Opdrachtgever:
Rijkswaterstaat
Dienst Weg- en Waterbouwkunde, TAW-A2

Taludbekledingen van gezette steen

Golfdruk op het talud

Deel A: Analyse van meetgegevens, N649
Verslag modelonderzoek
December 1992
Taludbekledingen van gezette steen

Golfdruk op het talud

J.P. de Waal
1. Rapport nr. N 649
2. Serie nr. TAW-A2
3. Ontvanger catalogus nummer
4. Titel en sub-titel Taludbekledingen van gezette steen. Invloed van berm en ondiep voorland op drukken op het talud
5. Datum rapport December 1992
6. Kode uitvoerende organisatie H195/H1256
7. Schrijvers J.P. de Waal
8. Nr. rapport uitvoerende organisatie
10. Projektnaam TAWA*STEEZ/TAWA*BELAST
11. Kontaktnummer
13. Type rapport
14. Kode andere opdrachtgever
15. Opmerkingen
16. Referaat
De waterbeweging op taluds is in een uitgebreid modelonderzoek onderzocht, waarbij met name naar de invloed van een berm en ondiep voorland is gekomen. Ten behoeve van het meerjarig onderzoek naar de stabilité van taludbekledingen van gezette steen zijn de golfdrukken op het talud geanalyseerd. De analyse leidt tot concrete aanbevelingen omtrent de schematisatie van de maatgevende drukken.
17. Trefwoorden Dijkbekleding, steenzetting, golfbelasting
18. Distributie systeem
19. Classificatie vrij toegankelijk
20. Classificatie deze pagina
22. Prijs
INHOUD

<table>
<thead>
<tr>
<th>LIJST VAN TABELLEN</th>
<th>LIJST VAN FIGUREN</th>
<th>LIJST VAN SYMBOLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Inleiding.</td>
<td></td>
<td>blz. 1</td>
</tr>
<tr>
<td>2. Beschrijving van het fysisch model.</td>
<td></td>
<td>blz. 3</td>
</tr>
<tr>
<td>2.1 Opzet.</td>
<td></td>
<td>blz. 3</td>
</tr>
<tr>
<td>2.2 Geplande proeven.</td>
<td></td>
<td>blz. 4</td>
</tr>
<tr>
<td>2.3 Modelopstelling.</td>
<td></td>
<td>blz. 6</td>
</tr>
<tr>
<td>2.4 Instrumentatie.</td>
<td></td>
<td>blz. 7</td>
</tr>
<tr>
<td>2.5 Data-acquisitie.</td>
<td></td>
<td>blz. 11</td>
</tr>
<tr>
<td>2.6 Gerealiseerde randvoorwaarden.</td>
<td></td>
<td>blz. 11</td>
</tr>
<tr>
<td>3. Opzet van de analyse.</td>
<td></td>
<td>blz. 13</td>
</tr>
<tr>
<td>3.1 Schematisatie van de belasting bij een individuele golf.</td>
<td></td>
<td>blz. 13</td>
</tr>
<tr>
<td>3.2 Keuze van de frontparameters.</td>
<td></td>
<td>blz. 14</td>
</tr>
<tr>
<td>3.3 Nieuwe definitie van de frontsteilheid.</td>
<td></td>
<td>blz. 15</td>
</tr>
<tr>
<td>3.4 Karakterisering van de frontparameters bij onregelmatige golven.</td>
<td></td>
<td>blz. 16</td>
</tr>
<tr>
<td>3.5 Fasering van de analyse van de meetgegevens.</td>
<td></td>
<td>blz. 19</td>
</tr>
<tr>
<td>3.6 Definities.</td>
<td></td>
<td>blz. 21</td>
</tr>
<tr>
<td>4. Statistische analyse.</td>
<td></td>
<td>blz. 25</td>
</tr>
<tr>
<td>4.1 Nauwkeurigheid van de meetgegevens.</td>
<td></td>
<td>blz. 25</td>
</tr>
<tr>
<td>4.2 Kansverdeling van fronthoogte en frontsteilheid.</td>
<td></td>
<td>blz. 28</td>
</tr>
<tr>
<td>4.3 Correlatie tussen frontparameters.</td>
<td></td>
<td>blz. 29</td>
</tr>
<tr>
<td>5. Relatie tussen frontparameters en golfrandvoorwaarden.</td>
<td></td>
<td>blz. 30</td>
</tr>
<tr>
<td>5.1 Bestaande kennis.</td>
<td></td>
<td>blz. 30</td>
</tr>
<tr>
<td>5.1.1 Regelmatige golven op een recht talud.</td>
<td></td>
<td>blz. 30</td>
</tr>
<tr>
<td>5.1.2 Concept formules voor onregelmatige golven op een recht talud...</td>
<td></td>
<td>blz. 31</td>
</tr>
<tr>
<td>5.1.3 Toepassing van bestaande kennis in huidige analyse.</td>
<td></td>
<td>blz. 32</td>
</tr>
<tr>
<td>5.2 Meetgegevens bij rechte taluds.</td>
<td></td>
<td>blz. 34</td>
</tr>
<tr>
<td>5.2.1 Invloed van golfsteilheid en taludhelling.</td>
<td></td>
<td>blz. 34</td>
</tr>
<tr>
<td>5.2.2 Vergelijking tussen nieuwe en oude formules.</td>
<td></td>
<td>blz. 38</td>
</tr>
</tbody>
</table>
INHOUD (vervolg)

5.3 Meetgegevens bij taluds met een berm................................. 39
 5.3.1 Invloed van bermbreedte bij berm op SWL.......................... 39
 5.3.2 Invloed van bermdiepte bij smalle berm............................ 41
 5.3.3 Invloed van bermdiepte bij brede berm.............................. 43
 5.3.4 Samenvatting invloed berm... 44
 5.4 Meetgegevens bij taluds met een ondiep voorland..................... 45
 5.5 Vergelijking tussen gemeten en berekende frontparameters......... 48

 6. Schematisatie van het stijghoogteverloop............................. 49
 6.1 De waterlaag op het talud vóór het front.......................... 49
 6.2 Afweging van varianten voor het front.............................. 51
 6.3 Verschillen ten aanzien van het maximale stijghoogteverschil.... 53

 7. Stijghoogteverschil over de zetting.................................. 56
 7.1 Opzet van de analyse.. 56
 7.2 Bepaling van een representatief extreem stijghoogteverschil..... 57
 7.3 Bepaling van een veel voorkomend stijghoogteverschil.............. 58
 7.4 Vergelijking tussen nieuwe en oude ontwerpformules................ 58

 8. Samenvatting en conclusies... 60

REFERENTIES

TABELLEN

FIGUREN

APPENDICES
LIJST VAN TABELLEN

2.1 Meetgegevens referentieproeven
2.2 Meetgegevens talud 1:3 met berm
2.3 Meetgegevens talud 1:4 met berm
2.4 Meetgegevens talud 1:3 met voorland
2.5 Meetgegevens talud 1:4 met voorland
2.6 Meetgegevens van calibratieproeven op voorland

4.1 Vergelijking van herhalingsproeven
4.2 Vergelijking van schaalproeven
4.3 Correlatie tussen fronthoogte en frontsteilheid
4.4 Correlatie tussen fronthoogte en frontniveau
4.5 Correlatie tussen fronthoogte en schadediepte

