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Chapter 1

Introduction

Computers and connectivity pervade our lives providing us with many opportunities to
interact with strangers. Nowadays, we participate in multiple online communities for
buying and selling services and objects, educating ourselves, watching videos, keeping
up with friends, and playing games. As members of those online communities, we are
able to easily create, publish, and consume content on the Internet reaching audiences of
unprecedented scale. Such rich activity on the Internet increases uncertainty and brings
new forms of fraud, which are easier and more profitable than ever before. Establishing
trust among strangers is essential for the prosperity of offline and online communities.
While many traditional trust mechanisms such as contractual guarantees and repeated in-
teractions are very costly or even infeasible in large-scale environments, online reputation
systems are an effective way to protect users from fraud and provide incentives for them
to cooperate and contribute to the system. Just like their counterparts in offline commu-
nities, they aggregate the history of user interactions in one reputation value per user. In
many different contexts, online reputation systems function effectively on a worldwide
scale and allow millions of users daily to take decisions about their future interactions
with strangers. Examples of popular online reputation systems are those of eBay, Ama-
zon, eLance, oDesk, Google, Booking, Youtube, topCoder, and CouchSurfing. All those
online reputation systems rely on a single point of control.

In this thesis, we study reputation systems for decentralized networks such as dis-
tributed online social networks, online markets on mobile devices, and P2P networks.
Growing privacy concerns in online communities and popularity of applications on mo-
bile devices motivate the use of decentralized reputation systems where each user individ-
ually collects the history of user interactions, stores it, and aggregates it to one reputation
value per user. Due to the highly dynamic behavior of users and the scarcity of resources,
several challenging scalability and security issues arise. First, the increasing number of
users in online communities makes it hard for those systems to scale up to a large number
of users. Secondly, the large amount of available information challenges the users to iden-
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tify relevant information for computing the reputations. Finally, the ease and the low cost
of creating accounts in these communities enables malicious users to promote themselves
by spreading false information about their interactions.

To face these challenges, we propose algorithms that exploit the graph structure in-
duced by the user interactions in decentralized reputation systems. The socially rich avail-
able information of online communities allows us to study the intrinsic patterns of their
user behavior and their evolution over time. We observe their static and temporal prop-
erties both at the local and the global level. Using the key insights of our analysis we
develop scalable and effective algorithms in order to collect, store and aggregate informa-
tion in reputation systems. The developed algorithms are computationally tractable and
resilient to adversarial environments. To identify and maintain only relevant and trustwor-
thy information, we leverage the history of user interactions since frequent and successful
interactions indicate trust and similarity between the corresponding users.

1.1 Enabling Trust through Reputation Systems

We define an online community as any group of users interacting online with a loose
common goal and direction. The level of trust in a community impacts its prosperity by
reducing the risk and cost of interactions. Higher levels of trust decrease the interaction
costs, thus facilitating the activity of a community [56]. To highlight the importance of
trust in the development of a community, Fukuyama states that ”its well-being, as well as
its ability to compete, is conditioned by a single pervasive cultural characteristic: the level
of trust inherent in the society ” [56]. The sociological literature defines trust across three
different levels as either a property of individuals, of social relationships, or of the social
system [88]. At the individual level, an individual trusts other individuals to do something
based on some knowledge about their disposition, ability, or reputation. At the collective
level, an individual trusts others based on its trust in the agency or organization with which
the others are affiliated. At the system level, individuals consider the background, culture,
and social system of others when trying to determine whether to trust them.

Even though trust is necessary for the prosperity of a community, it is very challenging
to enforce it. Communities have a set of interests associated with the goals and directions
of the community. Every person in a community has one or more self-interests that may
conflict with the group interest. A societal dilemma captures the conflict between the self-
interest of a community member and the group interest, the choice whether to defect or to
cooperate. Many types of societal dilemmas have have been studied in the literature: the
collective action problem, the tragedy of the commons, the free-rider problem, the arms
race, and the prisoner’s dilemma.

Reputation systems have evolved in societies as an efficient way to enforce trust and
cooperation at a satisfying level in societal dilemmas via social pressure [106]. The rep-
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utation of an individual is a score estimated based on his past interactions that is being
disseminated among the members of a community informing them about his attitude. The
expectation that other members will consider each other’s history of interactions in future
interactions, the ”shadow of the future” according to Axelrod [8], constrains their present
behavior forcing them to cooperate. To demonstrate the power of reputational pressure,
we present how reputations resolve the well known Prisoner’s Dilemma [106]. According
to the Prisoner’s Dilemma, two partners in a crime are interrogated separately by the po-
lice due to lack of evidence for their conviction. The criminals could cooperatively deny
their crime and not testify against each other, which would result in a minor sentence for
both. Fearing of being betrayed by their partner and serving the longest period in jail
alone, they are both inclined to testify against each other spending a moderate period in
jail. However, their reputation in the underworld depends on them not betraying each
other and eventually, it enforces them to cooperate. No doubt, reputational pressure does
not eliminate betrayals as depending on the country and the severity of the crime, the
police can be very persuasive for the criminals to testify.

Reputation systems ensure that the rate of defectors stays small enough to allow com-
munities to remain cohesive without imposing large cost or reducing the convenience of
interactions [103]. In a reputation system, typical users are imperfectly informed about
the past interactions of other users and the collection of perfect information is usually
too expensive or in several cases impossible to obtain [57]. On the other hand, strict se-
curity mechanisms and contractual guarantees would raise prohibitively the cost of user
interactions, still without ensuring that under any circumstance every user will cooperate.

1.2 Online Reputation Systems

In online communities, contractual guarantees are infeasible due to the global dispersion
and the large number of their users. Repeated interactions between users are also rare
due to their large scale, e.g., in eBay 89% of the transactions between a pair of buyer-
seller [44] and in P2P systems about 92% of data transfers between a pair of peers [96] are
conducted only once. Online reputation systems allow members of a community to take
decisions about their online interactions with strangers in many different applications.
They enable us to trust unknown products on eBay, unknown professionals on oDesk,
unknown friends on Facebook, and unknown couches on Couchsurfing. In Table 1.1, we
present the analogies in terminology among different types of applications using online
reputation systems. Table 1.1 is a modification of a table presented in [32].

Online reputation systems differ from their offline counterparts in their large number
of participants spread around the world, their explicit design, and the variety of defec-
tor strategies [44]. Online communities have hundreds of millions of users spread across
many countries, e.g., Facebook has over a billion users in more than 70 countries [50]
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Table 1.1: Analogies in the terminology of reputation systems

File-sharing Marketplace Service-Oriented Social Media and Networks

download transaction subscription interaction
file product service video/photo/story

uploader seller provider uploader
downloader buyer consumer viewer

and Youtube more than 100 million in 61 countries [124]. Scale is critical and it causes
the shift from trust based on personal relationships to impersonal trust. While offline rep-
utation systems could never handle this scale, online reputation systems can efficiently
collect, store and aggregate a very large amount of information. They have been ex-
plicitly designed to control the participants, the information spread, the computation of
reputation, and the storage of information. However, depending on the reputation system,
attackers can adopt a great range of strategies: attackers might be traitors who were pre-
viously cooperative users milking their reputation by exploiting other users, they might
whitewash their badly reputed identities by leaving the system and reappearing under a
new identity, or they might claim dishonest feedback by collusion or controlling fake iden-
tities, their sybils. In this section, we discuss the decentralization of reputation systems
and the challenges due to decentralization.

1.2.1 Decentralization

Decentralization of online communities and their reputation systems is driven mainly by
the growing concerns of privacy and the popularity of applications on mobile devices.
In Facebook, Twitter, and Youtube, hundreds of millions of active users share content
on their websites revealing their personal information. Privacy concerns are attracting
increasing attention from users. Even though most online communities offer privacy set-
tings, their centralized nature facilitates tracking and censorship. Malicious users can
keep track of particular users, classify personalities from their individual usage behavior,
track their locations even when offline, and censor their content. To expose the ease of
crawling data from online communities, we note that researchers very often crawl online
communities to collect datasets for their studies — which they usually anonymize — and
several books guide data crawling in social networks for research purposes [105]. An
example of the privacy implications is the website pleaserobme.com which by crawling
social networks for checks in restaurants, bars, and concerts, and holiday announcements,
suggests houses whose dwellers are on leave to potential robbers.

Decentralized social networks have been proposed to protect users’ privacy. In decen-
tralized social networks, users have the ownership of their data and perform secure com-
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munication with their friends without passing any information through central servers. In
Diaspora [2], users setup their own servers to host content, form friendships, and share
content with others. Safebook [37] combines a peer-to-peer architecture with trust rela-
tionships to preserve privacy. In Peerson [22] users keep control of their data through
encryption, key management and access control in a decentralized way. In P2P fileshar-
ing networks, decentralized reputation mechanisms have been proposed against malicious
users and content such as Bartercast [43], EigenTrust [78], Havelaar [67] and PET [32].

Concurrently with the concerns of privacy in online communities, an increasing num-
ber of users are engaged in applications on mobile devices by creating and sharing content
at low cost. Half of Facebook users access it through their mobile devices [50]. Youtube
users watch more than 6 billion hours of video each month with 40% of this watch time
spent on mobile devices [124]. To identify relevant and quality content, researchers have
proposed several reputation systems to rate and locate content producers in applications
on mobile devices. Using centralized reputation systems, mobile devices have to go
through central servers. For scalability and mobility, researchers have concluded that
reputation systems on mobile devices have to be decentralized [86], [101]. Examples of
such decentralized reputation systems include Mobile Bazaar [27] proposed for markets
on mobile devices, MobID against malicious users on social applications [102], and the
reputation system proposed by McNamara et al. [86] for content rating on media applica-
tions.

Allowing each user to collect, store and aggregate information about other users on his
own device is an efficient way of decentralizing reputations systems as indicated by many
researchers [86], [101], [43], [27]. Consequently, a decentralized reputation system is
naturally divided into three components: the collection of the history of user interactions,
its storage, and the computation of reputations [109]. During the collection of the infor-
mation, users have to identify and collect information about the history of interactions of
other users in order to compute their reputations. The storage of information deals with
the type of stored data, the storage methodology, and the choice of the stored information.
In the computation of reputations, each user aggregates the history of user interactions
in one reputation value per user. Decentralization aggravates the fundamental problem
of reputation systems which consists in collecting, storing, and aggregating relevant and
trustworthy information. Below, we describe this problem.

1.2.2 Problems due to Decentralization

The burst of user interactions in online communities and the low cost of creating accounts
pose the challenge of collecting, storing, and aggregating relevant and trustworthy in-
formation. The ease of account creation and the freedom to share content has attracted
millions of users to contribute in online communities. For instance, Facebook has over
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a billion of users uploading over 250 million photos everyday [50]. Twitter has over
500 millions users sending over 58 million tweets and issue over 2.1 billion queries each
day [113]. In Youtube, over 100 million users upload every minute more than 100 hours of
videos [124]. With this information overload, collecting and storing relevant information
about past interactions for the computation of reputations is challenging. This problem is
also known in the literature as the Babel objection [16]. Classical data mining techniques
and recommendation algorithms, such as k-Nearest Neighbor [75], are not able to deal
with the scale of the number of users in online communities and the sparsity of their in-
teractions. For example, in Facebook a typical user is connected to about 100 other users
out of one billion users in the system. Thus, a good but useless recommendation to a new
user is to recommend no new friends. Due to the large number of users and the sparsity
of their interactions, this useless recommendation achieves near perfect predictive accu-
racy, namely only 100 mistakes out of one billion possible predictions [9]. The effect of
information overload is even more intense in decentralized reputation systems, as in these
systems each user has very limited resources available for the collection, the storage and
the processing of information.

Not only detecting relevant information is challenging in online communities, detect-
ing trustworthy information is challenging as well. In most of these communities, anyone
is able to create an account easily which enables malicious nodes to perform sybil attacks
by creating fake accounts under their control to spam, collude or perform link farming.
The attacker manages to gain a disproportionally large influence on the network in order
to determine the result of a voting process, to spam other users, to monopolize system
resources, or even to sell its sybils to other attackers as has occurred in Facebook [25].
Facebook estimated that about 5% to 11% of its accounts are illegitimate [49] and Twitter
about 5% [112]. Renren and Tuenti also have such fake accounts [123], [25]. Classical
machine learning techniques, such as Support Vector Machine [75] and logistic regres-
sion [75], have been used to classify malicious accounts based on their properties such as
activity level and frequency of interactions [123]. However, these techniques are effective
only when the characteristics of sybil accounts deviate clearly from normal users. Typ-
ically, malicious users tend to mimic normal users, making those techniques inefficient.
Most of the proposed solutions against sybil attacks in the literature [117] are based on
the observation that honest users form an area in the network well-separated from sybil
identities, as illustrated in Figure 1.1. As interacting with honest nodes requires high
engineering cost, sybil nodes are able to create only a limited number of connections
with honest users, the attack edges. As a result, the sybil nodes constitute the sybil area
which is well separated from the honest area. Due to this characteristic of sybil nodes,
community detection algorithms such as the Louvain method [17], tend to be effective in
detecting the sybil area. However, when the honest are consists of multiple communities,
the identification of sybil area is challenging.
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Figure 1.1: Sybil attacks in a reputation system. The sybil nodes connect to the honest
nodes via the attack edges.

To identify relevant and trustworthy information, many proposed schemes leverage
social networks by interpreting social links among users as similarity and trust relation-
ships. However, in many systems such as P2P networks no social network is available.
Furthermore, in social networks many social connections between nodes are superficial
or of very low strength and thus, they do not indicate trust. For instance, many users in
Facebook have many more friendship connections than 150, which is roughly the number
of people they can regularly interact with [46]. As a result, these superficial connections
among users correspond to ”Familiar Strangers” [94] rather than real friendships. In this
thesis, instead of using social connections among users as trust indicators, we propose the
usage of their interactions. Regular and successful interactions between nodes are strong
indicators of trust and similarity among users [65], [89]. As a result, our approach is
not only useful for systems without any social network available, but it is more resilient
against sybil attacks, as well. Below, we describe the usage of interactions in online
reputation systems and its benefits.

1.3 Reputation Systems as Interaction Graphs

Representing an online community as a graph, whose vertices are the users and edges
are relationships between the users, is a powerful model to observe and analyze their
complexity at the micro-level, meso-level and macro-level. In other words, we are able to
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study the interconnections of individual nodes in networks, their relative positions in the
graph, as well as the structure of the graph itself. Furthermore, the availability of socially
rich information of millions of users in online communities enables us to ask questions
that were impossible to answer before. This allows computer science to reach towards
other sciences such as social sciences, economics, and physics of complex systems [33].

1.3.1 Studying and Building the Interaction Graphs

In reputation systems, the subject of interest is user interactions. Thus, we study a rep-
utation system through the corresponding interaction graph whose edges represent the
user interactions. This graph represents the collective user behavior in an online commu-
nity, and it is directed indicating the direction of interactions, and weighted indicating the
strength of interactions. We observe the interaction graph over time.

At the micro-level, we study the local properties of nodes over time, such as their
connectivity, their activity, and their interactions with their immediate neighbors. The
frequency and the strength of past interactions among users reveal their similarity and trust
relationships as frequent interactions between two users imply strong common interests
and trust, respectively.

Meso-level graph properties indicate a user’s relative position in a given graph, e.g.,
its centrality and the transitivity of trust. Users of high centrality participate in more
interactions and a major information flow passes through them. Their interactions are
very important as they keep the graph connected. These users can be exploited to increase
the accuracy of the computation of reputations but they risk being overloaded.

At the macro-level, we study the global properties of the interaction graph, e.g., its
clustering in communities, its diameter, and its density. By studying the properties of
a graph, we are able to infer characteristics of the underlying system. Furthermore, we
are able to explore the influence of graph topology on the performance of a proposed
algorithm for collecting, storing, or aggregating the information in reputation systems.
We observe that graph properties such as clustering in communities, diameter, and the
average path length between any pair of nodes influence a lot the performance of such
algorithms.

These three levels of properties are closely related. When implementing an algorithm,
we determine a user’s interactions with its neighbours and so, we act at the micro-level.
However, the system is affected at the macro-level, namely the collective user behavior
is also affected. On the other hand, the macro-level properties of an already existing
community affect the performance of an algorithm applied to it. For example, it was the
power-law structure of WWW that made Google’s Pagerank successful while in a ran-
dom network Pagerank does not perform that well [59]. Pagerank is a ranking algorithm
identifying the highest-ranked nodes in a graph using random walks. In a power-law
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(a) The complete interaction graph (b) The interaction subgraph of the red node; the
part of the interaction graph drawn with grey in-
dicates the unknown area from the perspective of
this node

Figure 1.2: The complete interaction graph and the subgraph of a node (black edges)

graph, there are a few highly ranked nodes deviating clearly from the other nodes, and
those highly ranked nodes have many walks leading to them. Consequently, it is easy to
identify them.

In a decentralized reputation system, each node cannot have perfect information and
thus, it keeps its own subgraph of the interaction graph, its interaction subgraph. In Figure
1.2, we illustrate an interaction graph and a corresponding interaction subgraph. A node
aggregates its subgraph in one reputation score per node. Initially, a node only knows its
own direct interactions in its interaction subgraph and so, it is able to compute only the
reputations of nodes with which it has previously interacted. Nodes need to expand their
interaction subgraphs in order to compute the reputations of many other nodes in the net-
work. For this purpose, they should periodically contact each other acquiring information
about the interaction subgraphs of other nodes. Ideally, after a node has contacted several
other nodes, its interaction subgraph converges to the complete interaction graph.

1.3.2 Online Communities under Study

In this thesis, we propose algorithms for collecting, storing, and aggregating trustworthy
and relevant information in decentralized reputation systems. We evaluate the proposed
algorithms on three online communities with different graph properties: the Bartercast
reputation system, the author-to-author Citation network, and Facebook in New Orleans.
Bartercast is a decentralized reputation system with high population turnover and very
few users staying long in and contributing to the system. On the other hand, the Citation
network of authors forms a tightly connected community. Finally, Facebook is a social
network of tightly connected users with bursty interaction patterns among them. In this
section, we present the basic characteristics of the datasets derived from these three online
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communities. In each chapter of this thesis, we use different subsets of those datasets with
different sizes and time spans depending on the corresponding evaluation. Each of the
corresponding subsets is described before the evaluation in each chapter. All the networks
are growing and have timestamps associated with their interactions. Furthermore, for
comparison reasons, we use synthetic random and power law graphs whose characteristics
we describe in each chapter separately.

Bartercast

Bartercast [43] is the reputation mechanism of the BitTorrent-based client Tribler [99].
Bartercast is the motivation of the research presented in this thesis, as Tribler has been
developed by the Parallel and Distributed Systems group of Delft University of Technol-
ogy. Reputations in Tribler are used as an incentive mechanism for users to contribute to
the system, as free riding in BitTorrent is easy to perform [82]. Bartercast was initially
proposed by Meulpolder et al. [87] and was further improved in terms of its accuracy,
security, and scalability by Delaviz et al. [43]. In this thesis we analyze and leverage the
graph properties of the network induced by user interactions. We apply our algorithms
to multiple online communities gaining key insights about the similarities and the differ-
ences of Tribler with other popular online communities. Using relevant and trustworthy
information, our algorithms improve the collection, the storage, and the aggregation of the
history of user interactions in Bartercast in terms of computational complexity, scalability,
and tolerance against attacks.

In Bartercast, when a peer exchanges content with another peer, they both store a
Bartercast record with the amount of data transferred and the identity of the correspond-
ing peer. Each peer is associated with a unique identifier (UID). Regularly, peers contact
other peers to exchange Bartercast records using a gossip-like protocol. From the records
it receives, every peer dynamically creates a weighted, directed interaction subgraph, the
nodes of which represent the peers about whose activity it has heard through Bartercast
records, and the weights of the edges represent the total amount of data transferred be-
tween two nodes in the corresponding directions.

In Bartercast, the reputation of a node from the perspective of another node is com-
puted as the difference between the flows passing between those nodes using max-flow.
Particularly, each peer i computes the reputation of another peer j by applying the Ford-
Fulkerson algorithm [35] to its interaction subgraph to find the maximum flows fij from
itself to j and fji in the reverse direction, as in Figure 1.3. To limit the computational
cost, only paths of length at most two hops from node i are considered. Within two hops,
very few nodes are connected on average in Bartercast due to the sparsity of user interac-
tions, resulting in limited accuracy and coverage. The accuracy of the two hop limitation
has been studied in [43]. We elaborate on the computation of reputations in Bartercast in
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node j

node i

Figure 1.3: The max-flow computation between nodes i and j indicated by the blue arrows

Chapter 2.
The Bartercast reputation system is based on the transitivity of trust, unlike other

approaches such as Havelaar [67]. Assuming that honest nodes tend to behave honestly
over time, trust transitivity is powerful against Sybil attacks and collusions but vulnerable
against traitors. To increase the effectiveness of Bartercast against traitors, the reputation
values are computed according to specifically defined time-windows. Thus, peers cannot
to accumulate very high reputation values and later milk their reputations exploiting the
system, as presented in Chapters 3 and 4.

In order to obtain Bartercast records, Tribler was crawled from September 1, 2010 to
January 31, 2011, collecting information from 29,716 nodes [43] . In our analysis, we will
assume full-gossip in which peers forward the records they receive to all other peers, and
so all peers eventually receive all the records in the system. The corresponding interaction
graph, the Bartercast graph, is derived from all interactions between the peers in Tribler.

The Citation Network

The author-to-author Citation graph is derived from the citation network of the papers
published in Physical Review E, which is a journal operated by the American Physical
Society (APS). The vertices of the citation graph represent the authors of papers and
the edges represent the citation relationship between two authors (or coauthors). The
direction of an edge indicates the direction of the citation and its weight indicates the
number of citations from one author to another. The Citation graph is one of the most
widely studied graphs in network analysis [85] and its authors are tightly connected.

The dataset we analyse covers the time span from 1993 to 2011 and it became avail-
able to us upon request to APS. The authors in the dataset are not associated with unique
identifiers. As a result, it is not trivial to distinguish two different authors publishing un-
der the same names, or an author publishing with slightly different first name. We mapped
a UID to a every combination of an author’s first letter of first name and his surname, as
it is quite uncommon for two authors to have published under the same name in the same
field and so, the structure of the citation graph is not affected [85].



12

Facebook

The Facebook graph used in this thesis derives from the Facebook network in New Or-
leans. We use the dataset presented in [115] containing information about the interactions
of 60,290 users, as indicated by their wall posts, from September 26, 2006 to January
22, 2009. This dataset has its limitations. First, in Facebook users have many interaction
possibilities such as messaging, applications, photo uploads, and chat. From this dataset,
only wall posting is available. Secondly, only users with public profiles were visible by
the crawler. We consider this dataset to be representative of Facebook in New Orleans
because it covers the majority of Facebook users (about 67%) there.

