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NOMENCLATURE

Roman letters

]

heat capacity (J/kg K)

O

increment of time (s)

Q.
o

view factor

number of grid points

length (m)

number of iterations

heat source density W/m3

radial coordinate (m)

distance of the inner surface of a cylindrical shell to the axis (m)
radial coordinate of outer surface (m)

time (s)

temperature (K)

- 3 w3y 0 Z X T
Ve

- temperature of the surrounding medium (K)

Greek letters

a heat diffusivity (= A/p Cp)
convective heat transfer coefficient (W/m2 K)
3 radiative heat transfer coefficient (= F'egas'ewall'O)
€ emission coefficient
A heat conduction coefficient (W/m.K)
g "eigenvalue" (see section 3.4)
0 mass density (kg/m3)
g Boltzmann's constant
Acronyms
DUT Delft University of Technology
Fo Fourier number, = at/L2
PMMA Polymethylmethacrylate
PE Polyethylene

PS Polystyrene



RATE Regression rate (m/s)
TEMPROFIL Name of computer source, subject of this paper
TIMESTEP timestep, = N.dt (see section 3.1)




1 INTRODUCTION

1.1 Importance of transient temperature calculations for solid fuel combustors

Figure 1 is a schematic of a solid fuel combustion chamber. Air enters through
a diaphragm, and directly downstream of the inlet a recirculation zone is
established. The hollow cylindrical fuel pyrolyses and fuel gases mix and
react with the oxidizer. Combustion products with air pass through an aft

mixing chamber and are exhausted through a nozzle.
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Figure 1

Schematic of a solid fuel combustion chamber.

In this report, a programme is presented to compute temperatures in a hollow,
solid cylinder under a wide variety of boundary conditions. The inner boundary
is not fixed in place in order to be able to simulate regression due to the

pyrolising.

It is well known, that temperature has a rather severe influence on the speed
of sound in a material. In the case of polymers it has been found that a
strong coupling exists between the speed of sound and temperature (see North
et al., ref. 6, and ref. 5).

Temperature profiles inside a fuel grain of a combustion chamber are charac-
terized by a high surface temperature and steep gradients near the inner
surface. If the travel time of a sound pulse in such a material is calculated,
the temperature profile therefore has to be accurately known. Ultrasonic pulse

echo techniques have been used for assessing the instantaneous regression rate



of fuel grains (ref. U4). One reason to entamate this analysis was to enhance

accuracy of such pulse echo techniques.
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Figure 2

dependancy of the heat capacity of PMMA on temperature.

Heat diffusion inside a solid mainly controlled by the heat diffusivity,

a = A/p Cp. For many polymers, the heat conduction coefficient, A, and the
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dependancy of the heat capacity of PE on temperature.




mass density, p, are only weakly dependant on temperature between 273 and 600
K. The heat capacity, Cp, on the other hand, increases dramatically above a
critical value (see figure 2 through to 4).

This value is about 500 K fér polymethylmethacrylate (PMMA), and about 400 K
for polyethylene (PE) and polystyrene (PS). All three substances have been

used for combustion experiments (ref. 4).
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Figure 4
dependancy of the heat capacity of PS on temperature.

Figures 2 through to 4 make it clear that for accurate temperature prediction
and accurate regression rate measurements, the temperature dependancy of the

heat capacity has to be accounted for in the computations.

This analysis also enables effective calculation of heat transfer into the
solid from the flame and the gases in a combustion chamber. Heat release from
combustion gases is partly used for evaporation of the solid fuel, and partly
for heating up the solid. A calculation method of this latter part is present-
ly discussed, and can be coupled to computational models that calculate flow

and combustion inside a hollow fuel grain.



1.2 Cooperation and support of the SFCC project
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ty of Aerospace Engineering (DUT), and the Prins Maurits Laboratory (TNO).

The present investigation was carried out at the Faculty of Aerospace Enginee-
ring during the stay of R. Ramaprabhu, on sabbatical leave from Anna
University, Madras, India. J. Mies is a graduate student of the Faculty of

Aerospace Engineering, where C. van der Geld is senior faculty member.




1.3 Aims and scope of the present investigation

Trahsient heat diffusion inside a cylindrical shell is computed with the

assumptions of rotatoric symmetry and axial symmetry. Boundary conditions are:

A.

Inner shell surface:

_5_

either the temperature, T, has to be known at any instant, or

@I’ has to be known at any time, or
ar
the convective heat transfer coefficient, 8, and the ambient tem-

the temperature gradient,

perature have to be known, or
the effective radiative heat transfier coefficient, §, and the radia-
tion temperature have to be known, or

a combination of the last two options prevails,

In addition the inner shell surface may regress, implying that the radial

location of it gets larger in the course of time. The instantaneous

regression rate has to be known.

OQuter shell surface:

Either ~1~, -2- or =3- (see A); no regression.

Inside the shell:

The dependancies on temperature of both heat capacity and heat conduction

coefficient have to be known.



2 MODELLING EQUATIONS AND NUMERICAL APPROACH

2.1 Governing equation in cylindrical coordinates

The radial coordinate is chosen in a coordinate system fixed to the fuel grain
(see figure 5). Note that no moving coordinate system satisfies the condition
of unchanging boundaries. Hence the transformation method that Carlslaw and
Jaeger (ref. 1) used to analyse an evaporating two-dimensional slab is inap-

plicable.
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Figure 5

Cylindrical grain with coordinate definition.
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The general conduction equation:

B 9 pC_T
(2.1) TAVT+q = P

ot ’

with q denoting heat source density per m3 per second, t time and A the heat

conduction coefficient (W/mK), reduces to

9 pC_T
P P

d
(2.2) 5 3t

if rotatoric symmetry is assumed.
If physical properties are independant of temperature, heat sources are absent

and the heat diffusivity, a, is defined by

2. =
(2.3) a = A/p Cp

then (2.2) yields

3T

(2.4) 5t

=m(——-—-+

3

S p—=
QJ'QJ
=]

).

3°T
2
r

The above equations are valid in the solid, i.e. for Ri <r< Rf.



"

2.2 Boundary conditions

Usually four types of thermal boundary conditions are employed:
-A- Convective heat transfer, given by Newton's law of cooling:

(2.5) 9% = B (Tmedium - Tsurface)
in which B denotes the heat transfer coefficient (W/m2K) and qr the heat
flux (W/mz);

-B- Fixed surface temperature;
-C- Fixed temperature gradient at the surface;

-D- Radiant heat transfer, given by

(! )
medium surface

(2.6) 9% = fsurt Cmedium o
in which ¢ denotes the Boltzmann constant and the ¢'s the emissivities

corrected by view factors.

