact, they do not.

In the 15th century, painters became interested in accurately representing a three-dimensional scene
on a two-dimensional plane. This required taking into account from which perspective a scene was
viewed and the effect that this had on how objects appear to a viewer: the mathematical subject of
projective geometry was born. Today, the field of computer graphics is focused on recreating a three-
dimensional world on a two-dimensional screen and conversely, computer vision aims to recreate a
three-dimensional model of the world from two-dimensional photos and videos. Both require the study
of shapes, not with respect to their intrinsic characteristics, but with respect to their appearance from a
given perspective.

Projective geometry studies shapes in perspective. Inference in projective geometry rests on the
properties of shapes that remain invariant under different perspectives. Therefore, one might see pro-
jective geometry characterised as studying the geometrical properties that remain invariant under pro-
jective transformations (the transformations that relate two perspectives). We will restrict ourselves to
studying planes in perspective and are concerned with the properties that are characteristic of shapes
in perspective, what does not change under different perspectives?

This time we will start with the coordinate geometry and consider the axiomatic approach afterwards
because it is easier to see the connection with Euclidean geometry from a coordinate-centred approach.
It will make it easier to understand the projective axioms afterwards.

For all explanations in projective geometry, we will also assume that we are considering a position-
space, i.e. that points are positions and lines and planes are actual lines and planes. This is simply to
aid in explaining what a projective space is, it will not affect the formal theory in any way.

5.2. Construction of a projective plane from three-dimensional Eu-
clidean space

In chapter 2 we made the distinction between Euclidean space (the totality of all positions ‘out there’),
Euclidean geometry (an axiomatic theory) and ℝ3 (a model). We will use this distinction again here.
Instead of immediately defining coordinates, we will first motivate such definitions by showing how a
projective plane arises in the context of three-dimensional Euclidean space. Afterwards, we will use
ℝ3 to define coordinates in this space.

39
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Figure 5.1: Projective transformation

Consider the following image of the projection of a square and circle on a screen, viewed from a
point 𝑂.

The square is transformed into a quadrilateral: the congruence relationships between lines and
between angles both change, its area is different and sides that were parallel are not parallel anymore.
The circle completely changes its shape and becomes an ellipse. At the same time, two important
things stay the same: straight line segments remain straight line segments and the incidences (of the
square and circle) remain incidences. The screen is what gives rise to a projective plane.

In a three-dimensional Euclidean space let us consider a specified point (the origin) from which we
take different two-dimensional perspectives (the screen). We consider what happens to a plane under
projections of one perspective to another with respect to the origin. One could see this as considering
what happens to all shapes drawn on the ground under different perspectives, what happens when
we move the screen around. The transformation between different perspectives is a projective trans-
formation. An informal definition of a projective transformation would be a transformation obtained by
mapping each point in a plane to another plane by means of a line from a specified point outside these
planes (the origin). In fig. 5.1 it is the transformation that maps the square and circle on the ground to
the glass screen.

If two points in three-dimensional space are on the same line from the origin, they will get mapped
to the same point in the projective plane. We could consider any point on our projective plane by
considering the lines from each point in the projective plane that also go through the origin, we then
consider points in three-dimensional space equivalent if they are on the same line. Each point in our
plane is identified by means of a unique line through that point and the origin, but from our perspective-
view, this line is not a line but a point. The fact that some objects might not be visible to an observer
because other things are in the line of sight will be very familiar to all. If we map planes to planes, there
will be no such obstruction.

There are however also lines of sight that do not intersect the plane: the lines that are parallel
to the plane. These lines (i.e. points from the projective perspective) turn out to be a central part of
our projective plane! If we look at our original image, we see that the lines that were parallel before
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they were projected, meet exactly on this line. In a given perspective, these points are the vanishing
points on the horizon where parallel lines ‘meet’. This will be a feature of our projective space. To
identify a perspective we need to add such vanishing points. With respect to the Euclidean plane
considered without perspective, they represent a certain horizon of our Euclidean plane, ‘points at
infinity.’ However, considered as points of our projective space, they are like any other point. To
exemplify this, look at the painting in fig. 5.2. As observers, we can see lines that would be parallel in
the corresponding Euclidean space independent of a perspective (the red lines). In such a space these
lines would never intersect. But considered as part of a perspective on a scene (a point in the painting)
there is such a point where they intersect, and in the painting, this point is just like any other. (Some
difficulty arises because the painting is depicting a three-dimensional scene, so Aristotle and Plato are
obstructing the vanishing point, but if we just considered the perspective on a plane, one would see a
full horizon).

Figure 5.2: The School of Athens, masterfully painted in perspective. Can you spot the geometers?

The points on lines that are above the horizon are lines that intersect the plane behind us. We are
considering a perspective, not just in one direction (how we would see it when we open our eyes), but
in all directions. The right view is that of a 3-dimensional camera that projects everything on a single
screen. This is demonstrated in fig. 5.3. It also shows that there is only one horizon, the vanishing
point of one direction of a line is the same as the other direction of that line.

Figure 5.3: A projection on the screen from all directions
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Reconstructing a Euclidean plane from a projective plane
Consider two important themes in applying projective geometry, the first is that of creating a projective
geometry based on Euclidean three-dimensional space. This is the problem painters faced and this is
what the field of computer graphics faces today. Another theme is that of recovering Euclidean data
(lengths and angles) based on a projective space. Starting with a projection alone, what do we need
to measure lengths and angles?

Suppose we are given a projective plane, this can be in the form of an image (pixels of data) or just
as a mathematical description. Let us also suppose that the shapes we are interested in stem from
a projection of two-dimensional shapes and not of three-dimensional shapes (if we want to identify
three-dimensional data projected on a two-dimensional plane, we need multiple projections).

The most basic thing we can do is to identify the horizon and remove it. Then we have all the
points that make up a Euclidean plane because we derived a projective plane from a Euclidean plane
precisely by adding this line. Moreover, we can identify parallel lines, lines are parallel if they intersect
the horizon at the same point.

But unfortunately, this is where it stops. Consider the projected square of fig. 5.1. If we were given
only the glass screen and the horizon line, then we would be able to infer that 𝐴′𝐵′𝐶′𝐷′ stems from
a parallelogram, but this is all we can know about the shape. We would not be able to discern if it
came from a square, a rectangle or simply a parallelogram. Removing the horizon line gives us an
affine space, a space with parallelism but no congruences of line segments or angles. We do have the
weaker sense of congruence: that between segments on parallel lines.

