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Preface

We begin with Allah’s name (The One God), The Most Compassionate, The Most Merciful.

We praise him as he is the Lord of the universe. We pray for peace and blessings on all of his

messengers, and in particular for the last prophet: Prophet Muhammad, and for his families

and companions.

We live in a time where injustice dominates the world, presenting itself as justice. It is most

certainly the world order of the one-eyed Al-Masiih Ad-Dajjal (others are familiar with the

name Anti-Christ), as implied by The Qur’an and by the prophecies of Prophet Muhammad

(may peace and blessings be upon him). It is such a dangerous time that every single prophet

heave prophesied about this one-eyed entity (hence, no doubt the pious Jews and Christians

who follow The Torah and The Gospel are aware of this subject). Yet, hope is there (as hope is

always there before what is decreed arrives) for those who are faithful and righteous in deeds,

as the ending of this world order ultimately starts when Nabi ‘Isa, Al-Masiih (others know him

as Jesus, the Christ) (may peace be upon him) kills the one-eyed Al-Masiih Ad-Dajjal.

However, several other things must occur before that can happen. Indeed, we are living in a

time of transition, where the stage of history is changing. Just like how the stage of history was

changing during the period between World War I and World War II.

On a lighter note, the topic of my thesis is also on transition. However, it is on the transition

of flows, as flows turn from laminar to turbulent. I came to the realization of the importance of

transition towards the end of my thesis. As I reflect upon my choice, I did have interest in other

thesis topics in mind (dealing with modeling of turbulence and propeller-wing interactions).

The final choice on transition was purely coincidental, which perhaps also allows me to begin

with such an introduction.

I would like to use this chance to say that I am truly impressed at how vast the subject of

aerodynamics is. Different practical cases need to be considered in their own: flows over a wing,

over a rotor, in a wind tunnel, jet flows, etc. (not to aeroelasticity and aeroacoustics); each

with their own simplifications and methods of analysis. My thesis could only touch upon only

a little from this very vast subject.

iii



iv

Moving on, we are living in such an interesting time that I am completing my thesis fully away

from campus. This came into being when my plans on coming back to the Netherlands were

cancelled. I only met with my supervisors once before the beginning of my thesis. This also

resulted in me having to change the nature of the thesis.

While I tried maximizing interaction with my supervisors with regular online meetings, ulti-

mately the experience of physical meetings cannot be replaced by virtual meetings. It is to my

regret that I cannot have the joy of having more interactive discussions with my supervisors,

formally or informally. It seems that this is once-in-a-lifetime opportunity taken away. Though

at the end, I always believe that things are always for the better. Nevertheless, my supervisors

were very kind and helpful in facilitating my thesis within this situation. Hence, appreciation

comes from the bottom of my heart for Dr. ir. Marios Kotsonis and Dr. ir. Theodoros Michelis.

Perhaps I may meet them again in the future on a different occasion.

It is always a nice thing to look back at the roads that I have crossed in reaching this stage of

time, completing this thesis work. Ultimately this is the highest point of my education at the

time of writing. I should not forget the educations that I have received throughout my life, from

my time in Jakarta, Balikpapan, and a major change in my life as I went to Paris, and finally,

my time in Delft. I would like to thank all of my teachers for all the knowledge that they have

taught me. I would also like to use this opportunity to thank my family, as always.

I pray that any knowledge obtained from this thesis work may prove to be useful for the good

of things.

Angka Bayu Putranto

South Tangerang, Indonesia

Jummadil-Awwal, 1443 or December, 2021
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iφv′y . . . . . . . . . . . . . . . . . . . . . . . 90
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ν Poisson’s ratio [-]

ω Angular frequency [rad/s]

wPC Width of the phononic crystal [mm]

x Streamwise or horizontal coordinate [m]

y Wall-normal or vertical coordinate [m]

Z Characteristic impedance [kg m4/s]



Abstract

This thesis concerns a numerical investigation for the stabilization (delay of laminar-to-turbulent

transition) of flows over a flat plate with a meta-unit of a possible metamaterial. The type

of instability studied is that due to small disturbances in an incompressible, two-dimensional

boundary layer. The linear growth of the disturbance in the form of a wave (also called the

Tollmien-Schlichting wave) was of particular interest.

There is a newly emerging class of structures called ”metamaterials” which are capable of

controlling the properties of classical waves (electromagnetic/optical/acoustic). This thesis in-

vestigates whether or not one of these materials are capable of attenuating TS waves.

A literature review was conducted on three types of metamaterials, namely those based on

Helmholtz-resonators, membranes structures and phononic crystals. The mechanisms for which

the three aforementioned metamaterials attenuate acoustic waves are resonance, anti-resonance

and Bragg’s scattering respectively. Based on the likelihood of successfully achieving damping

of TS waves, the phononic crystal was chosen to be further studied.

The interaction between the flow and phononic crystal was simulated in COMSOL Multi-

physics® version 5.6. The flow conditions were chosen with results from the Orr-Sommerfeld

equation. The phononic crystal was designed accordingly with analytical results derived from

the Transfer Matrix method and Interface Response Theory. This design was verified and fi-

nalized with a Structural analysis simulation, whereby the governing equations for an isotropic

solid were solved numerically.

It was found that the response of the phononic crystal was not governed by the Bragg’s scattering

mechanism, but rather by resonance. Very small damping of the TS wave could be found for

frequencies above the resonance in the vicinity of the phononic crystal. In this frequency range,

the wall-normal disturbance flow was found to increase. Consequently, to follow conservation of

mass, the streamwise disturbance flow had to decrease. Overall, the decrease of the streamwise

disturbance flow was more significant than its wall-normal counterpart and therefore the kinetic

energy was found to decrease. Further downstream, destabilization occurs. However, it was also

found that this destabilization can be shifted downstream by placing multiple phononic crystals

while also enhancing stabilization.

xiii



Chapter 1

Introduction

Efficiency is key in engineering design. In the field of aerospace engineering, a well-designed

aircraft should have as low drag as possible. There are various ways in which this can be

achieved. One way is to have a majority of the flow over the vehicle’s body parts (such as

the wings) to be laminar instead of turbulent, assuming that there are no flow separations.

This is because the skin friction within a laminar flow is much lower than within the turbulent

counterpart [1][54]. As the skin friction decreases, the total drag of the vehicle also decreases.

In turn, this translates into lower fuel consumption which further results in decrease in costs

and possible environmental damages. Hence, researches in the areas of ensuring the laminarity

of flows are of paramount interest.

Laminar-to-turbulent transition is of interest to various flows found in engineering, such as pipe

and jet flows. In this thesis, the flow that shall be considered is the boundary layer flow.

Two different mechanisms of transition can be identified: amplification of small disturbances

and bypass transition[34]. This thesis deals with the former case. Three stages can be identified

within this class of transition, namely the problem of disturbance reception by the boundary

layer, linear growth of the disturbances and non-linear breakdown into turbulence [34]. Of

interest is the second stage, where the development of the disturbance is described by linear

equations. In particular, a wave-form can be assumed in order to describe the disturbance.

This wave has been observed experimentally and is also known as the Tollmien-Schlichting (TS)

waves [54][67].

If one is able to control the growth of the disturbance, then one is also able to control the

transition process. As the disturbance is initially in described by wave-like characteristics, this

thesis aims at investigating whether or not the so-called ”metamaterials” are able to affect the

growth of TS waves. Metamaterials are structures that are specifically designed to alter the

characteristics of propagating waves [10]. Typically, the building blocks of the metamaterials

have dimensions that are much smaller than the wavelength of interest. Hence the accumulation

of these building blocks give rise to effective material properties.

The wave dealt with these metamaterials have been the classical waves (i.e. electromagnetic/op-

tic/acoustic waves)[42]. Unlike TS waves, these classical waves are not convective in nature:

1



Introduction 2

they propagate even within a quiescent medium. Thus, the study of the interaction between

metamaterials and TS waves would be a new subject of research.

With this in mind, the following main research question is posed:

Can TS waves in a laminar boundary layer flow be attenuated using a

metamaterial?

In the above research question, the specific metamaterial to be used is not yet defined. It is

to be determined with a literature study of different types of metamaterials (chapter 2). The

metamaterials to be investigated are the acoustic metamaterials (instead of those dealing

with electromagnetics or optics), as mechanical systems are being considered.

Sub-research questions are formed on the basis of the main research question and the desire to

understand the physics behind the interaction between metamaterial and TS waves. These are

given in the following list:

1. What are the changes imparted on the TS waves when approaching a meta-

material unit?

2. What is the physical mechanism that drives the attenuation of the TS waves

(if any attenuation takes place)?

3. How large is the attenuation (if any)? What is the sensitivity of the attenua-

tion with respect to the TS wave’s characteristics?

This thesis aims at answering the above questions with numerical simulations.

Having formulated the research questions, this report is structured as follows. In chapter 2, a

literature study is given on the two aspects of this thesis: stability analysis of flows and meta-

materials. This chapter concludes with choosing a metamaterial type. The following chapter

(chapter 3) is also divided in two parts. In the first part, conditions of the numerical simulation

are chosen. This implies choosing the flow condition and designing the metamaterial, both

with relatively simple methods. In the second part, the method for the numerical simulation

is explained. Chapter 4 presents and discusses the results of the numerical simulation. Finally,

chapter 5 gives the conclusion to this thesis in which the research questions are answered, and

assesses the limitation of the current study in order to recommend improvement for the future.

While it is not yet known whether or not the chosen metamaterial is capable of damping TS

waves, it is the objective of this thesis to successfully achieve stabilization.



Chapter 2

Literature study

The literature study is divided in two parts: a research on flow stability theory and acous-

tic metamaterials. For the study of flow stability, emphasis will be put on the ”wave-like”

behaviour. Unlike traditional waves which contains purely the propagation of a certain infor-

mation (e.g. in the case of acoustic waves, either pressure or mass density fluctuation), the

”wave-like” characteristic in the flow stability problem includes mass transfer. This shall be

further corroborated in section 2.1.

The motivation for the study on acoustic metamaterials is the existence of a band gap (amongst

other properties) - a range of sound wave frequencies where the sound amplitude is attenuated.

The focus of the study is on understanding the mechanism for the creation of the band gaps,

and the corresponding prediction methods. This shall be done in section 2.2.

This thesis investigates whether the concept of band gap of an acoustic metamaterial, which

is traditionally designed for acoustic waves, could be applied to the convective waves within a

flow stability problem.

2.1 Flow transition

The nature of flow can be divided into two categories: laminar and turbulent. In the case

of laminar flow, the streamlines are well-ordered like layers. Patterns within the flow can be

identified with ease. In the case of turbulent flow, the flow becomes chaotic. A large range

of scales of eddies can be observed. This categorization of flow went back as far as the 19th

century, where O. Reynolds [50] observed the flow within a pipe.

However, within a flow itself, it may be that part of the flow is laminar and the rest is turbulent.

It may also be that the flow is initially laminar, and, after some changes in the flow conditions,

the flow become turbulent. This change from laminar to turbulent is referred to as ”transi-

tion”. Two mechanisms of flow transition were identified. One deals with the transition by

small disturbances, and the other looks at the transition due to large disturbances (also called

”bypass”)[34][45].

3
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There are different stages that can be identified within the transition by small disturbances: the

problem of receptivity/generation of instability waves from external disturbances, linear growth

of the unstable waves and non-linear breakdown into turbulence[34]. This is illustrated in figure

2.1 for a flow over a flat plate.

Figure 2.1: The different phases of flow transition, illustrated for a flow over a flat plate
(figure from [34])

Hence, the initial behaviour of the small disturbances can be described with linearized equations.

Within transition due to small disturbances, different mechanisms could be observed such as

two-dimensional disturbances, cross-flow disturbances (inherent in swept-wings) and supersonic

disturbances [48]. This thesis treats the problem of transition by two-dimensional disturbances.

A ”wave-like” behaviour can be observed within the two-dimensional disturbances, as indicated

through the term ”instability waves”. These instability waves are also known as ”Tollmien-

Schlichting waves” [67] (shortened as ”TS waves” in this report). However, this ”wave-like”

characteristic is different from traditional waves, such as acoustic or electromagnetic waves.

In the instability waves in flow transition problem, the wave includes mass transfer (hence

convective) whereas in traditional waves, no mass transfers occur. This can be illustrated

mathematically through the Orr-Sommerfeld (OS) equation [47][57]. To further emphasize the

difference between a traditional wave and an instability wave, the derivation of the OS equation

shall be presented, using the steps laid down by Schlichting [54].

The OS equation assumes two-dimensional incompressible flow. Hence, the governing equations

are the continuity of mass and momentum in two directions. They are given in equation 2.1a,

2.1b and 2.1c.

∂vx
∂x

+
∂vy
∂y

= 0 (2.1a)

∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

= −1

ρ

∂p

∂x
+ νa

(
∂2vx
∂x2

+
∂2vx
∂y2

)
(2.1b)

∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

= −1

ρ

∂p

∂y
+ νa

(
∂2vy
∂x2

+
∂2vy
∂y2

)
(2.1c)

where t is time, vx and vy are the x− and y−component of flow velocity respectively, ρ is the

fluid density, p is the static pressure and νa is the fluid’s kinematic viscosity. In this thesis, the
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context of the flow problem is airflow over a flat plate. Hence, the x− and y−directions are the

streamwise and wall-normal directions respectively.

Now, as mentioned before, the problem deals with transition due to small disturbances. To this

end, the flow is decomposed into two parts: a (steady) basic flow solution and a disturbance

component. In OS equation, the velocity of the basic flow is assumed to be parallel with no

cross-flow component. This means that the basic flow is only a function of y. Thus, the total

flow field is written as follows:

vx = Vx(y) + v′x(x, y, t) (2.2a)

vy = v′y(x, y, t) (2.2b)

p = P (x, y) + p′(x, y, t) (2.2c)

where the capitalized letters denote basic flow quantities and the apostrophes represent distur-

bances. It is further assumed that the basic flow and the total flow field satisfy continuity and

momentum equations separately. Thus, the goal is to find the equation that governs the distur-

bances. This can be done by firstly substituting equations 2.2a, 2.2b and 2.2c into equations

2.1a, 2.1b and 2.1c. Furthermore, any non-linear terms (i.e. multiplications of the disturbance

quantities or their derivatives) are neglected. This is consistent with the assumption of small

disturbances. Applying the aforementioned procedure yields:

∂v′x
∂x

+
∂v′y
∂y

= 0 (2.3a)

∂v′x
∂t

+ Vx
∂v′x
∂x

+ v′y
∂Vx
∂y

= −1

ρ

(
∂P

∂x
+
∂p′

∂x

)
+ νa

(
∂2v′x
∂x2

+
∂2Vx
∂y2

+
∂2v′x
∂y2

)
(2.3b)

∂v′y
∂t

+ Vx
∂v′y
∂x

= −1

ρ

(
∂P

∂y
+
∂p

∂y

)
+ νa

(
∂2v′x
∂x2

+
∂2v′y
∂y2

)
(2.3c)

As mentioned, the basic flow also satisfies the continuity and momentum equations. Therefore

the following also holds:

0 = −1

ρ

∂P

∂x
+ νa

(
∂2U

∂y2

)
(2.4a)

0 = −1

ρ

∂P

∂y
(2.4b)

It is noted that in fact, the continuity equations satisfies the trivial equation 0 = 0 and that

most of the terms in the momentum equations are zero due to the assumed form of the basic

flow.
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Subtracting 2.4a and 2.4b from 2.3b and 2.3c results in the set of linearized disturbance equa-

tions:

∂v′x
∂x

+
∂v′y
∂y

= 0 (2.5a)

∂v′x
∂t

+ Vx
∂v′x
∂x

+ v′y
∂Vx
∂y

= −1

ρ

∂p′

∂x
+ νa

(
∂2v′x
∂x2

+
∂2v′x
∂y2

)
(2.5b)

∂v′y
∂t

+ Vx
∂v′y
∂x

= −1

ρ

∂p

∂y
+ νa

(
∂2v′y
∂x2

+
∂2v′y
∂y2

)
(2.5c)

Now, the wave-like nature of the disturbances can be introduced into the equations. This is

done by assuming a disturbance streamfunction that has the form of a wave propagating in the

x−direction, given as follows:

ψ(x, y, t) = φf (y)ei(kTSx−ωTSt) (2.6)

where ψ is the streamfunction and φf is the amplitude distribution function. Furthermore, kTS

and ωTS are the wavenumber and angular frequency of the TS waves. With the streamfunction

defined, the disturbance flow velocities can be readily obtained:

v′x =
∂ψ

∂y
=

dφf
dy

ei(kTSx−ωTSt)) (2.7a)

v′y = −∂ψ
∂x

= −i kTS φf e
i(kTSx−ωTSt)) (2.7b)

It is remarked that using a streamfunction directly satisfies the continuity equation. Hence, only

the momentum equations are necessary to simplify the dynamics of the disturbance flow field.

The disturbance flow velocities are substituted into equation 2.5b and 2.5c. The resulting two

equations can be further simplified by eliminating pressure. This is done through differentiating

the x− momentum with respect to y and the y− momentum equation with respect to x; and

further equating ∂2p′

∂x∂y from the two equations. After re-arranging the terms, the OS equation

is obtained:

(Vx − cTS)

(
d2φf
dy2

− k2
TSφf

)
− φf

d2Vx
dy2

+
iν

kTS

(
d4φf
dy4

− 2k2
TS

d2φf
dy2

+ k4
TSφf

)
= 0 (2.8)

It is now clear that the ”wave-like” behaviour stems from the assumption that the disturbance

flow velocity creates ”wave-like” streamlines (equation 2.6). This disturbance is convected

downstream, hence this ”wave” includes mass transfer. In contrast, the medium of propagation

traditional waves such as acoustic waves are allowed to be quiescent; the fluid oscillates about

its equilibrium position and is not convected at all [35].
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Equation 2.8 is a 4-th order ordinary differential equation for φf . In the equation, cTS is

introduced, replacing the angular frequency as the two are related by cTS = ωTS/kTS.

As stated, the basic flow is assumed to be parallel i.e. only a function of y. This contradicts the

nature of boundary layer flow over a flat plate, where the flow velocity field also depends on x

(which can be seen by the growth of the boundary layer thickness as one travels downstream the

plate). This contradiction is tackled in a general boundary layer flow by simply solving equation

2.8 locally (i.e. at a given x−position). Alternatively, when a self-similar solution exists, the

OS equation can be scaled appropriately. Scaling the velocities and the amplitude function φf
with the boundary layer edge velocity Ve, the length (y and kTS) by a characteristic length

of boundary layer (such as the boundary layer thickness δ) and introducing a local Reynolds

number Reδ = Veδ
ν yields the non-dimensionalized OS equation [54]:

(V ∗x − c∗TS)

(
d2φ∗f
dy2

− k∗2TSφ
∗
f

)
− d2V ∗x

dy2
φ∗f +

i

k∗TSReδ

(
d4φ∗f
dy4

− 2k∗2TS

d2φ∗f
dy2

+ k∗4TSφ
∗
f

)
= 0 (2.9)

From the above equation, it can be seen that the parameters of the differential equation are the

local Reynolds number (representing viscosity and position), the basic velocity profile, the TS

wavenumber and frequency (or phase speed). In fact, by setting the parameters, the differential

equation becomes an eigenvalue problem. For a given velocity profile, streamwise position and

fluid viscosity, the stability problem can be analyzed in two ways: either by giving a real TS

frequency as input and solve for the complex wavenumber or by giving a real TS wavenumber

and solve for the complex frequency. The former is referred to as temporal stability analysis,

while the latter is called spatial stability analysis.

The result of a stability analysis is a stability diagram. An example of a temporal stability

diagram is given in figure 2.2[26].

Figure 2.2: Example of a stability diagram comparing the result from O-S equation (solid
line), experimental data (white circles) and lower branch of asymptotic theory (dashed and

dotted lines)[26]. The experimental data was obtained from [51].
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In this diagram, the local Reynolds number is in the abscissa and the input TS wave parameter

(i.e. TS wave frequency) is in the ordinate. The plot (solid line) is a contour where the imaginary

TS wavenumber equals zero, which defines neutral stability curve. As can be seen, this curve

is characterized by an upper and lower brance. Inside, the imaginary part of the complex

wavenumber is negative. This means that the amplitude of the wave grows, as can be observed

by substituting a complex wavenumber into equation 2.6. In other words, the waves within the

neutral stability curve are unstable.

Alternatives to the OS equation include asymptotic theory where the disturbances are expanded

in terms of a parameter and an analytical expression is derived for the neutral curve[19][26][53][56],

parabolized stability equations which accounts for variations in the streamwise and spanwise

directions (hence accounts for non-parallel flow effects) [27] and direct numerical simulation

of the disturbed flow [33]. Some results of the asymptotic theory have been presented by the

dashed and dotted lines in figure 2.2[26].

The neutral curve between a stability analysis that includes non-parallel effects better fits ex-

perimental data than that which purely considers parallel flows. This can be seen from figure

2.3.

Figure 2.3: Comparison between experimental (square[55] and circles[51]) and theoretical
neutral curves. Figure from reference [53]. In the figure, F is a dimensionless frequency and R

is the Reynolds number.