Options A and D can be combined. Note that for very small or very large dif-

ferences (T ) -T ), @ can be written as
medium surface r

medium surface)

(2.7) 9, = Y(T) (T - T
Options A, B and D were implemented in the programme "TEMPROFIL".

A different boundary condition is the location of the inner surface. Since the
cylindrical grain pyrolyzes at the inside, the inner surface regresses and its
location is a function of time. It can be calculated from instantaneous values
of the regression rate, RATE.

In this report, RATE is assumed to be known as a function of time, t. The

cylindrical wall is discretized in radial direction into a fixed grid system.
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From RATE (to) the timestep is calculated that the grain surface needs to

travel to the next grid point. The next time is then given by tO + timestep.
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2.3 Choice of discretization method

Equation (2,2) has to be solved with the boundary conditions discussed in
section 2.2. Since eq. (2.2) is strictly nonlinear, the solution was found

numerically.

Usually three types of numerical schemes are employed:

-1- explicit schemes, obtained by forward differences from the governing
equation(s);

-2- implicit schemes, obtained by backward differences from the governing
equation(s). Forward and backward refer to time.

-3- Crank-Nicolson schemes, essentially a combination of the former schemes.

Implicit schemes are absolutely stable but require much computer core storage.
Explicit schemes can only be used with adequate stability criterions and
usually require many iterations.

To gain experience and to have direct control of the accuracy of the solutions

an explicit scheme was chosen for the first version of "TEMPROFIL".

The discretizing of eq. (2.2) for the inner solid with q = 0 yields

(2.8) b At gt _AdE (r° ot a gt L)+
i i 2 i+ i i-1
p C_dr
p
A dt t t
2 p Cp r, dr (Ti e 0T - 1)

where it is understood that A, p and Cp may depend on temperature. Index i

refers to grid point i, and t to the previous time.

If convective heat transfer according to eq. (2.5) is assumed at boundary

location, f, than the discretizing of eq. (2.2) with q = 0 yields

£ +dt ot .28 dt Lty L 2Adt ot Lt
(2.9) Te =Tt o (Tneqium = Tr) 5 (Tp .y = T)+
p p C_ dr
P
A dt £ £
5C r. ar (1o 4 - T¢)
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For the inner boundary of the tube wall, indexed by i, a similar equation
holds. The latter equation is obtained from eq. (2.9) by changing the sign of
the last term, changing (f - 1) into i + 1 and £ into i.

+ dt t

Boundary condition -B- (see section 2.2) is the trivial equation TE = Ti'

The boundary condition described by eq. (2.6) adds to the RHS of eq. (2.9) the

term
2 § dt 4 y
(2.10) ) CD dr ( medium f)

in which 6 denotes the products €surf €medium g

A criterion for stability of solutions of the above finite difference equa-

tions is (see Nogotov, 1978)
2
dr
(2.11) dt £ T g
in which o denotes thermal diffusivity.
These equations were used in the programme to be described in the next chap-

ter.
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3 PASCAL COMPUTER PROGRAMME

3.1 Description of the programme

870497

INITIALISATION
K = number of grid points

CALCULATE:
- TIMESTEP FROM REGRESSION RATE
- N FROM TIMESTEP AND CRITERION

CALCULATE GRID MATRIX
i=0

MULTIPLY TEMPERATURES
\ \ 8Y GRID MATRIX

i=d+1

PRINT
RESULTS

Figure 6

Flowchart of the programme "TEMPROFIL"
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Based on equations (2.8) through (2.11), a computer programme named TEMPROFIL,
was developed and run on the IBM 370/155 mainframe computer of Delft Universi-

ty of Technology. A flowchart is given in figure 6.

After initialisation, the first timestep, TIMESTEP, is calculated as the time
required for the grain inner surface to reach the location corresponding to
the second grid point. TIMESTEP depends on the momentary regression rate. The
number of iterations, N, is then calculated with the aid of criterion (2.11).
Note that N.dt = TIMESTEP. Next, the new temperatures TE vdr for all grid
points i, are N times calculated, see eq. (2.8) and (2.9). For this purpose a
matrix procedure is used. Subsequently, results are stored whereafter the next
value of TIMESTEP is calculated; and so on and so forth. Finally results are
printed or plotted.

Any arbitrary function of temperature can be used for Cp and A, while regres-

sion rate can be a function of time.

3.2 Input and output variables

Input parameters are adjusted directly in the source, before compilation. No
utility for interactive input of parameters was used.

Input parameters are:

initial inner radius, Ri
- outer radius, Rf
- regression rate (as a function of time)

- cp and A (as a function of temperature)

- P

- K, the number of grid points (K ~ 400)

- choice of boundary conditions, via options (see also section 2.2)
- ambient temperatures if necessary

- Viewfactor, emissivity and absorption coefficient if necessary.

Output variables are:
- temperature distribution before each adjustment of the value of TIMESTEP
- elapsed time

- momentary position of grain inner surface
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-~ configuration and input parameters (only once),

Ri’ and Rf.

o

.g.

number of grid points,
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3.3 Accuracy of the computations

The accuracy of the calculations with TEMPROFIL is mainly determined by the
value of k, the number of grid points. Note that the timestep is limited Dby
the condition (2.11). The dependance of temperature calculations on the value

of k was investigated for two conditions:

|
=

|
20

[}

3 mm ;s R_ = 18 mm ; RATE

¢ 0,15 mm/s

]
s
]
o]
i

20 mm ; R, = 35 mm ; RATE

£ 0,15 mm/s

Note that the effect of curvature of the wall is more pronounced for smaller

vlues of Ri'

Figure 7 shows computational results for case A, and figure 8 for case 8.
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Figure 7
Convergence and accuracy study for Ri = 3 mm.
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The temperatures are seen to gradually approach a limiting value if the value
of k is increased. A typical value of Kk above which hardly any temperature
differences are calculated is 201. The dependance of k on the thickness (R, -

£
Ri) and the thermal diffusivity, a, is represented by

(Rf - Ri)

Y a

(3.1) K a

This can be deduced from the observartion, that thermal diffusion in a slab

with a thickness dr is controlled by the Fourier number Fo =

t2. To pre-

(dr)
serve the value of Fo for each "slab™ (actually a shell) with thickness dr in
the cylindrical grain, the value of K has to be adjusted according to eq.

(3.1) if (Rf - Ri) or a is changed.