To do better we need more information of underlying shapes in the projective plane. To identify
angles, we would have to know that 𝐴′𝐵′𝐶′𝐷′ stems from a rectangle. In that case, we have a standard
angle in the projective plane to measure other angles by. Because of the parallel postulate, these
angles are independent of position, so we could have a general measure for angles. To identify line
congruences, we would need to know that 𝐴′𝐵′𝐶′𝐷′ stems from a square, then we can compare the
different perpendicular directions with each other and obtain all congruence relationships.

5.3. Homogeneous coordinates
Let us now introduce coordinates to identify points and calculate in such a space. We will start by
considering coordinates for three-dimensional Euclidean space and build them out to homogeneous
coordinates for our projective space. The reason we will use homogeneous coordinates and not the
familiar Cartesian coordinates ℝ2 is that we need to add the horizon points. Simply adding them to
our Cartesian coordinates would make them special points, whereas, from our projective perspective,
they are not special at all. Let us, therefore, start with ℝ3, coordinates for three-dimensional Euclidean
space, and consider the point (0, 0, 0) the origin from which we take different perspectives.

Any plane that does not contain (0, 0, 0) will induce a perspective. In this perspective, any point on
the same line that passes through the origin is considered equivalent: they get mapped to the same
projective point. Lines through the origin in ℝ3 can all be identified by the equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0,
where 𝑎, 𝑏, 𝑐 ∈ ℝ (not all equal to 0) characterise a specific line and all combinations of 𝑥, 𝑦, 𝑧 ∈ ℝ that
solve this equation are points on the line.

Note that 𝑎, 𝑏, 𝑐 characterise a line up to a non-zero scalar factor. For any 𝜆 ≠ 0,
𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 = 𝜆(𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧) = (𝜆𝑎)𝑥 + (𝜆𝑏)𝑦 + (𝜆𝑐)

characterises the same line. This uniqueness up to one scalar factor stems from the one-dimensionality
of our line. To identify a unique line, we consider the three numbers as a ratio and not as three distinct
values. One might think that we could get around this by explicitly considering the ratios (𝑎/𝑐, 𝑏/𝑐, 1)
as coordinates. The last coordinate will always be 1 in this case so that we can drop it. This gives
us a special line, however, that of 𝑐 = 0, when such division is not defined. In relating projective and
Euclidean spaces this is important. If you know what the horizon line is in a projective plane, then
choosing that line to be the line with 𝑐 = 0 is part of recovering a coordinate system in which the
Euclidean concepts of length and angles do have physical significance.

In Cartesian coordinates for the plane, we wrote (𝑥, 𝑦) to identify a point. For homogeneous coor-
dinates, we identify a point as (𝑥 ∶ 𝑦 ∶ 𝑧), where the double colons indicate that we are considering
their ratio and not the particular values. (𝑥 ∶ 𝑦 ∶ 𝑧) = (𝑥′ ∶ 𝑦′ ∶ 𝑧′) if there is a scalar 𝜆 ≠ 0 such that
(𝑥, 𝑦, 𝑧) = (𝜆𝑥′, 𝜆𝑦′, 𝜆𝑧′). There is one combination of numbers that does not characterise a line in ℝ3:
(0 ∶ 0 ∶ 0).
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Note that because of the symmetry of the homogeneous linear equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 we can
think of the coordinates to be the numbers that characterise a line or as numbers that characterise
points that are all on the same line. We use the symbols 𝑥, 𝑦, 𝑧 for a coordinate because this is the
convention, but it might make more sense to think of a projective point as describing a line of sight in
three dimensions and not solutions to a linear equation. Lines through the origin of ℝ3 are also called
one-dimensional vector spaces. This gives rise to the concise definition:

Definition 5.1. The real projective plane ℙ2 is the set of one-dimensional vector spaces of ℝ3:

ℙ2ℝ ∶= {𝑈 ⊂ ℝ𝟛|(0, 0, 0) ∈ 𝑈, dim(𝑈) = 1}

5.3.1. Points in general position

The coordinate system of ℝ𝟛 has given rise to points of our projective plane, but we are not in a place
to use these coordinates. The parallel in the Euclidean situation would be that we know that points on
two lines are going to form our coordinates, but we have not yet selected the standard directions and
unit lengths. In a Euclidean plane, we considered an origin and selected two unit line segments with
respect to it. So in effect, we have chosen three non-collinear points, the origin and the extremities
of the two unit line segments. This enabled us to identify any point in our space with unique pair of
coordinates. In the language of vector spaces, this means selecting a basis for our vector space (we
only considered selecting the standard basis of unit lengths in perpendicular directions).

In our projective plane, we will see that three points are not enough, we will need a fourth point. This
stems from the fact that the same point in our projective space can be identified by different coordinate
numbers (the ones that are scalar multiples of each other). We need an extra point that makes the
coordinate system ‘rigid.’

Consider selecting three non-collinear points in the Projective plane. These three points will be the
equivalent of unit line segments in Euclidean space, so we can consider taking the basic coordinates
for these three points, 𝐴 = (0 ∶ 0 ∶ 1), 𝐵 = (1 ∶ 0 ∶ 1), 𝐶 = (0 ∶ 1 ∶ 1).

Figure 5.4: The lines through the points (0, 0, 1), (1, 0, 1), (0, 1, 1)

In the underlying vector space ℝ3, these points are three lines. From the projective perspective, all
points on these lines are equivalent. However, there are different planes in ℝ3 that intersect these three
lines. The three basic coordinates cannot distinguish between these planes, but if we were to take a
fourth point that is non-collinear with these three basis points, then it would have different coordinates
depending on which plane corresponds to our projective plane. Consider two different planes and
consider the point that would correspond to (1 ∶ 1 ∶ 1) in each of them (see fig. 5.5 where this point is
𝐷). These two points do not lie on the same line, so they are different points in the projective space.
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Figure 5.5: Two different planes that all cut the three lines at different points

By selecting a fourth point, we will fix the orientation of the plane as that fourth coordinate needs
to be kept in place as well. We can assign the coordinates 𝐷 = (1 ∶ 1 ∶ 1) to this point. Now we still
have a degree of freedom in our plane, we could scale it away from the origin in a way that does not tilt
or rotate the plane. This will however not change the coordinates of any of the points in the projective
plane, as these are equivalent with respect to one degree of scaling. This is reflected in fig. 5.6, where
two different planes are shown but all points lie on the same line through the origin.

Figure 5.6: Two different planes that all cut the three lines at different points

We call four points, if no three are collinear, points in general position. They are the projective
equivalent of a basis for our ℝ2 coordinate space.

What happened to the horizon line when selecting such coordinates? Consider the plane in fig. 5.6
with respect to the lines through the origin. If we take the associated coordinates, then the horizon
points are those of the form (𝑥 ∶ 𝑦 ∶ 0). These points correspond to lines in the plane 𝑧 = 0, which is
perpendicular to the plane we are considering.

