
3D City Models
in the Context of Urban Mining

Pablo Antonio Ruben
2019

MSc thesis in Geomatics for the Built Environment

A case study based on the CityGML model of Rotterdam

3 D C I T Y M O D E L S I N T H E C O N T E X T O F U R B A N M I N I N G
A C A S E S T U DY B A S E D O N T H E C I T Y G M L M O D E L O F R OT T E R DA M

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Pablo Antonio Ruben

July 2019

Pablo Antonio Ruben: 3D city models in the context of urban mining (2019)
cb This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 978-94-6366-193-5

The work in this thesis was made in the:

H2020 REPAiR Project (REsource Management in Peri-
urban Areas)
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Rusnė Šileryté, MSc.
Dr. Giorgio Agugiaro

Co-reader: Kaixuan Zhou, MSc.
Delegates of the board of examiners: Prof. P.J. Russell and Dr. R.M.J. Bokel

http://creativecommons.org/licenses/by/4.0/

In memory of Gitta Scheenhouwer. We will always remember and miss you.

v

A B S T R A C T

Recently, the application of machine learning and data fusion techniques on hy-
perspectral imagery have demonstrated potential for ground cover classification at
material level. Hereby, specific locations of resources enclosed in cities (e.g. roof
materials) can be identified, which is critically relevant within the field of urban
mining.

A limitation of this approach is the so-called pepper and salt effect, the oversen-
sitivity of the classifiers to spectral variations within a pixel (e.g. chimneys, roof
windows). Identifying and correcting affected pixels can be done statistically (e.g.
using a majority filter), but not in cases where spectral variations affect a majority
of pixels characterizing a surface.

A solution to this limitation would be the usage of 3D city models containing
the objects inducing the spectral variations. However, such highly detailed 3D city
models are often unavailable as they cannot be produced automatically yet.

An alternative covered by this research is to use a less detailed 3D city model
and semantically enrich it with the required data. As 3D city models are usually
produced using a point cloud, such a point cloud is used to perform the enrichment.
The main research question addressed is therefore: How can a CityGML LOD2 model
be semantically enriched in order to improve material classification performed on roof sur-
faces?.

To address this, an existing LOD2 model was compared to a point cloud acquired
by Ligth Detecation and Ranging and ’deviation’ points were identified. This identi-
fication uses a distance check for seed selection and performs a region growing with
an orientation check. In a subsequent step, ’deviation’ point regions were translated
into a geometric shape by usage of their Voronoi diagram and fused with the pixels
of hyperspectral imagery.

Part of this research is also a nominal validation analyzing a total of 41 buildings
and 831 pixels located in the south of Rotterdam (Netherlands). Overall kappa
values of up to 0.7 and commission errors as low as 10% (for the class ’clean’ pixels)
were obtained, showing potential of the chosen method. Additionally, a rational
validation was performed to assess the impact of potential tolerance of classifiers
for ’spectral deviations’. This one only included 10 buildings, but took into account
328 pixels located up to 30% outside the roof surface

A main outcome is the recommendation on settings to use depending on the
specific user needs. To accurately quantify materials, relatively ’loose’ settings are
recommended. In contrast, to identify presence of materials, stricter settings are
recommended. Beyond this, recommendations to data suppliers and potential ap-
plications of the method to other fields are formulated.

vii

A C K N O W L E D G E M E N T S

First of all, I would like to thank my tutors for the critical but always kind and con-
structive mentoring during these 9-month graduation process. While the student
obviously takes the lead of the thesis research, I am now more than ever convinced
that the context matters a lot too. Rusnė and Giorgio, I would like to thank you for
having made this thesis possible. Your interpersonal skills are highly appreciated,
please continue taking care of students this way!

The world of geomatics would not be what it is without the generous, open user
communities supporting it. This was also the case here and, beyond the online
communities many of us use, I would like to thank some people more specifically:

- the Rotterdam 3D department (especially Christian Wisse) for their kind interest
and support, sharing with me a high-density point cloud and a number of technical
specification documents. And also for giving me the opportunity to present and
discuss my work at their offices in March and July 2019.

- the team of the Airborne Prism Experiment, especially Andreas Hueni, and Do-
minik Brunner from the Swiss Federal Laboratory for Material Science; for granting
me access to the data acquired during the 2014 flight above Rotterdam.

- geoforum.nl and especially Ingrid Alkemade and Rinaldo Bhailal for sharing
the specifications of aerial images and the AHN point cloud.

- last but not least, I would like to thank my co-reader, Kaixuan Zhou who thor-
oughly and critically read my document for the second to last assessment.

A big thank you also goes to my second half, Camille for always listening and
motivating me, even when it got very technical. The advices from your recent
graduation were great! I also want to thank my parents and my little brother Shura
for their curiosity and supporting words. Thanks for your unfailing support during
these years of studies - And I look forward to many more inspiring discussions!

ix

C O N T E N T S

1 introduction 1

1.1 Societal relevance and context: urban mining for a more sustainable
world . 1

1.2 Scientific relevance: existing approaches to urban mining and limita-
tions . 2

1.2.1 Data disaggregation . 3

1.2.2 Usage of remotely sensed imagery 3

1.3 Addressing the limitation and problem statement 6

1.4 Approach to address the problem and research questions 7

1.5 Background knowledge . 8

1.5.1 3D city models, the CityGML format and richness of detail . . 8

1.5.2 Light Detection and Ranging (LiDAR) and remotely sensed point
clouds . 10

1.6 Objective and Scope . 11

1.7 Reading Guide . 12

2 methodology 13

2.1 Outline of the research and respective criteria used 13

2.2 Reporting structure . 15

3 deviation identification 17

3.1 Background: 3D surface reconstruction and cityGML semantics 17

3.1.1 3D surface reconstruction . 17

3.1.2 Semantics of the City Geographic Markup Language (CityGML)
format . 20

3.2 Selection of input datasets . 23

3.2.1 Point cloud files . 23

3.2.2 CityGML file . 26

3.3 Choice of the conceptual framework: attribute-based and seeded re-
gion growing . 27

3.3.1 Exploratory study . 27

3.3.2 Definition of ’deviations’ and choice of the approach 33

3.4 Implementation: identification of seeds and region growing 34

3.4.1 Retrieval of input data using 3DCityDB and laspy 35

3.4.2 Calculation of the vertical distance for seed selection 37

3.4.3 Region growing . 38

3.4.4 Variables . 41

3.5 Chapter summary and link to assumptions made 41

4 from points to surfaces: extraction of geometries 43

4.1 Background: definition of shapes by point sets 43

4.1.1 Concave hulls and alpha-shapes 44

4.1.2 Boundary extraction: labeling and minimum spanning tree . . 45

4.1.3 Voronoi diagrams . 46

4.2 Choice of definition and conceptual framework 47

4.2.1 Pros and cons with regard to the needs 47

4.2.2 Exploratory study: boundary labeling and minimum span-
ning tree . 48

4.2.3 Exploration study: Voronoi diagrams 51

4.2.4 Choice of the theoretical framework: Voronoi diagrams 53

4.3 Implementation: extraction of the Voronoi diagram 54

4.3.1 Case of regular, closed cells . 54

4.3.2 Case of infinite edges . 56

4.3.3 Towards a semantic integration with CityGML 57

xi

xii contents

4.3.4 Additional attributes . 58

4.4 Chapter summary and link to assumptions made 59

5 data fusion with hyperspectral imagery 61

5.1 Background: instrumentation used in the airborne prism experiment . 61

5.2 Conceptual framework: from pixel imagery to mesh 63

5.3 Implementation: orthocorrected generation of mesh cells 67

5.4 Chapter summary and link to assumptions made 69

6 results and validation 71

6.1 Theoretical framework . 71

6.1.1 Validity . 71

6.1.2 Reliability . 77

6.2 Results . 78

6.2.1 Nominal validation at building level (type A) 78

6.2.2 Nominal validation at cell level (type B) 79

6.2.3 Nominal validation: considering cells lying only partially in-
side a roof surface (type C) . 80

6.2.4 Rational validation: extending type C by introducing fuzzi-
ness (type D) . 82

6.3 Analysis . 84

6.4 Further qualitative observations . 85

6.5 Chapter summary and link to assumptions made 89

7 conclusions, lessons learned and outlook 91

7.1 Answers to the research questions . 91

7.1.1 Requirements with regard to data inputs 92

7.1.2 Suitability for identification of clean pixels 94

7.1.3 Main question: Enrichment of a CityGML LOD2 with regard
to material classification . 95

7.2 Recommendations to data suppliers . 96

7.2.1 LiDAR acquisition and processing 96

7.2.2 CityGML structure . 97

7.2.3 CityGML dataset of Rotterdam 97

7.3 Future Research . 98

7.3.1 Automated quality checks . 98

7.3.2 More accurate estimation of shadow and solar potential 99

7.3.3 Towards Level of detail (LOD)3? 99

8 annexes 105

8.1 UML diagram of CityGML building class. 105

8.2 UML diagrams of the CityGML geometry models. 106

8.3 Results of level A validation . 107

8.4 Results of level B validation . 108

8.5 Results of level C validation . 109

8.6 Results of level D validation (rational) 110

8.7 Results of level D validation (nominal) 111

L I S T O F F I G U R E S

Figure 1.1 Mining in two different contexts 1

Figure 1.2 Division of spatial life-cycle analysis in three steps and cor-
responding tasks . 2

Figure 1.3 Disaggregation approach examples 3

Figure 1.4 Hierarchical classification of urban surface materials (Heiden
et al., 2007) . 3

Figure 1.5 Characteristics of the HyMap sensor 4

Figure 1.6 Majority filter illustration . 5

Figure 1.7 Example illustrating the majority filter 5

Figure 1.8 Example showing the limit of the majority filter 6

Figure 1.9 Physical urban scale models vs. digital city models 8

Figure 1.10 Representations of a building as a polygon in LOD0 (Gröger
et al., 2012) . 9

Figure 1.11 Building representation in LOD1-4 (Gröger et al., 2012) 9

Figure 1.12 Property usage for LOD0-4 (Gröger et al., 2012) 10

Figure 1.13 Illustration of semantic modeling 11

Figure 1.14 Illustration of the scope of this thesis 12

Figure 2.1 Main steps of the research methodology used. 14

Figure 3.1 Taxonomy of 3D point cloud segmentation methods as pro-
posed by Nguyen and Le (2013) 17

Figure 3.2 Illustration of the different types of edges (Nurunnabi et al.,
2012) . 19

Figure 3.3 Illustration of the FDN (left) and KNN (right) approaches. . . 20

Figure 3.4 UMl diagram illustrating the different modules of CityGML. 21

Figure 3.5 Extract of the CityGML UML diagram for the building class. 22

Figure 3.6 Extract of the CityGML UML diagram for the building class
(surfaces highlighted). 23

Figure 3.7 Sample of the two available points clouds. 25

Figure 3.8 Samples of the occlusion in the two available point clouds. . . 26

Figure 3.9 Example of an object of class OuterBuildingInstallation in
the Rotterdam 3D city model. 27

Figure 3.10 Sample building Albert Plesmanweg 103 used for the ex-
ploratory study. 28

Figure 3.11 Close up zoom on roof windows in the AHN point cloud. . . 28

Figure 3.12 Distance of the points with regard to the roof surface of the
3D city model (30cm). 29

Figure 3.13 Distance of the points with regard to the roof surface of the
3D city model (20cm). 29

Figure 3.14 Distance of the points with regard to the roof surface of the
3D city model (20cm) with the higher density point cloud. . . 29

Figure 3.15 Result of the height difference within the neighborhood (knn=3)
of each point. 30

Figure 3.16 Results of the height difference within neighborhood (knn=3)
computation but using the higher density point cloud. 30

Figure 3.17 Visualization of the normal vectors obtained using principal
components analysis on a knn=10 neighborhood. 31

Figure 3.18 Normal vectors obtained by applying principal components
analysis on knn=10 neighborhood. 31

xiii

xiv list of figures

Figure 3.19 Results obtained for normal vectors obtained by using Principal
Components Analysis (PCA) on different k-nearest neighbors
(KNN) neighborhood settings. 32

Figure 3.20 Curvature values as computed for each point with a KNN=5

setting. 32

Figure 3.21 Curvature values obtained by applying principal components
analysis on a KNN=20 neighborhood. 33

Figure 3.22 Curvature values obtained by applying principal components
analysis on KNN=5 neighborhood on the higher density point
cloud. 33

Figure 3.23 SQL statement used to retrieve all lowest level building/build-
ing part ids and bounding boxes of the model, using 3DCityDB. 36

Figure 3.24 SQL statement used to retrieve all roof surfaces of a building,
using 3DCityDB. 36

Figure 3.25 Illustration of the region of interest reaching from 1 to +20m,
vertically from the roof surface. 37

Figure 3.26 Illustration of the trigonometric equation to calculate the ver-
tical distance. 37

Figure 3.27 Illustration of the distance deviation identification and sub-
sequent region growing approach 39

Figure 4.1 Example of a convex shape for a set P of input points (De Berg
et al., 1997). 44

Figure 4.2 Example of two concave shapes obtained using the KNN ap-
proach (Moreira and Santos, 2007). 45

Figure 4.3 Illustration of the boundary extraction process proposed by
Wang and Shan (2009). 45

Figure 4.4 Example of the Voronoi diagram obtained for a set of points. 46

Figure 4.5 For the points to extract (located in the yellow cells), the cells
can be extracted and merged into a single geometry. 47

Figure 4.6 First part of the approach published by Wang and Shan (2009). 48

Figure 4.7 Example result obtained by implementing the pseudo-code
presented in figure 4.6. 49

Figure 4.8 Results of the approach shown in figure 4.6 that are shown
in Wang and Shan (2009). 49

Figure 4.9 Results of the improved approach shown in figure 4.6 that
are shown in Wang and Shan (2009) 50

Figure 4.10 Second part of the approach published by Wang and Shan
(2009). 50

Figure 4.11 Example result obtained by implementing the pseudo-code
presented in figure 4.10. 50

Figure 4.12 Example of the Voronoi diagram obtained for a set of points. 51

Figure 4.13 ’ . 52

Figure 4.14 llustration of the usage of a bounding box to limit the extent
of non-closed and outlying cells. 52

Figure 4.15 Illustration of the meaning of the terms ’ridge points’ and
’ridge vertices’. 54

Figure 4.16 Illustration of the steps for orientation of infinite lines 56

Figure 4.17 UML Diagram of the GenericCityObject class (Gröger et al.,
2012). 57

Figure 4.18 Example of an attribute table, illustrating the additional at-
tributes stored with the output geometry. 58

Figure 5.1 Overview of the flight lines of the hyperspectral acquisition. . 61

Figure 5.2 Optical design used in the apex spectrometer. 62

Figure 5.3 Illustration of the different dimensionality involved during
data acquisition with the APEX device. 63

list of figures xv

Figure 5.4 Approach allowing to generate a mesh using the orthorecti-
fied centerpoints of the 8 neighbouring pixels. 64

Figure 5.5 Illustration of the need for orthocorrection 64

Figure 5.6 Trigonometric approach to the correction of perspective dis-
tortion in aerial images (production of orthophotos). 65

Figure 5.7 Histogram showing the distribution of the maximum differ-
ence between any point and the centroid, per roof surface. . . 66

Figure 5.8 Illustration of the maximum impact of a potential inaccuracy
on a cell of 3.5*3.5m. 66

Figure 5.9 Example attribute table showing the data stored along with
the geometry of the mesh cells themselves. 69

Figure 6.1 Overview of the study area chosen for the sake of validation.
Background imagery: (c) google earth 71

Figure 6.2 Map showing the buildings selected for the sample. 74

Figure 6.3 Schema explaining the impact of settings. 75

Figure 6.4 Example of the result obtained by applying the method to a
roof with windows which are missing. 75

Figure 6.5 Illustration of the selected criteria resulting in four validation
sets. 75

Figure 6.6 Example of a ’deviation’ (identified in ground ’truth’, left
picture) leading to a commission error for the class ’clean’ . . 77

Figure 6.7 Schema showing the approach used in the case of roof edges. 78

Figure 6.8 Bar chart showing the KHAT, level A 79

Figure 6.9 Bar chart showing the commission errors for the class ’clean’,
level A . 79

Figure 6.10 Bar chart showing the KHAT, level B 80

Figure 6.11 Bar chart showing the commission errors for the class ’clean’,
level B . 80

Figure 6.12 Schema showing the case of cells that are not entirely inside
a roof cell. 80

Figure 6.13 KHAT evolution for cells 100%, [90-100[% and [70-90[% in-
side a roof surface (level C). 82

Figure 6.14 Commission error for the class ’clean’ evolution for cells 100%,
[90-100[% and [70-90[% inside a roof surface (level C). 82

Figure 6.15 KHAT for nominal vs. rational data types, cells [70-100]%
inside roof surface (level D). 83

Figure 6.16 Overall accuracy nominal vs. rational data types, cells [70-
100]% inside roof surface (level D). 83

Figure 6.17 Example of a building (Van Meelstraat 44) that has erronously
been modelled with a fully flat roof 87

Figure 6.18 Example of a building with wrong cadastral footprints, lead-
ing to a wrong 3D city model 87

Figure 6.19 Example of a small ’closure’ surface occurring in the 3D city
model. 88

Figure 6.20 Example of a building where the method leads to an overes-
timation of the roof edges. 88

Figure 7.1 Illustration of the method developed for the identification of
’deviations’ of LiDAR compared to LOD2 91

Figure 7.2 Schema showing the ambiguity of modeling roof edges with
regard to the CityGML LOD standards. 97

Figure 7.3 Example of a ’building’ (actually a ship) that is labeled as
LOD2 while it rather seems to fulfill LOD3 standards. 98

Figure 7.4 Example of a geometry that might be created with the results
of this research, making a step from LOD2 to LOD3 100

Figure 8.1 UML diagram of the CityGML building class (Gröger et al.,
2012). 105

xvi list of figures

Figure 8.2 UML diagram of the CityGML geometry model (Gröger et al.,
2012). 106

Figure 8.3 UML diagram of the aggregates of CityGML’s geometry model
(Gröger et al., 2012). 106

Figure 8.4 Error matrices resulting from the level A validation 107

Figure 8.5 Error matrices resulting from the level B validation 108

Figure 8.6 Error matrices resulting from the level C validation 109

Figure 8.7 Error matrices resulting from the level D validation (nominal). 110

Figure 8.8 Error matrices resulting from the level D validation (rational). 111

L I S T O F TA B L E S

Table 3.1 Comparison of the two LiDAR datasets that were available
for this study. 25

Table 4.1 Comparison of the different approaches mentioned by the
literature study in part 4.1 . 48

Table 5.1 Comparison of the Visible and Near InfraRed (VNIR) and
Short-Wave InfraRed (SWIR) sensors used in the Airborne Prism
EXperiment (APEX) experiment 62

Table 5.2 Overview of the maximum errors resulting from the approx-
imate orthocorrection using centroids only (resulting from
the maximum height and position differences with regard to
these centroids). 66

Table 6.1 Table giving an overview of the sample used for validation. . 73

Table 6.2 Overview of the subsample used for the validation of type C
and D (cells lying partially inside a roof and fuzziness). . . . 81

Table 6.3 Overall performance statistic concerning the estimation of
’deviation’ shares. 82

Table 6.4 Table giving an overview of the two different approaches
which depend on the final goal. 85

Table 6.5 Example results for a big building (Antony Fokkerweg 15) of
12800 m2 enclosing 615 cells. 86

xvii

List of Algorithms
3.1 Deviation identifier . 35

3.2 Region grower . 40

4.1 Points to Voronoi shape . 55

5.1 Cell generator . 68

xix

A C R O N Y M S

3DCityDB Application Domain Extension . 35

ADE Application Domain Extension. .22

AHN Algemeen Hoogtebestand Nederland - General height dataset of the
Netherlands . 23

APEX Airborne Prism EXperiment . xvii

BAG Basisregistratie Adressen en Gebouwen - Basis Registration Addresses and
Buildings . 26

BGT Basisregistratie Grootschalige Topografie - Basis registration high scale
topography . 26

CCD Charge Coupled Device . 61

CityGML City Geographic Markup Language. .xi

CMOS Complementary Metal-Oxide-Semiconductor . 61

csv comma separated values . 57

FDN fixed-distance neighbors . 20

FME Feature Manipulation Engine . 15

GDAL Geospatial Data Abstraction Library . 67

GPS Global Positioning System . 24

kd-tree k-dimensional tree . 20

khat an estimate of cohen’s kappa . 76

KNN k-nearest neighbors . xiv

LiDAR Light Detection and Ranging . xi

LOD Level of detail . xii

PCA Principal Components Analysis . xiv

QGIS Quantum Geographic Information System. .15

SWIR Short-Wave InfraRed . xvii

SQL Structured Querying Language . 35

VNIR Visible and Near InfraRed . xvii

WKT Well known text format . 35

xxi

1 I N T R O D U C T I O N

This document describes the graduation research on semantic enrichment of digital
three-dimensional city models (such as CityGML LOD2 datasets) by means of point
cloud analysis. On top of geometry and sometimes textures, a semantic 3D city
model includes other, more thematic knowledge (by making some features and
properties explicit) (Billen et al., 2014). This research will be conducted with regard
to a specific application, which is the improvement of material classification (i.e.
hyperspectral imagery) performed on building roof surfaces. This improvement
consists in using an enriched 3D city model to identify spectral variations.

This research is the final part of the Master of Science program Geomatics for the
Built Environment at Delft University of Technology, the Netherlands. It starts with
an introduction to the context, the societal relevance of urban mining (part 1.1). A
second step introduces existing approaches to support urban mining (part 1.2) and
their weaknesses. Based on this, the the problem statement (1.3) will be formulated
along with relevant background knowledge (1.5). This first chapter is then closed
by the research questions (part 1.4), scope (1.6) and reading guide (part 1.7).

1.1 societal relevance and context: urban min-
ing for a more sustainable world

In order to reach global goals in greenhouse gas emission reduction, the building
industry will inevitably be affected. A 2008 study conducted by the UK govern-
ment has shown that no less than 47% of national CO2 emissions are the result of
the building’s life cycles (of which 83% result from the usage and 15% from the con-
struction). This makes clear that on one hand, retrofitting - improving the existing
building stock is required. On the other hand, the building process itself, the way
this retrofitting and construction of new buildings use resources, will also have to
change.

Figure 1.1: Mining in two different contexts. On the left, mineral mining - on the right, urban
mining. 1

One of the approaches to improve the resource consumption of construction ac-
tivities is the one of circular economy and more specifically urban mining. The
main idea is ”the exploration and exploitation of material stocks in urban systems
for anthropogenic [i.e. human] activities” (Baccini and Brunner, 2012). Instead of

1 Source left: flickr (https://www.flickr.com/photos/upnorthmemories/6092963634), source right: wiki-
media

1

2 introduction

extracting resources from natural mines, urban mining looks for their presence in
cities to reuse the resources that are already present locally.

One building element of particular interest on which this research will focus is the
roof. Due to exposure to climate, it needs to be renewed at regular intervals which
are often shorter than the ones of general refurbishments. Promising initiatives
(e.g. www.roo f 2roo f .nl) already exist and aim at recycling freed materials such as
bitumen. This can be done by reconditioning for reusage on roofs or downcycling
for road asphalt (Townsend et al., 2007).

In order to determine if such processes are environmentally beneficial, mapping
of the resources is required. In fact, the recycling/downcycling does consume en-
ergy and creates flows (from or to treatment facilities) which impacts the environ-
ment. Therefore several situations including the initial status quo and alternatives
need to be evaluated. Patouillard et al. (2018) discusses why aggregated approaches
(such as statistical ones) can be insufficient to do so.

When doing such evaluations, the granularity of the data (the level of aggrega-
tion) deserves major attention. In fact, for some cases, data aggregated at a neigh-
borhood level might be sufficient but for others, detailed object-level data will be
necessary. This aspect is clearly formulated by Patouillard et al. (2018) and needs to
be considered within all three steps of life cycle analysis as they impact each other
linearly (also see figure 1.2):

Input data is required and needs to be obtained by analyzing either the existing
objects or past processes (step 1). This material, which gets released by demolition/-
maintenance would then be reused, preferably locally. To estimate the quantity and
distribution of release, demolition/maintenance prediction is necessary (step 2). In
the end and optimally, another material flow would be replaced, which raises the
question of the impact of this change (step 3).

The mapping of resources enclosed in cities is thus important to develop accu-
rate circularity strategies for the future. Additionally, not only thematic but also
positional accuracy matters, especially for flows at a local scale.

Figure 1.2: Division of spatial life-cycle analysis in three steps and corresponding tasks (own
work).

1.2 scientific relevance: existing approaches to
urban mining and limitations

As shown in the previous part (1.1), the mapping of enclosed building materials
is a highly relevant task with regard to sustainability. In order to do this, mainly
two approaches exist and will be discussed here: data disaggregation and remote
sensing. The two approaches show fundamental differences but can also be used in
complementarity to each other. In fact, any detailed data obtained from the second,
more detailed one can also serve as an input for the first one.

1.2 scientific relevance: existing approaches to urban mining and limitations 3

1.2.1 Data disaggregation

A statistical, top-down approach is possible and involves disaggregating historic
material usage data (e.g. national bitumen coating production) by using spatial
indicators such as house types, their usage of specific materials at a given period
and their respective spatial distribution. A good example is (Müller, 2006) who has
performed such analysis for concrete in the Netherlands but without being more
specific geographically.

A similar approach but at a smaller scale (8 and 11 km2) was conducted by
Tanikawa and Hashimoto (2009). They used historic data to estimate the mate-
rial inflow and linked that to historical building construction and demolition data.
Moreover, this data was used to predict lifetime by the construction period and
future demolitions/release of material flows (see figure 1.3 for an example result).

Figure 1.3: Accumulation and remaining rate of buildings (left) and material stock over time
(right, Salford Quays - Manchester)(Tanikawa and Hashimoto, 2009).

The main shortcoming of the data disaggregation approach is that it is hardly
possible to disaggregate up to object (e.g. building) level. For the specific require-
ments of some applications (e.g. if a municipality wants to send letters to owners
of houses with a specific roof material), such an approach might thus not be suited.

1.2.2 Usage of remotely sensed imagery

A more specific approach is the usage of remote sensing data to identify materials
using their spectral characteristics. The field of land cover classification is not new
and can be divided into several levels of detail (figure 1.4), similarly to 3D city
models (which will be discussed in part 1.5.1).

Figure 1.4: Hierarchical classification of urban surface materials (Heiden et al., 2007)

Numerous studies have been conducted for classification but level IV only be-
came possible with higher resolution images. On one hand, the spatial resolution
has considerably increased (Frick, 2007) and created opportunities for more detailed
classification as fewer pixels are affected by spectral mixing. On the other hand,

4 introduction

new technologies appeared for spectral classifiers: the range and the number of
bands was increased by including numerous visual, VNIR and SWIR bands at iden-
tical, below 10m resolutions. In that way, a move from multispectral to so-called
hyperspectral imagery took place. A higher number of spectral bands means that
material spectra can be acquired with much more detail (more measures/points
are available to plot the absorption curve), facilitating the classification at level IV.
Often, the acquisition sensor is embarked on a manned aircraft, but other options
using, for instance, unmanned airborne vehicles (UAV) also exist and have been
extensively covered by Beth (2016).

In the past years, several research projects have demonstrated the ability of hy-
perspectral images to differentiate between ground cover materials. Heiden et al.
(2007) conducted a study for Dresden and Potsdam using the HyMap sensor (see
in figure 1.5). Results are good for some materials such as polyethylene where spec-
tral feature identification resulted in commission and omission errors lower than
5%. Challenges nevertheless exist - especially for bituminous roof materials: ”In
contrast, some of the dark materials, such as asphalt and roofing tar paper do not
show distinct absorption features. Their separation from other materials is only
possible based on brightness.”

Figure 1.5: Technical characteristics of the HyMap hyperspectral sensors (Heiden et al., 2007)

In a study on Brussels, Demarchi et al. (2014) compared different unsupervised
machine learning algorithms with the aim to reduce the high dimensionality result-
ing from the high number of spectral bands. Machine learning was also used for
the material classification. Results are positive, with overall kappa values as high
as 0.82 for support vector machine classification.

Priem and Canters (2016) further build on this finding, by performing a fusion
of the support vector classification result with auxiliary data. After classification,
correction using LiDAR data is performed using height, roughness, and slope at-
tributes. The result is convincing as the overall kappa was increased by 0.8 to 0.87

for sunlit and from 0.65 to 0.69 for shaded pixels (another difference with regard to
the previous studies is that classification is performed on shaded pixels too). De-
pending on the material, high conditional kappa values can be obtained for sunlit
(e.g. 0.93 for ’bitumen’ and 1.00 for ’extensive green roofs’) and shaded pixels (e.g.
0.94 for ’bitumen’ and 0.84 for gray metal.

Next to auxiliary data, Priem and Canters (2016) introduced another important
aspect. Heiden et al. (2007) and Demarchi et al. (2014) perform their studies (thus
both training and validation) on a pixel-basis, which is correct from a scientific point
of view but does not take into account what Priem and Canters (2016) names the
pepper and salt effect.

In fact, hyperspectral imagery is oversensitive to spectral variations within pixels
(e.g. the presence of chimneys, roof windows or solar panels) - even if they only
cover a minor part of the pixel. To address this, Priem and Canters (2016) use a
majority filter on a 3*3 kernel to correct the classification result. An illustration can
be found in figures 1.6 and 1.7. A variant of this approach was developed by (Thiel,
2016) in a bachelor thesis where the majority filter is replaced by a moving window
approach, including pixel’s neighborhood information in the classification process
directly.

1.2 scientific relevance: existing approaches to urban mining and limitations 5

Figure 1.6: Illustration of the working of a majority filter (University of California Berkeley,
ated).

Figure 1.7: Top: Example of the application of the majority filter on a building with spectral
deviations (two chimneys on the roof). In green the ’clean’ pixels (4*4m) which
are neither on the border of the footprint nor do contain a spectral deviation.
Here, the majority filter can be used to filter out the pixels (fully or partially)
containing a chimney. Imagery: (c) google earth. Bottom: false color image of
the building as acquired by the APEX project (Red = 399-413 nm, Green = 1145-
1155nm, Blue=2423-2432nm).

The limitation of this approach is that this solution only works if a critical share
of the 8 neighbors is of the correct class. For buildings with a majority of pixels
containing spectral variations, the majority filter is likely to favor the outcome of
mixed pixels. An example of such case where the majority filter is unlikely to work
can be found in figure 1.8. This one can be applied to all pixels contained in the
footprint of the building and not containing any shadow (in brown). Applying
a majority filter is unlikely to reduce the high share of pixels containing spectral
variations (pixels containing roof windows), leaving the clean pixels in light green
in minority.

6 introduction

Figure 1.8: Top: Example of a building where the majority filter might not work due to the
strong presence of spectral variations (roof windows). In dark green the ’clean’
pixels (4*4m) that can be used. In light green the pixels that might be used
but are affected by shadow. Here, the majority filter is unlikely to filter out the
cells (fully or partially) containing the roof windows. Imagery: (c) google earth.
Bottom: false-color image of the building as acquired by the APEX project (Red =
399-413 nm, Green = 1145-1155nm, Blue=2423-2432nm)

1.3 addressing the limitation and problem state-
ment

An approach to tackle the limitation of the majority filter (and, in a bigger context -
of the resource mapping methods at building level) is the usage of a 3D city model.
The advantage of using the additional information contained in the latter is twofold:

- first, detailed 3D city models might help with the identification of spectral vari-
ations by indicating the position of elements such as chimneys or roof windows. To
do so, a city model fulfilling at least LOD3 standard (see part 1.5.1) is required.