8704151
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Figure 8
Convergence and accuracy study for Ri = 20 mm

A comparison of figures 7 and 8 confirms that eq. (3.1) is legitimate and

useful an equation. It also shows that the larger the wall curvature, the
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lower the temperatures inside the solid. This stands to reason: heat conduc-
tion in circumpheral direction hampers heat transfer in radial direction, and

this effect is more pronounced if curvature is high. Figure 8 will be further

discussed in section 3.4,
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3.4 Validation with analytical results

Analytical solutions for the cooling or heating of a cylindrical grain can be
found if regression is absent and material properties are independant of
temperature. Usually solutions are represented as a sum over i of terms, each

individual term of the form

2
~ Fo ui
(3.2) f(ui) e

where Fo denotes a Fourier number and the values of ui correspond to solutions
of an implicit equation involving boundary conditions (via Biot numbers). The
temperature profile at time zero determines constants in the functional ex-
pression for f. The value of s is of the order i.m, whence the sum rapidly
converges.

Note that analytical solutions predict temperatures at any location and at any
time.

Analytical solutions for heat transfer under the above mentioned restrictions
were found and implemented by one of the authors (ref. 2). Although sources
are not public domain property, they were used to validate computational
results of TEMPROFIL.

Two cases were investigated for the purpose of validation:

-1- convective heat transfer to the inner boundary (see eq. 2.5) with 8 = 100
W/mzK, uniform initial temperature of 303 K, ambient temperatures 353 K
(inside the tube) and 323 K (outside the cylinder); convective heat
transfer to outer surface with 8 = 10 W/mzK;

Ri 0,200 m; Rf = 0,215 m; p = 885 kg/m3; A= 0,154 W/mK;
Cp 1740 J/kg K.

=2- uniform initial temperature of 273 K; inner surface temperature was

raised to 872,6 K at time zero and kept the same value at subsequent
times; no heat transfer to the outer boundary.

Ri, Rf’
p = 1190 kg/m

A and C_: see case -1-;
3 p
K

As already mentioned, regression is zero and material properties are tempera-

ture independant.
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Figure 9 shows the results for case -1-.
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Tm=353K Tm= 323K
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Figure 9

Validation of computational results for convective heat transfer.

It is clear that for k larger than zero the results with TEMPROFIL are in
perfect agreement with the analytical results, of which only selected data are
represented in the figure. The same conclusion is reached upon examining the

results for case -2- (see figure 10),

If the value of Ri is large, the cylindrical wall can be approximated by an
infinite slab of the same thickness. Only for slabs a moving coordinate system
is allowed. If the regression rate, RATE, of a slab is constant, the tempera-
ture profile at any time, t, can be calculated in a coordinate system fixed to
the regressing surface (see Carlslaw and Jaeger, ref. 1). With x = O0fat the

surface, the temperature profile is given by

(3.3) T=T ++

o F2 (T

surface To) £(x,t)
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£(x,t) = erfe (‘X‘RATE.t) + (-X + RATE.tJ

RATE.X
— p (-—-—-—-—-—_a ) erfe — =
2/ at 2V at

Here t denotes time, TO the initially uniform temperature, and

2

(3.4)  erfe (y) =1 - =— | exp (-t%) dt
v/

O v

=

If these formulae are applied to the conditions of figure 8, a perfect agree-

ment is observed with the results for k = 401.
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Figure 10

Validation of computational results with constant surface temperature.
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4 TRANSIENT REGRESSION WITH LARGE TEMPERATURE GRADIENTS

Computational results of the programme TEMPROFIL for constant regression and
temperature independant material properties were discussed in sections 3.3 and
3.4, Large temperature gradients in a cylindrical fuel grain are now accounted
for by allowing for temperature dependance of material properties. Also a case

of transient regression is studied in this chapter.

4.1 Time varying regression

Temperature profiles were computed for the case that regression rate, RATE, is

the following function of time:

RATE = A + B cos wt

8704154

N/
:é‘ 500 Regression rate 015+0,05 cos (1.t) mm/s
T 400

300 + \

200F Rj=20,0mm; R§=35mm
p=88505kg/m3; A=0154 W/m.K

100 Cp=1740 J/kg.K

Inner surface temperature raised to 600K at time= 0s

020 30 40 50 6 70 8 90
— Grid point index

Figure 11
Temperature profiles with oscillatory regression rate.
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with A = 0,15 mm/s, B = 0,05 mm/s, and w = 27 v, v being 1/2 Hz. Remaining
parameters were kept constant: p = 885,05 kg/m3; A= 0,154 W/mK; Cp = 1740

J/kg.K; Ri = 20 mm; R, = 35 mm; ablation (inner surface) temperature 600 K; no

heat transfer to the guter surface.

Figure 11 shows the results of various timesteps.

The effect of the superposition of an oscillatory regression component is
oscillatory heat diffusion, as reflected by the temperature profiles of figure

11.
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4.2 Temperature dependance of physical properties

For a constant regression rate, r = 0,15 mm/s, temperature profiles were

computed for the following two cases:
-A- heat conduction coefficient, A, given by
A= 0,154 (1 + (T-273)/327) W/mK
(T in K)
while keeping Cp constant;
-B- heat capacity, Cp, given by
Cp = 1740 (1 + (T - 273)/327) J/kg K

(T in K)

while keeping A constant.

Figure 12 shows the results for case -A- and figure 13 for case -B-.

8704152
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500 |
T-273
—gﬁ—>W/mK
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—» Temperature, T (K)
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8
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Inner surface temperature raised to 600 K at time=0s
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Figure 12
Temperature profiles for a linear dependancy of the heat conduction

coefficient on temperature.



BEGIN
WRITELN('AT THE OUTER SURFACE:');WRITELN;
WRITE( 'BETA :',BETAR:11:6,' Watts/');
WRITELN('Squared meters/Kelvin.'):;
WRITELN( 'TEMPERATURE ', UMR:11:6,"' Kelvin.'):
END;
IF OPTAL THEN
BEGIN
WRITELN('AT THE INNER SURFACE:');WRITELN;
WRITE('BETA :',BETAL:11:6,"' Watts/');
WRITELN( 'Sguared meters/Kelvin.');
WRITELN( ' TEMPERATURE :',UML:11:6,"' Kelvin.'};
END;
IF OPTB THEN
BEGIN
WRITELN;
WRITELN('A CONSTANT TEMPERATURE'):
WRITELN('AT THE INNER BOUNDARY OF :',TABL:11:6,' Kelvin.');
END;
IF OPTD THEN
BEGIN
WRITELN('AT THE INNER SURFACE:');WRITELN;
WRITE( 'DELTA :',DELTAL:11:9,' Watts/'):
WRITELN('Squared meters/Squared Kelvin/Squared Kelvin.');
WRITE('SIGMA :',SIGMA:11:9,' Watts/');
WRITELN('Squared meters/Squared Kelvin/Squared Kelvin.'):;
WRITELN('EMISSION COEFFICIENT WALL :',EPSW:11:6);
WRITELN( 'EMISSION COEFFICIENT MEDIUM :' ,EPSM:11:6):
WRITELN('VIEWFAKTOR ' ,Fill:6);
WRITELN( 'TEMPERATURE :',UML:11:6,' Kelvin.'):
END;
END;
$PAGE;