5.3.2. Reconstructing ℝ2 from ℙ2ℝ
We have discussed how to identify coordinates for a projective plane based on coordinates for Eu-
clidean space. Let us end this section by discussing the opposite problem: given a projective coordinate
system, what do we need to identify coordinates for the actual positions outside perspective, coordi-
nates for a Euclidean plane ℝ2. We will follow the exact same steps as we did when we discussed this
problem without coordinates in section 5.2.

The first step is already discussed, if we know what the horizon line is, we can choose our coordi-
nates in such a way that this line corresponds to 𝑧 = 0. This makes it possible to consider (𝑥/𝑧, 𝑦/𝑧)
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for 𝑧 ≠ 0 as defining points in an affine plane where each point corresponds to an actual point in the
underlying Euclidean plane.

The next step is the recovery of angles, for which we have to identify two lines in the projective
plane that form a right angle in the underlying Euclidean plane. If we were to know a right angle, then
we could choose 𝐴 = (0 ∶ 0 ∶ 1), 𝐵 = (1 ∶ 0 ∶ 1), 𝐶 = (0 ∶ 1 ∶ 1) in such a way that ∠𝐵𝐴𝐶 is that right
angle. In that case, we recover the tangent function (Definition 4.6) to measure angles.

The last step is recovering a measure for lengths. We already can compare parallel lines (that is
always possible in an affine space) but if we were to know a square, then we could choose 𝐴 = (0 ∶
0 ∶ 1), 𝐵 = (1 ∶ 0 ∶ 1), 𝐶 = (0 ∶ 1 ∶ 1), 𝐷 = (1 ∶ 1 ∶ 1) to be the vertices of this square. Then we have
coordinates that reflect the plane independent of any perspective. All lengths can still be scaled by a
uniform factor, so to truly recover a coordinate system one needs to know one particular length in the
plane.

5.4. Cross-ratio
In Euclidean geometry, length is the most powerful attribute to relate shapes to each other. Areas,
volumes and angles are primarily measured using lengths. The goal in geometries that stem from a
Euclidean plane is often to measure the actual lengths of the Euclidean plane to which they are related.

Consider the city of Delft as a plane (i.e. as a constellation of interrelated places and shapes of lines
and areas) and bring it in comparison with a map of the city. On such a map absolute lengths have
no physical significance: the fact that the distance between my house and the university is 10 cm on
the map does not tell me anything. Relative lengths, however, do have physical significance: longer
distances on the map mean longer distances in the city. If one adds a scale to relate the map to the
city (like 1 cm : 100 m), then one can use that scale to measure any distance in the actual city based
solely on its distance on the map.

A geometry where absolute lengths have no significance but relative lengths do is called a similarity
geometry (this name stems from the fact that similar figures remain similar under uniform scaling, while
congruences change).

Suppose that we want to measure lengths in a projective plane, like a photo of the city of Delft,
then relative lengths are not sufficient. The fact that a tree in the picture might take up more pixels
than a building does not tell you that the tree is actually longer, maybe the building is just far away.
Yet, if we see a picture, then we can infer such data and do not think that the building is small just
because it takes up relatively little space on a picture. There must be some information that reflects
this, there must be some measurement that we make that characterises lengths even under projection,
that remains invariant under projections. Ratios of lengths between two line segments do not remain
the same under projections, however, there is a ratio of ratios that does remain the same. It is called
the cross-ratio. Mathematically, it is defined using lengths of oriented line segments (we symbolise the
length by the oriented line segment):

(𝐴, 𝐵; 𝐶, 𝐷) = 𝐴𝐶/𝐵𝐶
𝐴𝐷/𝐵𝐷

(5.1)

It is a characteristic quantity of directed line segments between four points on a line. The following
identities immediately follow from the definition:

(𝐴, 𝐵; 𝐶, 𝐷) = (𝐵, 𝐴; 𝐷, 𝐶) = (𝐶, 𝐷; 𝐴, 𝐵) (5.2)

Let us demonstrate that cross-ratios are indeed invariant under projections. For this, we also introduce
the cross-ratio for four concurrent1 lines (cf. with duality, which will be introduced in chapter 6).

1Lines through the same point.



46 5. Projective coordinate geometry

A

A’

𝑘

B

B’

𝑙

C

C’

𝑚

D

D’

𝑛

𝛼 𝛽 𝛾

O

Figure 5.7: Cross-ratio

The cross-ratio for four concurrent lines is defined as:

(𝑘, 𝑙;𝑚, 𝑛) = sin(∠𝐴𝑂𝐶)/ sin(∠𝐵𝑂𝐶))
sin(𝐴𝑂𝐷))/ sin(∠𝐵𝑂𝐷)) (5.3)

Like the cross-ratio for segments, these angles are signed. If 𝐴 is on the other side of 𝐶 then we take
the sine of the angle greater than two right angles, which is minus the sine of the angle smaller than two
right angles). Note the similarity of all terms with those of the cross-ratio for points. We will demonstrate
that these two cross-ratios are equal. Then, it will follow immediately that the cross-ratio is constant
under projections, as the cross-ratio for concurrent lines is independent of any particular projection.

Proposition 5.1. If the concurrent lines 𝑘, 𝑙,𝑚, 𝑛 are intersected by another line in the points 𝐴, 𝐵, 𝐶, 𝐷
respectively, then (𝐴, 𝐵; 𝐶, 𝐷) = (𝑘, 𝑙;𝑚, 𝑛).

Proof. The result follows from two different expressions of the area of a triangle.2 For any trian-
gle with vertices 𝐺, 𝐹, 𝐻 and a height ℎ with respect to 𝐺𝐹 as the base: 𝐴𝑟𝑒𝑎(𝐺𝐹𝐻) = ℎ ⋅ 𝐺𝐻/2 =
𝐺𝐹 ⋅ 𝐹𝐻 ⋅ ∠𝐺𝐹𝐻/2. In particular, for our triangles:

ℎ ⋅ 𝐴𝐶/2 = 𝑂𝐶 ⋅ 𝑂𝐴 ⋅ sin(∠𝐶𝑂𝐴)/2
ℎ ⋅ 𝐵𝐶/2 = 𝑂𝐶 ⋅ 𝑂𝐵 ⋅ sin(∠𝐶𝑂𝐵)/2
ℎ ⋅ 𝐴𝐷/2 = 𝑂𝐷 ⋅ 𝑂𝐴 ⋅ sin(∠𝐷𝑂𝐴)/2
ℎ ⋅ 𝐵𝐷/2 = 𝑂𝐷 ⋅ 𝑂𝐵 ⋅ sin(∠𝐷𝑂𝐵)/2