The main discrepancies occur at low Reynolds numbers. However, the discrepancy is not purely

due to non-parallel flow effects as can be argued by the results given in figure 2.4. There is a

good agreement between the asymptotic theory which only includes parallel flow terms (dashed

line) and experimental data (circles). Note that the asymptotic theory in the figure only predicts

the lower branch of the neutral stability curve.

Nevertheless, the OS equation is deemed sufficiently good at predicting transition. This is

already shown in figure 2.2 and 2.3 by the good agreement with experimental data at higher
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Reynolds numbers. This is further supported by comparing the experimental and theoretical

streamwise velocity profiles, as shown in figure 2.4.

Figure 2.4: Comparison of non-dimensionalized basic and disturbance velocity profile between
OS equation and experimental data for flow over a flat plate. Figure from [48], and the data is

from [49].

All things considered, the wave-like behaviour of the disturbance which was introduced in the

derivation of the OS equation is well supported by experimental result. Hence, if one is able to

control the growth of these waves, then the stability of the flow may be enhanced.

A number of techniques employed to control the growth of TS waves exist in literature, which

include the use of vibrating ribbon [44], vibrating plate [20], unsteady suction/blowing at the

wall [64], wall heating [4], the use of plasma actuators [36] and compliant surfaces [8]. Significant

reduction in the energy of the TS waves were successfully achieved with the aforementioned

methods. The common disadvantages of these methods are the non-zero energy expenditure

and the requirement of a potentially complex control system, except for the compliant surface

method. Nevertheless, disadvantage also exists in this method, such as the rise of the TS wave

energy around the leading edge of the compliant surface. Hence a control technique with zero

energy expenditure (i.e. a passive control technique) with better response to TS wave is sought

for.

This gives rise to the motivation for research on the interaction between TS waves and a class

of structures called the ”metamaterial”. The speciality of this metamaterial is that it is built

specifically for the purpose of manipulating the properties of a traditional wave (acoustic/elec-

tromagnetic/optics). Hence, the study of the effect of metamaterials on TS waves is a relatively

new subject. A literature review on the current developments of metamaterial is given in the

next section.
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2.2 Acoustic metamaterials

Metamaterials are structures that are designed to manipulate the properties of a classical wave.

The constituents of the metamaterials are orders of magnitude smaller than the wavelength

of interest. Therefore, the structure that is built from these constituents give rise to effective

material properties [42].

The metamaterials considered in this literature review will be only those that deal with acoustic

waves, hence acoustic metamaterials (and not electromagnetic/optical metamaterials). This is

because TS waves are ought to excite mechanical response to the metamaterial, rather than

electromagnetic responses. As stated in the introduction, the main objective is to achieve

stabilization of a flat plate boundary layer flow. The interest of using metamaterials stems from

their use in attenuating acoustic waves at particular frequencies, as shall be corroborated in

the following subsections. This literature review section aims at understanding the physical

mechanisms of this acoustic wave attenuation and the models used in predicting the range of

attenuated frequencies; and therefore serve as a basis for this thesis to extend the use of these

metamaterials from classical acoustic waves to convective TS waves.

Metamaterials based on the following units are considered in this literature review: Helmholtz

Resonator (HR) type (section 2.2.1), membrane type (section 2.2.2) and phononic crystals (PC)

(section 2.2.3). The literature study concludes with section 2.2.4 which explains the choice of

metamaterial based on the given researches.

2.2.1 Helmholtz resonator type

This section gives a literature review on the Helmholtz resonator (HR) type metamaterial. The

discussion presented in the following paragraphs begins by introducing the Helmholtz resonators.

Then, the focus shifts to the manner in which a collection of resonators constructs a metama-

terial. As shall be seen, the most important concept in this metamaterial is the resonance of

the HR structure. The subsequent paragraphs will therefore review the different theoretical

methods for the prediction of HR resonance and experimental verification.

A Helmholtz resonator is a structure that consists of two main sections: a throat and a cavity

[35]. The structure is arranged such that the neck is adjacent to a travelling acoustic wave.

The acoustic wave impinges pressure on the neck, thereby creating motion of the air within the

neck. This air within the neck further compresses the air within the cavity. In the classical

modelling of the dynamics of a Helmholtz resonator, the air in the neck may be approximated as

incompressible compared to the air in the cavity. This is because of the larger size of the cavity.

Consequently, the neck-cavity system can be modelled as a forced mass-spring system; the mass

being the neck and the spring being the cavity, while the forcing arises from the acoustic wave

pressure. A dynamical analysis of this system gives rise to a resonance frequency, given by the

following equation [10] [35]:

ωHR = c

√
St
V l

(2.10)
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where ωHR is the angular resonance frequency, c is the speed of sound, St is the cross-sectional

area of the throat, V is the volume of the cavity and l is the throat length. This length l may

also be corrected with an ”effective length” [15] [35][59]. The above equation does not take

into account any losses. Nevertheless, the dynamical analysis shows that acoustic waves with

frequencies close to the HR resonance are attenuated [35].

An HR type metamaterial was studied by N. Fang et al. [15]. The set-up is as follows. One

side of a water-filled channel is attached by a series of identical Helmholtz resonators. The

dimensions of the HR, as well as the periodic spacing between resonators, are much smaller

than the relevant acoustic wavelength. Thus, a homogeneous response arises from this structure

(hence the metamaterial). The experimental simulation of this system was realized with the help

of two hydrophones: one upstream and the other downstream the channel, and one transducer

upstream to generate the acoustic wave. The schematic of this problem is given in figure 2.5.

Figure 2.5: Ultrasonic metamaterial studied in reference [15]. Figure adapted from the same
reference

In this HR metamaterial system, the material property of interest is the bulk modulus (E).

As stated, due to the smallness of the HR dimensions and spacing with respect to the acoustic

wavelength, there is an effectively homogeneous bulk modulus of the system (Eeff). This Eeff is

different from the static E, and now depends on the frequency that excites the system (hence

the sound wave frequency). By analogy with electrical circuits, Eeff of the system is plotted in

the figure 2.6.
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Figure 2.6: Plot of Eeff as a function
of sound frequency. Figure adapted

from [15]

Figure 2.7: Theoretical and experi-
mental dispersion curves of the HR type
metamaterial studied in [15]. Figure

adapted from the same reference

As seen in figure 2.6, there are negative and positive jumps for a certain range of frequencies.

This range of frequency is near the resonance frequency of 32.5 kHz. In the lesser frequencies,

the negative jump is large enough to cause Re(Eeff) to become lower than zero. Hence, the

unusual property of negative bulk modulus.

Another property of the metamaterial that was analyzed in the study is the dispersion relation,

which is the relation between the frequency and phase speed of wavenumber of the sound wave

propagating in the system. This is given in figure 2.7 theoretically and experimentally. In the

theoretical curve, there is a frequency range for which the curve forms a gap. This is called

the ”band gap”. Acoustic waves that have frequencies within this band gap are evanescent

in nature, hence attenuated and do not propagate [59]. In the experimental curve however,

real wavenumbers within the band gap still exists. This is attributed to the fact that the

theoretical calculation did not account for losses. The mechanism that forms the band gap is

not dissipation of energy, rather it is the destructive interference due to the scattering of the

acoustic wave within the structure, also known as Bragg’s scattering [59].

Yet another analysis that can be performed on the metamaterial is the analysis of the transmis-

sion spectrum (variation of transmission coefficient with respect to the sound wave frequency).

This is shown in figure 2.8
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Figure 2.8: Transmission spectrum of the metamaterial studied in reference [15]. Figure
adapted from the same reference.

The figure above shows the theoretical and experimental calculation of the transmission spec-

trum. As can be seen, there is a range of frequencies for which the transmission curve dips,

both theoretically and experimentally (around 31 to 35 kHz). The frequency range that results

in the transmission dip also corresponds to the band gap and negative bulk modulus, which are

around the resonance frequency.

In 1994, N. Sugimoto and T. Horioka [59] analyzed the dynamics of a tunnel to which an

infinite series of Helmholtz resonators was embedded. The geometry is given in figure 2.9.

The analysis is two-fold: the first result deals with the partial differential equation governing

acoustic waves, accounting for boundary layer displacement effects and dissipation of sound

energy due to viscosity. Essentially this deals with acoustic motion within the section of the

tunnel sandwiched between two Helmholtz resonators. The second part of the analysis resulted

in the equation governing the dynamics of the resonator in response to the impinging acoustic

pressure.

Figure 2.9: Geometry of the HR-grafted tunnel studied in reference [59]

The two analyses are then combined, along with continuity of acoustic impedance between

tunnel sections, to create a transfer matrix which relates the acoustic pressure amplitudes of

the nth section of the tunnel to section (n+ 1)th. Mathematically, this is written as:
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Xn+1 = WXn (2.11)

where the vector X contains the pressure amplitudes and W is the transfer matrix.

The analysis is further advanced by considering a periodicity of the tunnel section, which enables

the use of Bloch-Floquet’s theorem. The dispersion equation that relates q (Bloch’s wavenum-

ber) with ω (acoustic wave angular frequency) was derived using the condition for non-trivial

solution.

Band gaps in the dispersion relation (i.e. ω for which q becomes complex) are obtained through

two mechanisms: resonance and Bragg scattering. The resonance frequencies are given in

equation 2.12 and 2.13, the former being for a lossless case and the later being for a lossy

case. The Bragg scattering frequencies are given in equation 2.14 and 2.15, with the same

lossless/lossy ordering as the resonance frequency.

ω0 =

√
Ba0

LV
(2.12)

ω0ν = ω0

[
1− 1√

2r

(
ν

ω0

)1/2
]

(2.13)

ωm =
mπa0

d
(2.14)

ωmν = ωm

[
1− C√

2R

(
ν

ωm

)1/2
]

(2.15)

This paper shows several possible equations in predicting the band gap frequencies of a Helmholtz

resonator series.

In the next decade, Z. G. Wang et al. [66] analyzed propagation of sound waves through a

series of Helmholtz resonators with ”Interface Response Theory”. This is a method of analysis

based on the Green’s function of the system’s dynamics. Such an analysis enables one to derive

analytical expressions for the transmission spectrum and dispersion relation of the HR series.

The geometry of the problem is given in figure 2.10.



Literature study - Acoustic metamaterials 15

Figure 2.10: Geometry of a single and a series of HRs studied in reference [66]

Four cases were analyzed: (1) single HR, (1) an infinite series of HRs, (3) a finite series of HR

with no defect and (4) a finite series of HR with defects. As mentioned, analytical expressions

for the transmission spectrum and dispersion curve were derived. For instance, the transmission

spectrum for a single HR is given by:

t =
cot (α2d2)− Z2

Z3
tan (α3d3)[

cot(α2d2)− Z2
Z3

tan(α3d3)
]

+ i
2
Z1
Z2

[
1 + Z2

Z3
cot(α2d2) tan(α3d3)

] (2.16)

where t is the transmission coefficient, α is the sound wavenumber (= ω/c), d is the length of

a given section, Z is the characteristic acoustic impedance, subscript 1 denotes the waveguide

section, subscript 2 denotes the neck section and subscript 3 denotes the cavity section of the

resonator.

The band gap appears for frequencies in which t = 0. These frequencies are given by:

cot (α2d2)− Z2

Z3
tan (α3d3) = 0 (2.17)

Compared to the previously derived resonance frequencies for lossless HRs (equation 2.10 and

2.12), equation 2.17 is applicable to a more general HR: the fluid in the neck and the cavity

may differ, and there is no restriction on acoustic compactness of the geometry (α << 1 is not

necessary for the equation). In fact, it was easily shown that for an HR with homogeneous fluid

and acoustically compact geometries, equation 2.17 reduces to equation 2.10 or 2.12, without

any restriction on the relative size of the neck with respect to the cavity.

As for the other cases that were analyzed, dispersion relation was derived for the infinite case,

whereas the transmission spectra were derived for the finite cases.

Several years later, J. Fey and W. M. Robertson [16] compared the analytical equation

derived by Z. G. Wang et al. [66] with experimental results. In their analytical study, they

extended the application of equation 2.16 to a series of non-identical resonators, by simply mul-

tiplying the transmission spectra for each individual resonators. In the experimental study, the
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Helmholtz resonator(s) was attached to a waveguide; where one end of the waveguide is attached

to a speaker (for acoustic signal generation) and the other end is attached to a microphone (for

acoustic signal reception). This experimental set-up allows for the measurement of transmission

spectrum, and is illustrated in figure 2.11. The comparison between experimental and analytical

transmission spectra are given in figure 2.12.

Figure 2.11: Experimental set-up
studied in reference [16] for a single

HR

Figure 2.12: Transmission spectra of
the experimental (a) and analytical for-
mulation (b) studied in reference [16]

It is to be noted that in the figure 2.11, only one resonator was illustrated in the experimental

set-up given by the authors. However, the transmission spectra of figure 2.12 were the results

of four detuned resonators.

Upon comparing the resulting transmission spectra, it can be seen that the general trend of

transmission dips is well-predicted with the proposed analytical equation. Discrepancies in the

transmission magnitudes can be seen at the low and large frequency limits in particular.

In 2012, J.H.Lu et al. [41] also analyzed an array of water-filled Helmholtz resonators. The

studied geometry is given at the top of figure 2.13.

The analysis were both numerical and experimental. The numerical analysis was performed us-

ing two-dimensional Finite-Difference Time-Domain (FDTD) methods, along with appropriate

boundary conditions: periodic boundary condition in x and a boundary condition that mini-

mizes reflection in y (referring to the geometry in figure 2.13.As for the experimental analysis,

an ”ultrasonic immersion transmission technique” was adopted. The aim of the two analysis is

to study the transmission spectrum of the system.
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The resulting transmission spectrum from both numerical analysis and experimental simulation

is given at the bottom of figure 2.13. Relatively good agreement can be seen between the two

analysis method, in particular for the prediction/measured transmission dips.

Figure 2.13: Experimental set-up
(a) and transmission spectrum (b) of
the HR array studied in reference [41] Figure 2.14: Comparison of analyt-

ically and numerically predicted reso-
nance frequencies in reference [41]

Different from the classical HR models previously discussed, there is a higher orders resonance

which gave rise to the second frequency transmission dip. This higher resonance frequency

behaviour was captured when a numerical simulation is performed after discretizing the appro-

priate partial differential equation, whereas the single mass-spring analogy in the classical HR

model (equation 2.10) only yields a single resonance frequency. The authors proposed a dual

mass-spring system in order to analytically model the higher order resonances. A comparison

between the analytical and numerical prediction of resonance for varying width of the neck is

given in figure 2.14. Good agreement can be seen.

Compared to the previously discussed studies, this paper adds a new method for the prediction

of HR-type metamaterial behaviour, namely a numerical method. Furthermore, higher order

resonance was found, which increases the range of operating frequency for the metamaterial.

Another study of an array of Helmholtz resonators was performed by D. Guan et al. [24].

This time, however, a different geometry of the resonator was analyzed. The geometry consists

of two necks and a cavity. This is illustrated in figure 2.15. The authors also considered an

electric circuit analogy for the Helmholtz resonator, the same analogy as the one presented in

reference [15].
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Figure 2.15: Geometry of the HR studied in reference [24]; (a) unit cell, (b) inductor-capacitor
circuit analogy and (c) array of HRs. Here, two necks can be seen in the unit cell

A numerical analysis was performed, solving the two-dimensional Helmhotlz equation which

governs single frequency sound propagations with the finite elements method (FEM). Acoustic

wave propagates in the x− y plane. Periodic boundary condition was employed in the y bound-

aries, through the use of Bloch-Floquet’s theorem. The band structure and the transmission

spectrum of the system were computed. The results are shown in figure 2.16 and 2.17.

Figure 2.16: Band structure of the
HR array studied in reference [24]

Figure 2.17: Transmission spectrum
of the HR array studied in reference [24]

Unlike the band structure given in figure 2.7, the band structure of figure 2.16 is for a two-

dimensional wave. The range of wave vectors within a 2D Brillouin zone was considered. As a

result, a new phenomena appears: namely, a partial band gap. This partial band gap represents

attenuation of sound for some angular direction of wave propagation only. Two partial band

gaps are represented in the band structure by the shaded areas which do not span the whole

horizontal (present in the frequency range of 1867 - 2746 Hz and 2769 - 3530 Hz). In addition

to the partial band gaps, three complete band gaps are present.

In the transmission spectrum, frequency dip 1-3 corresponds to the band gap (although the

authors commented that there may have been numerical errors around frequency dip 2) and

frequency dip 4 corresponds to the partial band gap.
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In terms of stabilizing a boundary layer, this concept of partial band gap may become important

when dealing with instabilities with cross-flow component.

More recently, in 2017, B. Liu and L. Yang [39] studied acoustic wave propagation in a pipe

attached with a series of Helmholtz resonators. The geometry of the problem is given in figure

2.18.

Two methods were employed: analytical and numerical. In the analytical method, a transfer

matrix formulation of the problem was derived, same idea to the one performed in reference [59],

although this time the authors started from a different partial differential equation. This transfer

matrix enabled an analytical formulation of the band structure (applicable to an infinite series

of HRs) and transmission coefficient (applicable to a finite series of HRs). As for the numerical

method, a simulation was performed with the commerical software COMSOL.

Several cases were studied: HR filled with only water, HR filled with air and water and account-

ing for wave propagation in the solid structure. The main result to be taken from these studies

is the good correlation between high transmission losses and the band gaps of the system. An

example of this correlation is shown in figure 2.19.

Figure 2.18: Geometry of the HR
series studied in reference [39]

Figure 2.19: Transmission loss spec-
trum of the HR series filled with air and

water, studied in reference [39]

It can be seen from figure 2.19 that in addition to the good correlation between the transmission

losses and the band gaps (given by the shaded regions), there is a good agreement between the

analytical transfer matrix method and the numerical simulation performed in COMSOL. An-

other observation that can be made, which has a greater practical implication, is the numerous

transmission peaks within the band gaps when elastic wall was considered. The implication is

lower effectiveness of sound attenuation in a realistic situation.

In conclusion, the HR-type metamaterial has been used to achieve attenuation of sound wave.

Analysis of the band structure/dispersion relation shows frequency gaps, known as the band

gaps, in which acoustic waves are attenuated. The analysis can be verified by considering the

transmission spectrum: band gaps correspond to the transmission losses. Several methods are

available in the literature in analyzing the band structure or the transmission spectrum of the

system, in three different types: analytical, numerical or experimental. The primary mechanism

for the creation of band gaps is the fundamental resonance of the system. Other mechanisms

include Bragg’s scattering and higher order resonance.
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The reviewed papers, however, did not deal with interaction of flow and the dynamics of the

Helmholtz resonators. Nevertheless, the methods and concepts present in the literatures dis-

cussed may serve as a basis for further analysis in taking into account flow over the resonator.

2.2.2 Membrane type

This section documents the findings on the membrane type metamaterial. The focus of the

membrane metamaterial literature review is on highlighting the results found in previous studies.

These results are then used to understand the physics and the methods of analysis used for

describing the behaviour of the membrane type metamaterial are noted down, to serve as a

starting point for the objective of attenuating TS waves.

The earliest membrane-type metamaterial was suggested by Z.Yang et al. [70], in which

they proposed a new type of structure in order to overcome the inefficiency of attenuating

sound at low frequencies with the use of mass-law. They proposed a rubber membrane, with

a mass attached (steel disk) at the centre. This unit cell is fixed onto a rigid grid. Numerical

simulation (using finite elements methods) and experimental analysis (using impedance tube

measurements) were undertaken to study the transmission spectrum (of sound waves going

through the structure) for this metamaterial. It was found that there was a transmission

dip between two transmission peaks, as shown in figure 2.20. This dip was attributed to the

superposition of two resonances at opposing phase, hence creating an anti-resonance (frequency

for which displacement is minimum). Also it is noted that the numerical and experimental

methods are in relatively good agreement for the prediction of sound transmission.

Another analysis based on the FEM simulation is the study of the spatially averaged mass

density, defined as spatially averaged normal stress divided by the normal acceleration. It was

found that this effective mass is negative near the frequency of the transmission dip as shown

in figure 2.21.
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Figure 2.20: Experimental (top)
and numerical (bottom) transmission
spectrum of the membrane metama-

terial studied in reference [70]

Figure 2.21: Effective mass of the
membrane type metamaterial studied in

reference [70]

Later on, Z.Yang et al. [69] extended the single-unit metamaterial to a panel, with the aim

of achieving broadband attenuation rather than just for a narrow frequency range. The same

behaviour in the transmission spectrum (i.e. a transmission dip between two transmission peaks)

was found with the panel, as can be seen at the top of figure 2.22. A new analysis in this paper

is the study of the normal displacement amplitude profile at the transmission dip frequency,

measured using laser vibrometer. This can be seen at the bottom of figure 2.22. In the inset of

the same figure, the average displacement for the different sound frequencies were plotted. It

can be seen that the average displacement at the transmission dip frequency is approximately

zero, for which the authors concluded to be the cause of the low transmission.
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Figure 2.22: Transmission spectrum
of a single and panel membrane-type
metamaterial (top) and displacement
amplitude profile at the transmission
dip frequency (bottom) of reference

[69]

Figure 2.23: Transmission spectrum
of different panels of membrane-type

metamaterial [69]

Finally, in the study it was found that stacking panels with different transmission spectrum

(which was done by varying the centre mass) made it possible to achieve broadband attenuation

(figure 2.23).