The vertices of Facebook graph represent the users and its edges represent interactions
between two users according to the corresponding direction. The weights of edges repre-
sent the number of interactions between two users. We note that wall posts in Facebook
act like a broadcast-style messager. The comments posted to a user’s wall can be seen by
other users visiting his profile. The visitors are able to reply to those comments or initiate
a new discussion thread on a user’s wall .

1.4 Research Context: Tribler

Tribler [99] is a BitTorrent-based P2P client targeted at file-sharing and video streaming
applications. It is being developed by the Parallel and Distributed Systems group of Delft
University of Technology for research and experimentation in P2P systems. In Tribler, a
user is able to share torrents as well as to create Youtube like channels, search content,
and watch and playback video. The Tribler client is available for download at tribler.org
and since its first release in 2006, it counts over a million downloads. Tribler provides
various advanced features including a distributed service for content discovery supported
by a dissemination and database synchronization protocol named Dispersy [128] and the
Bartercast distributed reputation mechanism [43].

The goal of the Tribler project is the design of a fully distributed, anonymous, and
user friendly content distribution platform. Tribler evolves continuously and many re-
searchers have contributed to it. Capotă et al. [26] have developed methods for resource
allocation in multimedia communities. Zeilemaker et al. [127] introduced a privacy pre-
serving semantic overlay. Petrocco et al. [95] have analyzed the performance of Libswift,
a transport-layer protocol for P2P streaming. Lu Jia et al. [77] proposed a distributed
method to estimate the strength of user interactions. D’Acunto et al. [38] analyzed strate-
gies for peer selection and piece selection in BitTorrent-like Video-on-Demand systems.
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1.5 Problem Statement

The problem of using relevant and trustworthy information imposes different challenges
on the computation of reputations, the storage of information, and its collection, which
are the three components of decentralized reputation systems. Below we describe these
challenges of each component separately.

1.5.1 Computation of Reputation

The computation of reputations is typically based on one of two widely used methods:
the max-flow algorithm or random walks. The max-flow algorithm [35] is at the core of
many reputation systems such as Bazaar [98], Bartercast [43] and the system proposed
by Feldman et al. [53]. Max-flow is resilient to misreporting by nodes who may report
fake interactions to increase their reputations. However, it is computationally intensive
and unable to deal with the sparsity of user interactions. As a result, the computed reputa-
tions do not represent accurately users’ behaviors. In this context, the following research
question arises:

How can we increase the accuracy of max-flow computation in an efficient way?
Using the most central node of the interaction subgraph as a start point of the max-flow
algorithm, instead of the local peer i, increases its accuracy on the computed reputations,
since the majority of nodes is reachable in a short distance by the most central nodes.
However, identifying the most central nodes in a large network is computationally ex-
pensive due to the involvement of the all-pair shortest path problem. Furthermore, as
the network evolves over time, the most central node has to be recomputed periodically.
In this context, the usage of centrality algorithms in reputation systems is prohibitive.
Designing computationally efficient centrality algorithms for evolving graphs is vital for
applying centrality algorithms in reputation systems.

Random walk-based algorithms are widely used to compute the reputations of nodes
in a network according to the probability of visiting each node in a random walk. Many
widely used reputation and recommendation systems such as EigenTrust [78], PageR-
ank [92], and TrustRank [69], have at their core random walks. The main intuition behind
those algorithms is that interactions should not contribute equally to reputations but inter-
actions with highly reputed nodes should contribute more. Random walk-based reputa-
tions accurately represent the behavior of nodes but they are vulnerable to a great range
of sybil attacks, such as spam, link farming, and collusion. Thus, for random walk-based
reputations, we need to address the following research question:

How can we use trustworthy information for random walk-based computations
of reputations? In random-walk based computations, nodes visited during a random
walk treat all their neighbors equally, ignoring any properties they may have. This makes
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random walks very vulnerable to various self-serving strategies such as free-riders, and
self-promoting strategies such as sybil attacks. The defense schemes against sybil attacks
can be categorized as sybil detection and sybil tolerance [116]. Sybil detection schemes
label nodes as malicious or honest and exclude the nodes labeled as sybils. These schemes
run the risk of false positives, honest users misclassified as malicious, and false negatives,
malicious users misclassified as honest. False positives are problematic for a system
[116] because they affect negatively user experience and threaten their trust towards the
system. Sybil-tolerant schemes such as [25], [39] simply bound the gain of an attacker by
leveraging the network structure.

1.5.2 Storage of Information

As users cannot store the complete history of user interactions due to their large num-
bers, and only the most relevant information can be maintained in a user’s database, the
following research question arises:

How can each node preserve the most relevant information in its database? The
amount of historical information on the interactions maintained by each node affects the
performance and the characteristics of the reputation system. Networks such as popular
online markets and social networks consist of hundreds of thousands or even millions of
active users and thus, using the complete history for computing the reputation of nodes is
prohibitive due to its resource requirements. Particularly in decentralized systems, such
as file-sharing P2P systems, the available resources at nodes are limited and thus, only
scalable solutions can be applied. Furthermore, a long-term history allows previously
well-behaved nodes to exploit their good reputations by acting maliciously [53, 84, 121].
To reduce storage and computation overhead, we need to find a scheme for reducing the
amount of history of interactions maintained at each node.

1.5.3 Collection of Information

Information spread has to provide each user with relevant and trustworthy information.
How can each node collect relevant and trustworthy information? The collection

of information directly affects both the quality of user reputations and the cost of the repu-
tation system [42]. The resource limitations, and the lack of any centralized management
challenge the collection of relevant and trustworthy information. The most widely used
protocols for spreading information, epidemic protocols, are vulnerable to a great range
of attacks and fail to provide relevant information. In epidemics, users blindly store and
process information about other users that they will never interact with or information
that contributes too little to the computation of reputations. Unlike epidemics we need to
design a collection mechanism that is resilient to attacks, scalable, and provides each user
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with relevant information.

1.6 Contributions and Thesis Outline

Addressing the four research questions stated in Section 1.5, the contributions of this
thesis are as follows.

Efficient approximate computation of centrality (Chapter 2) Exploring the evolu-
tion of the most central nodes in growing synthetic and real-world interaction graphs, we
observe that in most reputation networks the most central nodes tend to keep their central
position over time. We assess their stability in our graphs, concluding that in scale-free
and real-world graphs we do not need to recompute them often and so we can reduce the
computational cost. Secondly, to further reduce the computational cost, we evaluate three
approximation methods proposed in the literature in terms of their ability to identify the
most central nodes. We conclude that in real-world and scale-free graphs approximative
methods are highly accurate, while in random graphs it is harder to identify the most cen-
tral nodes due to their structural properties. Finally, we assess the quality of the computed
reputations when using these three approximations. This chapter is largely based on our
paper:
Dimitra Gkorou, Johan Pouwelse, and Dick Epema, Betweenness centrality approxima-
tions for an internet deployed p2p reputation system, IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum (HotP2P) 2011

Leveraging node properties for robust random-walks (Chapter 3) We show that
the properties of a node such as its activity and its position on the graph, indicate ac-
curately its trustworthiness, and that random walks exploiting these properties are more
resilient against attacks than simple random walks. Through extensive analysis, we iden-
tify the properties of nodes indicative of their trustworthiness and we bias random walks
towards the most reliable nodes. Each node initiates its own random walks and computes
its own personalized reputations for the other nodes. We consider the most common form
of self-serving misbehavior, which is a lack of cooperativeness as exhibited by free-riders,
who passively abuse the system by consuming its resources without contributing to it. In
a self-promoting strategy, nodes try to falsely increase their reputations using a variety of
techniques. From the self-promoting strategies, we consider only the sybil attack since
most self-promoting strategies can be seen as special cases of it. We evaluate biased
random walks in the face of free-riding and sybil attacks in growing synthetic and real-
world graphs. We show that biased random outperform significantly simple random walks
against attacks in all our graphs. Furthermore, we observe that the properties indicative of
the trustworthiness of nodes depend on the structure and the construction process of the
corresponding graph. This chapter is largely based on our paper:
Dimitra Gkorou, Tamás Vinkó, Johan Pouwelse, and Dick Epema, Leveraging node prop-



16

erties in random walks for robust reputations in decentralized networks, IEEE Interna-
tional Conference on P2P Computing 2013

Removing the least relevant parts of the history of interactions (Chapter 4) In
order to reduce the history of interactions, we use only a subset of the complete history to
approximate reputations. We model the interactions of the complete history of a network
as a growing graph with the nodes of the network as its vertices and the interactions be-
tween pairs of nodes as its edges, and the corresponding reduced history as a subgraph of
the complete history. The reduced history is derived from the complete history by delet-
ing the least important edges and nodes. We define the importance of a node according to
its age, its activity level, its reputation, and its position in the graph, while the importance
of an edge is defined according to its age, its weight, and its position in the graph. Then
we evaluate our approach using synthetic and real-world graphs for both max-flow and
random walk based computations of reputations. We demonstrate that the performance of
the reduced history depends on the topology of the complete history of interactions and
the reputation algorithm. Finally, we conclude that the reduced history can be applied in
a large range of networks. This chapter is largely based on our paper:
Dimitra Gkorou, Tamás Vinkó, Nitin Chiluka, Johan Pouwelse, and Dick Epema, Reduc-
ing the history in decentralized interaction-based reputation systems, IFIP International
Networking Conference 2012

Collecting trustworthy and relevant parts of the history of interactions (Chapter
5) We observe that node tends to interact more often with nodes close to them due to
the existence of highly connected nodes that keep the network together. As a result, a
node does not need to collect the history of interactions of all the other nodes but only of
those close to it. Furthermore, frequent interactions of high strength among nodes can be
interpreted as trust. Based on these observations, we propose a decentralized algorithm
based on random walks where each node uses its own part of the history of interactions
to navigate in the network and collect parts of the histories of interactions of other nodes.
We consider different types of random walks. We emulate the interactions in growing
synthetic and real-world graphs and we explore the efficiency of these random walks
in terms of scalability, relevance of collected information and robustness against sybil
attacks. This chapter is largely based on our paper:
Dimitra Gkorou, Johan Pouwelse, and Dick Epema, Trust-based collection of information
in decentralized networks which is under review.

Conclusions (Chapter 6) In the final chapter, we summarise the main findings of this
thesis and we provide suggestions for further study.
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Chapter 2

Betweenness Centrality Approximations

In reputation mechanisms such as Bartercast [43] and MoB [27], each node computes the
reputations of others by applying a max flow-based algorithm in its interaction subgraph.
It has been shown that the computed reputations are more accurate when a node starts
the computation of max-flow from the most central node in its interaction subgraph, in-
stead of itself [41]. Betweenness Centrality (BC) is a well-known and effective metric
for identifying the centrality of nodes in a network, but the cost of its computation in
large networks, and of its periodic recomputation in dynamically growing networks, is
prohibitive. The BC of a node in a network measures the proportion of shortest paths
passing through that node, and it is a global characteristic of a node rather than a local
one such as its degree. It has been studied extensively in the context of, for instance, so-
cial networks [91] and networks built by interactions of proteins [76] for detecting central
nodes. Furthermore, it is at the core of the most promising community identification and
clustering algorithms [60]. Viewing networks as communication networks, high values
of BC indicate the nodes with the highest communication load, and so, BC can be used
in flow-based reputation mechanisms like Bartercast and MoB. Previously proposed ap-
proximation methods for BC computation have only been designed for static networks
[21], [58].

In this chapter, we address the problem of detecting central nodes efficiently using
BC in large and growing networks. As an example of max flow-based reputation systems
we use Bartercast. In Bartercast, each peer can increase the accuracy of its computed
reputations by using the most central node in its local Bartercast graph, that contains
its view on all upload and download activities in the system, as the initial point in the
computation of reputations instead of itself [41]. Nevertheless, considering that networks
such as peer-to-peer networks may consist of thousands or sometimes millions of users,
it is prohibitive to compute the values of BC with the existing methods in these networks,
even if they are sparse.

Many previous studies have attempted to propose methods for the efficient compu-
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tation of BC, but these methods are designed for and evaluated on static networks only.
Brandes and Pich [21] attempt to approximate the values of BC extrapolating from a sub-
set of selected nodes, which results in an overestimation of the BC of the nodes close to
the selected nodes. Geisberger et al. [58] try to eliminate the overestimation of the BC
values of the nodes close to a selected node by applying a scaling factor that adjusts the
BC value of a node according to its distance from the selected node. Bader et al. [28]
propose a method based on sampling from a small subset of nodes for the estimation of
the BC of one specific node in the network. Another category of previously proposed
approximations target only a restricted type of networks, such as modular networks [10].
Although most real-world networks grow rapidly over time, all these approaches have
been designed and evaluated only for static networks. This weakness of previous studies
makes the efficient detection of central nodes using BC in large and dynamic real-world
networks inapplicable. A recent study [80] focuses on identifying the most central nodes
using restricted random walks. A set of prior works have proposed parallel implemen-
tation of BC [11, 83]. These approaches reduce the time of BC computation, however it
cannot be used in networks such as peer-to-peer networks where there is no possibility of
parallel computations.

Unlike the indicated approaches, we focus on efficiently approximating the ranking
of the nodes according their BC values rather than on the exact values of BC in large and
dynamic networks. We evaluate the accuracy and the cost of three ways of approximating
BC in random and scale-free graphs. The main contributions of this chapter are as follows:

1. We explore the evolution of the BC values, and of the nodes with the highest BC
values, in networks growing over time, observing that the nodes with high BC in
Bartercast remain almost invariant, thus reducing the cost of BC recomputation.

2. We compare three BC approximation methods proposed in the literature evaluating
their ability to identify the top-most central nodes of a network, since for most ap-
plications, including increasing the accuracy of reputation computation Bartercast,
only the detection of a small number of the top-most central nodes is required.

3. We integrate the proposed three BC approximations into Bartercast and assess their
consequences for the accuracy of the reputation computations.

2.1 Background

In this section, we present the Bartercast reputation system and Betweenness Centrality
along with its computational issues.
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2.1.1 The Bartercast Reputation Mechanism

Using Bartercast, each peer in Tribler computes the reputations of other peers based on
the history of their upload and download activities. In Bartercast, when a peer exchanges
content with another peer, they both store a Bartercast record with the amount of data
transferred and the identity of the corresponding peer. Regularly, peers contact another
peer to exchange Bartercast records using a gossip-like protocol. Therefore, each peer
keeps a history not only of the interactions in which it was directly involved, but of in-
teractions among other peers as well. To limit the effect of misreporting, peers are not
allowed to forward the records they receive, they can only disseminate information about
their own interactions. This one-hop limitation has a great influence on the dissemination
of records and on the performance of Bartercast [41].

From the Bartercast records it receives, every peer i dynamically creates its interac-
tion subgraph Gi. Each peer i computes its subjective reputation of every other peer j
by applying the Ford-Fulkerson algorithm [35] to its current interaction subgraph to find
the maximum flows fij from itself to j and fji in the reverse direction, and then tak-
ing arctan(fji − fij)/(π/2). The use of the max-flow algorithm in Bartercast provides
resilience to misreporting by some peers who may exaggerate their uploads to increase
their reputations. The flow fji is limited to the sum of the weights of the in links of peer i,
no matter what in same uploads peer j reports. The original max-flow algorithm by Ford-
Fulkerson tries all possible paths from the source to the destination, but in Bartercast, in
order to limit the computational cost, only paths of length at most 2 are considered.

A peer i may not have a very central position in its own interaction subgraph Gi. As
a consequence, the accuracy and the coverage of the reputations it computes may be low.
Defining the objective reputation of peer j as arctan(uj−dj)/(π/2) with uj (dj) the total
amount uploaded (downloaded) by peer j, the accuracy is the average error of the locally
computed reputations of the peers with respect to their objective reputations.The function
arctan in the computation of reputations emphasizes the differences of flows close to 0

(neutral reputation), so that newcomers with only a small contribution can achieve a good
reputation value and participate in the system. Every reputation value is normalized with
the factor π/2 so that it is in (−1, 1). The coverage of the reputations computed by a
peer is equal to the fraction of the peers in its interaction subgraph for which the local
reputations it computes are non-zero. Replacing the local peer i by the peer with the
highest BC in the graph Gi as the start point of max-flow, through which more of the
”flow” in Gi passes, leads to more accurate reputations, and a larger coverage. However,
the computational cost of BC makes its application in Bartercast prohibitive.
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2.1.2 Betweenness Centrality

Although BC is a powerful metric for identifying the most central nodes in a network, its
computational cost is high. BC was introduced by Anthonisse [7] and Freeman [55] in
the context of real social networks as a measure of the influence of an individual over the
information flow in the network. The BC of a node v, denoted by CB(v), is defined as

CB(v) =
∑
v 6=s,t

σs,t(v)

σs,t
,

where σs,t is the number of shortest paths from node s to node t and σs,t(v) is the number
of such paths that contain node v. The basic assumption of this definition of BC is that
the information flows in the network along the shortest paths.

The involvement of the all-pair shortest path problem (APSP) in the computational
core of BC makes it expensive. A fast algorithm proposed by Brandes [20] computes BC
with time complexity O(nm) for unweighted graphs and O(nm+ n2 log n) for weighted
graphs, where n and m denote the number of nodes and edges in a graph, respectively.
This algorithm explores and counts the shortest paths at the same time using Breadth-First
Search (BFS) for the unweighted case and Dijkstra’s algorithm for the weighted case, and
then aggregates efficiently the path counts. However, this algorithm is still very expensive
for large networks.

2.2 Dataset and Evaluation Metrics

We analyze the dynamics of BC and its approximations using both synthetic and real-
world graphs. Among all the different models for generating synthetic graphs, we select
the two most widely used models: random and scale-free graphs. Our real-world graph is
derived from Bartercast, the reputation mechanism used in Tribler.

2.2.1 Random Graphs

According to the Erdős-Rényi model [47], a random graph, denoted G(n, p), is com-
posed of n nodes and each potential edge connecting two nodes occurs independently
with probability p. In a random graph, nodes exhibit homogeneous statistical properties
such as their degree. Note that (an instance of) G(n+ 1, p) can be obtained from G(n, p)

by adding one node and all of its potential links with probability p. For our experiments,
we have generated a growing random graphR, of which we will consider its instancesRt,
t = 1, 2, . . . , 20, with Rt having nt = 1, 000 · t nodes. To make the results for the random
graph and Bartercast graph presented later in the paper comparable, the probability p of
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Table 2.1: Properties of the Bartercast graphs.

Graph Date Collected # Nodes # Edges power-law exponent
B1 July 24, 2009 1592 2159 2.2209
B2 August 6, 2009 1870 2582 2.2106
B3 August 14, 2009 2037 2861 2.2041
B4 August 26, 2009 2254 3210 2.1683
B5 September 9, 2009 2408 3463 2.1234

each edge existing in R is computed according to the number of nodes and the number of
edges in the Bartercast graph, and is equal to 0.0012.

2.2.2 Scale-free Graphs

As it turns out, many real-world networks are characterized by a heavy-tailed degree
distribution following a power-law, i.e., their degree distribution is expressed as P (k) ≈
ck−α, where P (k) is the fraction of nodes of degree k, α denotes the power-law exponent,
and c is a constant. The networks whose degree distribution follow a power-law are
named scale free [14]. Examples of scale-free networks are the Internet Topology [51],
protein-interaction networks [5] and many social networks [91]. In scale-free graphs,
the BC distribution of the nodes follows a power-law [15]. As we will show in the next
subsection, Bartercast can be modeled as a scale-free graph since its degree distribution
and its BC distribution as well follow a power-law.

For our analysis, we create a scale-free graph S, using the preferential attachment
model proposed by Barabási and Albert [14], according to which a new node joining the
network has 3 edges, which are attached to nodes already existent with probability pro-
portional to their degrees. Similarly to the random network, we consider 20 instances of
S, denoted by S1, . . . , S20, with S1 consisting of 1, 000 nodes and each following instance
including 1, 000 additional nodes. To approximate the properties of the graph built by
Bartercast, each new node is added to the graph with two links adjacent to it.

2.2.3 Bartercast Graphs

We examine five instances of the Bartercast network, denoted by B1, ..., B5, the first of
which was crawled on 24 July 2009 and the last on 9 September 2009. Each of these
instances is an extension of the previous one. Since each of these graphs is disconnected,
we proceed in the analysis using their largest connected components. In our analysis
of BC in Bartercast, we do not consider the weights (but we do take into account the
directions) of the edges, since we are interested in the most central node in terms of
increasing the coverage, and thus the accuracy, in the computation of reputations.
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Figure 2.1: The log log plot of the complementary cumulative distribution function of the
Betweenness Centrality in the Bartercast graph B5.

The distributions of the in-degree, the out-degree, and the total degree, that is, without
considering the directions of the links, of the Bartercast graph all follow a power-law. In
Table 2.1, we present the power-law exponents for B1, ..., B5 for the total degree. Our
results show that the exponent decreases when the graph grows, but does not change
significantly. Moreover, the BC distribution follows a power-law. Figure 2.1 exhibits
the BC distribution for B5 and the corresponding power-law distribution with exponent
2.0887. The observed cut-off on the plot of BC is caused by finite-size effects. The power-
law exponents are computed as described in [34] using Kolmogorov-Smirnov statistics for
the goodness of fit.

2.2.4 Evaluation Metrics

We focus on the detection of the top-lmost central nodes in the graphs under consideration
with l very small compared to the number of nodes, since for most applications, including
the improvement of Bartercast using BC, only the detection of a small subset of the most
central nodes is required. In our experimental analysis, we consider the sequences of
the Unique Identifiers (UIDs) of the top-l most central nodes. We use two metrics to
quantify the difference between two such sequences a and b of equal length. The number
of common nodes of a and b is simply the number of UIDs that occur in both a and
b, no matter what their positions. The number of transpositions between a and b is the
minimal number of exchanges of neighbors needed in a to get all the common nodes in
their correct positions in b (or vice-versa). In order to assess the stability of BC over time,
we will apply these two metrics to the top-l most central nodes in successive instances
of the graphs. In order to assess the quality of BC approximations, we will apply them
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Figure 2.2: Comparison of the top-l (l = 10, 25 and 50) most central nodes between
consecutive instances of the random graph Rt over time.

Table 2.2: The correlation between the degree and BC of nodes in the final instance of the
random, scale-free and Bartecast graph.

Graph correlation
Random 0.99

Scale-free 0.82
Bartercast 0.72

to the sequences of top-l most central nodes obtained with exact BC and with the BC
approximations.

2.3 Evolution of Betweenness Centrality in Growing Net-
works

In dynamic networks, the BC values of all the nodes in the network potentially have to
be recomputed for every change in the network. Intuitively however, since most networks
have a specific structure and a specific way of construction, the central nodes do not
change quickly as the network grows over time. If that is the case, the BC values do not
have to be updated very often when the network grows. In this section, we explore the
change in central nodes in both random and scale-free graphs over time.