WRITE('CP AT 273 DEGREES :',CP(273):11:6);
WRITELN(' Joules/Kilogram/Kelvin.');
WRITE( 'MASS DENSITY

yRHO:11:6,"' Kilogrammes/');

WRITELN('Squared meters.');WRITELN;

WRITELN( 'DISCRETISATION PARAMETERS');

WRITELN( ' ~~——=~=——==——————————————— ")

WRITELN( 'NUMBER OF GRID POINTS ', Ki5);
WRITELN('DISTANCE BETWEEN TWO GRID');

WRITELN( 'GRID POINTS :',DX:11:6,' Meters.');
WRITELN('INITIAL NUMBER OF ITERATIONS :',NSLAGEN:5);

DTXNS := DT*NSLAGEN;
WRITELN('INITIAL TIMESTEP
IF REGR THEN

BEGIN

(DTXNS:11:6,' Seconds.');

WRITE( 'REGRESSION RATE AT TIME = 0 :',RATE(0):11:6,' Meters/');

WRITELN( 'Second.'):
END;
WRITELN;
WRITELN( 'BOUNDARY CONDITIONS');WRITELN('-~————=———————————— ')
IF OPTAR THEN

(*********************************************************************)

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

PROCEDURE CALCMATRIX

This procedure fills the band-matrix 'A' with the
coefficients for the present time-interval 'DT'.

LIST OF VARIABLES.

R(K) Radius at each grid point. Meters
A(K,3) Grid matrix.

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
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(* DT Time interval. Seconds

(* RHO Mass density of the fuel. Kilogrammes/
(* Squared meters
(* DX Distance between two neighbouring

(* grid points. Meters

(* BETAR The heat transfer coefficient at the

(* right boundary. Watts/Squared
(* meters/Kelvin
(* BETAL The heat transfer coefficient at the

(* left boundary. Watts/Squared
(* meters/Kelvin
(* B Indicates the grid point where the

(* inner surface is located.

(* NSLAGEN The number of times that the vector U

(* has to be multiplied by the matrix A

(* multiplied by the matrix A to get the

(* temperature distribution at the

(* moment that the inner boundary has

(* moved to the next grid point.

(* OPT. Options for different boundary

(* conditions.

(*

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

*)

(*********************************************************************)

PROCEDURE CALCMATRIX (VAR R

VAR A

VAR DT,RHO,DX,BETAR,BETAL
VAR B,NSLAGEN :
VAR OPTAL,QOPTAR,OPTB,0PTD :

VAR I : INTEGER:

C1,C2,C3: REAL;

BEGIN

A(.B,2.) := -(2/RHO/DX/DX+1/RHO/DX/R(.B.))*DT;
A(.B,3.) := (2/RHO/DX/DX+1/RHO/DX/R(.B.))*DT;

IF OPTD THEN

BEGIN

A(.B,1.) = 0;
END;
IF OPTAL THEN

BEGIN
A(.B,1.) := 2*BETAL/RHO/DX*DT;
END;
IF OPTB THEN
BEGIN
A(.B,1.) = 0;
A(.B,2.) := 0;
A(.B,3.) = 0;
END;
Cc2 := =-2*DT/RHO/DX/DX;

FOR I := B+l TO K-1 DO

BEGIN
Cl := DT/RHO*(1~-DX/(2*R(.1.)))/DX/DX;
C3 := DT/RHO*(}+DX/(2*R(.I.)))/DX/DX;
A(.I,1.) :=C1;
A(.I,2.) := C2;
A(.I,3.) := C3;

: VECTOR;
: MATRIX;
: REAL;

INTEGER;
BOOLEAN) ;

END;

IF OPTAR THEN

BEGIN
A(.K,1.) := (2/RHO/DX/DX-1/REO/DX/R(.K.))*DT;
A(.K,2.) := -(2/RHO/DX/DX-1/RHO/DX/R(.K.))*DT;
A(.K,3.) := 2*BETAR/RHO/DX*DT;

END; .

END;

$PAGE;



27

A comparison of figure 12 with the results given in figure 8 shows that more
heat is absorbed by the solid material if a more realistic temperature depend-

ance of A is accounted for.
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Figure 13

Temperature profiles for a linear dependance of the heat capacity on
temperature.

A different conclusion is reached upon inspecting figure 13. Here the tempera-
ture, T, is plotted for time t = 20 s, and the comparison with the constant
Cp—case shows smaller temperatures. Note that the product Cp.T is a measure

for the heat absorbed by a substance, and that the value of
R

f
J dr.2w.r.Cp.T is much less different, about 2% after 20 s, than the tempera-

R.
i

tures themselves.

The above results are in agreement with common experience, although no ex-

perimental data were found to compare with.




5 SCOPE FOR FUTURE WORK

The programme "TEMPROFIL"™ may be extended by

allowing the mass density to be temperature dependant;
R

- integrating jfp Cp T 27r dr in order to evaluate the total heat absorbed
(only a simple integration routine was applied for testing, see chapter y,
much more accurate schemes are available);

- applying an implicit scheme in order to get rid of stability criteria and
maybe to increase speed of computation;

- allowing heat diffusion to be three-dimensional. This requires an adaptation

of the main equations, making the "matrix"™ in the programme essentially 3-D.

Furthermore it is possible to calculate the local speed of sound inside the
solid, and to incorporate the programme in the analyzing procedure of an

ultrasonic regression rate analyzer (see chapter 1 and figure 14).
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Figure 14
Flow chart of regression rate analysis.



However, the major uncertainty of this technique stems from the fact, that the
boundary condition at the grain inner surface is unknown. This problem should
be solved in order to really enhance accuracy of the regression analyzer. A
not constant regression rate is accounted for by TEMPROFIL, but the assumption

of a constant regression is not as important as the thermal boundary condi-
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Specimen of ultrasonic regression rate measurement

The programme "TEMPROFIL"™ can also be used to calculate heat diffusion into a
s01id in combination with programmes that calculate flow and combustion inside
a hollow fuel grain (see chapter 1). The great many of inside boundary condi-

tions that TEMPROFIL can cope with makes the programme flexible enough for

this application.
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6 CONCLUSIONS

A PASCAL programme, named TEMPROFIL, was developed for the computation of
transient temperature behaviour of cylindrical bodies under a variety of
boundary conditions, amongst which transient regression of the inner surface,
and temperature dependance of material properties.