1.4 approach to address the problem and research questions 7

- second, 3D city models have an additional dimension with regard to aerial
imagery (which is only 2-dimensional). In fact, non-flat roof surfaces can improve
the area indication stored in aerial images (the latter is, in fact, a projection). In
order to perform this, a city model fulfilling at least LOD2 (see part 1.5.1) is required
(the first level supporting sloped roof surfaces).

While the production of LOD2 models can be done highly automatically (Gemeente
Rotterdam, n.d.), this is not the case for more detailed LOD3 models at the time of
writing. Some critical elements such as chimneys, roof windows or ventilation
boxes might thus be missing but strongly needed for reliable identification of spec-
tral variations.

In a nutshell, the problem statement can be formulated as follows:
Automatic classification of roofs using aerial imagery requires pixels containing roof ma-

terial deviations to be identified as such. While a highly detailed 3D city model would fulfill
such criterion, this is often unavailable.

1.4 approach to address the problem and research
questions

A potential alternative on which no research has been conducted yet is to use a less
detailed 3D city model and semantically enrich it with the required data. As 3D city
models are usually produced using a point cloud (see parts 1.5.2 and also 3.1.1 for
relevant background knowledge), this thesis will use such a point cloud to perform
the enrichment.

The main research question is stated as follows: How can a CityGML LOD2 model be
semantically enriched in order to improve material classification performed on roof surfaces?

This question can be structured as three sub-questions which will be addressed
by this thesis:
1. Which method is suitable to identify ’deviations’ of LiDAR point clouds compared to

LOD2?
2. What are the requirements with regard to CityGML LOD2, LiDAR point clouds and

hyperspectral imagery data?
3. To which extent does such a method support the identification of clean pixels?

8 introduction

1.5 background knowledge

1.5.1 3D city models, the CityGML format and richness of detail

Figure 1.9: Both physical urban scale (top left) and a digital city model (top right) are abstrac-
tions of the reality (bottom). The main difference lies in the storage of ’meaning’,
i.e. of semantics. 2

Just as for physical urban scale models, one can notice that digital 3D city models
are always a generalization of reality, too. In fact, making a 1:1 representation
would be very labor-intensive, if not impossible. Therefore, choices - often referred
to as generalization - must be made (see figure 1.9). In fact, depending on the
application, not every detail might be relevant and excessive work can often be
avoided by defining needs beforehand.

In contrast, a major difference between physical and digital 3D city models is
the support of semantics by the latter. While for physical models the meaning
of objects can only be obtained by human interpretation (e.g. types of objects or
building surfaces), digital models allow storage of such information in the model
itself, thereby allowing them to be used by computer algorithms. This is not the
case for all digital models as some only serve for visualization purposes where no
semantics are required.

A good example of a 3D city model format supporting semantics is CityGML. It is
an open and standardized data model recognized by the Open Geospatial Consor-
tium for the storage of urban and landscape 3D city models. As its name suggests,
it bases on the GML (Geographic Markup Language) which is an extensible inter-
national standard for spatial data exchange.

The inclusion of semantics was one of the project’s core priorities: ”One of the
most important design principles for CityGML is the coherent modeling of seman-
tics and geometrical/topological properties.” (Gröger et al., 2012). In fact, even at a
most basic level, clearly distinguishing between modules (such as terrain and build-
ings) requires more than geometric information. One of the CityGML strengths is
therefore that thematic and geometric data can be queried in the same way, making
navigation between hierarchies easy (Gröger et al., 2012).

On top of providing content information at the object level, semantics in CityGML
are also used to store metadata related to the fulfillment of specifications established
by the CityGML standard. A major one is the level of generalization (or accuracy),
of which 5 versions are supported and denominated LOD 0 till 4 (0 is most coarse, 4

2 Source top left: 3drotterdam.nl, top right: https://www.flickr.com/photos/victortsu/5175960711/in/photostream/,
bottom: https://www.goodfreephotos.com/albums/netherlands/rotterdam/city-view-of-rotterdam-
netherlands.jpg

1.5 background knowledge 9

most detailed). The specifications defined by the standard for building roofs are as
follows (CityGML version used here is 2.0, Gröger et al. (2012)):

- LOD0: The entire building is represented by a horizontal surface (gml:MultiSurfaceType).
The main difference with (conventional 2D) cadastral registration datasets is that
this surface is embedded in 3D space (for instance by including a digital terrain
model). The horizontal surface can either represent the footprint (and be located at
ground level) or a horizontal projection of the building roof (and are then located
at the height of the eave) as shown in figure 1.10:

Figure 1.10: Representations of a building as a polygon in LOD0 (Gröger et al., 2012)

Figure 1.11: Building representation in LOD1-4 (Gröger et al., 2012)

- LOD1: From this level on, the buildings are represented as a volume. In LOD1,
entities are aggregated to a simple block (the outer shell) which can either be ex-
pressed as solid (gml:SolidType) or multiple surfaces (gml:MultiSurfaceType). From
LOD1 buildings might also be split in building parts but each of these might only
have one height value. Therefore, the outer shell does not contain additional details
such as the roof shape.

- LOD2: From this level on, semantic objects are required to compose the exterior
shell of a building. Theses ones are all of classes BoundarySur f ace or BuildingIn-
stallation. The first class contains special functions like walls, roofs, ground plates,
outer floors, outer ceilings or closure surfaces. The latter class is used to store build-
ing elements like balconies, chimneys, dormers or outer stairs which are ”strongly
affecting the outer appearance of a building” (as a threshold 4 by 4m is proposed for
LOD2, 2 by 2m for LOD3). Furthermore, roof overhanging parts should be modeled
if known.

- LOD3: On top of being more detailed/representing smaller exterior objects,
openings (windows, doors) should be modeled separately, creating a hole in the
surface within which they lie (AbstractOpeningType). From LOD3 on, overhanging
roof parts must be modeled as such (this is recommended but optional in LOD2).

- LoD4: LOD4 is the highest level of detail as it covers the building interior too.
Rooms and interior installations are therefore modeled too. Moreover, although

10 introduction

not formally part of the standard, an increase in absolute 3D point accuracy and
decrease in shape generalization is proposed as in figure 1.12:

Figure 1.12: Property usage for LOD0-4 (Gröger et al., 2012)

1.5.2 LiDAR and remotely sensed point clouds

The LiDAR technology mentioned for the classification correction stands for Light
Detection And Ranging. This technology is widely spread for the acquisition of point
clouds which are also used for the construction of 3D city models discussed in the
previous part 1.5.1. It is an optical measurement technique that uses light to mea-
sure times-of-flight and/or phases. In fact, as the speed of light is known, the time
taken by a light pulse to be reflected (i.e. travel back to the emitter) can be measured
and converted into a distance. In combination with the position and orientation of
the emitter/receiver, the reflection point position can be determined. LiDAR systems
can perform static measurements (on a pole, similarly to total stations) but also be
mounted on moving vehicles or planes (in which case an inertial measurement unit
is usually required on top of the GPS receiver) (Vosselman and Maas, 2010).

The fact that LiDAR is an optical system means that more than one return can be
registered. By registering the full return waveform, several echoes can be identified.
This is especially practical for objects which partially transmit light, such as trees
(Vosselman and Maas, 2010). Depending on the wavelength, LiDAR signals might
also be absorbed by materials such as water (Lemmens, 2011). This mainly depends
on the wavelength of the signals: a special application of LiDAR is bathymetry where
two pulses are used: one in the longer infrared (e.g. 1060 nm) and another in the
green spectrum (e.g. 530 nm). While the first one is reflected by water, the latter is
transmitted and reflected by seabed (Vosselman and Maas, 2010).

Another advantage of LiDAR being an optical system is that intensity (often called
amplitude) measurements can easily be performed. To do so, the amplitude of
the pulse, which characterizes the reflectance of the spot, must be recorded. This
value depends on the material reflectivity (which again depends on the wavelength),
and on the reflection type (which can either be specular, diffuse or a mix of both)
(Vosselman and Maas, 2010).

One should note that LiDAR is far from being the only acquisition technique for
point clouds. In fact, laser scanners can also be mounted on other vehicles such as
cars and ships, but will hardly be able to give good coverage of roofs that might
be out of sight. A more relevant alternative is the usage of dense image matching
algorithms. These ones use two high resolution aerial or satellite images taken from
different positions to find matching points of which the 3D position is subsequently
determined. The advantage of this technique is that aerial images are often already

1.6 objective and scope 11

acquired on a regular basis. A drawback is that such algorithms have difficulties
with low texture as it leads to lower accuracy (Zhou et al., 2018).

1.6 objective and scope
core LOD2 city models might show a potential if they can be enriched with the
missing parts with regard to LOD3. As hyperspectral images are only 2-dimensional
a 2-dimensional enrichment (e.g. projected on the existing geometry), thus a seman-
tic enrichment might be sufficient (see figure 1.13). Hereby the requirement for a
LOD3 model (as formulated in 1.5.1) might be replaced by one for an enriched LOD2

model.

Figure 1.13: Instead of modeling the chimney (left, source: wikimedia) as such it can also
simply be indicated semantically in an existing LOD2 model (right, nb: assuming
the chimney size is below the custom threshold to include it in LOD2).

The core of the research will thus be to develop a geometric approach to identify
“deviations” between CityGML LOD2 models and LiDAR point clouds (thus using
only positional, not intensity or multiple return information). The method must be
robust for a critical mass of buildings but might exclude particularly complex cases
(e.g. smooth edges, roofs overlapping each other, moving elements). The method
will build on the fusion of information of different datasets (LiDAR, CityGML) and
therefore needs to cope with their specific qualitative strengths and weaknesses.

exploratory To the knowledge of the author at the time of writing, no study
has performed the specific comparisons of point clouds and roof surfaces. The only
similar example known is the enrichment of a CityGML model using a 3D mesh
that is currently being developed by Willenborg et al. (2018) and bases on research
on visualization enrichment performed by Tryfona (2017). Therefore, the research
is expected to include a substantial exploratory part.

link with hyperspectral imagery As the motivation of the research is to en-
hance clean pixel identification for material identification in aerial images (i.e. land
cover classification on hyperspectral imagery), the feasibility of this will also be
addressed. A connection to such datasets will be developed and resulting perfor-
mance tested.

validation The testing of resulting performance means that the scope of the
study also covers the validation of obtained results. This validation should be done
with a representative set of buildings (e.g. 40 buildings) and will mainly use the
imagery pixel as the unit of analysis. Furthermore, both nominal (boolean - thus
clean vs. not clean) and rational (degree of cleanliness expressed as a percentage)
data types will be addressed in order to get a better idea of the performance of the
developed method.

out of scope A topic out of the scope of this thesis but still essential for hy-
perspectral image classification is the differentiation between sunlit and shadowed
pixels (see figure 1.14). In fact, many materials show a different spectrum in shadow,

12 introduction

requiring a parallel classification to be identified. It has been shown that this can be
calculated either geometrically or using LiDAR intensity values (using an invariant
color model) (Priem and Canters, 2016).

orthocorrection A topic that is out of scope but has still been addressed in
order to improve the specificity of the validation is the orthocorrection. Therefore,
a ’rough’ version with relatively high error margins will be developed and imple-
mented. In order to determine the degree of specificity, the error margins have
been estimated in a mathematical way. The reason why this topic is out of scope is
that the exact position of the hyperspectral cells differs from one data acquisition
to another. Therefore, the specific position only matters if the method is eventually
implemented within ground cover classification algorithms.

Point Cloud

CityGML

hyperspectral
imageryDevia�ons Pixel cleanliness

Shadow filtering

Shadow filtering & Orthocorrec�on

• Acquisi�on
• Filtering
• Classifica�on

• 3D city model
produc�on

Legend:

inputs scope flows within scope
out of scope

Figure 1.14: Illustration of the scope of this thesis. The parts in light gray are out of scope.

1.7 reading guide
For the ease of reading and to structure the research, this thesis has been divided
into several parts. First of all, chapter 2 introduces the core of the research and the
way in which the subsequent chapters 3, 4, 5 and 6 are structured. The latter closes
the research by providing both quantitative and qualitative findings. Finally, the
thesis is concluded by chapter 7 in which an answer is given to the research ques-
tions, recommendations are made for data suppliers and topics for future research
identified. Chapter 8 contains a number of annexes which are mentioned in the
relevant parts.

2 M E T H O D O LO GY

This chapter will give a short introduction to the overall approach that was taken
for this research. It will introduce the different steps addressed by the subsequent
chapters, along with the assumptions (criteria) guiding each decision. In the second
part, the structure in which the following chapters will be presented is introduced.

While the needs of the specific steps do differ (and criteria/assumptions therefore
too), there is a shared assumption framework linked to the aim of adding informa-
tion. In fact, completeness was an important criterion from start to end. As the aim
is to improve the identification of spectral variations, leaving some of these devia-
tions aside (e.g. to make the algorithm faster) is not desired. For each step of the
outline that will be introduced in part 2.1, this common criteria will be specified.
Furthermore, additional criteria that are more specific to the aims of the respective
step will be formulated where needed.

Overall, this research takes place under the paradigm of remote sensing data
fusion which, as formulated by Zhang (2010), ”aims to integrate the information
acquired with different spatial and spectral resolutions from sensors mounted on
satellites, aircraft and ground platforms to produce fused data that contains more
detailed information than each of the sources.”. In fact, this research combines
information from three spatial datasets of different nature: a LiDAR point cloud, a
3D city model and an optical imagery file (see figure 2.1).

Zhang (2010) also mentions that this fusion can take place at pixel, feature or
decision levels. This research belongs to the first group as it will ultimately indi-
cate whether the pixels of the optical imagery file are clean or not, an additional
information with regard to the standalone input file.

2.1 outline of the research and respective cri-
teria used

The research conducted in this master thesis can be divided into several steps. As
mentioned in 1.4, the aim is to find a method that allows the identification of ’clean’
pixels (within the field of hyperspectral material classification) by first semantically
enriching a CityGML LOD2 model.

Resulting from the introduction and more specifically part 1.3, the the following
aspects had to be considered:
- the societal and scientific context of material classification; the needs of the final
usage(s) of the data output (e.g. identification vs. quantification of materials).
- the hyperspectral imagery acquisition techniques and their implications for spatial
data fusion (e.g. ground sampling distance and technology, data processing and
georeferencing).
- the lacking availability of LOD3 models, but the need for details that are usually
below the (custom) threshold size for LOD2.
- the sampling interval (e.g. point cloud density or ground sampling distance) and
accuracy of the different datasets used.

The overall approach that has been chosen is to compare a LiDAR-acquired point
cloud with an existing CityGML model and subsequently merge the result with the
hyperspectral imagery. A general overview can be found in 2.1.

13

14 methodology

Existing research on point cloud segmentation, 3D city models and their application

“How can a CityGML LOD2 model be semantically enriched in order to improve
material classification performed on roof surfaces?”

Point Cloud

CityGML

Identification of ‘deviations’ Extraction of
geometries

Surfaces

Fusion with imagery

Clean pixels/cells

Methods development & testing Results & discussion

Thematic filtering
Noise filtering

Attribute
extraction

From geometries
to numbers

Method

Societal relevance

‘Deviation’
points

From points to
geometries

hyperspectral
imagery

Validation

Method results

Ground ‘truth’

Verification and
statistics

Legend:
inputs processes flows

Figure 2.1: Main steps of the research methodology used. For the four central parts/chap-
ters, specific background knowledge will be discussed before introducing the
implementation.

chapter 3, ’deviation identification’ covers the extraction of information
from the data inputs and the identification of points belonging to ’deviations’. Here,
parallels to the earlier mentioned works of Willenborg et al. (2018) and Tryfona
(2017) who compare a 3D mesh and a 3D city model to enrich the latter can be
found. Similarities can also be found with the research conducted by Zhou et al.
(2018) using dense image matching to update LiDAR datasets, hereby comparing
two datasets of similar nature.

For the first part, the completeness criterion was translated as the identification
of all deviations within the scope of this research (an example that is out of scope
are non-geometric deviations). Therefore the ’completeness’ criterion is limited to
geometric deviations, which should be identified as reliably as possible.

Another assumption was the computational load criteria. In fact, point clouds as
used in this research are datasets of considerable size (in this research, the selected
point cloud covers the study area with 27 564 055 points). As the first step needs
to perform computations on the entire input, a small difference inside a single
iteration can have considerable consequences. In order to ensure the feasibility of
the research, this had to be considered.

chapter 4, ’from points to surfaces: extraction of geometries’ cov-
ers the conversion of the set of points identified as ’deviations’ into surfaces. In
fact, LiDAR acquisition can be seen as a form of sampling where the points actually
represent a surface beyond the points themselves. Furthermore, a vectorized rep-
resentation is necessary for other purposes such as reliable area quantification and
visualization of ’deviations’.

The second part interprets completeness as the ability to cover all input cases. No
matter the shape or the size of the ’deviation’, the approach should support it. Also,
the presence of holes inside point groups and even disconnected groups deserved
a part of this focus.

A related, but not exactly identical criteria used is automation. It is here under-
stood in opposition to human interventions in algorithms. These ones can occur if
a setting of the algorithm needs to be adapted to the specific situation (i.e. point
density, shape typology). While a single setting for the entire dataset might still be
acceptable, human interventions at a smaller level (e.g. tuning a setting for each
building or ’deviation’) should definitely be avoided.

2.2 reporting structure 15

chapter 5, ’data fusion with hyperspectral imagery’ presents the third
step that consists of combining the geometric data from a hyperspectral imagery
dataset with the previously created ’deviation’ geometry. This step is necessary to
allow the selection of ’clean’ pixels among the set of candidate pixels of a building.

This third part understands completeness as staying as close as possible to raw
data (from a spatial point of view). In fact, the hyperspectral imagery data contains
all geometric distortions that appear during acquisition. Along with this, the cor-
rected coordinates are obtained from a separate file. Often enough, these two files
are merged to obtain a resampled raster. The result of this might, however, be data
loss and interpolation artifacts (de Miguel et al., 2014; Vreys et al., 2016), which is
the reason it will be avoided here.

Within this third part, the orthocorrection which was already mentioned as being
out of the main scope (but still part of this report) was additionally performed. As
the aim of this correction is to increase the specificity of the subsequent validation
without consuming extensive time budget, the focus within this orthocorrection was
on limiting the number of computational inputs and steps.

chapter 6, ’results and analysis’ covers the validation of the outcomes of
this approach and discusses the findings. This final step is more specific as it per-
forms a quantitative analysis, which requires a specific study area and control data
(so-called ground ’truth’). This validation area is located on the south bank of the
Maas in Rotterdam and was chosen with regard to representativeness, data avail-
ability and limited time budget considerations.

Furthermore, the method was tested with several variables with the aim to con-
tribute to completeness too. Additionally, qualitative observations were also made
along with the quantitative ones and are discussed too. The findings will form the
basis for the final chapter ’Conclusions, lessons learned and outlook’ (chapter 7).

2.2 reporting structure
Chapters 3, 4 and 5 are structured in a fairly similar way as they all cover a part of
the data processing scheme. The splitting in three parts emanates from the usage of
different background knowledge which will always be presented at the start of the
chapter. If applicable, the input datasets will also be introduced.

In the second step, each chapter will explain the reasoning that led to the chosen
theoretical framework. This one can either rely on experimental observations or
build directly upon theoretical knowledge based on the existing literature. Further-
more, the resulting theoretical framework will be clearly formulated and serve as a
starting point for the final part, the implementation.

The implementation will further elaborate on the specific tools used for perform-
ing data processing. Some general software used in this thesis that can be intro-
duced here are:
- the main programming language that has been used for this thesis is Python 3.7.
along with the numpy 1.15.4 library.
- for visualization of 2D geometries and aerial images, Quantum Geographic Informa-
tion System (QGIS) 3.2.3 has been used.
- for visualization of point clouds, CloudCompare 2.9.1 has been used.
- for visualization of CityGML geometries, in combination or without point clouds,
Feature Manipulation Engine (FME) 2018.1 has been used.

One should further note that the code of the implementation will not be covered
by the implementation parts. To allow a better understanding, pseudo-code will
be used. The source code of this thesis can nevertheless be found at the following
repository:

https://github.com/Flyalbatros/3D-Models-in-Urban-Mining.git

https://github.com/Flyalbatros/3D-Models-in-Urban-Mining.git

3 D E V I AT I O N I D E N T I F I C AT I O N

This chapter will present the process that led to the choices regarding the first part
of the research, namely the identification of ’deviation’ points. For this purpose,
mainly two input datasets have been used: a 3D city model (CityGML LOD2 com-
pliant) and a point cloud dataset.

In the first part, relevant background knowledge from the field of 3D surface
reconstruction (see part 3.1.1) and a more detailed study of relevant CityGML se-
mantics will be introduced (see part 3.1.2).

In the second part, the theoretical framework will be established, starting with the
selection of input files (in part 3.2). Subsequently, an exploration study is performed
(part 3.3.1) and concluded by formulating the theoretical framework specific to this
step.

The last part of this chapter presents the implementation, elaborating in detail on
the algorithmic approaches and mathematic reasonings used (see part 3.4).

3.1 background: 3d surface reconstruction and
citygml semantics

3.1.1 3D surface reconstruction

According to Nguyen and Le (2013), the field of feature recognition in point clouds
can be divided into six subfields as shown in figure 3.1. These subfields approach a
similar topic with different paradigms and are shortly explained.

Figure 3.1: Taxonomy of 3D point cloud segmentation methods as proposed by Nguyen and
Le (2013)

One might note that the classification provided by Nguyen and Le (2013) is not
the only possible perspective as it focuses on mathematical techniques. Other ones
focus on type of output (part-type or primitive geometries vs. patch-type or homo-
geneous regions) (Vosselman et al., 2004; Wang and Shan, 2009) or on representation
used (edge/boundary vs. surface-based) (Wang and Shan, 2009). Also, some math-
ematical techniques might be used for both types of representation (such as the
ones introduced in part 3.1.1), so these techniques are rather characterizing than
classifying.

17

18 deviation identification

Taxonomy of 3D point cloud segmentation methods

a. edge-based methods These methods aim at outlining boundaries by detect-
ing geometric or intensity properties. To do so, mainly edge-detection algorithms
from computer vision area are used (e.g. canny edge detection using Sobel opera-
tor). Therefore, 3D data needs to be converted into a 2.5D range image, which often
implies a loss of information (Wang and Shan, 2009).

b. region-based methods. This category which uses neighborhood informa-
tion to combine nearby points with similar properties can be divided into two sub-
categories: seeded and unseeded methods. The first one identifies a number of char-
acteristic surface patches (using attributes such as planarity or curvature) and then
gradually extends these patches to sufficiently similar points (basing on measures
such as proximity, slope, curvature, normals). A big challenge of these methods is
optimal seed selection (Nguyen and Le, 2013) and sensibility to noise (Nguyen and
Le, 2013; Nurunnabi et al., 2012; Gilani et al., 2016).

Unseeded methods use an alternative top-down approach. First, all points are
in a single group which is split until all parts satisfy the given threshold criteria.
Challenges here are avoiding over-segmentation and prior knowledge requirements
which usually cannot be satisfied in complex scenes (Nguyen and Le, 2013).

c. attributes based methods In this method, first, an attribute computation
is performed: each point is associated with a feature vector which consists of one or
several geometric or radiometric measures. In a second step, unsupervised cluster-
ing is performed (popular methods include k-means, fuzzy clustering, maximum
likelihood). As it is carried out on the feature space, this method can be used on
point clouds, raster data, and TINs directly. Reliable results can be achieved but
depend on the quality of the attributes, the computation of the feature vectors and
the clustering technique. Also, the dimensionality of the feature vector can be a
challenge for computation speed (Nguyen and Le, 2013; Wang and Shan, 2009).

d.model-based approaches These approaches are also known as ”direct ex-
traction of parameterised shapes” (Vosselman et al., 2004) and rely on geometric
primitives such as planes, cylinders or spheres. Popular examples are the 3D Hough
transform (for planes, with variants for cylinders) and RANSAC (for RANdom
SAmple Consensus). Advantage of these methods is their speed and their robust-
ness with regard to outliers (Nguyen and Le, 2013).

e. graph-based methods In this category, the point cloud is represented as a
graph with the points as vertices and edges representing connections with a weight
attribute for their similarity. Segmentation is then achieved by decimating (parti-
tioning) the graph, for instance where connections are weakest. Popular techniques
include normalized cut, minimum spanning tree and spectral graph partitioning
(Wang and Shan, 2009).

Challenges of point cloud data segmentation

While all taxonomies have their specificities, shared aspects also exist. Three recur-
ring challenges resulting from this are discussed by Nurunnabi et al. (2012):

a.types of edges Three different types of edges can be considered (illustrated
in figure 3.2): (a) crease edges which can, for instance, be found at the meeting
of planes of a same roof. While there is a proximity between the planes’ edge
points, a difference between surface normals can be observed. (b) jump edges can,
for instance, be found between a roof’s eave and ground surface. As the name

3.1 background: 3d surface reconstruction and citygml semantics 19

indicates, there is a discontinuity between the planes: planes’ edge points show
no proximity but the normals of the surfaces might be the same (such as in the
case of a flat roof above flat ground). (c) a third type is smooth edges which are
characterized by surface continuity but show a change of curvature 1 (Nurunnabi
et al., 2012; Wang and Shan, 2009).

Figure 3.2: Illustration of the different types of edges (Nurunnabi et al., 2012)

b.gaps As point clouds are scattered and unorganized (Wang and Shan, 2009),
gaps in the data are no exception. Occlusion depending on the geometry and the
scan angle or absorption by the presence of water (for some laser beam with near-
infrared wavelengths) occur in nearly all datasets (Vosselman and Maas, 2010). Ro-
bust methods, therefore, need to be designed to handle gaps, for instance avoiding
splitting an affected surface (Nurunnabi et al., 2012).

c.outliers/noise As mentioned in the explanations of the region based meth-
ods, outliers (which are a form of noise) can be very challenging for point cloud
surface reconstruction. In fact, they can contaminate statistics calculated on the lo-
cal neighborhoods, resulting in, for instance, a tangent plane biased in the direction
of the outlier (Nurunnabi et al., 2012). Nurunnabi et al. (2012) and Gilani et al. (2016)
proposed region-based methods with the aim to be more robust to outliers using
respectively Projection Pursuit combined with Minimum Covariance Determinant
and Low-Rank-Subspace with prior Knowledge methods. Depending on the type
of dataset obtained, outliers might also have been filtered out at an earlier stage -
and it is therefore a critical point to consider beforehand (see part 3.2.1).

Relevant tools

In anticipation of the next parts, two relevant tools which are commonly used by
different strategies presented in part 3.1.1 will be introduced here.

PCA The first tool is the PCA which in practice creates the best fitting plane for a
group of 3 or more non-aligned points. This can be relevant in order to derive an
orientation attributes (the normal vector) from a given group of points. The first
step is the creation of the covariance C matrix of size n×n where n is the number
of dimensions (in the case of this thesis: 3 dimensions).

C3x3 =
1
k

k

∑
i=1

(pi − p)(pi − p)T , p =
1
k

k

∑
i=1

pi (3.1)

With pi the input points and p the mean of the latter.
Basing on the covariance matrix, the eigenvalues λ can be extracted along with the

1 The smooth edges are less common in the built environment and will thus not be addressed by this
research

20 deviation identification

eigenvectors V (the number of eigenvalues and eigenvectors is equal to the number
of dimensions):

λV = CV (3.2)

The smallest of all three eigenvalues can then be used to identify the corresponding
eigenvector which is the normal vector. Furthermore, the curvature σ can also be
obtained using the eigenvalues λ (Nurunnabi et al., 2012):

σ =
λ0

λ0 + λ1 + λ2
(3.3)

The identification of a point group’s normal vector (by PCA/identifying the best fit-
ting plane) can function as a feature indicating the orientation of a group of points.

fixed-distance neighbors (fdn) and k-nearest neighbors (knn) A sec-
ond set consists of two tools that allow the formal definition of the ’neighborhood of
a point’. This is necessary in order to formally define local groups of points which
can be used to derive features. Here, two different approaches exist.

Figure 3.3: Illustration of the fixed-distance neighbors (FDN) (left) and KNN (right) ap-
proaches. While on the left all points within 5m are selected independently of
their number, on the right the three closest points are selected independently of
their distance (source: course material GEO1015).

The first one is the FDN. This one defines the neighborhood of a point by draw-
ing a circle with a given radius (the fixed-distance) around the point (see figure
3.3 on the left). All points lying inside that circle are then selected as neighbors.
Therefore, the number of neighbors for a given distance will vary, depending on
the distribution in the vicinity (and might even be 0 in some cases) (Bentley, 1975).

This is in contrast with the KNN. This one defines a fixed number of neighbors
rather than the radius of a selection circle (see figure 3.3 on the right). For each point,
the defined number of neighbors is then selected, independently of their distance
to the query point (for instance using a k-dimensional tree (kd-tree)). Therefore,
the number of points selected as neighbors will be static and independent of the
distribution of the vicinity. The method is thus more resistant to irregular point
densities, i.e. the number of nearest neighbors will be k in all circumstances (and
thus never 0) (Beyer et al., 1999). As point clouds are characterized by irregular
distribution, only the KNN approach will be used in this thesis (Vosselman and
Maas, 2010).

3.1.2 Semantics of the CityGML format

As mentioned in part 1.5.1, the research of this thesis requires a semantic 3D city
model. The city model must, therefore, contain more than merely geometries and

3.1 background: 3d surface reconstruction and citygml semantics 21

textures, it must also contain an ontological structure with semantic properties. Ex-
amples of the latter are thematic properties (for instance type of objects - see figure
3.4).

A wide-spread data model covering such requirements is the CityGML format,
which has been adopted by several cities in the world (according to citygml.org, at
least than 17 cities/regions have produced datasets in CityGML, of which 11 fulfill
LOD2 standard). One of these LOD2 city models has been developed for Rotterdam,
of which the specific dataset is described in part 3.2.2. As the scope of this thesis
is limited to roof materials, only the semantic storage of building roof geometries
and possibly materials will be discussed here (although the possibilities offered by
CityGML are much bigger).

Figure 3.4: UMl diagram illustrating the different modules of CityGML (Gröger et al., 2012).
This thesis will only cover the ’Building’ module

.

buildings and building parts A first aspect of relevance is that from LOD1

on, buildings can be subdivided into parts. As the UML diagram provided by the
CityGML specifications shows (figure 3.5), the central feature of the Building mod-
ule is called AbtractBuilding. Both Building and BuildingPart features inherit of the
class AbtractBuilding, the only difference being that several BuildingPart can be
aggregated into a AbtractBuilding (thus either another, higher level BuildingPart
or a Building feature). As mentioned in part 10.3.9 of Gröger et al. (2012), the high-
est level class of such an aggregation always has to be a Building class (Gröger et al.,
2012).