In scale-free graphs, BC is highly correlated with the degree of nodes, as we observe
in Table 2.2. When using preferential attachment for constructing scale-free networks, the
new-coming nodes prefer to be attached to nodes with high degrees, which play the role
of ”hubs.” Furthermore, the scale-free model as proposed by Barabási and Albert does
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Figure 2.3: Comparison of the top-l (l = 10, 25 and 50) most central nodes between
consecutive instances of the scale-free graph St over time.
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Figure 2.4: The accuracy achieved by recomputing BC in the random graph every s =
1, 2, ..., 10 instances.
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not exhibit clearly separated communities. As a result, ”hubs” tend to hold their central
position as the network grows. On the other hand, in random graphs, each pair of nodes
is connected with some fixed probability p, and so, all nodes have similar properties of
connectivity. Consequently, it is harder to predict the change in central nodes as the graph
grows. The correctness of this intuition is demonstrated in Figures 2.2 and 2.3, which
exhibit the difference between the sequences of the UIDs of the 10, 25 and 50 most central
nodes of the consecutive instances of Rt and St, respectively. The maximum possible
numbers of transpositions needed for the sequences of the top-l (l = 10, 25, 50) most
central nodes are 55, 325, and 1275, respectively, when they have all nodes in common
and they are in reverse order. Nevertheless, even in random graphs, the sequences of the
most central nodes exhibit stability over time to some extent, as shown in Figure 2.2. All
the presented results for the random and scale-free graphs in the paper are the average of
50 independent experiments.

The stability of the most central nodes in scale-free graphs implies that BC does not
have to be recomputed often. Figures 2.4 and 2.5 exhibit the accuracy achieved when
BC is recomputed every s = 1, 2, . . . , 10 instances in the random graph and in the scale-
free graph, respectively. For scale-free graphs, even if BC is only recomputed every
6 instances, i.e., after the entrance of 6, 000 new nodes in the graph, 95% of the top-l
most central nodes is correctly identified for the different values of l, and the number
of transpositions required is less than 4% (Figure 2.5). However, this approach is less
accurate for random graphs. Computing BC every instance (after the entrance of 1, 000

new nodes) in a random graph results in the correct identification of 52.6%, 55% and
58% of the 10, 25 and 50 most central nodes, respectively, while the percentage of the
corresponding transpositions needed is 30%, 33% and 34% (Figure 2.4).

Next we present the stability of the most central node in the growing graphs we study.
We assign the stability value of 1 to an instance of a growing graph if the most central
node of the previous instance is equal to that of the current instance, and 0 otherwise. In
Figure 2.6, we show the average stability of the most central node across 50 experiments.
In the scale-free graph, the most central node remains almost invariant and is one of the
first added nodes in the graph, which is a consequence of the construction process of
scale-free graphs: old nodes are well-connected and are central to the network, younger
nodes are less well connected and are at the fringes of the network. On the other hand,
in random graphs, the most central node is not stable but its stability increases over time.
Furthermore, it can be one of the newly added nodes and its centrality is not related to
the time of its stay in the system. In the Bartercast graph, the most central node holds its
position over time like in scale-free graphs.
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Figure 2.5: The accuracy achieved by recomputing BC in the scale-free graph every s =
1, 2, ..., 10 instances.
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2.4 Approximations of Betweenness Centrality

Even if we don’t have to recompute BC often, its computational cost remains prohibitive
for large graphs. In this section, we present the three most efficient and general approx-
imation methods of BC proposed in the literature. Next we evaluate these methods in
random, scale-free, and Bartercast graphs.

2.4.1 Definition of BC Approximations

As the first approximation method, we consider a method proposed by Brandes and
Pich [21] called Pivot-BC (P -BC), which is based on extrapolation from a small sub-
set of selected nodes, the pivots, to approximate the BC of each node in a network. The
contribution of a node s to the BC of a node v, δs(v) is:

δs(v) =
∑

t∈V,v 6=s,t

σs,t(v)

σs,t
,

where V is the set of nodes in the network. Then, with K pivots {s1, . . . , sK}, the BC is
approximated by

CP (v) =
K∑
i=1

n

K
δsi(v).

The selection of pivots in a random way is proven to perform better than more sophis-
ticated strategies [21]. This extrapolation-based method approximates BC with cost
O(Km) for unweighted graphs and O(Km + Kn log n) for weighted graphs. However,
this method is not accurate enough because it overestimates the BC of unimportant nodes
close to the pivots.

To adjust this bias towards the nodes close to the pivots, Geisberger et al. [58] intro-
duce a scaling factor that modulates the BC value of a given node according to its distance
from the pivots, we denote this method by Scale-BC (S-BC). According to linear scaling,
the contribution of shortest paths starting from a pivot in the BC values of the other nodes
depends linearly on the distance of each node from the pivot. In this case, the contribution
of a node s to the BC of a node v, δs(v) is computed as:

δs(v) =
∑

t∈V,v 6=s,t

µ(s, v)

µ(s, t)

σs,t(v)

σs,t
,

where µ(u, v) is the distance from node u to node v. To compute the total BC value of a
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Figure 2.7: Comparison of k-BC, P -BC and S-BC in the random graph R20.

given node v, the contributions of the pivots are accumulated:

CS(v) =
K∑
i=1

n

K
δsi(v).

In bisection scaling, the contribution of the shortest path from a pivot counts only to the
second half of the path, while this contribution is considered to be 0 for the nodes lying
on the first half of the path (close to pivots). Bisection scaling is designed for networks
with unique shortest paths and it performs better than the other estimators in this type
of networks. However, it can be very slow in the general case with inaccurate results.
Therefore, we do not consider this scaling method in our experiments. We assume the
computational costs of the simple extrapolation method and of linear scaling to be equal.

As the third approximation method, we consider k-Betweenness Centrality (k-BC) or
Bounded Distance Betweenness Centrality. In networks in which long paths are not used,
such as wireless sensor networks, k-BC has been defined to measure centrality [19]. The
basic idea of k-BC consists in reducing the number of shortest paths counted and it is
defined exactly as BC but only exploring paths of lengths at most equal to k. The k-BC
of a node v is defined as

Ck(v) =
∑

s,t∈V :d(s,t)≤k

σs,t(v)

σs,t
,

where d(s, t) is the distance from node s to node t.
For k = n − 1, k-BC is equivalent to standard BC. We use this metric as an approx-

imation of standard BC. We can easily compute k-BC by the depth-limited algorithm or
by imposing to classic BFS to stop at depth k. Let the k-neighborhood of node v of a
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Figure 2.8: Comparison of k-BC, P -BC and S-BC in the scale-free graph S20.

graph G be the subgraph of G containing all nodes at a distance of at most k from v, and
all connections among these nodes. Then the cost of k-BC is O(nmk) for unweighted
graphs and O(nmk + nnk log nk) for weighted graphs, where mk (nk) is the average of
the number of edges (nodes) present in the k-neighborhood of nodes.

2.4.2 Experimental Results

In this section, we compare k-BC with P -BC and S-BC in the random graphR20, the scale
free graph S20, and the Bartercast graph B5 in terms of the top-l (l = 10, 25 and 50) most
central nodes identified in each graph instance. To make these approximation methods
comparable, the number of pivots for P -BC and S-BC are selected according the cost
of the computation of k-BC for the different values of k. Thus, all three approximation
methods have the same cost. In the presentation of the results, the different values of k
correspond to the different computational costs.

The three approximation methods exhibit similar results for the scale-free graph S20,
achieving a high accuracy in identifying the sequences of the top-l (l = 10, 25 and 50)
most central nodes (see Figure 2.8). The lowest accuracy is observed for P -BC, while
S-BC achieves the best accuracy. Nevertheless, the accuracy of k-BC is close to that of
S-BC, and in most cases their results overlap. On the contrary, for the random graph R20,
all the approximation methods have a lower accuracy (see Figure 2.7). For k equal to
2, 3 and 4, k-BC results in the best accuracy with significant difference from the other
two methods, while for k equal to 5, S-BC achieves a slightly better accuracy. The worst
accuracy is again obtained by P -BC.

This difference in the performance of the approximation methods is caused by the
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Figure 2.9: Comparison of k-BC, P -BC, and S-BC in the BarterCast graph B5.

structural properties of random and scale-free graphs. In scale-free graphs, the small
number of nodes (”hubs”) having high degrees attract the majority of links participating
in the majority of shortest paths of the graph. As a result, these nodes can be identified
more easily since they are connected to every other node within a short distance. On the
other hand, in random graphs the most central nodes have statistical properties similar
to the other nodes and thus it is harder for the approximation methods to identify them.
In the Bartercast graph B5, all the approximation methods achieve a satisfying accuracy
(see Figure 2.9). S-BC outperforms the other methods, particularly in the detection of the
top-50 most central nodes.

2.5 Increasing Efficiently the Accuracy of the Computa-
tion of Reputation in Bartercast

In this section, we integrate the three BC approximation methods presented in Section 2.4
into Bartercast and evaluate their effect. Under this modification, each peer willing to
interact with other peers first identifies the node with the highest BC in its interaction
subgraph using one of these approximations, and then applies the max-flow algorithm
with that node as the start point. We evaluate the effect of this modification in terms of
the average error and the coverage (see Section 2.1.1). As a matter of fact, because we
assume full gossip here (see Section 2.1.1), we assume all local BarterCast graphs to be
identical, equal to the single complete BarterCast graph built from all BarterCast records
sent in the system.

In order to assess the need for using a node with a high BC value, in our experimental
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Figure 2.10: Comparison of the coverage and the average error when the start point in
max-flow is a node with BC equal to 0, the node with BC equal to 50% of the maximum
BC, the most central node, and the most central nodes as computed by k-BC, P -BC, and
S-BC, respectively.

analysis, we also choose a few other nodes as the start points for max-flow: a node with
BC equal to 0 (since in the interaction subgraphs in Bartercast there are several of these,
we choose one of them randomly), the node (indicated by 1/2maxBC) with BC equal to
50% of the maximum BC, and the most central node, all according to the exact compu-
tation of BC. The number of hops used by the max-flow algorithm is equal to k in the
computation for k-BC, and the number of the pivots for S-BC and P -BC is again chosen
according the cost of k-BC. In the experiment on which we report here (see Figure 2.10),
the value of k is equal to 3.

As shown in Figure 2.10, starting max-flow from a node with BC equal to 0 or from
the node 1/2maxBC leads to disastrous results, while using the node with the highest
exact BC in the computation of the reputations gives good coverage and decent accuracy.
The same performance is observed when starting max-flow from the most central node as
computed by k-BC and S-BC, because they correctly identify the most central node. In
contrast, P -BC fails to identify the most central node correctly and thus exhibits poorer
results than the other two approximations. We observe similar results when k is equal
to 2, with k-BC and S-BC still correctly identifying the most central node but P -BC not
doing so. Using k equal to 4 or 5, P -BC does succeed in identifying the most central
node, and then it results in the same improvement in accuracy as exact BC, although then
the computational cost of the approximations increases.



32

2.6 Conclusion

Using the node with the highest Betweenness Centrality (BC) in the computation of rep-
utations in Bartercast increases their coverage and accuracy, but BC is expensive to be
computed. In this chapter, we have proposed and experimentally evaluated two differ-
ent approximate approaches for computing BC, exploring both theoretical graph models
(random and scale-free) and the graph derived from the actual operation of the Bartercast
reputation system. For growing networks, our first approach relies on the observation that
the nodes with high BC in real-world networks remain almost invariant over time. For
large networks, our second approach consists in assessing three approximation methods,
k-BC, P -BC, and S-BC, in terms of their ability to identify the top-most central nodes.
We conclude that in scale-free graphs, the BC approximations are efficient and highly
accurate, while in random graphs, due to their structural properties, it is harder to identify
the most central nodes. In the graph derived by Bartercast, these approximations exhibit
similar performance and are adequately accurate. Finally, we have integrated the approx-
imation methods for BC into the computation of reputations in Bartercast, and we found
the accuracy and the coverage of the computed reputations for two of these methods to be
excellent.
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Chapter 3

Leveraging Node Properties in Random
Walks for Robust Reputations

For the computation of reputations, random walks constitute the core of the most widely
used algorithms such as EigenTrust [78], PageRank [92], and TrustRank [69], because of
their simple decentralization, their ability to take advantage of the sparsity of networks,
and their computational efficiency. Even though random walks have these useful proper-
ties, they can be easily exploited by uncooperative and malicious nodes which abuse other
nodes using various self-serving and self-promoting strategies. Designing random walk-
based reputation systems which are resilient against malicious nodes is very important
particularly for decentralized reputation systems, where nodes have only a partial view
of the system. Traditionally, nodes visited during a random walk treat all their neighbors
equally, ignoring any properties they may have. Nevertheless, properties of nodes, such as
their age, may be indicative of their reliability, and thus, by integrating them into random
walks, we can design more robust reputation systems.

Random walk-based reputation algorithms compute the reputation of a node as the
probability of visiting that node in a random walk. In most implementations, random
walks try to achieve resilience against uncooperative and malicious nodes based on a
uniformly random selection of the next node to be visited. As a result, such simple random
walks are vulnerable to many types of self-serving and self-promoting strategies [68,74].
In a self-serving strategy, nodes abuse the system by first behaving properly for some
time, and by then letting their reputations decrease in order to achieve a short-term gain
[73]. We consider the most common form of self-serving misbehavior, which is a lack of
cooperativeness as exhibited by free-riders, who passively abuse the system by consuming
its resources without contributing to it. In a self-promoting strategy, nodes try to falsely
increase their reputations using a variety of techniques such as web spamming and link
farming [68], collusion [74], and Sybil attacks [89]. From the self-promoting strategies,
we consider only the Sybil attack since most self-promoting strategies can be seen as
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special cases of it. In a Sybil attack, a malicious node boosts its reputation by controlling
fake identities (its sybils), which report fake interactions with each other and with the
malicious node.

In this chapter, we show that the properties of a node such as its age and its activity
level, accurately indicate its reliability, and that random walks exploiting these properties
are more resilient to malicious nodes than simple random walks. We model reputation
systems in growing synthetic random and scale-free graphs, and in real-world graphs de-
rived from the Bartercast reputation system [43] which is used in the BitTorrent client
Tribler [99], from the citation network of Physical Review E journal, and from Face-
book [115]. Each node in a graph initiates its own random walks and computes its own
personalized reputations for the other nodes. Due to the size of our graphs, it is prohibitive
to evaluate our biased random walks after the entry of each new node or edge and so, we
use properly chosen time windows.

The main contributions of this chapter are as follows:

1. We introduce the node properties indicative of their behavior and we bias random
walks with those properties.

2. In the case of uncooperative nodes, we evaluate biased random walks in growing
graphs based on the observation that the ranking of nodes according to their repu-
tations is more important than the actual values of reputations.

3. In the case of sybil attacks, we evaluate the escape probability of a random walk
to the sybil area depending on the number of the attack edges, since it has been
already shown that the effectiveness of a sybil attack depends on this number [125].

3.1 Problem Statement

Random walk-based algorithms have been widely used for decentralized reputation sys-
tems since they have a low computational cost and resilience against noisy input [59].
However, they are vulnerable to malicious behaviors. Most implementations of random
walks ignore the structural properties of nodes such as their centrality, clustering, and age,
while these properties are indicative of their reliability. Our goal is to identify these prop-
erties of nodes and integrate them into random walks for building reputation systems that
are more robust against exploitations. According to our approach, each node initiates its
own random walks and we do not assume the existence of pre-trusted nodes. Therefore,
our approach is suitable for decentralized networks.
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3.1.1 Motivation

There are many exploitations of random walks in decentralized reputation systems. In
this chapter, we study the two most common exploitations: the uncooperative nodes and
the Sybil attacks. Nevertheless, our method can be generalized to improve the robustness
against other exploitations as well.

In reputation systems such as online markets or collaboration networks (e.g., eBay,
eLance and Wikipedia), where nodes have to respect constantly the protocol, many users
can be exploited by traitors or uncooperative nodes. Even simple uncooperative nodes
can degrade significantly the system’s performance. For instance, Sopcast, a P2P live
streaming network, has on average around 87% uncooperative nodes degrading its per-
formance [66]. Reputations predicting the behavior of nodes give incentives to the nodes
to behave continuously according to the protocol. Computations of reputation predicting
the behavior of nodes have been proposed in the context of Wikipedia authors [4], in P2P
file-sharing systems [119] and P2P live streaming [66]. When using simple random walk,
the predictive ability of the system is very low and some attempts to integrate properties
of nodes have already improved it for the link prediction problem [81], [9]. In distributed
systems and especially in unstructured P2P networks, biased random walks have been
used for searching content [62], [104] but not in the context of reputation systems.

Reputation systems based on random walks are also sensitive to Sybil attacks [45].
Specially in the context of Pagerank, this observation is very common [30], [68]. Many
users perform Sybil strategies, such as link farming [68] where fake links point to both
the Sybils and the malicious node. In networks where the creation of links among nodes
is easy, such as WWW and Facebook, random walk performs very poorly against Sybil
attacks. Therefore, biased random walk with node properties indicating trust between two
nodes decreases radically the effect of Sybil attack. A first study of the effect of biased
random walks on algorithms against Sybil attacks explored the use of node similarity and
strength of interactions [89]. Unlike [89], our study for sybil attacks evaluates the escape
probability of random walks into the sybil area, and we use random walks with restarts
biased with structural and temporal parameters.

3.1.2 Definitions and Network Model

We model a reputation network as an interaction graphG = (V,E) A weighted edge eij ∈
E connects two vertices i, j ∈ V in the direction i → j with weight wij . Depending on
the context, weights may represent the amount of data transferred across edges (in a P2P
network), or the number of citations among authors (in a citation network). Computing the
reputation of nodes with a random walk-based algorithm implies that the past interactions
between nodes are interpreted as trustiness, in a similar way that links between web pages
are interpreted as votes in a search engine like Google. The transition matrix P of a
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random walk in G is defined by pij = wij/
∑

k∈Ni
wik, where Ni denotes the set of

neighbors of node i.
We will use random walks with restarts [110], which means that each node visited

by a random walk decides to direct the random walk back towards its initiator with the
teleportation probability α. Then, the transition matrix becomes

P ′ = (1− α)P + α1

where 1 is the matrix with all its entries equal to 0 except for the elements of the col-
umn corresponding to the initiator, which are equal to 1. A random walk with restarts is
personalized and represents better the inherent trust in a network, since each node trusts
itself more than the other nodes and its trust towards the other nodes decreases with the
increase of their distance. The vector πi with the reputations computed by node i is the
solution of the eigenvector equation πi = πiP

′.
In an unbiased random walk (simple RW), the weights wij represent simply the adja-

cency of the nodes in G, that is wij = 1 if eij ∈ E and wij = 0 otherwise. In a biased
random walk (bRW), the weight wij is equal to some actual weight of the corresponding
edge. In that case, we have to assign a weight wij to each edge eij in G in order to have
a bRW visit more often the most reliable nodes. For each edge eij , we consider a vector
ψij with the values of properties of node j as perceived by node i, and we combine its
elements to one weight wij = f(ψij) for some function f . The function f can be defined
by using the normalized product of the node properties or it can be learned in a supervised
way. We refer to the former walk as naive RW (nRW) and to the latter walk as supervised
random walk (sRW).

For training our sRW, we use a slightly modified version of the method described
in [9] adapted to our problem. We assume that the function f has an exponential form
f = exp(uiψij), where ui is the vector learned by node i with the coefficients of ψij . We
formalize the problem of determining the vector ui as a nonlinear optimization problem:

min
ui
‖ui‖2 +

∑
d∈Di,l∈Li

1

1 + exp(−(πi(l)− πi(d)))

s.t. πi(j) =
∑
k∈V

πi(k)P ′kj (∀j ∈ V ),

where Di and Li are the sets of the top-30 best-behaved nodes and the top-30 worst-
behaved nodes from the perspective of a node i, respectively. This objective function is
highly multimodal, so an optimizer can easily get trapped in a local minimum. In order
to avoid this, we let every node perform the following iterative process: we make only
a small number of steps (up to 5) with the optimizer, then we compute the values of
wij using the current value of ui and solve the equation πi = πiP

′ with power-iteration;
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using these ui and πi values as starting points we get back to the optimization problem
again. We proceed such iterations until the solution vector ui converges. Unlike in [9],
we implemented our optimization procedure in the AMPL modeling language [54]. For
solving the above defined optimization problem we used IPOPT [118], which is able to
deal with constrained problems and uses the automatic differentiation feature of AMPL.

Our computation of reputations can be easily implemented in decentralized reputation
systems where each node stores locally its own view of the reputation network, such as
Bartercast [43], the system proposed by Piatek et al. [97], and MobID [102]. In these
systems, when a node interacts with another node, they both store the weight of their
interaction and the identity of the corresponding node. Nodes exchange information about
their interactions using a gossip-like protocol. Based on its own interactions and the
interactions gossiped about other nodes, each node builds locally its own partial view of
the reputation network. Each node i performs the computation of πi and the properties of
other nodes on its own partial view.

For our analysis, we assume full-gossip in which nodes forward all their interactions,
and eventually, their partial views converge to the global interaction graph G. In a real
system, the partial views of nodes may not convergence to G due to their resource limi-
tations or high churn. Nevertheless, the reputations, as computed by random walks with
restarts, are only slightly affected. In random walks with restarts, an interaction between
two nodes occurring in the neighbourhood of the initiator of a random walk, contributes
more on the computed reputations and gossip protocols propagate fast information in the
neighbourhood of a node.

3.2 Datasets

In order to evaluate bRWs, we consider synthetic and real-world graphs which are defined
below. When a graph is not connected, we proceed in our analysis using its largest weakly
connected component.

Both our synthetic and real-world graphs grow over time. During the construction of
the synthetic graphs, in each time step, with probability pc a new node enters the system,
or with probability 1−pc already existing nodes interact and create new edges. The value
of probability pc depends on the dynamics of the system. Particularly, in highly dynamic
systems the appearance of new nodes is dominant. For our synthetic graphs, we assume
moderate system dynamics and so, we choose pc equal to 0.5. Moreover, we allow the
occurrence of multiple edges between a pair of nodes and we consider the number of
occurrences of an edge as the weight of that edge. In real-world graphs, the addition of
new nodes and edges is based on the timestamps available on the corresponding datasets
and it is expressed in terms of actual time. In the synthetic graphs, no notion of actual
time exists. For the construction of the synthetic graphs, time is divided into time steps
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Table 3.1: The diameter, the average path length (L) and the clustering coefficient (cc) of
the largest weakly connected component of our graphs.

Graph # Nodes # Edges Diameter L cc

Bartercast 10, 364 44, 796 13 2.64 0.00074
Citation 31, 238 110, 638 15 7.66 0.20

Facebook 63, 392 1, 545, 309 15 4.32 0.15

during which new edges and nodes are added.

A random graph, denoted by R(n, pr), is composed of n nodes, and each potential
edge connecting two nodes occurs independently with probability pr. We start from a
single node, and in each time step, with probability pc we add a node with each of its
potential directed edges existing with probability p for some value of p, and with prob-
ability 1 − pc we add pnt directed edges adjacent to existing nodes chosen uniformly at
random. In chapter 4, we show that pr ∼ p/2pc [64]. In our experiments, we use a graph
R(5000, 0.02).