Computational results were validated with analytical results, and the value of

the number of grid points was related to the accuracy of the calculations.

Some practical cases of transient regression with large temperature gradients
were investigated. If the heat flux due to convection or radiation to the
inner surface is known at any time, the heat diffusion into the pyrolyzing
body can be calculated. This allows for a coupling of TEMPROFIL with computa-
tional models that calculate flow and combustion inside a hollow cylindrical
grain. Since temperature profiles are also calculated, the programme can be
used to improve upon the results of ultrasonic regression rate analyzers. They
basically assess travel times of sound pulses, and the speed of sound of

commonly used materials is very dependant on temperature.
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*********************************************************************)

(

(* « *)
(* PROGRAMME: "TEMPROFIL" * )
(* *)
(* This Pascal programme calculates the temperature distribution *)
(* in a regressing solid fuel of a hollow, cylindrical *)
(* combustion chamber. The programme inputs are: *)
(* radii of a cylindrical fuel grain, *)
(* regression rate at every moment, *)
(* Cp, rho and lambda versus temperature (e.g. polynomial *)
{(* functions), *)
(* number of grid points, *)
(* ablation and ambient temperatures. *)
(* *)
(* VERSION: 1 PHYSICAL PROPERTIES DEPENDANT ON TEMPERATURE. *)
(* REGRESSION RATE DEPENDANT OF TIME. *)
(* *)
(* LAST UPDATE: APRIL 1987 *)
(* *)

(*********************************************************************)

(* This program allows for different types of boundary conditions. *)

(* For each option some changes in procedure INITIALISE are *)
(* necessary. *)
(* Some lines should be put outside comment blocks and others inside *)
(* a comment block. ) *)
(* *)
(* In addition several values may need to be changed (See list of * )
(* variables below): *)
(* *)
(* K RHO *)
(* RI UML *)
(* RP UMR *)
(* *)

(*********************************************************************)

PROGRAM TEMPROFIL(INPUT,OUTPUT);
CONST K=101;
TYPE VECTOR

ARRAY (.l1..K.) OF REAL;

MATRIX = ARRAY (.l..K,1..3.) OF REAL;

$PAGE;

(*********************************************************************)
(* *)
(* FUNCTION CP *)
(* *)
(* CP as a function of temperature. ' k)
(* *)
(* CP in Joules/Kilogram/Kelvin. * )
(* ¥ 1in Kelvin. * )
(* *)

(*********************************************************************)

FUNCTION CP(Y : REAL) : REAL:

BEGIN
Cp := 1740;

END;
(*********************************************************************)
(* *)
(* FUNCTION LAMBDA *)
(* *)
(* LAMBDA as a function of temperature. *)
(* *)
(* LAMBDA in Watts/Meters/Kelvin. *)
(* Y in Kelvin. *)
(* *)

(AR R AR R AR AR R AR R KRR KK IR AR IR R IR RERRRIIRK AR IR KK R IR KK )
FUNCTION LAMBDA(Y : REAL) : REAL;
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BEGIN
LAMBDA := 0.154;

END:
(*********************************************************************)
(* . *)
(* FUNCTION REGRESSION RATE *)
(* *)
(* RATE as a function of time. / *)
(* *)
(* RATE in Meters/Second. *)
(* Y in Seconds. *)
(* *)

(Fr Ak R R Ih kR R R R AR I AR AR A I RR I A A AR ARR IR RS h kR R AR R IR T IR XK )
FUNCTION RATE(Y : REAL) : REAL;

BEGIN
RATE := 0.00015;

END;
(*********************************************************************)
(* *)
(* FUNCTION TINIT *)
(* *)
(* TINIT as a fuction of the radial coordinate. *)
(* *)
(* TINIT in Kelvin. *)
(* ¥ in Meters. *)
(* *)

(FrrEI KR KA K R KKK IR AR IR R KRR REIARR IR A AR AR R AR KRR R R AT Ak K )
FUNCTION TINIT(Y : REAL) : REAL;

BEGIN
TINIT := 273;

END;

$PAGE;
(*********************************************************************)
(* *)
(* PROCEDURE CRITERION *)
(* *)
(* This procedure computes which local temperature gives the *)
(* severest demands for stability and adapts variables accordingly. *)
(* *)
(* LIST OF VARIABLES. *)
(* *)
(* K Total number of grid points. *)
(* U(K) Initial temperature distribution. Kelvin *)
(* B Indicates the grid point where the *)
(* inner surface is located. *)
(* NSLAGEN The number of times that the vector U *)
(* has to be multiplied by the matrix A *)
(* to get the temperature distribution *)
(* at the moment that the inner boundary *)
(* has moved to the next grid point. *)
(* RHO Mass density of the fuel. Kilogrammes/ *)
(* Squared meters *)
(* ALFA Thermal diffusivity. Squared meters/ *)
(* Second *)
(* TIMESTEP Time it takes to burn a slab of fuel *)
(* with thickness DX with the momentary *)
(* regression rate. Seconds *)
(* T Time after ignition. Seconds *),
(* DT Time interval. Seconds *)
(* DX Distance between two neighbouring *)
(* grid points. Meters *)
(* . *)

(**t*t****************************************************************)

PROCEDURE CRITERION(VAR U : VECTOR;
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VAR B,NSLAGEN : INTEGER;
VAR RHO,ALFA,TIMESTEP,T,DT,DX : REAL);
VAR T : INTEGER;
TMIN, TMAX,ALFAMA,ALFAMI,DTMA,DTMI : REAL;
BEGIN
TMIN := U(.B.);
TMAX = U(.B.);
FOR I := B TO K DO
BEGIN
IF U(.I.) < TMIN THEN TMIN := U(.I.);
IF U(.I.) > TMAX THEN TMAX := U(.I.);
END;
ALFAMA := LAMBDA(TMAX)/RHO/CP(TMAX);
ALFAMI := LAMBDA(TMIN)/RHO/CP(TMIN);

(*********************************************************************)

(* TIMESTEP = Time it takes to burn a slab of fuel with thickness DX *)
(* with the momentary burning rate. *)
(***********************************************************t*********)

TIMESTEP := DX/RATE(T);

(*********************************************************************)

(* DT = The delta T should satisfy the following condition: *)
(* ' *)
(* DX * DX *)
(* DT <= —~——=——- *)
(* 4 * ALFA *)
(* *)
(* When this condition is satisfied the numerical solution of the *)
(* differential equation is stable. *)

(******************************tt*************************************)

DTMA :t= 1/(4*ALFAMA/DX/DX+1);

DTMI := 1/(4*ALFAMI/DX/DX+1);