In practice, this means that any Building feature can be subdivided into Building-
Part classes. There is no limit to the number of BuildingPart features. Furthermore,
BuildingPart classes can be aggregated into groups which are represented by an-
other BuildingPart class (except when the highest level is reached, then it needs to
be a Building class). This means that it is possible to hierarchize BuildingPart fea-
ture into as many levels as one wishes. Any Building and BuildingPart classes do
further support the same attributes (semantically, thematically and geometrically)
(Gröger et al., 2012).

geometric and semantic surfaces Any AbstractBuilding class is related to
geometry class. This class exists for each of the supported LOD. In each LOD, this can
either be a gml :: Solid or a gml :: MultiSur f ace geometry (with the exception of
LOD0 where the geometry must be either a footprint or a roof edge, and thus gml ::
MultiSur f ace) (Gröger et al., 2012). Furthermore, for a given LOD, the geometry
might also be stored both in solid and multisurface versions (for instance to support
faster visualization).

22 deviation identification

Figure 3.5: Extract of the UML diagram for the building class (big version in annex 8.1),
showing the AbtractBuilding class and its relation to Building and BuildingPart
classes (Gröger et al., 2012)

.

From LOD2 on, semantic information can be added to the outer facade of a build-
ing (to the gml :: MultiSur f ace). This is done by adding for each geometry a rela-
tion to a BoundarySur f ace or a BuildingInstallation class (Gröger et al., 2012). The
BoundarySur f ace class will not be found as such as it is a superclass consisting of

a multitude of other features covering the different functions of boundary surfaces.
The most interesting subclass in the frame of this thesis is the Roo f Sur f ace. An-
other class that might be encountered in building shell parts that are visible from
the sky is OuterFloorSur f ace. This one can, for instance, be encountered to model a
rooftop terrace. Smaller elements that do not have the significance of building parts
(e.g. dormers, balconies, ventilation boxes) but still affect the boundary surface can
be modeled using the OuterBuildingInstallation class (Gröger et al., 2012).

energy ade and storage of roof materials The CityGML standard as such
does support the storage of visual textures but not of materials from a semantic
point of view (Gröger et al., 2012). While the CityGML standard is, in theory, exten-
sible by using so-called genericAttribute, a better option is the usage of Application
Domain Extension (ADE) as they provide a more standardized way. A good ex-
ample is the Energy ADE which introduces the notion of thermal boundary. Such
thermal boundary can be based on a building’s boundary surface but does not have
to. Furthermore, AbstractConstruction class is related to this thermal boundary and
facilitates the storage of one or several materials (Agugiaro et al., 2018).

3.2 selection of input datasets 23

Figure 3.6: Extract of the UML diagram for the building class (surfaces highlighted, big ver-
sion in annex 8.1), showing the relation between AbtractBuilding and its dif-
ferent geometric representations, including the class BoundarySur f ace (Gröger
et al., 2012).

3.2 selection of input datasets

3.2.1 Point cloud files

For the point cloud concerning the study area in Rotterdam (which is further de-
fined in chapter 6), the choice was given between two files: the Algemeen Hoogtebe-
stand Nederland - General height dataset of the Netherlands (AHN) which is openly
accessible and a proprietary file owned by the city of Rotterdam and acquired for
the production of the 3D city model.

AHN The AHN is an open point cloud dataset that can be downloaded in .las
format from https://www.pdok.nl/nl/ahn3-downloads. It provides the following
attributes for each point (information obtained from (American Society for Pho-
togrammetry & Remote Sensing, 2013)):
- x,y,z coordinates in the local reference system (EPSG2:28992)
- intensity of the return (pulse return magnitude)
- return number
- total number of returns
- classification (using the .las standard classes and a custom one, code 26 is used for

2 European Petroleum Survey Group, a widely used data base for coordinate reference systems)

https://www.pdok.nl/nl/ahn3-downloads

24 deviation identification

infrastructure such as bridges)
- Global Positioning System (GPS) time of the acquisition moment
some other, less interesting characteristics are also included:
- scan direction (this one is 0, for a negative scan direction, 1 for a positive one)
- scan angle (output angle of the beam, seems to always be 0)
- flight line edge (is usually 0, 1 only if the point is at end of scan)

two last characteristics are not relevant for the user:
- point source id (indicates the file from which the point originated)
- user data (this is a custom field, which can be freely used by the data producer)

The flight paths of acquisition flights can be found on http://www.ahn.nl/index.

html. For the study area used later in chapter 6, the point cloud was acquired on
4/12/2016.
According to the requirements established by the Dutch government (AHN, 2015),
there is no strict minimum number of points per m2. Instead, other requirements
are established:
-the stochastic height error must not be higher than 5 cm (standard deviation).
-the systematic height error must not be higher than 5 cm.
-objects of 2 by 2 meters must be identifiable with a positional deviation of no more
than 50cm.

As the optimal settings for the point density, point distribution, and height accu-
racy depend on the hardware used, the exact specification of the point density was
left to the data acquiring parties. For the study area in this research, the density is
about 8 points/m2 3.

point cloud provided by the city of rotterdam A second point cloud that
was obtained for the study area was acquired for the City of Rotterdam directly. One
of the purposes of this acquisition (while then AHN does already provide an open
dataset) is to have a more suited product for the production of 3D City models (as
mentioned in part 3.2.2). For this thesis, the technical requirements were shared by
the city of Rotterdam and contain the following information (Gemeente Rotterdam,
2016):
- for the parts above the city, acquisition with two flight lines that cross each other
is required. This allows the reduction of occlusion.
- the density of the point cloud must be of 15 respectively 30 points/m2 (single and
double flight lines). When sampling the dataset into cells of 1 m2, at least 95% of
the cells must fulfill this.
- no more than 0.1% of the points are outliers.
- the stochastic height error has a standard deviation of no more than 5cm, and
systematic height errors are not higher than 5 cm.

Furthermore, the point cloud provided by the city of Rotterdam also underwent
classification. In the specific case of this thesis, only the class ’building’ was ob-
tained, mainly due to data size considerations. The dataset obtained was also in
.LAS format and contains all data fields which the AHN contains, with the excep-
tion of the GPS time.

comparison An overview table of the characteristics for the two point cloud
datasets available for the study area that will be used in chapter 6 can be found
below:

3 Basing on a sample of 10 000 m2 of roof surface within the study area used in chapter 6.

http://www.ahn.nl/index.html
http://www.ahn.nl/index.html

3.2 selection of input datasets 25

Comparison of the two LiDAR datasets
AHN dataset Rotterdam dataset

Stochastic height error max. 5cm max. 5cm
Systematic heigh error max. 5cm max. 5cm
Acquisition flight lines 1 2, crossing
Points per m2

8 30

Acquisition moment 4/12/2016 2016

Classified yes yes

Table 3.1: Comparison of the two LiDAR datasets that were available for this study.

From a technical point of view, the two datasets only differ in their point density
and number of flight lines (see table 3.1). In order to make a choice, a sample
building (Lentstraat 20) with ’deviations’ (chimneys, roof windows) was selected
for closer analysis. This allowed discovering significant differences that are of major
importance for the aim of this research. The class ’building’ seems to be too strictly
defined for the case of the second point cloud. In fact, two chimneys present on
the building are completely missing, while they are present in the AHN dataset
(see figure 3.7). It seems rather unlikely that these ones were missed by the laser
scanner as each chimney is already represented by 5-10 points in the low-density
version (although a different wavelength might have been used for the two datasets,
and one of them absorbed or reflected differently).

Another explanation is that the classification algorithm used for labeling the
’building’ points interpreted this chimney as a group of outliers and did thus fil-
ter it out.

Figure 3.7: Samples of the two available point clouds. On the left AHN, the chimneys on the
roof can clearly be seen. In contrast, the points of the chimney are completely
missing in the example on the right (City of Rotterdam point cloud).

It should nevertheless be noted that the AHN does also have disadvantages. The
classification algorithm might, in fact, have been too ’loose’ as in the same case
at Lentstraat 20, points were found inside the building. Interestingly, this must
explicitly be avoided according to the official requirements (AHN, 2015), but can
nevertheless be encountered.

Furthermore, the AHN point cloud contains more occluded locations, which is
rather unsurprising given it was only acquired in one direction. This can be ob-
served for the sample (Albert Plesmanweg 103-110, which was also used for the
exploration study) in figure 3.7. Interestingly, some occlusion locations persist in
the high-density versions.

While the second point cloud dataset has a potential due to its higher density
and less occlusion, this is not out weighed by the observations made here. Also, it
should be noted that while a higher point cloud density will cover more details, it
also involves heavier computation. For the same building, more points would have
to be processed. Especially for some data preparation steps such as identifying the
points inside a roof surface (see part 3.4), this is not marginal.

With these considerations in mind, the decision was taken to conduct the research
with the AHN point cloud and to only consider the one of the city of Rotterdam if
difficulties related to point cloud density and/or occlusion arise.

26 deviation identification

Figure 3.8: Samples of the occlusion in the two available point clouds. On the left (AHN), the
chimneys on the roof can clearly be seen. In contrast, the points of the chimney
are completely missing in the example on the right (City of Rotterdam point
cloud).

3.2.2 CityGML file

For this research, which eventually results in a case study for validation on a part of
the city of Rotterdam (see chapter 6), a CityGML file was obtained from the city of
Rotterdam. This dataset is open and can be visualized and downloaded by anyone
on the website www.3Drotterdam.nl.

The technical requirements published for the tender (Gemeente Rotterdam, n.d.)
were obtained for this thesis and contain the following technical characteristics:
- the CityGML file should be of LOD2 and fully semantic (Building Solid and the-
matic boundary surfaces).
- all roof surfaces with an area of at least 4m2 and a height difference of 30cm be-
tween the point cloud and the roof surface must be modeled.
- the footprint of the 3D buildings must be based on the data of the Basisregistratie
Adressen en Gebouwen - Basis Registration Addresses and Buildings (BAG).
- modeling of buildings must be made automatically, with the exception of ob-
jects where a difference of more than 10% between the BAG and Basisregistratie
Grootschalige Topografie - Basis registration high scale topography (BGT) exists.

Within this dataset, mainly the first subclass of the BoundarySur f ace class intro-
duced in part 3.1.2, Roo f Sur f ace is of interest as it can be considered most represen-
tative for the area where the roof surface material can be found. Furthermore, con-
sidering it only is sufficient from a geometric point of view as OuterBuildingInstallation
and OuterFloorSur f ace are not simply docked but truly integrated with the bound-
ary surface (see figure 3.9). This approach is not mandatory (the OuterBuildingInstallation
could also be ’glued’ without being integrated with the boundary surface) but was
followed here. As the creation of the dataset which will be used in this thesis was

3.3 choice of the conceptual framework: attribute-based and seeded region growing 27

automatic (see 3.2.2), it will be assumed that this approach was coherently used for
all buildings.

Figure 3.9: Example of an object of class OuterBuildingInstallation in the Rotterdam 3D city
model: the dormer (left image). On the right, one can see that this results in a
hole (inner border) in the roof geometry.

3.3 choice of the conceptual framework: attribute-
based and seeded region growing

This section will illustrate the steps that were taken to establish the conceptual
framework for identifying ’deviation’ points (the implementation can be found at
the end of this chapter). Basing on the background presented in 3.1.1, an exploratory
study was conducted. The goal of this one is to identify a number of attributes
(derived or not) that might be used for the identification of ’deviations’.

The general method that was chosen to start with is the third (attribute-based) one.
The motivation behind this is that next to the point cloud itself, a 3D city model is
also available (which is generally not the case in point cloud segmentation). The
attribute-based approach offers opportunities to merge information contained in
both datasets. Hereby we are mainly referring to the following attributes:
- positional: geometry points’ coordinates indicate ’where’ the surface is inside a
reference system.
- orientation: the surfaces have an orientation which can be expressed as a normal
vector (this one is implicit as surfaces are stored as polygons and thus contain at
least three non-aligned points).
- curvature: so far, CityGML only supports storage of planar surfaces (Gröger et al.,
2012). Therefore, big curved surfaces need to be approximated by several planar
surfaces. In contrast, big non-split surfaces indicate planar sections, therefore im-
plicitly containing information about the curvature of surfaces.

3.3.1 Exploratory study

In order to get an idea of the usability of possible derived attributes, a number of
them were computed and visualized. Furthermore, this study was performed on
a higher and a lower density point cloud (as presented in 3.2). This exploratory
study was limited to a single, flat-roofed building containing roof windows that
were missing in the 3D model of Rotterdam (address: Albert Plesmanweg 103-110,
also see figures 3.10 and 3.11).

28 deviation identification

Figure 3.10: Sample building Albert Plesmanweg 103 used for the exploratory study, down-
loaded from the Rotterdam 3D city model. One can note the roofs which have
been modeled as flat planes while roof windows visible in the texture are actu-
ally not flat.

Figure 3.11: Close up zoom on roof windows in the AHN point cloud. Here, the height
deviations of the roof windows are indeed present.

Distance to roof plane

As a starting point, a test was performed using only the positional data (thus with-
out derived attributes):
- the height of the main plane of the 3D city model
- the z coordinate of the point cloud

Given that the roof here is flat, these two information are sufficient to calculate
the distance to the roof plane. If the roof is not flat, a more complete approach such
as explained in part 3.4.2 is needed.

Obviously, small variations within the roof surface and during LiDAR point cloud
acquisition apply and a threshold needs to be set in order to distinguish between
points representing the ’regular’ roof and acquisition-related ’deviations’. The re-
sults with thresholds of 30 and 20 cm can be seen below.

As shown in figures 3.14 and 3.13, a cluster of points belonging to the roof lies at
a distance from the roof that exceeds 20cm. The most plausible hypothesis is that
this is due to the roof in the 3D city model being modeled as entirely flat while it is
in reality gently sloped. The question of the accuracy of the 3D city model and its
impact will come back in chapter 6.

3.3 choice of the conceptual framework: attribute-based and seeded region growing 29

Figure 3.12: Distance of the points with regard to the roof surface of the 3D city model.
Points with a distance exceeding 30cm are colored red, others blue. One can see
that roof windows are partially identified; points close to the crease edge, to the
junction with the roof are missing.

Figure 3.13: Distance of the points with regard to the roof surface of the 3D city model.
Points with a distance exceeding 20cm are colored red, others blue. Note the
red cluster on the left.

Figure 3.14: Same calculation as in the previous figure, but with the higher density point
cloud (red: distance exceeding 20cm, others blue). Just as in the previous exam-
ple, one can note a cluster of deviations on the left side. These are probably due
to a roof slope that is absent in the 3D city model.

Height differences in neighborhood

For this part, a derived attribute was used: the maximum height difference within
the neighborhood of each point. This one was computed by selecting the k-nearest
neighbors (in this case 3, forming a set of 4 with the existing point) and calculating
the biggest difference between the z coordinates (as the test case has a flat roof).
Just as in the previous case, a threshold was applied - here 5cm.

30 deviation identification

Figure 3.15: Result of the height difference within the neighborhood (KNN=3) of each point.
A threshold of 5cm was applied: points above it are colored red, others blue.

Figure 3.16: Results of the height difference within neighborhood (KNN=3) computation but
using a higher definition point cloud. One can note influence of the point den-
sity.

One can clearly see that there is complementarity with the previous distance to
roof plane attributes. The borders of the roof window, for instance, are identified
while the more enclosed parts are not. This is due to the fact that there might be
no or only slight height differences within the missing object. In the distance to the
roof plane approach, the opposite is the case: the enclosed parts are further from
the roof surface and therefore easier to identify.

While measuring height differences in the neighborhood of the points shows po-
tential, applying it to non-planar surfaces requires modifications. In fact, confusion
between the actual deviations and changes of roof surface (e.g. slope) itself must be
avoided.

Therefore, adapting this to non-flat roofs requires re-projecting the point cloud
to work in a local reference system adapted to the roof in question. This implies
adding an additional computational layer, which can be avoided as the next part
shows.

Normal vectors

One of the most common derived attributes in the field of surface segmentation and
reconstruction is the PCA which was mentioned in part 3.1.1. By defining a neighbor
with the KNN approach, one can fit a plane to the groups of points. This plane can
be defined by a normal vector. By checking whether the normal vector matches the
one defining the roof surface of the 3D city model, deviations can be identified, as
figure 3.18 shows.

3.3 choice of the conceptual framework: attribute-based and seeded region growing 31

Figure 3.17: Visualization of the normal vectors obtained using principal components analy-
sis on a KNN=10 neighborhood.

Figure 3.18: Normal vectors obtained by applying principal components analysis on KNN=10

neighborhood. The normal vectors that diverge more than 8 degrees from a
vertical one are colored in red, the other ones in blue. Note the blue points at
the very inside of the roof windows.

One can note that this method works quite well for the identification of ’devia-
tions’ with a surface that has a different orientation than the reference surface of
the city model. One advantage is that similarly to the height differences method, it
correctly identifies ’deviation’ points until a crease edge. However, in the case of
non-planar deviations with crease edges, some of the enclosed parts of the devia-
tion will show vectors that are identical to the one of the roof surface, hereby not
identifying the entire deviation.

In order to make a choice concerning the k-nearest neighbor setting, a visual eval-
uation with three different settings was done. As in order to calculate the normal
vector using PCA at least three non-aligned points are needed, the minimal version
was made with 5 nearest neighbors (which have more chances to include three non-
aligned points). In order to see evolutions when the number of nearest neighbors
increases (e.g. decreasing impact of noise), two additional values arbitrarily set at
10 and 15 were also tested (see figure 3.19).

As one can see in 3.19, the biggest difference occurs between KNN=5 and KNN=10

settings. In fact, some points which are not located at a deviation on the imagery
appear to be red in the first one. As this does not happen with the KNN=10 setting,
it is likely to be related to noise in the data.

An important additional observation is that the KNN=10 setting results in slightly
bigger regions. Whether there is an over, an underestimation or both taking place
is addressed during validation in part 6.4.

Between the KNN=10 and KNN=15 settings, local variations but no clear trend can
be observed. As the KNN=10 takes fewer points as an input for the PCA, it leads to
a lighter computational load and was thus chosen (in accordance with the criteria
named in part 2.1).

32 deviation identification

Figure 3.19: Results obtained for normal vectors obtained by using PCA on different KNN

neighborhood settings. Normal vectors diverging more than 5 degrees from a
vertical one are colored red, others blue. From left to right: satellite image from
google earth (taken on 15/01/2019), KNN settings of 5, 10 and 15.

Curvatures

As discussed in part 3.3 another attribute that can be derived from principal com-
ponents analysis on point neighbors is the curvature. In contrast to the previous
explorations, this one was not successful. For both dense and less dense point
clouds, it appears that external factors such as the acquisition lines of the LiDAR

scanner have a clear impact on the curvature values (see figure 3.20 and 3.22. This
is also the case for higher KNN settings where crease edges do not lead to curvature
changes - the values might be less spread but the effect of scan lines is still clearly
visible (see 3.21).

Figure 3.20: Curvature values as computed for each point with a KNN=5 setting. One can
see curvature values change along some of the roof window crease edges. Other
changes with smaller but still considerable magnitudes seem to be related to the
scan lines and noise. Note: values on the left are curvature × 100

3.3 choice of the conceptual framework: attribute-based and seeded region growing 33

Figure 3.21: Curvature values obtained by applying principal components analysis on a
KNN=20 neighborhood. Note the red points at the very inside of the roof win-
dows. Note: values on the left are curvature × 100

Figure 3.22: Curvature values obtained by applying principal components analysis on
KNN=5 neighborhood on the higher density point cloud. Note the red points at
the very inside of the roof windows. Note: values on the left are curvature ×
100

While in some cases a curvature change occurs at the border of ’deviations’, this
test clearly shows that it will be hard to distinguish between value changes induced
by noise and value changes induced by ’deviations’. As to the human eye, both phe-
nomena are mixed, a threshold is assumed to be sufficient to tackle this. Moreover,
one might note that not all crease edges show curvature changes - the suitability of
this approach (especially with regard to the completeness criteria defined in part
2.1) is weaker than the previous ones.

3.3.2 Definition of ’deviations’ and choice of the approach

In order to allow automated identification, ’deviations’ need a clear definition with
a strict logical framework. Based on the previous observations and the criteria es-
tablished in 2.1 (completeness and computational load), it has been chosen to define
’deviations’ as a group of points fulfilling the following two criteria:
a) with regard to the roof surface position (of the 3D city model), at least one point
is located at a distance that exceeds a given threshold.
b) any point that is not exceeding the distance threshold mentioned in the first
point must have a vicinity whose normal vector diverges more than a given thresh-
old from the normal vector of the roof surface above which it lies. The vicinity is

34 deviation identification

defined as the k-nearest neighbors around a point. The normal vector of the latter
is obtained by applying a principal components analysis to the group of points.

As two criteria exist, a remaining question to address is the order in which the
groups of ’deviation’ points (or regions) are constructed. One can note that the first
part of the definition requires only additions, subtractions, and one division (see
part 3.4.2). In contrast, the second part (see part 3.1.1) involves the construction of a
covariance matrix and the extraction of eigenvectors which is more complex 4 and
increases the computational load.

For this reason, a similar approach to the two-step one used by (Willenborg et al.,
2018) in his research on enrichment using a 3D mesh is used. First, seed points are
selected by using a distance threshold (attribute-based method). These seed points
then serve as an input for a region growing approach, which extends the set using
an orientation check (seeded region growing method). Resulting from this, a third
criteria can be established:
c) while the points of a region do not necessarily have to be connected, any point
belonging to a region is among the k-nearest neighbors of at least one other point
of the region (except for regions composed of strictly one point).

3.4 implementation: identification of seeds and
region growing

In this section, the implementation of the approach that was established in 3.3.2 is
discussed. Globally, three phases can be observed:
- first, the input data needs to be retrieved and for each roof surface, a region of
interest is defined to limit the part of the point cloud to be processed (in part 3.4.1).
- second, seed points which are located at more than a given vertical distance from
the roof surface need to be defined (in part 3.4.2).
- finally, the region growing approach is applied using PCA (in part 3.4.3).

The two first phases are described in the algorithm 1 while the last one is de-
scribed in algorithm 2 in part 3.4.3.

4 covering this in-depth is beyond the scope of the thesis. For more details, see: https://www.scss.tcd.ie/
∼dahyotr/CS1BA1/SolutionEigen.pdf

https://www.scss.tcd.ie/~dahyotr/CS1BA1/SolutionEigen.pdf
https://www.scss.tcd.ie/~dahyotr/CS1BA1/SolutionEigen.pdf

3.4 implementation: identification of seeds and region growing 35

Algorithm 3.1: Deviation Identifier (model, cloud, thresholddist, maxdist,
mindist)

Input: A semantic 3D model of a city or neighborhood (e.g. in CityGML
format) model; a point cloud covering the area of the latter cloud;
thresholddist for the absolute distance threshold for deviations;
maxdist and mindist settings for the minimum and maximum
distances from the roof taken into account

Output: deviation lists, a list of ’deviation’ point lists, each for a given roof
surface

1 Initialization;
2 for building ∈ model do
3 retrieve the bounding box buildingbbox;
4 buildingcloud ← crop cloud ∩ buildingbbox;
5 retrieve buildingroo f sur f aces;
6 for roo fsur f ace ∈ buildingroo f sur f aces do
7 calculate normal vector ~nsur f ace (using PCA on points ∈ roo fsur f ace);
8 crop buildingcloud ∩ roo fsur f ace (2D)→ cloudroo f sur f ace;
9 Processing;

10 for point ∈ cloudroo f sur f ace do
11 pointvert distance ← vertical distance to roof;
12 if mindist < pointvert distance < maxdist and

|pointvert distance| > thresholddist then
13 append pointindex to deviation list;
14 end
15 end
16 append roo f sur f acedeviation list to deviation lists;
17 end
18 end
19 Storage;
20 return deviation lists;

3.4.1 Retrieval of input data using 3DCityDB and laspy

As mentioned in part 3.2, the 3D city model of Rotterdam was obtained in CityGML
format and the AHN point cloud in .laz format (which is a zipped version of the .las
format).

In order to facilitate efficient data retrieval (a total of 31 CityGML files were
provided), the software Application Domain Extension (3DCityDB) 3.3.2 was used. This
is a database building in Structured Querying Language (SQL) language which can
be freely downloaded from www.3dcitydb.org. It basically translates the CityGML
standard into a relational database by inserting the different types of classes into
tables and using external keys to establish links. For practical reasons, the energy
ADE extension was also installed as it provides views which are not present as
such in native 3DCityDB. The connection between the main python script and the
3DCityDB database was implemented using the psycopg 2.8.3 library.

Within this framework, the query in figure 3.23 was used to extract the list
of buildings (highest level class, thus including aggregations of building parts)
and their respective bounding boxes (line 3 in the pseudo-code). By using the
condition ’objectclass id = 26’ it is guaranteed that the retrieved data is for the
class ’building’ (codes defined in table citydb.objectclass). Using the expression
’ST AsTest(envelope)’, the bounding box is retrieved as a Well known text for-
mat (WKT) string (the latter are automatically generated when importing data into
3DCityDB).

www.3dcitydb.org

36 deviation identification

s e l e c t gmlid , ST AsText (envelope)
from c i t y o b j e c t
where o b j e c t c l a s s i d = 2 6 ;

Figure 3.23: SQL statement used to retrieve all lowest level building/building part ids and
bounding boxes of the model, using 3DCityDB.

Using the bounding box that is obtained, a rather big initial point cloud can be
cropped to the extents of the building (line 4 in the pseudo-code) by comparing
the points’ x and y coordinates to the minimum and maximum coordinates of the
bounding box (using the laspy library). Hereby, a computationally efficient reduc-
tion of the number of points is provided and the cropped point cloud stored for
further usage(s).
In the next step, all roof surfaces of a building need to be retrieved (line 6 in the
pseudo-code). This is done by using the SQL code shown in figure 3.24. Reading it
from bottom to top, one can see the following steps:
- the original ’building id’ is converted into an internal id used by 3DCityDB
- all the building and BuildingPart entities which belong to that id are retrieved
(using ’where building root id in’)
- all the surface identifiers belonging to roofs (’objectclass id = 33’, codes defined
in table citydb.objectclass) and to the entities of the previous step (’building id in’)
are retrieved. This step involves a view (citydb view.thematic sur f ace) which is pro-
vided by installing the Energy ADE.
- finally, using the surface identifiers, the roof surface geometries (as a WKT string)
and their identifiers (identical to the ones provided in the input file) are retrieved
using ’select ST AsText(geometry), gmlid’.

s e l e c t ST AsText (geometry) , gmlid
from surface geometry
where p ar en t id in (
s e l e c t l o d 2 m u l t i s u r f a c e i d
from ci tydb view . t h e m a t i c s u r f a c e
where o b j e c t c l a s s i d =33 and b u i l d i n g i d in (
s e l e c t id
from bui lding
where b u i l d i n g r o o t i d in (
s e l e c t id
from c i t y o b j e c t
where gmlid= ’ b u i l d i n g i d ’))) ;

Figure 3.24: SQL statement used to retrieve all roof surfaces of a building, using 3DCityDB.

Following this second step, so-called regions of interest can be defined for each
of the roof surfaces. These regions of interests are obtained in two steps, by further
cropping the building-specific point cloud that was previously prepared. First of
all, the z coordinate is omitted (thus in 2D) and all points that would lie inside the
roof surface polygon are selected (see line 8 in the pseudo-code). Second, all points
that lie inside a vertical buffer of the roof surface are selected (the buffer is thus not
oriented in the direction of the roof surface normal). This buffer goes as a far as
a mindist below and maxdist above the roof surface (see line 12 in the pseudo-code).
In practice, values of respectively 1 and 20m were used here (see figure 3.25). The
usage of such a buffer (rather than just letting the region of interest vertically going
to infinity) is motivated by the potential presence of outliers inside and outside
buildings (such as identified in part 3.2.1).

3.4 implementation: identification of seeds and region growing 37

Figure 3.25: Illustration of the region of interest reaching from 1 to +20m, vertically from the
roof surface.

3.4.2 Calculation of the vertical distance for seed selection

In order to allow the selection of points inside a buffer and, more importantly, the
selection of seed points, it is necessary to calculate the vertical distance between the
points and the roof surface (see line 11) in the pseudo-code). This can be imple-
mented using the following trigonometric reasoning:
To calculate the vertical distance between a 3D point and a 3D roof surface, one first
has to calculate the shortest distance. For these calculations, the 3D roof surface
needs to be defined using a 3D point and a normal vector (using PCA, this can be
calculated from the set of coplanar points as which the 3D roof surface is initially
stored).

Figure 3.26: Illustration of the trigonometric equation to calculate the vertical distance.

−−−−−−−−−−−−−−−−−→
vectorroo f sur f ace point−point =

Xpoint − Xroo f sur f ace point
Ypoint −Yroo f sur f ace point
Zpoint − Zroo f sur f ace point

 (3.4)

shortest distance =
−−−−−−−−−−−−−−−−−→
vectorroo f sur f ace point−point •

−−−−−−−−−−−−→
normalvectorsur f ace (3.5)

Once the shortest distance has been calculated, the vertical distance can be calcu-
lated using a trigonometric equation. In fact, the normal (shortest) distance vector,
the vertical distance vector and a third displacement vector connecting the latter

38 deviation identification

form a right-angled triangle. In this triangle, two equations can be established.
First of all, the vertical vector is the sum of the normal distance vector and the dis-
placement vector:

−−−−−−−−−−−→
vectornormal distance +

−−−−−−−−−−→
vectordisplacement =

−−−−−−−−−−−→
vectorvetical distance (3.6)

Furthermore, the vertical distance vector being vertical, we know that there are no
x and y components:

−−−−−−−−−−−→
vectorvetical distance =

 0
0

Zvd

 (3.7)

This results in the following three equations:Xnd + Xdisp = Xvd = 0
Ynd + Ydisp = Yvd = 0

Znd + Zdisp = Zvd

 (3.8)

The only unknown to be found in order to determine the vertical distance (the
length of the vertical distance vector) is thus the Zdisp.
Equation 3.9 relies on the fact that the normal distance vector and the shortest
distance vector are orthogonal. In fact, as the displacement vector connects two
points (the normal and the vertical projection of the 3D point on the roof surface)
which both lie in the plane of the roof surface. By definition it is thus orthogonal to
the normal vector of that same plane (and thus to the normal distance vector too).

−−−−−−−−−−−→
vectornormal distance •

−−−−−−−−−−→
vectordisplacement = 0 (3.9)

Which can be developed as follows:

Xnd ∗ Xdisp + Ynd ∗Ydisp + Znd ∗ Zdisp = 0 (3.10)

Using the statements of equation 3.8, one obtains:

Zdisp =
−X2

nd −Y2
nd

Znd
(3.11)

and thus the vertical distance:

Zvd = Znd + Zdisp = Znd +
−X2

nd −Y2
nd

Znd
(3.12)

3.4.3 Region growing

The second part of the implementation consists of the region growing approach,
described in algorithm 2. This one uses the previously identified seed points as an
input and can be described with the following steps:
- first, a kd-tree of all points lying in the region of interest is created and a subset of
the seed points is selected (line 2 and following).
- second, for each of the seed points, the 10-nearest neighbours are identified (line
8).
- third, if these points have not been identified earlier, a plane is fitted on the 10-
nearest neighbors of that specific point (line 17, the value chosen basing on the
exploration study presented in part 3.3.1). Then the normal vectors are compared
(line 20) to determine whether the point is a ’deviation’ and the region can be ex-
tended to it or not.

3.4 implementation: identification of seeds and region growing 39

- finally, if this process has been followed for the subset of seeds, a check is per-
formed to make sure that all seeds have been assigned to a region before terminat-
ing the algorithm (line 28).

An example illustration of the identification of distance deviations and the sub-
sequent region growing can be found in figure 3.27. The building used here is the
same as in part 3.3.1(address: Albert Plesmanweg 103-110).