Scale-free graphs, denoted by S(m), are characterized by their degree distribution
following a power law. We create a growing directed scale-free graph based on the BA
model [14]. We start with a small seeding connected triangular graph, and in each time
step, with probability pc we add a node with m directed edges. The end point of each of
these edges is adjacent to an already existing node i with probability Π(i) = di/

∑
j dj,

where di is the degree of node i. With probability 1 − pc we add m directed edges, each
of which is adjacent to an existing node i with probability Π(i). In chapter 4, we show
that S is scale-free with power-law exponent equal to γ = 1 + 2/(2 − pc) [64]. For our
evaluation, we use a graph S(3) of 5000 nodes.

The Bartercast graph is denoted by B. As a deployed system, the Bartercast graph
has a high population turnover, and so, the derived graph consists of a dense core with
very few long living and active nodes and a periphery with many loosely connected nodes
of low activity (small average path length and small clustering coefficient, see Table 3.1).

The author-to-author Citation graph, denoted by C, is derived from the citation net-
work of 32,584 papers. In Table 3.1, we can see that graph C exhibits small-world behav-
ior because of its small average path length and its large clustering coefficient. Its degree
distribution has a power-law tail with exponent γ = 2.55.

The Facebook graph, denoted by F , contains information about the interactions of
users from September 26, 2006 to January 22, 2009 [115]. Graph F is a small-world
graph like graph C (see Table 3.1).
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3.3 Choosing the Time Window

Computing the properties of nodes such as centrality, clustering coefficient, and similarity,
and the reputations of nodes in large graphs is very computationally intensive. Particularly
in large growing graphs, updating those properties after every entry of a new edge or a new
node is unrealistic. Fortunately, in most graphs neither the properties nor the reputations
change very much with a small growth of the graph. Therefore, we choose an appropriate
time window W for updating the properties and the reputations of nodes, so that we
can reduce the cost of their update but we can still keep track of the dynamics of the
reputations of nodes. Since we use personalized RWs, in principle, each node can use a
different time window W according to its resources. For simplicity, however, we study
the case that all nodes use the same value forW , but our method can be easily generalized
for different durations of W across different nodes.

Usually in reputation systems, we are interested in the relative values of the reputa-
tions of the nodes rather than in their actual values. Therefore, as a metric for selecting
a good value for W , instead of simply using reputations, we use the so-called ranking
stability of nodes [59]. In order to compute this metric, we define the global reputation of
a node as the average of its reputations computed by all the other nodes. Then, denoting
the global reputation of node i at a certain time t in the evolution of the graph by π(i), the
ranking stability of node i at time t is defined as (π(i)−π(j))/σ(π(i)); here j is the node
ranked immediately after node i in the ranking of nodes according to their decreasing
reputation values at time t, and σ(π(i)) is the standard deviation of the set of values of
node i’s global reputation computed at different time instances up to and including time
t. The rank of a node i is considered stable if its ranking stability is high.

In order to find the appropriate time window W , we choose a few different values of
W and we keep track of the reputation and the ranking stability of each node over time as
the graph grows. The reputation and the ranking stability of each node is recomputed at
the end of every time window, that is, at the time points t ·W for t = 1, 2, . . . . Then, in
order to observe the change of the ranking stability, we compute the coefficient of varia-
tion (CV) of the ranking stability of each node at these time points. A similar approach
for computing the appropriate time window W has been used in [66] but that approach
focused only on the actual reputation values and not on the ranking stability. The chosen
W should result in a CV of the ranking stability that is neither too large nor too small, so
that we are able to observe the dynamics of the ranking of reputations without needing to
update them very often. For the Bartercast graph we evaluate W equal to one hour, one
day, and one week, for the Citation graph one month, 6 months, and one year, and for
the Facebook graph one day, one week, and one month. In the synthetic graphs, time is
divided into time steps during which new edges and nodes are added (Section 4.3), and
we use W equal to 10, 100, and 1000 time steps.
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Figure 3.1: The ecdf of the coefficient of variation of the ranking stability of nodes over
time for different time windows W .

In Figure 3.1, we present the empirical cdf (ecdf) of the CV of the ranking stability
of the nodes for the chosen values of W . We observe that the ranking stability of the
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nodes in our graphs is sensitive to W , the shorter the window W , the higher the variation
of the ranking stability of nodes. Moreover, a short duration of W implies a frequent
update of the reputations of nodes, fluctuating ranking stability, and noisy observations.
On the other hand, a larger duration of W makes our observations smoother because of
the aggregative effect of node interactions.

In real-world graphs, the variation of the ranking of nodes is smaller than in synthetic
graphs, which implies that the ranking of their nodes is more stable. The Citation graph
has the lowest variation of the ranking because the creation of an edge between two nodes
requires more time and effort in comparison with the other graphs. In the Bartercast and
Facebook graphs, the variation of the ranking is closer to those of the synthetic graphs
because its nodes interact easier and so, their ranking is more dynamic. The highest
variation of the rankings is observed in random graphs because node interactions follow
random patterns. As a result, there are no nodes having a relatively stable behavior over
time and being able to stabilize their ranking. In this chapter we choose W in such a way
that the variation of the ranking is neither too small nor too large. Specifically, we choose
W equal to one day for the Bartercast graph, to one year for the Citation graph, to one
month for the Facebook graph, and to 100 edges for the random and scale-free graphs.

3.4 Identifying Properties of Nodes Indicative of their
Behavior

In this section we define the behavior of nodes and we introduce the properties of nodes
that are indicative of their future behavior. A reputation system whose calculated reputa-
tions predict the quality of future interactions reduces the effect of uncooperative nodes
which do not contribute to the network resources without abusing the protocol. Such a
reputation system needs to be able to predict the behavior of nodes and to rank higher the
nodes with better future behavior.

3.4.1 Introducing the Properties of Nodes

We take the behavior of a node to be the difference between the resources it contributes to
the network minus the network resources it consumes. We define the behavior B(i, t) of
a node i at time t ·W as B(i, t) =

∑
j∈Ni

(sji−sij), where the sij and sji are the strengths
of the incoming and outgoing edges of node i at time t ·W . In the Bartercast graph, the
strength of a link is the amount of data transferred across the link, and the behavior of a
node corresponds to its cooperation level. In the Citation graph, the strength of an edge is
the number of citations and in the Facebook graph, the strength of an edge is the number
of interactions between two friends.
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The properties of a node that may be predictive of its behavior can be divided into
three categories based on the information needed for their computation: local, global, and
temporal. The local properties can be naturally integrated in a RW since their computation
does not need access to global information and they are computationally simple. The local
properties of a node i that we use are:

• Its degree, which represents its activity.

• Its ego-betweenness centrality (ego-BC), which is its betweenness centrality in its
ego-network, namely the network containing that node, its neighbours, and all the
links among them [48].

• Its clustering coefficient, which is defined as the fraction of links among its neigh-
bors that actually exist.

The computation of global properties demands high cost and global information.
However, it is interesting to observe their predictive ability on the behavior of a node.
The global properties of a node i that we use are:

• Its eigenvector centrality, whose basic idea is that interactions with highly reputed
nodes contribute more to the reputation of a node.

• Its betweenness centrality (BC), which is defined as the sum of the fractions of
shortest paths among all pairs in the graph that pass through this node and it indi-
cates the amount of flow passing through that node.

• Its closeness centrality, which is the inverse of the sum of its distances from every
other node in the network.

Finally, we use the temporal properties of node i to predict its behavior. Temporal
properties require only local computation and can be easily integrated into RW. The tem-
poral properties of a node i that we use are:

• Its average interaction time, which is the average time interval between successive
interactions of node i.

• The time occurrence of the last interaction of a node i.

• Its age, which is expressed as τ(i) = tc − t(i) where tc is the current time and t(i)
is the time instance node i joined the system.
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3.4.2 Evaluation

In order to assess to what extent a property of nodes is predictive of their future behavior,
we compute the correlation between the node properties and the behavior of nodes over
time as the graph grows. More precisely, for each node i and for each property, we
compute the correlation between the sequence of values of that property of node i at time
t = 1, 2, . . . and the sequence of values of its behavior at the next time stepB(i, t+1), for
all t available from our datasets. For all the correlations, we use the Spearman correlation,
which assesses the monotonic relationship between two sequences.

In Figure 3.2, we present the ecdf of these correlations for all the nodes in each graph.
In our real-world graphs, the properties of a node are strongly correlated with its future be-
havior, particularly in Bartercast where the correlation is almost perfect. In these graphs,
there are a few nodes attracting the majority of links. In Bartercast, these nodes are the
nodes with high upload speeds that share many files, while in the Citation network, they
are the authors of papers with high impact. As their degree, clustering coefficient, and
centrality increase, these highly connected nodes improve their behavior as well. Nev-
ertheless, temporal properties are also indicative of their future behavior because as has
been observed in many real-world networks, the nodes gradually reduce their activity
with time until they become inactive [6]. Facebook exhibits correlations similar to those
in scale-free graphs.

In scale-free graphs, the future behavior of nodes is correlated mostly with their de-
gree, BC, and age, due to the way they are constructed. In a scale-free graph, a new
node connects with higher probability to nodes with high degrees, and so, a few older
nodes obtain higher degrees and exhibit better behavior while the majority of nodes have
much smaller degrees. In such graphs, the nodes with higher degree participate in the
majority of the paths between the other nodes, and as a result they have high BC and high
closeness centrality. Besides age, the other temporal properties are not correlated with
the future behavior of nodes. In random graphs, all nodes have uniform connectivity and
the interactions between the nodes are random. Therefore, there is almost no correlation
between the properties of nodes and their future behavior.

In Table 3.2, we present for all our graphs the properties of nodes having the highest
correlations with their future behavior. For most graphs, the degree of nodes, even though
it is the simplest local property, exhibits the highest correlation in comparison with the
other local properties. Only for Bartercast, the clustering coefficient of nodes is more
correlated with their future behavior because of its high churn. In Bartercast, a high
clustering coefficient indicates that a node participates in the core of the network where
its neighbors are active and interact with each other. A node having a low clustering
coefficient is located in the periphery of the network. Nevertheless, in Bartercast also the
degree of nodes predicts very well their future behavior.
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Figure 3.2: The ecdf of the correlations between the properties of each node and its future
behavior over time.
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Table 3.2: The local, global and temporal properties of nodes exhibiting the highest cor-
relation with their future behavior.

Graph Local Global Temporal

Random none none none
Scale-free degree BC, closeness age
Citation degree BC last interaction time

Bartercast clustering BC, closeness all
Facebook degree closeness avg interaction time

The global properties of nodes that are based on shortest paths, namely BC and close-
ness, exhibit much higher correlations than eigenvector centrality which is based on ran-
dom walks. In the Citation graph, the flow of information passing through an author
influences his future connections. As a result, an author with high BC has a higher prob-
ability to contribute more in the network. In Facebook, a node within a short distance
from other nodes has better access to their wall-post and vice versa. Therefore, this node
having higher closeness centrality, has a higher probability to have a good behavior. In
scale-free graphs and Bartercast, BC and closeness perform equally well. In these graphs,
the nodes having high BC also have high closeness centrality because the clustering of
these graphs is low. As a result, the nodes having many shortest paths passing through
them are closer to the other nodes in the network. As our experiments show eigenvector
centrality does not predict well future behavior of nodes.

The temporal property of nodes having the highest correlations depends on the con-
struction process of each graph. In scale-free, the age of nodes predicts better their behav-
ior since older nodes attract the majority of links. In Citation graph, the time of last in-
teraction is more predictive because it indicates that an author is still active. In Facebook,
the average time between two interactions performs better since it reveals the tendency of
a node to participate in conversations. For Bartercast, all the temporal properties perform
almost equally well. In a network with high churn like Bartercast, the nodes that stay for
a long time in the system tend to interact more often with other nodes and contribute to
the system. Thus, all the temporal properties of these nodes are equally good predictors
of their behavior.

3.5 Biasing Random Walks in the Face of Uncooperative
Nodes

After having observed the correlations between the properties of nodes and their future
behavior, we bias two types of RW with those properties: the naive RW (nRW) and the
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supervised RW (sRW). We assess to what extent the reputations computed by both types
of bRWs predict the behavior of nodes and rank lower the nodes with bad future behavior.

3.5.1 Naive Random Walks

Naive RWs are implemented in a similar way as the simple RW but now the edge weights,
and so the transition probabilities, depend on the node properties presented in Table 3.2.
The only additional cost of nRWs is the computation of these properties. We consider four
types of nRWs: local nRW, global nRW, temporal nRW,and mixed nRW, in which we bias
each walk with the corresponding local, global, temporal property of nodes, and with the
combination of all these properties, respectively. In each case, the transition probabilities
are proportional to the property of the targeted node. If according to Table 3.2, more than
one node properties correspond to a random walk, we chose the property with the lowest
computational cost.

We evaluate whether the reputations of nodes predict their future behaviors, consider-
ing that in most reputation systems we are interested in the ranking of nodes according to
their reputations. At each time t ·W , we compute the correlation between the sequence
of the reputations of all the nodes in the graph and the sequence of their behaviors at the
next time step (t+1) ·W , and we observe this correlation over consecutive time windows.
We note that correlating the reputations at time t with the corresponding behaviors at time
t+ 2 is equivalent to choosing a W of double size. In Figure 3.3, we present the result of
our evaluation for the random walks with teleportation probability α = 0.15, a commonly
used value for teleportation [92]. The presented result is the average of all the nodes. We
found that the value of α does not affect much the correlation and so, we present only the
values for α = 0.15.

In all graphs in Figure 3.3, the reputations computed by the nRWs achieve much
higher correlations with the future behaviors of nodes than the simple RW. Therefore, all
nRWs are able to predict the nodes with the best future behavior. Nevertheless, the per-
formance of the nRWs depends on the topology of the graph. In graphs such as scale-free,
Citation and Facebook, where the creation of links follows specific patterns almost stable
over time, all RWs exhibit higher correlations than in random graphs and Bartercast. Fur-
thermore, temporal and global RWs exhibit similar correlations implying that the global
and temporal properties of a node are highly dependent. For instance, in most cases, an
old node with small average interaction time has high centrality.



47

Random

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120

time

co
rr

e
la

tio
n

simple RW
global RW
local RW
temporal RW
mixed RW

Scale−free

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

time

Bartercast

−1.0

−0.5

0.0

0.5

1.0

0 50 100 150

time

Citation

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15

time

Facebook

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

time

Figure 3.3: The correlation of the reputations of nodes as computed with naive Random
Walks and their future behavior for consecutive time windows (note: the scale of the
vertical axis of the Bartercast plot is different).
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Table 3.3: The size of the intersection of the top-5 most highly reputed nodes at time t ·W
and the top-5 best behaved nodes at time (t+ 1) ·W averaged over all t.

simple RW local RW global RW temporal RW mixed RW

Random 0.64 0.95 0.91 0.42 0.94
Scale-free 3.64 4.87 4.75 2.37 4.79
Bartercast 2.15 3.22 2.94 2.67 3.16
Citation 3.36 4.64 4.23 3.77 4.58

Facebook 2.90 3.40 2.90 3.00 3.20

In many applications of reputation systems, such as recommendation of friends in
Facebook or recommendation of papers in Citation graphs, we are interested only in the
top ranked nodes. In Table 3.3, we show the size of the intersection of the set of the
top-5 most highly reputed nodes at time t ·W and the set of the top-5 nodes with the best
behavior at time (t+1)·W , averaged for all t. In all graphs, the nRWs rank the top-5 nodes
with the best future behavior higher than simple RW does, with local nRW achieving the
highest number of common nodes and temporal nRW the smallest. In all graphs other
than the random graph, the number of common nodes is high. In random graphs, the
nodes follow a random pattern of interactions and so, we cannot predict accurately even
the top-5 nodes with the best future behavior.

3.5.2 Supervised Random Walks

Although naive RWs are able to predict the best behaved nodes with high accuracy, the
weights they use combine node properties into transition probabilities in a rather arbi-
trary way. For further evaluation of the ability of random walks to predict the best be-
haved nodes, we use supervised RWs (sRWs) where the weights assigned to each edge
are learned and optimized during the previous time window. We compare sRW with sim-
ple RW and naive mixed RW. For each edge eij , we assume that the vector ψij (see Section
3.1.2) keeps all the properties of node j presented in Section 3.4.

The computation of the optimal weights for sRW starting from a node i includes the
computation of the vector ui, which is the solution of the multimodal optimization prob-
lem presented in Section 3.1.2. Due to its multimodality, this optimization problem is
very computationally expensive and so, we need to further reduce the cost of computa-
tion. We observe that the vast majority of nodes in our graphs interact with other nodes
that are only a few hops away. In Figure 3.4, we present the probability of interaction
between two nodes in our graph as a function of their distance just before they interact.
As we see, our graphs exhibit a high locality of interaction, which implies that we can
reduce the cost of the computation of reputations by pruning the graph which is traversed
by the random walks started at an initiator node without losing much on the performance.
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Figure 3.4: The distance in number of hops between a pair of nodes before they interact.

Table 3.4: The size of the intersection of the top-5 most highly reputed nodes at time t ·W
and the top-5 best behaved nodes at time (t+ 1) ·W averaged over all t.

simple RW naive RW supervised RW

Random 0.09 0.24 0.26
Scale-free 2.5 3.10 3.14
Bartercast 1.75 3.00 3.00
Citation 3.18 4.21 4.22

Facebook 1.24 1.53 2.14

We observe that in all graphs but random graphs, more than 90% of pairs of interacting
nodes have a distance of at most 3 hops just before they interact. Therefore, here, we use
random walks with length of 3 hops.

In Figure 3.5, we present the correlation between the reputations of nodes as computed
by RW, nRW, and sRW, and their future behavior. For sRW, we start the random walks
from the two most well connected nodes in each graph, due to the high computational
complexity of sRW. Our sRW outperforms nRW and RW in all graphs. However, the
computational cost of sRW is much higher than nRW.

In Table 3.4, we present the size of the intersection of the set of the top-5 most highly
reputed nodes and the set of the top-5 best behaved nodes in the next time window av-
eraged over all consecutive time windows. In most graphs, the sRW identifies the best
behaved nodes only slightly better than nRW does. Therefore, if we are only interested in
the top ranked nodes, nRW constitutes a good compromise between accuracy and com-
putational cost.
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Figure 3.5: The correlation between the reputations of nodes as computed by simple,
naive and supervised Random Walks and their future behavior for consecutive time win-
dows.
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3.6 Biasing Random Walks in the Face of Sybil Attacks

In this section, we bias RWs with node properties in order to increase their resilience
against sybil attacks. Our aim is to make RWs stay away from malicious nodes and sybils
so that the reputations assigned to such nodes are low. We bias only nRWs because for
sRWs we cannot have a meaningful training set [108], since we have not observed any
sybil attack in our datasets. Nevertheless, our experimental evaluation shows that even
nRWs drastically reduce the effect of sybil attacks.

Most of the schemes proposed against sybils attacks in the literature [125], [126] are
based on the observation that the sybil nodes can create only a limited number of edges
to honest nodes because interacting with honest nodes requires a high social engineering
cost [117]. As a result, the honest nodes form a region that is well separated from the sybil
region containing the sybil nodes. The sybil nodes connect with each other and with the
malicious nodes in an arbitrary way. The two regions are connected by the attack edges
that link nodes in the sybil region to victim nodes in the honest region. The probability
that an RW escapes to the sybil region depends on the number of attack edges and the
visit ratios of the RW to the victims, but not on the topological characteristics of the
sybil region [125]. In our experiments, we take as the honest region our initial graph
G = (V,E). Since the topology of the sybil graph is not important, we create a sybil
graph Gs = (Vs, Es) using the BA model [14]. Then, we chose some sybil nodes from Gs

and some prespecified victim nodes from G, and connect them through the corresponding
attack edges Ea. The resulting graph is G′ = (V ′, E ′) where V ′ = {V ∪ Vs} and E ′ =

E ∪ Es ∪ Ea. To chose the victim nodes in G we use two approaches. Either the victims
are chosen uniformly at random, or the malicious nodes try to increase their impact and
attack highly reputed nodes by choosing the victims with probabilities proportional to
their reputations. The latter selection of victims is also known as centrality attack [32].

The properties of nodes used to bias RWs must not depend on the topological proper-
ties of the sybil region. Therefore, we do not use global properties of nodes, but we use
the following local and the temporal properties:

• The similarity of two nodes i and j with neighborhoods Ni and Nj , respectively,
defined by the Jaccard similarity (|Ni ∩ Nj|/|Ni ∪ Nj|), which assumes that two
nodes are similar if they have many common neighbors.

• The weight of an edge eij connecting two nodes i and j, indicating the strength of
the corresponding interaction, as mentioned in Section 3.1.2.

• The inverse log-weighted similarity between two nodes i and j, defined as the num-
ber of their common neighbors weighted by the inverse logarithm of their degrees
(
∑

k∈|Ni∩Nj |(1/ log[d(k)]), where d(k) is the degree of node k). It assumes that two
nodes are similar if they have low-degree common neighbors [3].
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• The time tij that an edge eij is created.

The nodes in the sybil region can claim any values for these properties without affect-
ing the probability of a RW escaping from an honest node to the sybil region. Since in
order to escape to the sybil region, the RW has to traverse an attack edge, the properties
of the nodes adjacent to the attack edges determine the probability that an RW escapes
into the sybil region. We assume that it is more costly for an attacker to create an attack
edge with a large weight than an attack edge of a low weight and so, attacks edges of
low weights are more common. Therefore in our experiment, we assign probabilistically
a weight to each attack edge so that, attack edges with small weights are more common.
For the time the attack edges have been created, we assume that they are uniformly dis-
tributed over time. We bias the nRW with each of the properties defined above, and we
correspondingly have four types of nRWs: Jaccard nRW, weighted nRW, inverse nRW,
and temporal nRW.

In Figure 3.6, we show the escape probability of the different RWs versus the ratio of
the number of attack edges and the number of honest nodes when victims are chosen uni-
formly at random. Due to the large size of most of our graphs, the results are the average
escape probability with 500 nodes performing the corresponding RW with teleportation
parameter α = 0.15. The effect of parameter α on the escape probability is not assessed
in this chapter. However, there is a first study on this effect in [89].