7.1 Berekening van het stijghoogteverschil bij verschillende frontparameters en lekhoogtes.
LIJST VAN FIGUREN

2.1 Constructie en meetgebieden bij basisprogramma
2.2 Overzicht constructies 1:4, 4000- 4100- en 4200-serie
2.3 Overzicht constructies 1:3, 3200- 3100- en 3000-serie
2.4 Overzicht constructies met voorland, 3300- 4300- en 9300-serie
2.5 Overzicht constructies ruwheid en lage kruin, 3020- t/m 3090-serie en 3090-serie
2.6 Blokjes als ruwheidselementen, 3040- en 3060-serie
2.7 Ribbels en steenlaag als ruwheidselementen, 3070- en 3090-serie
2.8 Meetopstelling overslagkruin
2.9 Afdekplaat voor lage overslagkruin
2.10 Meetopstelling calibratie voorland
2.11 Dwarsdoorsnede meetkoker voor drukken
2.12 Meetinstrumenten bij lage-kruin-proeven

4.1 Verhouding tussen 2%- en sig- waarde van de fronthoogte
4.2 Kansverdeling van de frontstabiliteit

5.1 Fronthoogte bij recht talud 1:3
5.2 Fronthoogte bij recht talud 1:4
5.3 Frontstabiliteit bij recht talud
5.4 frontniveau bij recht talud
5.5 Schadudiepte bij recht talud 1:3
5.6 Schadudiepte bij recht talud 1:4
5.7 Invloed bermbreedte op fronthoogte bij talud 1:3
5.8 Invloed bermbreedte op fronthoogte bij talud 1:4
5.9 Invloed bermbreedte op frontstabiliteit bij talud 1:3
5.10 Invloed bermbreedte op frontstabiliteit bij talud 1:4
5.11 Invloed bermbreedte op frontniveau
5.12 Invloed bermbreedte op schadudiepte
5.13 Invloed bermdiepte op fronthoogte bij smalle berm in talud 1:3
5.14 Invloed bermdiepte op fronthoogte bij smalle berm in talud 1:4
5.15 Invloed bermdiepte op frontstabiliteit bij smalle berm in talud 1:3
5.16 Invloed bermdiepte op frontstabiliteit bij smalle berm in talud 1:4
5.17 Invloed bermdiepte op frontniveau bij smalle berm
5.18 Invloed bermdiepte op schadudiepte bij smalle berm
5.19 Invloed bermdiepte op fronthoogte bij brede berm in talud 1:3
LIJST VAN FIGUREN (vervolg)

5.20 Invloed bermdiepte op fronthoogte bij brede berm in talud 1:4
5.21 Invloed bermdiepte op frontsteilheid bij brede berm in talud 1:3
5.22 Invloed bermdiepte op frontsteilheid bij brede berm in talud 1:4
5.23 Invloed bermdiepte op frontniveau bij brede berm
5.24 Invloed bermdiepte op schadediepte bij brede berm
5.25 Invloed teendiepte op fronthoogte bij talud 1:3
5.26 Invloed teendiepte op fronthoogte bij talud 1:4
5.27 Invloed teendiepte op frontsteilheid
5.28 Invloed teendiepte op frontniveau
5.29 Invloed teendiepte op schadediepte bij talud 1:3
5.30 Invloed teendiepte op schadediepte bij talud 1:4
5.31 Vergelijking tussen oude en nieuwe formules voor de fronthoogte
5.32 Vergelijking tussen oude en nieuwe formules voor de schadediepte
5.33 Vergelijking tussen gemeten en berekende fronthoogte
5.34 Vergelijking tussen gemeten en berekende frontsteilheid
5.35 Vergelijking tussen gemeten en berekende frontniveau
5.36 Vergelijking tussen gemeten en berekende schadediepte

6.1 Relatieve waterlaagdikte op het talud
6.2 Vergelijking schematisatie III met metingen op talud 1:3
6.3 Vergelijking schematisatie III met metingen op talud 1:4
6.4 Maximaal stijghoogteverschil bij variant I, II en III

7.1 Mogelijke benaderingen voor het 2%-stijghoogteverschil
7.2 Gekozen benadering voor het 2%-stijghoogteverschil
7.3 Gekozen benadering voor het sig-stijghoogteverschil
7.4 Vergelijking tussen oude en nieuwe ontwerpformules
LIJST VAN SYMBOLEN

B = bermbreedte (m)
C = factor in de relatie tussen de fronthoogte en de
golfrandvoorwaarden (-)
d₀ = frontdaldiepte ten opzichte van SWL (= −θ₀) (m)
dₛ = schadediepte ten opzichte van SWL (= −zₙ) (diepte waar de
belasting maximaal is als overgangsconstructies geen rol
spelen) (m)
g = zwaartekrachtsversnelling (m/s²)
H = golfhoogte (m)
H₀ₛ = significante golfhoogte op diep water (m)
Hₛ = significante golfhoogte (m)
h = hoogte van de stilwaterlijn (ten opzichte van de teen) (m)
hₕ = fronttophoogte ten opzichte van SWL (= θₜop) (m)
Lₕ = horizontale afstand tussen θ₀ en snijpunt van front
met SWL (m)
Lₒ = golflengte op diep water, behorend bij de golfperiode Tₚ (m)
T = golfperiode van regelmatige golven, maatgevende periode (s)
Tₚ = golfperiode bij piek van spectrum (s)
x = horizontale afstand tot de teen (m)
x₀₀ = horizontale afstand tussen θ₀ en de teen (m)
xₚₙy = horizontale afstand tussen het snijpunt van het front met
SWL en de teen (m)
xₜop = horizontale afstand tussen θₜop en de teen (m)
z = taludhoogte ten opzichte van SWL (m)
z₁ = hoogte van de freatiche lijn ten opzichte van het zwaarst
belaste blok (m)
z₈ = bermhoogte ten opzichte van SWL (m)
zₗ = schadehoogte op het talud ten opzichte van SWL (m)

α = taludhelling (*)
α₈ = helling van de berm (*)
α₉ = helling van het voorland (*)
β = hellingshoek van het stijghoogte-front, ten opzichte van
de verticaal (*)
Δ = relatieve massadichtheid van de blokken (-)
Γ = invloedsfactor voor de wrijving bij blokbeweging (-)
LIJST VAN SYMBOLEN (vervolg)

\(\gamma \) = peak-enhancement factor in Jonswap spectrum
\(\theta \) = maximale hellingshoek van het stijghoogte-front, ten opzichte van de horizontaal
\(\theta_f \) = frontsteilheid: hellingshoek van de lijn door het frontdal en het snijpunt van het stijghoogte-front met SWL
\(\theta_h \) = frontniveau
\(\lambda \) = lekhoogte
\(\Lambda \) = lekkracht
\(\xi_{op} \) = brekerparameter
\(\rho_w \) = soortelijke massa van het water (kg/m\(^3\))
\(\nu_w \) = viscositeit van water (m\(^2\)/s)
\(\phi \) = stijghoogte (ten opzichte van SWL) (m)
\(\phi_{b,1} \) = fronthoogte \((= \phi_{top} - \phi_{dal})\) (m)
\(\phi_{b,2} \) = stijghoogte \((= \phi_{top} - \phi_{dal})\) (m)
\(\phi_{b,2\%} \) = 2%-waarde van de fronthoogte (m)
\(\phi_{b,sig} \) = significante fronthoogte (m)
\(\phi_{b,e} \) = fronthoogte leidend tot een extreem stijghoogteverschil \((\phi_{w,2\%})\) (m)
\(\phi_{b,m} \) = fronthoogte leidend tot een veel voorkomend stijghoogteverschil \((\phi_{w,sig})\) (m)
\(\phi_{top} \) = maximale stijghoogte van front op maatgevend tijdstip (m)
\(\phi_{dal} \) = minimale stijghoogte van front op maatgevend tijdstip (m)
\(\phi_{w} \) = stijghoogteverschil over de toplaag ter plaatse van het zwaarst aangevallen blok, vlak vóór de golfklaap, berekend met de aanname van een één dimensionaal filter en geen bewegend blok (m)
\(\phi_{w,2\%} \) = 2%-waarde van het stijghoogteverschil (m)
\(\phi_{w,sig} \) = significante waarde van het stijghoogteverschil (m)
\(\theta_f \) = frontsteilheid (\(\phi_{w,2\%}\)) (m)
\(\theta_{f,2\%} \) = 2%-waarde van de frontsteilheid (m)
\(\theta_{f,sig} \) = significante waarde van de frontsteilheid (m)
\(\theta_{f,e} \) = frontsteilheid leidend tot een extreem stijghoogteverschil \((\phi_{w,2\%})\) (m)
\(\theta_{f,m} \) = frontsteilheid leidend tot een veel voorkomend stijghoogteverschil \((\phi_{w,2\%})\) (m)
\(\theta_h \) = frontniveau (m)
\(\chi \) = horizontale afstand tot \(\phi_{dal}\) in zeewaartse richting (m)
1. Inleiding

Binnen de Technische Adviescommissie voor de Waterkeringen (TAW) wordt gewerkt aan het opstellen van rekenregels aan de hand waarvan de Nederlandse waterkeringen op veiligheid moeten kunnen worden beoordeeld.