2We have not introduced the axioms of area for Euclidean geometry nor the sine function, but the validity of these formulas will
be known to all.
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Where ℎ is the height of the triangle which is the same for all triangles, therefore:

𝐶𝐴/𝐶𝐵 = 𝑂𝐴 ⋅ sin(∠𝐶𝑂𝐴)
𝑂𝐵 ⋅ sin(∠𝐶𝑂𝐵) (5.4)

𝐷𝐴/𝐷𝐵 = 𝑂𝐴 ⋅ sin(∠𝐷𝑂𝐴)
𝑂𝐵 ⋅ sin(∠𝐷𝑂𝐵) (5.5)

(5.6)

And:

(𝐴, 𝐵; 𝐶, 𝐷) = 𝐴𝐶/𝐵𝐶
𝐴𝐷/𝐵𝐷 = sin(∠𝐴𝑂𝐶)/ sin(∠𝐵𝑂𝐶))

sin(𝐴𝑂𝐷))/ sin(∠𝐵𝑂𝐷)) = (𝑘, 𝑙;𝑚, 𝑛) (5.7)

In this proof, we disregarded the signs of length segments and angles, as the triangle formulas for area
are not defined in terms of oriented line segments or angles greater than two right angles. One can see
that changing the orientation of a segment in the cross-ratio corresponds exactly to one sign change
in the cross-ratio for lines. Therefore, even for oriented segments they are equal.

Now it immediately follows that the cross-ratio is independent of the particular line that cuts 𝑘, 𝑙,𝑚, 𝑛
and it is therefore invariant under projections. Let us end this section on cross-ratios by giving an
application of cross-ratios and homogeneous coordinates: reconstructing lengths from an image.

Example 5.1 (Reconstructing lengths from an image). Let us apply our knowledge of cross-ratio to
measure the height of the 12th floor of EWI, the beautiful building in which I grew up mathematically.
Why the 12th floor? The most fun would of course be to calculate the height of the whole building based
solely on tape measures. Unfortunately, the precision range for such a calculation is about 30 meters,
due to the massive differences in height between the known and the unknown, and the pixel resolution
of the picture. The height of the 12th floor is available in the literature, hence it was a good candidate
because it enables verification of the calculation.

Figure 5.8: EWI building at the TU Delft
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Consider the following measurements in pixels:

𝐴𝐵 ∶ 183𝑝𝑥, 𝐴𝐶 ∶ 2751𝑝𝑥, 𝐴𝐷 ∶ 3954𝑝𝑥 (5.8)

And the following measurements in meters:3

𝐴𝐵 ∶ 1.75𝑚, 𝐴𝐷 ∶ 90𝑚 (5.9)

We can calculate the cross-ratio of the segments in pixels:

(𝐴, 𝐵; 𝐶, 𝐷) = 𝐴𝐶/𝐵𝐶
𝐴𝐷/𝐵𝐷

= 2751/(2751 − 183)
3954/(3954 − 183) ≈ 1.022 (5.10)

As cross-ratios are invariant under projections, they should remain invariant under the taking of an
image. We can also express the same cross-ratio using the lengths in meters:

(𝐴, 𝐵; 𝐶, 𝐷) = 𝑥/(𝑥 − 1.75)
90/(90 − 1.75) (5.11)

A simple algebraic calculation now gives the unknown 𝐴𝐶 in meters:

𝐴𝐶/(𝐴𝐶 − 1.75)
90/(90 − 1.75) ≈ 1.022 (5.12)

𝐴𝐶 ≈ (𝐴𝐶 − 1.75) × 1.042 (5.13)

𝐴𝐶 ≈ 1.75 × 1.042
1.042 − 1 ≈ 43.42 (5.14)

Our calculation gives that the height of the 12th floor is approximately 43.4 meters. The actual height
is 42.5 meters,4 so our accuracy is about 2%.

3𝐴𝐵 was measured with a tape measure, 𝐴𝐷 can be found via the Delft municipality (Gemeente Delft, n.d.).
4(Raji et al., 2020)
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Axiomatic Projective geometry

Now that we have a better grasp on the nature of projective spaces and how theymight arise from three-
dimensional position-space, let us study projective geometry synthetically based on axioms, without any
reference to an outside three-dimensional geometry.

6.1. Projective axioms of incidence
Like with Hilbert’s Euclidean axioms, we will start with the most fundamental axioms, those of incidence.

Axiom (PI.1). For any two distinct points, there is a unique line incident with them.

Axiom (PI.2). For any two lines, there is a unique point incident with them.

Axiom (PI.3). There exist four points so that no three are incident with a single line.

(PI.1) is exactly the same as (I.1) of Hilbert; (PI.3) is a stronger version of Hilbert’s non-degeneracy
axiom (I.3). The one that stands out is of course (PI.2), which is not valid in a Euclidean plane. There,
this would be true for non-Parallel lines, but parallel lines do not determine a unique point. In projective
geometry, however, we consider the horizon as a line and we see it reflected in the axioms here.

Proposition 6.1. There exist four lines so that no three are incident with a single point.

Proof. Suppose 𝐴, 𝐵, 𝐶, 𝐷 are the points of (PI.3). Then consider the lines ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐵, ⃖⃗⃗⃗⃗⃗𝐵𝐶, ⃖⃗ ⃗⃗ ⃗⃗𝐶𝐷, ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐷. All are
defined by two points and no point is used to define three lines. No line can be incident with any of the
two points that do not define it because then three points would lie on a single line, contradicting (PI.3).
Therefore, these are four lines so that no three are incident with a single point.

Why did we prove this? There is something special going on with (PI.1) versus (PI.2) and (PI.3) ver-
sus Proposition 6.1, in both cases it is the same statement with the terms ‘point’ and ‘line’ interchanged!
This duality of points and lines is a very elegant property of projective spaces and it will enable us to
transform any proposition about points and lines into one about lines and points. So whenever you
prove one theorem in a projective plane, you have in fact proven two theorems!

6.2. Pappos’ Theorem
(PI.1) to (PI.3) is not enough to differentiate the projective plane we are after (the one induced by adding
a horizon to a Euclidean plane) from other projective planes. Instead of taking very basic statements
as additional axioms, we are going to take two theorems in the Euclidean plane as axioms; or, to be
more precise, their projective variant. The reason for this is to show the deep connection between the
geometric axioms and the field axioms. These axioms will have direct implications for which of the
field axioms hold in length arithmetic induced from a projective plane. The first of these two axioms
(i.e. theorems in Euclidean geometry) is due to Pappos.