The real-world graphs where the honest nodes form a well connected region, have
the smallest escape probability for all types of RWs, while the synthetic graphs have the
largest. The type of nRW giving the smallest escape probability depends on the topology
and the characteristics of the graph. In the random, scale-free, and Citation graphs, the
weights take values in a small range and so, the weighted nRWs perform similarly to sim-
ple RW. In these graphs, inverse nRW results in the smallest escape probability, especially
in the Citation graph, which has a large clustering coefficient indicating that nodes share
many neighbors. On the other hand, in Bartercast, where the weights can vary from a
few KB to several MB, the weight of an edge indicates accurately the trust between the
interacting nodes and so, weighted nRW results in an escape probability that is almost
zero, even though the number of attack edges is relatively high. On the contrary, due
to its small clustering coefficient which is smaller than the corresponding random graph,
the Jaccard and inverse nRWs result in escape probabilities similar to that of simple RW.
Nevertheless, the Jaccard and inverse nRWs result in small escape probabilities for all
the graphs but Bartercast. The temporal nRW performs better in Facebook, resulting in
an escape probability that is almost zero because two nodes with many fresh interactions
between them trust each other.
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Figure 3.6: The escape probability to the sybil region of the simple and the biased Random
Walks versus the ratio of the number of attack edges and the number of honest nodes when
the victims are chosen uniformly at random.
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In Figure 3.7, we show the escape probabilities of different RWs when the victims
are chosen with probabilities proportional to their reputations. Counter-intuitively, when
malicious nodes use this targeted attack instead of randomly choosing victims, the escape
probability is smaller for all types of RWs. The most highly reputed nodes attract the ma-
jority of the attack edges while they also have many edges from honest nodes connected
to them. As a result, an RW visiting them has a lower probability to traverse an attack
edge even though highly reputed nodes are visited with a higher probability by RWs.
Nevertheless, in a random graph the difference between the impact of the two types of
sybil attack on the escape probability is very small due to the homogeneity of its nodes.
Furthermore, in all graphs, inverse nRW gives a smaller escape probability than Jaccard
nRW because low-degree nodes usually have low reputations and are not targeted by the
malicious nodes.
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Figure 3.7: The escape probability to the sybil region of the simple and the biased Random
Walks versus the ratio of the number of attack edges and the number of honest nodes when
the victims are chosen with probabilities proportional to their reputations.
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3.7 Conclusion

Our evaluations indicate that using node properties improves a lot the resilience of RWs
against uncooperative nodes and Sybil attacks. Concluding, our results imply the follow-
ing.

First, the time window used for observing a graph depends on the characteristics of
the graph. In graphs such as Citation, where the creation of an edge requires large effort
and time, the time window can be large, for example a year, and still follow accurately
the dynamics of nodes. On the contrary, in graphs such as Bartercast graph, where the
creation of edges is easier, we need a smaller time window, for example a day.

Secondly, the prediction of the behavior of nodes depends on the characteristics of the
graph. Predicting the behavior of nodes is very accurate in graphs with both specific con-
struction patterns and nodes with heterogenous properties, such as the scale-free, Citation
and Facebook graphs. In graphs of nodes with uniform properties and highly dynamic be-
havior, biased random walks predict less accurately the behavior of nodes but still much
better than simple RW.

Furthermore, the appropriate node properties to bias random walks against Sybils de-
pend on the characteristics of the graph. In graphs with large clustering coefficient, such
as our scale-free, Facebook and Citation, RW biased with node similarities, especially in-
verse log-weighted similarity, are very effective. In graphs with edges with heterogenous
strengths, such as Bartercast and Facebook, biasing RW with the strength of an edge is
very effective while using temporal properties is effective in graphs with strong temporal
patterns.

In most of our graphs, random walks biased with very simple node properties with low
computational cost such as, the degree, the weights, and the age, perform very well against
uncooperative nodes or sybil strategies. Biasing random walks does not necessarily add a
lot of extra computational cost and as a result, biased random walks can be easily used in
decentralized systems where nodes have limited resources.

In this chapter, we have shown that node properties enhance a lot the robustness of
RW against exploitative nodes. Nevertheless in a distributed environment, nodes do not
necessarily have access to the properties of other nodes, nor the information to compute
them. Nodes can exchange their properties using a gossip-like protocol, but this is not
reliable due to potential misreporting by some nodes. A reliable alternative is the use
of a system like Bartercast [43], where the nodes store locally their own perception of
the graph and then they can compute the properties of the nodes in their locally stored
graph. Moreover, directing most of the RWs through nodes with particular properties
results in overloading those nodes. This overload might cause even the failure of some
highly reputed nodes and thus, it must be studied before adopting biased RW.
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Chapter 4

Forgetting the Least Important parts of
the History of Interactions

Networks such as popular online markets and social networks consist of hundreds of thou-
sands or even millions of active users and thus, using the complete history of interactions
for computing the reputations of nodes is prohibitive due to its resource requirements.
Particularly in decentralized systems, such as file-sharing P2P systems, the available re-
sources at nodes are limited and thus, only scalable solutions can be applied. Furthermore,
a long-term history allows previously well-behaved nodes to exploit their good reputations
by acting maliciously [53, 84, 121].

In this chapter, we propose a scheme for reducing the amount of history maintained in
decentralized interaction-based reputation systems. We experimentally explore its effect
on the computed reputations using synthetic and real-world graphs. In order to reduce
the history of interactions, we use only a subset of the complete history to approximate
reputations. We model the interactions of the complete history of a network as a growing
graph with the nodes of the network as its vertices and the interactions between pairs of
nodes as its edges, and the corresponding reduced history as a subgraph of the complete
history. The reduced history is derived from the complete history by deleting the least
important edges and nodes. We define the importance of a node according to its age, its
activity level, its reputation, and its position in the graph, while the importance of an edge
is defined according to its age, its weight, and its position in the graph. Then we evaluate
our approach using synthetic random and scale-free graphs, and two real-world graphs,
one derived from the Bartercast reputation system and the other from the author-to-author
Citation network. The main difference between the Bartercast and the Citation graphs,
besides their structural properties, is that the former is derived from a deployed distributed
system with personalized reputations while the latter is derived from a centralized system
with global reputations. On these networks, we apply both max flow-based and random
walk-based computation of reputations.
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The contributions of this chapter are as follows:

1. We propose an approach for reducing the history of interactions according the fol-
lowing to two observations: (i) for the vast majority of reputation systems, the rank-
ing of reputations is more important than the actual reputation values themselves;
and (ii) in most cases the identification of the highest ranked nodes is enough.

2. We demonstrate that the performance of our approach for reducing the history of
depends on the topology of the complete history.

3. Furthermore, we show that the performance of our approach for reducing the history
of interactions depends on the reputation algorithm and we conclude that it can be
applied in a large range of networks.

4.1 Problem Statement

Our main motivation for reducing the history of interactions in a network is the compu-
tational cost and the storage requirements of decentralized reputation algorithms. Repu-
tation systems, such as those of eBay or Google, cover hundreds of thousands of active
nodes while reputation algorithms (e.g., Eigentrust [78], PageRank [92] and max-flow
based ones [35]) have a high computational complexity. In decentralized systems, like
BarterCast, where each node stores and analyzes data locally using, e.g., the max-flow al-
gorithm (with complexityO(nm2) where n is the number of nodes andm and the number
of edges), even much smaller graphs of 106 nodes make the computation of reputations
prohibitive. Taking into account that the contributions of nodes in the computation of
reputations are not equal in quality and quantity [40], thus we aim to delete the least
important contributions and compute reputations using only a subset of the complete his-
tory. In this way, we can reduce the computational cost significantly without decreasing
the accuracy very much.

In addition to the computational cost, the dynamic behavior of many reputation sys-
tems makes the use of the complete history ineffective. In systems with a high population
turnover such as P2P networks, only a few nodes remain for a long period in the sys-
tem while the majority of nodes enters the system performing some interactions and then
leaves it. This behavior has also been observed in Bartercast (see Table 4.1). Also a node
behaving properly for a long time can build a good reputation and become a traitor [84]
by exploiting other nodes. Preserving only short-term history forces all nodes in the sys-
tem to behave consistently according to the protocol. For these reasons, several widely
used reputation mechanisms, such as those of eBay and eLance, allow the use of histor-
ical information of a 1 or 6-month window. Although using a time window is useful for
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such feedback-based reputation systems, it is not effective in interaction-based reputation
systems since important information of highly reputed nodes is deleted.

We model the interactions of a network using the interaction graphG = (V,E),where
the vertices V represent the nodes and the edges E the interactions among the nodes. The
weight of an edge represents its strength; for instance, in Bartercast, the weight of an edge
between nodes represents the amount of data transferred in the corresponding direction,
and in a citation graph, it represents the number of references to an author by another. The
graph is dynamically growing over time and allows not only new nodes to join but also
existing nodes to create new edges. The graph G represents the complete history (CH) of
interactions in the network. Given the growing graph G, our target is to create a subgraph
ofG, denoted byG′, which preserves the highest ranked nodes inG and keeps the ranking
of the reputations similar to that in G. The subgraph G′ has to be dynamically maintained
as the complete history grows while its size has to be almost fixed. The graph G′ will
be used for the computation of reputations, and represents the reduced history (RH) of
interactions in the network.

4.2 Creating the Reduced History

The basic idea of creating the reduced history G′ consists of removing the least important
elements, either nodes or edges, from G. We use a node removal process in conjunction
with edge removal. The ratio of removed nodes versus removed edges depends on the
dynamics of the network. Nevertheless, edge removal implies node removal and vice
versa. More precisely, edge removal can lead to disconnecting a node from the graph and
node removal results in deleting the adjacent edges of the removed node. In Figure 4.1,
we illustrate the complete history of interactions and the corresponding reduced history.

4.2.1 The Parameters for Node Removal

The parameters for removal of a node consist of its age, its activity level, its reputation,
and its position in the graph.

The age of node i is expressed as τi = t − ti where t is the current time and ti is the
time instance node i joined the system. In most networks, the age of a node i affects its
behavior in a non-linear way (e.g. [6, 70]). Thus, instead of its age, we consider its aging
factor f(τi), where f is a decreasing function with f(0) = 1 (e.g., f(τ) = e−bτ , where
τ represents the age of a node and b is a constant). Keeping fresh information allows the
reputations system to capture the dynamic behavior of nodes.

The activity level di of a node i represents its degree. Nodes with a high activity level
participated in many interactions, and so, they provide much information.
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(a) The complete history of interactions (b) The reduced history of interactions

Figure 4.1: The least important nodes and edges in the complete history are denoted by
green and red respectively.

The reputation of node i is denoted by ri. Our aim is to preserve the information of
nodes with high reputations, since these nodes are the most reliable in the network. More-
over, allowing nodes with high reputations to contribute to the computation of reputations
longer is a kind of rewarding the most trusted nodes.

For node i the importance of its position in the graph is expressed by its betweenness
centrality (BC), denoted by CB(i), which measures the sum of the fractions of the num-
bers of shortest paths among all pairs of vertices that pass through node i [55]. Removing
nodes from the graph can result in destroying its structure by creating many disconnected
components and thus, we need to maintain the nodes that keep the graph connected.

The first three factors represent the behavior of node i while the fourth factor is added
for preserving the structure of the graph during the deletion process. Therefore, in our
method, the priority score Pn(i) of deleting node i is defined as

Pn(i) = αPA(di, ri, τi) + (1− α)PB(CB(i)), (4.1)

where PA(di, ri, τi) expresses the priority score of deleting node i based on its activity
level, aging factor and reputation, and PB(CB(i)) represents the priority score of deleting
node i according to its position in the graph. The parameter α takes values in [0, 1] and
can be chosen according to the graph properties. We define the priority score PA as

PA(di, ri, τi) =
n− dirif(τi)

n2 −
∑

j djrjf(τj)
, (4.2)
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where n equals the number of nodes in the graph, and the denominator acts as a normal-
ization so that the sum of the priority scores sum to 1. Clearly, a node with a higher age, a
lower activity level, or a lower reputation will be removed. Although the maximum value
of dirif(τi) is equal to n − 1 (corresponding to di = n − 1, ri = 1 and f(τi) = 1), for
simplicity, we approximate it to n. Similarly, PB is expressed as

PB(CB(i)) = (n2 − CB(i))/(n3 −
∑
j

CB(j)).

Again, even though the maximum value of CB(i) is equal to (n− 1)(n− 2), we approx-
imate it by n2. When considering a single parameter for node removal, Eq.4.2 can be
adapted in a straightforward way (similarly as PB for parameter CB(i)).

4.2.2 The Parameters for Edge Removal

The removal of an edge is determined by its age, its weight, and its position in the graph.
The age of edge eij connecting nodes i and j, is defined similarly to the age of a node,

and is denoted by τij = t−tij,where t is the current time and tij is the time of its creation.
The aging factor of edge eij is a decaying function f(τij) and can be, e.g., an exponential
function.

The weight of edge eij , denoted by wij , is one of the parameters for edge removal,
since interactions with a high cost are more important for the computation of reputations,
edges with high weights have to be preserved in the graph.

The importance of the position of edge eij in the graph is expressed by its edge be-
tweenness centrality (BC), denoted by CE(eij), which is defined as the sum of the ratios
of shortest paths between all pairs of nodes containing this edge [55]. The aging factor
and the weight of an edge represent its contribution to the computation of reputations,
while its CE helps in preserving the structure of the graph.

Similarly to node removal, we express the priority score of removing an edge eij as

Pe(eij) = αPS(wij, τij) + (1− α)PF (CE(eij)), (4.3)

where α is the parameter used in the definition of Pn to control the topology of the derived
graph. The scores PS and PF are defined similarly to PA and PB, respectively. Therefore,
edges with lower age, lower weight, and lower betweenness centrality will be removed.

The basic computational components of reducing the history consist in the computa-
tion of BC (we do not distinguish between node and edge BC because the algorithm is
the same). Computing the degree, the aging factor of nodes, the weight, and the aging
factor of edges has a linear cost on the number of nodes and edges respectively and can be
computed incrementally. However, the computational cost of BC is high (for unweighted
networks it isO(mn) where n is the number of nodes in the network andm the number of
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edges). The cost can be significantly reduced by using approximations [58] and exploit-
ing the structure of the network. In particular in scale-free networks, the BC values do
not have to be updated very often with the network growth [63] and in networks without
community structure, the BC of a node shows a strong correlation with its degree. Note
that the reputations of nodes are computed by the core reputation mechanism.

4.3 Datasets

In order to assess our method for creating the complete history, we consider both synthetic
graphs and graphs derived from real networks. In our synthetic complete history graphs
we consider two processes that occur simultaneously: first, new nodes enter the system,
and secondly, the already existing nodes interact, thus creating new links. Thus, we define
the probability pc which represents the probability of adding a new node at each time step
to the graph, and the probability 1 − pc which represents the probability of adding new
links between existing nodes. In highly dynamic systems, the appearance of new nodes
is dominant, and so the value of pc is high. In our models for synthetic graphs, we allow
the occurrence of multiple edges between a pair of nodes and we consider the number of
multiple edges as the weight of that edge.

For our experiments, we create the complete history G and the corresponding reduced
history G′ in parallel. In the complete history, we store all the new information. For
the construction of the reduced history we keep its size (almost) constant to a maximum
number of nodes nmax, which represents the computational or memory limitation of the
system. We control the size of the reduced history by removing nodes or edges from
the graph as new information is stored as described in the previous section. Below, we
describe in detail our models for random graphs and scale-free graphs, the properties
of the Bartercast and Citation graph, and the construction of the corresponding reduced
histories.

A random graph, denoted by R(n, pr), is composed of n nodes, and each poten-
tial edge connecting two nodes occurs independently with probability pr. Based on this
model, we generate a growing directed random graphR(nt, pr) representing the complete
history of interactions.

To create R(nt, pr) with nt nodes at time t, starting from a single node, we perform
the following two operations at each time step:

• With probability pc we add a new node with each of its potential directed edges
existing with probability p, for some value of p.

• With probability 1− pc we add pnt new directed edges adjacent to chosen existing
nodes uniformly at random.
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One can prove that pr ∼ p/2pc in the following way.
We start with one initial node with no edges. Then, we start building R(nt, pr), and

at time t > 0, the expected number of nodes is nt = 1 + pct. Since the probability of
connection is p, the expected number of edges at time t is:

E(t) =
∑
t

pnt =
∑
t

p(1 + pct) = p(t+ pct(t− 1)/2).

Thus, the probability of connection in the random graph is equal to

E(t)/(nt(nt − 1)) ≈ (ppct
2/2)/(p2ct

2) = p/2pc

for large t, which proves that our procedure creates a random graph R(nt, p/2pc).

In accordance with R, we create the reduced history graph R′. The reduced history
R′ is equal to R up to the maximum number of nodes nmax. After having reached nmax
nodes, R′ is maintained by performing the following operations at each time step:

• When a new node is added to R, we also add this node to R′ along with its edges,
and then we remove one node together with its edges with the highest priority score
(Eq. (4.1)).

• When new edges are added to R, we add the same edges to R′. Then we remove
from R′ the same number of edges with the highest priority score (Eq. (4.3)).

Note that some edges in R may be adjacent to nodes that have been removed from R′;
in this case, these edges are not added to R′.

Scale-free graphs are characterized by their degree distribution following a power
law. We create a growing directed scale-free graph based on the preferential attachment
model [14]. Similarly to the procedure for random graphs, we generate two directed
graphs S and S ′ corresponding to the complete history and the reduced-history.

We create S(nt) by starting with a small seeding graph with m0 nodes connected by
m0 − 1 edges and then performing the following steps:

• With probability pc we add a new node with m directed edges, with m 6 m0. Each
edge is adjacent to an already existing node i with probability Π(i) = di/

∑
j dj,

where di is the degree of node i.

• With probability 1 − pc we add m new directed edges. Each of these edges are
adjacent to an existent node i with probability Π(i).

In line with S, we build the reduced history S ′ using the same procedure as for random
graphs.
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One can prove that S is scale-free with power-law exponent equal to γ = 1+2/(2−pc)
in the following way. The proof of S being a scale-free graph is based on the mean-
field theory proposed by Barabási and Albert [14]. With pc = 1 we have the classic
Barabási-Albert model, where only a new node is added and the exponent of power-law
is γ = 3. We start with one initial node and then, to construct our scale-free graph, we
follow the constructive process described in Section 4.3. With probability pc we add a
new node with m edges, and so the degree of node i, denoted by di, changes with rate:
∂di/∂t = mdi/

∑
j dj . With probability 1 − pc we add m new directed edges and the

degree of node i changes with rate: ∂di
∂t

= 2mdi/
∑

j dj . Therefore, in total:

∂di
∂t

= pcm
di∑
j dj

+ (1− pc)2m
di∑
j dj

= (2− pc)m
di∑
j dj

. (4.4)

Moreover,
∑

j dj = 2E(t) = 2mt, where E(t) is the number of edges in the graph at
time t, so we can solve Eq. (4.4) for di and find:

di = m
( t
ti

)(2−pc)/2
, (4.5)

where ti represents the time that node i joined the network. Using Eq. (4.5), the proba-
bility P [di(t) < d], that a node i has a connectivity di smaller than d, can be written as
P [di(t) < d] = P

(
ti > (m/d)2/(2−pc)t

)
.

We assume that each operation of either adding a new node or a set of edges takes one
unit of time, and so the probability density of ti is Pi(ti) = 1/(m0 + ti). Thus,

P
(
ti >

(m
d

)2/(2−pc)
t
)

= 1− P
(
ti ≤

(m
d

)2/(2−pc)
t
)

= 1−
(m
d

)2/(2−pc) t

m0 + t
.

The degree distribution is the probability density for P (d), thus we obtain:

P (d) =
∂P [di(t) < d]

∂d
=

2m2/(2−pc)

(2− pc)
1

d2/(2−pc)+1

t

(m0 + t)
,

and as a consequence, for large t, P (d) ∼ d−γ with γ = (2/(2− pc) + 1).

The Bartercast graph, denoted by B, includes information from 29,716 nodes from
September 1, 2010 to January 31, 2011. Bartercast presents high population turnover and
thus, the derived graph consists in a dense core with very few long living and active nodes
and a periphery with many loosely connected nodes of low activity (small average path
length and small clustering coefficient, see Table 4.1). The addition of new nodes/edges
in B is based on the actual timestamps of the crawled database of Bartercast. Similarly
to the procedure for random and scale-free graphs, we maintain the reduced history B′ by
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Table 4.1: The average path length (L) and the clustering coefficient (cc) of the largest
connected component of the Bartercast and Citation graph, and of the corresponding ran-
dom graphs with similar average path length.

Graph # Nodes # Edges L cc Lrand ccrand

Bartercast 10, 634 31, 624 2.64 0.00074 2.63 0.0032
Citation 15, 360 365, 319 3.29 0.1098 3.31 0.0012

removing nodes and edges using Eqs. (4.1) and (4.3) as new nodes and edges are added
according to the timestamps.

The author-to-author Citation graph, denoted by C, is derived from the citation net-
work of 21,858 papers from January 2001 to November 2011. Unlike Bartercast, the
graph C is derived from a centralized system with global reputations. In Table 4.1, we
can see that graph C exhibits small-world behavior with small average path length and
large clustering coefficient. Its degree distribution has a power-law tail with exponent
γ = 2.55. As described for the Bartercast graph, we create the complete history C and
the corresponding reduced history C ′ based on the actual timestamps in the database of
the Citation graph.

4.4 Computation of Reputations and Evaluation Metrics

We consider two methods for computing reputations: the max-flow algorithm and the
random walk-based computation of reputation. However, our approach can be generalized
to other methods for computing reputations as well.

The max-flow algorithm [35] computes the maximum flow passing between two
nodes and is the core of many reputation systems (such as Bazaar [98], Bartercast [43],
and the system proposed by Feldman et al. [53]) because it provides resilience to misre-
porting by nodes who may exaggerate their contributions to increase their reputations. In
our study, we use the definition of reputation of Bartercast mechanism [63] since we use
a graph derived from it for the evaluation of our approach.

Random walks constitute the core of many reputation and recommendation mecha-
nisms (such as EigenTrust [78], PageRank [92], TrustRank [69] and many others). The
basic idea of random walk-based computations of reputations is that interactions with
highly reputed nodes contribute more to the reputation of a node. In our analysis, we use
PageRank computed using the power iteration: rt+1 = dArt + [(1 − d)/N ]1, where A
represents the normalized adjacency matrix of the network, rt the ranking vector at time
step t, d the damping factor (we set it equal to its typical value 0.85 [92]), N the num-
ber of nodes, and 1 the vector of length N containing only ones. In some networks like
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Bartercast, an incoming edge of a node has a negative meaning for the reputation of that
node (because a weighted edge represents the amount of transferred data and so, adds to
the reputation of the donator of the data). Therefore, in these networks, first we reverse
the direction of links before we apply PageRank (reverse PageRank [13]).