Bij de werkgroep A ("Belasting en bekleding") van de TAW bestond behoefte aan het opvullen van een aantal witte plekken in de kennis met betrekking tot de waterbeweging op taluds. Uitvoerig overleg tussen het Waterloopkundig Laboratorium (WL) en TAW A heeft geleid tot een opzet van een basisprogramma voor een modelonderzoek dat in de belangrijkste aspecten van deze behoefte zou kunnen voorzien.

Deze aspecten zijn:
- de invloed van een berm;
- de invloed van een hoog voorland.

De waterbeweging op het talud wordt hierbij onderverdeeld in de volgende verschijnselen (bij onregelmatige golven):
- oploop (hoogte per golf)
- overslag (gemiddeld debiet en debiet per golf)
- drukken (per golf het drukverloop langs het talud dat maatgevend is voor de stabiliteit van steenzettingen)
- snelheden

WL heeft in haar brief HK5581/H1256/HdW/Im dd. 5-7-90 de offerte uitgebracht voor de uitvoering van dit onderzoek. De hoofdingenieur-directeur van de Dienst Weg- en Waterbouwkunde van Rijkswaterstaat heeft in zijn brief WB/BXF 903883 dd. 28-8-90 aan WL opdracht verleend tot het uitvoeren van de in de offerte vermelde werkzaamheden. WL heeft vervolgens de opzet van het basisonderzoek in nader detail uitgewerkt in haar brief HK7160/H1256/JdW/ma dd. 7-9-90.

Op verzoek van TAW A heeft WL in een eerste extra offerte (brief HK6867/ H1256/JPdW/dk dd. 28-8-90) aangeboden om ook de waterbeweging bij een lage kruin (met veel overslag) te onderzoeken. De opdracht tot het uitvoeren van de in deze offerte genoemde werkzaamheden is gegeven in de brief WB/BXF 904127 dd. 17-9-90. Deze aanvulling op het basisprogramma wordt in het vervolg van dit verslag aangeduid als "aanvulling al".
WL heeft in een tweede extra offerte (brief HK9289/H1256/JvdM/nm dd. 13-11-90) aangeboden om ook de invloed van de ruwheid van het talud op de oploop en de overslag te onderzoeken. De opdracht tot het uitvoeren van de in deze offerte genoemde werkzaamheden is gegeven in de brief WB/BXF 905332 dd. 10-12-90. Deze tweede aanvulling op het basisprogramma wordt in het vervolg aangeduid als "aanvulling a2".

Het doel van het totale onderzoek kan als volgt worden samengevat:

A. Op grond van modelonderzoek kennis opdoen met betrekking tot

<table>
<thead>
<tr>
<th>de invloed van:</th>
<th>op:</th>
</tr>
</thead>
<tbody>
<tr>
<td>een berm</td>
<td>oploop, overslag, drukken en snelheden</td>
</tr>
<tr>
<td>een hoog voorland</td>
<td>oploop, overslag, drukken en snelheden</td>
</tr>
<tr>
<td>een lage kruin</td>
<td>overslag, drukken en snelheden</td>
</tr>
<tr>
<td>de ruwheid van het talud</td>
<td>oploop en overslag</td>
</tr>
<tr>
<td>bij onregelmatige golven</td>
<td>op een talud</td>
</tr>
</tbody>
</table>

B. Deze kennis vertalen in praktisch toepasbare rekenregels

Het onderhavige verslag beschrijft alleen de analyse van de drukken. Hierbij wordt in deel A de meest voorkomende belasting (in de vorm van een stijg-hoogtefront met de maximale belasting onder het frontdal) geanalyseerd. Bij constructies met een berm is deze meest voorkomende belasting alleen van toepassing voor het ondertalud. De belasting op de berm zelf is een van de onderwerpen die in deel B aan de orde komen.

De analyse en rapportage van de drukken op het talud zijn uitgevoerd door ir. J.P. de Waal van het Waterloopkundig Laboratorium "De Voorst".
2. Beschrijving van het fysisch model

2.1 Opzet

De in hoofdstuk 1 geformuleerde doelstelling van het onderzoek is veelomvat- tend en daardoor ook veleisend. WL heeft daarom, in samenwerking met TAW-A bijzondere aandacht besteed aan een efficiënte opzet van het onderzoek, zodat een maximale hoeveelheid informatie kon worden verkregen tegen mini- male kosten.

De belangrijkste eisen aan de opzet van het onderzoek zijn:
- de te bestuderen verschijnselen moeten goed meetbaar zijn;
- de te bestuderen verschijnselen moeten duidelijk variëren;
- de te bestuderen verschijnselen moeten vertaalbaar zijn naar een groot gebied van praktijkomstandigheden;
- de gewenste omstandigheden moeten realiseerbaar zijn in de beoogde faci- liteit (de Scheldegoot);
- verbouwingen aan de modelopstelling moeten tot een minimum beperkt blij- ven omdat deze tijdrovend en dus kostbaar zijn.

Bij het optimaliseren van de opzet is gebruik gemaakt van de bestaande kennis met betrekking tot de oploop, de overslag en de golffrontparameters (drukken). Concreet is aangenomen dat deze verschijnselen in absolute zin sterk bepaald worden door de parameter $\sqrt{H_s L_o}$, waarbij H_s de significante golfhoogte is en L_o de golflengte op diep water behorend bij de piekperiode van het spectrum.

Het optimalisatieproces heeft geleid tot de keuze van de constructies, de hydraulische randvoorwaarden, het proevenprogramma en de volgorde van de uitvoering van het onderzoek. Samengevat heeft de gekozen opzet van het basisonderzoek de volgende hoofdkenmerken:

- **Constructies:**
 - Twee taludhellingen (1:3 en 1:4);
 - Twee kruinhoogtes voor golfoverslag en één voor oploop (het 1.0 m brede talud was in de goot in drieën verdeeld);
 - Twee bermbreedtes;
 - Twee voorlanden bij recht talud (diep horizontaal en ondiep 1:100).
Hydraulische randvoorwaarden:
- Vijf golfsteilheden (0.01, 0.02, 0.03, 0.04 en 0.05) met gelijke $\sqrt{H_sL_o}$;
- Twee golfsteilheden (0.02 en 0.04) met afwijkende $\sqrt{H_sL_o}$;
- Vier waterstanden bij constructies met een berm;
- Vier waterstanden bij constructies met een voorland.

2.2 Geplande proeven

Het volledige basis-proevenprogramma bestaat uit vier delen:
1. Referentieproeven op een recht talud met een diep voorland.
2. Proeven op een talud met een berm.
3. Calibratieproeven op een voorland zonder constructie.
4. Proeven op een recht talud met ondiep voorland.

Later zijn twee aanvullingen ingebracht:
a1 Proeven op een talud met diep voorland en lage kruin.
a2 Proeven op een talud met diep voorland en ruwheid op het talud.