Axiom (Pappos). Six points, lying alternately on two straight lines, form a hexagon whose three pairs
of opposite sides meet on a line.

49



50 6. Axiomatic Projective geometry

•A
•B

•C

•
A’

•
B’

•
C’

•
K

•
L

•
M

Figure 6.1: Pappos’ Theorem

As said, there are projective planes where this proposition does not hold, hence we take it as an
axiom for the projective space. Let us use our system of homogeneous coordinates to prove this
proposition for a projective real plane.

Theorem 6.2. (Pappos) is a theorem in the real projective plane ℙ2ℝ.

Proof. We will use homogeneous coordinates to prove Papppos’ theorem. With these, we will seek the
equation of ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐶

′
and ⃖⃗ ⃗⃗⃗⃗⃗⃗𝐵′𝐶 and use them to show that their intersection is also a solution of the equation

for the line ⃖⃗⃗⃗⃗⃗𝐾𝐿. Consider the points 𝐴,𝐾, 𝐴′, 𝐶. None of these points are collinear, so we can assign
homogeneous coordinates:

𝐴 = (1 ∶ 1 ∶ 1), 𝐾 = (1 ∶ 0 ∶ 0), 𝐶 = (0 ∶ 1 ∶ 0), 𝐶′ = (0 ∶ 0 ∶ 1)

Let a point be symbolised as (𝑥 ∶ 𝑦 ∶ 𝑧), we can express an equation for a line through two points
by taking scalar multiples of each of the coordinates. A parameterisation of ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐾 is therefore (𝜇 ∶ 𝜆) ↦
(𝜇 + 𝜆 ∶ 𝜇 ∶ 𝜇), which can also be expressed as 𝑦 = 𝑧. Similarly, ⃖⃗⃗⃗⃗⃗𝐴𝐶 is 𝑥 = 𝑧, and ⃖⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶′ is 𝑥 = 𝑦.

Since 𝐵′ is on ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐾, 𝐵′ = (𝑝 ∶ 1 ∶ 1) for some 𝑝, 𝐵 is on ⃖⃗⃗⃗⃗⃗𝐴𝐶 so 𝐵 = (1 ∶ 𝑞 ∶ 1) for some 𝑞, 𝐿 is on ⃖⃗ ⃗⃗ ⃗⃗ ⃗𝐴𝐶′
so 𝑦 = (1 ∶ 1 ∶ 𝑟) for some 𝑟.

Now consider the following two pairs of three lines.

• ⃖⃗ ⃗⃗ ⃗𝐶𝐿, ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐾, ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐵′𝐶′, which are concurrent in 𝐴′. ⃖⃗ ⃗⃗ ⃗𝐶𝐿 is parameterised by (𝜇 ∶ 𝜆) ↦ (𝜆 ∶ 𝜆 + 𝜇 ∶ 𝜆𝑟), which
can also be written as 𝑧 = 𝑟𝑥, Similarly ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐾 is 𝑦 = 𝑞𝑧 and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐵′𝐶′ is 𝑥 = 𝑝𝑦.

• ⃖⃗ ⃗⃗⃗⃗ ⃗⃗𝐵𝐶′, ⃖⃗ ⃗⃗⃗⃗⃗⃗𝐵′𝐶, ⃖⃗⃗⃗⃗⃗𝐾𝐿. They are concurrent if and only if Pappos’ theorem holds. The equation for ⃖⃗ ⃗⃗⃗⃗ ⃗⃗𝐵𝐶′ is
𝑦 = 𝑞𝑥, similarly for ⃖⃗ ⃗⃗⃗⃗⃗⃗𝐵′𝐶 we have 𝑥 = 𝑝𝑧 and for ⃖⃗⃗⃗⃗⃗𝐾𝐿 we have 𝑧 = 𝑟𝑦.

The first triplet passes through the point 𝐴′ by assumption, so 𝑧 = 𝑟𝑥 = 𝑟(𝑝𝑦) = 𝑝(𝑟(𝑞𝑧)) = 𝑝𝑟𝑞𝑧
which means 𝑝𝑟𝑞 = 1. 𝐾, 𝐿,𝑀 are collinear if and only if the second pair of lines pass through one
point. This would be the case if 𝑦 = 𝑞𝑥 = 𝑞(𝑝𝑧) = 𝑞(𝑝(𝑟𝑦), which means if 𝑞𝑝𝑟 = 1. Multiplication in
ℝ is commutative, 𝑝𝑟𝑞 = 𝑞𝑝𝑟, so 𝐾, 𝐿,𝑀 are collinear and Pappos’ theorem holds.

We should make note of one thing here, our proof of Pappos’ theorem by means of homogeneous
coordinates essentially relied on the commutativity (and associativity) of ℝ. The other steps were just
selecting points in general position and inferring lines, both these steps are possible for all projective
planes. I will not get ahead of myself here, but this indicates the deep connection between the field
axioms on the one hand and our projective plane axioms on the other.

6.3. Desargues’ Theorem
The second theorem is due to Desargues, like Pappos’ theorem it is a theorem in Euclidean geometry
but there are projective planes that do not satisfy it. Desargues’ theorem is actually implied by Pappos’
proposition so it is not strictly necessary to take it as an axiom. The proof of this fact is due to Hes-
senberg,1 but it is a long proof and we do not need it for our purposes hence we neither state it nor
1(Hessenberg, 1905)
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rely on it. There are projective planes, however, that do satisfy Desargues’ theorem, but not Pappos.
Moreover, Desargues’ theorem will also play a role in relating the geometric axioms to the field axioms.
Let us start with a definition and after that state the axiom.

Definition 6.1. Two triangles are in perspective from a point if the lines through corresponding vertices
are concurrent with a single point.

Axiom (Desargues). If two triangles are in perspective from a point, then their pairs of corresponding
sides meet in collinear points.

Like with Pappos, we will prove that this is a theorem in the real projective plane using homogeneous
coordinates.

Theorem 6.3. (Desargues) is a theorem in the real projective plane ℙ2𝑅.