C. J. Naify et al. [46] also investigated the same single unit mass-attached membrane con-

figuration as reference [70]. They studied the effect of membrane tension and mass magnitude

on the transmission dip frequency, both numerically (finite elements analysis) and experimen-

tally (laser vibrometer measurements). Again, the numerical and experimental results are in

relatively good agreement.

Furthermore, they investigated the displacement profile at the transmission dip, and found the

same profile as the one found at the bottom of figure 2.22.

A new study that they conducted is the dynamic response of the mass-membrane structure

at the transmission dip frequency. The plot of acoustic pressure and structural acceleration

against time is given in figure 2.24. It can be seen that the acceleration and pressure are nearly

out of phase at the centre of the structure. On the other hand, slightly away from the centre,

the acceleration and the pressure are approximately in phase. In fact, this means that on

most of the structure, the pressure and displacements are nearly out-of-phase. This is because

the acceleration and displacement are out-of-phase of each other when a harmonic dependency

is assumed. This may be of interest, for instance, for a possible destructive interference of

Tollmien-Schlichting waves.
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Figure 2.24: Dynamic responses at transmission dip frequency of the membrane metamaterial
studied in reference [46]. (a): at the centre of the structure and (b): 0.8 mm from the centre

J. Mei et al. [43] studied a membrane type metamaterial with a different geometry: rectangular

rubber membrane attached to semi-circular iron plateletes. Two samples are studied, denoted

as sample A and B, which are shown in figure 2.25 and 2.26 respectively. Several characteristics

of this sample were investigated. Among others the studies are on the absorption spectrum

(with respect to an incident sound wave), the normal displacement profiles (eigenmodes) at

absorption peaks and the elastic energy density. The methods of studies are numerical (finite

element simulation with COMSOL®) and experimental. Three absorption peaks were obtained

for sample A (see the bottom of figure 2.26).

Figure 2.25: (a) Sample A and (b)
its absorption spectrum for the meta-
material studied in reference [43] (fig-

ure adapted from the reference)

Figure 2.26: (a)
Sample B and (b) its
absorption spectrum
for the metamaterial
studied in reference [43]
(figure adapted from the

reference)
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The lowest frequency for this absorption peak corresponds to flapping motion as corroborated

by the displacement profile. It is also shown the magnitude of absorption at the lowest frequency

is the largest (around 70% abosrption). This absorption corresponds to a large elastic/flexural

energy density which is attributed to the discontinuity in the first spatial derivative of the normal

displacement near the iron plateletes. Hence it is deduced that the energy of the acoustic wave

has been converted into flapping motion. Sample B was constructed in order to improve the

absorption by the flapping motion. Indeed, with sample B, the abosrption was shown to be

near unity (figure 2.26).

L. Y. L. Ang et al. [2] studied another variant of the membrane type metamaterial for

broadband sound attenuation. They studied a relatively large panel, which consists of hollow

tubes sandwiched by face sheets. Two cases were investigated: plain configuration as described

before and an addition of membrane placed in between the hollow tubes. An illustration is

given in figure 2.27. In particular, the transmission spectrum was studied using both numerical

and experimental methods. The results are given in figure 2.28.

Figure 2.27: Metamaterial configu-
ration studied in reference [2] (figure

adapted from the reference)

Figure 2.28: Numerically
(top) and experimen-
tally (bottom) obtained
transmission spectrum
of the metamaterial
studied in reference [2]
(figure adapted from the

reference)

Upon closer inspection, there is a relatively large discrepancy between the numerical and exper-

imental results. This discrepancy was attributed to the modelling of the numerical simulation:
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the problem treated was sound propagation within a waveguide whereas the experiment was

conducted in a reverberation chamber. Nevertheless, the general trends in the two results were

deemed to be similar. The main finding is the increase in transmission loss over the higher

frequencies (500-800 Hz) when membrane is added to the panel. This was attributed to one of

the resonance mode of the membrane.

In conclusion, the membrane type metamaterial has been shown to be capable of attenuating

sound considerably. There are numerous variations of this type of metamaterial. The most

important concept in characterizing this metamaterial is the resonance/eigenmode. Initially, the

metamaterial could only be used to attain attenuation for a narrow range of frequency. Upon

further development, the metamaterial attenuation frequencies could be tuned, or a broadband

attenuation could be achieved. For the interest of attenuating TS waves, two mechanisms of the

metamaterial were deemed to be useful: namely the out-of-phase acceleration of the structure

(which yields negative mass) and conversion of the incident flow energy into elastic energy

(without prematurely triggering transition).

2.2.3 Phononic crystal (PC)

Phononic crystals (PC) are structures with a certain periodicity in the acoustic/elastic property

(also known as superlattice [10]). The periodicity affects the propagation characteristics of

acoustic waves within the structure. They are analogous to the electromagnetic counterpart,

namely the photonic crystals [32]. The interest in these multi-layered structures stems from the

existence of band gaps, in which acoustic waves are attenuated [9],[37]. Note that this is the

same band gap discussed in the two previous metamaterials.

In the case of a one-dimensional phononic crystal, the periodicity is only along a single direction.

The structure is built upon a repeating unit-cell. This unit cell is composed of several layers,

two being the minimum [10][52]. The length of the period is equal to the length of the unit

cell. Typically, this length is comparable to the wavelength of interest [42]. An illustration of

this one-dimensional phononic crystal, along with the associated terminologies, is given in figure

2.29



Literature study - Acoustic metamaterials 26

Figure 2.29: An example of a one-dimensional phononic crystal. In this example, there are
four repeating unit cells where a unit cell is composed of two layers of different materials. The

layer material may be solid or fluid.

As mentioned before, an important consequence of this layered material is the existence of band-

gaps/stop bands due to the reflection/transmission which led to constructive and destructive

interference of acoustic waves within the structure [10]. Traditionally, the analysis is on the

wave that propagates within the structure and not for a wave that interacts at the interface of

the structure. Hence, the study of the interaction between TS waves and phononic crystal is a

relatively new area of research.

This subsection is divided as follows: first, the motivation for the use of phononic crystal shall

be discussed in sub-sub-section 2.2.3.1. This sub-sub-section outlines the important properties

of a PC that are relevant in the analysis of an interaction with TS waves. Then, different

methods for analyzing a PC shall be discussed in section 2.2.3.2.

2.2.3.1 Motivation for the use of phononic crystal

The main motivation comes from a result of the research done in reference [30], in which in-

stabilities within a water-filled channel flow interact with a one-dimensional phononic crystal

embedded on the wall of the channel. The geometry of the problem is illustrated in figure 2.30.

A full numerical fluid-structure interaction was performed, along with analyses of the isolated

structure.

Three important results are stated here. Number one is that the displacement of the phononic

crystal at the fluid-structure interface and the instability waves in the fluid are found to be

out-of-phase for frequencies that lie within the bandgap of the phononic crystal.

Number two, the out-of-phase displacement correlates with a reduction of (temporally-averaged)

kinetic energy of the disturbance flow field when compared to where there is no phononic crystal

on the wall (rigid wall). This reduction in energy is illustrated in figure 2.31. It is remarked

that the kinetic energy was integrated along the wall-normal and spanwise directions.
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Figure 2.30: Geometry of PC-
embedded channel flow studied in ref-
erence [30] (figure adapted from the

reference)

Figure 2.31: Development of disturbance
flow kinetic energy along the streamwise di-
rection [30] (figure adapted from the refer-

ence)

The third important result is that, the amplitude of the out-of-phase displacement is found to

be largest closest to the ”truncation frequency”. This truncation frequency is a characteristic of

the finite structure, and was found through a relatively simple one-dimensional forced-vibration

problem. In fact, as shall be seen later on (see for instance, section 4.1), this truncation frequency

is an eigenfrequency of the phononic crystal that lies within the band gap.

Hence, it is hypothesised that it may be possible to stabilize an amplifying disturbance where the

pressure wave and the displacement are out-of-phase. It is noted that the integral disturbance

flow kinetic energy integral has also been used in previous studies as a measure of stability[19]

(among other variables such as the streamwise disturbance velocity[19][51][55], the square of the

streamwise disturbance velocity [19] and the local kinetic energy (mentioned in [19] and [53])).

Thus, a reduction in the kinetic energy may be considered as stabilization.

This stabilization occurs for frequencies within the bandgap of the phononic crystal, and the

largest stabilization occurs for frequencies that are closest to the truncation frequency (due to

a larger displacement, resulting in a greater effect on the flow).

This promising numerical result causes the choice of further studying the phononic crystal for

stabilization of TS waves to be more appealing. Furthermore, compared to the Helmholtz

resonators, the assumption of acoustic response within the metamaterial structure becomes less

dangerous. Finally, compared to the membrane type metamaterial where the problem is either

axissymmetric or fully three-dimensional, the phononic crystal can be analyzed in the two-

dimensional space (as shall be seen in section 2.2.3.2) which matches that of the linear stability

analysis of flows with no cross-flow.

The reference paper [30] did not provide analysis on the streamwise disturbance flow velocity.

Furthermore, only a few number of TS wave frequencies were tested, rather than a frequency

sweep. It is assumed that the simulation time was restricting a frequency sweep. Thus, there

are still areas to be investigated in the study of stabilization of TS waves with the phononic

crystal.
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2.2.3.2 Methods for phononic crystal analysis

Currently, there are several methods are available in literature in predicting the dispersion

relation of a phononic crystal: transfer matrix method (TM), Green’s function method (also

called ”Interface Response Theory” (IRT)), plane-wave expansion (PWE) method and finite

elements (FEM) method. The following paragraphs discuss each method separately. While the

main focus of the paragraph is on reviewing the method of analysis, a very brief introduction

to the study of waves in layered media shall be given in the discussion of the TM method.

Moreover, results of PC analyses will be shown in the discussion of the FEM method.

a. Transfer Matrix (TM) Method

The first method (transfer matrix) is attributed to Thomson [61] in solving the bulk waves

within stratified solids and later improved by Haskell [25], allowing for surface waves (waves

that attenuate as it propagates away from the surface). The main goal of the method is to

relate the variables (either combination of displacement and stresses, or amplitudes) at one

interface with another interface. Hence, this problem is applicable to a finite structure.

Where a one-dimensional infinitely-repeating unit cell is considered however, there is a relatively

more simple formulation presented in numerous references for different problems as listed below:

1. Transverse waves [5] (also as waves with ”out-of-plane modes” [65] or ”shear horizontal

modes”[29] because the displacement associated to the travelling wave is in the z direction

(or in the direction perpendicular to the page), referring to the coordinates system of figure

2.29).

2. Sagittal waves [11] (also called as waves with ”in-the-plane modes” [65] or ”mixed modes”

[29]. This is because the displacements attributed to the wave are in the x and y direction,

referring to the coordinate system of figure 2.29)

3. Longitudinal and transverse waves propagating only in the direction perpendicular to the

layers [14], [31], [58], [65]

The above classification of problems is applicable only if the layers are made of isotropic solids

[11][29][65].

The steps taken in formulating a transfer matrix solution are given in the following list:

1. Set-up the equation of motion.

2. Remark that the solution to the partial differential equations (i.e. the solid displacements)

can be built from wave modes

3. Relate the displacement and stresses to amplitudes of the wave function (the stress can

be derived from the displacement from the constitutive relation).

4. Relate the displacement and stresses at one end of the layer, say the left-end, to the other

end of the layer, say the right-end. This yields a transfer matrix for the j-th layer.
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5. Apply continuity of stresses and displacement. The previous step is then repeated for all

layers, and the resulting transfer matrix that relates the stresses and displacements at the

beginning of the first layer to those at the end of the n-th layer is given by the product of

consecutive transfer matrix of the j-th layer

6. In the case of an infinite system, apply periodic boundary condition through Bloch’s

theorem.

Returning to the interaction between TS waves and elastic waves within the PC, the fluctuating

pressure and stress that is impinging on the PC at the fluid-structure boundary would excite

sagittal wave responses. This means that there can be displacements in both x and y directions

(referring to figure 2.29).

For the design of the PC, further assumptions are made: (1) the problem is 2-dimensional

(spatial derivative in the direction normal to the screen is zero, referring to figure 2.29) and (2)

the streamwise width of the PC will be very narrow (much smaller than the local wavelength

of the TS waves). Furthermore, the PC is surrounded by rigid structure. The aim for these

assumptions is to simplify the problem such that only longitudinal waves that propagate in the

y direction should be considered; that there are no waves propagating in the x direction.

b. Green’s Function Method/Interface Response Theory (IRT)

The second method is based on Green’s function, the so-called ”Interface Response Theory”

(IRT) [10][12][13][60]. This method requires one to find the Green’s function of the reference

system (meaning that one needs to find the Green’s function of each of the material that

constitutes the layer). This reference Green’s function is then related to the (finite) structure’s

Green’s function (i.e. the Green’s function of the finite layers) through the equation for Interface-

Response Theory.

The eigenmodes are obtained by setting the determinant of the structure’s inverse Green’s

function to zero (which, essentially finds the non-trivial solution of the dynamical problem).

Alternatively, one can also find the eigenmodes by finding the poles of the Green’s function of

the finite structure [10].

Additionally, the IRT method can also be used to find the dispersion relation of an infinitely

extending system. Here, it is sufficient to say that the dispersion relation obtained through the

Green’s function method (for a two-layered one-dimensional PC) is the same as the TM method

(equation 3.20)An extra condition is imposed on the finite structure: the eigenmodes of the

phononic crystal is quantized. Only the following are allowed within a branch of the passband:

qD =
mπ

N
(2.18)

where q is the global wavenumber (or the Bloch’s wavenumber), D is the length of the unit cell,

m = 1, 2, ..., N − 1 and N being the number of the unit cell. Hence there are N-1 eigenmodes

within a branch in the pass-band (i.e. frequencies outside the bandgap) and a single mode in

the bandgap, N being the number of unit cells. This quantization of the wavenumber of the
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finite structure is similar to the result in reference [5] for the study of transverse waves in a

finite slab of layered structures.

c. Plane-Wave Expansion (PWE) Method

The following paragraphs briefly describes the findings on the plane-wave expansion (PWE)

method for the analysis of phononic crystals. This method was initially proposed in reference

[38]. The basis of the method is to express the displacements and elastic properties as a complex

Fourier series with unknown coefficients. They are then substituted into the equation of motion

of (linear, elastic, isotropic) solids which then sets up an eigenvalue problem. Band gaps may

be predicted with this method.

A brief overview of the method and the resulting system of equations is also given in reference

[29]. This is essentially a numerical method. Their validity have been compared with finite

elements method as given in reference [68] and [18] (through comparison of the frequency ranges

of the band gap in the dispersion curves and the dip in the transmission spectra).

d. Finite Elements Method (FEM)

Finite elements method (FEM) (meaning numerically analyze the governing partial differential

equation with this discretization technique) can also be applied for the analysis of a phononic

crystal. This has been done in several papers, as shall be corroborated in the following para-

graphs. The starting point is the same as all the other methods, that is, the equations of motion

(balance of linear momentum for linear, elastic, isotropic solids). The primary unknowns are

the solid displacements. The equations are discretized and the solutions give information on the

behaviours of the phononic crystal.

There are two types of studies that can be performed with FEM: namely, an eigenvalue analysis

and a frequency response study. In both cases, a harmonic time dependency is assumed on

the solid displacements. The eigenvalue analysis can be used to obtain the band structure of

the phononic crystal, whereas the frequency response study can be performed to obtain the

transmission spectra.

Hussein et al. [31] studied the propagation of longitudinal waves in the direction perpendicular

to the layering using FEM. Essentially, the problem is one-dimensional; and the discrete equation

for the frequency response study is given in the following form:

(−ω2M + K)D = F (2.19)

where ω is the angular frequency of the driving force, M is the mass matrix, K is the stiffness

matrix, D is the vector of displacement and F is the force vector. The discretized system of

equations is solved with appropriate boundary conditions. D is solved given an ω, which yields

the steady-state displacement field. As mentioned before, this strategy can be used to study

the transmission of the PC structure. An example this study is given in figure 2.32.
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Figure 2.32: Transmission spectra of phononic crystal structures with different number of
unit cells (defined as the maximum displacement at the opposite end of the applied force). The
darker area shows the band gaps of the unit cell, as predicted by transfer matrix method. [31]

An important result shown in the figure above is the correlation between transmission spectrum

and band gap: low transmissions happen inside the band gap. Hence, the band gap is a property

of the unit cell which gives a good qualitative prediction of the transmission of the corresponding

finite phononic crystal structure.

Furthermore, it is interesting to note that there are no transmission peaks in the band gap,

as suggested by the result of the Green’s function method (IRT) in the previous paragraph.

This is because the unit cell of the phononic crystal structure (which produced figure 2.32) is

symmetric [10]. Hence, it is imperative that we do not choose a symmetric unit cell for the TS

wave attenuation problem.

As for the eigenvalue problem, the vector F is set to 0 in equation 2.19 and D becomes the

eigenvector of the problem. Same as before, the problem is accompanied by appropriate bound-

ary condtions. Solving the system for the eigenvalue yields the band structure of the phononic

crystal. An example is given in figure 2.33.
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Figure 2.33: Natural frequencies of a one-dimensional phononic crystal structure, fixed at one
end (given by the + symbol) [31]

Here, there are no eigenfrequencies in the band gap (as mentioned before, due to the symmetry

of the unit cell [10]).

Hladky-Hennion and Billy [28] performed both an experimental and numerical (FEM) study

of a type of phononic crystal consisting of beads with alternating masses. One sample is shown in

figure 2.34. The study is on the transmission spectrum. A comparison between the experimental

and numerical transmission spectra is given in figure 2.35.

Figure 2.34: Sample of the
phononic crystal studied in refer-
ence [28], also showing the experi-

mental set-up

Figure 2.35: Experimentally (a)
and numerically (b) obtained trans-
mission spectra of a phononic crystal

studied in reference [28]
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The transmission spectra shows a localized resonance mode amid transmission dip. Furthermore,

it can be seen the experimental and numerical value of this resonance frequency are in good

agreement.

Graczykowski et al. [21] studied the dispersion and transmission of surface acoustic waves

for a pillar-like phononic crystal using FEM. The geometry of the phononic crystal is given in

figure 2.36.

Figure 2.36: Phononic crystal structure studied in reference [21]. The unit cell (figure (a))
was used to find the band structure/dispersion relation, while the finite structure (figure (b))

was used to perform the frequency response study

The surface acoustic waves propagate in the x1 direction, and evanescent in nature in the x2

direction (referring to the coordinate system in figure 2.36).

The resulting band structure of surface acoustic waves (SAW), transmission, reflection and

bulk-to-surface acoustic loss spectra are given in figure 2.37. As a side note, here, in the band

structure, they have distinguished different types of SAW: the true SAW modes are shown by

the red curves and the pseudo SAW modes are shown by the blue curves. The true and pseudo

SAW are distinguished by the magnitude of decay of the wave amplitude as we move towards

−x2 direction (the true SAW having more decay, and the pseudo SAW having less decay).

Figure 2.37: Band structure (a), transmission (b), reflection (c) and surface-to-bulk losses
spectra of the phononic crystal studied in reference [21]. The resulting spectra for the phononic

crystal structure are given by the blue curves.
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Upon comparing the band gaps of the band structure and the dips in the transmission spectra

(given by the blue curve); it can be that they correlate very well: band gaps results in low

transmission.

One interesting observation of the band structure is the existence of local resonance in the band

gap. This is denoted by a dotted line labelled ”LR0” in figure 2.37. This corresponds to local

transmission peak (amid the transmission dip) in the transmission spectrum.

The final result from FEM analysis that shall be shown in this section is the result of the study

by Graczykowski et al. [22]. FEM analysis was performed on a surface phononic crystal

(shown in figure 2.38). The band structure for the surface acoustic waves were obtained by

FEM and experimental method (called ”Brillouin Light Scattering” technique) and it is given

in figure 2.39.

Figure 2.38: Sample of the phononic
crystal studied in reference [22]

Figure 2.39: Experimentally (circles) and
numerically (solid lines) obtained disper-
sion relation of the phononic crystal studied

in reference [22]

This example is used to simply illustrate the accuracy of the FEM method; relatively good

agreement was found between the FEM method and the experimental data. The general trend

of the dispersion curves are in excellent agreement. Discrepancy is on the extent of the existence

of the modes.

As a final remark, some of the FEM results were used to investigate waves that are more

complicated (multiple wave vector components and direction of propagation/polarization); while

in this report the main example of the transfer matrix method was used to tackle simpler

problems (one wave vector, one displacement component).

2.2.4 Choice of metamaterial

In this literature study, three types of metamaterials were reviewed: the Helmholtz-resonator

(HR) type, the membrane type and the phononic crystal. Studying the interaction of any of the

aforementioned metamaterials with TS waves is a valid research area. However, in this thesis,
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only one shall be further analyzed in order to answer the research question. The explanation of

the choice is given in the subsequent paragraphs.