Naast de in het basis-proevenprogramma en de in de aanvullingen daarop gedefinieerde proeven is er ruimte voor een aantal extra proeven gereserveerd. Deze extra proeven zijn opgenomen met als doel:
- herhalingsproeven te doen;
- extra onderzoek uit te voeren naar overslag (o.a. naar het effect van de golfperiode);
- onderzoek naar het effect van een beperkte waterdiepte op de golfhoogteverdeling (afwijken van de Rayleigh-verdeling); en
- onderzoek met regelmatige golven.

Alle onderzochte taluds hebben een helling van 1:4, of 1:3.

1. Referentieproeven op een recht talud met een diep voorland

Dit type constructie is in het verleden reeds onderzocht. Toch werd het zinvol geacht deze proeven in het kader van dit onderzoek op te nemen om de volgende redenen:
- De beschikbare informatie van eerder onderzoek is op enkele onderdelen zeer summier en/of onvoldoende nauwkeurig. Voorbeelden:
 * De overslag is wel vaak gemeten bij een talud 1:4 maar vrijwel niet bij 1:3.
* Maatgevende drukken zijn weliswaar gemeten bij zowel 1:4 als 1:3, maar de onderlinge afstand tussen de drukopnemers (DRO's) was vaak te groot in verhouding tot de te meten verscijnels.
* De huidige empirische formules voor watersnelheden en laagdiktes op het talud zijn gebaseerd op meetgegevens met een grote onderlinge spreiding in de meetpunten van een raai.

Om een goed referentiekader voor de overige proeven te hebben is het noodzakelijk proeven uit te voeren in dezelfde faciliteit, met dezelfde meet- en analysemethode. Door uitsluitend te bouwen op oude (of elders uitgevoerde) proeven zullen vragen en onduidelijkheden ontstaan door onbekendheid met de gehanteerde werkwijze.

De beschikbaarheid van andere onderzoeksresultaten betekende overigens wel dat het mogelijk was het aantal referentieproeven relatief beperkt te houden. Er is gekozen voor zeven proeven per talud. De gehanteerde golfrandvoorwaarden zijn bij de andere proeven zo goed mogelijk gereproduceerd.

2. Proeven op een talud met een berm
Er zijn twee bermbreedtes onderzocht bij een bermhelling van 1:15. De meeste proeven zijn uitgevoerd bij een berm ter hoogte van de stiltwaterlijn en op ongeveer een halve golfhoogte onder de stiltwaterlijn omdat bij deze waterstanden de verwachte invloed van de berm op de waterbeweging het grootst is.

3. Calibratieproeven op een voorland zonder constructie
Voor dit onderdeel is het noodzakelijk gedetailleerde informatie te hebben over de kenmerken van de inkomende golven. WL heeft programma's om de golfhoogte te berekenen, afhankelijk van het bodemprofiel. Deze programma's verschaffen echter in het algemeen geen informatie met betrekking tot de golfhoogte-overschrijdingskromme of de golfvorm. Als de constructie in de goot is ingebouwd, is de golfconditie ter plaatse onbekend. Daarom is gekozen voor het uitvoeren van golfproeven op een voorland zonder constructie maar met golfdemping aan het einde van de goot, zie figuur 2.10. Het is nodig om alle golfrandvoorwaarden die op de constructie zijn toegepast met calibratieproeven te analyseren. Bij de calibratieproeven is het golfhoogteverloop over het hele talud gemeten.
4. Proeven op een recht talud met ondiep voorland

De invloed van het voorland op de waterbeweging op het talud is gemeten met verschillende relatieve waterdieptes, maar het voorland zelf met een talud van 1:100 werd niet gewijzigd. Als referentie voor de analyse werden zowel de referentieproeven op een recht talud als de referentieproeven op het voorland zonder constructie gebruikt.

a1 Proeven op talud met diep voorland en lage kruin

Dit onderzoek richtte zich op de waterbeweging op het buitentalud boven de stilwaterlijn, op de kruin en op het binnentalud. Het doel was met een minimum aantal proeven voldoende inzicht te verkrijgen in (met name) de watersnelheden langs de bekleding ten behoeve van de dimensionering van de taludbescherming in het geval van golfoverslag.

a2 Proeven op talud met diep voorland en ruwheid

Het onderzoek naar effecten van ruwheid is uitgevoerd op een talud van 1:3. De opzet sloot aan op een Duits onderzoek naar oploop op een talud van 1:6 in een grote goot (vergelijkbaar met de Deltagoot). Het onderzoek richtte zich alleen op oploop en overslag, er zijn geen drukken gemeten. Onderzochte ruwleden zijn:

1) glad betontalud
2) zeer glad betonplex
3) betonplex met blokjes (twee dichtheden, zie figuur 2.6)
4) betonplex met latjes (zie figuur 2.7)
5) één laag stortsteen (zie figuur 2.7)

2.3 Modelopstelling

Alle in dit verslag vermelde afmetingen zijn modelwaarden, tenzij uitdrukkelijk anders vermeld is.

Bij de constructies in het basisonderzoek is gebruik gemaakt van een driedeling in de goot. Het principe van de driedeling van de constructie tijdens het basisonderzoek is weergegeven in figuur 2.1. De zij-aanzichten van de verschillende constructietypes in het basisonderzoek zijn weergegeven in figuur 2.2 tot en met 2.4.
Bij de constructies in de aanvullende proevenseries al en a2 is geen gebruik gemaakt van de driedeling in de goot. De zij-aanzichten van de verschillende constructietypes van deze series zijn weergegeven in figuur 2.5. Bij de constructies met een berm (op 0.6 m boven de gootbodem) is uitgegaan van vier waterstanden. Deze waterstanden zijn zo gekozen dat:

\[\frac{d_B}{H_s} = -0.5; \quad \frac{d_B}{H_s} = 0; \quad \frac{d_B}{H_s} = +0.5; \quad \frac{d_B}{H_s} = 0.75 \text{ à } 1.0 \]

Definitie bermkenmerken

Bij de constructies met een ondiep voorland is uitgegaan van een hoogte van het voorland ten opzichte van de gootbodem van 0.35 m bij de teen van de constructie. Het voorland had een talud van 1:100 en was dus 35 m lang.

2.4 Instrumentatie

In de goot zijn diverse instrumenten aangebracht voor het meten van de volgende verschijnselen:

Golfrandvoorwaarden
Er is gebruik gemaakt van 2 golfhoogtemeters (GHM's) halverwege het golfschot en de constructie om de inkomende en gereflecteerde golfhoogtes te bepalen. Bij proeven met een voorland waren de GHM's ongeveer 7 m vanaf het golfschot geplaatst. Bij de calibratieproeven op het voorland (9300-serie) zijn over de volledige lengte van het talud golfhoogtemeters geplaatst, zie figuur 2.10.
Drukken
Verzonken in het talud zijn kokers gemonteerd. Deze kokers liggen in elkaars verlengde en vormen tezamen de leiding voor de kabels tussen de drukopnemers en de registratie-apparatuur. De afdekplaten van de afzonderlijke kokers liggen precies in het vlak van het talud. In deze afdekplaten zijn de drukopnemers gemonteerd. Zie figuur 2.11 en 2.12 voor de dwarsdoorsnede van de montage en de verdeling van de gaten in de meetplaten.

Er is gebruik gemaakt van twee types drukopnemers, omdat er niet voldoende opnemers van een type beschikbaar waren. De opnemers verschilden overigens alleen in grootte en dus niet in meeteigenschappen.

Er zijn 5 kokers van verschillende lengte gebruikt:
- Eén koker voor ieder boventalud;
- Twee kokers voor de ondertaluds van 1:4 respectievelijk 1:3;
- Twee kokers voor in de berm (waarvan één tevens bruikbaar in het hoge voorland).