Proof. Let 𝑂 be the point of perspective, let △𝐴𝐵𝐶 be a triangle and let △𝐴′𝐵′𝐶′ be a perspective of
△𝐴𝐵𝐶 from 𝑂. We assign the following coordinates:

𝑂 = (1 ∶ 1 ∶ 1), 𝐴 = (1 ∶ 0 ∶ 0), 𝐵 = (0 ∶ 1 ∶ 0), 𝐶 = (0 ∶ 0 ∶ 1)

Then we get the equations ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐴 ∶ 𝑦 = 𝑧, ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐵 ∶ 𝑥 = 𝑧 , ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐶 ∶ 𝑥 = 𝑦 and that for some 𝑝, 𝑟, 𝑞:

𝐴′ = (1 + 𝑝 ∶ 1 ∶ 1), 𝐵′ = (1 ∶ 1 + 𝑞 ∶ 1), 𝐶′ = (1 ∶ 1 ∶ 1 + 𝑟)

Now we can derive a parameterisation and an equation for the lines of the corresponding sides:

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗𝐴′𝐶′ ∶ (𝜇 ∶ 𝜆) ↦ (𝜆(1 + 𝑝) + 𝜇 ∶ 𝜆 + 𝜇 ∶ 𝜆 + 𝜇(1 + 𝑟))
⃖⃗⃗⃗⃗⃗𝐴𝐶 ∶ 𝑦 = 0

Their intersection is when 𝜆 = −𝜇 in the point (𝑝 ∶ 0 ∶ −𝑟). Using this same method we obtain that the
intersection of ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴′𝐵′ with ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐵 is (𝑝 ∶ −𝑞 ∶ 0), and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐵′𝐶′ with ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐶 is (0 ∶ 𝑞 ∶ −𝑟).
These three points lie on the line 𝑥

𝑝 +
𝑦
𝑞 +

𝑧
𝑟 = 0, which proves Desargues’ theorem.

We can now demonstrate the power of duality.

Corollary 6.4 (Converse Desargues). If the corresponding sides of a triangle meet in collinear points,
then the triangle is in perspective from a single point.

Proof. The consequence in Desargues’ theorem is the dual of the condition: The dual of the definition
of two triangles being in perspective is that the points where corresponding vertices intersect, which is
exactly what Desargues’ theorem states. If (Desargues) holds in a projective plane, the theorem then
follows immediately from the principle of duality. (This does rely on the fact that the duality principle is
not violated by further projective axioms.)

Corollary 6.5 (Scissors theorem). If 𝐴𝐵𝐶𝐷 and 𝐴′𝐵′𝐶′𝐷′ are quadrilaterals with vertices alternately on
two sides, and if all intersections of ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐵 and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴′𝐵′, ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐶 and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐵′𝐶′, ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐷 and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴′𝐷′ lie on a line 𝑀, then the
intersection of ⃖⃗ ⃗⃗ ⃗⃗𝐶𝐷 and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐶′𝐷′ also lies on 𝑀.2

It is not hard to prove this by considering the intersection of ⃖⃗ ⃗⃗ ⃗⃗𝐴𝐷 and ⃖⃗ ⃗⃗ ⃗⃗𝐵𝐶 (⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐴′𝐷′ and ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐵′𝐶′) and applying
Desargues to the resulting triangles.

6.4. Axioms of cyclic order
The second category of Hilbert’s axioms are the axioms of order. In chapter 5 we discussed the nature
of projective lines: they are like Euclidean lines with an extra horizon point added. If one continues in
both directions indefinitely, one will reach the same horizon point. This horizon point is not a special
point from the projective perspective. We, therefore, do not have a concept of betweenness on a
projective line, there are two ways to get from one point to another on a line. One can get from one
point to another in the ‘regular way’ (from the Euclidean perspective) and by going through the horizon
2adapted from (Stillwell, 2005, p.126), a complete proof can be found there as well.



52 6. Axiomatic Projective geometry

point. The projective lines are topologically circular. We, therefore, do have something called cyclic
order.

•

•
• • •

•

•

Figure 6.2: It is impossible to establish an order of three points on a circle, but two points can separate two others

On a circle, one cannot order three points, as every point is in between the other two. But with four
points, there does exist an order: we can divide the four points into two pairs and these two pairs will
always lie in between each other. We formalise this with the following axioms:3

Axiom (CO.1). Let 𝐴, 𝐵, 𝐶, 𝐷 be distinct points on a line, 𝐴𝐵𝜎𝐶𝐷 is equivalent to 𝐶𝐷𝜎𝐴𝐵 and 𝐵𝐴𝜎𝐶𝐷.

Axiom (CO.2). Let 𝐴, 𝐵, 𝐶, 𝐷 be distinct points on a line, then one and only one of the relations 𝐴𝐵𝜎𝐶𝐷,
𝐴𝐶𝜎𝐵𝐷, 𝐴𝐷𝜎𝐵𝐶 holds.

Axiom (CO.3). If 𝐴𝐶𝜎𝐵𝐷 and 𝐴𝐷𝜎𝐶𝐸, then 𝐴𝐷𝜎𝐵𝐸.

Axiom (CO.4). There exists a line incident with at least four points.

Axiom (CO.5). Let 𝐴, 𝐵, 𝐶, 𝐷 be distinct points on a line 𝓁, and 𝐴′, 𝐵′, 𝐶′, 𝐷′ their projections on 𝓁′ from
some centre 𝑆, then 𝐴𝐶𝜎𝐵𝐷 implies 𝐴′𝐶′𝜎𝐵′𝐷′.

Properly speaking (CO.4) is an incidence axiom, but we state it as part of the axioms of circular
order because it excludes a degenerate space relevant to circular order. We will not spend a lot of time
on these axioms, but let us draw attention to two important observations.

Notice the intimate relation that these axioms have to the cross-ratio. The cross-ratio was defined
using four points. (CO.1) establishes that we can interchange the two pairs, like with the cross-ratio.
Because the cyclic axioms do not state anything about quantities, they also do not distinguish between
𝐴𝐵𝜎𝐶𝐷 and 𝐵𝐴𝜎𝐶𝐷. This is exactly like the fact that betweenness does not distinguish between the
endpoints of a line. (CO.5) also establishes, not the quantitative invariance of the cross-ratio, but the
‘topological invariance’, i.e. the axiom does not state anything about quantitative invariance but the
points will preserve a relative order.

The other important observation is that if we know what the horizon line is, then we can define
betweenness. This can simply be done by taking the horizon point as one of the points in the cyclic
order, and then the other point in that pair is in between the points of the other pair.

6.5. Projective geometry and conic sections
In chapter 5 we gave an example of a practical application of projective geometry: measuring the
heights based on a photo alone. Let us end this chapter by giving an application of projective geometry
in theoretical geometry itself.

The most famous textbook of Greek geometry after Euclid’s Elements is arguably Appolonius’Conic
sections. In this book, Appolonius studied the intersections of a cone with a plane: the ellipse, parabola
and hyperbola.4 From the viewpoint of projective geometry this is simply taking different planar projec-
tions of a cone. It might not come as a surprise then that in projective geometry there is no distinction
between ellipses, parabolas or hyperbolas, there is simply a ‘conic section.’