The discussion begins by considering the HR and membrane type metamaterials. The basis

for the working of these metamaterials is resonance. However, in the practice of attenuating

acoustic waves, differences exist. The resonance frequency of HR type metamaterial is the

frequency in which acoustic waves are attenuated. Around this frequency, the displacement

of air within the neck is the largest. In contrast, it is the frequency of anti-resonance (which

lies somewhere between two resonance modes) where sound transmission is minimum in the

membrane-type metamaterial. The displacements of the membrane structure are minimum

around this frequency. In the context of utilizing these two metamaterials for the stabilization

of TS waves, it is believed that the traditional working principle of HR type metamaterial is

more prone to success. This is because it is necessary for the metamaterial system to have

a larger response in order to interact with the TS wave. This is not the traditional working

principle of the membrane-type metamaterial, where minimum displacement is sought for.

There are also differences in the geometrical orientation of the metamaterial when used to

attenuate acoustic waves. In the case of HR metamaterial, the acoustic wave travels adjacent

to it (for instance, see figure 2.5). As for the membrane type, the acoustic wave has to pass

through the system. Therefore the orientation of HR type metamaterial is more suitable to

dealing with the flow problem (see figure 2.1 for the orientation of flat plate (where a part of

the surface would have to be replaced by a metamaterial eventually) in a boundary layer flow).

Finally, this thesis project aims at studying flow stabilization with metamaterials with sim-

pler flow geometry. The HR type metamaterial can be analyzed in a two-dimensional frame-

work, which fits with the two-dimensional boundary layer. On the other hand, the membrane

type metamaterial has only been analyzed in the three-dimensional framework. With this, the

metamaterial is dropped and further comparison shall be made between the two remaining

metamaterials.

Consider the comparison between HR type metamaterial and the phononic crystal. In their

interaction with acoustic waves, these materials work with different principles. The HR type

metamaterial relies on resonance in attenuating sound as mentioned, whereas the phononic

crystal relies on the band gap. This band gap is a result of analysis of (acoustic/elastic) wave

propagating within the structure. Therefore, in theory there should be no relation with any

wave outside of the phononic crystal (such as a possible TS wave). However, as highlighted in

the literature study, one research showed that it is possible to achieve damping of TS wave’s

kinetic energy when its frequency lies within the band gap of the phononic crystal [30]. The

cited research also highlighted the importance of the resonance frequency within the band gap:

as the decrease of TS wave kinetic energy is largest near the resonance. Hence, in the context

of TS wave stabilization, resonance is important in both HR type metamaterial and phononic

crystal.

The orientation of the phononic crystal can also be made to fit in the geometry of the flat plate

boundary layer, as is the case for the HR type metamaterial. Furthermore, a two-dimensional

analysis has also been performed in this metamaterial. Hence, the downsides of the membrane

type metamaterial are not present in the phononic crystal.
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The advantage of phononic crystal over the HR type matematerial is that there is no risk in

assuming the governing physics within the metamaterial in the context of stabilizing TS waves.

This shall be explained as follows. In the case of HR type metamaterial, the physics of the fluid

is assumed to be governed by acoustic wave equation. The necessity of this assumption comes

from the fact that both the air within the flow (i.e. the air on the flat plate) and the air within

the HR type metamaterial are continuous (unless a liquid wants to be used to fill the HR).

On the other hand, one does not need to assume the governing physics within a phononic crystal:

the classical structural mechanics model should be sufficient. This is because there is a clear

difference between the media of flow and the metamaterial. One simply needs to choose the

correct structural model.

On the basis of the discussion given in the previous paragraphs, the phononic

crystal was chosen as the metamaterial to be further studied in this thesis. The

promising numerical result of TS wave stabilization also motivates for the use of phononic

crystal. Nevertheless, there are still objectives to fulfil, as given by the following list:

• Investigate if there exists a feasible design space of the phononic crystal for unstable TS

wave frequencies with air as the medium.

• Use a more accurate model for the speed of sound in solids.

• Use a more complete PDE for the equation of motion: include displacements in multiple

directions.

• Design a shorter phononic crystal

• Perform a frequency-sweep in the FSI simulation

• Investigate other physical properties in the resulting flow domain other than the kinetic

energy (such as the disturbance velocity components and/or pressure)

The next chapters shall present the work done in the thesis project. The goal is to simulate the

fluid-structure interaction problem with a high degree accuracy numerical simulation. Before

that, the condition of this higher accuracy simulation should be chosen properly. This includes

choosing the flow conditions (such as freestream velocity and choosing the correct TS waves in

which instability exist) and designing the phononic crystal. Chapter 3 treat these problems,

as well as explaining the method for the higher accuracy simulation. Chapter 4 presents and

discusses the results of the numerical simulation. Finally, chapter 5 concludes this thesis by

answering the research questions and giving recommendation in which the present simulation

can be improved, which can be used for future studies.



Chapter 3

Methodology

This chapter explains the method used to study of stabilization of TS waves with a metamaterial.

As mentioned in section 2.2.4, the chosen metamaterial unit is the phononic crystal. The type

of the study performed in this thesis is two-dimensional numerical simulation.

The methodology is divided into four parts. In the first part (section 3.1), a relatively simple

technique of analysis is discussed and employed in order to identify a set of flow conditions which

will be studied with high accuracy simulations. In the second part (section 3.2), the phononic

crystal is designed with analytical equations according to the chosen simulation conditions. In

third part (section 3.3), the method used to simulate the FSI problem shall be explained in

detail. Finally, in the last part (section 3.4), the verification and validation procedures shall be

described.

3.1 Design of simulation conditions

In this thesis study, the problem of instabilities will be tested on the flow over a flat plate. Part

of the flat plate will be replaced by a phononic crystal. An illustration of the problem is given

in figure 3.1.

Figure 3.1 shows how the phononic crystal structure should be implemented in practice: a

substrate, which is ideally rigid, should support the phononic crystal. However, in the numerical

simulation, the supporting structures will be replaced by appropriate boundary conditions. As

a remark, the intention is to lubricate the right and left sides of the phononic crystal. The

motivation for this is to ensure there is as much displacement of the phononic crystal as possible,

in order to obtain larger effects on the flow.

37
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Figure 3.1: Sketch of the FSI simulation set-up (not to scale). The rigid structure represents
fixed boundary conditions

The choice of the flow conditions stem from three main reasons: (1) the conditions should be

attainable with TU Delft’s A-Tunnel1 for future experimental studies, (2) the flow should not

violate the incompressible assumption of Orr-Sommerfeld equation and (3) the conditions are

used to design the phononic crystal.

As indicated above, the stability analysis for the design of flow conditions was performed us-

ing the Orr-Sommerfeld equations (equation 2.8). In the equation, the following variables are

important in describing the flow conditions:

1. Freestream velocity V∞

2. Basic flow field V

3. Frequency of the TS wave fTS

4. Wavenumber of the TS wave kTS

5. A measure of the amplitude, the so-called N -factor [62]

Two types of stability analysis can be performed, namely a spatial and temporal stability

analysis. The former shall be chosen considering the first reason. In experimental conditions,

TS waves are typically excited with either a vibrating ribbon (from [55] as mentioned in [54])

or wire [44], acoustics (i.e. with a loudspeaker such as those found in reference [20] and [23])

and plasma actuator [7]. With TU Delft’s equipment, it is possible to specify the frequency of

the TS wave rather than the wavenumber. This is done with the help of a plasma actuator.

Furthermore, it is known that the incompressible approximation is a reasonable approximation

for Mach number below 0.3 as a rule of thumb [1]. Under standard sea-level conditions, a

freestream velocity of 20 m/s is below this threshold. Hence, this value of freestream velocity

shall be chosen. This velocity is indeed attainable by the A-Tunnel.

As for the basic flow field, this is specified by the geometry of the solid that produces boundary

layer: a one-metre flat plate at zero angle of attack. This means that the flow over the body

1https://www.tudelft.nl/lr/organisatie/afdelingen/aerodynamics-wind-energy-flight-performance

-and-propulsion/facilities/low-speed-wind-tunnels/a-tunnel

https://www.tudelft.nl/lr/organisatie/afdelingen/aerodynamics-wind-energy-flight-performance-and-propulsion/facilities/low-speed-wind-tunnels/a-tunnel
https://www.tudelft.nl/lr/organisatie/afdelingen/aerodynamics-wind-energy-flight-performance-and-propulsion/facilities/low-speed-wind-tunnels/a-tunnel
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has zero pressure gradient, for which a computation of the velocity profile yields the Blasius

velocity profile [3].

A spatial stability diagram is produced using the aforementioned V∞ and V with Orr-Sommerfeld

equation shown in figure 3.2.
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Figure 3.2: Stability diagram generated using the Orr-Sommerfeld equation for V∞ = 20 m/s.
A TS wave which have a combination of frequency and position within the ”thumb-like” curve

is unstable (in other words, the imaginary part of its wavenumber is negative).

As mentioned in section 2.1, the waves with negative kTS,i have a growing amplitude i.e. un-

stable. A point shall be chosen inside the thumb-shaped curve (neutral stability line) for the

more-detailed stabilization problem with phononic crystal. This point specifies the frequency

of the TS wave and the streamwise location of the phononic crystal.

Ideally, the chosen frequency should be close to the eigenfrequency of the phononic crystal (to

be elaborated in section 3.2). The process is therefore iterative: starting with an initial choice

of frequency, a phononic crystal shall be designed. If the phononic crystal is does not have an

eigenfrequency close to the initially chosen frequency, then another frequency shall be chosen

to accommodate the phononic crystal. At this stage, the initial choice of frequency is 300 Hz.

This frequency is also within the frequency range that the plasma actuator can generate.

With the choice of frequency, the other variables that were given in the beginning of this

subsection can now be considered. kTS,r and N -factor were also computed along with kTS,i,

although not shown.

As stated, N -factor is a measure of amplitude. In fact, it is the exponent of the amplitude ratio

between the amplitude at a point of instablity (lying on the neutral curve) and another point
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downstream. It is also equivalent to the integration of the growth rate (in reference [62], the

symbol σ was used). Hence, a larger N -factor denotes a larger amplitude. A sufficiently large

N -factor is desirable since for future experimental studies, the TS waves have to be properly

distinguished from possibly noisy measurements. For the chosen frequency of 300 Hz, the largest

N -factor was found to be 2.9244 which is the case at the station x = 0.65 m. Hence, this station

shall be chosen as the mid-point of the phononic crystal. At this location, kTS,i ≈ 2.73 rad/m

and λTS ≈ 2.30 cm.

Finally, an investigation was performed on the wavelength of the TS wave (λTS) using the

computed wavenumber (λTS = 2π/kTS,r). For the chosen frequency of 300 Hz, the plot of λTS

against the streamwise coordinate x is given in figure 3.3.
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Figure 3.3: Wavelength of TS wave (λTS) over the streamwise direction (x) for V∞ = 20 m/s
and fTS = 300 Hz

As can be seen from figure 3.3, the wavelength of the TS wave is in the order of centimetres.

Therefore, the width of the phononic crystal (wPC) shall be in the order of milimetres. The

advantage of this difference in the order of magnitude of the dimensions is that the fluid-

structure interface of the phononic crystal does not experience a large streamwise variation of

the pressure. This implies that for the modelling of the load-response of the phononic crystal,

a uniform load can be used (instead of a streamwise-varying load). To this end, the width of

the phononic crystal is chosen to be 1 mm.

The flow conditions (and some PC specifications) are summarised in table 3.1.
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Variable Value Unit

V∞ 20 m/s

fTS 300 Hz

N factor at PC 2.92 -

kTS,r at PC 2.73 rad/m

λTS at PC 2.30 cm

xPC 0.65 m

wPC 1 mm

Table 3.1: Design flow and PC conditions

In addition, table 3.2 gives non-dimensionalized quantities of several quantities given in the

above table to three significant figures.

Non-dimensional variables Value

wPC/λTS 4.35×10−2

V∞ xPC/ν 8.58×105

V∞ δ
∗
PC/ν 1.59×103

fTS ν/V
2
∞ 1.14×10−5

Table 3.2: Non-dimensional quantities of the flow condition

3.2 Design of the phononic crystal

Two properties of the phononic crystal are investigated: the band structure/dispersion relation

and the eigenfrequency that lies within the band structure. The first property is desirable in

order to find the band gap frequencies of the phononic crystal, which, according to the result of

reference [30], correlates with an out-of-phase response. On the other hand, the second property

(eigenfrequency) is desirable to find the forcing frequency that yields a large displacement.

Overall, the aim is to have an out-of-phase displacement (with respect to the harmonic pressure

load that is imposed by the TS wave) with as large displacement as possible. This aim was also

described in reference [30].

To obtain the aforementioned properties, analytical results from two methods of analysis shall

be used. The dispersion curve of the phononic crystal can be obtained from the analytical result

given by the Transfer Matrix Method and Interface Response theory. This shall be discussed in

more detail in section 3.2.1. The eigenfrequency that lies within the band gap can be obtained

using the analytical result given by the Interface Response Theory, which shall be discussed in

detail in section 3.2.2. Final, the results of applying the two aforementioned methods are shown

by giving the chosen unit cell (in section 3.2.3).
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3.2.1 Dispersion relation of the phononic crystal

The Transfer Matrix method for the analysis of multilayered media has been discussed in several

papers, as given in the literature study (section 2.2.3). Analytical results of the dispersion

relation have been derived in previous papers for specific cases. However, it is thought to be

beneficial to outline the method again in this report, in order to be able to reflect upon the

assumptions used on the modelling of the phononic crystal.

The outline of the Transfer Matrix method shall follow closely the one given in reference [31].

However, the starting point is different: in this thesis report, the equation of motion is given by

the full three-dimensional equation for a linearly elastic, isotropic solids: [40]:

ρ
∂2u

∂t2
= (λ+ µ)∇(∇ · u) + µ∇2u (3.1)

where ρ is the solid mass density, u = [ux uy uz]
T is the displacement field, t is time, and λ and

µ are Lame’s constants. It is noted that the material properties (λ and µ) are out of the spatial

derivatives, as is the case in the general equation of motion for any solids (see, for instance,

reference [21] where the material properties are embedded in the elements of the generalized

stiffness tensor). This is because the equation of motion will be applied to each layer separately,

where the layer is homogeneous.

The phononic crystal geometry for the analysis is given in the following figure.

Figure 3.4: Geometry of the PC

The phononic crystal has infinitely repeating unit cells, and within a unit cell there are J layers.

Later on, this infinite number of unit cells is represented by a periodic boundary condition.
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Important properties that define the jth layer are ρj , λj , µj , and dj (layer thickness or length

of the layer in the y direction). As a side note, λj and µj shall be replaced by engineering

constants Ej (Young’s modulus) and νj (Poisson’s ratio), which are also enough to describe the

displacement field of a linearly elastic, isotropic solids.

It is also remarked that the orientation of the phononic crystal is vertical, as is the case for

the fluid-structure interaction problem (figure 3.3). Consequently, the direction parallel (x) and

perpendicular to the layers (y) of figure 3.4 are aligned with the streamwise and wall-normal

direction respectively.

Returning to the equations of motion, the following simplifications were made in order to reduce

the problem into being one-dimensional: spatial derivatives in the x and z directions are zero

(where z is the direction normal to the page). Furthermore, considering the context of the

FSI problem, it is assumed that the phononic crystal primarily deforms in the y direction as

the pressure wave (due to pressure fluctuation from TS waves) imposes much greater stress

onto the structure than the shear-stress wave due to fluctuation in the flow velocities (this

assumption is applied only for the design of the phononic crystal; in the full FSI simulation,

this assumption was dropped). Hence, the equations for the displacement in y is considered,

whereas the equation for the displacement in x is disregarded.

The equation for the displacement of structure in the y direction is given as follows:

ρ
∂2uy
∂t2

= (λ+ 2µ)
∂2uy
∂x2

(3.2)

Upon closer observation, this equation is in fact a one-dimensional wave equation with the

following wave speed:

c =

√
λ+ 2µ

ρ
(3.3)

This wave speed is in fact the same as the one derived for a three-dimensional problem [40].

Furthermore, the wave speed can be expressed in terms of Young’s modulus (E) and Poisson’s

ratio (ν) [40] as follows:

c =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(3.4)

From here on, the steps to derive a Transfer Matrix formulation of the structural problem follows

from reference [31]. This is outlined as follows:

1. Starting from the first layer of the unit cell (see figure 3.4), take travelling waves as the

solution of equation 3.2. Explicitly, this is given by:

uy,1(y, t) = (A+,1e
ik1y +A−,1e

−ik1y)e−iωt (3.5)
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where with e−iωt time dependence, A+,1 and A−,1 represent the amplitude of the wave

travelling in the positive and negative y direction respectively. The subscript 1 denotes

quantities that belong to the first layer. Furthermore, k1 is the wavenumber and ω is the

angular frequency. This wavenumber is given by k1 = ω/c1.

2. Derive the stress (σ) from uy using the following equation:

σ1 = (λ1 + µ1)
∂uy,1
∂y

(3.6)

3. Collect uy,1 and σ1 in a vector, say, vector y1. Similarly, collect A+,1 and A−,1 in another

vector, say, vector b. The two are related by a matrix, say, matrix A, as follows:

y1 = A1b1 (3.7)

The elements of the matrix are easily derived from equation 3.5 and 3.6. It is noted that

the above equation relates a to y at any point in the layer, including the interfaces.

4. Relate y at the top interface of a layer to the bottom interface of the same layer layer.

This yields another matrix, say, matrix B1:

ybottom
1 = A1B1b

top
1 (3.8)

The elements of matrix B1 are easily derived using equation 3.5, 3.6, and noting that

there is a shift of dj between the two interfaces.

5. Use equation 3.7 to express atop
1 in terms of ytop

1 , and substitute this into equation 3.8:

ybottom
1 = A1B1A

−1
1 ytop

1 (3.9)

6. Apply continuity of displacement and stress at the layer interface: ytop
2 = ybottom

1 . Upon

closer observation, this means that A1B1A
−1
1 is the Transfer Matrix that relates ytop

2 with

ytop
1 . Therefore, denote T1 = A1B1A

−1
1 and this yields:

ytop
2 = T1y

top
1 (3.10)

7. It can be seen that this process can be repeated multiple times going through succes-

sive layers to relate ybottom
J with ytop

1 . One would then find a multiplication of Transfer

Matrices as one travels through the layers:

ybottom
J = TJTJ−1...T1y

top
1 (3.11)

The multiplication of Transfer Matrices yields the Transfer Matrix of the unit cell, denoted

as T:

T = TJTJ−1...T1 (3.12)

8. An infinitely repeating unit cells is considered to find the dispersion relation. Applying

Bloch’s [59][65] (or Floquet’s [31][58]) theorem to account for the periodicity of the top

and the bottom of the unit cell yields:

ybottom
J = eiqDytop

1 (3.13)
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where q is the Bloch’s (or Floquet’s) wavenumber and D =
∑J

j=1 dj is the thickness of

the unit cell.

9. Use equation 3.11 and 3.13 to eliminate ybottom
J . Furthermore, drop the subscript and

superscript in ytop
1 . This results in:

Ty = eiqDy (3.14)

The condition for the non-trivial solutions yields the dispersion relation (relation between

ω and q) of the phononic crystal:

det(T− IeiqD) = 0 (3.15)

In this thesis, designs of two- and three-layer unit cells are investigated (J = 2 and J = 3

respectively). The motivation for investigating a three-layer unit cell in addition to the two-

layer unit cell is to see if the three-layer unit cell can yield a shorter unit cell given the chosen

fTS; as the problem of lengthy unit cell was prevalent in reference [30].

The dispersion relation for the two-layer unit cell shall be derived in detail in the following

paragraphs. The dispersion relation for the three-layer unit cell follows the same steps, and

only the result will be shown.

The elements of Tj has been computed explicitly by Hussein et al. and shown in reference [31].

This is given in equation 3.16.

Tj =

[
Cj

1
Zj
Sj

−ZjSj Cj

]
(3.16)

where Cj = cos
(
ω dj
cj

)
, Sj = sin

(
ω dj
cj

)
, and Zj = ρj cj ω. For brevity, the elements of Tj will be

shortened as follows:

Tj =

[
aj bj
cj aj

]
(3.17)

The Transfer Matrix of the two-layer unit cell is therefore given by:

T =

[
a1 b1
c1 a1

][
a2 b2
c2 a2

]

=

[
a1a2 + b1c2 a1b2 + b1a2

c1a2 + a1c2 c1b2 + a1a2

]
(3.18)

Substituting the above into equation 3.15 yields:
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det

([
a1a2 + b1c2 − eiqD a1b2 + b1a2

c1a2 + a1c2 c1b2 + a1a2 − eiqD

])
= 0 (3.19)

This determinant can be expanded and simplified as follows:

(a1a2 + b1c2 − aiqD2 )(c1b2 + a1a2 − eiqD)− (a1b2 + b1a2)(c1a2 + a1c2) = 0

a1a2c1b2 + (a1a2)2 − a1a2 e
iqD + b1c2c1b2 + b1c2a1a2 − b1c2 e

iqD − c1b2 e
iqD − a1a2 e

iqD

+(eiqD)2 − a1b2c1a2 − a2
1b2c2 − b1c1a

2
2 − b1a2a1c2 = 0

Next, group terms with according to the power of eiqD:

(eiqD)2 + eiqD[−2a1a2 − b1c2 − c1b2] + (a1a2)2 + b1c2c1b2 − a2
1b2c2 − b1c1a

2
2 = 0

Furthermore, divide both sides by eiqD(which is not equal to zero):

eiqD + [−2a1a2 − b1c2 − c1b2] + e−iqD[(a1a2)2 + b1c2c1b2 − a2
1b2c2 − b1c1a

2
2] = 0

Now, to further simplify the equation, apply Euler’s identity (eiqD = cos(kD) + i sin(kD)).