IF DTMA < DTMI THEN

BEGIN

ALFA := ALFAMA;
DT := DTMA;

END

ELSE

BEGIN

ALFA := ALFAMI:
DT := DTMI;

END;
(*********************************************************************)
(* NSLAGEN = The number of times that the vector U has to be *)
(* multiplied by the matrix A to get the temperature *)
(* distribution at the moment that the inner boundary *)
(* has moved to the next grid point. *)

(*********************************************************************)

NSLAGEN := 1+TRUNC(TIMESTEP/DT);
DT := TIMESTEP/NSLAGEN;
END;
%PAGE;

(*********************************************************************)

(* *)

(* PROCEDURE INITIALISE *)
(* *)
(* This procedure initialises constants and variables. *)
(* *)
(* LIST OF VARIABLES. *)
(* *)
(* K Total number of grid points. *)
(* U(K) Initial temperature distribution. Kelvin *)
(* R(K) Radius at each grid point. Meters *)
(* A(K,3) Grid matrix. *)

(* 7T Time after ignition. Seconds *)




(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*-
(*
(**
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*¢
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

DT
RI
RF
RMOM
DX

TIMESTEP
BETAR
BETAL

UMR
UML
RHO

DELTAL

SIGMA

EPSW
EPSM

ALFA

TABL
B

NSLAGEN

OPT.

REGR
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Time interval.
Inner radius.
Outer radius.
Momentary inner radius of fuel grain.
Distance between two neighbouring
grid points.
Time it takes to burn a slab of fuel
with thickness DX with the momentary
regression rate.
The heat transfer coefficient at the
Inner boundary.

The heat transfer coefficient at the
outer boundary.

Ambient temperature at the inner
boundary.

Ambient temperature at the outer
boundary.

Mass density of the fuel.

The radiant heat transfer coefficient
at the inner boundary.

DELTAL = SIGMA*EPSW*EPSM*F
Stefan Beltzmann constant.
SIGMA = 5.6703E-08

Emission coefficient of the wall.
Emission coefficient of the medium.
Viewfaktor.

Thermal diffusivity.

Ablation temperature.

Indicates the grid point where the
inner surface is located.

The number of times that the vector U
has to be multiplied by the matrix A
to get the temperature distribution
at the moment that the inner boundary
has moved to the next grid point.
Options for different boundary
conditions.

Option for a regression rate.

Seconds
Meters
Meters
Meters

Meters

Seconds

Watts/Squared
meters/Kelvin

Watts/Squared
meters/Kelvin

Kelvin

Kelvin
Kilogrammes/
Squared meters

Watts/Squared
meters/Squared
Kelvin/Squared
Kelvin

Watts/Squared
meters/Squared
Kelvin/Squared
Kelvin

0 < EPSW < 1

0 < EPSM < 1

0 < F <1
Squared meters/
Second

Kelvin

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(FrIFI IR IR KR IR KA IIR KRR K KR RK AR ARRRRRR R AR KA AR AR I R AR IR A AR I AR
PROCEDURE INITIALISE(VAR U,R

: VECTOR;
VAR A : MATRIX;
VAR T,DT,RI,RF,RMOM,DX,TIMESTEP,
BETAR,BETAL,UMR,UML,RHO,DELTAL,
SIGMA,EPSW,EPSM,F,ALFA, TABL : REAL;
VAR B,NSLAGEN : INTEGER;
VAR OPTAL,QPTAR,OPTB,0OPTD,REGR BOOLEAN) ;

VAR I,J : INTEGER;
BEGIN

BETAL :=

BETAR
DELTAL

OPTAL :=
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OPTB  := FALSE;

OPTD :+= FALSE;

(*********************************************************************)

(* Give dimensions of the cilinder. *)
(***********************************i*********************************)

RI := 0.020;
RF := 0.035;
RMOM := RI;

RHO := 885.05747;

(*********************************************************************)

1]

{* Give temperatures of the surrounding media. *)
(*********************************************************************)

UML := 600;

UMR 1= 273;
(*********************************************************************)
(* Regression rate is TRUE or FALSE. *)

(*********************************************************t***********)

REGR := FALSE;
(FxHHI K I K AKIH KK AR KHKAEIIRRIA IR I KRR KRR E TR IR KA IR R TRk kK k)

{(* DX = Distance between two neighbouring grid points. *)
(**************k******************************************************)
DX := (RF = RI)/(K - 1);
(************t********************************************************)
(* Give the entire slab an initial temperature and calculate the *)
(* position of each grid point. *)
(************************f********************************************)
FOR I := 1 TO K DO
BEGIN
R(.I.) :=RI + (I - 1) * DX;
U(.I.) := TINIT(R(.I.)):
FOR J :=1 TO 3 DO A(.I,J.)
END;

(*********************************************************************)

]
O
~e

(* Define the boundary conditions. *)
(* *)
(* BETA. 1is the convective heat transfer *)
(* coefficient. Watts/Squared *)
(* meters/Kelvin *)
(* DELTA. is the radiant heat transfer *)
(* coefficient. Watts/Squared *)
(* meters/Squared *)
(* Kelvin/Squared *)
(* Kelvin *)
(***********t************************************t********************)
(* OPTION A *)
(* *)
(* At the inner boundary. *)
(* *)

(* This option solves convective heat transfer to the inner surface. *)
(* It depends upon the temperature difference between the medium and *)

(* the surface of the slab. *)
(*********************************************************************)
(* BETAL := 100; *)
(* OPTAL := TRUE; *)
(*********************************************************************)
(* OPTION B *)
(* *)
(* At the inner boundary. *)
(* *)

(* This option provides a constant temperature at the inner boundary.*)
(*************************t*******************************************)
TABL := UML;
U(.1l.) := TABL;
OPTB := TRUE;

N
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(****************************************************t****************)

(* OPTION D *)
(* *)
(* At the inner boundary. *)
(* *)
(* This option provides a radiant heat transfer to the inner surface *)
(* of the slab. * )
(* It depends upon the temperature difference between the medium and *)
(* the surface of the slab to the fourth power. *)
(*********************************************************************)
(* SIGMA := 5.6703E-08; *)
(* EPSW  := 0.75; *)
(* EPSM  := 0.83; *)
(* F := 1.00; *)
(* DELTAL := SIGMA*EPSW*EPSM*F; * )
(* OPTD  := TRUE; *)
(*********************************************************************)
(* OPTION A *)
(* *)
(* At the outer boundary. *)
(* *)

(* This option solves convective heat transfer to the outer surface. *)
(* It depends upon the temperature difference between the medium and *)

(* the surface of the slab. *)
(*********************************************************************)

BETAR := 0;