If we then identify a line as the horizon line, can we differentiate the different conic sections again?
Yes! An ellipse is a conic section that does not cut the horizon line; a parabola has two extremities that
get more and more parallel: the parabola intersects the horizon line at exactly one point (it ‘touches‘
it); a hyperbola has two asymptotes and the two branches of a hyperbola both have two extremities
corresponding to these asymptotes, it, therefore, cuts the horizon line in two points.

3These axioms are adapted from Heyting, 1980.
4One can also get degenerate intersections like lines, points or circles, but we disregard those.
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This also indicates once more how the projective plane is in a sense ‘circular’: in a Euclidean plane
the branches of the hyperbola go off into opposite directions, but in a projective plane they meet each
other at the horizon.

𝐿∞ 𝐿∞

𝐿∞

Ellipse Parabola Hyperbola

Euclidean

Projective

Figure 6.3: Conic sections in a Euclidean and projective plane

Projective geometry greatly simplifies the study of conic sections and makes it possible to reduce
many propositions of different conic sections to a single proposition in projective geometry. Historian
Kline writes that Desargues derived sixty(!) theorems of Apollonius from a single projective theorem and
that Pascal is supposed to have deduced 400(!!!) corollaries from Pascal’s hexagon theorem (a more
general variant of Pappos’ theorem), though no work of Pascal in which this is done has survived.5

5(Kline, 1972, p.300)





7
Projective arithmetic

7.1. Length arithmetic for Projective geometry
In section 3.2 we formed the abstraction (oriented) length and defined arithmetic for it. This was in the
context of Euclidean geometry, we cannot do the same in projective geometry because we cannot form
such an abstraction as length: congruence relations need not be preserved under projective transfor-
mations. What we can do, however, is define arithmetic for oriented line segments on parallel lines
such that, if we would know enough information about the projective plane to transform it into a Eu-
clidean plane, then it is consistent with the arithmetic for Euclidean geometry developed in section 3.2.
Moreover, the oriented line segments will, like the lengths in section 3.2 form a field.

For Euclidean geometry, we created an arithmetic of oriented lengths to make a coordinate system
out of it. We already have a coordinate system for projective geometry, based on three-dimensional
Cartesian coordinates. The goal for this arithmetic of projective line segments will not be to create
coordinates out of it, but simply to induce a field from projective geometry and to develop an arithmetic
that is consistent with that of Euclidean geometry. Let us start with a projective plane Π that satisfies
at least (PI.1) to (PI.3) and (CO.1) to (CO.5).

Choosing 𝐿∞
The precondition of such arithmetic is that we have identified a line as the horizon line. It does not
make sense to do arithmetic with infinitely long segments. Let us, therefore, start by choosing a line
𝐿∞ in Π.

By identifying a horizon line, we can derive a relation of betweenness for points on a line. Consider
any line 𝓁 ≠ 𝐿∞. Take the horizon point of this line 𝓁∞ ∶= 𝓁 ∩ 𝐿∞. Then for arbitrary points 𝐴, 𝐵, 𝐶 ∈ 𝓁,
we define 𝐴 ∗ 𝐶 ∗ 𝐵 if 𝐴𝐵𝜎𝐶𝓁∞. We can, therefore, form line segments and thus develop arithmetic for
line segments.

We also get a concept of parallelism, two lines are parallel if they cut the same point on 𝐿∞. A class
of parallel lines can now simply be defined as all lines that cut a given point on 𝐿∞. We can, therefore,
denote it as 𝑃𝜆, where 𝜆 ∈ 𝐿∞. We identify a class 𝑃𝜆 within which we define arithmetic. As with the
oriented arithmetic in the Euclidean case, our arithmetic depends on choosing a particular class but
any class can be chosen. From now on we will always assume that picking points of lines in 𝑃𝜆 means
picking points that are not 𝜆 itself.

Choosing a line 𝐾, orientation and unit
In defining oriented lengths, we considered the class of parallel lines as a whole. We could in principle
do the same, but let us take a different approach: we choose a particular line and a particular orientation
point and then we define the arithmetic by means of line segments on it. This will produce the same
arithmetic and it will make some demonstrations later on easier.

Choose a line 𝐾 ∈ 𝑃𝜆. Choose points 𝑂, 𝐼 ∈ 𝐾, 𝑂 will be the orientation point and 𝑂𝐼 the unit line
segment with length 1. We define a linear order using betweenness (this also works in the projective
case and is not hard to check) and choosing 𝑂 < 𝐼. We, therefore, have oriented line segments on 𝐾.
We bring line segments in 𝑃𝜆 in standard position by translating them to 𝑂.

55
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Definition 7.1. The oriented line segment in standard position of an oriented line segment 𝐴𝐵 ∈ 𝑃𝜆, is
the line segment on 𝐾 obtained in the following way. Consider the line ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐴 and take the line 𝑀 through
𝐵 parallel to ⃖⃗ ⃗⃗ ⃗⃗𝑂𝐴 (i.e. the line that cuts it on 𝐿∞). Then the intersection point 𝐶 of 𝑀 and 𝐾 defines 𝑂𝐶,
the oriented line segment in standard position.

•
O

•
I

•
C

𝐾

•
A

•
B

Figure 7.1: Translating a line segment in standard position

Each line segment in 𝑃𝜆 can be associated with a unique line segment in standard position. The idea
is of course that, if we were to have Euclidean lengths, then a line in standard position is a congruent
line segment (by properties of a parallelogram). We do not have a congruence relationship, however.
Let us, therefore, define a quasi-length, based on equivalence with respect to standard position.

Definition 7.2. A quasi-length is an attribute ±𝑎 of an oriented line segment 𝐴𝐵 in a class 𝑃𝜆 with the
following relation. If 𝐶𝐷 ∈ 𝑃𝜆 has quasi-length ±𝑐, then ±𝑎 = ±𝑐 if and only if 𝐴𝐵 and 𝐶𝐷 have the
same standard position.

A quasi-length exists only within a given class of parallel lines and with respect to a line in this
class with an orientation point. One can see that a quasi-length is very related to oriented lengths
in Euclidean geometry, we do not designate them with the same name to stress that it is not truly a
length, it is a perspective on a length (and with some more information about the projective space one
can identify it with an actual length).