Figure 3.27: Illustration of the distance deviation identification and subsequent region grow-
ing approach(settings used: 40cm distance tolerance, 5.73 degrees angular toler-
ance and 10 for both KNN settings).

40 deviation identification

Algorithm 3.2: Region grower (roo fsur f ace,~nsur f ace, cloudroo f sur f ace,
deviation list, roo f sur f acedeviation list, thresholdangle, KNNplane f itting,
KNNgrowing)

Input: The region growing builds upon variables identified in 1: A roof
surface roo fsur f ace represented by a list of coordinates, the normal
vector ~nsur f ace belonging to the previous surface; a list of points
cloudroo f sur f ace located inside the roof surface in 2D, the list of
deviations roo f sur f acedeviation list previously identified, the
orientation tolerance thresholdangle, the KNN setting for fitting the
local plane KNNplane f itting, the KNN setting for growing the region
KNNgrowing

Output: A list of deviation regions deviationregions, each deviation region
regionpoints being a list of point indexes itself.

1 Initialization;
2 build a kd-tree of cloudroo f sur f ace;
3 seed stack→ every 10th point in roo f sur f acedeviation list;
4 Processing;
5 while seed stack 6= ∅ do
6 pop a point from seed stack→ regionpoints;
7 while non visited point ∈ regionpoints do
8 pointneighbors ← KNNgrowing-nearest neighbors of point (using the

kd-tree);
9 for neighborpoint ∈ regionpoints do
10 if neighborpoint ∈ regionpoints then
11 pass;
12 else if neighborpoint ∈ roo f sur f acedeviation list then
13 append neighborpoint to regionpoints;
14 if neighborpoint ∈ seed stack then
15 remove neighborpoint from seed stack;
16 else
17 neighborvicinity ← KNNplane f itting-nearest neighbors of

neighborpoint (using a kd-tree); obtain normal vector ~nvicinity

of neighborvicinity (using PCA);
18 deviationangle ← ~nvicinity •~nsur f ace;
19 if deviationangle < cos(thresholdangle) then
20 append neighborpoint to regionpoints;
21 (mark point as visited);
22 else
23 pass;
24 (mark point as visited);
25 end
26 end
27 Add regionpoints to deviationregions;
28 if stack = ∅ then
29 for pointdeviation ∈ roo f sur f acedeviation list do
30 if pointdeviation /∈ deviationregions then
31 Add pointdeviation to seed stack
32 end
33 end
34 end
35 end
36 Storage;
37 return deviationregions;

3.5 chapter summary and link to assumptions made 41

3.4.4 Variables

It should be noted that the approach presented in algorithms 1 and 2 provides two
main variables:
- a threshold setting the distance tolerance (between the point cloud and the 3D city
model) for the identification of seed points (thresholddist in line 12 of algorithm 1).
- a threshold setting the angle tolerance used during the region growing (to distin-
guish between planes deviating and matching with regard to the roof surface). This
one can be found as thresholdangle in line 19 of algorithm 2.
Also, two minor variables mindist and maxdist can be found in line 12 of algorithm 1.
These ones are essentially used to describe the region of interest in the vicinity of
the roof surface.

Furthermore, two additional variables for which (mainly for practical reasons
which are elaborated in part 6.1.1) a usable constant has been identified exist:
- the number of vicinity points used to obtain the local normal vector using PCA

(KNNgrowing in line 17 of algorithm 2). Basing on the exploration performed in part
3.3.1, this one will be set 10. It should be noted that this exploration is specific to
the dataset used in this study, and the resulting setting might thus differ if other
point cloud datasets are used.
- the number of nearest neighbors used for the region growing (KNNgrowing in line 8

of algorithm 2). As one can see in figure 3.27, the identified regions (green and yel-
low) are surrounded by a layer of refused points (in red). With regard to the criteria
named in part 2.1, this layer needs to provide a sufficient margin for completeness
(sufficient points should be checked) without leading to unnecessary computational
load. Based on a visual evaluation, one can note that the red layer obtained in figure
3.27 with a setting of 10 has a thickness of at least 2 - 4 points, which is considered
a good balance to fulfill the two criteria. Therefore, this setting of 10 will be used
in this research. Here too, one should note that this is specific to the chosen point
cloud dataset.

3.5 chapter summary and link to assumptions made

This chapter has explored and identified a strategy for the identification of ’devi-
ation’ points by comparing two datasets: a LiDAR point cloud and a city model.
First, an overview of existing background research in the field of 3D surface recon-
struction was formulated. Along with this one, recurring challenges and relevant
mathematical tools were mentioned. Also, an overview of the relevant semantics
used by the CityGML format used has been given.

input dataset specification and choice A second part was dedicated to
the specification of the input datasets, covering, among others, choices that were
made within the CityGML framework. As two-point cloud datasets were available, a
qualitative comparison using two sample buildings was performed and allowed a
justified choice.

conceptual framework: attribute-based and seeded region growing
In a third step, an exploratory study led to establishing the conceptual framework,
namely ’attribute-based and seeded region growing’. By computing several at-
tributes for a sample building (distance to roof plane, height differences within KNN

neighborhoods, comparison of KNN cluster and roof plane normal vectors, and com-
parison of KNN cluster and roof plane curvatures), two relevant ones were identified.
Considering both completeness and computational efficiency criteria, a seeded re-
gion growing method was chosen and implemented.

42 deviation identification

implementation of the framework The implemented method consists of
mainly two parts: first, the vertical distance of all points is calculated and where a
given threshold is exceeded, the point is labeled as seed. These seeds are then used
to perform a region growing within which the local normal vector (of a KNN clus-
ter) is calculated using PCA. The local normal vector is compared to the one of the
roof surface and if the difference is too big, the points are added to the ’deviation’
regions.

During implementation, a number of critical details were addressed. Using a
python framework, the CityGML roof surfaces were retrieved from a SQL database.
Using a kd-tree, the point cloud was clipped before computation. Furthermore, a
region of interest was defined in order to limit the impact of outlier points located
inside a building.

variables used In total, four variables were identified. The possibility to use a
constant was studied with regard to the limited time-wise budget, mainly critical in
chapter 6. Using the sample building, usable constants for the KNN settings during
region growing and local plane fitting were successfully identified. Therefore, the
two settings to focus on are the height and the angle tolerance thresholds.

4 F R O M P O I N T S TO S U R FA C E S :
E X T R A C T I O N O F G E O M E T R I E S

Unlike ”length”, ”volume”, ”position” or ”angle”,the geometric notion of ”shape”
has no formal meaning (Edelsbrunner and Mücke, 1994). Therefore, a study of the
different possibilities, the different definitions that exist to obtain a shape using a
number of input points is necessary.

This is what this chapter aims at, starting with an overview of relevant back-
ground knowledge (part 4.1). Basing on this literature review, two interesting op-
tions will be selected and further explored, ultimately leading to the choice of the
Voronoi diagram as the theoretical framework (part 4.2).

This chapter will be closed with the implementation of the chosen framework
(part 4.3). Here, the usage made of the scipy.spatial.Voronoi library and the neces-
sary improvements that were made will be detailed.

The concepts discussed in part 4.1 illustrate different approaches but are also
subject to overlap. The notion of the convex hull will, for instance, come back in
the boundary extraction approach. Different approaches presented in this chapter
indeed build upon each other.

4.1 background: definition of shapes by point
sets

The background work of this section covers the question of how to transform a set
of points into a geometric shape. As in the origin they all tackle a similar problem,
the following premises will be shared:

- while in the previous chapter 3, the approaches mostly applied to 3D space, this
is different here. As mentioned in the introduction (see part 1.3), the scope of this
project is to produce a semantic enrichment. In other words, this one does not need
to represent a full 3D geometric addition to the existing 3D city model. Therefore,
from this part on, the topics covered will exclusively be referring to 2D space. The
conversion from 3D space to 2D space takes place by simply omitting the 3rd spatial
dimension of the points, the z coordinate 1.

- The entire set of points within the region of interest of a roof surface P (see part
3.4.1) surface is denoted R. R = {r1, r2, rn} are the points belonging to the set of the
region of interest, with rn ∈ R and R ∩ P.

- The points identified as ’deviations’ are a subset denoted S with S ∈ R. S =
{s1, s2, sn} are the points belonging to that subset.

Furthermore, it should be noted that the approaches illustrated here are not unre-
lated to each other. For instance, the convex hull discussed hereafter is reused as a
tool in the boundary extraction method (see part 4.1.2). These are thus not different
taxonomies in the sense of part 3.1.1 but rather different versions of a perspective
on transforming a set of points into ”shapes”.

1 This creates an orthogonal projection which distorts the shape with regard to the roof plane (if this one
is not flat). As the obtained geometries will ultimately be projected onto a horizontal image plane (see
chapter 5), the distortion can be disregarded.

43

44 from points to surfaces: extraction of geometries

Convex hulls

A first option to translate a group of points into a geometric shape is the convex hull.
For a set of points S, the convex hull is the smallest geometric shape containing all
points of S. Furthermore, none of the (straight) lines connecting any two points of S
are allowed to intersect the edges of the convex hull. This implies that all the angles
formed by the consecutive edges of the convex hull are smaller or equal to 180

◦

(see figure 4.1) (De Berg et al., 1997).

Figure 4.1: Example of a convex shape for a set P of input points (De Berg et al., 1997).

A major drawback of convex hulls is the fact that their usage is limited to convex
shapes. Any concave shape cannot be obtained by algorithms computing convex
hulls. To explain this, one might think about the ’rubber band’ analogy: if one puts
a rubber band around a L-shape (or points sampling that L-shape), the rubber band
will not wrap around all edges of the L-shape. Instead, it will take a convex shape
containing the original concave one. This also excludes the extraction of any shapes
with holes. Furthermore at least three non-aligned points are required.

4.1.1 Concave hulls and alpha-shapes

The concept of the convex hull was already touched in the previous part about con-
cave hulls. While the difference is clear, there is interestingly no universal approach
for obtaining the concave hull of a set of points. The reason for this is that there is
not just a single way to define the concave hull with regard to the edges composing
it. There can be several concave-hulls for the same set of points (see 4.2).

One of the approaches is the α-hull which is composed of the connections be-
tween points for which a disk of radius 1/α can be drawn so that:
- the two points lie on the border of the disk.
- the disk contains the entire point set (Edelsbrunner and Mücke, 1994).

Looking at the implementation level, there is always a need to further specify
the definitions in order to make it applicable. Some identify and connect extreme
points (Edelsbrunner et al., 1983), others restrict the angles of the consecutive edges
and minimize the area (Asaeedi et al., 2013) or visit the set of points with a specific
KNN approach (Moreira and Santos, 2007). A drawback of these approaches is that
all except the KNN one require a setting, the so-called α. As the point cloud density
is not a constant (see part 3.1.1), this one would need to be set differently for each
situation. Another option would be to use a higher α setting than needed, but this
would reduce the support for holes (which are not supported at all by the KNN

approach of (Moreira and Santos, 2007) and the area minimizing by (Asaeedi et al.,
2013)). Finally, one should note that, just as for the convex hull, at least three non-
aligned points are required.

4.1 background: definition of shapes by point sets 45

Figure 4.2: Example of two concave shapes obtained using the KNN approach (Moreira and
Santos, 2007).

4.1.2 Boundary extraction: labeling and minimum spanning tree

Similarly to 3D surface reconstruction (as presented in 3.1.1), there is also the possi-
bility to identify the border of the shape rather than the shape directly. In his paper,
Wang and Shan (2009) suggests the usage of local convex hulls for the identification
of border points which are later connected by a minimum spanning tree.

For each point in the set, a subset of k-nearest neighbors is identified. Each time,
the convex hull of this subset is computed. All points which are inside the convex
hull (thus not edge points) are then removed from the list of candidate border
points (which initially contains all points). Once all the points are visited, a graph
of the remaining (previously candidate) border points is created with a similar KNN

approach. Ultimately, this graph is transformed into a minimum spanning tree
which contains the border (see figure 4.3 for an illustration).

Figure 4.3: Illustration of the boundary extraction process proposed by Wang and Shan
(2009).

This method has the advantage that it only requires convexity at a local scale.
Concave shapes can thus also be obtained. Furthermore, shapes with holes can
be supported if several graphs are supported for connecting and extracting border

46 from points to surfaces: extraction of geometries

points. However, the same restriction as for the concave and convex hull applies: at
least three non-aligned points are required.

4.1.3 Voronoi diagrams

Figure 4.4: Example of the Voronoi diagram obtained for a set of points. Space is divided
into cells. Any point lying inside a cell is closer to the respective input point of
that cell than to any other input point (in blue).

A further consideration that can be made in the context of this research is that the
set of points is actually a set of ’probes’. In fact, the LiDAR system used for the
acquisition (as mentioned in part 1.5.2) ’samples’ the environment by sending laser
rays at regular geometric intervals. Therefore, each obtained point can be seen as
representing a part of the original geometry.

One way to translate this perspective into a geometry extraction process, is the
Voronoi diagram. The Voronoi diagram does not translate a set of points into a
”shape” directly as it does first divide the space occupied by the set of points (see
figure 4.4). Formally, it can be defined as follows in 2D:

For any point set R = {r1, r2, rn} belonging to a plane P, the Voronoi diagram
of R is the subdivision of the plane P into c parts respectively containing exactly
one point of R. It has the property that any point q ∈ P lies inside ci if and only if
distance(q, ri) < distance(q, rj) for any rj ∈ R where j 6= i (De Berg et al., 1997; Botsch
et al., 2010).

For a subset S = {s1, s2, sn} ∈ S, the shape of the points sn ∈ S can be obtained
by extracting the cells cellsdeviation = ∑n

i=1 ci for any si ∈ S. The geometries of
cellsdeviation can then be merged into one, resulting in a ”shape” representing the
input points S in the context of R (see figure 4.5).

In contrast to the previous methods, this one does take into account the context
of the point set. Therefore, it requires other points located around the point set to
extract. In this thesis, this is the case, with the exception of points being located
close to the edge of a roof surface. This issue will further be addressed in part 4.3.

The shape that is obtained using this approach can be expected to be bigger than
the ’strict’ one might obtain with the concave hull approach (part 4.1.1). The extent
to which it will be bigger depends on the distribution, on the distance between the
points of the cloud. In fact, the translation from input points to Voronoi cells does
actually perform what is called a ’nearest-neighbor’ interpolation. Therefore, the
deviation ”shape” is the parts of the roof surface that are closer to a deviation point
than to a non-deviation point.

An advantage of this approach is that it supports uneven point distribution (e.g.
resulting from occlusion), which regularly occurs in point cloud datasets such as
the one of this thesis (as shown in part 3.2.1). Other aspects to notice are that it

4.2 choice of definition and conceptual framework 47

does support geometries with holes and is able to provide a shape from only one
point on.

Figure 4.5: For the points to extract (located in the yellow cells), the cells can be extracted
and merged into a single geometry.

4.2 choice of definition and conceptual frame-
work

4.2.1 Pros and cons with regard to the needs

Using the observations based on literature, a comparison of the different methods
has been made using several criteria. An overview can be found in table 4.1. The
criteria have been selected in view of the needs of this thesis:

- First, the type of expected geometry. In the case of the convex hull, the resulting
shapes will be overestimated. This overestimation is not a fixed one and might de-
liver strongly erroneous (over-estimating) results for some non-convex shapes. For
the concave hull and the boundary extraction approach, a rather strict shape, close
to the minimum area enclosing all points can be expected. For the Voronoi diagram
approach, the resulting shape will also enclose all points but can be expected to
have a buffer corresponding to the nearest neighbor interpolation along the edge.

- Second, the support of geometries with holes is technically possible for all ap-
proaches except the convex hull. For the concave hull, some algorithms do not
support holes, others do.

- Third, the presence of irregular point densities (one of the challenges mentioned
in part 3.1.1) is not expected to be a problem in the case of the convex hull and
the Voronoi diagram approach. In the case of the boundary extraction approach,
irregular point densities might become a problem if the irregularities are too strong
and make it impossible to cover the dataset with a single KNN setting. Furthermore,
depending on the α setting used (and the specific algorithm), the concave hull can be
affected by low point densities and occlusions (e.g. creating holes at inappropriate
locations).

- Fourth, the requirement for settings to be provided by the user. This is only the
case for the convex hull and some of the concave hull approaches allow this. The
concave hull versions that do not require settings do not support holes though.

- Fifth, the calculation of the geometry by using a subset only is possible for all
approaches except the Voronoi diagram. In the case of the Voronoi diagram, points
located on the outer border of a set of points lead to non-closed cells. This is a
weakness that will be addressed in part 4.2.3.

- Finally, the minimum number of points required by the methods is 3 (non-
aligned points) for all except the Voronoi diagram.

48 from points to surfaces: extraction of geometries

Basing on this comparison, the convex hull can be excluded as it is clear that
the ’deviations’ might also have shapes that are not convex. For the concave hull
difficulties in implementing successfully both support of holes and absence of in-
put settings must be expected. This is in contrast with the boundary extraction
approach which shows similar results with a different paradigm, thus avoiding the
concave shape drawbacks. Finally, for the Voronoi diagram approach - a clear defi-
nition does exist and can be reliably implemented.

Point to geometry transformation method
Convex hull Concave hull Boundary extraction Voronoi diagram

Expected geometry Strict, but wrong for non-convex Strict Strict Voronoi cells
Allows holes No Yes/No 2 Yes Yes
Resistance to irregular density High Low Medium High
Input settings No No/Yes 1 Yes No
Calculation with subset only Yes Yes Yes No
Minimum number of points 3 3 3 1

Table 4.1: Comparison of the different approaches mentioned by the literature study in part
4.1

With these considerations in mind, it was decided to further explore the bound-
ary extraction approach as proposed in (Wang and Shan, 2009). Furthermore, the
Voronoi diagram approach will also be explored as its usage of nearest-neighbor
interpolation to define the shape shows potential with regard to the actual meaning
of the LiDAR acquired point cloud.

4.2.2 Exploratory study: boundary labeling and minimum spanning tree

A first exploratory study was carried out with the boundary labeling and subse-
quent extraction with a minimum spanning tree approach. Here, the pseudo-codes
published by Wang and Shan (2009) (see figures 4.6 and 4.10) were translated into a
Python code. One should note that this was performed in two dimensions only as
the points were projected onto the same surface beforehand (the third dimension,
the z attribute was omitted).

Figure 4.6: First part of the approach published by Wang and Shan (2009). The border points
are identified by performing a local convex hull check for each point of the set.

In order to get a better idea of the results, a pilot was performed on the same
building as in the exploration in part 3.3.1 (address: Albert Plesmanweg 103-110).
An example result of the first part of the approach (the implementation of the
pseudo-code in 4.6) can be seen in figure 4.7. The first challenge was identified dur-
ing the implementation as ’deviation’ regions with fewer points than the k setting
(the k of KNN used for the local convex hull approach, in the case of this example
’10’) cannot be subject to this processing (e.g. points that are isolated seeds that

2 The versions that were studied do either not allow holes or require input settings. The ones that do allow
holes have a low resistance to irregular density

4.2 choice of definition and conceptual framework 49

did not grow into regions). In such cases, all the points belonging to the ’deviation’
were de facto labeled as deviations (e.g. the four clusters located between the two
windows on figure 4.7 are entirely colored in green).

Figure 4.7: Example result obtained by implementing the pseudo-code presented in figure
4.6 (10-nearest neighbor setting). The points that were labeled as ’deviations’ are
in green if they were labeled as border points too and in red otherwise. The
points in blue are the ones of the initial set that were not labeled as ’deviations’.

A more critical issue can be observed for non-convex shapes (e.g. the left window
in figure 4.7 which has another object attached to the same region on its right side).
In fact, the points located at the intersection of edges forming an angle of more
than 180

◦ can hardly be labeled as a border point. If we assume that at least one
point along these two consecutive edges is among the 10-nearest neighbor set it is
excluded that such a point will be on the edge of the convex hull formed by the
neighbor set. This makes clear that the usage of the convex hull for testing at a local
scale will lead to missing some of these critical points where two edges meet (also
see figure 4.8).

Figure 4.8: Results of the approach shown in figure 4.6 that are shown in Wang and Shan
(2009). Similarly to the results shown in figure 4.7, some critical corner points are
not identified.

It is important to note that an improved version of the algorithm 4.6 was proposed
in the same publication (Wang and Shan, 2009). This one consists of adding a
threshold to avoid labeling points close to the local convex hull border as ’non-
boundary’ points. As this is only an exploration study, it was not implemented
here. However, it seems rather unlikely that this modification would allow the
identification of the critical points at the intersection of edges forming an angle of
more than 180

◦. In fact, nothing suggests that these points are even close to the

50 from points to surfaces: extraction of geometries

edge of the convex hull formed by their neighbor set. This is in line with the results
presented by Wang and Shan (2009) which are shown in figure 4.9.

Figure 4.9: Results of the improved approach shown in figure 4.6 that are shown in Wang
and Shan (2009). The improved consists of adding a threshold to avoid labeling
points close to the local convex hull border as ’non-boundary’ points. One can
see that some critical corner points are not identified in this version either.

Figure 4.10: Second part of the approach published by Wang and Shan (2009). The border
points are converted into a graph basing on the distance between the k-nearest
neighbors of the border point set. If required, the obtained graph is split using
a distance threshold (for instance, to split inner borders from the outer border).
Finally, the graph is converted into a line geometry by creating a minimum
spanning tree.

Figure 4.11: Example result obtained by implementing the pseudo-code presented in figure
4.10 to the result of which an extract was presented in 4.7. To allow easier
implementation, the line segments were not closed in the cases where a circular
line segment should be generated. In some cases, the minimum spanning tree
is quite literally a tree: it is not composed of a single line segment but of several
connected ones.

4.2 choice of definition and conceptual framework 51

Looking at the results of the second part of the exploration (figures 4.10 and
4.11), one can observe the consequence of missing some of the critical corner points.
A comparison between the window on the left in figure 4.7 and the first vertical
window from the left on figure 4.11 shows that the corners where the object is
attached to the ’deviation’ region of the window are much smoother than in the
point cloud. In the vicinity of these missed corner points, one can observe a shape
with an overestimated area.

A second concern of this approach are the results of the second step for shapes
with a limited width. A good example of these ones is the roof edges which have
a thickness of about 50cm (based on measures taken from aerial images). In these
cases, one can see that the minimum spanning tree does connect boundary labeled
points of different sides of the edge alternatively, resulting in zig-zag patterns. In
some other cases, branches grow out of the mainline segment, leading to geometry
with several segments. As the minimum spanning tree works using the distance
between border points only, this happens as the opposite boundary points are closer
to each other than the consecutive ones. Avoiding this would require the boundary
points of one side to be closer to each other, which can only be achieved by lowering
the k-nearest neighbor setting of the first step (figure 4.6). Doing this will however
lead to wrongly labeling points as boundary points, especially inside shapes with
more width (as shown in figures 4.8 and 4.9).

In fact, the k-nearest neighbor setting defines the size of the local neighborhood
to be taken into account in the first steps described in figure 4.6. Induced by figures
4.8 and 4.9, one can formulate the following observation:

As the k-nearest neighbor setting decreases, the chances of having wrongly iden-
tified boundary points increase.

4.2.3 Exploration study: Voronoi diagrams

In order to allow a justified choice before implementation, the option of the Voronoi
diagram was explored as well. The definition of the Voronoi diagram (as presented
in part 4.1.3) is unambiguous and several Python libraries do already exist, allowing
an easier implementation.

The biggest challenge that was identified so far for the Voronoi diagram is the
necessity of the subset to be surrounded by ’non-deviation’ points. In fact, for a set
of points (see the cell in green on figure 4.12) the points located on the edge (points
that are edge vertices of the convex hull of the set) lie in non-closed cells (Botsch
et al., 2010).

Figure 4.12: Example of the Voronoi diagram obtained for a set of points. One can observe
that i) cells of points belonging to the vertices of the convex hull are non-closed
and (e.g. green cell) ii) that some closed cells have a vertice located outside the
convex hull (e.g. yellow cell).

52 from points to surfaces: extraction of geometries

Another challenge arises by the fact that some closed cells (i.e. the ones belonging
to points located close to the convex hull border, but not part of it) have vertices
lying outside the set of points (see figure 4.12). The extent to which these ones lie
outside can be considerable (see figures 4.12). As can be seen in figure 4.13:

for three points si, se1 and se2 of a bigger set S and qi, qe1 and qe2 their respective
Voronoi cells of the Voronoi diagram Q;

with {se1, se2} ∈ edge points ∈ convex hull(S); edgee1−e2 the line connecting se1
and se2;

the following observation can be made for the point voronoi vertexi−e1−e2 where
qi, qe1 and qe2 meet:

as distance |(si− edgee1−e2)| decreases, distance |(voronoi vertexi−e1−e2− edgee1−e2)|
increases toward infinity.

Figure 4.13: ’
[Illustration that as distance |(si − edgee1−e2)| decreases, distance

|(voronoi vertexi−e1−e2 − edgee1−e2)| increases toward infinity.]Illustration of the
observation that as distance |(si − edgee1−e2)| decreases, distance
|(voronoi vertexi−e1−e2 − edgee1−e2)| increases toward infinity.

In the context of this research, both of these challenges can be addressed by com-
ing back to the original motivation for using the Voronoi diagram: the point in the
cloud as a sample of the geometry it lies on. In fact, the point sets that are used
here all refer to one roof surface geometry per set (independently of having being
labeled as ’deviations’ or not). Therefore, it is considered that these points sample
the respective roof surface up to the edges.

Figure 4.14: Illustration of the usage of a bounding box to limit the extent of non-closed
and outlying cells. The roof surface geometry is shown as a blue line and the
affected cells are colored in yellow.

4.2 choice of definition and conceptual framework 53

By using this approach, the Voronoi diagram is in fact cropped to a bounding box
which is the original roof surface (see figure 4.14). Non-closed cells and cells with a
vertex outside the bounding box are thus closed by the edges of the bounding box.
This approach respects the idea of the nearest neighbor interpolation. Although
details are missed by the point cloud acquisition (e.g. in between any two points of
the point cloud), this approach is similarly valid at the edges of the point cloud as
it is inside the set of points (the size of the cell might be slightly bigger or smaller
as the cell is cut by the edge of the bounding box rather than limited by the cell of
a neighbor point).

4.2.4 Choice of the theoretical framework: Voronoi diagrams

further specification of the boundary extraction approach The explo-
ration study allowed to further specify the characteristics of the boundary extraction
approach. Among the estimations that were made in table 4.1, some have to be nu-
anced. In fact, it appeared that irregular densities do not necessarily pose a problem
to the approach itself. However, they create a requirement to the local neighborhood
scale which leads to shapes with limited width being extracted as lines rather than
polygons. Furthermore, the shapes obtained will still be ’strict’, thus containing the
points while having a minimum area in the case of convex shapes, this cannot be
said for concave shapes. Similarly to the convex hull approach an overestimation of
the area can take place for these types of shapes, be it to a lower degree than the
convex hull.

further specification of the voronoi diagram approach Further, it was
shown that the main challenge of the Voronoi diagram approach which is the pres-
ence of cells outside the set of points can be addressed by using the roof surface
geometry which was already used in the previous chapter 3. Overall, one of the
main advantages of the Voronoi diagram approach is that it does not require the
selection of points among the set to be labeled as ’deviation’. It performs the con-
version from points to geometry at a relatively early stage and continues by merg-
ing selected geometries. Also, the nearest-neighbor interpolation approach makes
it rather resistant to changes in point density. Occlusion might nevertheless be a
challenge as it can result in overestimating the area of ’deviations’. If there is a
high distance between two points of which one is a deviation, the Voronoi diagram
approach will simply assume the ’deviation’ stops at the middle which might not
always correspond to reality. Estimation for the area between the edge of the bound-
ing box (of the roof surface) and the closest point might also alter the quality of the
results if that point is located relatively far. Overall, it can nevertheless be said that
the Voronoi diagram has better resistance to point cloud density changes than the
boundary extraction approach. In opposition to these methods, it does not lead to
artifacts such as holes in the resulting shape.

the case of small regions The last topic of interest is the support of ’devia-
tion’ regions with only a few points. If for instance only one of the points belonging
to a roof surface is labeled as ’deviation’, neither the convex hull, concave hull nor
the boundary extraction approach can handle it. In contrast, the Voronoi diagram
can do so.

choice of framework The Voronoi diagram approach does thus have consid-
erable advantages with regard to the alternative approaches that were studied. The
resistance to changes in point cloud density was further specified and identified
as robust, although limitations obviously exist. Furthermore, it was observed that
in opposition to the boundary extraction algorithm, the Voronoi diagram approach
can handle different types of shapes without requiring any setting. For these rea-
sons, the Voronoi diagram will be implemented for the conversion of points into

54 from points to surfaces: extraction of geometries

geometries.

4.3 implementation: extraction of the voronoi
diagram

The implementation of the geometry extraction by usage of a Voronoi diagram
was made by building upon the scipy.spatial.Voronoi library for python. As one
can see in line 2 of the algorithm 3, this library initiates a Voronoi diagram object
which contains several attributes (object.vertices, object.regions, object.ridge vertices,
object.ridge points;for the two last ones, also see figure 4.15).

Figure 4.15: Illustration of the meaning of the terms ’ridge points’ and ’ridge vertices’ (as
used in scipy.spatial.Voronoi), for a given Voronoi diagram edge.

4.3.1 Case of regular, closed cells

After building the Voronoi diagram, the extraction of the geometries can be per-
formed starting from line 7. One might note that just before, the centerpoint (mean
point) of the input point set is calculated. This is to allow the correct orientation
of infinite edges which, if needed, is performed in lines 14 to 27. This process will
further be elaborated in part 4.3.2. For closed cells, the standard process applies
and involves fewer steps (for all geometric operations, shapely has been used):

- For each point labeled as ’deviation’ the coordinates of the cell are extracted in
counter-clockwise order (lines 10) and a geometric object (polygon) is built (lines
28).

- Once this has been done for all points, the extracted polygons are merged to-
gether (line 31).

- Finally, the latter shape is intersected with the roof surface edges (line 32) and
the result is stored (as a WKT textstring, in a csv file, line 34).

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium do-
loremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veri-
tatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam volup-
tatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni
dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est,
qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non
numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat
voluptatem. Ut enim ad minima veniam, quis nostrum. eius modi tempora incidunt

4.3 implementation: extraction of the voronoi diagram 55

ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima ve-
niam, quis nostrum

Algorithm 4.1: Points to Voronoi (roo f sur f ace, cloudroo f sur f ace,
listregions,)

Input: The geometry extraction builds upon the output of algorithm 2:
roo f sur f ace, a 3D geometry of the roof surface, a list of points
cloudroo f sur f ace located inside that roof surface in 2D; and the
respective list of deviation regions deviationregions previously
identified

Output: deviationpolygons A list of polygons each representing another
deviation region.