Er zijn verschillende voorgeboorde meetplaten gebruikt. De belangrijkste meetplaat was 1.0 m lang en was voorzien van 25 gaten (h.o.h. 40 mm). Alle gaten hebben een doorsnede van 16 mm. Voor de twee types drukopnemers zijn twee verschillende opzetstukken gebruikt voor een goed sluitende montage in de gaten. In de gaten waar geen drukopnemer werd gemonteerd werd een zogenaamde dummy geplaatst, zodat uiteindelijk alle gaten nauwkeurig waren opgevuld.

Voor elke proef werd bij stil water iedere drukopnemer (ook boven SWL) op nul gezet. De combinaties drukopnemer-meeveersterker zijn zodanig geijkt dat bij verschillende waterstanden de verschillen in de meetsignalen voor alle kanalen even groot zijn.

Het beperkte aantal beschikbare meetversterkers zorgde ervoor dat van hoogstens 30 drukopnemers het signaal geregistreerd kon worden. Bij een aantal constructies werden meer dan 30 drukopnemers gemonteerd, waarvan de meest relevant geachte 30 werden aangesloten. Bij een gewijzigde keuze van aansluiting werd de ijking van de nieuwe combinatie drukopnemer-meetversterker aangepast.
Bij de aanvullende proeven a2, de ruwheidsproeven (3020-, 3040-, 3060-, 3070- en 3090-serie), zijn geen drukken gemeten. Bij de aanvullende proeven al, met lage kruin (3900-serie), werden 8 drukopnemers gemonteerd, zie figuur 2.12.

De analyse van de gemeten drukken ten behoeve van de beschrijving van de belasting op het talud richt zich op de series 3000, 3100, 3200, 3300, 4000, 4100, 4200 en 4300. De aanvullende proeven worden niet in dit kader geanalyseerd.

Oploop
De oploop is gemeten met een stappenbaak met een lengte van 2.25 m. De onderlinge afstand tussen de detectiepennen bedroeg 7.5 cm. In verticale zin was de afstand tussen de pennen dus 2.4 cm bij het talud 1:3 en 1.8 cm bij het talud 1:4. De onderste detectiepen bevond zich ter plaatse van de waterlijn op het talud. Bij de constructies met een berm kon deze pen echter niet lager geplaatst worden dan de overgang van de berm naar het boventalud.

De oploopmeter registreerde alleen waterlaagjes die dikker zijn dan 3 à 4 mm. De laatste dunne oploop wordt dus niet waargenomen. Hierdoor wordt de werkelijke oploophoogte iets onderschat. Deze onderschatting bedroeg niet meer dan één penafstand en is (mede op grond van deze kleine afwijking) voor het gehele onderzoek als constant te beschouwen. Bij de vergelijking van de meetgegevens met meetgegevens afkomstig van andere onderzoeken met andere meetmethodes kan dit van belang zijn. Voor de praktijk is deze afwijking echter verwaarloosbaar.

Bij aanvullende proeven al, met een lage kruin (3900-serie) is de oploop niet gemeten.

Overslag
Van ongeveer 1/3 deel van de breedte van de constructie was de kruinhoogte zo laag dat er overslag kon plaatsvinden. Bij een groot aantal proeven is de laagste overslagkruin afgedekt met een houten plaat, zodat op dit deel van de constructie overeenkwam met het oploopgedeelte (zie figuur 2.9).
Het golfbeeld voor de constructie wordt in principe beïnvloed door het terugstromende water op het talud. Bij een lage kruin (met dus grote hoeveelheden overslag) zal het golfbeeld dan ook waarschijnlijk afwijken van een constructie met een hoge kruin (zonder overslag). Een combinatie van deze twee extreme constructies is dan ook niet goed te meten in een golfgoot. Er is echter aangenomen dat bij de te meten kleine overslagpercentages (ca. 10%) het golfbeeld nauwelijks verschilt van het golfbeeld zonder overslag.

De overslagkruin was horizontaal en 15 cm lang in de lengterichting van de goot. Op de overgang van het buitentalud met de overslagkruin was in een kleine uitsparing een golfhoogtemeter gemonteerd (zie figuur 2.8). Met deze golfhoogtemeter kon het aantal overslaande golven bepaald worden. Bovendien gaf deze golfhoogtemeter informatie over de laagdikte van het overslaande water.

Aan het eind van de overslagkruin was een opvangtrechter gemonteerd met een breedte van 28 cm. Via een slang met een diameter van ongeveer 3 cm werd het opgevangen water naar de overslagbak geleid (zie figuur 2.8). Deze overslagbak had een oppervlakte van ongeveer 0.1 m². Het waterpeil in de overslagbak werd geregistreerd met een golfhoogtemeter. Deze meetopstelling is zo gemaakt dat het afgelezen voltage van de golfhoogtemeter direct omgerekend kon worden in een overslagvolume. Aan het begin van iedere proef werd na het leegpompen van de bak een voor iedere proef gelijke beginstand aan het voltage gegeven.

Het maximaal op te vangen volume bedroeg 40 l. Bij proeven waarbij dit overslagvolume werd overschreden werd de tijd vastgelegd waarbinnen de bak was volgelopen (omdat de beginwaterstand in de bak niet voor iedere proef exact gelijk was, maar het beginvoltage wèl, werd de eindwaarde van het gemeten voltage bij de volle bak gebruikt voor de bepaling van het precieze overslagvolume).

Watersnelheden

In kleine uitsparingen in het talud zijn 4 golfhoogtemeters geplaatst om de laagdiktes en de frontsnelheid te meten. De onderlinge (horizontaal gemeten) afstand bedroeg 0.21 m. De frontsnelheid kan waarschijnlijk ook afgeleid worden uit de tijdregistratie van de oploopmeter.

2.5 Data-acquisitie

Alle signalen zijn met een frequentie van 50 Hz bemonsterd. De signalen zijn per proef op tape opgeslagen voor nadere analyse.

Er is gebruik gemaakt van standaard (WL-) programmatuur voor de bepaling van het golfpectrum en de golfhoogte-overschrijdingskromme. Ook het onderscheid tussen inkomende en gereflecteerde golfhoogte is met standaardprogrammatuur bepaald. Voor de drukken-analyse is een speciaal programma ontwikkeld, dat in een aparte documentatie behandeld wordt. Voor de analyse van de watersnelheden en laagdiktes op het talud moet eventueel speciale programmatuur worden ontwikkeld.

2.6 Gerealiseerde randvoorwaarden

Bij de uitvoering van het proevenprogramma is veel aandacht besteed aan het nauwkeurig realiseren van de randvoorwaarden. De verschillen tussen de gewenste randvoorwaarden volgens het basisprogramma uit de notitie en de gerealiseerde randvoorwaarden zijn klein. De volgende afwijkingen zijn opgetreden:

modelafmetingen
De afwijkingen in de afmetingen van de constructie bedragen minder dan 1 mm.

waterstanden
De afwijkingen in de waterstand bedragen minder dan 1.0 mm.

goelhoogte/golfperiode
De afwijkingen in de golfhoogte zijn meestal kleiner dan 5 mm, afwijkingen in de golfperiode bedragen minder dan 0.1 sec. Bij grotere afwijkingen werd de proef in principe herhaald met een verbeterde instelling van het golfschot.
golfsteilheid
De golfsteilheid 0.050 kon niet worden gehaald in verband met het veelvuldig breken van golven op steilheid; de maximaal gehaalde golfsteilheid bedraagt ca. 0.044.

spectrumvorm
Alle proeven met onregelmatige golven zijn uitgevoerd met een standaard JONSWAP-spectrum ($\gamma = 3.3$).

golfhoogte-overschrijdingskromme
Bij proeven met $h/H_s = 3$ en kleiner begint de golfhoogteverdeling af te wijken van de Rayleigh-verdeling.