Addition and multiplication
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Figure 7.2: Addition of quasi-lengths

Definition 7.3. Addition of two quasi-lengths. Suppose 𝑎 and 𝑏 are two quasi-lengths with respect to
𝑃𝜆. We define the sum 𝑎 + 𝑏 to be the following quasi-length. Consider the segment 𝑂𝐴 in standard
position with quasi-length 𝑎 and 𝐵𝐶 not on 𝐾 with quasi-length 𝑏. (That such a segment not on 𝐾 always
exists is straightforward). Then apply the same procedure of placing 𝐶𝐷 in standard position but now
with respect to 𝐴 as an origin, not 𝑂. That is, we consider the line through 𝐴𝐵, take the line through 𝐶
that is parallel to it and consider the point 𝐷 where this line cuts 𝐾. Then the quasi-length 𝑐 of 𝑂𝐷 is
the sum of 𝑎 and 𝑏, 𝑎 + 𝑏 ∶= 𝑐.
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Figure 7.3: Multiplication of quasi-lengths

Definition 7.4. Multiplication of two quasi-lengths. Suppose 𝑎 and 𝑏 are two quasi-lengths with respect
to 𝑃𝜆 and unit quasi-length 1. We define the product 𝑎 × 𝑏 to be the following quasi-length. Consider
the following segments in standard position: 𝑂𝐼 with quasi-length 1, 𝑂𝐴 with quasi-length 𝑎 and 𝑂𝐵
with quasi-length 𝑏. Consider a line 𝑀 through 𝑂 that is not in 𝑃𝜆 and consider an arbitrary point 𝐼′ on
𝑀. Consider the line ⃖⃗ ⃗⃗⃗𝐼𝐼′ and consider the line parallel to it through 𝐵. Call the intersection of 𝑀 with
this line 𝐵′. Then consider the line ⃖⃗ ⃗⃗ ⃗⃗𝐼′𝐴 and the line parallel to it through 𝐵′. Consider the intersection
of 𝐾 with this line in the point 𝐶. We call the quasi-length 𝑐 of 𝑂𝐶 the product of 𝑎 and 𝑏, 𝑎 × 𝑏 ∶= 𝑐.

Theorem 7.1 (Choice independence). Multiplication is independent of the choice for 𝑀 and 𝐼′.

We will give a visual indication of why this is the case, not a formal proof. It can be seen in fig. 7.4
Note that even choosing 𝐼″ on the other side of 𝑂 produces the same 𝐶, this is immediately clear from
this drawing.
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Figure 7.4: Independence of the choice for 𝑀, 𝐼′

Theorem 7.2. If Π ⧵ 𝐿∞ satisfies the Euclidean axioms, then the definition of projective quasi-length
arithmetic is equivalent to that of oriented length arithmetic.

Proof. If Π⧵𝐿∞ satisfies the Euclidean axioms, then all quasi-lengths are oriented lengths. This follows
from the fact that under the Euclidean axioms an oriented line segment is congruent with that segment
in standard position and all segments in standard position define unique oriented lengths. That the
definition of addition is equivalent is straightforward as it consists of placing the two line segments next
to each other. For the definition of multiplication consider 𝑀 to be perpendicular to 𝐾 (possible with
the Euclidean axioms). The triangles △𝑂𝐼′𝐴 and △𝑂𝐵′𝐶 in the projective case are exactly those that
define multiplication in the case of Euclidean geometry, so the products are also equal. Therefore the
two definitions coincide.

7.2. Pappos and commutativity
Theorem 7.3. Projective quasi-length arithmetic is commutative if and only if Pappos’ theorem holds.
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Proof. We demonstrate the commutativity of multiplication. The proof for addition is exactly the same
if we consider the oriented segments both in standard position and on another ‘parallel’ line. Consider
the lines and points in fig. 7.5.
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Figure 7.5: Commutativity of multiplication

𝑂𝐼, 𝑂𝐴, 𝑂𝐵 have respective quasi-lengths 1, 𝑎, 𝑏; 𝑂𝐶 has quasi-length 𝑎𝑏 and 𝑂𝐷 has quasi-length
𝑏𝑎. The ‘parallelism’ of the three pairs of colored lines means that they intersect on the line 𝐿∞. We
therefore, have six points that form a hexagon, 𝐼′, 𝐴′, 𝐵′ and the three points of intersection on the
horizon of the lines drawn parallel in fig. 7.5 (ignoring the line 𝐼𝐼′). 𝐵 is on the ray ⃗⃗ ⃗⃗ ⃗𝑂𝐼 by definition and
the intersection of the two different lines that determine multiplication lies on this line (i.e the products
are equal) if and only if Pappos’ theorem holds.

This also proves the commutativity of Euclidean oriented length arithmetic, because Pappos’ theo-
rem is a theorem in Euclidean geometry.

7.3. Desargues and associativity
Theorem 7.4. Projective quasi-length arithmetic is associative if and only if Desargues’ theorem holds.

Proof. Like with Pappos, we demonstrate the associativity of multiplication. Consider the line and
points in fig. 7.6.
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Figure 7.6: Desargues and associativity, because of the large number of lines ‘parallel’ lines are colored.

𝑂𝐼, 𝑂𝐴, 𝑂𝐵 and 𝑂𝐶 have respective quasi-lengths 1, 𝑎, 𝑏, 𝑐. 𝑂𝐷 has quasi-length 𝑎𝑏, 𝑂𝐸 quasi-length
𝑏𝑐; 𝑂𝐹 quasi-length 𝑎(𝑏𝑐), and 𝑂𝐺 quasi-length (𝑎𝑏)𝑐. The fact that 𝐹 = 𝐺 now follows from Corol-
lary 6.5. The two quadrilaterals of importance are 𝐼𝐷𝐵′𝐼′ and 𝐶𝐹𝐸′𝐶′.
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Theorem 7.5. The field of quasi-length arithmetic that is induced from a projective plane where (PI.1)
to (PI.3), (CO.1) to (CO.5), (Desargues) and (Dedekind) hold, is isomorphic to ℝ.

We will not give a proof of this fact because it is long and relies on some results we have not shown
(for example, that (Desargues) implies (Pappos) in the context of (Dedekind)). The interested reader
can find such proofs in (Heyting, 1980).

7.4. Conclusion of chapters 5 to 7
In the last three chapters we have worked in the projective plane, both as induced from an three-
dimensional Euclidean space and synthetically by its characteristic axioms. We have shown that there
exists a deep relationship between geometric axioms and algebraic axioms. Pappos’ theorem is directly
related to the commutativity of length arithmetic and Desargues is directly related to associativity.

This demonstrates that algebra and geometry have deep relationships that go all the way down
to the axioms. The usage of algebra greatly expanded the power of geometry and modern geometry
fundamentally depends on the power of algebra; geometry on the other hand aids algebra by giving a
concrete meaning to algebraic calculations. Let us, therefore, end this thesis with the following words
by Joseph-Louis Lagrange:

“As long as algebra and geometry proceeded along separate paths, their advance was slow
and their applications limited. But when these sciences joined company, they drew from
each other fresh vitality and thenceforwardmarched on at a rapid pace towards perfection.”1

1(Moritz, 1914, p.82)
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