Additionally, separate the real and imaginary part:

(
cos(kD)[1 + (a1a2)2 + b1c2c1b2 − a2

1b2c2 − b1c1a
2
2] + [−2a1a2 − b1c2 − c1b2]

)
+i

(
sin(kD)[1− (a1a2)2 − b1c2c1b2 + a2

1b2c2 + b1c1a
2
2]

)
= 0

Compare the imaginary part of both sides of the equation. Since sin(kD) is not always equal

to 0, the following condition has to hold:

1 = (a1a2)2 + b1c2c1b2 − a2
1b2c2 − b1c1a

2
2

Now, compare the real part. The equation for the real part can be further simplified by using

the result above, which gives:

cos(kD)[1 + 1] + [−2a1a2 − b1c2 − c1b2] = 0

cos(kD) = a1a2 +
1

2
(b1c2 + c1b2)
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Finally, the elements a1, a2, b1, b2, c1 and c2 can be replaced by the original terms upon

comparison of equation 3.16 with equation 3.17. This results in the dispersion relation for the

two-layer unit cell:

cos(qD) = C1C2 −
1

2

(
Z1

Z2
+
Z2

Z1

)
S1S2 (3.20)

The equation was also derived in reference [10] and [58]. The former reference used the Interface

Response Theory in the derivation, while the latter reference followed similar steps in analyzing

the dynamics of the phononic crystal although without going through the Transfer Matrix

formalism.

To derive the dispersion relation for a three-layer unit cell is obtained using the same steps, this

time setting J = 3. The resulting dispersion relation is given in equation 3.21.

cos(qD) = C1C2C3 −
1

2

[(
Z1

Z2
+
Z2

Z1

)
C3S1S2 +

(
Z2

Z3
+
Z3

Z2

)
C1S2S3 +

(
Z1

Z3
+
Z1

Z3

)
C2S1S3

]
(3.21)

It is noted that in the dispersion relation (equation 3.20 and 3.21) takes frequency (ω) as input,

and Bloch’s wavenumber (q) as output. This output can be either real or complex. The output

is complex when the right-hand side of the dispersion relation is greater than one. In fact, the

range of frequencies for which q is complex gives the band gap of the phononic crystal.

Now that the dispersion relations have been obtained, the analytical equation that gives the

eigenfrequency that lies within the band gap shall be derived. This is done in the next section.

3.2.2 Band gap eigenfrequency of the phononic crystal

This section begins by giving a reminder: the goal for finding the eigenfrequency within the

band gap of a phononic crystal is to choose fTS which coincides or is very close to exciting

resonance. The benefit is that the displacement of the structure interface imposes a relatively

large effect on the flow. This eigenfrequency gives rise to the ”surface mode” of the phononic

crystal [10]. The name ”surface mode” refers to the nature of wave propagation with frequencies

within the band gap: that the displacements are dominant near the surface and attenuates as

one travels down the layers [5].

As mentioned in the literature study of the phononic crystal (section 2.2.3), there is exactly one

eigenfrequency within the band gap of the phononic crystal according to the Interface Response

Theory (IRT). Additionally, this eigenfrequency does not depend on the number of unit cells.

This section gives the mathetamatical steps in detail in deriving the analytical formulation for

finding this eigenfrequency (closely following the guidance given in chapter 3 of P. A. Deymier

[10]). The reason for this extensive mathematical detail is that the final analytical formula

(equation 3.27) turns out to be different than the one found in reference [10]. Hence, this
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section does not discuss the Interface Response Theory, but rather uses existing results of the

theory to derive a new formula for the phononic crystal analysis.

The goal is to obtain the inverse Green’s function of the phononic crystal’s unit cell, that is

generally given in the following form [10]:

g−1(MM) =

[
a b

b c

]
(3.22)

where M denotes the interface space (i.e. the boundaries of the phononic crystal). This inverse

Green’s function is built up from the Green’s function of the layers that constitute the unit cell,

which is given by [10]:

g−1
j (MM) =

[
−ωZjCj/Sj ωZj/Sj
ωZj/Sj −ωZjCj/Sj

]
(3.23)

In the above equation, Zj = ρjcj (which is different from the definition of Zj given in the

discussion of the Transfer Matrix method with the absence of ω). Similar to the Transfer

Matrix discussion, the entries of g−1
j (MM) will be shortened as follows:

g−1
j (MM) =

[
aj bj
bj aj

]
(3.24)

To obtain the inverse Green’s function of the unit cell, the inverse Green’s functions of the layers

are linearly juxtaposed, creating a (J + 1) × (J + 1) matrix. In this report, the derivation is

discussed in more detail for J = 2. The resulting juxtaposition of inverse Green’s function is

given by:

g−1
UC =

a1 b1 0

b1 a1 + a2 b2
0 b2 a2


Next, this matrix is inverted. This gives:

gUC =
1

a1a2(a1 + a2)− a1b22 − a2b21

a2(a1 + a2)− b22 −a2b1 b1b2
−b1a2 a1a2 −a1b2
b1b2 −a1b2 a1(a1 + a2)− b21


Now, the corner elements are taken and put into a new matrix as only the elements that belong

to the interface space are necessary. This results in a 2× 2 matrix:

g(MM) =
1

a1a2(a1 + a2)− a1b22 − a2b21

[
a2(a1 + a2)− b22 b1b2

b1b2 a1(a1 + a2)− b21

]
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Finally, this matrix is inverted again to obtain the inverse Green’s function of the unit cell:

g−1(MM) =
1

a1 + a2

[
a1(a1 + a2)− b21 −b1b2

−b1b2 a2(a1 + a2)− b22

]
(3.25)

The surface mode of the phononic crystal (which corresponds to the eigenfrequency that lies

within the band gap) can be obtained from the elements of the general inverse Green’s function

(equation 3.22) through the following equation:

ac− b2 = 0 (3.26)

The mathematical details on the derivation of the above equation was given by E. H. El Boudouti

and B.Djafari-Rouhani in reference [10]. It is simply remarked here that the equation for the

surface mode coincides with the determinant of the inverse Green’s function.

Comparing equation 3.22 and 3.25, the equation for the surface mode simplifies into:

(
a1(a1 + a2)− b21

) (
a2(a1 + a2)− b22

)
− (b1b2)2

a1 + a2
= 0

Expanding the terms in the numerator on the left-hand side yields:

a1a2 (a1 + a2)2 − a1b
2
2 (a1 + a2)− a2b

2
1 (a1 + a2) + (b1b2)2 − (b1b2)2

a1 + a2
= 0

Simplifying the terms further yields:

a1a2(a1 + a2)− a1b
2
2 − a2b

2
1 = 0

The terms above are further re-arranged into the following:

a1(a2
2 − b22) + a2(a2

1 − b21) = 0

Now, drop the temporary shortened notation and put the true elements of the inverse Green’s

function by comparing equation 3.23 with equation 3.24. Furthermore, omit ω as it can be

factored out of the equation. This yields:

Z1
C1

S1

(
Z2

2

C2
2

S2
2

− Z2
2

S2
2

)
+ Z2

C2

S2

(
Z2

1

C2
1

S2
1

− Z2
1

S2
1

)
= 0

The above equation can be further simplified by using the trigonometric identity C2
j −1 = −S2

j :
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Z1Z
2
2

C1

S1
+ Z2Z

2
1

C2

S2

Then, divide both sides by Z1Z2

Z2
C1

S1
+ Z1

C2

S2
= 0

Finally, multiply both sides by S1S2. This gives the analytical result for the surface mode of a

two-layer unit cell phononic crystal:

Z1S1C2 + Z2S2C1 = 0 (3.27)

It is remarked that the above equation has ω as the unknown; other variables depend on the unit

cell. The zero of the equation that lies within the band gap frequency range gives the surface

mode of the phononic crystal. In the results given in this thesis report, the zero is obtained

numerically using the bisection method, giving the two end points of the band gap interval as

inputs.

As a reminder, this result is not the same as chapter 3 of Deymier [10], although the same steps

for the derivation laid down in the reference were followed.

Finally, equation 3.27 has been verified by comparison with the problem studied by Hussein et

al. in reference [30]. The ”truncation frequency” in the reference paper refers to the eigenfre-

quency in the band gap. For the phononic crystal studied in the reference paper, the truncation

frequency was given to be 1685.2 Hz. Using equation 3.27, the eigenfrequency of the same

phononic crystal was obtained to be 1687.5 Hz, which is very close to the one given in the

aforementioned reference. This discrepancy is attributed to the fixed boundary condition, as

shall be further supported by the results given in section 4.1. It is noted that using the equation

given in chapter 3 of [10], the eigenfrequency is given to be 2101.6 Hz, which is far from 1687.5

Hz. The resulting equation [10] was also further verified using FEM analysis, as shall be further

corroborated in section 4.1.

Performing the same analysis for J = 3 results in the analytical equation for three-layer unit

cell phononic crystal:

(Z1C1)2S2S3(Z2Z3C2C3 − Z2
3S2S3)

+Z1Z2Z3C1C2C3C1(Z2C2S3 + Z3C3S2)

+Z2
3S2(Z2

1S2 − Z1Z2C1C2S1)

−Z1Z
2
2Z3C1C3S1S1

−Z2
1S2C3(Z2Z3C2S3 + Z2

3C3S2) = 0 (3.28)

Again, the above equation was verified with FEM analysis, as shall be seen in section 4.1.
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3.2.3 Chosen design of the phononic crystal’s unit cell

This section discusses how the unit cell is chosen using the equations developed in the two

previous sections, and presents the final design of the unit cell and its relevant properties.

As mentioned in section 3.2.1, two and three unit cell designs are investigated. The reason for

this is to see if it is possible to reduce the length of the unit cell (D) by adding a layer. This

problem of length concerns the practicality of experimental studies for future researches; and

this was a indeed a feasibility problem in reference [30].

The materials to be investigated for the two unit cell design are rubber2 and aluminium3. As

for the three unit cell design, a layer of steel3 is added. These material properties are given in

table 3.3.

ρ (kg/m3) E (GPa) ν (-)

Rubber 1300 1.04 × 10−3 0.3

Aluminium 2710 70 0.34867

Steel 7850 200 0.3119

Table 3.3: Material properties for the two and three unit cell designs

The layer properties that determine the band structure and surface mode eigenfrequency (fSM)

are ρj , cj and dj (see equations 3.20, 3.21, 3.27 and 3.28). By choosing the material of the

layers, ρj and cj are specified. The only thing left to be chosen are the layer thickness (dj). To

do this, a python program was written which computes fSM of different combinations of dj for

both the two and three unit cell designs. fSM was calculated by finding the zero of equation

3.27 and/or 3.28 with bisection method, using the edges of the band gap as inputs. These band

gap edges were found from equation 3.20 and/or 3.21. The aim of this program is to see which

combinations of dj produces fSM near the chosen fTS. This results in the design space. Figure

3.5 and 3.6 show the results of this program.

2Properties derived from reference [65]
3Properties derived from reference https://www.efunda.com/materials/common matl/Common Matl.cfm?Mat

lPhase=Solid&MatlProp=Acoustic#Acoustic and https://www.efunda.com/materials/common matl/Common M

atl.cfm?MatlPhase=Solid&MatlProp=Physical#Physical (LAST ACCESSED ON 30/05/2021)

https://www.efunda.com/materials/common_matl/Common_Matl.cfm?MatlPhase=Solid&MatlProp=Acoustic##Acoustic
https://www.efunda.com/materials/common_matl/Common_Matl.cfm?MatlPhase=Solid&MatlProp=Acoustic##Acoustic
https://www.efunda.com/materials/common_matl/Common_Matl.cfm?MatlPhase=Solid&MatlProp=Physical##Physical
https://www.efunda.com/materials/common_matl/Common_Matl.cfm?MatlPhase=Solid&MatlProp=Physical##Physical
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Figure 3.5: Design space of the two-layer
unit cell phononic crystal
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Figure 3.6: Design space of the three-
layer unit cell phononic crystal

The combinations of dj that yields fSM near the chosen fTS are those that lie within the curves

in the two plots above. As a remark, layer thicknesses in the order of millimeters are sought;

considering the dimension of TU Delft A-tunnel for possible future researches. Returning to the

curves, the point that gives the minimum unit cell thickness D is chosen. This yielded D = 50

mm and D = 43 mm for the two and three unit cell design respectively. This shows that by

adding a layer in the unit cell, it is possible to minimize the thickness of the unit cell for the

purpose of obtaining a certain surface mode frequency.

With this, the unit cell for the two- and three-layer designs are chosen. Their properties are

summarized in table 3.4. Furthermore, the dispersion curves are given in figure 3.7 and 3.8.

In these two figures, the red dot represents the location of fSM while the green-shaded region

emphasizes the band gap frequencies.

Two-layer Three-layer

dR (mm) 44 35

dAl (mm) 6 3

dSteel (mm) - 5

D (mm) 50 43

fSM (Hz) 299.13 300.76

Table 3.4: Two- and three-layer design unit cell properties
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Figure 3.7: Dispersion curve of the two
layer design (44 mm rubber and 6 mm alu-

minium)
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Figure 3.8: Dispersion curve of the three
layer design (35 mm rubber, 3 mm alu-

minium and 5 mm steel)

The only variable to be chosen for the phononic crystal is the number of unit cells (NUC). This

variable could not have been chosen with the help of the methods developed in section 3.2.1

and 3.2.2. Indeed, from the two theories used so far, the resulting band structure and fSM are

independent of NUC. The NUC shall be determined with a different analysis, namely discretizing

the governing partial differential equation with finite elements method (FEM) as shall be seen

in section 4.1

3.3 Simulation method

The numerical simulations were performed using COMSOL Multiphysics® version 5.6[6]. This

software numerically solves partial differential equations using the finite elements discretization

method. In the simulations performed, only spatial discretization was relevant. Quadratic

elements were used to represent the solution. In the fluid domain, quadratic Lagrange elements

were used (9 nodes per quadrilateral element); whereas incomplete quadratic elements (quadratic

serendipity, 8 nodes per quadrilateral element) were used in the solid domain.

Three types of simulations were performed, to be elaborated in the following paragraphs.

3.3.1 Structural analysis simulation

This simulation studied the properties of the designed phononic crystal in isolation (without

the flow). The aim is to verify the properties of the phononic crystal predicted by the design

method with a more accurate model. In this simulation, the structural mechanics module of

COMSOL® was employed. Linear elastic material was used to model the layers of the phononic

crystal. Consequently, the same constitutive properties used in the phononic crystal design (E

and ν) were re-used.
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However, the option of geometric non-linearity was enabled. This option was selected to account

for in the case of possibly large deformations. In this geometrically non-linear case, the con-

stitutive equation relates the second Piola-Kirchoff stress to the Green-Lagrange strain. This

is different from the partial differential equation used in designing the phononic crystal, where

the first Piola-Kirchoff stress is related to the infinitesimal strain. Nevertheless, in both cases

the unknowns are the structural displacement field (u).

The governing equations are mathematically illustrated as follows. In the absence of body force,

the equation of motion for a continuum solved in the material (Lagrangian) frame (which is used

to model solids) is given by:

∇ · σ = ρ
∂2u

∂t2
(3.29)

where σ is the first Piola-Kirchoff stress tensor and u is the structural displacement. This stress

tensor is obtained when the Cauchy’s stress tensor is transformed from the spatial (Eulerian)

frame to the Lagrangian frame.

The constitutive model is obtained by relating σ to a measure of strain. As mentioned in the

previous paragraph, the constitutive model is given by a linear relation between the Second

Piola-Kirchoff stress (S) and the Green-Lagrange strain measure (E):

S = CE (3.30)

with C being a fourth-order tensor, representing the generalized stiffness. The elements in this

tensor are fully specified (for an isotropic solid) given a Young’s modulus and Poisson’s ratio.

The second Piola-Kirchoff stress is related to the first Piola-Kirchoff stress through the following:

σ = FS (3.31)

where F is the deformation gradient, which, by definition, is given by:

F = I +∇u (3.32)

with I being the identity matrix.

Furthermore, the Green-Lagrange strain measure is defined in terms of the structural displace-

ment by:

E =
1

2
(FTF− I) (3.33)

Equation 3.29 to 3.33 form a partial differential equation for the unknown structural displace-

ment u, which, in general is different from the more simple equation used in the analytical

model (equation 3.1).
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Two types of studies were performed in this simulation, namely an eigenfrequency and frequency

domain study. The first study aims at confirming the predicted surface mode eigenfrequency.

The second study investigates the amplitude and phase response of the phononic crystal as a

result of a given harmonic load.

In both studies, a harmonic time dependency is assumed on the unknown variables. In this case,

the unknown is the solid displacement field. Hence, any component of the solid displacement

vector takes the following form (the y component is used for the following example):

uy = uye
iωt (3.34)

where uy is the complex amplitude, ω is the angular frequency and t is time. The complex

variable uy can also be represented in Euler form in terms of its magnitude/amplitude and

phase, which transforms equation 3.34 into the following:

uy = ũye
i(ωt+φuy ) (3.35)

From here on, the complex amplitude is dropped and any mention of ”amplitude” refers to the

real amplitude denoted by ·̃.

The actual solution is the projection of the above on the real axis (also see reference [35] for a

similar method of analysis):

uy = ũy cos
(
i(ωt+ φuy)

)
(3.36)

In the discussions of the results, it shall be seen that the main interest lie in the amplitude ũy
and phase φuy rather than the real solution.

3.3.2 Steady-State Fluid-Structure Interaction (FSI) simulation

The steady-state fluid-structure interaction (FSI) simulation was used to obtain the basic solu-

tion of the problem (see the decomposition of flow field in the flow stability problem, discussed

in section 2.1). Unlike the restrictions imposed in studying flow stability with the the Orr-

Sommerfeld equation, the stability problem performed in this simulation accounted for varia-

tions of the flow in the streamwise direction (hence no assumption of parallel flows). Thus, the

result of the simulation is a better model of the real flow case.

The modules used were structural mechanics, laminar flow, heat transfer, nonisothermal flow

and fluid-structure interaction multi-physics coupling.

The structural mechanics module has been explained in the structural analysis simulation.

The laminar flow module was selected to solve low Mach number compressible flow. This model

essentially solves the two-dimensional Navier-Stokes equationsThe heat transfer module solves
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the energy balance, which complements the compressible laminar flow problem as the laminar

flow module only solves the continuity and momentum equation.

The governing equations of the laminar and heat transfer modules are given by the steady

balance of mass, momentum and energy; which are equations 3.37, 3.38 and 3.39 respectively.

Equation 3.40 gives the constitutive model for the Cauchy’s stress tensor (τ) for air.

∇ · (ρv) = 0 (3.37)

ρ(v · ∇)v = ∇ · τ (3.38)

ρCpv · ∇T +∇ · (−k∇T ) = αpTv · ∇p+ τv : ∇v (3.39)

τ = −pI +

(
µa
(
∇v + (∇v)T

)
− 2

3
µa(∇ · v)I

)
= −pI + τv (3.40)

In equation 3.38, µa denotes the dynamic viscosity of air.

In equation 3.39 T is the temperature, Cp is the specific heat of air at constant pressure, k is

the thermal conductivity of air, and αp is the coefficient of thermal expansion (which is equal

to 1/T with the ideal gas model). The three aforementioned material properties are functions

of temperature and are set to the default setting of the material database. The reference

temperature was taken to be 293.15 K (or 20 ◦C).

The two terms on the right-hand side of equation 3.39 represent the work done by pressure and

viscous forces. The notation ”:” in the viscous work signifies double dot product of two tensors.

The coupling between the laminar flow and heat transfer physics was done with the nonisother-

mal flow multiphysics module. This module simply ensures that the density of air is a function

of pressure and temperature (through the ideal gas equation).

Finally, the coupling between the flow and the structure was done with the help of the fluid-

structure interaction multiphysics module. This module ensured that the loading from the fluid

(which originates from pressure and shear stresses) is imposed onto the structure.

3.3.3 Frequency Domain Fluid-Structure Interaction (FSI) Simulation

This simulation was performed to solve the harmonic response of the coupled fluid-structure

domain with Tollmien-Schlichting waves.

The modules used were structural mechanics, linearized Navier-Stokes (frequency domain) and

aeroacoustic-structure boundary multiphysics coupling.

The structural mechanics module has been explained in the structural analysis simulation.
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In the frequency domain linearized navier-stokes module, the flow field is decomposed into a

”background” and a ”scattered” field. In fact, this is the same as the flow decomposition

performed in section 2.1 (where the terminologies ”basic” and ”disturbance” were used instead

of ”background” and ”scattered” respectively). The input background flow field is the solution

of the non-isothermal flow, given by the second simulation.

The equations solved are the balance of mass, momentum and energy in frequency domain.