1 Initialization;
2 build a 2D voronoi diagram of cloudroo f sur f ace voronoivertices ← vertices of

the Voronoi diagram;
3 voronoicell vertices ← vertices of each cell, in counter clockwise order

(including infinity vertices);
4 voronoiridge vertices ← vertices of each ridge segments;
5 voronoiridge points ← dual points of each ridge segment in voronoiridge vertices;

6 centerpoint← center point of cloudroo f sur f ace;

7 Processing;
8 for regionpoints ∈ deviationregions do
9 for pointto extract ∈ regionpoints do
10 currentcell vertices ← find voronoicell vertices ∩ pointto extract;
11 if infinity vertex /∈ currentcell vertices then
12 currentpolygon ← create a polygon geometry with

currentcell vertices;
13 append currentpolygon to regioncells;
14 else
15 end vertices← vertex before and vertex after infinity vertex in

currentcell vertices;
16 f ar points← ∅;
17 for end vertex ∈ end vertices do
18 find ridge vertices and ridge points where

end vertex ∈ ridge vertices ∈ voronoiridge vertices and
pointto extract ∈ ridge points ∈ voronoiridge points (for
respectively dual ridge points and vertices);

19 middleridge points ← ridge points;

20
−−−−−−→
normalline ←

−−−−−−−−−→
vectorridge points;

21 normalize
−−−−−−→
normalline so that |

−−−−−−→
normalline| = 1;

22
−−−−−→
vectorline ← rotate

−−−−−−→
normalline by 90

◦;
23 if

−−−−−→
vectorline •

−−−−−−−−−−−−−−−→
vectorend vertex centerpoint > 0 then

24 flip
−−−−−→
vectorline;

25 append end vertex +
−−−−−→
vectorline ∗ 100 to f ar points;

26 end
27 replace infinity vertex ∈ currentcell vertices by f ar points;
28 currentpolygon ← create a polygon geometry with

currentcell vertices;
29 append currentpolygon to regioncells;
30 end
31 regionpolygon ← merge all polygons ∈ regioncells;
32 regioncells ← currentpolygon ∩ regioncells;
33 Storage;
34 append regioncells to deviationpolygons;
35 end

56 from points to surfaces: extraction of geometries

4.3.2 Case of infinite edges

In the case of non-closed cells (14 to 27), the approach requires more processing
steps. In fact, the framework provided by scipy.spatial.voronoi does only provide
the information that a given edge is endless, but not what the orientation and direc-
tion of that endless edge are. Basing on the attributes of the Voronoi object, this can
be computed using an approach that was found in the source code of the function
voronoi plot 2d of the scipy.spatiallibrary 3.

For this approach, it is important to realize that the non-closed cells of a Voronoi
diagram are the cells of the input points which are vertices of the convex hull of the
input set. In order to orient the infinite lines of these non-closed cells, one might
thus use the convex hull. In fact, the infinite lines are always oriented ’away’ from
the convex hull, never towards the inside. In practice, this can be implemented as
follows (basing on the source code of voronoi plot 2d, also see figure 4.16):

- Beforehand, the centerpoint (mean point) of all input points is computed (last
part of the initialization, line 6). This one lies by definition inside the convex hull of
the input points.

- Second, for each open cell, the known endpoints of the edges/ridges are ex-
tracted (line 15, indexes before and after the ’-1’ in voronoicell vertices of the respective
cell).

- For each of these vertices the process illustrated in figure 4.16 is followed. The
respective infinite ridges are identified using voronoiridge vertices and voronoiridge points
(line 18. Then, the middlepoint between the two ridge points is computed in line
19. Using the vector connecting the ridge points (line 20), a vector of the infinite
line is obtained by rotation (line 22) and, if applicable, flipping. The latter (line 24)
takes place if the dot product of the rotated vector and another vector going from
the centerpoint to the middlepoint is bigger than 0 (if the angle is smaller than 90 or
bigger than 270

◦).
- Finally, the missing vertex of the infinite ridge/edge is approximated by insert-

ing a vertex that limits the infinite line at a safe distance from the set of points and
the delimiting roof surface (e.g. 100 meters, 25). These points do then replace the
’-1’ index in voronoicell vertices, after what the cell does follow the same processing
steps as any other cell (as described in part 4.3.1).

Figure 4.16: Illustration of the steps for orientation of infinite lines, from left to right: First,
the middle point between the two ridge points of the infinite line is computed
(line 6). Second, the line is then modelled by a vector (line 20) line , obtained by
rotating the vector connecting the two ridge points (line 22). Third, the orienta-
tion of this vector is checked with regard to the vector going from centerpoint of
the input (computed beforehand) to the middle of the ridge points. If needed,
the direction of the infinite line is flipped (line 24). Fourth and finally, a far
point is generated at a safe distance from the original set of points (line 25).

3 https://github.com/scipy/scipy/blob/master/scipy/spatial/ plotutils.py; this function uses the
matplotlib.pyplot library too

https://github.com/scipy/scipy/blob/master/scipy/spatial/_plotutils.py

4.3 implementation: extraction of the voronoi diagram 57

4.3.3 Towards a semantic integration with CityGML

The enrichment performed within this research was limited to the requirements for
the main goal: the identification of clean pixels. Therefore, the geometry and other
attributes (see part 4.3.4) were stored in a .csv file.

In contrast, a stronger semantic enrichment would be the integration with the
existing CityGML standard. Although not implemented, this raised some interesting
questions. In fact, no framework for the addition of such ’deviations’ exists yet and
two possible paths were identified:

A first option is the usage of an existing feature which is a child of the build-
ing module: the BuildingInstallation (see annex 8.1) in the building model. Three
attributes exist for this feature: class, function, and usage. The content of these
attributes is customizable (more specifically, the code lists indicating the content
options are). While the ’deviations’ might be indicated by leaving the attributes
empty (or putting ’others’ as a value), filling at least the class with a specific value.
In fact, beyond having an unknown function and usage, the ’deviations’ are often a
projection of 3D shapes onto a 2D surface. Even if the function and usage become
known from tertiary sources, this will stay this way and should therefore clearly be
stored in the class attribute.

For the storage of geometry, the standard geometry model is used and at least
LOD2 is required (as defined by the CityGML geometry module). Therefore, the
points defining the polygons which are now stored in the comma separated values
(csv) files would need to be projected onto the roof surface. This could easily be
done by using the same vertical distance calculation as shown in part 3.4.2.

Furthermore, one might consider making holes in roof surfaces where the ’devia-
tion’ occurs to avoid overlapping geometries. While this is recommended, it is not
required (as mentioned in part 3.2.2). If holes are made, it is further recommended
to fill the holes using ’closure surfaces’. For the case of the specific application of
this thesis (distinguishing between pixels indeed or not containing spectral devia-
tions), making holes in the roof surfaces would not be a critical contribution. For
other applications (mentioned in chapter 7) such as estimating surfaces to extrapo-
late material quantities or solar panel potential, it will, however, prove useful.

Figure 4.17: UML Diagram of the GenericCityObject class (Gröger et al., 2012).

The second approach relies on the fact that CityGML is an extensible standard and
that so-called GenericCityObject can be created. Similarly to the BuildingInstallation,
each GenericCityObject has the attributes class, function and usage (see figure 4.17).
In the specific case of ’deviations’, these ones should probably be left empty as they
are unknown within this research. A difference with regard to the first option is also

58 from points to surfaces: extraction of geometries

that the latter does allow the usage of LOD0 geometries (as defined by the CityGML
geometry model). The 2D WKT geometries which are now stored in the csv file could
therefore directly be used here, with no need to add a 3D coordinate.

In order to create the semantic link between the ’deviation’ and the roof surface,
the usage of another module, the CityObjectGroup is necessary. This one allows
to create a group composed of several city objects. As the roof surfaces are also
city objects (see 8.1), the link can directly be created with the roof surface. This is
an advantage with regard to the first option as the BuildingInstallation is a child of
the building module and can therefore only refer to the building and not the roof
surface directly.

In both cases, the polygon(s) of a given ’deviation’ region (in 2D or 3D) must be
stored as as gml:: Surface object. All polygons (even if only one) should be aggre-
gated into a gml::MultiSurface geometry in order to support ’deviations’ composed
of several polygons and to fulfill CityGML geometry requirements (see annex 8.2).
Also, a few GenericAttribute should additionaly be created in order to store attributes
such as the mean or the percentile heights (see the next part 4.3.4 for more details).

4.3.4 Additional attributes

Figure 4.18: Example of an attribute table, illustrating the additional attributes stored with
the output geometry.

Furthermore, additional attributes were also kept through the process starting from
algorithm 1 and stored together with regioncells in line 34 in algorithm 3. These ones
include for instance the building and roof surface identifiers (identical to the ones
in the CityGML files provided by the city of Rotterdam). Also, height statistics were
computed using the vertical distance to the roof surface (which was computed in
algorithm 1 in line 11) of the points composing a ’deviation’ region. These height
statistics are of two kinds: on one hand the mean height and on the other hand
the 90th percentile (in the case of negative values, the 10th percentile is used - 90th

percentile thus being defined with regard to absolute values). These height statistics
are beyond the scope of this thesis but were implemented to show the potential for
other applications as discussed in part 7.3. An example of the result storage can be
found in figure 4.18.

4.4 chapter summary and link to assumptions made 59

4.4 chapter summary and link to assumptions made
This chapter confronted itself with the problem of translating a group of points
labeled as ’deviation’ (resulting from chapter 3) into a 2-dimensional geometric
shape. The fact that there is no formal definition for the shape of a given group
of points (Edelsbrunner and Mücke, 1994) made it necessary to choose between
specific definitions. This choice was made with an eye on the criteria introduced
beforehand, namely the ability to cover all input cases and the automation of the
approach (in opposition to human intervention).

As had been shown beforehand, the input cases can not only be subject to various
shapes (connected vs. disconnected, with or without holes) and sizes (from only one
up to many points), but also to uneven point densities (as mentioned by literature
in part 3.1.1 and observed in part 3.2.1).

choice between methods Basing on literature, four options were identified:
convex hull, concave hull, boundary extraction, and Voronoi diagram. The first
ones were eliminated based on literature: the convex hull because its reliability is
limited to convex shapes and the concave hull because it could hardly handle both
changes in point density and holes.

exploration of the boundary extraction method The boundary extrac-
tion approach was further explored using a pilot. In addition to the publications
which suggested that uneven point densities might be a problem, the method also
appeared to be shape-dependent (e.g. a minimum width is required). Both might
have been solved by tuning settings for each different situation (thus for each devi-
ation), but the second criterion, automation opposed it. The automatic selection of
settings depending on the group of points and its density is a topic of research in
itself and thus beyond the scope of this thesis.

chosen method: voronoi diagram The method which was finally chosen is
the Voronoi diagram method, which is able to handle changes in point density
and is not influenced by the actual shape. Furthermore, the Voronoi diagram is
able to handle ’deviation’ regions composed of a single or a pair of points only.
Nevertheless, a challenge still had to be tackled: the case of cells that are infinite or
have a vertex located outside the set. As the framework of this extraction is a roof
surface, the geometry of the latter was used to solve it.

Furthermore, the option of the Voronoi diagram fully fulfills the second criterion,
namely automation. Within its theoretical framework, this option inherently adapts
itself to the point density (using each point’s nearest neighbors) and thus does not
even allow settings for external tuning.

The main disadvantage found for the Voronoi diagram method is that it requires
more points to compute. While the other methods require only the points labeled as
’deviation’, creating the Voronoi diagram requires non-labeled points too. This led
to a heavier computational load, but not to an extent endangering the feasibility of
the research. As this was not a criterion for this part, it was not further considered.

implementation This chapter has successfully adapted and implemented the
chosen Voronoi diagram method. While a fair part was done using the existing
scipy.spatial library, specific parts required adapting it to the needs (e.g. the case of
infinite cells).

Furthermore, the implementation also performed data storage, even if in a limited
way from a semantic point of view. The options for a more complete semantic
storage were explored and choices to be made were formulated. Also, the storage of
additional attributes such as height criteria was performed, mainly to demonstrate
the potential for future research as discussed in part 7.3.

5 DATA F U S I O N W I T H H Y P E R S P E C T R A L
I M A G E R Y

5.1 background: instrumentation used in the air-
borne prism experiment

The hyperspectral aerial imagery used for this study was acquired within the Air-
borne Prism Experiment (APEX), a Belgian-Swiss research project with the support of
the European Space Agency. The study by Priem and Canters (2016) of which the
potential was discussed in part 1.2.2 used images acquired by the same sensor but
at a different flying height (3650 m instead of 7000 m above sea level). Pixel size is,
therefore, higher, resulting in a resolution of approximately 3.5-3.8 instead of 2m.
The flight itself was performed on 17 September 2014 around noon for the Swiss
Federal Laboratory for Material Science and Technology (EMPA, Kuhlmann et al. (2016)).
The main purpose is, therefore, atmospheric research and more specifically air pol-
lution analysis but a side-application of this data might be land cover classification.
A total of three flights with a swath of 3500m each was performed, with an overlap
of 600m between datasets (see figure 5.1).

Figure 5.1: Overview of the flight lines of the hyperspectral acquisition performed by the
APEX on 17 September 2014 in Rotterdam. Background imagery: (c) google earth

As the name suggests, a central part of the measuring device is a prism (for
an illustration, see figure 5.2). After light entered the measuring device through
a slit-shaped ground imager and a collimator, it hits the prism which splits the
wavelengths into two groups. On one side, the visual and near-infrared (VNIR)
radiation (380-970 nm) is directed to a Charge Coupled Device (CCD) sensor while
the short-wave infrared (SWIR) radiation (940-2500 nm) is sent to a Complementary
Metal-Oxide-Semiconductor (CMOS) sensor (Schaepman et al., 2015). Both CCD and
CMOS are image sensor technologies that are also used in commercial photography
equipment (e.g. smartphones, cameras).

61

62 data fusion with hyperspectral imagery

Figure 5.2: Optical design used in the apex spectrometer(ESA Earth Observation Portal Di-
rectory, n.d.).

The CCD sensor used is commercially available and produced by e2v technolo-
gies (n.d.). It has a size of 1252*1152 pixels with a pitch of 22.5 µm, and a fill-factor
(the surface share that is photosensitive) of 100% (ESA Earth Observation Portal
Directory, n.d.). Among the available sensors, only 1000*334 (maximum number
of bands) are effectively used - the remaining ones being used for black current
calibration (Schaepman et al., 2015).

In contrast, the CMOS sensor of the Saturn series used is custom made by French
company sofradir using a HgCdTe detecting module. Also, it requires an active cool-
ing system to work in optimal conditions (Nowicki-Bringuier and Chorier, 2009).
The pitch size is 30 µm and the field has a size of 1024*256 pixels of which 1000*199

are effectively used (Schaepman et al., 2015). The fill factor for this sensor is not
mentioned in publications, the only indications found is that the technology used
by sofradir with the HgCdTe detecting module allows ”sharp diodes with high fill
factor” (Tribolet and Chorier, 2002). Moreover, more recent publications about the
successor of the Saturn model indicates that a fill factor of 80% is now achieved
with a pixel pitch of 15 µm (Fieque et al., 2012).

Sensors used in the APEX experiment
E2V technologies CCD 55-30 Sofradir Saturn

Measured radiation 380-970 nm 940-2500 nm
Technology CCD CMOS

Number of pixels 1252*1152 1025*256

Effectively used pixels 1000*334 1000*199

Number of spectral bands 334 199

Pixel pitch size 22.5 µm 30 µm
Pixel fill factor 100% ’high’

Table 5.1: Comparison of the VNIR and SWIR sensors used in the APEX experiment

While both of the systems are rather different in terms of technology, they have a
common aspect: the usage of their two-dimensional surface for a single spatial and
a single spectral dimension (as explained in figure 5.3). In fact, just before radiation
hits the sensor surface, a system of lenses separates it so that each wavelength hits
another row of 1000 pixels. Therefore, the rows are the spectral dimension - and
their number corresponds to the maximum number of bands that can be acquired
(199 in SWIR + 334 in VNIR).

5.2 conceptual framework: from pixel imagery to mesh 63

Flight path

Sensors:
SWIR (940-2500 nm): CMOS - 1000*199 pixels
VNIR (380-970 nm): CCD - 1000*334 pixels

Spectral dimension:
199 (SWIR) or 334 (VNIR) pixels

Spa�al dimension: integra�on �me * plane speed

Figure 5.3: Illustration of the different dimensionality involved during data acquisition with
the APEX device.

The other dimension, the columns, the 1000 pixels of each pixel is the spatial
one. Technically speaking, APEX instrumentation is acquiring spatial ’bands’ with
a fixed width (resulting from the combination of flying height and field of view).
Spatially speaking, pixels only appear by sampling the signal temporally. The so-
called ’integration time’ can be set to a maximum of 34.5 ms. In combination with
the displacement of the carrying airplane, this results in spatial information. With
an integration time of 29 ms, almost square pixels are obtained when mounted on
the propeller plane that is usually used for acquisition (Schaepman et al., 2015).

High fill factors are another important consideration during data fusion. In fact,
this means that the sensor is sampling the observed surface as such and not just
a part of it. If ’deviations’ are present on the observed surface, they will impact
the spectral values registered. This is in contrast with other, mostly active sensing
methods (i.e. LiDAR) where the values represent much smaller surfaces.

The validity of this approach is a bit lower for the CMOS sensor/SWIR radiation
as the fill factor is lower. Addressing this would require a detailed analysis includ-
ing the exact geometry of the sensor pixels. As such an analysis is beyond the scope
of this thesis and as the fill factor is ”high”, it will not be addressed here.

5.2 conceptual framework: from pixel imagery
to mesh

The hyperspectral aerial imagery that was obtained for this study has been subject
to limited preprocessing beforehand (so-called level 1C as described by Schaepman
et al. (2015)). Both spectral (atmospherical, as well as the keystone, smile and co-
registration filtering) and spatial (georeferencing and orthorectification) corrections
were performed by the APEX team using PARGE software. This pre-processing did
not involve any interpolation as two products were obtained: the spatially raw but
spectrally corrected data as well as the spatially corrected center points for each of
the latter’s pixels.

The aim of the study being to use the ’pixels’ (which actually become a mesh) as
the unit of validation, further considerations are necessary for data fusion.

First, the flight path of the aircraft is not totally regular (turbulence and wind in-
duce small speed and axis variations) and the corrected center points, therefore, do
not form a 100% regular raster. Thus, not all raw data pixels have the same shape
and size. However, assuming that the displacement is equally distributed between

64 data fusion with hyperspectral imagery

any two sampling moments, a mesh can be reconstructed (as shown in figure 5.4).
This is done by equally dividing the space between the spatially corrected center
points (the neighborhood relations are implicitly given by the raw data).

Figure 5.4: Approach allowing to generate a mesh using the orthorectified centerpoints of
the 8 neighbouring pixels.

Figure 5.5: Illustration of the need for orthocorrection. On the left: nearly orthocorrect aerial
image of the Feyenoord stadium (source: PDOK aerial imagery 2016). On the
right: false color acapex imagery of the same stadium with the effect of projection
(Red = 399-413 nm, Green = 1145-1155nm, Blue=2423-2432nm).

Second, the data obtained is orthorectified using a digital terrain model but not
a digital surface model. Therefore, this is not a true ’orthographic’ view (also see
figure 5.5): some building facades are visible and the position of roofs is shifted
(perspective phenomenon for non-oblique parts of the image). This phenomenon
can be taken into account by adding correction factors to the pixel positions, using
the height of the building (which can be extracted from the 3D city model). The
mathematical approach is illustrated in figure 5.6 and results in the equations 5.1
and 5.2.

5.2 conceptual framework: from pixel imagery to mesh 65

Figure 5.6: Trigonometric approach to the correction of perspective distortion in aerial im-
ages (production of orthophotos).

distance to f light path
f light altitude− buildingheight

=
distance to f light path + correction

f light altitude
(5.1)

correction =
distance to f light path× f light altitude

altitude− buildingheight
− distance to f light path (5.2)

One should note that the approach which has been implemented here is an ap-
proximation, mainly for two reasons:
- the location of the roof is simplified to its centerpoint.
- the mean height of the roof geometry is taken as reference height.

This is mainly for computational reasons: with these assumptions, a single cor-
rection factor can be applied to all candidate pixels to check if these ones intersect
the given roof surface. A more precise approach would require dividing the roof
surface into several samples and applying different corrections before checking the
intersection with each of these samples, which is beyond the scope of this thesis.
Furthermore, the estimated errors are acceptable as the calculations in the next
paragraphs show. They build on the following facts:
- the field of view is 28 degrees across the track, resulting in a swath width of 3500.
- the maximum distance at which a building can be located from the flight line is
thus 1750m (although in the specific study area, this maximum is lowered to 1450m
due to the specific position and images overlapping 600m).

A realistic case is a building with a length of 80m perpendicularly to the flight
path. With one end at the end of the swath width (where perspective distortions
are biggest) and the other one 20m meters closer, and identical roof heights - the
different correction factors would be: - at 1370m with a height of 10m: 1.97m
- at 1410m with a height of 10m: 2.02m
- at 1450m with a height of 10m: 2.07m
and thus the resulting positional error (difference) in such extreme cases: 5 cm.

Another factor that can lead to errors is the presence of height difference within
a roof surface. For this purpose, for each roof surface present in the validation set
(see part 6.1.1) the maximum difference between any point and the centroid was
calculated. The resulting histogram in figure 5.7 shows that in about 59% (240/410)

66 data fusion with hyperspectral imagery

of the cases, the maximum difference does not exceed 25cm. In 85% of the cases, it
does not exceed 2m and in 98% of the cases not 4m.

Figure 5.7: Histogram showing the distribution of the maximum difference between any
point and the centroid, per roof surface.

Based on the equation shown earlier (see part 5.2) and the approach shown in
figure 5.8, the impact of these maximum height differences was calculated using
the following formula:

misplacedshare =
errorpart × (ground sampling distance ∗ 2− errorpart)

ground sampling distance2 (5.3)

Figure 5.8: Illustration of the maximum impact of a potential inaccuracy on a cell of 3.5*3.5m.

As a distance with regard to the flight line, the maximum distance of 1450m was
taken into account and as a height, 10m was taken as reference. The results can be
seen in 5.2. Here, the 5cm error from the positional error was taken into account
too.

Maximum errors resulting from the approximate orthocorrection
% of cells concerned maximum height error resulting maximum positional error maximum % of area affected

58% 25cm 6 + 5 cm 5.4%
25% 200cm 42 + 5 cm 23%
15% 400cm 84 + 5 cm 43.6%

Table 5.2: Overview of the maximum errors resulting from the approximate orthocorrection
using centroids only (resulting from the maximum height and position differences
with regard to these centroids).

5.3 implementation: orthocorrected generation of mesh cells 67

For the majority of cells (58%), the share of the area that might be misplaced
is not higher than 5.4%. For 25%, this share does not exceed 23%. Only for the
resulting 15%, it might be critically higher. One should keep in mind that these are
maximum values that will only occur in local extrema. To truly reach these values,
the following conditions must be aligned:
- the entire cell is affected by the maximum height difference with regard to the
centroid.
- the cell is located at about 1450m from the flight line.
- the cell is located on a building with a height of 10m above the ground.
- the cell has a size of approximately 3.53.5, while in the dataset up to 3.83.8m occur.
- the error displacement is oriented diagonally with regard to the cell.

Considering that all these factors have been taken into account to calculate the
most extreme scenarios, the values obtained are acceptable, and even negligible for
a fair part.

5.3 implementation: orthocorrected generation
of mesh cells

The workflow that was implemented in order to perform the fusion of spatial im-
agery from the hyperspectral imagery data is shown in algorithm 4. An important
aspect to note is that the input file was not provided in the same coordinate sys-
tem as all other files (here the coordinate reference system with code 32632 in the
EPSG (European Petroleum Survey Group) classification was used, while all oth-
ers used 28992). To perform this transformation, the Geospatial Data Abstraction
Library (GDAL) for Python was used.

The steps of the algorithm can roughly be described as follows:
- First, the pixel centerpoints were retrieved from the input dataset (.bsq file)

using the same GDAL library for python. As the initial set of pixels covers the entire
area of all flight paths, this one is reduced to the study area of interest (see lines 2).

- Then, the shortest distance to the flight line was calculated and the average
height of each roof surface was retrieved by obtaining the 3D centroid (line 5).

- Basing on these two pieces of information from the previous step, the orthocor-
rection vector is calculated (line 8).

- The bounding box of the roof surface is obtained and corrected using the ortho-
correction vector (line 9). All centerpoints which fall inside the latter bounding box
are then selected and a mesh with cells defined by 6 points is defined (line 10 until
12).

- The obtained mesh cells are then orthocorrected using the orthocorrection vector
(line 14).

- Finally, the extent to which the mesh cell intersects with the roof surface is
calculated (line 16). If the intersection exceeds a given threshold, the area of the
mesh cell which is occupied by deviations is calculated (line 17) and stored along
with the mesh cell itself (line 19 and line 20).

68 data fusion with hyperspectral imagery

Algorithm 5.1: Cell generator (Pixel centerpointsorthorecti f ied, f light line,
model, areastudy, thresholdcell inside roo f)

Input: A set of orthorectified centerpoints of the hyperspectral imagery
pixels Pixel centerpointsorthorecti f ied; the flight path f light line of the
latter acquisition; a semantic 3D model of a city or neighborhood
(e.g. in CityGML format) model; a 2D polygon areastudy of the latter
city model extents; thresholdcell inside roo f , a threshold for the cell
inside roof criterion; a 2D

Output: roo f sur f acecell set, a list of cells belonging to the respective
roo fsur f ace, fulfilling the thresholdcell inside roo f criterion.

1 Initialization;
2 orthorecti f ied centerpointsstudy area ←

Pixel centerpointsorthorecti f ied ∩ areastudy;
3 for building ∈ model do
4 for roo fsur f ace ∈ building do
5 roo f sur f acecentroid ← centroid of roo fsur f ace;
6 distance f light line ← |centroid− f light lineclosest point|;
7 Processing;

8
−−−−−−−−−−−→
orthorecti f ication← calculated using distance f light line and
roo f sur f acecentroid height;

9 bounding box ← extents of roo fsur f ace(2D) +
−−−−−−−−−−−→
orthorecti f ication;

10 orthorecti f ied centerpointsroo f candidates ←
orthorecti f ied centerpointsstudy area ∩ bounding box;

11 for centerpoint ∈ orthorecti f ied centerpointsroo f candidates do
12 meshcell ← 6− verticemeshcello f centerpointusingneighbors;
13 for vertexmesh cell ∈ meshcell do
14 vertexmesh cell ← vertexmesh cell +

−−−−−−−−−−−→
orthorecti f ication;

15 end
16 if meshcell ∩ roo fsur f ace (2D) > thresholdcell inside roo f then
17 deviation areamesh cell ← area(meshcell ∩ roo f sur f acedeviations);
18 Storage;
19 append meshcell to roo f sur f acecell set;
20 store deviation areamesh cell as an attribute of meshcell ;
21 end
22 end
23 end
24 end

An example of the attribute table stored together with the mesh geometry in csv

format can be found in 5.9. As one can see, the roof surface and building ids of the
CityGML files are stored. For the sake of readability, the rather simple process of
choosing between the two flight lines for the study area of the next chapter was
not mentioned so far (calculation of the position of the roof centroid with regard to
the line geometry which is equidistant to the flight lines). Therefore, the relevant
flightline dataset is indicated (e.g.’south’), along with the row and column of the
pixel. Finally, the area of the cell itself, the share of that area which is occupied by
deviations and the percentage of the cell which is located inside the roof geometry
are stored too.

5.4 chapter summary and link to assumptions made 69

Figure 5.9: Example attribute table showing the data stored along with the geometry of the
mesh cells themselves.

5.4 chapter summary and link to assumptions made
Additionally to the two datasets introduced in chapter 3, a third dataset was intro-
duced here: the hyperspectral imagery. The latter was obtained from the team of
the APEX in two forms. On one hand, a spatially raw imagery file and thus including
projection and turbulence errors was used. On the other hand, the georeferenced
and orthorectified centerpoints of each pixel were also used.

from pixels to mesh cells In line with the criteria formulated in part 3, it was
chosen not to create a new, resampled raster with the two files. Taking into account
that the instrumentation used by APEX is a line scanner, a mesh with hexagonal
cells was created (assuming that movements between lines are equally distributed).
This allowed to perform a fusion of the raw data with the ’deviation’ geometries
produced in chapter 4 directly. By doing so, data losses and interpolation artifacts
produced by raster resampling were avoided.

The practical usability of this method beyond the scientific scale of this study
is still to be proven. In fact, the irregularity and the higher number of points (6
instead of 4) of the hexagonal mesh with regard to a strictly regular raster will lead
to bigger data storage and heavier computations. As this is not a focus criteria for
this chapter, exploring this impact is beyond the scope.

simplified orthocorrection Another aspect that is out of the scope, but was
tackled is the orthocorrection which aims at compensating projection errors in the
data. This one was performed in a basic way with the aim to improve the specificity
of the results computed in the subsequent chapter 6. The focus was therefore on an
easy implementation - but the errors of the approximations made were nevertheless
estimated in a scientific way and are deemed acceptable.

6 R E S U LT S A N D VA L I DAT I O N

This chapter will explain the analysis that has been performed with the aim of val-
idating the method. For this sake, a study area with a size of approximately 12

km2 has been defined within the municipality of Rotterdam (for which a CityGML
LOD2 model exists). This one has been chosen in order to include as many building
typologies as possible: it covers high rise buildings on Kop van Zuid, big industrial
hangars on the docks, apartment blocks, as well as semi-detached houses of differ-
ent sizes (reaching from closed blocks to few attached bungalows). The extents of
the study area can be seen in figure 6.1.

Figure 6.1: Overview of the study area chosen for the sake of validation. Background im-
agery: (c) google earth

This chapter will further elaborate on the approach that has been taken (e.g. se-
lection of a subset, measuring method of the ground ’truth’). In a subsequent step,
the results will be presented and discussed.

6.1 theoretical framework

6.1.1 Validity

Ground truth

In order to ensure that the results are validated against a representative ground
’truth’, linking back to the research question is necessary. For validation, mostly
the third subquestion is of importance: To which extent does such a method support the
identification of clean pixels?.

Whilst several steps have been explained in the previous chapters, the focus dur-
ing validation will be on the suitability of pixels in hyperspectral imagery for ma-
terial identification. As mentioned in chapter 1 in part 1.2.2, presence of several

71

72 results and validation

materials within a cell can be challenging for classification algorithms and should
be either avoided (e.g. by excluding such cells) or addressed before classification
(e.g. by applying a majority matrix or identifying gradients at transitions).

The unit of analysis is, therefore, the cell present in the hyperspectral imagery
data of Rotterdam. The generation of such cells basing on pixels contained present
in raw data has been discussed in chapter 5 ’Data Fusion with Hyperspectral Im-
agery’. Basing on previous considerations, the following definitions of ground
’truth’ 1 can be deduced:

A ’clean’ cell is a cell filled by a single homogeneous material from a visual point of view.
A ’non-clean’ cell is a cell filled by several materials. A ’deviation’ is a material that is
different from the one covering the biggest share of the roof surface the cell lies in. The
share of these ’deviations’ is given by orthogonally projecting their surface on the cell and
calculating the share.

An implication of this definition is that a ’clean’ cell must necessarily be located
inside a building’s roof subsurface. In fact, cells that contain a part outside the
roof surface can hardly be clean as the part lying outside might (often with a high
probability) contain a different material (nevertheless, a tolerance with regard to
this will be introduced in part 6.2.4). If different roof parts were made of the same
material, all cells located inside the roof boundaries might be considered, but this
can often not be guaranteed beforehand.

Another important aspect here is that this ground ’truth’ is defined ”from a visual
point of view”. Therefore, only deviations that can be seen in the visible spectrum
on aerial images will be considered in this step. This includes geometric deviations
but not only as objects such as maintenance walking paths or gutters that might lie
in the roof’s plane will also be considered as deviations in the ground ’truth’. Fur-
thermore, some very small objects (with a size inferior to 0.5 m2) might be invisible
in the aerial imagery due to limited resolution and are necessarily omitted. Some
hard to differentiate objects (two materials which are of the same color and in the
same plane, objects in the shadow of another) might also have been omitted. More
details about aerial imagery data used can be found in part 6.1.2.