The evaluation of our method is based on the observations that for the vast majority of
reputation systems, the ranking of nodes according to their reputations is more important
than the actual reputation values themselves, and that in many systems the identification
of the highest ranked nodes is more important than of the rest of the nodes. Therefore,
we define the ranking error as the difference between the rankings of the nodes according
to their reputations in the reduced history and the complete history. More precisely, we
consider the sequences of the Unique Identifiers (UIDs) of the nodes in the reduced and
the corresponding complete history of our graphs, and we compute the minimum number
of inversions of consecutive elements needed in the sequence of the reduced history to
get all the common nodes in their correct order in the complete history. This minimum
number of inversions is then normalized over the worst case, which would occur if the
ranking would be completely reversed. Furthermore, to explore the ability of the reduced
history to identify the highest ranked nodes, we define a second metric called the ranking
overlap which is defined as the fraction of nodes the sequences of the top-5%, 10% and
20% ranked nodes in the reduced history and the corresponding sequences in the complete
history have in common. More precisely, we compute the ranking overlap as |U ∩V|/|U|,
where U is the set of the top-5%, 10% and 20% ranked nodes in the reduced history and
V is the set of the top ranked nodes in the complete history of size |V| = |U|.

4.5 Evaluation

In this section, we present our experimental evaluation. First, we explore the effect of
each of the parameters for node and edge removal separately and in combination. Next,
we study the effect of the size of the reduced history relative to the size of the complete
history. Finally, we evaluate the effect of the growth of the complete history while the
size of the reduced history is constant. In our experiments, we use the synthetic and real-
world graphs introduced in Section 4.3. Our synthetic graphs consist of 5, 000 nodes with
α and pc neutral (both equal to 0.5), unless other initializations are mentioned. We choose
the other parameters for the random graph (pr = 0.02) and the scale-free graph (m = 3

and γ = 2.2) so that they roughly correspond to the Bartercast graph. For the synthetic
graphs, our results presented in each plot are the average of 25 independent experiments,
while for the Bartercast and Citation graphs, we conduct only one experiment since we
have only one instance of these real-world graphs.

We first explore the effect of the parameters for node and edge removal defined in
Section 4.2 on the ranking error. To explore the effect of the parameter α, we remove
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50% of the nodes and edges of the complete history according to Eqs. (4.1) and (4.3) for
different values of α. In particular, for random graphs using max-flow (or Pagerank), the
ranking error starts at 0.33 (or 0.21) for α equal to 0, and it slightly decreases by 0.02 (or
0.01) until α is equal to 0.8. As α increases further, the ranking error increases by 0.07

(or 0.06). A similar stable behavior for the ranking error is observed for the scale-free and
real-world graphs. Since α doesn’t affect the performance of the reduced history much
we take it as neutral, equal to 0.5, for all the following experiments.

4.5.1 Experiments and Results

Next, we explore the effect of the parameters for node and edge removal separately, and
their combination as defined by Eqs. (4.1) and (4.3). For the parameters for node or
edge removal, we remove fractions nodes or edges of the complete history using only
one parameter at a time. The effect of these parameters on the ranking error is plotted in
Figure 4.2 for the random and scale-free networks. We observe that creating the reduced
history using only node removal results in similar performance as edge removal for the
corresponding parameters. This is to be expected as there is a correlation between these
parameters: in general, an edge with high BC is adjacent to nodes with high BC, an old
edge is attached to old nodes, and an edge with a large weight is adjacent to a node with
high reputation. Furthermore, the combination of all parameters in Eqs. (4.1) and (4.3)
results in the smallest ranking error. The largest ranking error occurs when we remove
nodes based on their age. The reputation of a node depends on the period it participates in
the system and thus, when only new nodes with low reputations participate in the reduced
history, the ranking error is high. All the other parameters cause quite similar ranking
errors because they exhibit correlations in graphs without strong community structure,
such as the random and scale-free graphs. In the real-world graphs, the parameters for
node and edge removal and their combination exhibit similar relative performance as
in the scale-free graphs. Since the combination of the parameters for node and edge
removal achieves the lowest ranking error, we use it to create the reduced history for all
the following experiments.
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Figure 4.2: The effect of the parameters for node and edge removal when removing a
fraction of the nodes and edges of CH for random and scale-free graphs when the reputa-
tion algorithm is max-flow (top) and Pagerank (bottom). The indication ER in the legend
denotes parameters for edge removal and NR parameters for node removal.

We next evaluate the effect of the size of the reduced history relative to the size of
the complete history on the ranking error and the ranking overlap. For this purpose, we
construct reduced histories of different sizes for a complete history of fixed size as de-
scribed in Section 4.3. Figure 4.3 (left) plots the ranking error for different relative sizes
of the reduced history. We observe that when using max-flow, the scale-free, Bartercast
and Citation graphs exhibit much smaller ranking error than the random graphs. For all
the graphs using Pagerank, the reduced history exhibits smaller ranking error than using
max-flow. Figure 4.4 plots the ranking overlap for different relative sizes of the reduced
history. The scale-free and Bartercast graphs exhibit much higher ranking overlap than
the random and Citation graphs when using the max-flow based algorithm. Particularly,
in these networks the ranking overlap decreases quite slowly with the decrease of the size
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of the reduced history, until the size of the reduced history is about 0.4 of the complete
history. The reason is that these networks have a large amount of redundant information
for approximating the highest ranked nodes when using the max-flow algorithm. When
the size of the reduced history is smaller than 0.3 of the complete history, the ranking
overlap degrades quickly. With Pagerank, the reduced history exhibits very low ranking
overlap for all the graphs.
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Figure 4.3: The effect of the size of RH relative to the size of CH (top) and the effect of
the growth of CH relative to the size of RH (bottom).
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Figure 4.4: The effect of the size of RH relative to the size of CH for max-flow (top) and
Pagerank (bottom).

Finally, we evaluate the effect of the growth of the complete history while the reduced
history is of constant size on the ranking error and the ranking overlap. For the synthetic
graphs, we let the complete history grow from 500 to 5, 000 nodes while we keep the
size of the reduced history constant at 500 nodes. For the real-world graphs, using the
available temporal information, we have the Bartercast graph grow from 1, 063 to 10, 634

nodes with the reduced history constant at 1, 063, and the Citation graph from 1, 536 to
15, 360 nodes with the reduced history at 1, 536. Figure 4.3 (right) plots the ranking error
and Figure 4.5 plots the ranking overlap for different relative growths of the complete
history. We observe again that Pagerank achieves a smaller ranking error while the max-
flow based algorithm achieves a better ranking overlap, specially for the scale-free and
real-world graphs.
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Figure 4.5: The effect of the growth of CH relative to the size of RH for max-flow (top)
and Pagerank (bottom).

4.5.2 Discussion

The observations arising from our experiments indicate that the reduced history can give
a good approximation of the ranking of nodes according to their reputations when the
complete history exhibits a particular structure. In this subsection, we explain and discuss
our main observations.

First, we observe that constructing the reduced history using the combination of all
the parameters for node and edge removal results in the lowest ranking error. Considering
only parameters such as degree and reputation gives priority for removal to the newest
nodes and so, new nodes will not participate in the reduced history. On the other hand,
considering only the age as parameter for removal results in high ranking error because
then, only new nodes participate in the reduced history and information of old important
nodes has been removed. Therefore, for good performance of the reduced history, it is
required to use a combination of these parameters as defined by Eqs. (4.1) and (4.3).

Secondly, the performance of the reduced history depends on the topology of the
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graph, and is better in the scale-free, Bartercast and Citation graphs than in the random
graphs. The scale-free and our real-world graphs have only a few well connected nodes
accumulating the majority of links, while the vast majority of nodes has a very low con-
nectivity. In the reduced history, the highly connected nodes are preserved keeping their
good ranking position, while most of the loosely connected nodes have been removed.
In contrast, in random graphs all nodes have stochastically similar connectivity proper-
ties. Since most real networks exhibit heterogeneity in the connectivity properties of their
nodes [6], we can conclude that the reduced history can be applied in a large range of
networks.

Finally, the performance of the reduced history depends on the reputation algorithm
used. In particular, it causes a lower ranking error when using Pagerank, while it achieves
a higher ranking overlap when using max-flow. Pagerank computes the reputation of a
node by aggregating the interactions of all nodes participating in a graph. The aggregative
computation of centrality by Pagerank achieves lower ranking error even if the reduced
history has a relatively small size. Unlike Pagerank, the max-flow based algorithm com-
putes the reputation of a node taking into account only the interactions between that node
and the most central node. Since both the most central and the highest ranked nodes are
considered as important, they are preserved in the reduced history. Therefore, we achieve
a high ranking overlap when using the max-flow based algorithm.

In conclusion, our observations demonstrate the effectiveness of the reduced history in
approximating the ranking of nodes with Pagerank and in identifying the highest ranked
nodes with the max-flow based algorithm. This implies that the reduced history can ap-
proximate with reasonably accuracy the complete history in real world graphs, while it
has much smaller resource requirements. As we stated in Section 4.1, this result is valu-
able especially for decentralized systems, such as Tribler, because of the limited resources
available at each node.

4.6 Related work

The observations of our experiments are consistent with the findings of prior published
research for the robustness of centrality measures under sampling or missing data. In
particular, our finding that node and edge removal cause similar ranking errors has been
discussed in the context of the robustness of centrality measures under missing data [18].
In the context of network sampling, it has been observed that ranking nodes with random
walks is highly robust [36]. Moreover, the result that the use of BC for node and edge
removal does not affect the ranking error much, has been also observed under the con-
text of edge removal for security reasons [129]. However, our approach is different from
sampling techniques, since sampling techniques focus on creating a static subgraph with
similar properties as the original graph. In our case, we need to maintain the reduced his-
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tory dynamically with the growth of the original graph, and we are interested in producing
a reduced history that preserves the reputations of nodes and not necessarily the general
properties of the original graph.

4.7 Conclusion

Using the complete history of interactions in a reputation system is not efficient due to
its high computational cost and high memory requirements, and to the high population
turnover. We have proposed the use of the reduced history instead of the complete history
defining the main parameters for choosing the nodes participating in it. Next, we have
evaluated our approach experimentally exploring both theoretical graph models and real-
world graphs using two reputation algorithms, a max-flow based algorithm and Pagerank.
We conclude that for scale-free and real-world graphs, the reduced history is reasonably
accurate while for random graphs, due to their structural properties, the reduced history
causes high error. Furthermore, we have demonstrated that using the max-flow based
algorithm results in better identification of the highest ranked nodes while using Pagerank
results in better ranking error.
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Chapter 5

Trust-based Collection of Information

In decentralized reputation systems users have only a limited view of the system. As a
result, each user has to collect information about the past interactions of other users in
order to compute their reputations. The collection of information directly affects both
the quality and the cost of a reputation system. Without any central coordination, the
collection of reports about user interactions is challenging. In such systems, the ease of
creating accounts enables malicious users to create numerous fake identities, their Sybils,
and spread false reports about their interactions. Furthermore, the large number of inter-
actions between users causes an information overload. By blindly storing and processing
information, users easily become victims of Sybil attacks as well as waste their resources
for information that contributes too little to the reputations. To avoid the impact of mali-
cious nodes and the misuse of their resources, users have to collect trusted and relevant
information.

In this chapter, we propose a method to collect information in decentralized reputation
systems. While traditional methods against Sybil attacks, such as SybilGuard [126], and
SumUp [111], require the existence of a social network and interpret the social connec-
tions between users as trust, we assume no social network. As a result, our approach is
suitable for systems without a social network such as P2P networks or markets on mobile
devices [27]. Our only assumption is the existence of interactions between users, which
are interpreted as indicators of trust and similarity between the corresponding users. Our
method, EscapeLimit, constrains the ratio of the collected interaction reports over all the
interactions, recall, by collecting only relevant and trusted information. EscapeLimit uses
random walks with restarts to successively visit nodes to collect interaction reports. In
this way, it exploits the transitive flow of positive interactions and guarantees a link be-
tween the creator of a report and the user who uses it in a reputation calculation. The
restart probability determines the recall and the vulnerability to Sybil attacks.

In EscapeLimit, each node knows its own direct interactions, and using its locally
stored interaction reports, it creates its interaction subgraph. Using its subgraph, each
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node calculates the reputations of other users. Nodes periodically contact each other
through random walks to collect new reports and expand their interaction subgraphs. Ev-
ery node maintains a list of neighbours, consisting of currently online direct interaction
counterparts. Upon request, it introduces those counterparts to other nodes. EscapeLimit
reduces the escape probability, which is defined as the probability that a random walk
initiated by an honest node ends up in a Sybil node.

We evaluate EscapeLimit by emulating user interaction patterns derived from net-
works with different properties. In our experimentation, we allow nodes to collect in-
formation while they perform interactions. Particularly, we use a synthetic power-law
network and two real-world networks, one network deriving from the Internet-deployed
Bartercast reputation system [43] used in the BitTorrent-based client Tribler [99], and
one network deriving from Facebook [115]. In our evaluation, the computation of rep-
utations is trivial, namely the ratio of the contribution of a node to the network over its
consumption. In this way, we can determine the quality of the collection of information
independently of the computation of reputations. The main contributions of this chapter
are as follows:

1. We evaluate EscapeLimit in terms of its resilience to Sybil attacks, its scalability,
and its ability to collect relevant information, and we show its efficiency.

2. To further enhance EscapeLimit, we bias random walks with trust-driven properties
such as the strengths of user interactions and the activity levels of users, and we
explore their effect on the collection of information.

3. We demonstrate that the performance of EscapeLimit depends on the topology of
the interaction graph and that EscapeLimit biased with the strength of user interac-
tions is efficient in almost any type of graph.

5.1 Problem Statement

Initially, a node knows only its own direct interactions and creates its interaction sub-
graph as described in Section 1.3. We present an illustration of the interaction subgraph
of a node in Figure 5.1a and 5.1b. As a result, it is able to compute only the reputations of
nodes with which it has previously interacted. Repeated interactions are not frequent and
so, nodes need to expand their interaction subgraphs in order to compute the reputations
of other nodes in the network. In eBay 89% of transactions between a pair of buyer-
seller [44] and in P2P systems about 92% of data transfers between a pair of peers [96]
have been conducted only once. Even in networks such as Facebook, where pairs of
friends repeat their interactions often, yet users interact with unknown contacts. For this
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(a) The interaction graph (b) The interaction subgraph of
the red node, the part of the in-
teraction graph drawn with grey
indicates the unknown area from
the perspective of this node

(c) The red node learns the com-
plete interaction graph after hav-
ing walked to several nodes, the
red line indicates the walk steps

Figure 5.1: The red node collects information using its interaction subgraph. (Figures
5.1a and 5.1b have also appeared in Section 1.3)

purpose, they should periodically contact each other acquiring information about the in-
teraction subgraph of other nodes. Ideally, after a node has contacted several other nodes,
its interaction subgraph converges to the interaction graph. The information spreading
method is crucial for the quality of the computed reputations, since poor information
spreading results in inaccurate reputations [42]. Our goal is the design of an applicable
information spreading method. Next, we define three general requirements for an appli-
cable spreading method in decentralized reputation systems.

5.1.1 Resilience to Attacks

From the various self-promoting attacks in a decentralized reputation system, we con-
sider only sybil attacks, as most other types (e.g. link farming, collusion, spam), can been
seen as special cases of it. Furthermore, simple misreporting can be easily eliminated
by assuming that after each positive interaction, the corresponding interaction report is
cryptographically signed. The sybil attack is predominant in reputation systems. It has
been reported that in Facebook more than 1.5M fake accounts have been identified during
February 2010 [25], in RenRen more than 660K fake accounts [123], and in Tuenti about
180K fake accounts [25]. Acquiring polluted information results in inaccurate reputa-
tions.

5.1.2 Scalability

In distributed systems, scalability has been defined along three dimensions: fault-
tolerance, system load, and administration [90]. The fault-tolerance of a system is af-
fected by its size. The probability that some nodes are unavailable for communication
increases with its growth, particularly in systems with high population turnover such as
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P2P networks. Fault-tolerance requires high autonomy of nodes so that they can function
despite failures of other nodes. System load in terms of computational cost and commu-
nication overhead at each node, increases with the size of the network. Due to the limited
resources available at nodes, the method of information spreading should not add a lot
of computational and communication overhead. Moreover, it should distribute the com-
munication load evenly across all the nodes. Particularly, in many real world networks
where a few nodes have the majority of connections, balancing communication load is
challenging. Finally, the administrative control on the information about other nodes,
e.g. connectivity, maintained at each node becomes impractical with the growth of the
network. Administration of information at each node is easier when each node maintains
information only from its neighbourhood.

5.1.3 Relevance of Information

All the information about node interactions does not contribute equally to the computation
of reputations. Interactions of high strength occurring closer to a node contribute more
in the computation of reputations than interactions of low strength in the periphery of the
network. Furthermore, a node is more likely to interact with highly active nodes closer
to it. Computing the reputation of these nodes accurately is more useful. Therefore,
each node must acquire relevant information so that the reputations computed from its
interaction subgraph are close to the reputations of the interaction graph.

5.1.4 Trade-off among the Requirements

These requirements cannot be completely satisfied by one method since they are conflict-
ing to some extent. For instance, in a perfect attack resilient solution, each node should
only contact nodes with which it has previous successful interactions. However, this re-
sults in very poor collection of relevant information since that node fails to compute the
reputations of potential new encounters. Furthermore, a node obtains fast relevant infor-
mation if it contacts the highly active nodes often, since those nodes keep the network
connected and perform the largest number of interactions. However, this results in over-
loading these nodes. Nevertheless, by not considering all these requirements, a collection
mechanism is not applicable to online distributed systems and so, it has to make a trade-
off among them.

5.2 Design Considerations

Having presented the three requirements of information spreading in distributed reputa-
tion systems, we proceed with the design considerations of EscapeLimit regarding the
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Table 5.1: The different design considerations grouped by their ability to satisfy the re-
quirements for a collection mechanism applicable to distributed reputation systems

Method Resilience to Attacks Scalability Relevance

communication protocol
epidemics 7 3 7

similarity of taste 7 3 3

DHT 7 3 7

random walks with restarts 3 3 3

incorporation of trust
social network 7 3 7

interactions subgraph 3 3 3

direction of information
push 7 3 7

pull 3 3 3

type of information
direct intractions 3 3 3

direct-indirect interaction 7 3 7

communication protocol, the incorporation of trust, the direction of information spread-
ing and the type of information spread. The design of EscapeLimit is directed by the three
requirements which must be considered from the beginning of the design. Otherwise, they
can be irrelevant.

5.2.1 Collection of Reports

Four different approaches have been widely used in the core of communication proto-
cols in decentralized systems: gossip or epidemics, methods based on similarity of taste,
Distributed Hash Tables (DHT), and random walks. According to a typical epidemic pro-
tocol, each node disseminates its fresher information to a randomly chosen node [79].
Epidemics are resilient to failures. However, the recipients of information cannot asses
its validity and so, epidemics are vulnerable to sybil attacks. No notion of trust can be
incorporated in epidemics due to the randomness on the node selection. Furthermore, the
disseminated information is not relevant in most cases resulting in waste of bandwidth and
node resources. To reduce the communication cost, epidemic-based methods such as Cre-
dence for LimeWire p2p client [119], and SimilDis [42], disseminate information among
nodes with similar tastes. These methods manage to reduce radically the communication
cost but still they are not secure.

According to DHT, the reputation of a node is stored and maintained by other nodes
determined by a hash value. This approach has been used in systems like DHTrust [122]
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and EigenTrust [78]. DHTs are vulnerable to a great range of attacks. Even though many
techniques have been proposed for secure DHTs, securing DHTs is still a challenging
problem [114]. Furthermore, they have to deal with problems such as load balancing and
population turnover.

Random walks are computationally tractable, and naturally decentralized using only
information locally available at each node. While proposed solutions fail to meet the three
requirements of a distributed reputation system, random walks model the different levels
of trust and similarity among nodes [65], [89]. Random walks are flexible and with the
appropriate biases, they are able to quickly detect relevant and trustworthy information
in a network. As a result, they have been widely used in distributed systems for search
[61], topology maintenance, and computations of reputations such as Eigentrust [78], and
SybilRank [25].

In EscapeLimit, we will use random walks with restarts [110], where a random walk
may be directed back towards its initiator with a fixed restart probability. A random walk
with restarts represents better the inherent trust in a network, since each node trusts itself
more than the other nodes and its trust towards the other nodes decays with the increase
of their distance [65, 89]. We present an implementation of random walks suitable for
internet deployed networks in Section 5.3. Each node in the network performs its own
random walks and requests parts of the interaction subgraphs of the contacted nodes.

5.2.2 Incorporating Trust

In many proposed systems such as SybilRank [25] and SybilInfer [39], random walks
enhance their resilience against sybil attacks by using a social network to incorporate
trust. In this way, it is assumed that a connection with a node in the social network
reflects trustiness towards that node. Each node performs its random walks across the
social links in the network. However, in many systems such as P2P networks no social
network is available. Furthermore, in social networks many social connections between
nodes are superficial or of very low strength and thus, they do not indicate trust [120].
For instance, many users in Facebook have much more friendship connections than 150
which is roughly the number of people they can regularly interact [46].

Unlike previously proposed methods, in order to incorporate trust we use the interac-
tion subgraph available at each node. In other words, instead of using social connections
between nodes as trust indicators, we use their interactions. Regular and successful in-
teractions between nodes are strong indicators of trust relationships and similarity among
users [65], [89]. As a result, EscapeLimit not only is useful to systems without any social
network available but it is more effective against sybil attacks, as well. Furthermore, we
bias random walks with information deriving from user interactions, such as the strength
of interactions.
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5.2.3 Direction of Information

The propagation of the interactions subgraphs when using random walks or epidemics
can be implemented with two different strategies, push (information dissemination) or
pull (information collection). In the push strategy, a node sends (pushes) its received
messages towards other nodes in the network while in a pull strategy, it probes another
node for messages that it has not received yet, and then it fetches (pulls) the corresponding
messages. It has been shown that push protocols are resilient to failures and ensure fast
propagation of a message to a large portion of the network [52]. However, the propagated
information is not always relevant. Moreover, the redundancy of the propagated messages
makes push-based mechanism prohibitive for large-scale networks due to its high band-
width cost. On the other hand, pull protocols result in significantly smaller overhead and
ensure the delivery of message in sparsely connected areas of the network. From a se-
curity perspective using the push strategy, a node blindly accepting messages from other
nodes results in polluting its interaction subgraph with false information, while using the
pull strategy, a nodes requests messages from selected nodes following the flow of trust
on the interaction graph. As a result, in EscapeLimit we implement pull-based random
walks and so, each node collects information.

5.2.4 Type of Information Spread

During the collection of information, a node contacting another node requests a part of
its interaction subgraph containing either only its direct interactions or both its direct and
indirect interactions. The collection of the history of both direct and indirect interactions
is equivalent to epidemics and thus, it faces the same problems. Collecting only direct
information from other nodes enhances security, scalability, and the relevance of the col-
lected information since it allows control on the received information and decreases the
redundancy of information. In EscapeLimit, each node collects the history of direct inter-
actions of the probed node. Figure 5.1 presents an illustration of our method. In Table 5.1,
we summarise the design considerations and we group them along their ability to satisfy
the three requirements.