OPTAR := TRUE;
(*********************************************************************)
(* Set clock to T = 0. *)
(* Put momentary inner radius B on grid point 1. *)
(*********************************************************************)

T = 05

B := 1;
(*********************************************************************)
(* Determine the parameters to reach a stable solution of the *)
(* differential equation. *)

SR e A SRR E T e e R a S T L
CRITERION(U,B,NSLAGEN,RHO,ALFA,TIMESTEP,T,DT,DX);

END;

$PAGE;
(*********************************************************************)
(* *)
(* PROCEDURE HEADER *)
(* *)
(* This procedure prints the name of the program and the value *)
(* of some variables. *)
(* *)
(*********************************************************************)
PROCEDURE HEADER (VAR NSLAGEN : INTEGER;

VAR DX,DT,BETAR,BETAL,UMR,UML,RHO,RI,RF,
DELTAL,SIGMA,EPSW,EPSM,F,TABL
VAR OPTAL,OPTAR,OPTB,OPTD,REGR
VAR DTXNS : REAL;

REAL;
BOOLEAN) ;

BEGIN
WRITELN( ' PROGRAMME NAME : TEMPROFIL');WRITELN;
WRITELN;WRITELN('EXPLICIT METHOD WITH CENTRAL DIFFERENCES');
WRITELN('——=———mmmmm———mm e mmem - -— ') ;WRITELN;
WRITELN (' IMPLEMENTED BY : JEROEN MIES');WRITELN;
WRITELN( 'MATERIAL CONSTANTS');

WRITELN( ' —- "y

WRITELN('INNER RADIUS :',RI:11:6,' Meters.');
WRITELN('OUTER RADIUS :',RF:11:6,' Meters.');
WRITE('LAMBDA AT 273 DEGREES :',LAMBDA(273):11:6);

WRITELN(' Watts/Meter/Kelvin.');
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(*******.**************************************‘k************************)

(*
(* PROCEDURE CALCPROFILE
(*

(* This procedure calculates the new temperature distribution

(* by multiplying the matrix 'A' with the vector
(*

(* LIST OF VARIABLES.

(*

(* U(K) Initial temperature distribution.

(* UU(K) New temperature distribution.

(* A(K,3) Grid matrix.

(* B Indicates the grid point where the
(* inner surface is located.

(* NSLAGEN The number of times that the vector U
(* has to be multiplied by the matrix A
(* multiplied by the matrix A to get the
(* temperature distribution at the

(* moment that the inner boundary has
(* moved to the next grid point.

(* BETAR The heat transfer coefficient at the
(* right boundary.

(’k

(* BETAL The heat transfer coefficient at the
(* left boundary.

(*

(* UMR Ambient temperature at the right

(* boundary.

(* UML Ambient temperature at the left

(* boundary.

(* DT Time interval.

(* DX Distance between two neighbouring

(* grid points.

(* T Time after ignition.

(* RHO Mass density of the fuel.

(*

(* DELTAL The radiant heat transfer coefficient
(* at the inner boundary.

(*

(*

(*

(* OPT. Options for different boundary

(* conditions.

(*

‘U,

Kelvin
Kelvin

Watts/Squared
meters/Kelvin

Watts/Squared
meters/Kelvin

Kelvin

Kelvin
Seconds

Meters

Seconds
Kilogrammes/
Squared meters

Watts/Squared
meters/Squared
Kelvin/Squared
Kelvin

*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)
*)

(************************************‘k********************************)

PROCEDURE CALCPROFILE(VAR U,UU
VAR A
VAR B,NSLAGEN

: VECTOR;
: MATRIX;
: INTEGER;

VAR BETAR,BETAL,UMR,UML,DT,DX,T,RHO,

DELTAL
VAR OPTAL,OPTAR,OPTD
VAR I,J : INTEGER;
BEGIN
FOR I := 1 TO NSLAGEN DO
BEGIN
UU(.B.) := ) *UML/CP (UML) +U( .B. )+

IF OPTAL THE

BEGIN
UU(.B.)

END;

IF OPTD THEN

BEGIN

REAL;

FLrYY

.B,l.
.B,2.)*U(.B.)*LAMBDA(U(.B.))/CP(U(.B.))+
.B,3.)*U(.B+1.)*LAMBDA(U(.B+1.))/CP(U(.B+1l.));

:= UU(.B.)-2*BETAL/RHO/CP(U(.B.))/DX*DT*U(.B.);

BOOLEAN) ;
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UU(.B.) := UU(.B.)+2*DELTAL*DT/RHO/CP(U(.B.))/DX*
(UML*UML*UML*UML-U(.B.)*U(.B.)*U(.B.)*U(.B.})):

END; ‘
FOR J = B+1 TO K-1 DO
Uu(.J.) := A(.J,1.)*U(.J-1.)*LAMBDA(U(.J-1.))/CP(U(.J~1.))+

(1+A(.J,2.)*LAMBDA(U(.J.))/CP(U(.J.)))*U(.J.)+
A(.J,3.)*U(.J+1.)*LAMBDA(U(.J+1.))/CP(U(.J+1.)):
IF OPTAR THEN
BEGIN
UU(.K.) := A{.K,1.)*U(.R-1.)*LAMBDA(U(.K-1.))/CP(U(.K~-1.))+
A(.K,2.)*U(.K.)*LAMBDA(U(.K.))/CP(U(.K.))~-
2*BETAR/RHO/CP(U(.K.))/DX*DT*U(.K.)+U(.K.)+
A(.K,3.)*UMR/CP(UMR) ;

END;
(*********************************************************************)
(* The vector U(.J.) optains the values of the new temperature *)
(* distribution UU(.J.). *)

(*********************************************************************)

FOR J := B TO K DO U(.J.) := UU(.J.):
(FHxFKHHE T IR T H R IR I KT I AT TR IR R R AR TR I IR I IR R R IR H R * KA I Kk )

(* Total elapsed time is adjusted. *)
(*********************************************************************)
T t= T + DT;
END;
END;
$PAGE;
(*********************************************************************)
(* *)
(* PROCEDURE OUTPUT *)
(* *)
(* This procedure prints the values of the temperatures at each *)
(* grid point. *)
(* *)
(* LIST OF VARIABLES. *)
(* *)
(* UU(K) New temperature distribution. Kelvin *)
(* T Time after ignition. Seconds *)
(* RMOM Momentary inner radius of fuel grain. Meters * )
(* B Indicates the grid point where the *)
(* inner surface is located. *)
(* *)
(*********************************************************************)
PROCEDURE OUTPUT (VAR UU : VECTOR;
' ' VAR T,RMOM,DX,TABL : REAL;
VAR B : INTEGER;
VAR OPTB,REGR : BOOLEAN) ;