De meetgegevens met betrekking tot de randvoorwaarden en de gemeten front-parameters zijn gegeven in tabel 2.1 tot en met 2.6.
3. **Opzet van de analyse**

3.1 **Schematisatie van de belasting bij een individuele golf**

Voor taludebekledingen van gezette steen is gebleken dat de belangrijkste belasting bestaat uit het door de brekende golven variërende verloop van de druk op het talud, die niet gelijk is aan het verloop van de druk onder de zetting. Het drukverschil over de zetting varieert hierdoor per golfperiode. Het is gebleken dat dit drukverschil het grootst is ter plaatse van het golfdal op het talud op het tijdstip vlak voor het breken van de golf. Op dit tijdstip is sprake van een vloeiend drukverloop op het talud, met als kenmerken een diep dal en een vrij steil golffront, zie onderstaande figuur. In plaats van drukverloop wordt ook veel gesproken van stijghoogteverloop. De stijghoogte is gelijk aan de plaatshoogte plus de drukhoogte. De drukhoogte is de druk in meters waterkolom.

Voorbeeld van een stijghoogteverloop

De schematisatie van het stijghoogteverloop op het maatgevende tijdstip van een golf bestaat uit twee onderdelen:

1. **Parametrisatie**

 Belangrijke kenmerken van het gemeten stijghoogteverloop worden uitgedrukt in de waarde van de frontparameters. Het bepalen van de relatie tussen deze frontparameters en de golfrandvoorwaarden vormt het onderwerp van de hoofdstukken 4 en 5.
2. **Reproductie**

Voor verdere toepassing in het rekenmodel voor de belasting op de taludbekleding is een volledig stijghoogteverloop nodig. De frontparameters moeten daarom worden omgerekend naar een stijghoogteverloop. Hiertoe wordt een functievoorschrift gekozen dat met de frontparameters als invoer een reproductie levert van het gemeten stijghoogteverloop. Uiteraard komen in deze reproductie alleen de belangrijke kenmerken goed uit de verf. Voor het overige wordt de overeenkomst tussen het oorspronkelijk gemeten stijghoogteverloop en het gereproduceerde stijghoogteverloop bepaald door de keuze van het functievoorschrift. De keuze van het functievoorschrift en de verdere toepassing in het rekenmodel voor de belasting op de taludbekleding vormen het onderwerp van de hoofdstukken 6 en 7.

3.2 **Keuze van de frontparameters**

Twee belangrijke maten voor de belasting zijn de fronthoogte ϕ_b (de verticale afstand tussen de fronttop en het frontdal) en de frontsteilheid θ_f (een karakteristieke hoek van het stijghoogteverloop tussen het frontdal en de fronttop). In het algemeen geldt dat de belasting groter wordt naarmate de fronthoogte en/of de frontsteilheid toeneemt.

Bovenstaande twee frontparameters zijn voldoende als het functievoorschrift voor de reproductie van het stijghoogteverloop slechts twee vrijheidsgraden heeft. Dit geldt voor het functievoorschrift zoals dat tot nu toe gebruikt werd. In hoofdstuk 6 zal echter getoond worden dat een functievoorschrift met drie vrijheidsgraden de voorkeur verdient. (Dit functievoorschrift zal in het vervolg van dit verslag worden aangeduid als variant III.) Er is dus een derde frontparameter nodig. Als derde frontparameter wordt gekozen voor een parameter waarin het frontniveau (de verticale positie van het front ten opzichte van SWL) tot uitdrukking wordt gebracht. Deze parameter wordt in dit verslag uitgedrukt als hoek en wordt het frontniveau ϕ_h genoemd. Een nadere toelichting op de keuze deze parameter als hoek uit te drukken wordt in paragraaf 3.4 gegeven.

Bovenstaande drie frontparameters zijn voldoende om de *grootte* van de belasting op een taludbekleding te berekenen. De *plaats* van de (maximale) belasting is met deze drie parameters echter niet vastgelegd. Daarom wordt een
vierde frontparameter in de beschouwing opgenomen, waarmee deze plaats wordt aangegeven. Deze frontparameter wordt de schadediepte d_s genoemd. De plaats waar de belasting maximaal is is de plaats op het talud recht onder het frontdal, als overgangsconstructies in de taludbekleding geen rol spelen. De schadediepte is de diepte van het talud ten opzichte van SWL waar de *kans* op schade bij het betreffende golffront het grootst is. Omdat niet altijd schade hoeft op te treden en in het onderhavige onderzoek het optreden van schade zelfs uitgesloten was, zou het beter zijn in het algemeen te spreken van meest waarschijnlijke schadediepte. Voor de beoogde praktijk echter lijkt de verkorte naam schadediepte de meest aansprekende term.

Samenvattend zijn de te bestuderen frontparameters:
- de fronthoogte : ϕ_b (m)
- de frontsteilheid: θ_f (°)
- het frontniveau : θ_h (°)
- de schadediepte : d_s (m)

3.3 *Nieuwe definitie van de frontsteilheid*

De frontsteilheid is in het verleden steeds gedefinieerd als de maximale gradiënt van het stijghoogteverloop op het maatgevende tijdstip. Om deze frontsteilheid te meten zijn drukopnemers op relatief kleine onderlinge afstand nodig over een vrij groot deel van het talud. Met het oog op enerzijds de minimalisatie van het aantal meetinstrumenten en anderzijds het verkrijgen van de maximale nuttige informatie uit de meetopstelling is bij de onderzoeksopzet gekozen voor een onderlinge afstand tussen de drukopnemers die overeenkomt met de afmetingen van één blok in de zetting. Omdat de blokafmeting langs het talud ongeveer 40 cm is en de schaal van het onderzoek ongeveer 10 is, is gekozen voor een onderlinge afstand tussen de drukopnemers van 4 cm. Bij de meeste voorgaande modelonderzoeken is de afstand tussen de drukopnemers relatief groter geweest, zodat kan worden aangenomen dat het huidige onderzoek nauwkeuriger informatie kan verschaffen met betrekking tot de frontsteilheid.

Bij de analyse van de meetgegevens is reeds in een vroeg stadium geconstateerd dat de gebruikelijke definitie van de golfsteilheid niet praktisch is. In het kort komt het bezwaar erop neer dat waarschijnlijk voor iedere golf op het tijdstip van breken de maximale gradiënt van het front zeer korte
tijd (bijna) 90 graden is. Dit heeft geen praktische betekenis meer voor de belasting op het talud. Daarom is gezocht naar een betere definitie voor de frontsteilheid.

Gekezen is voor de volgende definitie:
De frontsteilheid is de hoek die de lijn door het frontdal en het snijpunt van het front met de stiilwaterlijn maakt ten opzichte van de horizontale lijn, zie onderstaande figuur.

Nieuwe definitie frontsteilheid

De voordelen van deze definitie zijn:
- De frontsteilheid is nu een representatieve waarde voor de frontsteilheid voor het steilste deel van het front (tussen het frontdal en de stiilwaterlijn).
- De frontsteilheid is hiermee minder gevoelig voor zeer locale verschijn- selen in het stiilhoogtefront en de parameter is daardoor ook beter meetbare.
- De frontsteilheid biedt goede toepassingsmogelijkheden in de verschillende varianten voor de schematisatie van het volledige stiilhoogteverloop (zie hoofdstuk 6).

3.4 Karakterisering van de frontparameters bij onregelmatige golven

Bij een proef met onregelmatige golven is sprake van een groot aantal verschillende golffronten met verschillende waarden voor de frontparameters. Voor het bepalen van de relatie tussen de frontparameters en de golfrandvoorwaarden is het noodzakelijk om alleen enkele karakteristieke waarden van de frontparameters te beschouwen. In deze paragraaf wordt aangegeven welke karakteristieken zullen worden gebruikt.
Bij de analyse wordt uitgegaan van een aantal fronten gelijk aan 1/3 deel van het aantal inkomende golven bij iedere proef. De selectie vindt plaats op basis van de grootte van de fronthoogte, dat wil zeggen dat de hoogste fronten worden geselecteerd.