In order to show that random walks outperform epidemics against sybil attacks, in
Figure 5.2 we present a fast comparison between push-based gossip and push-based ran-
dom walks with restart probability equal to 0.25 when nodes collect the direct interactions
of other nodes. For this comparison, we created two power-law graphs using Barabási-
Albert model [14] with each one having 500 nodes, representing the honest and sybil
nodes respectively. We connect each honest node with one randomly chosen sybil node.
Then, the honest nodes start collecting information from other nodes using either gos-
sip or random walks. We observe that even simple random walks are much more robust
against sybil attacks than gossip.
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Figure 5.2: The average fraction of polluted information at the honest nodes when using
gossip and random walks.

5.3 Collecting Information Using Random Walks

In this section we present the network model, three parameters for biasing random walks,
and an implementation of the random walker suitable for internet deployed networks.

5.3.1 Network Model and Definitions

The interaction graph of a network is a weighted directed graph of interactions G =

(V,E) whose vertices V correspond to the nodes in the network, and whose edges E
correspond to the interactions among nodes. Its adjacency matrix is denoted by A =

{αij}. A weighted edge eij ∈ E connecting i, j ∈ V in the direction i → j has a
weight wij which represents the strength of an interaction, for instance the amount of data
transferred across edges in a P2P network or the number of interactions in Facebook. We
denote r, the vector containing the reputations of nodes. Depending on the application, the
vector r can be computed by various computations. We use a very simple computation of
reputation so that we can investigate the dissemination of nodes. The reputation of a node
j as the ratio of the resources it contributes to the network over the resources it consumed
and so, r(j) =

∑
k∈Nj

wjk/
∑

k∈Nj
wkj where Nj denotes the neighbours of node j in

G. Each node i in the network locally stores its interaction subgraph Gi = (Vi, Ei) with
Vi ⊆ V and Ei ⊆ E.

A random walk on G is defined by its transition matrix P = {pij}, and its stationary
distribution π is given by the equation π = πP . Its mixing time indicates the time (in walk
steps) needed for any initial distribution π0 to approach the stationary distribution π. To
measure the mixing time of our graphs we compute the total variation distance between
the two distributions 1/2||π − π0P t||1 over consecutive walk steps t. A fast mixing time
implies that the initial distribution converges to the stationary distribution in O(log V )

steps.
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5.3.2 Types of Random Walks

We use random walks with restarts with restart probability α. Then, the transition matrix
becomes P ′ = (1− α)P + α1, where 1 is the matrix with all its entries equal to 0 except
for the elements of the column corresponding to the initiator, which are equal to 1.

In simple RW (RW) with restarts, the next step of the walk is chosen uniformly at
random among the neighbors of the currently visited node. The transition probability at
each step is determined by the adjacency matrix pij = αij/

∑
j αi. We use three additional

biased random walks.
First, we consider a random walk biased towards the strength of interactions assuming

that the strength of an interaction reflect both trust and similarity between the adjacent
nodes. We call this walk weighted RW (wRW) where the bias towards node j from node
i is denoted by wij and pij = wij/

∑
j wij .

Then, we define random walks biased towards the nodes with the lowest activity level,
namely the smallest degree. In RW high degree nodes are visited with higher probability
since more paths lead to them. On the contrary, low activity nodes are rarely visited and
by biasing a RW towards them helps in faster spread of their information. Furthermore, it
balances the communication overhead among the nodes in the network. This random walk
results in uniform visiting probability of nodes and it corresponds to Metropolis-Hastings
Random Walk (MHRW) [72] for uniform selection of nodes. According MHRW, the prob-
ability of visiting node j from node iwhen i 6= j is defined as pij = (1/di) min(1, (di/dj))

with di representing the degree of node i and pii = 1−
∑

j pij .
Finally, we consider random walks biased towards the nodes with the highest activity

level as defined by their degree. Intuitively, highly active nodes are trustworthy, have
fresh information and interact with the other nodes with higher probability. This type
of random walk corresponds to Maximal Entropy Random Walk (MERW) [24] has been
introduced and studied in [23]. The probability of visiting node j from node i is equal to
pij = (αiju[j])/(λu[i]), where u is the principal eigenvector of A, u[i] is the i-th entry
of u, and λ is the corresponding eigenvalue. This RW requires global information but
recently Sinatra et al. [107] showed that MERW can be accurately approximated by a
RW biased towards the degree of nodes, in networks without degree correlations. MERW
results in fast diffusion of information since it uses the highly connected node more often.

5.3.3 Implementation of Random Walks

Internet deployed networks such as P2P networks and distributed social networks, are
characterized by high dynamics and nodes behind firewalls or Network Address Trans-
lators (NAT) boxes. In highly dynamic networks nodes frequently enter and leave the
system. As a result, random walks may easily get lost as nodes go offline. Furthermore,
nodes behind firewall or NAT are not directly connectable. Even though according to
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Figure 5.3: Node j performs a walk step.

recent studies, approximately 64% of the nodes in the internet are behind a firewall or
NAT [71], classic epidemic protocols assume that all nodes can communicate directly
and thus they are ineffective. To face high dynamics, in this implementation of random
walks each node controls its own random walks and so, the walks cannot be lost. For NAT
traversing, we design random walks using a node introduction mechanism which allows
NAT traversal.

We design the random walker with two threads, an active one and a passive one,
running concurrently at each node. The active thread is executed by the initiator of the
walk and the passive thread by all the nodes contacted during a random walk. We assume
that each node is initialized with two global parameters: the restart probability α and the
type of the random walk, so that it is able to compute the transition probabilities. In Figure
5.3, we present an illustration of the walker. Next, we describe the implementation.

Conducting a random walk (active thread): The initiator of a walk selects a neighbor
according to the type of the random walk from its interaction subgraph (Figure 5.3a)
and it sends it two messages: an introduction request and an interaction request (Figure
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5.3b). According to the introduction request, the initiator of the walk requests from the
selected neighbor an introduction to one of its neighbours, namely its contact details.
The introduced node will be contacted as the next step of the walk. Next, by sending an
interaction request, the initiator requests from its selected neighbor the history of its direct
interactions. The transferred data packages could be encrypted so that the content cannot
be deciphered by third parties. After having received the corresponding responses from
its selected neighbor, the initiator has completed a walk step and it proceeds to the next
step of the walk by sending an introduction and an interaction request to the introduced
node. If that node turns out to be off-line, it returns to the previously visited node and
asks for a new introduction. As a result, the random walker is robust to the dynamics of
distributed networks and random failures. Each node continuously performs walk steps.
At each step, the walk might restart with restart probability α.

Reply to requests (passive thead): Each node waits for introduction and interaction
requests from other nodes. Upon receiving those requests, a node responses by selecting
one of its neighbors from its interaction subgraph according to the type of random walk.
Before introducing a node, it checks whether it is online.

This design ensures that our proposed walker is suitable for networks deployed in
the internet, where nodes may be behind firewalls or NATs, since UDP hole puncturing
mechanisms can be easily implemented during the introduction request. Upon an intro-
duction request, a node selects a neighbour and sends it a puncturing request. Then, the
selected neighbour sends a puncturing message to the initiator of the walk. Afterwards,
the initiator of the walk is able to send to it an introduction request that traverses the NAT
of the introduced node.

For simplicity we allow revisits and so, we do not have to keep in memory the previous
steps of the random walk. This could result in sending redundant messages, which could
be avoided by using Bloomfilters [29], a probabilistic data-structure testing whether an
element of information is already present in a set. In this case, before requesting the
history of interactions of a selected node, the initiator of a walk sends it a Bloomfilter
with its own part of the history of interactions.

Under extreme churn, the interaction graph of a network might be disconnected and
so, nodes might not be able to find walk counterparts among their neighbours. For in-
stance, in Yahoo! Instance Messenger only 5% to 15% of users are online at any time
instance during a day and most users stay in the system for limited time [31]. As a result,
the corresponding interaction graph is disconnected. In this case, we can integrate in our
method the solution proposed in [31] according to which trust is extended to two-hop
relationships among nodes. Consequently, each node looks for walk counterparts in its
two-hop neighborhood. This solution improves connectivity properties at the expense of
resilience to attacks.
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Table 5.2: The diameter, the average path length (L) and the clustering coefficient (cc) of
real-world graphs.

Graph # Nodes # Edges Diameter L cc

Power-law 1, 000 5, 725 5 2.92 0.067
Bartercast 1, 000 4, 723 8 2.64 0.0065
Facebook 1, 000 11, 596 9 3.38 0.13

5.4 Experiment Methodology

We evaluate EscapeLimit with the different types of random walks in terms of its re-
silience to attacks, its scalability, and its ability to provide relevant information. Partic-
ularly, we integrate EscapeLimit into Tribler, a p2p BitTorrent-based client and we run
1000 clients on a computer cluster. Each client emulates the interaction patterns deriving
from traces of synthetic and real-world datasets with different connectivity properties and
construction patterns. Simultaneously, each client collects information about the inter-
actions of other nodes using EscapeLimit. In this section, we describe our datasets, the
experiment setup, and the model to create the sybil attacks.

5.4.1 Datasets

In order to perform our emulations, we use datasets from synthetic power-law graphs and
graphs derived from Bartercast and Facebook networks. In the real world graphs, the
creation of edges is defined by timestamps available in the corresponding datasets which
are expressed in actual time. In the synthetic graphs, we divide time into time steps during
which new edges are added, since no notion of actual time exists.

We create a growing directed power-law graph based on the Barabási-Albert model
[14]. We start with a small connected seeding graph, and at each time step we add a
new node with 3 edges whose end points are adjacent to already existing nodes with
probabilities proportional to their degrees. After having created a network with 1000
nodes, we continue adding 3 directed edges at each time step, adjacent to existing nodes
again with probabilities proportional to their degrees. We allow the occurrence of multiple
edges between a pair of nodes and we consider the number of occurrences of an edge as
the weight of that edge.

The Bartercast graph contains information about 29,716 nodes and their interactions
[65]. In order to interpret interactions as trust in Bartercast, we reverse the direction of
links since when a user downloads from another user, the corresponding trust flows from
the former towards the latter.

The Facebook graph contains 63,732 users and their interactions [115].



87

Figure 5.4: The power-law (left), Bartercast (middle), and Facebook (right) graphs of
1,000 nodes.
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Figure 5.5: The distributions of nodes degrees and edge weights in the power-law, Barter-
cast, and Facebook graphs

The main difference between the Bartercast and the Facebook graphs, besides their
structural properties, is that the former is derived from a deployed distributed system
while the latter is derived from a centralized social network. Due to resource limitations
of the computer cluster, we conduct our emulations using a strongly connected com-
ponent of 1000 nodes. We constructed those strongly connected components from the
initial graphs by starting from the node with the highest degree a Breadth First Search
(BFS) modified so that it traverses only bidirectional edges. The characteristics of the
corresponding subgraphs are presented in Table 5.2. All the graphs are small-world char-
acterized by small average path length and small diameter. The Facebook graph forms
a tightly connected community. In Figure 5.4, we illustrate the selected strongly con-
nected components (small average path length and high clustering coefficient). On the
contrary, the Bartercast graph consists of a few highly connected nodes and many loosely
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Figure 5.6: The mixing time of the power-law, Bartercast, and Facebook graphs

connected nodes (small average path length and small clustering coefficient), since it has
a high population turnover. In Figure 5.5, we show their indegree distribution and the
distribution of their weights. We observe that the power-law and Bartercast graphs have
a few outlier nodes with high indegree. In this chapter, we use Tukey boxplots where
the bottom and top of the box depict the first and third quartiles of the distribution, the
band inside is the median. The outliers are identified using the interquartile range (IQR),
defined as the difference between the third and first quartiles. Outliers fall below 1.5 IQR
from the first quartile, and above 1.5 IQR from the third quartile. The whiskers indicate
the range of the distribution without the outliers.

To better understand the community structure of the graphs and interpret the evalu-
ation results of the random walks, we estimate their mixing time. The mixing time of
our strongly connected graphs is defined since all the nodes will be visited by a ran-
dom walk. In Figure 5.6 we present the total variation distance versus the mixing time
(walk length) averaged over 1000 initial distributions of a random walk. Facebook and
power-law graphs are fast-mixing graphs with tightly connected nodes. On the other hand,
Bartercast is slow-mixing because a few highly connected nodes keep the nodes connected
by forming clusters around them, as we see in Figure 5.4. Note that the clustering coef-
ficient of a graph indicates its clustering on a local level (the fraction of closed triangles
among its nodes), while its mixing time indicates its clustering into large communities.

5.4.2 The Restart Probability

During a random walk, the value of the restart probability α determines its expected
length l and as a result, its resilience against sybil attacks and its ability to collect relevant
information fast. Even though a large value of α allows the discovery of new nodes at a
large depth in the network, it draws the walk away from trusted and similar nodes. The
appropriate value of α depends on the characteristics of the graph. In our graphs, we
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Figure 5.7: The distance (in hops) between two nodes just before they interact

observe that the vast majority of nodes interact with other nodes that are only a few hops
away. In Figure 5.7, we present the probability of interaction between two nodes as a
function of their distance just before they interact. Our graphs exhibit a high locality
of interaction, which implies that a node does not need to perform long walks in order
to acquire relevant information. Particularly in real-world graphs, we observe that more
than 90% of pairs of interacting nodes have a distance of at most 3 hops just before they
interact. Therefore, for these graphs we use random walks with an expected length l of
3 hops. In synthetic graphs, we use random walks of an expected length of 4 hops, since
for power-law graphs the majority of pairs of interacting nodes have a distance of at most
4 hops just before they interact.The restart parameter is computed as a function of the
desired expected length as α = 1/(l+ 1) [12]. So, for real-world graphs we use α = 0.25

and for synthetic graphs, α = 0.2.

5.4.3 Experiment Setup

We integrated the proposed random walker in Tribler and we can evaluate it on the DAS-
4 supercomputer [1] available at Delft University of Technology. Particularly, we run
1000 clients distributed evenly on 20 nodes of DAS-4. In Tribler, the dissemination of
information is based on epidemics [43]. We modified only its dissemination component
integrating the proposed random walker.

Each Tribler client has its own local database keeping its own locally stored history of
interactions and it interacts with other clients following the interactions in the previously
described datasets. At the same time it performs its own random walks towards other
nodes. We divide our datasets into two parts: a small part used for initialization and the
main part used for emulation. In Facebook, this initialization part consists of the interac-
tion occurred during the first week in the corresponding dataset, in Bartercast during the
first day, and in power-law graphs during the first 1000 steps.
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After the end of the initialization process, nodes emulate the interactions, compute
the reputations of nodes and walk towards each other collecting information. The time of
emulated interactions has been mapped to the duration of our emulation. A node emulates
an interaction with another node, by creating a record with the details of this interaction
and it sends it to the other interacting node. Then, both nodes store this record in their
database and they include it in the history of interactions they distribute. All nodes per-
form walk steps with the same period about every 30 secs so that all nodes perform a
similar number of random walks during the experiment. Each experiment lasts 2 hours.

5.4.4 Sybil Attack Model

We evaluate EscapeLimit against sybil attacks assuming that the honest nodes interact
frequently with each other forming a well-connected community. On the contrary, inter-
actions between honest and sybil nodes are limited due to the high social engineering cost
required [117]. As a consequence, the honest nodes form a region that is well separated
from the sybil region. The sybil nodes can be connected with each other in an arbitrary
way. The two regions are connected by the attack edges that link nodes in the sybil region
to victim nodes in the honest region. This sybil attack model has been used by most of
the schemes proposed in the literature [125], [126] and it has been verified in real social
networks [25]. Some other studies on social networks have shown that honest and sybil
nodes are well connected [123]. However, those studies examined only the graph deriving
from the social connections among nodes and not their interactions.

For our evaluation, we allow the graphs having different community structures without
any assumptions. Most of the random walk-based methods proposed in literature against
sybil attacks [25], [39] assume fast mixing graphs, since they have tight trust relationships
between the nodes. On the contrary, in a slow-mixing graph multiple communities exist
and so, sybil nodes might be incorrectly recognised as honest. We use both fast-mixing
graphs such as Facebook where honest nodes form one well-connected community, and
slow-mixing graphs such as Bartercast, where more than one community is present.

In our experiments, we take as the honest region our initial datasets and we create a
power-law graph of 100 nodes as a sybil region, since it has been shown in a recent study
[25] that the sybil region has a skewed degree distribution. Then, we randomly choose
some sybil nodes and some victim nodes and connect them through the corresponding
attack edges. To each attack edge, we assign probabilistically a weight in the range of
the weights of edges among honest nodes so that, attack edges with small weights are
more common, since it is more costly for an attacker to create an attack edge with a large
weight than an attack edge of a low weight. For the timestamp of the attack edges, we
assume that they are uniformly distributed over time. The nodes in the sybil region can
claim any values for the properties of their edges.
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Figure 5.8: Resilience against sybil attacks: the escape probability of the different random
walks in the power-law, Bartercast, and Facebook graphs.

5.5 Evaluation

In this section, we present the results of the evaluation of EscapeLimit with the different
biased random walks in terms of its resilience to attacks, its scalability and its ability to ac-
quire relevant information fast. We use a set of metrics associated with our requirements.
All the presented results are the average of 10 experiments.

5.5.1 Resilience against Sybil Attacks

A random walker escaping into the sybil area will be trapped there till it restarts. There-
fore, we evaluate the fraction of walks escaping into the sybil region when starting at
any node in the honest region, which is called the escape probability [125]. Lower val-
ues of escape probability indicate higher resilience against sybil attacks. This probability
depends on the number of attack edges, since in order to escape to the sybil region, the
random walk has to traverse an attack edge.

In Figure 5.8 we present the escape probability of the different random walks de-
pending on the average number of attack edges per honest node for the different datasets.
Independently of the characteristics of the graphs, all biased RWs exhibit a smaller escape
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Table 5.3: Scalability: the correlation between the indegree and the distribution of the
communication load of the walks

power-law Bartercast Facebook

RW 0.939 0.88 0.77
bRW 0.94 0.75 0.78

MHRW −0.82 −0.6 −0.51
MERW 0.95 0.89 0.817

probability into the sybil region than simple RW, indicating that the strength of interac-
tions, and the activity level of nodes are accurate indicators of trust. The fast-mixing
graphs, power-law and Facebook, have smaller escape probability when using RWs and
MERW than Bartercast. Being fast-mixing, those graphs have a tightly connected honest
region and a random walk does not escape into the sybil region with high probability. In
power-law graphs, wRW exhibits the highest escape probability in comparison with the
other graphs since in power-law graphs the range of the weights is smaller.

Nevertheless, independently of the characteristics of the graph, wRW and MHRW
exhibit the lowest escape probability, which increases very slowly with the increase of
the number of attack edges per honest node. Highly weighted attack edges are more rare
due to high engineering cost required for their creation and as a result, wRW traverses
with low probability the attack edges. Hence, it exhibits low escape probability for all the
examined graphs. Furthermore, MHRW tends to visit low degree nodes at the periphery
of the network and so, it rarely escapes into the sybil region. On the contrary, MERW
visits more often high degree nodes, and as a result it has a similar escape probability to
RW.

5.5.2 Scalability

In Section 5.1, we define scalability in terms of three dimensions: fault-tolerance, system
load, and administration. By construction, our proposed random walker is able to handle
node failures. Furthermore, it has low computational cost since at each step only the
transition probabilities are computed and each node maintains connectivity information
only about its neighbors. Therefore, it is scalable in terms of the fault-tolerance and the
administration requirements and so, we have to evaluate its system load in terms of its
communication overhead. In EscapeLimit, each node sends one introduction request to
another node in the system. Thus, the communication overhead at each node during a
random walk depends on the visit ratio of that node at each step, namely the fraction
of introduction requests it receives from other nodes at each walk step. To evaluate this
overhead at each node, we define the distribution of communication load in terms of the
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Figure 5.9: Scalability: the distribution of the communication load of nodes for the dif-
ferent random walks in the power-law, Bartercast, and Facebook graphs.

average visit ratios of the nodes per step. This ratio is proportional to indegree of a node,
as is presented in Table 5.3. Due to the highly skewed indegree distributions of real-world
networks, a few highly connected nodes receive the majority of introduction requests. As
a results, those highly connected nodes may be overloaded.

In Figure 5.9, we present the distribution of communication load of nodes in the
power-law, Bartercast and Facebook graphs when we integrate different biases in the
random-walk based collection method. Since we ran the experiment for 1000 nodes, the
optimal communication load value for a node is 0.001, meaning that it has been visited
exactly once during a walk step. In this experiment, we do not include sybil nodes, since
sybils will have no impact on the communication load of honest nodes.

For all the examined graphs, MHRW distributes the load evenly to almost all the nodes
independently of the indegree distribution of the corresponding graph. In a random walk,
the high degree nodes are visited more often, but this property is counterbalanced by the
bias of MHRW towards the low-degree nodes and so, MHRW achieves an almost uniform
load distribution. Conversely, MERW intensifies the selection of the highly connected
nodes and as a result, in all graphs it exhibits the most skewed distribution of commu-
nication load. Particularly in the power-law graph, a few highly connected nodes have a
communication load value close to 0.100 implying that those nodes receive 100 introduc-
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Figure 5.10: Relevance: the average relative size between the interaction subgraphs of
nodes and the interaction graphs of the power-law, Bartercast, and Facebook networks
over consecutive steps of the different random walks.

tion requests during a walk step. Those nodes cannot reply to all those request and as a
result, MERW is not scalable in that graph. Furthermore, wRW has a load distribution
similar to RW.

5.5.3 Relevance of Information

In order to capture different characteristics of the relevance of the acquired information
at each step of the walk, we use two metrics. The first metric is the relative size of
the interaction subgraph Gi at node i with respect to the size of G and it is defined as
RE(Gi, G) = |Ei|/|E| [100].

According to the second metric, the ranking similarity (RS), the interaction subgraph
Gi at node i is similar to G if it produces similar reputation rankings of the most highly
reputed nodes. Ranking similarity is a modification of Spearman coefficient and the vertex
ranking metric proposed in [93], so that it can be applied to lists of different lengths and
takes into account the reputation of each node. If we denote by r (and ri) the reputation
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Figure 5.11: Relevance: the average ranking similarity between the interaction subgraphs
of nodes and the interaction graphs of the power-law, Bartercast, and Facebook networks
over consecutive step of the different random walks.

vector produced at G (and Gi), then the ranking similarity is defined as:

RS(G,Gi) = 1−
∑

u∈Vi r(u)(σ(r(u))− σ(ri(u)))2

D
,

where σ(r(u)) (and σ(ri(u)) ) is the rank of the reputation of node u in r(u) (and ri(u)

) when only vertices in Vi are considered and r (and ri) is ordered in decreasing order.
The normalization factor D is equal to

∑
u∈Vi r(u)(σ(r(u)) − σ(rw(u)))2 where rw is

the sequence containing the nodes in Vi in reverse order from r. The ranking similarity
between the two graphs is equal to 1 if their reputation vectors produce exactly the same
ranking. On the contrary, a ranking similarity equal to 0 indicates that the ranking derived
from ri is the reverse of the ranking deriving by r.