VAR COUNT : INTEGER;
STOP : BOOLEAN;
BEGIN
WRITELN;WRITELN('ELAPSED TIME : ',T:12:7,' Seconds.');
WRITELN('MOMENTARY INNER RADIUS : ',RMOM:12:7,' Meters.'):
WRITELN;
WRITELN( 'GRID POINT - TEMPERATURE AT GRID LOCATION');WRITELN;
COUNT := B+1;
STOP := FALSE;
WRITE(B:3,' ',UU(.B.):8:5,' ',B+1:3,' ',UU(.B+1.):8:5,' ');
IF REGR THEN
BEGIN
WRITELN; WRITE('INNER BOUNDARY HAS MOVED TO THE NEXT GRID POINT');
WRITELN(' AT TIME =',T:11:6,' Seconds.');
WRITE( ' INNER BOUNDARY NOW LIES AT 'Y
WRITELN(' ’ ' , RMOM+DX:11:6,' Meters.');
COUNT := COUNT - 1;
IF OPTB THEN UU(.B+l.) := TABL:
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END;

WHILE (STQOP = FALSE) DO

BEGIN
COUNT := COUNT + 1;
IF COUNT MOD 9 = Q0 THEN WRITELN;
WRITE(COUNT:3,' ',UU(.COUNT.):8:5,"' ');

(*********************************************************************)

(* The next line may need to be modified as convenient. *)
(*********************************************************************)

IF UU(.COUNT+1l.) < Q THEN STQOP := TRUE;
IF (COUNT >= (K-1)) THEN STOP := TRUE;

END;

IF (COUNT = (K-1))THEN WRITELN(K:3,' ',UU(.K.):8:5);

WRITELN;
END;
$PAGE;
(************************************************t********************)
(* *)
(* PROCEDURE UPDATE *)
(* *)
(* This procedure updates variables in preparation of the *)
(* calculation of the new temperature distribution. Latter is the *)
(* moment that the inner radius has moved to the next grid point. *)
(* ({ B := B+l ) Then the elapsed time has increased with DT (which *)
(* is dependent upon the momentary regression rate). *)
(* *)
(* LIST OF VARIABLES. *)
(* .*)
(* U(K) Initial temperature distribution. Kelvin *)
(* A(K,3) Grid matrix. * )
(* RMOM Momentary inner radius of fuel grain. Meters *)
(* DX Distance between two neighbouring *)
(* grid points. Meters * )
(* TIMESTEP Time it takes to burn a slab of fuel *)
(* with thickness DX with the momentary *)
(* regression rate. Seconds *)
(* T Time after ignition. Seconds *)
(* DT Time interval. Seconds *)
(* RHO Mass density of the fuel. Kilogrammes/ *)
(* Squared meters *)
(* ALFA Thermal diffusivity. Squared meters/ *)
(* Second *)
(* TABL Ablation temperature. Relvin *)
(* B Indicates the grid point where the *)
(* inner surface is located. * )
(* NSLAGEN The number of times that the vector U *)
(* has to be multiplied by the matrix A *)
(* multiplied by the matrix A to get the *)
(* temperature distribution at the *)
(* moment that the inner boundary has *)
(* moved to the next grid point. *)
(* *)

(***********************************************************t*********)

PROCEDURE UPDATE(VAR U ¢ VECTOR;
VAR A : MATRIX:;
VAR RMOM,DX,TIMESTEP,T,DT,RHO,ALFA,TABL : REAL;
VAR B,NSLAGEN s INTEGER);

BEGIN

(*********************************************************************)
(* In case of a moving inner boundary the inner radius must move by *)
(* one grid point. *)
(* This happens after the instantaneous time interval TIMESTEP. *)

(* TIMESTEP is equal to DT * NSLAGEN. *)
(FRrEr R TR R IR R R AR AR AR E IR AR AR R KRR AR AR R AR RARRRRA KK )
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RMOM := RMOM + DX;
A(.B,1,) := 0;:
A(.B,2.) := 0;
A(.B,3.) := 0;

B := B + 1;
A(.B,1.) := 0;
A(.B,2.) := 0;
A(.B,3.) := 0;

U(.B.) := TABL;
(*********************************************************************)
(* Determine the parameters to reach a stable solution of the *)
(* differential equation. *)
(*********************************************************************)

CRITERION(U,B,NSLAGEN,RHO,ALFA,TIMESTEP,T,DT,DX);

END;
$PAGE;
(*********************************************************************)
(* *)
(* MAIN BODY OF THE PROGRAMME. *)
(* *)
(*********************************************************************)
VAR A : MATRIX;

U,Uu,R : VECTOR;

B, NSLAGEN : INTEGER;

T,DT,RI,RF,RMOM, ALFA, DX, TIMESTEP, BETAR, BETAL,

UMR , UML,, RHO, DELTAL, SIGMA, EPSW, EPSM, F, TABL : REAL;

OPTAL, OPTAR,OPTB,OPTD, REGR : BOOLEAN;

BEGIN
INITIALISE(U,R,A,T,DT,RI,RF,RMOM,DX,TIMESTEP,BETAR,BETAL, UMR,UML,
RHO,DELTAL,SIGMA,EPSW,EPSM,F,ALFA, TABL, B, NSLAGEN,
, OPTAL,QOPTAR,OPTB,0PTD,REGR) ;
HEADER(NSLAGEN, DX,DT,BETAR,BETAL,UMR, UML,RHO,RI,RF,DELTAL,SIGMA,

EPSW,EPSM, F,TABL,OPTAL,QPTAR,OPTB,OPTD,REGR) ;
G AR R SRR AR R R e R T R T

(* POSSIBLE CRITERIA FOR STOPPING THE CALCULATIONS: *)
(* * )
(* WHILE RMOM <= RF DO *)
(* WHILE RMOM <= 0.025 DO *)

(*********************************************************************)

WHILE T <= 21 DO

BEGIN
CALCMATRIX(R,A,DT,RHO,DX,BETAR,BETAL,B,NSLAGEN, OPTAL,OPTAR,OPTB,

OPTD);
CALCPROFILE(U,UU,A,B,NSLAGEN, BETAR,BETAL, UMR, UML, DT, DX, T,RHO,
DELTAL,OPTAL,OPTAR,OPTD) ;
ouTPUT(UU,T,RMOM, DX, TABL,B,0OPTB,REGR) ;
IF REGR THEN UPDATE(U,A,RMOM,DX,TIMESTEP,T,DT,RHO,ALFA,TABL,B,
NSLAGEN) ;
END
END.



APPENDIX 2

Specimen of output of "TEMPROFIL"
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