(shown in equations 3.41, 3.42 and 3.43 respectively). The transformation from the time to

the frequency domain was obtained by assuming a harmonic time dependency of the unknowns

(see section 3.3.1). The implication of this transformation is that the time derivatives become

multiplication with iω.

iωρ+∇ · (ρv0 + ρ0v) = 0 (3.41)

ρ0(iωv + (v · ∇)v0 + (v0 · ∇)v) + ρ(v0 · ∇)v0 = ∇ · τ + F (3.42)

ρ0Cp(iωT0 + v · ∇T0 + v0 · ∇T ) + ρCp(v0 · ∇T0)− αpT0(iωp+ v · ∇p0 + v0 · ∇p)
−αpT (v0 · ∇T0) = ∇ · (k∇T ) + Φ (3.43)

It is to be noted that the disturbance field is inside the total field (ρ, p, T and v). The subscript

”0” denotes the basic solution obtained from the steady-state FSI simulation. Finally, the term

”Φ” denotes the linearized viscous dissipation term, given by:

Φ = ∇v : τv,0 +∇v0 : τv (3.44)

As the name of the module suggests, the governing equations are linear in the disturbance flow.

Furthermore, as the name also suggests frequency domain simulation, all variables are assumed

to have harmonic time dependencies. This means that all time derivatives in the partial different

equations become multiplication with iω. The outputs of the solver are the complex amplitudes

of the disturbance flow field.

The aeroacoustic-structure boundary multiphysics coupling was used to couple the structural

mechanics and frequency domain linearized navier-stokes modules. This coupling imposes con-

tinuity of velocities and stresses at the fluid-structure boundary.

In addition to the physics modules, perfectly-matched layers are placed upstream and down-

stream the flow domain to minimize boundary reflections.

The main advantage of performing the FSI simulation in the frequency domain (instead of the

time domain) is the reduction in computational complexity. The frequency domain simulation

avoids any difficulties in choosing a suitable time step that minimizes the inherent damping

within the solver while maintaining stability of the solution. Furthermore, the total simulation
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time has to be chosen carefully in order to balance between obtaining reliable statistics and

total computational time. If the time domain simulation were chosen, only a few simulation

conditions can be studied within the given time. Choosing the frequency domain simulation

allows for the investigation of more cases.

Nevertheless, there are also disadvantages within the frequency domain simulation. First, the

time taken for the fluid-structure system to reach the harmonic response is not known, which

may become important for practical purposes. Second, as the frequency domain simulation

only considers responses of a single frequency (i.e. the TS wave frequency), any interactions

between solutions of different frequencies was captured. Third, the frequency domain Navier-

Stokes model available in COMSOL® is linearized: non-linear phenomenon was not resolved.

However, as in the frame of linear stability theory, non-linear effects can be expected to not be

dominant.

3.4 Verification and Validation

In this section, the procedures to verify and validate the the numerical simulation results shall

be explained in section 3.4.1 and 3.4.2 respectively.

3.4.1 Verification

Verification is necessary to ensure that the results obtained in the numerical simulation conform

to what is intended to be simulated. Thus, the verification procedures are used to check whether

or not the simulations yield intended results shall be explained.

In general, the verification of the results of the three numerical simulations are done in two ways.

The first is to verify the boundary conditions and fluid-structure coupling where applicable. The

second method is to compare the numerical results with well-established theories. The latter

method shall be detailed for each type of simulation in the following paragraphs.

In the structural analysis simulation, the obtained eigenfrequencies are compared with the

analytical formulae given by equations 3.27 and 3.28. This verification step is given in table 4.1.

As for the frequency domain simulation, the amplitude and phase responses are compared with

the well-known resonance response of a system (where the amplitude peaks at the resonance

frequencies and the phase difference with respect to a forcing function is zero below resonance,

and π above resonance). The results are given in figure 4.4 and 4.5.

As for the steady-state fluid-structure simulation, the velocity profile is compared with the

Blasius’ boundary layer solution that can be derived from the data available in reference [67].

This comparison is given in figure 4.7.

Finally, in the frequency-domain fluid-structure simulation, the shape of the velocity fluctuations

are compared with data from previous studies (such as LST and experimental data given in figure

2.4 [48] for the streamwise velocity fluctuation, or Direct Numerical Simulation and Parabolized

Stability Equations results given in reference [33]). Additionally, it is expected that the response
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of the phononic crystal has the behaviour of a resonance response (as suggested by the results

obtained in reference [30]). This resonance response is applicable to the vertical displacement,

and is shown in figure 4.13.

3.4.2 Validation

The purpose of the validation step is to ensure that the simulation results obtained conform

to the real physical case. Hence, the most appropriate method for validation is to compare

the results of the numerical simulation with experiments. However, experimental studies are

beyond the scope of this thesis.

Here, steps are taken to ensure that the numerical simulations results are as accurate as possible,

given the available resources. This is done by performing sensitivity analysis with respect to

the mesh refinement levels, i.e. a mesh convergence study. The results of such a study are given

in appendix E.



Chapter 4

Results and Discussions

As stated in section 3.3, there are three types of simulations performed in this thesis project;

namely structural analysis, steady-state FSI and frequency domain FSI simulations. The results

of these simulations are given in section 4.1, 4.2 and 4.3 respectively. In all cases, the simulations

are two-dimensional. Ultimately, the research questions introduced in chapter 1 were answered

with the results of the last type of simulation. However, the other two simulations were necessary

in order to arrive to the frequency domain FSI simulation.

4.1 Structural Analysis Simulation

This section gives the results of the structural analysis simulation. The structural analysis sim-

ulation was used to determine the optimal number of unit cells (NUC) of the phononic crystal.

The set-up of the structural analysis simulation is given in section 4.1.1. Two analyses were per-

formed within the structural analysis framework: eigenfrequency and frequency response analy-

ses. The eigenfrequency analysis was used to confirm the predicted surface mode eigenfrequency

(fSM); to see if there are any discrepancies between the previously discussed one-dimensional

models and the two-dimensional structural analysis results. For to the eigenfrequency analysis,

the boundary conditions are varied in order to see their effects. The results are given in section

4.1.2. Once the eigenfrequencies of the final design have been confirmed, a frequency response

analysis was performed. This analysis is used to compare the surface displacement amplitude

near the resonance frequencies between the different designs of the phononic crystal, as well as

to confirm the out-of-phase response as predicted in reference [30]. The results for this analysis

are given in section 4.1.3.

4.1.1 Set-up of the Structural Analysis Simulation

The set-up of the structural analysis simulation are illustrated in figure 3.4 and 4.2 for a sample

case of two-layer unit cell design with NUC = 1 and LUC = 1 mm. The coordinate system of

the simulation is the same as the one given in figure 3.1.

60
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Figure 4.1: Geom-
etry of the two-layer
one unit cell phononic

crystal

Figure 4.2: Mesh of
the two-layer one unit
cell phononic crystal

design

Before the simulation can be performed in COMSOL®, four items have to be specified: ge-

ometry, material, boundary conditions and meshing. The geometry of the phononic crystal is

relatively simple (figure 4.1), consisting of multiple rectangles where each rectangle represents

a given layer of the phononic crystal. The material properties given in table 3.3 are assigned to

each layer, according to the design. The boundary conditions are assigned to each sides of the

phononic crystal: top, bottom, the left and the right side. The specific boundary condition to

be assigned shall be discussed in more detail in section 4.1.2. Finally, for this eigenfrequency

and frequency response study, the mesh used was an automatically generated mesh, choosing

the ”extremely fine” scale. Triangular elements were built. An example of the resulting mesh

is given in figure 4.2.

There were six phononic crystal designs investigated: the two unit cell designs with varying

NUC, between NUC = 1, 3, 5. In each case, the set-up are similar as described in the previous

paragraph. The next sections give results of the eigenfrequency and frequency response study

for these six designs.

4.1.2 Effect of boundary conditions on eigenfrequencies

There are two types of boundary conditions to be tested. The first one consisted of the following:

free top and bottom sides, and constrained displacement in the x direction on the right and

the left sides (ux = 0). This shall be referred as ”BC1”. The second boundary conditions

to be studied were the same as BC1, except that the bottom is fixed. This second set of

boundary conditions shall be referred as ”BC2”. The reason for the study of BC1 is to verify

the eigenfrequency predicted by IRT in section 3.2. The main difference between the phononic

crystal design and simulation is that in the design, the problem was one-dimensional; whereas

it is two-dimensional for the simulation. It was to be seen whether or not BC1 would give the
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same result as a one-dimensional analysis. However, evidently the bottom side would have to

be fixed in practice, otherwise the phononic crystal would fall. Hence the study of BC2.

This effect of difference in boundary condition was studied by computing the surface mode

eigenfrequencies (fSM). From the simulations, multiple eigenfrequencies were observed. The

(first) surface mode was obtained by assuming that the eigenfrequencies followed the result of

IRt [10]: that is, the first NUC − 1 eigenfrequencies correspond to the bulk mode, whereas the

next eigenfrequency (i.e. the N th
UC eigenfrequency) corresponds to the surface mode. Hence, the

first eigenfrequency was picked for NUC = 1, the third for NUC = 3 and the fifth for NUC = 5.

This was also verified by plotting the corresponding eigenmode: the displacement of surface

modes are dominant near the surface, and attenuates as one travels down the layers. A sample

result comparing the bulk and surface mode is given in figure 4.3.

Figure 4.3: An example of bulk (left) and surface mode (right) of phononic crystal. (Three-
layer unit cell design, NUC = 5 and BC2 was used). The colored geometry represents the

deformed configuration.

It was observed that both applications of BC1 and BC2 exhibit bulk and surface modes. With



Results and Discussions 63

the nature of the modes verified, fSM of the different phononic crystal designs were documented.

These are compared in table 4.1.

Unit cell design NUC fSM, BC1 (Hz) fSM, BC2 (Hz) fSM, IRT (Hz) ∆f (%)

Two-layer

1 299.13 186.46

299.13

37.67

3 299.13 282.06 5.70

5 299.13 294.23 1.64

Three-layer

1 300.76 234.40

300.76

22.06

3 300.76 299.35 0.47

5 300.76 300.71 0.02

Table 4.1: Effect of boundary conditions on fSM of the different phononic crystal designs

In the table above, ∆f represents the percentage difference between fSM, IRT and fSM, BC2, as

given by the following equation:

∆f =
fSM, IRT − fSM, BC2

fSM, IRT
× 100 (4.1)

Several observations can be made from table 4.1. First, the resulting fSM predicted by IRT is

equal to that computed with FEM, applying BC1, to two decimal places. Hence, the application

of BC1 effectively renders the problem one-dimensional. This could be further observed from

the eigenmodes: the displacements of the structure are only in y direction. Second, there is a

difference between fSM, BC1 and fSM, BC2. This difference is attributed to the fixed boundary

condition at the bottom of the structure. Hence, the surface mode eigenfrequency is, in fact, a

property of the structure and not of the unit cell as suggested by reference [30]. Consequently,

fSM, BC2 differs from the fSM of the design method (fSM, IRT). This can be explained by the

fact that derivation for the IRT equation (equation 3.27 and 3.28) did not account for boundary

conditions (or that the layer interfaces are free). The third observation however, is that this dif-

ference becomes smaller as NUC increases. This can be explained by the fact that the boundary

condition along the direction of wave propagation (y direction) exhibits weaker influence as the

structure becomes longer. Finally, the last observation to be made is that ∆f of the three-layer

unit cell design reduces to zero faster with increasing NUC than the two-layer unit cell design

(even though the total length (NUC ×D) of the structure is smaller).

With this, it is reasonable to conclude that the three-layer design is better given the following

criteria: smaller structure and quicker convergence of fSM with the prediction design method.

However, there is still one more thing to investigate: the surface displacement amplitude given

a harmonic loading. This, as well as a verification on the phase of the surface displacement

response, shall be discussed in the following section.

4.1.3 Comparison of frequency domain surface displacement

The study of the steady-state displacements of the phononic crystal was done by applying a load

at its top surface (y = 0), along the x direction. A load per unit area with 2 N/m2 amplitude was
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semi-arbitrarily chosen (the magnitude had to be small in the order of the TS wave pressure load

magnitude). The analysis was performed in the frequency domain. Hence the load is harmonic,

assigned a certain frequency (f) and the steady-state response also becomes harmonic with the

same frequency. The output displacements of the simulation are the complex amplitude of a

harmonic function.

Applying a harmonic load and/or setting the problem to be geometrically non-linear do not

change the eigenfrequencies of the structure. The mesh that was used in the eigenfrequency

study was also used for the structural frequency domain study. Of interest is the displacement

at the top surface of the phononic crystal, since the surface interacts with the flow.

The simulation was performed. It was found that the phase is either 0 or π. In other words, the

displacements are effectively real. A phase of π signifies that the response is out-of-phase with

respect to the boundary load. Furthermore, an effectively constant displacement was observed

along the top surface. Nevertheless, an average was taken along the top surface (denoted by

< · >) for comparison of the different phononic crystal designs.

The resulting average surface displacements in the y direction (ũy(y = 0)) for the different

designs at 0.001 Hz higher than their fSM are given in table 4.2 to two decimal places.

Unit cell design NUC < ũy > (y = 0) (mm)

Two-layer

1 -4.75

3 -1.54

5 -1.17

Three-layer

1 -4.75

3 -2.64

5 -2.55

Table 4.2: Average negative surface displacements of the different phononic crystal designs
around the corresponding fSM, BC2

From the table, it can be seen that displacements very close to the resonance frequency are

in the order of millimetres. Hence, choosing any of the designs should influence the flow in

the same order of magnitude. Therefore, the surface displacement do not cause significant

difference between the different phononic crystal designs. Hence, the criteria that weighs more

is the relative error with respect to the design fSM. This leads the three-layer unit cell with

NUC = 5 design as the chosen design.

Further results from the frequency domain analysis shall be presented. The benefit of choosing

the surface mode eigenfrequency is that the frequency interval for out-of-phase response can

be the largest when the resonance frequencies are dense (also see [30]). This is shown for the

three-layer unit cell design with NUC = 5 by plotting the surface-averaged phase response for

frequencies between 10 and 600 Hz, with a step of 1 Hz, as given in figure 4.4. The corresponding

real amplitudes is given in figure 4.5. The green-shaded area corresponds to the band gap of

the unit cell.
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Figure 4.5: < ũy > for the three-layer
unit cell, NUC = 5 phononic crystal design

The phase plot contains jumps, where the values could either be 0 or π. This is simply due

to the fact that the amplitude of ũy changes sign between positive and negative (although not

captured in the semi-log plot of the real amplitude response). Furthermore, some of these jumps

correspond to resonance frequencies. These particular jumps have been marked by red dots.

The significance is that, since the distance between the surface mode eigenfrequency and the

next eigenfrequency is large, the phase of π is maintained in a relatively large frequency interval.

It can be seen from the amplitudes that there are differences in order of magnitudes between

the responses near the resonance frequencies and the responses away from it. Furthermore, a

remark can be made that the 1 Hz frequency step is not sufficiently refined to yield the response

in the order of millimetres, as was obtained in table 4.2. Hence, the size of the frequency step

is important in order to obtain responses that are very close to resonance.

It is not yet clear whether or not the displacemeents at frequencies away from the resonance

are large enough to influence the flow. With this, the three-layer unit cell design with NUC = 5

shall be further used in the FSI simulation, discussed in detail in the following section.

4.2 Steady-State Fluid-Structure Interaction (FSI) Simulation

The steady-state fluid-structure interaction simulation was performed in order to obtain the

baseline flow. As a reminder, the problem at hand is the flow over a flat plate at angle of

attack of zero. In the simulation, the assumptions were limited; meaning that the full viscous,

compressible conservation equations were solved for (as explained in section 3.3.2). The main

goal of this non-simplifying simulation is to get close to practical situations as possible.

This section consists of two subsections. The first explains the set-up of the simulation (subsec-

tion 4.2.1). The second shows and discusses the results of the simulation (subsection 4.2.2).

Note that the basic solution was not used to answer the research questions. Rather, it was used

to enable the frequency-domain fluid-structure interaction simulation, which directly dealt with

the problem of flow instability.
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4.2.1 Set-up of the Steady-State FSI Simulation

The set-up of the steady-state FSI simulation consisted of the same steps taken in the structural

analysis simulation, namely: (1) defining the geometry, (2) assigning the appropriate material in

each domain, (3) specifying the initial and boundary conditions, and (4) constructing the mesh.

These steps took place before the numerical simulation. The following paragraphs discusses the

steps in the given order.

Geometry and material assignment

A zoomed-out view of the geometry of the problem is given in figure 4.6.

Figure 4.6: Geometry of the numerical simulation

The x−position and y− positions specify the horizontal and vertical coordinates respectively,

the same as previously discussed geometries.

As seen from the above figure, the computational domain is divided into several parts/sub-

domains given by the labels. These are explained in the following:

a: These are the Perfectly-Matched Layers (PMLs). They are used to minimize the reflec-

tions from the boundary when the Tollmien-Schlichting waves are excited. These are not

actually accounted for in the steady-state FSI.

b: This sub-domain contains the air that flows upstream of the flat plate.

c: This sub-domain contains the air that flows above the flat plate.

d: This is the phononic crystal

e: This sub-domain is a relatively small rectangle that exists within the interval x × y =

[0.185, 0.189]m × [0, 0.0005]m. In this sub-domain, a distribution of body force (that

oscillates in time and in the x direction) is given in order to produce TS waves. This

domain does not have significance in the steady-state simulation.

In addition to the above, there are air gaps on the sides of the PC (see Appendix A for a

closer view). These gaps were used because it was found that in the frequency domain FSI

simulation, without the air gaps, the top corners of the PC did not exhibit displacement even

though pressure was impinging. Thus, the result with air gaps were thought to be more physical.

The width of these gaps were chosen to be very small in order to minimize the impact on the
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numerical solutions. These air gaps did not have significant impact on the steady-state FSI

simulation.

Boundary conditions

With the geometry and materials defined, the boundary conditions were specified. In the fluid

domain, the boundary conditions (accounting for laminar flow and heat transfer) are as follow:

1. Left wall as inlet, with an x− velocity of 20 m/s (the freestream velocity used in section

3.1). The temperature here is specified to be 293.15 K.

2. Right wall as outlet. Here, pressure was specified, which was equal to the reference value

(1 atm). Additionally, the option ”suppress backflow” was selected. For heat transfer, the

outflow specified zero heat transfer normal to the outlet.

3. Slip condition was assigned to the top wall. This slip specifies zero normal velocity, and

neglects viscosity. Hence it represents the fact that far above the flat plate, there is no

solid and that the flow must be the same as the freestream velocity. As for the heat

transfer, the condition of thermal insulation was assigned.

4. Symmetry condition was assigned to the bottom wall of the rectangle upstream of the flat

plate (x = −0.3 to x = 0 m). This was used as only the flow in the upper-half of the flat

plate was solved for with the given geometry.

5. No-slip condition and thermal insulation along the flat plate (x = 0 to x = 1.4 m).

As for the PC, BC2 was employed (see subsection 4.1.2).

In addition to the boundary conditions, ”initial conditions” were specified for the numerical

simulation in order to assist convergence. Note that these initial condition do not yield phys-

ical significance in a steady-state simulation. It is solely used for convergence. Hence, initial

conditions that were expected to be close to the solution were chosen.

In the fluid domain, the following initial condition was applied:

Vx(x, y) (m/s) =

{
V∞ sin

(
1

0.002
π
2 y
)

0 < y ≤ 0.002 (m)

V∞ 0.002 < y < 0.1 (m)

where the above simply predicts a fast evolution of velocity from zero to the freestream value

very close to the bottom wall (as is the case in the anticipated boundary layer). The initial tem-

perature was set to be 293.15 K everywhere in the domain. Lastly, the initial solid displacements

and velocities were set to be zero everywhere.

The multiphysics FSI coupling was used along the fluid-structure interface (which is at the

top of the PC). This ensured that the fluid imposes load onto the structure and that the solid

imposes velocity onto the fluid.

Meshing
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For the meshing, only quadrilateral elements were used. This choice yielded an average element

quality of 1.0 in terms of skewness. In the fluid domain, the mesh was made to be particularly

finer along the bottom wall, and around the leading edge of the flat plate forcing domain, and

above the phononic crystal. The main reason is to resolve the boundary layer, stagnation point

(expected to be at the leading edge from thin-airfoil theory), the generation of TS waves (for

the frequency domain FSI simulation) and finally to resolve the fluid-structure interaction. The

average quality of the growth rate is 0.9161. The element sizes within the phononic crystal

were chosen with the wavelength of acoustic propagation in mind, which was relevant for the

frequency domain FSI simulation. In total, there are 153994 elements. Screenshots of the mesh

can be found in Appendix B.

Quadratic Lagrange and serendipity elements were chosen for the discretization within the fluid

and solid domain respectively. The reason for choosing the serendipity elements for the struc-

tural problem (which has one less node than the Lagrangian elements) was to reduce memory

requirements. Additionally, it was found that the quadratic serendipity elements yielded very

similar results as the quadratic Lagrange elements in the isolated structural analysis (for in-

stance, the same eigenfrequencies to two decimal places). Overall, the aim was to use at least

a second-order element type due to the highest order of derivative in the governing partial

differential equations.