Validation sample

The aim of the validation is to estimate the suitability of the developed method for
the selected study area in Rotterdam. For reliability purposes, a large part of the
work is done manually, and the sample size was thus limited to 41 buildings 2. An
overview of the validation sample can be found in figure 6.1.
For the choice of the validation sample (and the subsample used in part 6.2.4),
several criteria were established to ensure diversity:

- functional: community, offices, industrial and housing functions are all present
(the two latter ones in a higher share, which reflect the distribution in the study
area).

- among the housing function, low (less than 4 floors), medium (4 to 10 floors)
and high (more than 10 floors) buildings are present - the biggest part being the
medium buildings.

- quantity of deviations in the ground ’truth’: for both the cell count and the roof
surface, hard and easy cases were represented by 25 ± 6%, normal cases by 50 ±
3% (in terms of both roof surface in m2 and number of pixels inside a roof surface).

- Building surfaces from 150 to 5600 m2, containing from a few cells (a case with 0

cells was also included for the third validation level, using fuzziness) up to 81 cells

1 In reality, it is only a sample which is believed to be more valid than the one generated by the method.
Therefore, ’truth’ is used in quotation marks.

2 One might note that the definition of a building by the CityGML data of Rotterdam is not the most
consistent as it follows cadastral parcels. Within this study, two groups of each about 5 semi-detached
buildings have been grouped together - according to the definition used in the CityGML file, a total of
50 buildings were thus selected.

6.1 theoretical framework 73

are present in the set. 81 is considered an acceptable maximum amount with regard
to the total of 830 cells.

- A final criterion is geographic distribution: as shown in 6.2, the selected build-
ings are distributed all over the sample area. This is done in order to cover the
spatial diversity, avoiding for instance selection inside a cluster built in the same
period.

Also, buildings without any roof part containing a cell (e.g. small buildings or
buildings with a rather high level of detail) were encountered during the selection
of sample buildings. Such buildings were excluded from the validation sample as
they do not have relevancy for validating the method (they are in fact out of the
scope) here.

name category level size [m²] number of pixels 100% inside a roof surface
Sommelsdijkstraat 45 community normal 1400 14
Pannerdenstraat 25-21 industrial normal 760 4
Wevershoekstraat 89 community normal 1000 0
Slinge 290-386 housing medium normal 1200 18
 offices normal 1400 24
Klaverstraat 7-9 housing low normal 1000 19
Plein 1953 95-156 housing high hard 900 15
De la Reystraat 63-59 housing low hard 550 7
Moerkerkestraat 128-130 housing medium hard 190 1
Van Meelstraat 44 industrial easy 875 26

Pannerdenstraat 33-29 industrial normal 1500 30
Mezenstraat 76-142 community normal 2000 8
Waalhaven N.z. industrial normal 600 7
Sint-Janshaven 43-33 housing medium normal 400 9
Gooilandsingel 7 community normal 3000 42
Posthumalaan 100-122 offices normal 1600 18
Brammertstraat 1 community normal 2300 81
Ichthushof 200 offices normal 4200 71
Wilhelminakade 405-677 offices normal 5600 58
Bonaventurastraat 43-41 housing low normal 151 2
Ooltgensplaatweg 1-23 housing medium normal 930 9
Kortgenestraat 221 housing low normal 200 2

Kokerstraat 16-14 housing medium hard 3600 20
Ooltgensplaathof 13-124 housing high hard 1000 9
Hillelaan 23-19 housing medium hard 1630 70
Charloisse Kerksingel 35 community hard 850 3
Laan op zuid 866-942 housing high hard 1200 1
Pleinweg 171-177 housing medium hard 865 9
Spuikade 13 industrial hard 700 7
Willingestraat 4-8 offices hard 1200 4
Geyssendorfferweg 58 industrial hard 900 13
Dorpsweg 177-297 housing medium hard 1200 1
Zuidhoek 59-51 housing medium hard 530 8

Waalhaven O.z. 21 industrial easy 1900 47
Pannerdenstraat 15 industrial easy 1200 44
Brielselaan 121 industrial easy 1500 29
Sluisjesdijk 129 idnustrial easy 2400 32
Albert Plesmanweg 93-95 industrial easy 2800 68

Antony Fokkerweg 15 industrial easy 12800 615
Veerlaan 19-21 industrial normal 8200 156

used for valida�on types A only

used for valida�on types A, B, C and D

used for valida�on types A and B

Table 6.1: Table giving an overview of the sample used for validation.

74 results and validation

Figure 6.2: Map showing the buildings selected for the sample. The buildings in yellow
were only used for the nominal validation at building level (due to having a
much lager size, more details in part 6.1.2); buildings colored in red represent
the subset that has been used for the validation part concerning fuzziness, for
the nominal validation at cell level; both red and blue buildings were used (see
part 6.1.1 for more details). Background imagery: (c) PDOK

Variables

As pointed out in the previous chapters, the method that was developed offers four
variables (as mentioned in part 3.4.4):
- a threshold setting the distance tolerance (between the point cloud and the 3D city
model) for the identification of seed points.
- a threshold setting the angle tolerance used during the region growing (to distin-
guish between planes deviating and matching with regard to the roof surface).
- the KNN setting used for the region growing
- the KNN setting used for the local normal vector calculation.

As each variable multiplies the number of versions by two or more, it was neces-
sary to limit their number to two (due to time-wise budget constraints as stated in
part 2.1). Among the variables, the two latter ones showed most conclusive results
towards choosing a constant, as presented in part 3.4.4. Therefore, it was decided
to use the identified constant of 10 for the KNN settings in the two last variables.

For each of the two variables left (explained in figure 6.3), two values were chosen,
resulting in a total of 4 versions of the method (see figure 6.5):

- for the first variable, 20 and 40cm were chosen based on the exploration study in
part 3.3.1. With 20cm, the first limits of the method were observed in part for roofs
which have been modeled as flat but are in reality slightly tilted. For 40cm, such
phenomena have not been observed but geometries that are lower might obviously
be missed.

- for the second variable, 2 and 5 degrees were retained based on a pilot study.
As can be seen in figure 6.4) 2 degrees was identified as a limit from which on noise
in the point cloud starts being identified as ’deviations’. On another hand, higher
thresholds have the tendency to result in smaller shapes, which might be more
accurate. One can imagine that moving away from a ’deviation’, the local plane
becomes gradually closer to the one of the city model. If the threshold is higher,
the tolerance is too and the region is expected to stop growing earlier. Basing on

6.1 theoretical framework 75

the result of the pilot (see figure 6.4), the second value of 5 degrees was therefore
chosen.

Figure 6.3: Schema explaining the impact of settings for a ’deviation’ of height 25cm. This
one will only be detected with a height threshold of 20cm, not 40cm. In the case
presented here, the ’deviation’ will ’grow’ stop growing depending on the angle
tolerance used (earlier for 5 degrees than 2 degrees).

Figure 6.4: Example of the result obtained by applying the method to a roof with windows
which are missing in the 3d model. Settings used here are 20cm (all three images)
for the distance threshold and 2.56 (left), 1.13 (middle) and 5.73 (right) degrees
for the angle threshold. Background imagery: (c) pdok

Figure 6.5: Illustration of the selected criteria resulting in four validation sets.

76 results and validation

Types of validation

In order to cover different levels of detail, the validation was divided into three
types, during each of which indicators have been generated:

- type A (see part 6.2.2): the most coarse level is the nominal validation at building
level (see part 6.2.1). Here, a check whether one or several clean cells are present
and whether at least one of the latter has been identified was performed. As cells
are grouped by building, each building has the same contribution to the results,
independently of the number of cells it contains.

- type B (see part 6.2.2): From the second level on, each cell is treated indepen-
dently. For each of them, it was checked whether it is actually clean or not. By
comparing the method and the ground ’truth’, an estimation of the method’s relia-
bility was established.

- type C (see part 6.2.3): The third level of validation introduces fuzziness by
also considering cells that are only partially enclosed by the roof surface. For this
purpose, the thresholds of ≥90% and ≥70% inside the roof surface are used. As
the number of cells hereby increases, this analysis was performed on a subset of 10

buildings.
- type D (see part 6.2.4): A fourth and final level of validation declines type C by

switching to a rational data type. Using the same subset of 10 buildings, it looks at
how clean each cell is (% of ’deviations’) according to the method and compares it
to the rate in the ground ’truth’.

One might note that the different levels of coarseness bring limitations with them.
For the validation of type A at the building level, no distinction can be made be-
tween cases where the cells identified as clean are the same as in the ground ’truth’
and cases where there is a difference. However, as the validation switches to the
cell level, this kind of issue is covered in type B-D.

However, variations within cells might also be missed. In fact, as soon as there
are two or more ’deviations’ within the same cell, dynamics inside the cell will not
be covered (for instance, for the nominal level: one ’deviation’ is identified while
another is missed; for the rational level: one is overestimated while the other one is
under-estimated).

Performance indicators

As common for classifier validation, the results are presented in the form of error-
matrices (see annexes 8.3, 8.4, 8.5, 8.6 and 8.7) and graphs (within this chapter).
An additional indicator used is the estimation of cohen’s kappa, the an estimate of
cohen’s kappa (khat) which estimates how much better than random attribution the
classification is. According to Congalton and Green (2002), a khat value of more than
80% represents a strong agreement, 40 to 80% a moderate agreement and below 40%
a weak agreement.

Furthermore, missing a clean pixel might be unproblematic if another one is
present in the building (although it might improve reliability or allow identifica-
tion of more materials). In contrast, the same cannot be said for the labeling of a
non-clean pixel as clean. In fact, non-clean (or mixed) pixels might confuse clas-
sification algorithms and result in identification of non-existing materials (see part
1.2.2). Therefore, the commission error of the class ’clean’ (the ratio of cells that
were wrongly added to the ’clean’ class) will also be used as a performance indica-
tor (for an example, see figure 6.6).

For validation of type D, additional indicators linked to the nature of the rational
data become possible. Therefore, the average error and standard deviation will also
be computed.

6.1 theoretical framework 77

Figure 6.6: Example of a ’deviation’ (identified in ground ’truth’, left picture), that is not
identified using the 40cm, 5 degrees setting (middle), leading to a commission
error for the class ’clean’ - in opposition to the 20cm, 2 degrees setting (bottom)
where the cell is correctly classified as ’non-clean’. One might further note that in
the same cell but at the bottom right, there is a ’deviation’ which was identified
by neither of the two methods. Background imagery: (c) PDOK, 2016

6.1.2 Reliability

An important consideration for reliability (the extent to which the validation can
be repeated with the same results) is the distribution of building sizes and the
resulting number of pixel sizes in the validation set. As has been pointed out
in part 6.1.1, diversity is important during sample selection. However, diversity
is not sufficient as several building types are present, and some might be over-
represented. In fact, this might especially be problematic with buildings that have
big roof surfaces as they contain considerably more pixels than smaller ones. For
instance, it was observed that a big industrial building of 12 800 m2 contains 615

full cells (1 cell per 20 m2 of roof surface, the real size of the cells being +/- 16m2)
while a smaller industrial building of 700 m2 contains only 7 full cells (1 cell per 100

m2 of roof surface).
As buildings with big roof surfaces contain over-proportionally more cells, it is

not sufficient to look at the buildings’ footprint size. Instead, the actual number
of cells should be taken into account too. Another implication is that the size of
the biggest building of the set is limited by the size of the set itself. For the valida-
tion performed here, about 41 buildings have been selected, resulting in 917 cells.

78 results and validation

Adding too big buildings (e.g. with 615 cells), would introduce a considerable bias
and has therefore been avoided (yellow buildings in figure 6.2, conclusions for big
buildings are nevertheless drawn in part 6.4).

Furthermore, some practical considerations have been taken for evaluating the
presence and the size of deviations:

- Several aerial imagery datasets were used. The first one is composed of the
yearly acquired and open aerial images of the Dutch government (2016, 2017 and
2018

3). These ones have a resolution of 25cm and different flight lines. An advan-
tage of the latter is that nearly every building is sufficiently close to one of the three
flight lines. This allows proceeding without orthocorrection.

- A second aerial imagery dataset that was used is the imagery provided by
google earth acquired on 10/1/15

4. This data was used to support the first ones as
it offers better contrast, often allowing better recognition of details.

- For the few cases where all imagery showed too big displacements of the roofs,
correct roof reference positions were provided by a cadastral map 5 showing parcel
and elevation borders.

- in the case of edges, the thickness was first estimated (see figure 6.7). This was
done by measuring directly on imagery and in some cases in the AHN point cloud
too. In that way, only one dimension, the length of the edge still has to be measured
in order to determine the surface of the edge.

Figure 6.7: Schema showing the approach used in the case of roof edges. Beforehand, the
constant width was measured so that in the subsequent steps only one dimension
was left to measure.

6.2 results

6.2.1 Nominal validation at building level (type A)

The first validation was conducted by checking at the building level, whether at least
one clean pixel is present and whether at least one of these clean pixels has been
identified. For this sake, all cells belonging to one building (independently of the
subsurface) were grouped together. This results in each building having the same
weight in the final result, independently of the size or number of cells belonging to
it. The error matrices showing the full results can be found in annex 8.3.

As the result in figure 6.8 shows, the khat is higher for the versions using a distance
threshold of 40cm (e.g. a khat of 66 vs. 47 % for 5 degrees and 39 vs. 26% for
2 degrees). Furthermore, a better performance can be observed for 5 than for 2

degrees (a khat of respectively 66 vs. 39 % and 47 vs. 26 % for 40 and 20cm). The

3 obtained from https://www.pdok.nl/introductie/-/article/luchtfoto-pdok
4 As google earth does not provide any details for aerial images, the only information available about the

data is the acquisition date
5 obtained from https : //www.pdok.nl/introductie/− /article/basisregistratie− kadaster− brk−

https://www.pdok.nl/introductie/-/article/luchtfoto-pdok

6.2 results 79

third indicator, the share of buildings that were wrongly predicted as having at least
one clean pixel does not show variations as it is stable around 10% (see figure 6.9).

Figure 6.8: Bar chart showing the khat results of the nominal validation at building level
(basing on data in annex 8.3).

Figure 6.9: Bar chart showing the commission errors for the class ’clean’ of the nominal
validation at building level (basing on data in annex 8.3).

One might, however, note the shortcomings of such a coarse validation. In fact, it
does not provide any information on the extent to which the identified pixels were
indeed the clean ones. In order to get a better idea of the actual performance of the
method, an analysis at cell rather than building level is necessary.

6.2.2 Nominal validation at cell level (type B)

A second validation was performed directly at cell level: for each cell, the prediction
of the algorithm was checked with the ground ’truth’. If any ’deviation’ within the
cell was identified (by the algorithm or the manual observation for the ground
’truth’), the cell was labeled as being non-clean. The error matrices showing the full
results can be found in annex 8.4.

As can be observed from the validation performed on a total of 830 cells, the khat

(see figure 6.10) suggests that the method performs better with a threshold of 40

rather than 20cm, as the values are about 10% higher (respectively 70 vs. 58 % and
67 vs. 57 % for 2 and 5 degrees).

The observation of better performance for the 5 than for the 2-degree versions
cannot be confirmed. Rather, data refutes it here (a khat of respectively 68 vs. 70 %
and 57 vs. 59 % for 40 and 20cm).

Another important difference here is the commission error for the class ’clean’
which considerably differs between the variable values (see figure 6.11). The lowest
value is obtained for thresholds of 20cm and 2 degrees, with only 10% of cells
identified as clean being non-clean in the ground ’truth’. The commission error for

80 results and validation

the class ’clean’ is about 7% higher when rising the threshold to 40cm and worst for
the version also using a 5-degree threshold.

Figure 6.10: Bar chart showing the khat results of the nominal validation at cell level (basing
on data in annex 8.4).

Figure 6.11: Bar chart showing the commission errors for the class ’clean’ of the nominal
validation at cell level (basing on data in annex 8.4).

6.2.3 Nominal validation: considering cells lying only partially inside a roof
surface (type C)

This third validation introduces fuzziness by relaxing the cleanliness constraint used
so far. The idea behind this is that classification algorithms with a limited tolerance
with regard to ’deviations’ might be used or, if needed, developed (for an example
of research in that direction, see Guo et al. (2009)). Therefore, two assumptions were
made - the first one is that algorithms might accept cells that are up to 10% outside
the roof surface - and as a second assumption, the tolerance is raised to 30%.

Figure 6.12: Schema showing the case of cells that are not entirely inside a roof cell. In that
case, only the ’deviations’ in the part inside the roof cell are taken into account.

6.2 results 81

An important point for this part of the analysis is that only the cell’s part which
is inside the roof surface is considered for the method performance (see figure
6.12). The remaining up to 30% are not considered as they are unreliable: a similar
material as inside the roof surface cannot be guaranteed, even if no deviations were
identified in this remaining part. A pragmatic approach would be to de-facto label
these up to 30% as ’non-clean’. However, this would induce bias as an additional
factor, which is unrelated to the method to validate would be introduced. In order
to avoid this bias, the parts outside the roof surface are simply omitted: the only
aspect impacting the cleanliness (thus the results of the method) are the deviations
in the part of the cell inside the roof surface.

As the typical study object of type C validation includes more cells than type
A and B, it was limited to a subset of 10 buildings, which were also present in
the previous validation set. One might note the growth of the subset’s cells from
128 to 328 as the cell in roof surface constraint gets relaxed to 70% (see figure
6.2). Furthermore, type D will use the same subset but switch from nominal to
rational data. Measuring the exact cleanliness share is more work-intensive than
only identifying their position, giving another motivation to limit the extent of this
approach.

name category level size [m²] 100% >=70%
Sommelsdijkstraat 45 community normal 1400 14 35
Pannerdenstraat 25-21 industrial normal 760 4 15
Wevershoekstraat 89 community normal 1000 0 38
Slinge 290-386 housing medium normal 1200 18 45
Waalhaven O.z. 85 offices normal 1400 24 60
Klaverstraat 7-9 housing low normal 1000 19 48
Plein 1953 95-156 housing high hard 900 15 35
De la Reystraat 63-59 housing low hard 550 7 19
Moerkerkestraat 128-130 housing medium hard 190 1 6
Van Meelstraat 44 industrial easy 875 26 30

detailed list Number of pixels x% inside a roof surface

Table 6.2: Overview of the subsample used for the validation of type C and D (cells lying
partially inside a roof and fuzziness).

The most interesting results are the evolution of the khat and commission error for
the class ’clean’. For ease of understanding, separate bar charts have been plotted
(figures 6.13 and 6.14). The full results of the type C validation performed for cells
that are 100%, [90-100[% and [70-90[% inside the roof surface (respectively 128, 106

and 93 cells) can be found in annex 8.5.

One can observe that for the khat (figure 6.13), the differences between settings are
smaller for the ’[90-100[%’ and ’[70-90[%’ cell groups than for the ’100%’ group. In
fact, when moving to the ’[90-100[%’ and ’[70-90[%’, a convergence towards values
between 0.4 and 0.6 can be observed.

A plausible explanation for this is the higher share of non-clean pixels among the
cells that are partially outside a roof surface. An argument supporting this is that
the variant with the highest commission errors for the class ’clean’ observed in type
B (40cm and 5 degrees), is also the one where the loss of overall accuracy and khat

performance is biggest. Another argument in line with this is that the version with
the lowest commission error for the class ’clean’ observed in type B (20cm and 2

degrees) is showing the strongest increases in khat (figure 6.13).

Another interesting observation is the commission error for the class ’clean’ (fig-
ure 6.14). The values for the ’100%’ cell group are similar for all settings and located
between 11 and 16%. For the ’[90-100[%’ and ’[70-90[%’ cell groups higher values
can be observed for all settings, located between 0.45 and 0.6. The only exception
is the one obtained with the setting 20cm and 2 degrees which are lower, located
between 0.3 and 0.4.

82 results and validation

Figure 6.13: KHAT evolution for cells 100%, [90-100[% and [70-90[% inside a roof surface.
For all cases with a setting of 20cm, the khat tends to increase when loosening
the cell in roof surface criterion. For the 40cm, 2 degrees settings, the trend is
rather stable. In contrast, the 40cm, 5 degrees settings result in a decreasing
trend.

Figure 6.14: Commission error for the class ’clean’ evolution for cells 100%, [90-100[% and
[70-90[% inside a roof surface. With all settings, an increasing trend can be
observed. The increase is however less pronounced for the 20cm and 2 degrees
setting.

6.2.4 Rational validation: extending type C by introducing fuzziness (type D)

For the same set of 331 cells which are 70% or more inside a roof surface, the
following indicators concerning the cleanliness estimation have been calculated:

average difference [m2] -0.08 average difference [m2] 0.01
standard devia�on [m2] 0.13 standard devia�on [m2] 0.30

distance: 20 cm / angle: 5°distance: 20 cm / angle: 2°

average difference [m2] -0.06 average difference [m2] 0.01
standard devia�on [m2] 0.11 standard devia�on [m2] 0.08

distance: 40 cm / angle: 2° distance: 40 cm / angle: 5°

Table 6.3: Overall performance statistic concerning the estimation of ’deviation’ shares.

The numbers that are shown in figure 6.3 suggest that there is a trend to overesti-
mate the size of ’deviations’. In fact, the average difference is negative in 3 out of 4

cases, the smallest absolute being found with the loosest settings, namely 40cm and
5 degrees.

6.2 results 83

For the standard deviation too, the 40cm and 5 degrees setting performs best,
reaching a standard deviation of 8%. The other settings deliver less good results -
which are reaching up to 16% for the 20cm versions. However, the standard devia-
tions being relatively big with regard to the differences between the averages found,
no solid conclusions can be drawn from this analysis. Moreover, the reliability of
the ground ’truth’ also decreases by switching to rational data - estimating it would
ideally require field measurements at the location.

In order to estimate the usability of the method to discriminate between different
levels of cleanliness, error matrices with additional, rational categories have been
calculated. These ones can be found in appendix 8.6. The overall accuracy and khat

are highest with a setting of 40cm and 5 degrees, reaching respectively 62% and
47%. Similarly to the previous validations,the 20cm, 2-degrees version (see annex
8.6) performs worst from the overall accuracy and khat point of view.

For the matter of comparison, the nominal validation performed at the beginning
of this part was aggregated to include all cells that are at least 70% inside a roof
surface in one matrix which can be found in appendix 8.7.

Comparing the results in annex 8.6 with the ones in annex 8.7, it becomes clear
that the classification into rational categories requires higher performance than into
nominal categories.

In fact, as can be seen in figures 6.15 and 6.16 for all four versions of the method,
a decrease in both overall accuracy and khat performance can be observed. This
shows that while the method can to some extent differentiate between clean and
non-clean cells, the extent to which it can do so is lower.

Figure 6.15: KHAT for nominal vs. rational data types, cells [70-100]% inside roof surface
(level D).

Figure 6.16: Overall accuracy nominal vs. rational data types, cells [70-100]% inside roof
surface (level D).

84 results and validation

6.3 analysis

Overview of the relevant observations

The first validation, type A (see part 6.2.1), has shown that the overall accuracy (and
khat) statistics obtained with the 40cm variants are superior to the ones obtained
with 20cm. Furthermore, versions using a setting of 5 degrees perform better than
the ones using 2 degrees on the khat statistic.
The difference between 40cm and 20cm variants is confirmed by type B (see part
6.2.2), although the magnitude of the differences is smaller. However, the difference
observed for the khat between 2 and 5-degree variants is rejected. A new finding
introduced by type B is that commission errors for the class ’clean’ are 5 to 15%
lower for the strictest version using settings of 20cm and 2 degrees.

Type C (see part 6.2.3) was conducted on a subset of the previously used build-
ings. The good performance of the 20cm and 2 degrees with regard to commission
errors for the class ’clean’ can also be found in that subset. Therefore, this obser-
vation is confirmed for cells that are only partially inside a roof surface and often
include an edge.

Type C has further shown that the overall accuracy and khat differences between
20 and 40cm versions, as observed in types A and B are reduced when including
cells that are only partially inside a roof surface. While the performance of the
20cm versions tends to increase, the performance of the 40cm versions tends to stay
stable or decrease. It has been shown that a plausible hypothesis to explain this is
the higher share of non-clean pixels among the cells that are partially outside a roof
surface.

Validation type D (see part 6.2.4) focused on rational data by looking at the de-
grees of cleanliness for all cells that are at least 70% inside a roof surface (of the
subset used for type C too). From an overall statistical point of view, the 40cm and
5 degrees version seems to perform best as the absolute average difference is low-
est and the standard deviation observed is 8%. However, it is impossible to draw
reliable conclusions as the standard deviations reach up to 30%, with all average
differences locate between 0 and -10%.

The second part of type D validation was dedicated to the performance of the
method for differentiating between different levels of cleanliness. Here, the obser-
vation of types A and B, that the overall accuracy is higher for 40cm than for 20cm
settings is confirmed (again, the KHAT confirms this too). Overall, the observa-
tion that performance is lower than for previous validations (which were still using
nominal data types) was made.

Recommendations basing on the validations

Finally, it can be said that two observations were consistent through the different
types of validation performed:

- the better overall performance (for the overall accuracy and khat) of the 40cm
settings, compared to the 20cm settings.

- the most strict settings (20cm and 2 degrees, lowest tolerances) deliver the lowest
commission errors for the class ’clean’ (thus the lowest share of wrongly identified
’non-clean’ cells).

Also, the methods perform better for differentiating between ’clean’ and ’non-
clean’ cells (nominal approach) than for differentiating between degrees of cleanli-
ness (rational approach).

The 40cm setting is the most loose one and delivers better overall results, while
the strictest settings (20cm and 2 degrees) result in the lowest commission error for
the class ’clean’. Depending on the application, two approaches shown in table 6.4
can be suggested:

6.4 further qualitative observations 85

approach 1 approach 2
aim identify material presence quantify materials
strategy avoid wrongly identifying non-clean pixels identify as many clean pixels as possible
recommendation use a strict setting (e.g. 20cm, 2 degrees) use a loose setting (e.g. 40cm)
limitation some buildings (e.g. small ones) might be missed some low-quantified materials might be absent

Table 6.4: Table giving an overview of the two different approaches which depend on the
final goal.

Approach 1 - identification of material presence. If the aim is simply to identify
where given building material is present, a single cell of a given roof might be suffi-
cient. One might, for instance, want to discover the roofs with a recyclable material
and needs to perform on-site checks anyways (e.g. to check how the material was
attached). In that case, it might be more wasted effort to contact a building owner,
arrange a meeting and finally discover the material is not present than to miss a
share of the buildings that have the material. In such a situation (which shows
similarities to a ’gold-digger’ approach), using the most strict settings (20cm and 2

degrees) will be beneficial. One should note that this should also be related to the
building size. In fact, the buildings of interest should still deliver at least one clean
cell with this approach (possibly, cells lying partially outside the roof might be con-
sidered too - then again, the 20cm 2 degrees setting delivers the lowest commission
error for these too).

Approach 2 - a contrasting approach is the quantification of materials. In contrast
to the first one, the goal is to get a good estimation of the quantity (for instance inm2

of a given material for a given/building or area). In such a situation, it is necessary
to differentiate as well as possible between ’clean’ and ’non-clean’ pixels. While
including too few ’clean’ pixels would lead to an under-estimation, including too
many ’non-clean’ pixels would lead to wrong results too (as the classifier might
confuse the mix of materials with other materials). Therefore, the overall accuracy
and the khat are the best indicators in this situation - basing on the results a setting
of 40cm and either 2 or 5 degrees (validations performed here do not allow to make
a statement on which angle tolerance to use). Just as for the first approach, this
recommendation is valid with or without considering cells lying partially outside
the roof surfaces.

6.4 further qualitative observations
During the validation, some additional observations were made next to the core
presented in the preceding sections. These ones are of a rather qualitative nature
and will shortly be addressed in this section.

Limits of this validation with regard to big buildings

This validation was conducted with the aim to give a reliable estimation of the
performance of the algorithm on a representative set of the study area (with the
constraints elaborated in part 6.1.1 and 6.1.2). The fact that this subset cannot simply
be generalized should be kept in mind when drawing conclusions basing on the
results. In fact, two types of buildings were not covered by the validation:

The first one is buildings that are relatively small or, at least have relatively small
roof surfaces, which thus do not contain a single cell entirely. Such buildings can
be identified without the method proposed in this thesis and were therefore not
of interest for the validation. One such building was nevertheless included as it
is deemed to increase representativeness for the type C and D validations where
partially included cells were studied too.

This suggests that the results obtained in this part are also dependent on the
cell size/ground resolution of the hyperspectral imagery. If a smaller cell size was
available (such as used in other studies, e.g. in Brussels (Priem and Canters, 2016),

86 results and validation

the resolution was about 2 by 2m), the set of buildings, as well as the ratio between
the ’deviation’ size and the cell size would change. It can, therefore, be expected
that the validation results would change too (as the ratio clean/non-clean cells of
the ground ’truth’ would probably be different).

The second type of omitted buildings is rather big buildings with few (and thus
big) roof surfaces. Including them beyond type A validation would have led to an
not-acceptable share of the cells belonging to a single building (and thus jeopardiz-
ing the reliability). The results for such a big building, an industrial hall located on
the ’Antony Fokkerweg 15’ were nevertheless computed and can be found in figure
6.5.

clean not clean total
clean 578 9 587
not clean 21 7 28
total 599 16 615
overall acc. 0.95 comm. errors 'clean' 0.02
khat 0.29 585.00 352061.00

clean not clean total
clean 585 9 594
not clean 14 7 21
total 599 16 615
overall acc. 0.96 comm. errors 'clean' 0.02
khat 0.36 592.00 356142.00

clean not clean total
clean 596 9 605
not clean 3 7 10
total 599 16 615
overall acc. 0.98 comm. errors 'clean' 0.01
khat 0.53 603.00 362555.00

clean not clean total
clean 599 7 606
not clean 0 9 9
total 599 16 615
overall acc. 0.99 comm. errors 'clean' 0.01
khat 0.71 608.00 363138.00

Antony Fokkerweg 15, 40cm, 5 degrees - cells 100% inside
truth

Antony Fokkerweg 15, 40cm, 2 degrees - cells 100% inside

Antony Fokkerweg 15, 20cm, 5 degrees - cells 100% inside

Antony Fokkerweg 15, 20cm, 2 degrees - cells 100% inside

predic�on

truth

predic�on

truth

predic�on

truth

predic�on

Table 6.5: Example results for a big building (Antony Fokkerweg 15) of 12800 m2 enclosing
615 cells.

It is quite striking that the overall accuracy and commission error scores are better
than those encountered in the validations. In fact, on a big building that has only
very few ’deviations’, the algorithm performs rather good.

This clearly illustrates that the method developed and validated is more suited
for some type of buildings than for others. Therefore, the validation performed in
this chapter should be re-used with care and only after checking the extent to which
the sample used matches the objective with which the method is used.

Importance of input geometry quality

In some cases of the validation, ’deviations’ were detected at unexpected locations.
After a closer look, it appeared that such cases were often related to insufficient
accuracy in the 3D city model (observed in three cases in the sample). A good
example can be found in figure 6.17 where a roof has erroneously been modeled
as fully flat. This shows that the method requires an accurate and precise input
geometry to perform correctly. If there is a mismatch, the spots with insufficient
quality will be identified instead of the ones with truly diverging geometries. In
such a case, the method would check the quality of the input dataset, rather than
the presence of spectral variations.