In Figure 5.10, we present the relevant size between the interaction graph and the inter-
action subgraphs over consecutive steps of the different random walks for all the datasets.
For all the different graphs, MERW achieves the largest relative size faster. According to
MERW, each nodes visits with higher probability the highest degree nodes. These nodes
have the majority of information since they perform the majority of interactions. On the
contrary, MHRW visits mostly low degree nodes which perform very few interactions and
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Table 5.4: The ability of random walks to satisfy the requirements of a collection mecha-
nism applicable to distributed reputation systems

Method Resilience to Attacks Scalability Relevance of information

RW fair good good
wRW very good good good

MHRW very good very good poor
MERW good poor very good

so, results in very small relative size.
In fast-mixing graphs after some steps all the random walks achieve almost perfect

relative size. On the contrary, in Bartercast only MERW achieves perfect relative size. As
we can see from its indegree distribution in Figure 5.5, Bartercast has 3 hubs and most
nodes are not connected with each other but only with the hubs. As a result, all the RWs
but MERW do not manage to visit all the hubs and visit other nodes in the periphery since
their expected length is small. In graphs with skewed degree distribution, such as power-
law graph and Bartercast, all the different random walks achieve most of the information
after a small number of walks steps since those hubs are visited with higher probability.
Piatek et al [96] based their dissemination scheme on a similar observation. However, in
graphs with a more symmetric degree distribution, such as Facebook, the collection of
information is much slower. Particularly, MHRW on Facebook needs more than 40 steps
to achieve most of the information.

In Figure 5.11, we present the ranking similarity between the interaction graph and
the interaction subgraphs over consecutive steps of the different random walks for all the
datasets. In accordance with the results for relative size, MERW achieves faster a high
ranking similarity while MHRW is the slowest. In power-law and Bartercast graphs, rank-
ing similarity follows the patterns of relative size due to the skewed degree distribution. In
these graphs, the hubs not only have a high degree but a high reputation as well. In Face-
book, there is an instability in the ranking similarity in the first steps of random walks.
The Facebook graph has a large clustering coefficient and it does not have outliers like
the other two graphs. As a result, it achieves a high ranking similarity slower. From Fig-
ure 5.10, we observe that during those steps nodes collect about 75% of the information.
Afterwards, the ranking similarity increases.

5.5.4 Discussion

Our evaluation indicates that properly biased random walks satisfy the requirements of
an applicable collection method since they achieve resilience to sybil attacks, good load
balancing and provides relevant information. The bias of a random walk determines the
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extent to which each requirement is satisfied. In Table 5.4, we summarize the experimen-
tal results for all the different random walks.

In fast-mixing networks, simple RW achieves good resilience against attacks while in
slow-mixing networks it escapes with high probability into the sybil region even if the
number of attack edges per honest node is small. Furthermore, it distributes the commu-
nication load across the nodes of a network with a preference towards nodes with high
degree. RW is suitable only for fast-mixing networks. Adding the appropriate biases by
using richer information about the interactions of nodes further improves its quality.

Through our experimental results, we have shown that wRW achieves robustness
against sybil attacks and collects relevant information independently of the characteristics
of the graph. Therefore, the strength of interactions represent accurately both the trust and
the similarity of nodes. Furthermore, the communication load at each node when using
wRW is close to RW. This type of walk is suitable for all networks and particularly for
networks where the strength of edges has a skewed distribution.

Next, we studied the bias towards the nodes with low activity, namely the nodes with
low degree. In MHRW, the bias is towards the low degree nodes. This walk achieves
high resilience to attacks since sharing interactions with low degree nodes is a stronger
indication of trust than interactions with high degree nodes. Furthermore, MHRW has ex-
cellent load balancing properties independently of the degree distribution of the network.
However, a node visiting the low degree nodes cannot obtain fast relevant information.
This type of walk can be used when for a network the main concerns are security and load
balancing.

Besides the strength of interactions, the activity level of a node as represented by its
degree is another indicator of trust and similarity among nodes. In MERW, the resilience
against sybil attacks is similar to that of RW indicating that sharing interactions with
high degree nodes is not a strong indication of trust. Furthermore, the bias towards the
high degree nodes results in overloading those nodes. Nevertheless, MERW achieves fast
relevant information since it visits more often the hubs even if the network is slow-mixing.
Through the hubs, MERW manages to visit the different communities in a slow-mixing
network. This type of walk is suitable for slow-mixing graphs when the fast acquisition
of relevant information is important.

5.6 Conclusion

In this chapter, we propose a method to collect information in distributed reputation sys-
tems. EscapeLimit collects only relevant and trusted information by constraining relative
size. information in distributed reputation systems based on random walks. EscapeLimit
collects only relevant and trusted information as well as reduces the escape probability
of an honest node to the Sybil area. EscapeLimit uses the observation that user interac-
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tions require real effort and so, they reflect trust and similarity among users. Our design
is suitable for internet deployed networks with high dynamics. We guide random walks
in EscapeLimit with three different trust-driven user properties and through experimental
evaluation we show their effectiveness in terms of resilience to attacks, scalability and
the ability to provide each user with relevant information. Our evaluation suggest that
the strength of user interactions guides random walks efficiently in almost any type of
network.



Chapter 6

Conclusion

In this thesis, we studied decentralized reputation systems in order to establish trust among
strangers in online communities. Their large number of participants and their vulnerabil-
ity to attacks challenge the identification of relevant and trustworthy information. We rep-
resent node interactions as a growing graph with nodes representing the users and edges
the interactions between two users, called the interaction graph. This interaction graph
could capture the individual characteristics of each user as well as the collective user be-
havior. By analyzing interaction graphs derived from real-world and synthetic networks,
we gained key insights about the interaction patterns of nodes and we designed more ef-
ficient algorithms for each of the three components of decentralized reputation systems:
the computation of reputations, and the storage of the history of user interactions, and its
collection. Below we present our conclusions and suggestions for future work.

6.1 Conclusions

Our conclusion answer the research questions presented in the introduction of this thesis
and are presented below:

1. Max flow-based computation of reputations is more accurate when using the node
with the highest Betweenness Centrality (BC) in the computation of reputations.
However, BC is expensive to be computed. We experimentally evaluated two dif-
ferent approximate approaches for computing BC, exploring both theoretical graph
models (random and scale-free) and the graph derived from the actual operation of
the Bartercast reputation system. For growing networks, our first approach relies on
the observation that the nodes with high BC in real-world networks remain almost
invariant over time. For large networks, our second approach consists in assessing
three approximation methods in terms of their ability to identify the top-most central
nodes. We conclude that in scale-free graphs, the BC approximations are efficient
and highly accurate, while in random graphs, due to their structural properties, it
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is harder to identify the most central nodes. In the graph derived from Bartercast,
these approximations exhibit similar performance and are adequately accurate. Fi-
nally, we have integrated the approximation methods for BC into the computation
of reputations in Bartercast, and we found the accuracy and the coverage of the
computed reputations for two of these methods to be excellent.

2. Random walk-based computations of reputations are more robust against uncoop-
erative nodes and Sybil attacks when they are biased with the properties of nodes.
We showed that the robustness of a biased random walk agains uncooperative nodes
depends on the characteristics of the graph. In graphs with both specific construc-
tion patterns and nodes with heterogenous properties, such as the scale-free, Ci-
tation and Facebook graphs, predicting the behavior of nodes is very accurate. In
graphs of nodes with uniform properties and highly dynamic behavior, biased ran-
dom walks predict less accurately the behavior of nodes but still much better than
simple random walks. Furthermore, the appropriate node properties to bias random
walks against Sybils depend on the characteristics of the graph. In graphs with large
clustering coefficient, such as our scale-free, Facebook and Citation graphs, random
walks biased with node similarities are very effective. In graphs with edges with
heterogenous strengths, such as Bartercast and Facebook, biasing random walks
with the strength of an edge is very effective while using temporal properties is
effective in graphs with strong temporal patterns.

3. For storing information in a decentralized reputation system, using the complete
history of interactions in a reputation system is costly. Having observed that not
all the stored information contributes equally to the computation of reputations, we
have proposed the use of the reduced history of interactions instead of the complete
history and we defined the main parameters for choosing the information partici-
pating in it. Next, we have evaluated our approach experimentally exploring both
theoretical graph models and real-world graphs using two reputation algorithms, a
max-flow based algorithm and Pagerank. We conclude that for scale-free and real-
world graphs, the reduced history is reasonably accurate, while for random graphs,
due to their structural properties, the reduced history causes lower accuracy. Fur-
thermore, we have demonstrated that using the max-flow based algorithm results
in better identification of the highest ranked nodes while using Pagerank results in
better ranking similarity.

4. We proposed a method for the collection of information for distributed reputation
systems using random walks. Our method is based on the observation that user
interactions require real effort and so, they reflect trust and relevance among users.
Our design is suitable for internet deployed networks. We guided random walks
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with three different trust-driven user properties and through experimental evaluation
we show their effectiveness in terms of their resilience to attacks, their scalability
and their ability to provide each user with relevant information. Our evaluation
suggests that the strength of user interactions guides random walks efficiently in
almost any type of network.

6.2 Suggestions for Future Work

Below we present directions for future research based on the insights derived from this
thesis:

1. As betweenness centrality is too expensive to be computed in large growing graphs,
we used approximations for identifying the most central nodes in Chapter 2. The
approximations are efficient only for graphs with skewed degree distributions. In-
cremental algorithms for betweenness centrality may give new opportunities for
centrality computations in online systems. Their design is not trivial because of un-
realistic storage costs for intermediate results. However, incremental betweenness
centrality algorithms might be efficient for graphs with particular topologies.

2. In Chapter 3, we proposed biased random walks assuming that all nodes use a
globally fixed time window and teleportation parameter. As future work, it will be
useful to design an adaptive algorithm in which each node defines its own values for
the time window and teleportation parameter based on its perception of the graph.
Those parameters will dynamically adapt to changes of the graph.

3. Reducing the history of interactions in decentralized reputation systems is very
challenging as indicated by the high values of error in our results in Chapter 4.
Our proposed algorithm leverages global properties of nodes and edges in order
to reduce the history of interactions. Personalized graph-based algorithms may fur-
ther improve the accuracy of the reduced history. Evaluating those algorithms using
graph-based similarities will result in new insights into the usage of reduced history.

4. In Chapter 5, we proposed a random walk-based method for collecting the history of
interactions. Our approach is suitable for online networks but we did not evaluate
its performance under extreme churn. Assessing the impact of extreme churn in
a random walk-based collection of information is very useful for networks with
high dynamics such as P2P systems. Furthermore, we biased the random walks
with three different trust-driven user properties resulting in different performance
in terms of resilience to attacks, scalability and ability to provide each user with
relevant information. The design of an adaptive algorithm that is able to switch
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between these three biases depending on the demands of each user, could be very
useful, as user behavior changes over time.

5. While in this thesis we assumed that users only participate in one online commu-
nity, nowadays users participate in many online communities at the same time. A
line of research may explore the propagation of reputations across multiple online
communities. For example, researchers could study which communities have sim-
ilar user reputations. In this context, we could answer if the reputation of a user in
Bartercast reveals his behavior in Facebook or if the interaction subgraph of a user
in Facebook is useful for computing reputations in Youtube.



103

Bibliography

[1] Das-4. http://www.cs.vu.nl/das4/, 2014.

[2] Diaspora. https://diasporafoundation.org, 2014.

[3] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social Net-
works, 2003.

[4] B. Thomas Adler and Luca de Alfaro. A content-driven reputation system for the
wikipedia. In WWW, 2007.

[5] R. Albert. Scale-free networks in cell biology. Journal of Cell Science, 2005.

[6] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley. Classes of small-
world networks. PNAS, 2000.

[7] J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71, Sticht-
ing, Mathematisch Centrum, Amsterdam, 1971.

[8] Robert Axelrod and Richard Dawkins. The Evolution of Cooperation: Revised
Edition. Basic Books, 2006.

[9] Lars Backstrom and Jure Leskovec. Supervised random walks: Predicting and
recommending links in social networks. In WSDM, 2011.

[10] D. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness
centrality. In Algorithms and Models for the Web-Graph, 2007.

[11] D. A. Bader and K. Madduri. Parallel algorithms for evaluating centrality indices
in real-world networks. In International Conference on Parallel Processing, 2006.

[12] Coralio Ballester and Marc Vorsatz. Random walk based segregation measures.
Review of Economics and Statistics, 2011.

[13] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of pagerank and reverse
pagerank. In ACM SIGIR, 2008.



104

[14] A. L. Barabási and R. Albert. Emergence of Scaling in Random Networks. Science,
1999.
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Summary
Exploiting Graph Properties for Decentralized Reputation Systems

Decentralized reputation systems are the most promising mechanism to establish trust
among users in networks such as online markets on mobile devices, P2P file-sharing sys-
tems, and social networks, and to provide incentives to users to stay longer and contribute
into the networks. In these systems, each user locally stores not only its own past interac-
tions but the past interactions of other users, as well. Using this information, it computes
the reputations of other users in order to take decisions about its future interactions. Due
to the large number of the participating users, their highly dynamic behavior, the limited
resources available at each users, several challenging scalability and security issues arise.
In order to face those challenges, we divide the functionality of a decentralized reputation
system at each node in three components: the collection of the history of user interactions,
its storage and the computation of reputations. We model networks as growing interaction
graphs, with nodes representing the users and edges the interactions between two users.
By analyzing graphs deriving from real networks (such as Facebook, the author-to-author
citation network, P2P file-sharing networks), and synthetic (random and scale-free) net-
works, we observe their graph properties and their evolution over time.

First, we focus on the computation of reputations. There are two widely used cat-
egories of algorithms for computing the reputations: max-flow based computations and
random walks. Max-flow based computation is secure against attacks but inaccurate, and
increasing its accuracy is computationally intensive. On the other hand, random walks are
computationally efficient, accurate but vulnerable to a great range of attacks. We explore
and improve both types of computations.

In Chapter 2, we show that for max-flow based computation, using the most central
nodes of the network as start points of the max-flow algorithm increases its accuracy on
the computed reputations, since the majority of nodes is reachable in a short distance by
the most central nodes. However, identifying the most central nodes in a large network is
computationally expensive due to the involvement of the all-pair shortest path problem.
Our analysis in growing synthetic and real-world graphs reveals that in most reputation
networks there are only a few central nodes that tend to keep their central position over
time. Based on this observation, we evaluated approximate methods for identifying the
most central nodes in our growing networks. Then, we show the effectiveness of using
as starts points the most central nodes as computed by the approximate methods on the
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computed reputations.
In random-walk based computations, nodes visited during a random walk treat all their

neighbors equally, ignoring any properties they may have. Nevertheless, we show that the
properties of a node such as its activity, and its position on the graph, indicate accurately
its reliability, and that random walks exploiting these properties are more resilient against
attacks than simple random walks. Through extensive analysis, we identify the properties
of nodes indicative of their reliability and we bias random walks towards the most reliable
nodes. Each node initiates its own random walks and computes its own personalized
reputations for the other nodes. We evaluate biased random walks against free-riding and
sybil attacks in growing synthetic and real-world graphs. We show that biased random
outperform significantly random walks against attacks in all our graphs. Furthermore, we
observe that the properties indicative of the reliability of nodes depend on the structure
and the construction process of the corresponding graph.

In Chapter 4, we focus on the storage of the history of interactions at each node. Using
the complete history of interactions on the computation of reputations is prohibitive due to
its resource requirements. Furthermore, the complete history of interactions accumulates
old information, which impedes the nodes from capturing the dynamic behavior of the
system when computing reputations. We observe that all the historical interactions are not
of the same importance due to their age, their strength, their reliability and their position in
the graph, and we propose an algorithm for removing the least important interactions. We
explore its effect on the computed reputations by both max-flow and random-walk based
algorithms. Furthermore, we show its effectiveness in synthetic and real-world graphs.

Finally, we focus on the collection of the history of interactions. In a decentralized
reputation system, each node collects information by other users. Most decentralized
collection algorithms are based on epidemic protocols without assessing the relevance and
trustworthiness of the exchanged information. Nevertheless, the past interactions of nodes
can be indicative of similarity and trust between two nodes. Based on this observations,
we propose a decentralized algorithm based on random walks where each node uses its
own part of the history of interactions to navigate in the network and collect parts of
the histories of interactions of other nodes. We integrate to it different types of random
walks. We emulate the interactions in growing synthetic and real-world graphs and we
explore the efficiency of the integrated random walks in terms of scalability, accuracy and
robustness against Sybil attacks.
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Samenvatting
Exploiting Graph Properties for Decentralized Reputation Systems
Gedecentraliseerde reputatie systemen zijn het meest veelbelovende mechanisme voor het
bewerkstelligen van vertrouwen tussen gebruikers binnen verschillende typen netwerken,
zoals online markten op mobiele apparaten, P2P systemen voor het delen van bestanden
en sociale netwerken. Daarnaast kunnen deze reputatie systemen een beloning bieden
aan gebruikers om langer in het netwerk te blijven en om meer bij te dragen aan het
netwerk. In deze systemen slaat elke gebruiker niet alleen zijn eigen interactiegeschiede-
nis op, maar ook de interactiegeschiedenis van andere gebruikers. Met deze informatie
kan de reputatie van andere gebruikers worden berekend, die daarna kan worden ge-
bruikt om beslissingen te nemen over toekomstige interacties. Vanwege het grote aantal
deelnemende gebruikers, hun zeer dynamische gedrag en de beperkte bronnen beschik-
baar bij elke gebruiker, ontstaan er verscheidene uitdagende problemen op het gebied
van schaalbaarheid en beveiliging. Om deze problemen aan te pakken, verdelen we de
functionaliteit van een gedecentraliseerd reputatie systeem op elke knoop in drie com-
ponenten: de verzameling van de geschiedenis van alle interacties tussen gebruikers, de
opslag hiervan en de berekening van reputaties. We modelleren netwerken als groeiende
interactie-grafen, waarin knopen de gebruikers en lijnen de interacties tussen twee ge-
bruikers voorstellen. Door de analyse van grafen die zijn afgeleid van echte netwerken
(zoals Facebook, de auteur-naar-auteur citatie graaf en P2P netwerken) en kunstmatige
(willekeurig en schaalvrij) netwerken, bestuderen we de eigenschappen van de graaf en
hun evolutie.

Als eerste focussen we op de berekening van reputaties. Er bestaan twee veelge-
bruikte categorieen van algoritmes voor het berekenen van reputaties: algoritmes die zijn
gebaseerd op het max-flow principe en random walks. Berekeningen gebaseerd op max-
flow zijn veilig tegen aanvallen maar onprecies, en het verbeteren van die precisie is een
kostbare taak. Daarentegen zijn random walks goedkoop in uitvoer en bieden ze een hoge
precisie, maar zijn ze tegelijkertijd vatbaar voor een grote variëteit aan aanvallen. We
verkennen en verbeteren beide type berekeningen.

In hoofdstuk 2 laten we zien dat het kiezen van de meest centrale knopen van een
netwerk als startpunten van het maxflow-algoritme de precisie van de berekende repu-
taties verhoogt, omdat de meerderheid van de knopen dan bereikbaar is via een korte
afstand vanaf deze startpunten. Helaas is het identificeren van de meest centrale knopen
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in een groot netwerk duur vanwege het alle-paren kortste-pad probleem. Onze analyse van
groeiende kunstmatige grafen en grafen uit de echte wereld onthult dat in de meeste rep-
utatie netwerken slechts een klein aantal centrale nodes bestaat dat deze centrale positie
ook daadwerkelijk vasthoudt. Gebaseerd op dit idee, hebben we methoden geevalueerd
voor het benaderen van de meest centrale knopen in onze groeiende netwerken. Daar-
naast hebben we de effectiviteit aangetoond van het gebruik van dergelijke methoden op
de berekende reputaties.

In berekeningen die op random walks gebaseerd zijn, worden alle knopen bezocht ti-
jdens de walk als gelijke beschouwd, en dus worden hun eigenschappen genegeerd. Wij
tonen aan dat de eigenschappen van een knoop, zoals zijn activiteit en positie binnen de
graaf, een goede indicatie geven van de betrouwbaarheid van de knoop. Daarnaast tonen
wij aan dat random walks die rekening houden met deze eigenschappen beter bestand
zijn tegen aanvallen dan traditionele random walks. Door uitvoerige analyse identificeren
we welke eigenschappen de betrouwbaarheid van een knoop bepalen en we geven onze
random walk een voorkeur naar de knopen met de hoogste betrouwbaarheid. Elke knop
start zijn eigen random walks en berekent zijn eigen gepersonaliseerde reputaties voor de
andere knopen. We evalueren hoe random walks met voorkeur reageren op free-riding en
sybil aanvallen in groeiende grafen die zijn gebaseerd op kunstmatige en echte netwerken.
We tonen aan dat random walks met voorkeur veel beter dan random walks reageren op
aanvallen in al onze netwerken. Verder observeren we dat de eigenschappen die de be-
trouwbaarheid van de knopen bepalen afhangen van de structuur en het constructieproces
van de bijbehorende graaf.

Vervolgens richten we ons op de opslag van de interactiegeschiedenis op elke knoop.
Het gebruik maken van de volledige interactiegeschiedenis is niet mogelijk vanwege de
vereiste capaciteit. Verder bevat de volledige interactiegeschiedenis veel oude informatie,
die het moeilijk maakt voor de knopen om het dynamische gedrag van het systeem op te
vangen tijdens het berekenen van de reputaties. We observeren dat niet alle historische in-
teracties even belangrijk zijn vanwege hun leeftijd, sterkte, betrouwbaarheid en positie in
de graaf, en we presenteren een algoritme voor het verwijderen van de minst interessante
interacties. We verkennen het effect op de berekende reputaties door zowel max-flow als
random-walk gebaseerde algoritmes. Verder tonen we de effectiviteit in kunstmatige en
echte grafen aan.

Tenslotte focussen we op de verzameling van de interactiegeschiedenis. In een gede-
centraliseerd systeem, elke knoop verzamelt informatie van andere gebruikers. De meeste
gedecentraliseerde verzamelalgoritmes zijn gebaseerd op epidemische protocollen waarin
geen rekening wordt gehouden met de relevantie en betrouwbaarheid van de uitgewisselde
informatie. Niettemin kan de interactiegeschiedenis van knopen indicatief zijn voor geli-
jkheid en vertrouwen tussen twee knopen. Gebaseerd op deze observaties, stellen wij een
gedecentraliseerd algoritme, gebaseerd op random walks, voor waarin elke knoop zijn



117

eigen deel van de interactiegeschiedenis gebruikt om binnen het netwerk te navigeren en
om delen van de interactiegeschiedenis van andere knopen te verzamelen. We integr-
eren dit algoritme voor verschillende type random walks. We emuleren de interacties in
groeiende kunstmatige en echte grafen en verkennen de efficiëntie van de geintegreerde
random walks op het gebied van schaalbaarheid, precisie en robuustheid tegen Sybil aan-
vallen.
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