Having defined the geometry, domain material, boundary conditions and meshing defined, the

numerical simulation could commence. The relative tolerance was set to 10−4. The results and

discussions of the steady-state FSI results are given in the following subsection.

4.2.2 Results of the Steady-State FSI Simulation

The results of the steady-state FSI are the steady flow velocity and solid displacement fields.

In the framework of stability analysis, this velocity field refers to the basic flow solution (see

the discussion pertaining to equation 2.2). Compared to the assumptions used in the stability

analysis discussed in section 2.1, the spatial dependency of the basic flow field obtained in the

numerical simulation is not limited to the y direction only (i.e. non-parallel flow).

As a side note, there is no decomposition of the structural displacement.

The fields obtained from the numerical simulation are by the contour plots of figure 4.7 to 4.9.

First, consider the zoomed-in contour plot of the velocity near the leading edge 4.7). This figure

contains two sub-plots. On the left, the solution obtained from COMSOL® is shown. This

figure is compared with the Blasius boundary layer solution, given on the right (derived from

the data given in reference [67]). It can be seen that the solution obtained from COMSOL®
also shows a boundary-layer profile: where the streamwise velocity is equal to the freestream

value away from the wall, but decreases to zero near the wall. Additionally, there is the growth

in the boundary-layer thickness from the leading edge.

The main difference with respect to the Blasius’ profile lies at and upstream of the leading edge

(x ≤0 m). The Blasius’ solution does not predict the solution upstream of the flat plate. Fur-

thermore, in the Blasius’ case, there is a great jump in the streamline (shown by the contour)
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due to the omittance of the second derivative of the flow velocity with respect to x. Other dif-

ferences can also be attributed to the inclusion of compressibility in the COMSOl® simulation.

Nevertheless, the similarities outweigh the differences and thus the COMSOL® result is taken

to be verified.

Figure 4.7: Comparison of basic flow velocity Vx between the results obtained from (a) steady-
state FSI simulation and (b) Blasius’ solution.

Now, consider the pressure near the leading edge. This is given in figure 4.8. There is a jump

in pressure near the leading edge. This is also expected as illustrated by the well-known thin-

airfoil theory (for instance, from standard textbook such as [1]) which is based on potential

flow (which is derived from irrotationality of velocity field), with the addition of Bernoulli’s

equation to obtain the pressure. In this theory, the leading edge of a flat plate constitutes a

stagnation point (in which the flow velocity is zero in the potential flow framework), which

implies maximum pressure. Differences between the leading edge pressure of thin-airfoil theory

and the numerical simulation can be attributed to the inclusion of viscosity and compressibility.

Figure 4.8: Gauge pressure (Pa) near the leading edge of the flat plate.
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Finally, figure 4.9 shows the field of Vx and uy near the PC. Just like in figure 4.7, there is a

boundary layer structure near the wall of the flat plate. The presence of the PC has negligible

effect on this structure, due to the small magnitude of displacement (10−7 m). To end, it can

be seen from the figure that uy is effectively constant along the x−direction of the phononic

crystal. This simply verifies the boundary condition in which no restriction was put on the

vertical displacement of the PC.
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Figure 4.9: Contour of the streamwise component of the velocity (Vx (m/s)) and the vertical
displacement of the PC (uy (m)).

Having obtained and qualitatively investigated the basic flow field, the frequency domain FSI

was performed. This shall be discussed in more detail in the following section.

4.3 Frequency Domain Fluid-Structure Interaction (FSI) Sim-

ulation

The results of the frequency domain FSI are used to answer the research questions (see chapter

1). Similar to the previous section, this section consists of two subsections. The first (subsection

4.3.1) explains the set-up of the frequency domain simulation. The second subsection (subsection

4.3) presents and discusses the results obtained from the simulation.

4.3.1 Set-up of the Frequency Domain FSI Simulation

The geometry, material and the meshing of the steady-state FSI simulation were also used in

the frequency domain study (see section 4.2.1 for the details). As a reminder, two things are

now relevant in the frequency domain: the perfectly-matched layers (PMLs) and the forcing

domain, denoted by sub-domain (a) and (e) respectively (figure 4.6). The former items were

used to minimize reflection, and the latter was used to generate the TS wave.

The forcing function applied was a two-dimensional cosine function with an amplitude of 12

N/m3. The cosine behaviour was chosen in order to smoothen the body force distribution

in the body force domain (with the maximum at the center). This application of a forcing
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distribution is able simulate the effect of a plasma actuator on a flow [36], where the influence

of a plasma actuator has also been proven to generate TS waves [7].

The boundary conditions for the frequency domain simulation were the same as the steady-state

simulation, except for one: at the inlet and outlet, the disturbance velocity components were

set to zero.

As for the initial conditions, the disturbance flow field was set to zero.

Finally an extra parameter has to be assigned in the simulation, namely the excitation frequency

(see equations 3.41 - 3.43 to see how the frequency is introduced in the problem). This excitation

frequency also corresponds to the TS wave frequency. Following the results of reference [30],

it is of interest to see the response of the PC for frequencies that lie within the band gap.

Furthermore, it was also shown that the largest response occurs near the resonance frequency.

With this in mind, a frequency sweep from 296 Hz to 306 Hz was performed in this frequency

domain simulation (as a reminder, the predicted band gap frequency interval starts from 253.0

Hz and ends at 468.7 Hz, derived from figure 3.8; the resonance occurs at 300.76 Hz for the

isolated structure). Steps of 0.04 Hz was taken for the intervals 296-299.96 Hz and 302.04-306

Hz. The remaining frequencies were swept with a step size of 0.02 Hz. This small frequency

steps were chosen in order to anticipate a resonance response which is known to have very large

gradients near the resonance frequency.

The results of the frequency domain FSI simulation are presented in the next section.

4.3.2 Results of the Frequency Domain FSI Simulation

A number of different physical quantities were derived from the frequency domain FSI simu-

lation. In this section, the quantities shall be presented as follows. To start the analysis, the

so-called ”overall” quantities are discussed (section 4.3.2.1. These quantities are only a function

of the TS wave frequency. This analysis gives a broad overview of the influence of the PC to the

disturbance flow field, but obscures any details in the spatial variation. Such an analysis allows

for choosing frequencies that are of interest for more detailed studies. This analysis deals with

the main research question, the second and the third sub research question (see chapter 1).

The second analysis is to see quantities that vary only along the streamwise direction at some

frequencies of interest (section 4.3.2.2). These quantities are expressed in terms of integrals in

the wall-normal direction. This analysis primarily deals with the first and second sub research

question. However, as shall be seen, it can also give a more detailed answer to the main research

question.

Finally, a summary and extra remarks of the results of the frequency domain FSI simulation

are given in section 4.3.2.3.
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4.3.2.1 Overall quantities

Several ”overall” quantities shall be presented in the ensuing paragraphs. As mentioned, these

quantities are only functions of the frequency. Furthermore, these quantities can be distin-

guished according to the media: those pertaining to the fluid domain (disturbance flow field)

and solid domain (structural displacement) separately. In the case of the fluid domain overall

quantities, the first quantity that shall be discussed is the time-averaged kinetic energy. This

quantity gives a general overview on the influence of PC on the TS waves. Next, the components

of the kinetic energy shall be analyzed i.e. the square of the streamwise and the wall-normal

velocity amplitudes. As for the solid domain quantities, the amplitude and phase response at

the fluid-structure boundary shall be analyzed.

The following paragraphs present the results of the aforementioned overall quantities.

Change in the averaged kinetic energy

The kinetic energy of the disturbance flow has been used as a criterion in defining flow stability

[19][53]. The advantage of this approach is the inclusion of all disturbance velocity components.

Before presenting the results, the time-averaged kinetic energy shall be derived from the fre-

quency domain solution.

The starting point is the instantaneous kinetic energy. This physical property can be obtained

from the real parts of the disturbance velocities:

ek,i =
1

2
((Real(v′x))2 + (Real(v′y))

2)

=
1

2
((ṽ′x cos (ωt+ φv′x))2 + (ṽ′y cos (ωt+ φv′y))2) (4.2)

Next, an averaging operation is performed over the time variable. The time-averaged kinetic

energy is given by:

ek = lim
t∗→∞

1

t∗

∫ t∗

0
ek,i dt (4.3)

Upon evaluating the integral analytically, one arrives at the following equation:

ek =
1

4
(ṽ

′2
x + ṽ

′2
y ) (4.4)

This time-averaged kinetic energy is then integrated over the fluid domain:

Ek =

∫∫
Sf

ek dS (4.5)

Finally, to evaluate the effect of PC on the TS waves, the difference with the reference is taken:
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∆Ek =
Ek − Ek,ref

Ek,ref
(4.6)

It is noted that ∆Ek is now only a function of frequency, as the time and spatial variations have

been eliminated through averaging and integration respectively.

The variation of ∆Ek with frequency is shown through the plot given in figure 4.10.
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Figure 4.10: Variation of ∆Ek with TS wave frequency

A number of important observations can be made figure 4.10. The first and the most important

observation is that there is only an increase in the overall kinetic energy of the disturbance flow

field at all of the simulated frequencies, which may imply that there is no stabilization at all.

This observation indicates a contrast to the numerical result obtained in reference [30] in two

ways. One is the fact that there is no stabilization at all by the kinetic energy criteria. The other

thing is that the effect of the phononic crystal on the disturbance field is the same regardless

whether the frequency is above or below resonance (i.e. regardless of the phase response of the

phononic crystal surface; the actual resonance frequency and the PC response studied in the

study given here is around 300.72. This shall be motivated in one of the upcoming paragraphs,

with the use of figure 4.13).

The second observation made by looking at figure 4.10 is that the influence of PC on the

disturbance flow field is relatively small. This is directly seen from the small change of magnitude

of the overall disturbance kinetic energy with respect to the reference configuration, where the

maximum ∆Ek lies slightly above 1.83 %. The frequency of this maximum lies slightly above

the resonance frequency, at 300.74 Hz.

Yet another important observation of figure 4.10 is the narrowband PC response to TS wave

excitation. The effect on the disturbance flow tends to zero relatively quickly. A 1 Hz increase

in the frequency from 300.74 Hz yields a change in kinetic energy of approximately 11.8 % of

the maximum value.
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Nevertheless, this small magnitude of ∆Ek does not necessarily mean that there is no effect of

the PC on the flow. This is because a surface integral was taken over the whole fluid domain.

This small magnitude implies that the PC exerts its influence on the flow locally, rather than

globally. This shall be made clearer in section 4.3.2.2.

The final remark to be made here is that the resonance obtained from the isolated structure is

a good prediction for the frequency of that yields the largest influence on the disturbance flow

field. The implication is that the structural analysis (which is much more efficient than the

full fluid-structure interaction) can be used effectively to design the operating frequencies of the

phononic crystal.

Change in the amplitudes of the perturbation velocities

More details of the overall performance of the PC can be analysed. The components of the

kinetic energy, i.e. the amplitude of the streamwise and wall-normal velocities, can be com-

pared with respect to the reference configuration. This analysis is used to analyze where the

contributions to the change in kinetic energy come from. The plot of the surface-integrated

change in velocity amplitudes w.r.t. the reference (denoted as ∆Ṽ ′x and ∆Ṽ ′y) against TS wave

frequencies is given in figure 4.11. Just like the case for the kinetic energy, the integration was

performed over the whole fluid domain.
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Figure 4.11: Variation of ∆Ṽ ′x and ∆Ṽ ′y with TS wave frequency

Several remarks can be made from this figure. The first is that there is only an increase in

both the velocity component amplitudes (∆Ṽ ′x,∆Ṽ
′
y > 0) at all the simulated frequencies. This

means that globally, none of the velocity components were damped with the PC. Furthermore,

the frequency of the maximum of ∆Ṽ ′x and ∆Ṽ ′y coincide with the maximum of ∆Ek at 300.74

Hz.

A more interesting remark is that the increase of the streamwise disturbance velocity amplitude

is larger than its wall-normal counterpart, both in relative and absolute value (while the relative

increase was shown in figure 4.11, and example of comparison between the magnitudes of the
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two disturbance flow velocity components can be found in Appendix C). The maximum of ∆Ṽ ′x
is approximately 4.93 times of the maximum of ∆Ṽ ′y .

This is a very interesting finding since the PC was designed with the vertical displacement as

the displacement component that would influence the flow field, and was not designed with the

horizontal displacement in mind. One may suggest that there is an unexpected effect of the

PC’s horizontal displacement. This shall be further investigated in the upcoming paragraphs.

PC’s surface displacements

After looking at the fluid side’s overall performances, the performance of the phononic crystal

shall be evaluated. Here, the ”overall” properties were obtained by taking the performances at

the mid-point of the PC’s top boundary (x, y = (0.65, 0) m), denoted by (·)m. This operation

was chosen as it was found that there are very little variations in the complex displacements

over the PC’s top surface for the vertical displacement in particular (see Appendix D). With

this, the performances are only a function of TS wave frequency.

As with the analysis performed in the isolated structure frequency response (section 4.1.3), the

magnitude of the complex amplitude and its phase can be used as analysis tools.

The plot of the average horizontal displacement’s amplitudes ((ũx)m) is given in figure 4.12. The

plot of the average vertical displacement amplitudes ((ũy)m) and phase differences ((∆φuy)m)

are given in figure 4.13. The pointwise phase difference is defined as follows:

∆φuy = |φp′ − φuy | (4.7)

where φp′ and φuy are the arguments of the complex amplitudes of the pressure fluctuation and

PC’s vertical displacement. For (∆φuy)m > π, the value is replaced by the difference between 2π

and the old value. This is to ensure that the phase has a maximum of π (becomes π-periodic).
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A number of observations can be made from the two figures. The first is the magnitude of (ũx)m,

which has the order of 10−12 m. Alternatively, one could also look at the surface velocity, as

it the velocity (and not the displacement) that is imposed on to the fluid. The velocity of

the PC can be easily derived from the displacement through multiplication by i2πf . With the

range of simulated frequencies, the magnitude of the complexity velocity would become 3 to 4

orders higher than the magnitude of the complex displacement. This means that, at best, the

horizontal velocity would be in the order of 10−8 m/s. This order of magnitude is far too small

in comparison to the magnitude of the streamwise velocity fluctuation of 10−2 m. Hence, it can

be concluded that the horizontal displacement does not affect the flow in the simulation.

On the other hand, one could observe the magnitude of (ũy)m. It is in the order of 10−7 m. This

yields vertical velocities with magnitudes of 10−3 to 10−4 m/s. This is very much comparable to

the magnitude of the wall-normal disturbance velocity of 10−3 m/s. Therefore, it was concluded

that the influence of the PC on the flow effectively only comes from its vertical displacement.

A small observation can be made on the frequency that yields the peak of the PC displacements.

The maximum (ũx)m and (ũy)m occur at 300.8 and 300.72 Hz respectively. The latter frequency

was used to define the resonance frequency for the discussion, which also coincides with the

frequency of maximum ∆Ek.

Finally, from figure 4.13, it can be observed that the behaviour of the amplitude and phase

of the vertical displacement is similar to that of a resonance behaviour: where there is a clear

peak in the displacement followed by a phase change. However, there are two differences with

respect to the isolated structural analysis (section 4.1.3). The first is that the phase differences

are flipped: in figure 4.13, the phase difference tends towards π below the resonance and goes

to zero above it (while the opposite is true in figure 4.4). This is because of the definition of

the forcing function. In obtaining figure 4.4, the function was defined to be positive upwards.

In the case of figure 4.13, the forcing function is the fluid’s pressure which acts downwards for

positive pressure. This difference in the definition of positive force direction caused a flip in the

phase differences.

The other difference is that the resonance response given in figure 4.13 is similar to the damped

case. This can be derived from the fact that the phase jump does not occur instantaneously (as

is the case of figure 4.4). This means that there is a damping in the vibrational energy within

the PC structure. However, no damping was applied in the solid mechanics model. Hence, the

damping can only happen due to the transfer of energy from the PC onto the flow, where this

energy is then dissipated as heat.

This concludes the discussions on the overall performance of the PC in stabilizing TS waves.

In the next section, quantities that only vary in x shall be further investigated for three sample

frequencies that are far below, around and far above resonance.

4.3.2.2 x-varying quantities

In this section, quantities that vary along the streamwise direction (i.e. x− direction) shall be

investigated. The aim of studying such quantities is to understand the streamwise evolution of
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the TS wave as it passes through the phononic crystal. The nature of the evolution may also

give insight on how the PC influences the TS wave.

The flow quantities of interests are the same as before: disturbance kinetic energy and the

magnitude of the disturbance velocity components. However, in this section, the quantities

shall be integrated along the y− direction; such that once a frequency has been chosen, the

resulting quantities are only functions of x. To be more specific, the quantities to be studied

are
∫ H

0 ek dy,
∫ H

0 ṽ′y dy,
∫ H

0 ṽ′x dy, and
∫ H

0 (ṽ′x)2 dy. In the integration limits, H is the height of

the computational domain (it is to note that the disturbance vanishes quickly with y). The first

and the last of the aforementioned integral are the same or similar to quantities which have

been used to determine the growth rate of TS waves [19].

The choice of the frequencies to be studied are based on the performance of the phononic crystal

(figure 4.13). Three distinct performances can be studied by selecting frequencies far below,

around and far above the resonance. These corresponds to three different phases ∆φuy of π, π/2

and 0 rad. As previously discussed, the phase π actually corresponds to ”in-phase” response

while the phase ”0” corresponds to the ”out-of-phase” response (because positive pressure causes

downward displacement). This definition shall be carried in the following discussion. Neverthe-

less, with this in mind, frequencies of 298, 300.72, and 304 Hz were chosen to be further studied

in detail.

Time-averaged kinetic energy

The streamwise variation of y-integrated time-averaged kinetic energy (
∫ H

0 ek dy) at f = 298,

300.72 and 304 Hz are given in figure 4.14. In the figure, the region shaded by magenta denotes

the location of the PC. As a reminder, the ”reference” simulation refers to the simulation without

PC.
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Figure 4.14:
∫H

0
ek dy vs x for f = 298 (”in-phase”), 300.72 (”resonance”) and 304 Hz (”out-

of-phase”) (subplot (a), (b) and (c) respectively). In each subplot, the location of the phononic
crystal is given by the region shaded in magenta.

The trends in the three figures above are as follows. For the frequency below resonance (f = 298

Hz), there is an increase of kinetic energy integral around the PC. However, as the flow reaches
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the PC, there is a drop. The opposite can be observed for the frequency above resonance (f =

304 Hz). The peak of kinetic energy integral that appears very close to the PC is surrounded by

a dip. This opposing response happens simultaneously with a change in phase difference (∆φuy ,

see equation 4.7 and figure 4.13). This behaviour shall be further analyzed with the study of

the velocity component integrals. Nevetheless, from this decrease in kinetic energy integral, one

could deduce that there is indeed some stabilization when ∆φuy tends towards zero (i.e. when

positive pressure fluctuation yields a positive (upwards) vertical displacement of the PC’s top

surface). Nevertheless, there is an addition phenomenon that happens at f = 304 Hz, namely

the increase in kinetic energy for some part downstream of the PC (around x = 0.66 m), which

compromises the stabilization.

As for the response around the resonance (f = 300.72 Hz), it can be seen that there is an

overall increase in the kinetic energy integral. Furthermore, the influence around the resonance

is much larger than at the other two frequencies, as can be seen by the huge relative difference

of the kinetic energy integral. There is a trend to be noted: starting from upstream, the kinetic

energy decreases slightly, then experiences a sharp increase just in front of the PC. At the PC,

the kinetic energy decreases sharply, and then increases again downstream. At this frequency,

the downstream influence of the PC extends further than at f = 304 Hz.

Wall-normal disturbance flow velocity

The wall-normal disturbance flow velocity is the velocity that is directly affected by the motion

of the PC, as it was found that the PC’s vertical displacements are of 5 orders of magnitudes

larger than its horizontal displacement (figure 4.12 and 4.13). Hence, the analysis of ṽ′y shall

give the most direct insight on the effect of PC on TS waves.

The streamwise variation of y-integrated amplitude of the wall-normal velocity (
∫ H

0 ṽ′y dy) for

f = 298, 300.72 and 304 Hz are given in figure 4.15.
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Figure 4.15:
∫H

0
ṽ′y dy vs x for f = 298 (”in-phase”), 300.72 (”resonance”) and 304 Hz (”out-

of-phase”) (subplot (a), (b) and (c) respectively). In each subplot, the location of the phononic
crystal is given by the region shaded in magenta.
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The first and foremost is observation to be made from the figures above is that, there is a

drop of ṽ′y integral at the PC for f = 298 Hz while an increase is observed for f = 304 Hz.

The behaviours are opposite when the phase differences are opposite. In fact, this shows that

when the pressure and the vertical displacement are ”in-phase” (i.e. positive pressure yields

downwards vertical displacement, as in when f = 298 Hz), there is a stabilizing effect in ṽ′y. On

the other hand, there is an destabilizing effect in ṽ′y when the PC’s surface vertical displacements

are ”out-of-phase”.