6.4 further qualitative observations 87

Figure 6.17: Example of a building (Van Meelstraat 44) that has erronously been modelled
with a fully flat roof in the 3D city model of Rotterdam (image on the left).
’Deviations’ identified in the middle of the roof (blue in the point cloud in the
middle, green on the aerial image on the right), do not represent a material
’deviation’ but simply the peak of the slightly gabled roof surface (visualisation
in the middle and right obtained for 20cm and 5 degrees settings).

Figure 6.18: Example of a building with wrong cadastral footprints (Sommelsdijkstraat 45),
leading to a wrong 3D city model biasing the results of the method. On the left,
one can see the footprints represented by the red lines. The yellow circle on the
left indicates a part of the building that was missed. The ’deviation’ in green
(a beam) suddenly stops where the building stops while it clearly continues
on the aerial image. The yellow circle on the right shows a ’deviation’ of the
same surface that is split in two. The reason for this can be found in the point
cloud on the right. The outer right cluster of blue points (seeds identified due
to their high distance from the roof surface above the entrance) is split into two
parts: one lies on the roof of the building while the other lies on the roof of
the entrance. This suggests that the shape of the 3d city model might also be
inaccurate on that side.

Another issue illustrating the importance of the accuracy of the 3D city model is
incorrectly positioned and sometimes even missing parts. As shown in the example
in figure 6.18, these ones are most likely the result of inaccurate footprints used to
create the 3D city model. This can lead to points being wrongly used as seed points
(because they lie far above a wrong roof surface) and to points being omitted as
they are outside the provided roof boundaries.

Occlusion and small irregular surfaces

Another requirement with regard to the quality of input information results from
the need for a minimum number of total points (per roof surface, not only ’devia-
tions)) in order to handle a surface. This is related to the scipy.spatial.voronoi library
requiring at least 4 initial points to generate a Voronoi diagram (theoretically 2

points are sufficient, but as this library uses simplexes, a minimum of 4 points is
imposed).

In some situations, this minimum number of points is not fulfilled. Mainly two
factors contributing to this have been identified:
- occlusion in the AHN point cloud (roof surfaces covered by water and thus rather
absorbing than reflecting the laser signal, or geometric occlusion at locations off the
flightpath).

88 results and validation

- particularly small surfaces in the 3D city model, which show a normal point den-
sity but still contain less than 4 points.

While the problem with regard to the number of points might be solved by using
a higher density point cloud (i.e. flying each flight line in two directions, as done
for the point cloud provided by the city of Rotterdam (see part 3.2.1), there is a
second issue brought by some of the small surfaces.

In fact, some of the small surfaces are actually no real-world objects but arise as
3D surface reconstruction artifacts. Such surfaces are probably necessary to close a
3D city model when the modeled (main) surfaces do not meet at the right location.
An example of such a surface can be found in 6.19. The problem that arises with
such surfaces is that, as the region growing algorithm operates within roof surfaces
and uses the k-nearest neighbor approach, growing very far from the seed can
occur (the closest point might be relatively far away). As such closure surfaces are
not always accurate (especially with regard to their orientation), ’deviations’ ’filling
in’ such roof surfaces can sometimes be observed (see figure 6.19).

Figure 6.19: Example of a small ’closure’ surface occuring in the 3D city model (left, building
is located at Portlandstraat 57). The irregular shape can lead to erroneous results
as the region growing method ’fills up’ and labels the entire shape as ’deviation’.

Roof edge identification

Figure 6.20: Example (Waalhaven O.z. 85) of a building where the method (visualizations
with setting 20cm and 5 degrees) leads to an overestimation of the roof edges.
As can be seen on the left, the region growing algorithm grows beyong the
actual edge object (points in blue are the seeds, points added by region growing
are colored in red). The result can be seen on the right. While the edge on
the aerial image is estimated at 80cm, the method identifies an edge of about
140cm.

A final observation that was made concerns the edges of roofs. Among the 10

buildings of the subset, edges were entirely identified in 6, partially identified in 3

and entirely missed in only 1 case. This shows that progress can still be made on
that level, although it might be challenging as roof edges (e.g. gutters) do sometimes
lay in the same plane as the adjacent roof surface. Also, it was regularly observed
that roof edge ’deviation’ regions grow bigger than the actual roof edge (extending
the observations of part 3.3.1). This might be related to the fact that the roof cover

6.5 chapter summary and link to assumptions made 89

surface often changes its inclination already at some distance before the actual edge,
or because of the usage of KNN clusters for the estimation of the local plane (for an
example see fig 6.20).

6.5 chapter summary and link to assumptions made
This chapter has performed a quantitative validation of the method developed in
the previous chapters. For this sake, a validation area in the south of Rotterdam
was chosen, elaborating the representativeness criteria formulated in part 2.1:
- the representativeness in terms of building functions (housing, industrial, com-
munity facilities, offices) which is deemed representative for cities with industrial
activity.
- the availability of input data, as described earlier in part 3.2 and 5.1.
- budget constraints (one person, i.e. the researcher, and limited time) which apply
to any research projects and limited the validation set to 40 buildings here.

The budget constraint also led to limiting the number of variables to two by
using constants for the KNN settings, as suggested earlier in part 3.4.4. For the two
variables left, a pilot study was performed with one building in order to identify
a range of usable values. The maximum and minimum values of the latter ranges
were then used as values, resulting in a total of four validation sets (or versions of
the method).

validation in four ways Validation itself was performed in four different ways
with the building (once at level B) or the mesh cell from hyperspectral imagery
(three times, at level B, C and D) as the unit of analysis. First, only cells located
100% inside a roof surface were considered for nominal validation at building and
cell level (A and B). In a second part (C and D), cells lying up to 30% outside a roof
surface were considered too, for a subset of 10 buildings only. On one hand, this
allowed observing the performance evolution when loosening the cell inside the
roof surface criterion. On the other hand, a rational validation (D) was performed
on top of the nominal one (by validating the area of the deviations). This one
allowed exploration towards potential tolerance for spectral variations and showed
that requirements to fulfill by the method in such case increase.

findings As performance indicators mainly the khat and the commission errors
for the class ’clean’ were used. Overall, this allowed to identify two different ap-
proaches with regard to the thesis:
- if the aim is to accurately quantify materials (thus to find as many clean cells as
possible), the first indicator is most important. Basing on the results, it is recom-
mended to use rather loose threshold settings for such endeavor.
- in contrast, the aim is limited to finding the presence of materials (thus to minimize
the number of non-clean pixels wrongly classified as clean), the second indicator is
most important. Looking at the outcome, it is recommended to use rather strict
threshold settings.

limitations and qualitative observations Using these findings, it should
be kept in mind that they are subject to limitations. In fact, some types of buildings
such as particularly big ones were not covered in the validation. Before reusing the
results obtained, one should, therefore, ensure that the area of study is sufficiently
similar to the set of samples used here.

Moreover, a number of qualitative observations were made next to quantitative
validation. These ones stress the fact that input quality matters. By observing
results, three topics of attention were identified: non-flat roofs modeled as flat ones,
errors in the footprints used as inputs for the 3D models, and presence of irregular
’closing’ surfaces.

7 C O N C L U S I O N S , L E S S O N S L E A R N E D
A N D O U T LO O K

This final chapter will present the conclusions that can be drawn from the research
that was presented in the previous chapters. First, the research questions stated in
part 1.4 will be answered. The second step will formulate recommendations for data
suppliers from the intermediate user perspective of this thesis. Finally, a number of
topics of future research will be discussed and related to the developed method.

7.1 answers to the research questions
In this first subsection, the research question How can a CityGML LOD2 model be se-
mantically enriched in order to improve material classification performed on roof surfaces?
formulated at the start of the thesis (see part 1.4) will be answered, starting with
the subquestions:

Suitability for deviation detection

1. Which method is suitable to identify ’deviations’ of LiDAR point clouds compared to LOD2?

Figure 7.1: Illustration of the method developed for the identification of ’deviations’ of LiDAR

compared to LOD2

identified method Within this thesis, a method that is able to identify ’devia-
tions’ from a geometric point of view has successfully been developed and imple-
mented (for a visual overview, see figure 7.1). This method consists of globally three
steps which have been described in the pseudo-code algorithms 1, 3 and 2:

- first, ’deviation’ seeds are identified by selecting points exceeding a vertical
distance from the roof surface.

- second, these seeds are extended by a region growing approach. This one in-
volves the fitting of local planes using PCA and comparison of the orientations of
the locally computed and the roof surface’s normal vectors.

- third, the ’deviation’ regions (sets of points) are converted into geometry by
projecting the points on the roof surface and generating a Voronoi diagram.

91

92 conclusions, lessons learned and outlook

The method developed is adaptable as two settings are used: a distance and an
angle deviation threshold (see part 3.4.4 for more details). These ones can be fine-
tuned to external factors such as point cloud noise or quality of the 3D city model.

geometric limitations It should nevertheless be noted that the method does
only provide limited support for buildings that are complex from a 3D geometric
point of view. Depending on the definition of the region of interest, only limited
support for roofs with intrusions can be provided. Also, some particular complex
cases with roof geometries located in the region of interest of another roof geometry
might lead to inaccurate results.

7.1.1 Requirements with regard to data inputs

2. What are the requirements with regard to CityGML LOD2, LiDAR point clouds and hyper-
spectral imagery data?

citygml lod2 Relatively few quality requirements could be found in the tender
document specifying the requirements for the CityGML model of Rotterdam (e.g. no
accuracy requirement of the roof surfaces with regard to the point cloud, see part
3.2.2 and Gemeente Rotterdam (2016, n.d.)). Nevertheless, the 3D CityGML model
of Rotterdam fulfills the requirements of the method rather well. While it is clear
that a LOD1 model would not suffice, the precision of the LOD2 model provided
is sufficient, showing that a rather expensive LOD3 model was not needed for this
research.

In three cases of the 41 buildings analysed in chapter 6, the roof surfaces were
wrongly located with regard to the point cloud (in one case a roof was modeled
as flat while they are slightly sloped, see part 6.4). However, even in these cases,
few clean pixels were still left and would have allowed the identification of material
presence.

This observation is true for the settings with which the algorithm was validated.
Therefore, in all the 38 other cases, the roof surfaces were located within 20cm of
the points representing it. As the point cloud has up to 5cm of stochastic and up to
5cm of systematic errors, this can be seen as a rather good match. This is especially
true as the point cloud used to make this observation is not the one from which the
3D city model was created.

Some more critical inaccuracies of the 3D city model were found and covered in
part 6.4 and 6.4. Overall, they show that both the input but also the surface recon-
struction quality matter and can strongly alter the results of the method developed
in this research.

LiDAR point clouds Although two point clouds were available, this research
has shown that the AHN point cloud with 8 points/m2 is of sufficient density to
obtain ’suitable’ results with the method (see the answer to sub-question 3 for more
details). While the point cloud density is relatively low and occlusions exist, it still
allowed the method to run correctly.

The Nyquist-Shannon sampling theorem 1 states that the size of an object that can
reliably be detected (in one dimension) by a number of points n per m is given by:

2
n

(7.1)

If objects of 1 m2 should be (reliably) detected, this reasoning translates to a re-
quirement of 4 points/m2 (for an object of 0.5 m2 it translates to 8.2 points/m2). As
the point cloud distribution might locally be affected by occlusion, a margin should
be applied (e.g. increasing the requirements by a given percentage, preferably by

1 for more information see (Claude and Shannon, 1934)

7.1 answers to the research questions 93

performing density variation measures on the point cloud directly). For a margin
of 25%, the current point cloud density (6.4 points/m2 after removal of 25%) should
thus be able to (reliably) detect objects with a size of at least about 0.6 m2.

The requirement in terms of density depends on the desired application: e.g.
usage of 30 points/m2 as acquired by the city of Rotterdam would allow detecting
objects as small as 0.17 m2 (incl. a density variation margin of 25%). One might,
however, note, that where occlusion occurs, identification of ’deviations’ becomes
impossible. For this method, the usage of LiDAR point clouds acquired with two
crossing flight lines is therefore recommended. The point cloud density should be
adapted to the size of the objects to be detected.

Another important aspect is the pre-processing of the point cloud data. In fact,
classification has to be performed with care as the confusion of objects such as
chimneys with outliers can make the identification of ’deviations’ impossible (as
shown in part 3.2.1).

An alternative might be to use unclassified data but would come at the expense
of heavier computation, especially during the cropping of the point cloud and the
selection of the region of interest. A similarly heavier computation would also be
induced by a higher density point cloud but might be compensated to some extent
by thinning.

hyperspectral imagery Although the mesh cells resulting from the hyperspec-
tral imagery data often resulted in at least one clean cell for a given building,
whether this fulfills the requirements can only be said by looking at the applica-
tion. Whether one desires to quantify materials (e.g. in m2) or just identify their
presence makes quite a difference (as mentioned in part 6.3).

In case the objective is to get nominal data on the presence of materials, the flight
height of 7000m and the 4×4m resolution can be deemed sufficient. In the cases
where rational data quantifying the materials is to be obtained, a 4×4m resolution
leads to a considerable amount of cells that are excluded (e.g. which are only
partially located on the roof and thus contain mixed information).

Obviously, the suitability of a 4×4m resolution also depends on the roof surface
sizes of the buildings for which the data should be obtained. On one hand, even
obtaining nominal data can be hard for small buildings (e.g. bungalows), while on
the other hand, quantitative data can be reliably obtained for very big buildings
(e.g. logistic halls).

links between requirements A number of links between the different dataset
requirements exist. In these situations, the requirement must be formulated more
strictly or loosely depending on the requirement formulated for the related dataset.
In fact, the sum of height errors should not exceed the strictest distance threshold
used for running the method. In the case of the validation, the sum (according to
the dataset specifications) is 20 cm and thus at the limit with regard to the threshold
used.

As mentioned in part 1.5.2, an alternative to LiDAR acquisition is the production
of point clouds using dense image matching. However, these point clouds are
generally of lower accuracy, which would increase the minimum usable height and
angle thresholds. While point clouds from dense image matching are possible, their
usage would limit the extent to which deviations can be identified (e.g. higher
minimum height differences with regard to the roof surface - thus only detection of
bigger objects).

A second link exists between the point cloud density (and the minimum deviation
area to identify) and the area covered by the pixels of the hyperspectral imagery. In
fact, the deviation areas to be identified should have a relevant size with regard to
the pepper and salt effect (oversensibility) that might occur in spectral deviations. A
critical threshold percentage for this effect was not known to the author at the time

94 conclusions, lessons learned and outlook

of writing. As an example, a single deviation of 0.2 m2 only represents 1.25% of the
area of a cell of 16 m2.

Obviously, several objects with an area smaller than what can be detected reliably
might exist and potentially be missed. However, if these ’deviation’ objects are
randomly distributed, the chances that at least one gets detected increases with their
number. Also, as the area estimation uses the Voronoi diagram, the area of the latter
identified objects should be overestimated, potentially compensating for the ones
located in between points. Therefore, the point cloud density requirement should
be defined with regard to the ground resolution of the hyperspectral imagery.

Another requirement that should be defined with regard to this is the positional
accuracy of the point cloud (which, according to the specifications of the AHN used
in this research is not higher than 50 cm). In fact, not only the positional accuracy
of the mesh cells (resulting from the orthocorrection performed in part 5.2) but also
of the point cloud itself can lead to a share of the cell area being misplaced. Here
too, a critical threshold should preferably be known. As has been seen in part 5.2,
a positional error of 11cm can already lead to 5.4% of misplaced cell area.

7.1.2 Suitability for identification of clean pixels

3. To which extent does such a method support the identification of clean pixels?

validation results The validation performed in chapter 6 was preceded by
an in-depth study of the acquisition technology to establish the link between the
imagery and geographic space (see part 5.2). The results show that the method
delivers a moderate agreement with ground truth (defined by Congalton and Green
(2002) as a khat from 40 to 80%)). With a distance threshold setting of 40cm (looser
setting), better results are obtained than with 20cm (from an overall accuracy point
of view). This shows that the method proposed in this thesis has the potential for
the identification of clean pixels, but can still be enhanced, at least from an overall
accuracy point of view.

A different perspective might be taken if the aim is to detect the material presence
rather than the quantities (as mentioned in part 6.3). In that case, the commission
error for clean pixels becomes more important. Focusing on this aspect, the pro-
posed method performs moderately (commission errors as low as 10%), and best
with the strictest setting of 20cm and 2-degree thresholds.

Another aspect that was studied is the possibility for hyperspectral imagery clas-
sifiers to become to some degree tolerant for non-clean pixels. In order to identify
the extent to which this assumption is true, further research into mixed cells (such
as Guo et al. (2009)) and the specific spectra of roof materials are required. In that
case, pixels would have to be considered as rational instead of a nominal data type.
The fact that the performance of the method is lower for such data confirms the
higher requirements. While a potential does also exist here, even stronger improve-
ments would thus be needed to support such data type.

validation limitations The first, probably strongest limitation of the valida-
tion is the composition of the validation set. As has been shown by the qualitative
observations on big buildings that could not be included (see part 6.4), the results
obtained are rather specific for the buildings composing the set. The validity of the
findings of the validation for other study sets is limited thereby.

A second limitation is that time-wise budget constraints only allowed the valida-
tion to be carried out with four sets, while the method has four variables. Therefore,
it was chosen to set a constant for two of the variables and to allow two different
values for the two others.

To determine the variable values used in the validation, reasonable minimum
and maximum values were identified first. This was done by visual evaluation of
computation results, performed on sample buildings. For the variables allowing

7.1 answers to the research questions 95

two values (height and angle tolerance thresholds), the reasonable minimum and
maximum values were selected. For the two other variables which were set to a
constant, a reasonable minimum value was chosen (based on the criteria established
in the deviation identification part: completeness and computational load).

If additional time-wise budget was provided, more conclusive results might have
been obtained by testing more variable values. Retrospectively, it should neverthe-
less be noted that the value choice using the reasonable minimum and maximum
values did lead to conclusive findings. In fact, the validation allowed to define two
approaches, two situations in which either the ’strict’ or the ’loose’ settings are more
suited.

improvements needed towards implementation in hyperspectral imagery
classification Furthermore, one has to note that the scope of the thesis was
limited with regard to the definition of clean pixels. In practice, not only ’devia-
tions’ but also shadow resulting from the deviations and other geometries would
have to be taken into account. This aspect was not considered in the research but
is discussed in part 7.3.2. Another aspect which it is desirable to improve before
implementation is the orthocorrection. As it was beyond the scope, this study satis-
fied itself with an approximate but acceptable implementation. If the method is to
be used in hyperspectral imagery classification, it becomes necessary to perform a
more exact orthocorrection (i.e. using a digital surface model and the image acqui-
sition coordinates to solve collinearity equations).

7.1.3 Main question: Enrichment of a CityGML LOD2 with regard to material
classification

Finally, the main question How can a CityGML LOD2 model be semantically enriched in
order to improve material classification performed on roof surfaces? will be answered.

summary of answers to the research questions As shown by answering
the sub-questions, a LOD2 3D city model such as the one of Rotterdam can be
semantically enriched by indicating the 2-dimensional locations of height ’devia-
tions’. As the scope of the study focused on the data fusion with hyperspectral
imagery, the height ’deviations’ were not stored in the CityGML 3D city model but
directly combined with the imagery information. This is, in fact, a form of semantic
enrichment as the geometry of the city model is not altered - only additional 2D
information (including geometric shapes) that can be used in combination with the
3D city model is generated and stored. Options for a semantic enrichment inte-
grated with the CityGML standard were also explored (more specifically, the usage
of GenericCityObject or BuildingInstallation classes) but not implemented.

The potential of this approach as an alternative to other ones (e.g. majority filter
as presented in part 1.2.2) has been shown by the results obtained in chapter 6. This
potential is stronger for a nominal approach (clean vs. non-clean pixels) than for
a rational (degree of cleanliness of a pixel). Furthermore, the different validation
showed the need to always keep the actual application in mind. In fact, whether
one wants to identify the mere presence of materials or perform a quantification
makes quite a difference in terms of settings identified as optimal. An additional
aspect affecting results is the sizes and typologies of the validation building set.
These aspects must definitely be included in any kind of specifications to treasure
the value behind the numbers. If they are omitted, the results lose meaning and it
becomes hard to draw conclusions for specific applications.

possible variant of the method One should note that a simplified variant
of the method developed in this thesis is possible. In fact, the conversion of the
points into geometries might be skipped and the cleanliness of cells assessed by
the number of (projected) ’deviation’ points they contain. This is likely to allow

96 conclusions, lessons learned and outlook

faster computation, especially as it skips the conversion which requires the Voronoi
diagram to be generated for all (labeled and non labeled) points of a roof surface.

However, two limitations can be noted here. First of all, skipping this step might
become problematic in the case of globally or locally low point densities. In fact,
the creation of the Voronoi diagram intrinsically adapts the output to the local point
density. By doing so it also allows a point located close to the edge of a cell to affect
neighboring cells. This characteristic would be lost if only counting the points
located inside a cell. How critical this characteristic is depends on several factors
discussed earlier in part 7.1.1.

A second limitation which is why this variant was not implemented here is that
it is harder to validate. In fact, this would require to make a link between the point
count and the area of a deviation. Using a constant value would be approximate
as LiDAR point cloud density varies locally (distance from the flight line, occlusion).
More precise would be the computation of a local point density to make the link
more specific. However, as such a value is necessarily an average over a given area,
it would still be less precise than the chosen method where the Voronoi diagram
only takes into account the direct neighbors.

coherence of choices and assumption frameworks Overall, the guiding
criteria, namely ’completeness’ that was formulated in part 2.1 has been considered
in all parts of the method (and within the limits of the scope). For each specific step,
it was translated for the context and implemented accordingly. Considering that the
validation did not only take into account geometric (as defined by the scope) but
also other visual deviations, the positive results are proof that the ’completeness’
criterion was taken into account correctly.

Among the secondary criteria used, different ones had to be chosen for the respec-
tive parts. While the overall aim was to make the realization of the research feasible,
this had to be translated into several goals. On one hand, the computational load
was important to ensure that results (during the different research phases) were
obtained in a reasonable time. On the other hand, time-wise budget constraints
(along with the need for a representative sample) only allowed a limited number of
validation sets. For this reason, the number of input variables was limited, either by
identifying reasonable constants (see part 3.4.4) or by implementing methods not
requiring external input variables (see parts 4.4 and 5.4). This led to ambiguous
choices concerning the secondary criteria. For instance, the computational load cri-
terion was replaced by automation for the second and third step. This clearly shows
that multiple goals existed beyond the primary one and a balance had to be found
by making compromises.

7.2 recommendations to data suppliers

7.2.1 LiDAR acquisition and processing

Some formats in which point clouds are usually delivered (i.e. .las format) support
metadata information such as the software used for acquisition and classification,
but it is not a mandatory field (American Society for Photogrammetry & Remote
Sensing, 2013). Furthermore, in the case of fully automated classification, such soft-
ware can be proprietary - therefore not giving any insights on how the classification
was performed. In some of the available software packages (e.g. TerraScan), the
user is simply given a number of tools to create a classification workflow.

Sharing information about how the classification was performed is a tricky sub-
ject, but the issue encountered in this thesis (see part 3.2.1) shows that it can be
critical. A reflection among practitioners’ is therefore on how such information
could be shared is therefore encouraged. In some cases, an attribute indication such

7.2 recommendations to data suppliers 97

as ’strict - medium - loose’ might be sufficient while in others a detailed technical
report describing the workflow might be more desirable.

7.2.2 CityGML structure

The CityGML format and especially its semantics have proven to be a vital element
for research such as performed in this thesis. In fact, the storage of both geometric
and thematic, aggregated and detailed information makes it much easier to work
with a 3D city model.
Looking at the urban mining context in which this thesis is written, one can ob-
serve that there is no support for the storage of material quantities in CityGML yet.
As discussed in part 3.1.2, some ADEs do support the storage of material infor-
mation. However, to the knowledge of the author, no ADE does cover the actual
quantification (e.g. in kgs or m3) which might ultimately be the output of hyper-
spectral classifications (and should be retrievable both at the surface and aggregated
at building level). One might argue that the CityGML format is in principle extensible
by the usage of generic attributes. However, the inclusion of material information
for the field of urban mining as a standard (of an ADE or of the CityGML format itself)
is desirable to treasure interoperability.

Figure 7.2: Schema showing the ambiguity of modeling roof edges with regard to the
CityGML LOD standards. The edge here has a total attached area of 16 m2 and
should thus be modeled. But if it split in two parts, the attached area would be
too low to be modeled while the edge might be nearly as relevant.

Another topic mentioned in this thesis which is not covered by the CityGML stan-
dard is the thickness of roof edges. While overhanging roof parts are explicitly
addressed in chapter 6.2. of the standard (allowed from LOD2, mandatory from
LOD3 on, Gröger et al. (2012)), this is not the case for roof edges. Especially in
the case of flat buildings, these ones might have a considerable width (e.g. up to
1m) and show a sufficient height difference. Chapter 6.2. of the Open Geospatial
Consortium standard (Gröger et al., 2012) does suggest for LOD2 to model roof
objects with dimensions of at least 4×4m - however it is unclear if this therefore
also applies to roof edges (e.g. a roof edge of 1m width and 50cm height differ-
ence on a roof surface of 6×6m, thus also covering a size of 16m2 - see figure 7.2).
More precise addressing of such questions in future versions of the standard is thus
strongly encouraged (instead of the attached area criterion, a width criterion might,
for instance, apply to roof edges).

7.2.3 CityGML dataset of Rotterdam

Based on the qualitative observations made during the research (such as in part 6.4)
, the following recommendations can be made for the CityGML dataset of Rotterdam:
- As the 3D city model is provided as open data, the technical specifications should

98 conclusions, lessons learned and outlook

also be openly available. Additional information such as the acquisition date of the
point cloud used, the custom specification used for LOD2 (see part 3.2.2) and the
positional accuracy of roof surfaces (contained in Gemeente Rotterdam (n.d.) and
Gemeente Rotterdam (2016)) should be indicated in a technical specification file for
the users.
- If possible, results of the quality checks should be published too as they give a
better idea of the end product quality than the specifications do. As a custom defi-
nition of LOD2 is used(see part 3.2.2), some cases where the definition was more than
respected and other cases where it was not respected were encountered. The qual-
itative observations induce that it is hard to estimate the extents of this (although,
the method of this thesis might be adapted to do so, see part 7.3.1). In some other
cases such as the ship MS Rotterdam in 7.3, it is rather obvious that the model is of
a LOD3 kind.
- Furthermore, it is unclear whether a tolerance was used for the modeling of flat
roofs. The maximum slope/curvature for which a flat roof is accepted should be
formulated in the technical specifications and shared with the user too.
- A final recommendation is that small surfaces that are modeling artifacts serving
as a connection between two surfaces should be avoided. An example was given
in part 6.4. Such artifacts can be problematic as it is hard for processing methods
such as the one of this thesis to distinguish between such surfaces and real-world
surfaces.

Figure 7.3: Example of a ’building’ (actually a ship) that is labeled as LOD2 while it rather
seems to fulfill LOD3 standards.

7.3 future research

7.3.1 Automated quality checks

During a visit in March 2019 at the department in charge of Rotterdam3D within the
municipality of Rotterdam, the topic of quality checks was discussed. In fact, at the
moment of the visit - the quality checks were performed manually. A subset was
selected, of which the 3D city model was displayed together with the point cloud.
A human person did then estimate the extent to which the 3D city model complies
with the requirements. While this process is not wrong as such, it is probably rather
expensive.

The research performed in this thesis provides to some extent a framework for
the automation of such quality checks. Roof ’deviations’ which are in fact objects
that were not appropriately modeled could be identified automatically - guiding
the human in the quest for buildings that need improvements. In some cases of
the validation in chapter 6, building models with a strong mismatch with the point
cloud (e.g. wrong position of the roof surface) were observed. In these cases, a
substantial part of the roof surface was identified as ’deviation’. Therefore, the

7.3 future research 99

share of the roof classified as ’deviations’ could then be used as an indicator for the
severeness of the case.

Nevertheless, the method proposed in this thesis might require modifications if
used for this purpose. In fact, the roof edges which are only supported from LOD3

on according to the CityGML standard might trigger ’wrong errors’. As discussed
with figure 7.2, edges might have the size of missed elements but still fall under
LOD3.

7.3.2 More accurate estimation of shadow and solar potential

A recent study of Willenborg et al. (2018) has shown that the enrichment of semantic
3D city models with additional details can considerably improve the estimation of
the solar potential for building roofs and walls. In this research, the approach
differed from the one of this thesis as the 3D mesh used is already a geometric
object, in contrast with the point cloud used as input here. Interestingly, the research
resembles the part described in chapter 3 as it also uses first seed selection and
subsequently a region growing.

A major difference with regard to this research is that the identification of shadow
would require a third geometric dimension. While the first steps have been done
in that direction by storing basic statistics (see section 4.3.4), a separate validation
would be required too. A basic validation could be done using satellite or aerial
images, preferably several ones taken with different sun positions. For a more
advanced validation, site visits or highly accurate 3D models (e.g. Building Infor-
mation Models (BIM)) would be required.

Also, at the current stage, only one height value has been stored for each ’devi-
ation’ region. Whether this approximation is sufficient depends on the application
and the required level of detail. It might also be possible to group Voronoi cells by
similar heights within a ’deviation’ region - therefore supporting several values.
Another difference with regard to the research conducted in this thesis is that a
more global approach would be required. In fact, while the visibility of roofs is gen-
erally not altered by objects external to the roof (with exception of some relatively
low buildings with a tree growing above), the same cannot be said for shadow. For
solar studies, neighboring trees and buildings need to be taken into account even if
they are located outside the footprints of the building under study. Depending on
the time of the day and the altitude of the sun, shadows are generally cast onto the
surroundings of the object.

Moreover, future research on solar potential and shadow estimation would also
be in line with the identification of clean pixels. In contrast with the validation
performed in chapter 6, a clean pixel in the ground truth would then be defined as
being a pixel that does neither contain several materials nor shadow.

7.3.3 Towards LOD3?

A final topic of future research is the extent to which this thesis’ method can be
adapted to build LOD3 models (thus containing objects below the custom detail size
threshold set for LOD2). In order to do so, the following steps might be followed:

- first, the 2D deviation shapes that are currently obtained need to be rectified
to match the shapes of real-world geometric objects. For this, line simplification
algorithms might be used.

- second, the 2D shapes have to be projected on the roof surface. This area then
has to be cut out so that the boundary surface can follow the shape created in the
subsequent steps.

- third, the height attribute obtained in this thesis (see part 4.3.4) might then be
used to vertically extrude the deviation geometry, hereby making a 3D object that
extends the boundary surface.

100 conclusions, lessons learned and outlook

One can note that this is a very basic approach that leads to the deviation being
modeled as a rough 3D estimation. In fact, it resembles a bit to the LOD1 framework
where a single height is available for each geometry - but then applied to detailed
geometries within existing LOD2 models. In this case, the single height value implies
that the top geometry of the 3D deviation is always coplanar to the roof surface it
lies on (see figure 7.4 for an example). This approximation is often wrong (e.g
chimneys) and more research would be needed to make such estimations more
reliably (e.g. support several height values, check whether the increase in height
values matches the one of the roof surface). In-depth research might also allow the
support of deviations with several or non-flat top surfaces.

Figure 7.4: Example of a geometry that might be created with the results of this research,
making a step from LOD2 to LOD3

.