Fronthoogte

Omdat de fronthoogte een maat voor de grootte van de belasting is, is het van belang om inzicht te hebben in de kans op het optreden van extreme waarden. Met het oog op de toepassing in de praktijk is besloten om zowel een fronthoogte met kleine als met een grote overschrijdingskans te beschouwen. Hierbij is gekozen voor de veel gebruikte karakteristieken:
- waarde met overschrijdingskans van 2%, kortweg de 2%-waarde;
- significante waarde (gemiddelde van hoogste derde deel), kortweg de sig-waarde.

Van de geselecteerde fronten worden de gemiddelde fronthoogte en de fronthoogte met een overschrijdingskans van 6% bepaald. Deze waarden komen voor de gehele proef overeen met respectievelijk de sig- en de 2%-waarde.

Frontsteilheid

De frontsteilheid is evenals de fronthoogte een maat voor de grootte van de belasting. Ook voor de frontsteilheid wordt daarom een karakteristiek met een kleine en een karakteristiek met een grotere overschrijdingskans bestudeerd. Van de geselecteerde fronten wordt de frontsteilheid met een overschrijdingskans van 6% en van 30% bepaald. Als mag worden aangenomen dat de frontsteilheid onafhankelijk is van de fronthoogte, dan betekent dit dat hiermee voor de gehele proef de 2%- en de 10%-waarde is geschat.

Frontniveau

De bestudering van deze parameter heeft met name tot doel om inzicht te krijgen in variaties in het niveau van het totale front ten opzichte van SWL. (Daarom wordt de parameter voorzien van de index h.)

Voor de rol van het frontniveau in de beschrijving van het golffront volgens variant III is een globaal inzicht in de relatie van het frontniveau met de hydraulische en constructieve randvoorwaarden voldoende. Daarom is het voldoende om alleen het gemiddelde frontniveau van de geselecteerde fronten te bestuderen.
In dit verslag wordt het frontniveau uitgedrukt als hoek. De reden van deze keuze wordt in het onderstaande uiteengezet.

In het frontniveau moet de verhouding van de fronttophoogte tot de frontdaldiepte van een front tot uitdrukking komen. Juist vanwege deze verhouding moet bij het bepalen van de gemiddelde waarde van het frontniveau zorgvuldig te werk gegaan worden. Hierbij wordt gewezen op twee kenmerken van het middelen van een verhouding tussen twee getallen:

1. De gemiddelde verhouding is niet gelijk aan de verhouding van de twee gemiddelden.
2. De reciproke waarde van de gemiddelde verhouding is niet gelijk aan de gemiddelde reciproke waarde van de verhouding.

Ten aanzien van punt 1 wordt in deze analyse gewenst dat in het gemiddelde frontniveau de gemiddelde verhouding tot uitdrukking komt. Dit betekent dat eerst voor ieder front het frontniveau wordt bepaald alvorens te middelen over een aantal fronten.

Het in punt 2 genoemde verschil tussen de gemiddelde verhoudingen is fysisch niet goed te interpreteren en daarom ongewenst. Dit probleem kan opgelost worden door de verhouding voor ieder front om te rekenen naar een hoek:

\[\theta_h = \arctan \left(\frac{h_f}{d_f} \right) \] \hspace{1cm} (3.1)

De gemiddelde waarde van de hoek kan eventueel weer worden omgerekend naar een representatieve verhouding. De waarde van deze representatieve verhouding is onafhankelijk van de vraag of men is uitgegaan van de verhouding fronttophoogte/frontdaldiepte of van de verhouding frontdaldiepte/fronttophoogte.

In onderstaande figuur wordt aangegeven hoe het frontniveau \(\theta_h \) geinterpreted kan worden.
Interpretatie van θ_h als hoek

Schadediepte

Voor de schadediepte geldt in grote lijnen hetzelfde als voor het front-niveau. Het is zinvol om globale trends in de relatie met hydraulische randvoorwaarden te leren kennen. Voor de praktijk moet worden uitgegaan van een groot gebied waar de schade kan optreden in verband met de spreiding in de schadediepte en mogelijke verschillen in de waterstand. Net als bij het frontniveau wordt alleen de gemiddelde schadediepte van de geselecteerde fronten bestudeerd.

3.5 **Fasering van de analyse van de meetgegevens**

De analyse van de meetgegevens is opgedeeld in een aantal fasen, waarin verschillende bewerkingen op de gegevens worden uitgevoerd. Hieronder worden de belangrijkste aspecten van de gefaseerde werkwijze nader uitgewerkt.

Fase 1: Bepaling van basiskarakteristieken van de fronten

De bestanden met meetgegevens zijn zeer omvangrijk (ca. 7 MB per proef) en bovendien groot in aantal (140 proeven). Deze bestanden staan op een groot aantal streamertapes die alleen met behulp van een HP1000 computer gelezen en bewerkt kunnen worden. Voor de verdere bewerking en analyse is transport naar een PC noodzakelijk.

De bewerking van de meetbestanden met de HP1000 computer kan als de eerste fase beschouwd worden. In deze eerste fase zijn de belangrijkste twee geautomatiseerde analyse-activiteiten:
- het bepalen van het maatgevende tijdstip van ieder front;
- het karakteriseren van ieder maatgevende stijghoogteverloop.
Op het tweede punt volgt hieronder nog enige toelichting. Bij de analyse van de vele fronten per proef was het noodzakelijk ieder front met zo min mogelijk gegevens zo volledig mogelijk (als gemeten is) te beschrijven. De gekozen basiskarakteristieken van ieder front zijn aangegeven in onderstaande figuur.

Basiskarakteristieken van een front

Deze basiskarakteristieken bieden enerzijds zeer grote flexibiliteit bij het definiëren en analyseren van frontparameters. Anderzijds is de omvang van de file met meetgegevens per proef in deze eerste fase zo sterk gereduceerd, dat verdere analyse op een PC kan plaatsvinden.

Fase 2: Bepaling van de frontparameters en statistische analyse

In de tweede fase worden de basiskarakteristieken per golffront omgekend naar de frontparameters fronthoogte, frontsteilheid, frontniveau en schade-diepte. De definitie van deze parameters wordt aan het eind van deze paragraaf gegeven. Vervolgens wordt (voor iedere proef afzonderlijk) een aantal fronten geselecteerd gelijk aan 1/3 van het aantal inkomende golven. Uitgaande van deze selectie worden tenslotte schattingen gemaakt van de significante waarde en de waarde met overschrijdingskans van 2% van de frontparameters. Het belangrijkste resultaat van deze tweede fase is per proef de volgende verzameling karakteristieke waarden:
fronthoogte significant en met overschrijdingskans van 2%
frontsteilheid significant en met overschrijdingskans van 2%
frontniveau significant
shadediepte significant

Fase 3: Bepaling van relatie tussen frontparameters en golfrandvoorwaarden
In de derde fase worden de karakteristieke waarden van de frontparameters uit de tweede fase voor de verschillende proeven onderling vergeleken. Hierbij wordt gezocht naar relaties tussen de frontparameters enerzijds en de golfrandvoorwaarden en constructiekenmerken anderzijds. De analyse wordt uitgevoerd met behulp van een spreadsheet programma waarmee de relaties betrekkelijk eenvoudig grafisch kunnen worden weergegeven. De grafieken vormen het belangrijkste resultaat van deze derde fase.