Another observation regards the behaviour near the resonance frequency (f = 300.72 Hz). Just

like the previously studied quantities, there is a significant increase in the ṽ′y integral along a

relatively large part of the domain. In particular, the increase in ṽ′y integral is more prominent

downstream of the PC. However, again, just like the previous quantities, it can be observed

that there is a sharp drop of ṽ′y integral at the PC, which is then followed by an increase further

downstream.

Streamwise disturbance flow velocity

In addition to the wall-normal velocity, the streamwise disturbance velocity is also worth analyz-

ing as it has been used to define stability in experimental simulations ([55] and [51], as mentioned

in [19]). Furthermore, it was found that the magnitudes of the streamwise disturbance velocity

was larger than its wall-normal counterpart. Hence, it contains more of the energy of the TS

waves and so influencing this velocity component is desirable.

The streamwise variation of y-integrated amplitude of the streamwise velocity (
∫ H

0 ṽ′x dy) for f

= 298, 300.72 and 304 Hz are given in figure 4.16.
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Figure 4.16:
∫H

0
ṽ′x dy vs x for f = 298 (”in-phase”), 300.72 (”resonance”) and 304 Hz (”out-

of-phase”) (subplot (a), (b) and (c) respectively). In each subplot, the location of the phononic
crystal is given by the region shaded in magenta.

The above figures show striking contrasts with respect to the wall-normal velocity. When the

PC’s vertical displacement is ”in-phase” (f = 298 Hz), an increase in ṽ′x integral is observed at

the PC. The opposite is true for the ”out-of-phase” response i.e. an increase at the PC for f =
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304 Hz. Hence, in fact, the out-of-phase response benefits stabilization when ṽ′x is used as the

stability criterion.

The other contrasting result is the sharp increase of ṽ′x integral at resonance at the PC. Other-

wise, the same significant increase can be observed elsewhere. Indeed, downstream of the PC,

both ṽ′y and ṽ′x integrals become larger than the reference simulations.

Square of streamwise disturbance flow velocity

The y-integrated square of the amplitude of the streamwise disturbance flow velocity shall also

be analyzed. This term also signifies the streamwise component of the kinetic energy.

The streamwise variation of y-integrated amplitude of the streamwise velocity (
∫ H

0 (ṽ′x)2 dy) for

f = 298, 300.72 and 304 Hz are given in figure 4.17.
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Figure 4.17:
∫H

0
(ṽ′x)2 dy vs x f = 298 (”in-phase”), 300.72 (”resonance”) and 304 Hz (”out-

of-phase”) (subplot (a), (b) and (c) respectively). In each subplot, the location of the phononic
crystal is given by the region shaded in magenta.

It can be seen from the above figures that squaring the velocity results in vanishing oscillatory

behaviours that can be seen in the analysis of ṽ′x integral far away from the PC. Furthermore,

the (ṽ′x)2 integral shows more-pronounced increase (for f = 298 Hz) and decrease (for f = 304

Hz) at the PC.

The behaviour of (ṽ′x)2 integral is very similar to the behaviour of the kinetic energy integral

(figure 4.14).

Additionally, when comparing with the kinetic energy integral, it can now be concluded that

for the two frequencies away from the resonance, the influence around the PC (not at the PC)

are dominated by the streamwise component while the influence at the PC is dominated by the

wall-normal velocity component.
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4.3.2.3 Summary and further remarks

In summary, overall and x−varying quantities were derived from the solutions of the frequency

domain FSI numerical simulation. In the overall properties, it was observed that stabilization

could not be obtain if the disturbance flow properties were integrated fully. None of the dis-

turbance flow velocity component integrals were attenuated. However, it was shown that the

streamwise component had a bigger relative and absolute change with respect to the simulation

without PC. Furthermore, the maximum influence of the PC was observed for frequency near

the peak of the vertical displacement amplitude.

The magnitude of the horizontal displacement of the phononic crystal was five orders of mag-

nitudes smaller than the vertical displacement, and hence it was concluded that the horizontal

displacement played negligible influence. This meant that the pressure was a major contributor

to the stress in the structure, while the shear stresses were insignifant. Additionally, the vertical

displacement was found to have a damped resonance behaviour, as shown by the smooth jump

of phase around the maximum amplitude. The resonant behaviour was as expected, in the sense

that ”in-phase” response was observed below the resonance and ”out-of-phase” response above.

Having verified the nature of the response of the PC to the TS waves and the frequencies of

interest, x-varying quantities were investigated at three distinct frequencies: one for the ”in-

phase”, another near resonance and the final one in the ”out-of-phase” regime. The kinetic

energy and streamwise velocity amplitude integrals showed attenuations in the vicinitiy of the

PC for the ”out-of-phase” response. As for the ”in-phase” response, these x-varying quanti-

ties were increased. However, the opposite behaviour was found for the wall-normal velocity

amplitude integral.

Around the resonance, major increase were found in the flow variables, in particular downstream

the PC. Attenuation exists upstream the PC, however, it was negligible compared to the increase.

With this, it can be concluded that stabilization can occur to a certain extent in the case of

”out-of-phase” response.

It is also interesting to see the variation of stabilization with frequency. This is because although

the ”out-of-phase” response is desirable, a large amplitude response ensures a larger influence

in the flow (as derived from the discussion of the overall quantities). However, the largest

amplitude response does not yield the best phase response. Hence, there is a trade-off, where it

is thought there is an optimum frequency for a balance between amplitude and phase responses.

An attempt at finding this optimum frequency is given by the plot showing the maximum

decrease (shown by ”minimum increase)” of the kinetic energy integral as a function of Ts wave

frequency (figure 4.18).
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Figure 4.18: Variation of the maximum decrease of the kinetic energy integral as a function
of frequency

The above plot is given for frequencies above the resonance. It can be seen that as the frequency

increases, this decreases increases and peaks at f = 300.96 Hz. However, it was also found

that the behaviour at this peak is similar to the resonance behaviour, with severe increases

downstream the PC (figure 4.14).

Hence, in addition to observing the plot of maximum decrease in kinetic energy, it is also

necessary to consult with the plot of maximum increase in kinetic energy. This is given in figure

4.19.
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Figure 4.19: Variation of the maximum increase of the kinetic energy integral as a function
of frequency

Nevertheless, once this peak is passed (or valley as given in figure 4.18), there is a continuous

decrease in the stabilization of the kinetic energy. This is as expected, since the phase response

cannot get better than ”out-of-phase” (or by the convention, ∆φuy = 0) while the amplitude

continuously decreases as the frequency becomes further from the resonance.



Results and Discussions 83

Another interesting performance was derived from the simulation of multiple identical phononic

crystals. It was found that stabilization can be further enhanced by placing multiple identical

phononic crystals in the streamwise direction. An example of this enhancement is shown by the

plot of the kinetic energy integral for five PCs given in figure 4.20 for f = 304 Hz.
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Figure 4.20:
∫H

0
ṽ′y dy vs x for f = 304 Hz with five identical PCs

In the above plot, the maximum decrease in the kinetic energy is found to be approximately

0.554 % at x ≈ 0.653 m Furthermore, it can be seen that the downstream increase in the kinetic

energy can be shifted by placing phononic crystals. Ultimately, if the whole flat plate’s surface

is covered with PC structures, it may be possible to completely eliminate the increase in the

kinetic energy.

This ends the presentation of the results of the frequency domain FSI simulation. In the

next chapter, the research questions are going to be answered more explicitly, along with the

conclusions derived from the whole thesis report and recommendations for improvements.



Chapter 5

Conclusions and Recommendations

This chapter is divided into two sections. In section 5.1, the conclusions of this thesis report

shall be given. The tasks performed in this thesis project shall be summarised and the research

questions are to be clearly answered. In section 5.2, recommendations for improvements of the

current study shall be outlined.

5.1 Conclusions

This thesis project was motivated by the need to reduce drag over an aircraft. One way is

to maintain laminar flow throughout aircraft body parts (for instance, a wing). In order to

achieve this, the mechanism for laminar-turbulent transition had to be understood. A number

of mechanisms can be identified. The one dealt in this thesis project was the growth of small

disturbances in the form of a wave, also known as Tollmien-Schlichting waves. This ”wave”

is not the same as classical waves (such as acoustic or electromagnetic waves), because of the

differing form governing equations. The physical implication of the model describing TS waves

is that the wave is being convected with the flow, whereas in classical waves convection is not

necessary in order for the wave to propagate.

With this in mind, there is a newly emerging class of materials called ”metamaterials”, which

have been used traditionally to alter the properties of classical waves. This thesis aims at

investigating whether or not these metamaterials can be used to alter the properties of TS

waves, with the desire to attenuate TS waves in order to maintain laminar flow. In order to set

this project focused, research questions were formulated.

Several acoustic metamaterials were investigated in the literature study (chapter 2), namely

the Helmholtz resonators, membrane and phononic crystals. The working principles of these

metamaterial were identified. On the basis of the metamaterial’s likelihood in successfully

achieving stabilization of TS waves, the phononic crystal was chosen to be further studied.

The choice of the type of study was a two-dimensional numerical simulation. In order to design

this numerical simulation, one had to find the conditions for which the flow became unstable.

A linear stability analysis was performed in which the Orr-Sommerfeld equation was solved
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numerically. This led to the choice of the freestream velocity, the unstable TS wave frequencies

and wavenumber. The properties of the TS waves were then used to design the phononic

crystals constituents and dimensions in order to ensure that the working range of the phononic

crystal lies within the unstable TS wave frequency range. The phononic crystal design procedure

employed relatively simple analysis, where analytical equations were derived.

Having chosen the flow conditions and designed the phononic crystal, numerical analysis was

performed using COMSOL®. Three types of simulation was performed: namely the structural

analysis, steady-state FSI and frequency domain FSI. The first analysis was performed in order

to verify and finalize the design of the phononic crystal. The second analysis was used to

enable the third. The research questions can be answered using the data derived from the

third simulation. The word ”metamaterial” in the research question shall now be replaced with

”phononic crystal”, as this was the metamaterial chosen to be studied in detail. The answers

are the focus of the following paragraphs.

Main RQ: Can TS waves in a laminar boundary layer flow be attenuated

using a phononic crystal?

When the disturbance field (i.e. its kinetic energy or velocity components) is integrated over the

fluid domain, the phononic crystal destabilizes the basic flow. This was shown in the analysis

of the ”overall” quantities. However, when looking at the spatial variation of the disturbance

field, there is a region in which the flow is stabilized i.e. reduction in the kinetic energy or

the velocity disturbance component. This region is found to be in the vicinity of the phononic

crystal. Destabilization occurs further downstream. Hence, to a certain extent, the boundary

layer can be stabilized with the phononic crystal.

Sub-RQ 1:What are the changes imparted on the TS waves when ap-

proaching the phononic crystal?

This answer is dealt using the results of the x−varying quantities. Depending on the frequencies

and the disturbance physical quantities being considered, stabilization (decreases) and desta-

bilization (increases) can occur. The frequencies were categorized into three regions, namely

the ”in-phase”, ”near resonance” and ”out-of-phase” frequencies. The phase was by the differ-

ence between the phase of the pressure fluctuation and PC’s surface vertical displacement. In

the case of the ”in-phase” frequency, the wall-normal velocity disturbance amplitude decreases.

Simultaneously, the streamwise velocity disturbance increases. The effect on the streamwise

disturbance was found to be larger than that of its wall-normal counterpart. Consequently, an

increase of the kinetic energy was found in the vicinity of the PC. The opposite behaviour was

found in the case of the ”out-of-phase” frequency. As for the ”near resonance” frequency, severe

increases in all the disturbance flow velocity can be found slightly upstream and downstream

the PC.

Sub-RQ 2: What is the physical mechanism that drives the attenuation

of the TS waves (if any attenuation takes place)?
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The range of frequencies simulated in the frequency domain FSI simulation covered the frequency

range in the predicted band gap of the PC’s unit cell. However, it was found that the band gap

did not play a direct role in the behaviour of the response of the phononic crystal. Rather, a

damped resonance behaviour was found. This is because destabilization can occur within the

band gap itself, for the frequencies below resonance. Hence, the mechanism that the phononic

crystal uses in order to attenuate TS waves is the resonance. Consequently, any resonating

structure could also replace the phononic crystal.

This resonance response was found for the vertical displacement of the phononic crystal. The

horizontal displacement was found to be five orders of magnitudes smaller than the vertical

displacement, and hence can be concluded to have played negligible effect on influencing the TS

waves.

The stabilization of the TS wave can occur within the ”out-of-phase” response of the resonance

behaviour. A suggestion for how the ”out-of-phase” response stabilzes the phononic crystal

is given as follows. The interaction between the disturbance flow and the phononic crystal

is compared to a forced spring system, where the flow represents the driving force and the

structure represents the spring. Under the normal case (”in-phase” behaviour), the flow drives

the vibration of the spring by transfer of energy (or performing work). However, in the ”out-

of-phase” case, it is suggested that the driver-driven role of the fluid-structure case is swapped.

That is, the structure transfers energy into the flow. As a direct consequence, the amplitude

wall-normal disturbance flow component is increased.

In turn, the streamwise disturbance flow decreases. This can be understood mathematically

from the conservation of mass of the disturbance flow, given by equation 2.5a. This equation

can also be interpreted as follows (by divergence theorem): the net flux of the disturbance flow

velocity has to equal zero. This means that due to the increase in the wall-normal velocity flux,

the streamwise velocity flux has to decrease.

An analogy for this phenomenon suggested. The wall-normal velocity is thought to be an

”obstacle”, where due to its increase, the streamwise component has to decrease in order for

the flow to pass (much like how a person has to decrease its ground velocity in order to climb

a vertical obstacle or that a car should decrease its speed when encountering a speed bump).

Sub-RQ 3: How large is the attenuation (if any)? What is the sensitivity

of the attenuation with respect to the TS wave’s characteristics?

From the plots of the derived physical quantities, it is clear that the attenuations attained by

the phononic crystal are very small. Furthermore, it was indeed found that the attenuation

depends on the frequency of the TS wave (figure 4.18, the figure also gives the magnitude of

the decrease numerically). This can be explained by the variation of the vertical amplitude

and phase response of the phononic crystal as fucntions of frequency. It was found that, for

frequencies sufficiently away from the resonance, there is a continuous decrease in stabilization

(which correlates with the decrease in amplitude of the vertical displacement). Finally, it is

remarked that the role of the material constituents and the dimensions of the phononic crystal

are embedded within its frequency response. Hence, the design of the phononic crystal can be

used to optimize the response at certain frequencies.
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These conclusions derived from answering the research questions were formulated using data

derived from the numerical simulations. It is clear that numerical simulations had limitations.

Therefore, in the next section, recommendations in order to improve the study of stabilization

of TS waves with metamaterials shall be outlined.

5.2 Recommendations

This section gives the recommendations that can be used to improve the study. These are

outlined in the following list:

• Perform an experimental study. Numerous benefits can be derived from such a

study such as: validation of the current numerical simulation, looking at the effect of the

boundary conditions of the structure on the working frequency range and understanding

the effect and the lifetime of the transients.

• Perform a time-dependent simulation. This study provides an alternative to the

experimental study in order to see the time for the transient to disappear and its effects.

• Include non-linear terms in the numerical model. This study can be used to verify

the assumption that the non-linear terms in the disturbance flow equations stay negligble

when there is influence from the phononic crystal.

• Introduce a wavepacket rather than single frequency disturbances. Such a study

can be used to understand if the response of the single frequency simulation can be used

to predict the response to simultaneous multiple frequency excitations.

• Study the performance of the phononic crystal for TS waves at oblique an-

gles. This study is aimed at investigating the directionality of the phononic crystals.

Furthermore, this study may extend the application of the phononic crystal to stabilizing

cross-flow instabilities.

• Choose a different phononic crystal design. For instance, one may think of higher

dimensional phononic crystals in order to directly affect the streamwise disturbance flow

velocity. Another option is to choose a one-dimensional phoononic crystal with solid-fluid

constituents, to see if the PC’s response can be further improved in affecting the flow.

• Study the effect of wall curvature and pressure gradient. In this report, the study

was on a flat plate. It is important to also study the response of the phononic crystal

when curvature of the surface cannot be avoided, which is the case for real airfoils. Such

studies would also give insights to the effect of pressure gradients.



Appendix A

Figure A.1: Narrow air gaps used to allow for displacements at the top corners of the PC in
the frequency domain FSI simulation. The widths are 5 µm.
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Appendix B

Figure B.1: Zoomed-out view of the mesh used to perform the steady-state and frequency
domain FSI simulations

Figure B.2: Zoomed-in view of the mesh used to perform the steady-state and frequency
domain FSI simulations. The focus is on the refinement around the leading edge (x = 0 m),

forcing domain (x ≈ 0.185 m) and the phononic crystal region (x ≈ 0.65 m).
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Appendix C

Figure C.1: An example of the contour plot of ṽ′xe
iφv′

x .

Figure C.2: An example of the contour plot of ṽ′ye
iφv′

y .
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Appendix D

Figure D.1: Examples of distribution of ũx along the top boundary of the phononic crystal.
In the plot, ”abs(u4)” refers to ũx.

Figure D.2: Examples of distribution of ũy along the top boundary of the phononic crystal.
In the plot, ”abs(v4)” refers to ũy.

Figure D.3: Examples of distribution of φuy
along the top boundary of the phononic crystal.

In the plot, ”arg(v4)” refers to φuy .
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Appendix E

This appendix documents the mesh convergence study of the steady-state and frequency domain

FSI simulations. The structural analysis simulation is omitted as its numerical solution is

deemed to be sufficiently converged, as suggested by the predicted surface mode eigenfrequency.

The method is explained as follows. Three different mesh refinement levels were used, referred

to as ”Coarse”, ”Medium” and ”Fine” levels. Convergence is accepted when there is a ”small”

deviation between the mesh levels. It should also be noted that the mesh refinement levels had

to be compensated with the available memory.

In the two FSI simulations, the mesh elements are defined to be inversely proportional to a cer-

tain number denoted as Nmesh. The mesh sizes are thus represented as follows: ∆x,∆y1̃/Nmesh.

A larger value of Nmesh yields finer mesh. The specifications of the mesh refinement levels for

the two FSI simulations are given in table E.2.

Mesh refinement level Nmesh Number of elements

Coarse 0.70 118895

Medium 0.80 144455

Fine 0.85 153994

Table E.2: Mesh refinement level specifications for the steady-state and frequency domain
FSI simulations.

The simulations were performed. For the steady-state simulation, the velocity profiles are

deemed to be the best representation of the numerical simulations. Plots of Vx and Vy against

y for the different mesh levels are plotted in figure E.3 and E.4. Each figure contains two sub-

figures corresponding to different x−locations: near the leading edge (subfigures (a), taken as

x = 2×10−4m) and at the PC (subfigures (b), taken as x = 0.65 m).
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Figure E.3: Profiles of Vx for x =
2×10−4m (subfigure (a)) and x = 0.65 m
(subfigure (b)) for the different mesh refine-

ment levels.
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Figure E.4: Profiles of Vy for x =
2×10−4m (subfigure (a)) and x = 0.65 m
(subfigure (b)) for the different mesh refine-

ment levels.

For the station x = 0.65 m, it can be seen that there are no significant changes to the velocity

profiles. As for the Vx profile near the leading edge, small deviations in the Coarse level can

be seen. The largest difference between the Coarse and the Fine levels is approximately 10.3%,

occuring at y ≈ 0.0788 mm. Nevertheless, it can be seen that the profiles for the Medium and

the Fine levels effectively overlap.

In the case of the Vy profile, a larger discrepancy can be seen. The largest discrepancy between

the Coarse and the Fine levels is 20.8% at y ≈ 0.184 mm. This maximum discrepancy reduces

to 6.12% (at y ≈ 0.158 mm) when comparing the Medium and the Fine mesh levels. For this

thesis, the discrepancies between the Medium and the Fine levels are deemed to be small enough

to consider the solutions of the Fine mesh to have converged.

In the frequency domain FSI simulation, the plots of the velocity fluctuation profiles at the PC

(x = 0.65 m) are deemed to be the representative variable of the numerical solution. The real

part of the velocity fluctuations are given in figure E.5 and E.5 for the different mesh levels at

three different frequencies: 298, 300.72 and 304 Hz, where each frequency represents in-phase,

resonance and out-of-phase response respectively (see section 4.3).
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Figure E.5: Plots of v′x profile for the different mesh levels at f = 298 (a), 300.72 (b) and 304
(c) Hz.
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Figure E.5: Plots of v′y profile for the different mesh levels at f = 298 (a), 300.72 (b) and 304
(c) Hz.

From figure E.5, it can be seen that small deviations exist primarily for the Coarse mesh level

at f = 300.72 and 304 Hz. Otherwise, the plots of v′x are effectively overlapping.

As for the v′y profiles, there are relatively larger discrepancies between the Coarse and the Fine

levels and smaller discrepancies between the Medium and Fine levels. In all of these cases, the

largest discrepancies occur around the y−location of maximum v′y (y ≈ 0.2 cm). The maximum

magnitude of relative discrepancies between the Medium and the Fine levels are approximately

3.46, 2.55 and 3.94 % for f = 298, 300.72 and 304 Hz respectively. Again, these discrepancies

are deemed to be small enough to consider the solution of the Fine mesh refinement level to

have sufficiently converged.
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