B I B L I O G R A P H Y

Agugiaro, G., Benner, J., Cipriano, P., and Nouvel, R. (2018). The energy applica-
tion domain extension for citygml: enhancing interoperability for urban energy
simulations. Open Geospatial Data, Software and Standards, 3(1):2.

AHN (2015). Besteksvoorwaarden inwinning landsdekkende dataset ahn 2014-2019.

American Society for Photogrammetry & Remote Sensing (2013). Las specification
version 1.4–r13. In ”American Society for Photogrammetry & Remote Sensing”.

Asaeedi, S., Didehvar, F., and Mohades, A. (2013). Alpha-concave hull, a generaliza-
tion of convex hull. arXiv preprint arXiv:1309.7829.

Baccini, P. and Brunner, P. H. (2012). Metabolism of the anthroposphere: analysis, evalu-
ation, design. MIT Press.

Bentley, J. L. (1975). A survey of techniques for fixed radius near neighbor searching.
Technical report, Stanford Linear Accelerator Center.

Beth, R. T. (2016). Uav based hyperspectral imaging of
river ecosystems. ULR https://www.researchgate.net/profile/

Roberto Beth/publication/318130142 UAV Based Hyperspectral

Imaging of River Ecosystems/links/595b7bc2a6fdcc36b4dc282b/

UAV-Based-Hyperspectral-Imaging-of-River-Ecosystems.pdf .

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is “nearest
neighbor” meaningful? In International conference on database theory, pages 217–
235. Springer.

Billen, R., Cutting-Decelle, A.-F., Marina, O., de Almeida, J.-P., Caglioni, M., Falquet,
G., Leduc, T., Métral, C., Moreau, G., Perret, J., et al. (2014). 3D City Models and
urban information: Current issues and perspectives. edp Sciences Les Ulis, France.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010). Polygon mesh
processing. AK Peters/CRC Press.

Claude, E. and Shannon, C. (1934). Communication in the presence of noise. Proc.
Inst. Radio Eng, 371.

Congalton, R. G. and Green, K. (2002). Assessing the accuracy of remotely sensed data:
principles and practices. CRC press.

De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf, O. (1997). Compu-
tational geometry. In Computational geometry, pages 1–17. Springer.

de Miguel, E., Fernández-Renau, A., Prado, E., Jiménez, M., de la Cámara, Ó. G.,
Linés, C., Gómez, J. A., Martı́n, A. I., and Muñoz, F. (2014). The processing of
casi-1500i data at inta paf. EARSeL eProceedings, 13(1):30–37.

Demarchi, L., Canters, F., Cariou, C., Licciardi, G., and Chan, J. C.-W. (2014). Assess-
ing the performance of two unsupervised dimensionality reduction techniques
on hyperspectral apex data for high resolution urban land-cover mapping. ISPRS
Journal of Photogrammetry and Remote Sensing, 87:166–179.

e2v technologies (n.d.). Ccd55-30 inverted mode sensor high performance
ccd sensor technical specifications. https://www.teledyne-e2v.com/shared/

content/resources/File/documents/Imaging%202017/CCDs%20-%20Full-Frame%

20Spectroscopic%20&%20Scientific/CCD55-30/1.%20FI,%20AIMO/1274.pdf .

101

https://www.researchgate.net/profile/Roberto_Beth/publication/318130142_UAV_Based_Hyperspectral_Imaging_of_River_Ecosystems/links/595b7bc2a6fdcc36b4dc282b/UAV-Based-Hyperspectral-Imaging-of-River-Ecosystems.pdf
https://www.researchgate.net/profile/Roberto_Beth/publication/318130142_UAV_Based_Hyperspectral_Imaging_of_River_Ecosystems/links/595b7bc2a6fdcc36b4dc282b/UAV-Based-Hyperspectral-Imaging-of-River-Ecosystems.pdf
https://www.researchgate.net/profile/Roberto_Beth/publication/318130142_UAV_Based_Hyperspectral_Imaging_of_River_Ecosystems/links/595b7bc2a6fdcc36b4dc282b/UAV-Based-Hyperspectral-Imaging-of-River-Ecosystems.pdf
https://www.researchgate.net/profile/Roberto_Beth/publication/318130142_UAV_Based_Hyperspectral_Imaging_of_River_Ecosystems/links/595b7bc2a6fdcc36b4dc282b/UAV-Based-Hyperspectral-Imaging-of-River-Ecosystems.pdf
https://www.teledyne-e2v.com/shared/content/resources/File/documents/Imaging%202017/CCDs%20-%20Full-Frame%20Spectroscopic%20&%20Scientific/CCD55-30/1.%20FI,%20AIMO/1274.pdf
https://www.teledyne-e2v.com/shared/content/resources/File/documents/Imaging%202017/CCDs%20-%20Full-Frame%20Spectroscopic%20&%20Scientific/CCD55-30/1.%20FI,%20AIMO/1274.pdf
https://www.teledyne-e2v.com/shared/content/resources/File/documents/Imaging%202017/CCDs%20-%20Full-Frame%20Spectroscopic%20&%20Scientific/CCD55-30/1.%20FI,%20AIMO/1274.pdf

102 bibliography

Edelsbrunner, H., Kirkpatrick, D., and Seidel, R. (1983). On the shape of a set of
points in the plane. IEEE Transactions on information theory, 29(4):551–559.

Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM
Transactions on Graphics (TOG), 13(1):43–72.

ESA Earth Observation Portal Directory (n.d.). Apex (airborne prism experiment).
URL https://earth.esa.int/web/eoportal/airborne-sensors/apex.

Fieque, B., Jamin, N., Chorier, P., Pidancier, P., Baud, L., and Terrier, B. (2012).
New sofradir visir-swir large format detector for next generation space missions.
In Sensors, Systems, and Next-Generation Satellites Xvi, volume 8533, page 853313.
International Society for Optics and Photonics.

Frick, A. (2007). Beiträge höchstauflösender Satellitenfernerkundung zum FFH-
Monitoring-Entwicklung eines wissensbasierten Klassifikationsverfahrens und Anwen-
dung in Brandenburg. PhD thesis, Technische Universität Berlin, Fakultät VI - Pla-
nen Bauen Umwelt.

Gemeente Rotterdam (2016). Technische specificaties hoogtebestand gemeente rot-
terdam 2016.

Gemeente Rotterdam (n.d.). Programma van eisen 3d rotterdam.

Gilani, S. A. N., Awrangjeb, M., and Lu, G. (2016). Robust building roof segmen-
tation using airborne point cloud data. In Image Processing (ICIP), 2016 IEEE
International Conference on, pages 859–863. IEEE.

Gröger, G., Kolbe, T. H., Nagel, C., and Häfele, K.-H. (2012). Ogc city geography
markup language (citygml) encoding standard, version 2.0. OGC Doc, (12-019).

Guo, Z., Wittman, T., and Osher, S. (2009). L1 unmixing and its application to hy-
perspectral image enhancement. In Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XV, volume 7334, page 73341M. Interna-
tional Society for Optics and Photonics.

Heiden, U., Segl, K., Roessner, S., and Kaufmann, H. (2007). Determination of robust
spectral features for identification of urban surface materials in hyperspectral
remote sensing data. Remote Sensing of Environment, 111(4):537–552.

Kuhlmann, G., Hueni, A., and Brunner, D. (2016). High-resolution no2 maps of
rotterdam and zürich retrieved from the apex imaging spectrometer. In EGU
General Assembly Conference Abstracts, volume 18.

Lemmens, M. (2011). Geo-information: technologies, applications and the environment,
volume 5. Springer Science & Business Media.

Müller, D. B. (2006). Stock dynamics for forecasting material flows—case study for
housing in the netherlands. Ecological Economics, 59(1):142–156.

Moreira, A. and Santos, M. Y. (2007). Concave hull: A k-nearest neighbours ap-
proach for the computation of the region occupied by a set of points. International
Conference On Computer Graphics Theory and Applications.

Nguyen, A. and Le, B. (2013). 3d point cloud segmentation: A survey. In RAM,
pages 225–230.

Nowicki-Bringuier, Y.-R. and Chorier, P. (2009). Sofradir swir hyperspectral detec-
tors for space applications. In Sensors, systems, and next-generation satellites XIII,
volume 7474, page 747417. International Society for Optics and Photonics.

https://earth.esa.int/web/eoportal/airborne-sensors/apex

bibliography 103

Nurunnabi, A., Belton, D., and West, G. (2012). Robust segmentation in laser scan-
ning 3d point cloud data. In Digital Image Computing Techniques and Applications
(DICTA), 2012 International Conference on, pages 1–8. IEEE.

Patouillard, L., Bulle, C., Querleu, C., Maxime, D., Osset, P., and Margni, M. (2018).
Critical review and practical recommendations to integrate the spatial dimension
into life cycle assessment. Journal of Cleaner Production, 177:398–412.

Priem, F. and Canters, F. (2016). Synergistic use of lidar and apex hyperspectral
data for high-resolution urban land cover mapping. Remote sensing, 8(10):787.

Schaepman, M. E., Jehle, M., Hueni, A., D’Odorico, P., Damm, A., Weyermann,
J., Schneider, F. D., Laurent, V., Popp, C., Seidel, F. C., et al. (2015). Advanced
radiometry measurements and earth science applications with the airborne prism
experiment (apex). Remote Sensing of Environment, 158:207–219.

Tanikawa, H. and Hashimoto, S. (2009). Urban stock over time: spatial material
stock analysis using 4d-gis. Building Research Information, 37(5-6):483–502.

Thiel, F. (2016). Classifying anthropogenic and natural urban surface types using
imaging spectrometer and lidar data. Bachelor thesis at Humboldt University
Berlin, submitted in 2016.

Townsend, T., Powell, J., and Xu, C. (2007). Environmental issues associated with
asphalt shingle recycling. Construction Materials Recycling Association, US EPA
Innovations Workgroup.

Tribolet, P. and Chorier, P. (2002). Large infrared focal plane arrays for space appli-
cations. In PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SPACE
TECHNOLOGY AND SCIENCE, volume 23, pages 2247–2255. Citeseer.

Tryfona, M.-S. (2017). Bidirectional enrichment of citygml and multi-view stereo
mesh models. Master’s thesis, Delft University of Technology, Faculty of Archi-
tecture.

University of California Berkeley (non dated). 7.4 non-conventional classification al-
gorithms. URL https://nature.berkeley.edu/∼penggong/textbook/chapter7/html/

sect74.htm.

Vosselman, G., Gorte, B. G., Sithole, G., and Rabbani, T. (2004). Recognising struc-
ture in laser scanner point clouds. International archives of photogrammetry, remote
sensing and spatial information sciences, 46(8):33–38.

Vosselman, G. and Maas, H.-G. (2010). Airborne and terrestrial laser scanning. CRC.

Vreys, K., Iordache, M.-D., Biesemans, J., and Meuleman, K. (2016). Geometric
correction of apex hyperspectral data. Miscellanea Geographica, 20(1):11–15.

Wang, J. and Shan, J. (2009). Segmentation of lidar point clouds for building extrac-
tion. In American Society for Photogramm. Remote Sens. Annual Conference, Baltimore,
MD, pages 9–13.

Willenborg, B., Pültz, M., and Kolbe, T. H. (2018). Integration of semantic 3d city
models and 3d mesh models for accuracy improvements of solar potential analy-
ses. International Archives of the Photogrammetry, Remote Sensing & Spatial Informa-
tion Sciences.

Zhang, J. (2010). Multi-source remote sensing data fusion: status and trends. Inter-
national Journal of Image and Data Fusion, 1(1):5–24.

Zhou, K., Gorte, B., Lind enbergh, R., and Widyaningrum, E. (2018). 3d building
change detection between current vhr images and past lidar data. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:2.

https://nature.berkeley.edu/~penggong/textbook/chapter7/html/sect74.htm
https://nature.berkeley.edu/~penggong/textbook/chapter7/html/sect74.htm

8 A N N E X E S

8.1 uml diagram of citygml building class.

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]
+yearOfConstruction : xs::gYear [0..1]
+yearOfDemolition : xs::gYear [0..1]
+roofType : gml:CodeType [0..1]
+measuredHeight : gml::LengthType [0..1]
+storeysAboveGround : xs::nonNegativeInteger [0..1]
+storeysBelowGround : xs::nonNegativeInteger [0..1]
+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]
+storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1]

<<Feature>>
_AbstractBuilding

<<Feature>>
_BoundarySurface

<<Feature>>
CeilingSurface

<<Feature>>
InteriorWallSurface

<<Feature>>
FloorSurface

<<Feature>>
RoofSurface

<<Feature>>
WallSurfacee

<<Feature>>
ClosureSurface

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
BuildingInstallation

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
IntBuildingInstallation

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
Room

+class : gml::CodeType [0..1]
+function : gml::CodeType [0..*]
+usage : gml::CodeType [0..*]

<<Feature>>
BuildingFurniture

<<Feature>>
_Opening

<<Feature>>
Window

<<Feature>>
Door

<<Feature>>
Building

<<Feature>>
BuildingPart

<<Feature>>
core::_CityObject

<<Geometry>>
gml::MultiCurve

<<Geometry>>
gml::MultiSurface

<<Feature>>
core::_Site

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Geometry

<<Object>>
core::ImplicitGeometry

<<Feature>>
GroundSurface

<<Feature>>
OuterCeilingSurface

<<Feature>>
OuterFloorSurface

<<Feature>>
core::Address

*

lod4MultiSurface

*

lod3MultiSurface

*

*

boundedBy

*

0..1

*

0..1

*

*

lod4TerrainIntersection

* *

lod3MultiSurface

*

lod2MultiSurface

*
lod4MultiSurface

*

lod4MultiCurve

*

0..1

interiorFurniture

*

*

address

0..1

*

0..1

* lod3MultiSurface

*

*

interiorRoom

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*lod4Geometry

*

*

boundedBy

*

*

outerBuildingInstallation

*

lod3MultiCurve

*

0..1

*

lod3ImplicitRepresentation

0..1

*

lod4Geometry
*

*

lod4ImplicitRepresentation
0..1

*

0..1

*

lod0FootPrint

*

0..1

boundedBy

0..1

*

lod2MultiCurve

*

lod0RoofEdge

*

lod3TerrainIntersection

*

0..2

opening

0..1

*

lod1MultiSurface

*

*

boundedBy

*

0..1

roomInstallation

0..1

*

lod4MultiSurface

0..1

*

*lod3Geometry

*

*

consistsOfBuildingPart

*

*

interiorBuildingInstallation

0..1

*

lod4Geometry

*

*

*

address

0..1

*

lod1TerrainIntersection

0..1
*lod2Geometry

*

lod2TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid
lod3Solid

Figure 8.1: UML diagram of the CityGML building class (Gröger et al., 2012).

105

106 annexes

8.2 uml diagrams of the citygml geometry mod-
els.

<<Geometry>>
gml::_GeometricPrimitive

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Surface

<<Geometry>>
gml::_Curve

+position : gml::DirectPosition [1]

<<Geometry>>
gml::Point

<<Geometry>>
gml::CompositeSolid

<<Geometry>>
gml::Solid

<<Geometry>>
gml::CompositeSurface

<<Geometry>>
gml::TriangulatedSurface

<<Geometry>>
gml::Triangle+stopLines : gml::LineStringSegment [0..*]

+breakLines : gml::LineStringSegment [0..*]
+maxLength : gml::LengthType [1]
+controlPoint : gml::posList [1]

<<Geometry>>
gml::TIN

<<Geometry>>
gml::Polygon

+orientation : gml::SignType [0..1]

<<Geometry>>
gml::OrientableSurface

<<Geometry>>
gml::CompositeCurve

+position : gml::DirectPosition [2..*]

<<Geometry>>
gml::LineString

<<Geometry>>
gml::_Ring

+position : gml::DirectPosition [4..*]

<<Geometry>>
gml::LinearRing

<<Geometry>>
gml::Surface

<<Geometry>>
gml::_SurfacePatch

<<Geometry>>
gml::_Geometry

<<Geometry>>
gml::Rectangle

0..*

0..1

interior

*

*

1..*

*

solidMember

1

*

*

1

trianglePatches

0..2

1

baseSurface

1

*

1..*

*

curveMember

1

0..1

exterior

1..*

1

patches

1
*

exterior

1..*

*

surfaceMember

interior

exterior

exterior

Visual Paradigm for UML Standard Edition(Technical University Berlin)

Figure 8.2: UML diagram of the CityGML geometry model (Gröger et al., 2012).

Fig. 10: UML diagram of CityGML’s geometry model: Complexes and Aggregates

<<Geometry>>
gml::_AbstractGeometricAggregate

<<Geometry>>
gml::MultiSolid

<<Geometry>>
gml::MultiSurface

<<Geometry>>
gml::MultiCurve

<<Geometry>>
gml::MultiPoint

<<Geometry>>
gml::_Solid

<<Geometry>>
gml::_Surface

<<Geometry>>
gml::_Curve

<<Geometry>>
gml::Point

<<Geometry>>
gml::MultiGeometry

<<Geometry>>
gml::GeometricComplex

<<Geometry>>
gml::_GeometricPrimitive

<<Geometry>>
gml::_Geometry

*

*

surfaceMember
*

*

curveMember
*

*

solidMember

*

*

geometryMember

1..**

element

*

*

pointMember

Visual Paradigm for UML Standard Edition(Technical University Berlin)

Figure 8.3: UML diagram of the aggregates of CityGML’s geometry model (Gröger et al.,
2012).

8.3 results of level a validation 107

8.3 results of level a validation

>0 clean cells 0 clean cel total
>0 clean cells 19 2 21
0 clean cells 13 7 20
total 32 9 41
overall accuracy 0.63 comm. err 0.10
khat 0.26

>0 clean cells 0 clean cel total
>0 clean cells 27 3 30
 0 clean cells 5 6 11
total 32 9 41
overall accuracy 0.80 comm. err 0.10
khat 0.47

>0 clean cells 0 clean cel total
>0 clean cells 25 3 28
0 clean cells 7 6 13
total 32 9 41
overall accuracy 0.76 comm. err 0.11
khat 0.39

>0 clean cells 0 clean cel total
>0 clean cells 32 4 36
0 clean cells 0 5 5
total 32 9 41
overall accuracy 0.90 comm. err 0.11
khat 0.66

predic�on

predic�on

level 1 // distance = 20cm, angle=2°
truth

level 1 // distance = 20cm, angle=5°
truth

level 1 // distance = 40cm, angle=5°
truth

predic�on

truth
level 1 // distance = 40cm, angle=2°

predic�on

Figure 8.4: Error matrices resulting from the level A validation

108 annexes

8.4 results of level b validation

clean not clean total
clean 186 23 209
not clean 128 494 622
total 314 517 831
overall accuracy 0.82 comm. errors 'clean' 0.11
khat 0.59

clean not clean total
clean 212 63 275
not clean 102 454 556
total 314 517 831
overall accuracy 0.80 comm. errors 'clean' 0.23
khat 0.57

clean not clean total
clean 247 48 295
not clean 67 469 536
total 314 517 831
overall accuracy 0.86 comm. errors 'clean' 0.16
khat 0.70

clean not clean total
clean 282 100 382
not clean 32 417 449
total 314 517 831
overall accuracy 0.84 comm. errors 'clean' 0.26
khat 0.68

truth

predic�on

truth

predic�on

level 2 // distance = 40cm, angle=2°

level 2 // distance = 40cm, angle=5°

truth

predic�on

truth

predic�on

level 2 // distance = 20cm, angle=2°

level 2 // distance = 20cm, angle=5°

Figure 8.5: Error matrices resulting from the level B validation

8.5 results of level c validation 109

8.5 results of level c validation

tr
ut

h
tr

ut
h

tr
ut

h
cl

ea
n

no
t c

le
an

to
ta

l
cl

ea
n

no
t c

le
an

to
ta

l
cl

ea
n

no
t c

le
an

to
ta

l
pr

ed
ic
�o

n
cl

ea
n

13
2

15
pr

ed
ic
�o

n
cl

ea
n

10
5

15
pr

ed
ic
�o

n
cl

ea
n

7
4

11
no

t c
le

an
36

78
11

4
no

t c
le

an
7

84
91

no
t c

le
7

75
82

to
ta

l
49

80
12

9
to

ta
l

17
89

10
6

to
ta

l
14

79
93

ov
er

al
l a

cc
0.

71
co

m
m

. e
rr

or
s '

cl
ea

n'
0.

13
ov

er
al

l a
cc

0.
89

co
m

m
. e

rr
or

s '
cl

ea
0.

33
ov

er
al

l
0.

88
co

m
m

. e
rr

or
s '

cl
ea

n'
0.

36
kh

at
0.

28
91

.0
0

98
55

.0
0

kh
at

0.
56

94
.0

0
83

54
.0

0
kh

at
0.

49
82

.0
0

66
32

.0
0

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
19

3
22

cl
ea

n
11

10
21

cl
ea

n
11

10
21

no
t c

le
an

30
77

10
7

no
t c

le
an

6
79

85
no

t c
le

3
69

72
to

ta
l

49
80

12
9

to
ta

l
17

89
10

6
to

ta
l

14
79

93
ov

er
al

l a
cc

0.
74

co
m

m
. e

rr
or

s '
cl

ea
n'

0.
14

ov
er

al
l a

cc
0.

85
co

m
m

. e
rr

or
s '

cl
ea

0.
48

ov
er

al
l

0.
86

co
m

m
. e

rr
or

s '
cl

ea
n'

0.
48

kh
at

0.
39

96
.0

0
96

38
.0

0
kh

at
0.

49
90

.0
0

79
22

.0
0

kh
at

0.
55

80
.0

0
59

82
.0

0

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
24

3
27

cl
ea

n
15

16
31

cl
ea

n
11

15
26

no
t c

le
an

25
77

10
2

no
t c

le
an

2
73

75
no

t c
le

3
64

67
to

ta
l

49
80

12
9

to
ta

l
17

89
10

6
to

ta
l

14
79

93
ov

er
al

l a
cc

0.
78

co
m

m
. e

rr
or

s '
cl

ea
n'

0.
11

ov
er

al
l a

cc
0.

83
co

m
m

. e
rr

or
s '

cl
ea

0.
52

ov
er

al
l

0.
81

co
m

m
. e

rr
or

s '
cl

ea
n'

0.
58

kh
at

0.
50

10
1.

00
94

83
.0

0
kh

at
0.

53
88

.0
0

72
02

.0
0

kh
at

0.
44

75
.0

0
56

57
.0

0

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
no

t c
le

an
to

ta
l

cl
ea

n
41

6
47

cl
ea

n
16

19
35

cl
ea

n
12

19
31

no
t c

le
an

8
74

82
no

t c
le

an
1

70
71

no
t c

le
2

60
62

to
ta

l
49

80
12

9
to

ta
l

17
89

10
6

to
ta

l
14

79
93

ov
er

al
l a

cc
0.

89
co

m
m

. e
rr

or
s '

cl
ea

n'
0.

13
ov

er
al

l a
cc

0.
81

co
m

m
. e

rr
or

s '
cl

ea
0.

54
ov

er
al

l
0.

77
co

m
m

. e
rr

or
s '

cl
ea

n'
0.

61
kh

at
0.

77
11

5.
00

88
63

.0
0

kh
at

0.
51

86
.0

0
69

14
.0

0
kh

at
0.

41
72

.0
0

53
32

.0
0

pr
ed

ic
�o

n

[4
0c

m
, 2

 d
eg

re
es

] c
el

ls
10

0%
 in

sid
e

ro
of

tr
ut

h

pr
ed

ic
�o

n

[4
0c

m
, 5

 d
eg

re
es

] c
el

ls
10

0%
 in

sid
e

ro
of

tr
ut

h

[9
0-

10
0[

%
 in

sid
e

ro
of

[2
0c

m
, 5

 d
eg

re
es

] c
el

ls
10

0%
 in

sid
e

ro
of

tr
ut

h

pr
ed

ic
�o

n

[9
0-

10
0[

%
 in

sid
e

ro
of

[9
0-

10
0[

%
 in

sid
e

ro
of

tr
ut

h

[2
0c

m
, 2

 d
eg

re
es

] c
el

ls
10

0%
 in

sid
e

ro
of

tr
ut

h
[7

0-
90

[%
 in

sid
e

ro
of

[7
0-

90
[%

 in
sid

e
ro

of
tr

ut
h

[7
0-

90
[%

 in
sid

e
ro

of

tr
ut

h

pr
ed

ic
�o

n
pr

ed
ic
�o

n

[7
0-

90
[%

 in
sid

e
ro

of

pr
ed

ic
�o

n

tr
ut

h

[9
0-

10
0[

%
 in

sid
e

ro
of

pr
ed

ic
�o

n

tr
ut

h

pr
ed

ic
�o

n

pr
ed

ic
�o

n

Figure 8.6: Error matrices resulting from the level C validation

110 annexes

8.6 results of level d validation (rational)

truth
clean not clean total

predic�on clean 30 11 41
not clean 50 237 287
total 80 248 328
overall acc 0.81 comm. errors 'clean' 0.27
khat 0.40 267.00 74456.00

clean not clean total
clean 41 23 64
not clean 39 225 264
total 80 248 328
overall acc 0.81 comm. errors 'clean' 0.36
khat 0.45 266.00 70592.00

clean not clean total
clean 50 34 84
not clean 30 214 244
total 80 248 328
overall acc 0.80 comm. errors 'clean' 0.40
khat 0.48 264.00 67232.00

clean not clean total
clean 69 44 113
not clean 11 204 215
total 80 248 328
overall acc 0.83 comm. errors 'clean' 0.39
khat 0.60 273.00 62360.00

[20cm, 5 degrees] cells[70-100]% inside roof
truth

predic�on

predic�on

predic�on

[20cm, 2 degrees] cells [70-100]% inside roof

[40cm, 5 degrees] cells[70-100]% inside roof
truth

[40cm, 2 degrees] cells[70-100]% inside roof
truth

Figure 8.7: Error matrices resulting from the level D validation (nominal).

8.7 results of level d validation (nominal) 111

8.7 results of level d validation (nominal)

100% [90-100[% [70-90[% <70% total
100% 30 9 2 0 41

[90-100[% 25 48 11 0 84
[70-90[% 9 62 54 3 128
<70% 16 5 32 22 75
total 80 124 99 25 328
overall acc 0.47 khat 0.28 comm. error 'clean' 0.27

100% [90-100[% [70-90[% <70% total

100% 41 18 5 0 64
[90-100[% 21 66 23 0 110
[70-90[% 11 39 62 5 117
<70% 7 1 9 20 37
total 80 124 99 25 328
overall acc 0.58 khat 0.40 comm. error 'clean' 0.36

100% [90-100[% [70-90[% <70% total
100% 50 28 5 1 84

[90-100[% 23 42 8 0 73

[70-90[% 7 47 53 0 107

<70% 0 7 33 24 64
total 80 124 99 25 328
overall acc 0.52 khat 0.34 comm. error 'clean' 0.40

100% [90-100[% [70-90[% <70% total
100% 69 36 7 1 113

[90-100[% 10 57 22 0 89
[70-90[% 1 31 64 8 104
<70% 0 0 6 16 22
total 80 124 99 25 328
overall acc 0.63 khat 0.48 comm. error 'clean' 0.39

truth

truth

[40cm, 5 degrees] accuracy of devia�on cleanliness in %

[40cm, 2 degrees] accuracy of devia�on cleanliness in %

[20cm, 5 degrees] accuracy of devia�on cleanliness in %

[20cm, 2 degrees] accuracy of devia�on cleanliness in %

truth

truth

Figure 8.8: Error matrices resulting from the level D validation (rational).

colophon
This document was typeset using LATEX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

	1 Introduction
	1.1 Societal relevance and context: urban mining for a more sustainable world
	1.2 Scientific relevance: existing approaches to urban mining and limitations
	1.2.1 Data disaggregation
	1.2.2 Usage of remotely sensed imagery

	1.3 Addressing the limitation and problem statement
	1.4 Approach to address the problem and research questions
	1.5 Background knowledge
	1.5.1 3D city models, the CityGML format and richness of detail
	1.5.2 LiDAR and remotely sensed point clouds

	1.6 Objective and Scope
	1.7 Reading Guide

	2 Methodology
	2.1 Outline of the research and respective criteria used
	2.2 Reporting structure

	3 Deviation Identification
	3.1 Background: 3D surface reconstruction and cityGML semantics
	3.1.1 3D surface reconstruction
	3.1.2 Semantics of the CityGML format

	3.2 Selection of input datasets
	3.2.1 Point cloud files
	3.2.2 CityGML file

	3.3 Choice of the conceptual framework: attribute-based and seeded region growing
	3.3.1 Exploratory study
	3.3.2 Definition of 'deviations' and choice of the approach

	3.4 Implementation: identification of seeds and region growing
	3.4.1 Retrieval of input data using 3DCityDB and laspy
	3.4.2 Calculation of the vertical distance for seed selection
	3.4.3 Region growing
	3.4.4 Variables

	3.5 Chapter summary and link to assumptions made

	4 From points to surfaces: extraction of geometries
	4.1 Background: definition of shapes by point sets
	4.1.1 Concave hulls and alpha-shapes
	4.1.2 Boundary extraction: labeling and minimum spanning tree
	4.1.3 Voronoi diagrams

	4.2 Choice of definition and conceptual framework
	4.2.1 Pros and cons with regard to the needs
	4.2.2 Exploratory study: boundary labeling and minimum spanning tree
	4.2.3 Exploration study: Voronoi diagrams
	4.2.4 Choice of the theoretical framework: Voronoi diagrams

	4.3 Implementation: extraction of the Voronoi diagram
	4.3.1 Case of regular, closed cells
	4.3.2 Case of infinite edges
	4.3.3 Towards a semantic integration with CityGML
	4.3.4 Additional attributes

	4.4 Chapter summary and link to assumptions made

	5 Data fusion with hyperspectral imagery
	5.1 Background: instrumentation used in the airborne prism experiment
	5.2 Conceptual framework: from pixel imagery to mesh
	5.3 Implementation: orthocorrected generation of mesh cells
	5.4 Chapter summary and link to assumptions made

	6 Results and validation
	6.1 Theoretical framework
	6.1.1 Validity
	6.1.2 Reliability

	6.2 Results
	6.2.1 Nominal validation at building level (type A)
	6.2.2 Nominal validation at cell level (type B)
	6.2.3 Nominal validation: considering cells lying only partially inside a roof surface (type C)
	6.2.4 Rational validation: extending type C by introducing fuzziness (type D)

	6.3 Analysis
	6.4 Further qualitative observations
	6.5 Chapter summary and link to assumptions made

	7 Conclusions, lessons learned and outlook
	7.1 Answers to the research questions
	7.1.1 Requirements with regard to data inputs
	7.1.2 Suitability for identification of clean pixels
	7.1.3 Main question: Enrichment of a CityGML LOD2 with regard to material classification

	7.2 Recommendations to data suppliers
	7.2.1 LiDAR acquisition and processing
	7.2.2 CityGML structure
	7.2.3 CityGML dataset of Rotterdam

	7.3 Future Research
	7.3.1 Automated quality checks
	7.3.2 More accurate estimation of shadow and solar potential
	7.3.3 Towards LOD3?

	8 Annexes
	8.1 UML diagram of CityGML building class.
	8.2 UML diagrams of the CityGML geometry models.
	8.3 Results of level A validation
	8.4 Results of level B validation
	8.5 Results of level C validation
	8.6 Results of level D validation (rational)
	8.7 Results of level D validation (nominal)