Fase 4: Statistische analyse van het stijghoogteverschil
In de vierde fase worden de frontparameters per front ingevuld in een functievoorschrift voor het stijghoogteverloop op het talud. Op basis van gekozen fictieve waarden voor de lek lengte van de constructie worden (fictieve) stijghoogteverschillen over de zetting berekend. Per proef worden voor twee verschillende lek lengtes karakteristieke waarden van dit stijghoogteverschil bepaald. Op grond hiervan wordt een aanbeveling geformuleerd voor de te gebruiken combinatie van karakteristieke waarden van de frontparameters bij het ontwerp van een taludbekleding. Zo wordt bijvoorbeeld bepaald in hoeveel de combinatie van de 2% fronthoogte met de 2% frontsteilheid tot een redelijke schatting van het 2% stijghoogteverschil leidt.

3.6 Definities

Bij de bewerkingen in de verschillende fasen is gebruik gemaakt van een aantal definities en criteria. De belangrijkste definities en criteria worden hieronder gegeven.

Stijghoogte
De stijghoogte (ten opzichte van SWL) is de plaats hoogte (op het talud, ten opzichte van SWL) vermeerderd met de druk in meters waterkolom.
Stijghoogteverloop
Het stijghoogteverloop is het verband tussen de gemeten stijghoogtes op de verschillende plaatsen op één tijdstip.

Gradiënt van het stijghoogteverloop
De gradiënt van het stijghoogteverloop is de helling van het stijghoogteverloop tussen twee opeenvolgende drukopnemers, zie onderstaande figuur.

Gradiënt van het stijghoogteverloop

Golffront
Er is sprake van een (zinvol) golffront als de berekende kenmerken voldoen aan de eisen ten aanzien van de:
staalheid: De maximale gradiënt van het stijghoogteverloop moet groter zijn dan 0.25.
hoogte: De fronthoogte moet groter zijn dan de schadediepte.

Golfklap
Er is sprake van een golfklap als de gemeten minimale gradiënt kleiner is dan -1, zie onderstaande figuur.
Voorbeeld van een golfklap

Maatgevend_tijdstip
Met het maatgevend tijdstip wordt steeds bedoeld het maatgevend tijdstip per golf. Het maatgevende tijdstip per golf is het tijdstip waarop de frontsteilheid maximaal is. (N.B. vóór een golfklap)

Basiskarakteristieken van het front

- ϕ_{top} = maximale stijghoogte zeewaarts van de maximale gradiet
- ϕ_{dal} = minimale stijghoogte kustwaarts van de maximale gradiet (onder speciale voorwaarden op basis van een interpolatie)
- x_{top} = horizontale positie van ϕ_{top}
- x_{dal} = horizontale positie van ϕ_{dal} (onder speciale voorwaarden op basis van een interpolatie, zie de documentatie)
- x_{sny} = horizontale positie van het snijpunt van het front met SWL

Maatgevende basiskarakteristieken
De maatgevende basiskarakteristieken per golf zijn de basiskarakteristieken op het maatgevende tijdstip. Hierop is één uitzondering mogelijk:
In gevallen waarbij de fronttop zich op het maatgevende tijdstip nog ter plaatse van de meest zeewaartse drukopnemer bevindt, wordt gewacht tot de waarde van de stijghoogte ϕ bij deze drukopnemer maximaal wordt. Deze waarde van ϕ wordt dan gebruikt als maatgevende fronttophoogte ϕ_{top}.
Frontparameters

Fronttophoogte : \(h_f = \phi_{\text{top}} \) \hspace{1cm} (3.2)
Frontdaldiepte : \(d_f = -\phi_{\text{dal}} \) \hspace{1cm} (3.3)
Frontlengte : \(L_f = x_{\text{dal}} - x_{\text{sny}} \) \hspace{1cm} (3.4)
Fronthoogte : \(\phi_b = h_f + d_f \) \hspace{1cm} (3.5)
Frontsteilheid : \(\theta_f = \arctan(d_f/L_f) \) \hspace{1cm} (3.6)
frontniveau : \(\theta_n = \arctan(h_f/d_f) \) \hspace{1cm} (3.7)
Schadediepte : \(d_s = (h \cot(\alpha) - x_{\text{dal}})/\cot(\alpha) \) \hspace{1cm} (3.8)

Opmerkingen:
- De laatste vier parameters (\(\phi_b, \theta_f, \theta_n \) en \(d_s \)) zijn de te analyseren frontparameters. Zij vormen de basisinformatie die nodig is om het stijg-hoogtefront te kunnen beschrijven met de schematisatie volgens variant III.
- De gegeven formule voor de schadediepte geldt voor het rechte talud en dient als voorbeeld. Voor de constructies met een berm of met het voorland zijn andere formules gebruikt.
4. **Statistische analyse**

4.1 **Nauwkeurigheid van de meetgegevens**

De nauwkeurigheid van de meetgegevens wordt bepaald door de volgende aspecten:
- nauwkeurigheid van de randvoorwaarden;
- natuurlijke spreiding (reproduceerbaarheid);
- invloed van modelschaal;
- meetnauwkeurigheid.

Deze aspecten zullen hieronder nader uitgewerkt worden.

Nauwkeurigheid van de randvoorwaarden

De aandacht is gericht op de volgende waarden van de golfsteelheid:

\[0.01 < H_s/L_o < 0.06 \] (4.1)

In hoofdstuk 2 (paragraaf 6) is reeds uiteengezet dat de randvoorwaarden in het algemeen zeer nauwkeurig zijn gerealiseerd. Dit geldt met name voor de afmetingen van de constructie, de waterstand en de karakteristieken van de onregelmatige golfselasting (spectrum en overschrijdingskromme). Alleen de maximaal gerealiseerde golfsteelheid (0.044) is iets lager dan de opzet was (namelijk 0.050). Het bleek in de geot niet goed mogelijk om een golfsteelheid van 0.050 te produceren met behoud van een Rayleigh-verdeling voor de golfhoogte. Bij de golfsteelheid van 0.044 lukte dit nog wel.

Natuurlijke spreiding (reproduceerbaarheid)

Er moet gecontroleerd worden of twee proeven met dezelfde randvoorwaarden ook dezelfde meetresultaten opleveren. De overeenkomst zal niet exact zijn. De mate van verschil tussen de meetresultaten geeft een maat voor de natuurlijke spreiding.

Om de reproduceerbaarheid te bepalen worden de gemeten grootheden vergeleken van proevenparen met dezelfde randvoorwaarden. Dergelijke proevenparen zijn gegeven in tabel 4.1.

Uit deze tabel blijkt dat de reproduceerbaarheid zonder meer goed te noemen is. De afwijkingen bedragen in het algemeen minder dan 5%. Hierop vormt de
10%-waarde van de frontsteilheid een uitzondering. Er is nog geen verklaring gevonden voor het grote verschil in schadiediepte tussen de proeven 4213 en 4217.

Invloed van modelschaal

Onafhankelijke parameters in dit onderzoek zijn: g, H_s, T_p (c.q. L_o), h, α, B, d_B

Afhankelijke parameters zijn: $\phi_b, \theta_f, \theta_h, d_s$

Bij de opzet van het onderzoek is verondersteld dat de invloed van de relative waterdiepte verwaarloosd mag worden als geldt dat $h/H_s > 3$. Er moet dus gecontroleerd worden of proeven met gelijke waarden van H_s/L_o en $\tan(\alpha)$ ook inderdaad gelijke waarden van de dimensieloze frontparameters opleveren. Als voorbeeld van de invloed van de modelschaal wordt proef 4002 vergeleken met 4006 en proef 4004 met proef 4007. Zie tabel 4.2.

De golfsteilheid is bij proef 4002 ongeveer 10% groter dan bij proef 4006. Deze twee proeven zijn daarom onderling iets minder goed vergelijkbaar dan de proeven 4004 en 4007.

Ook voor de frontparameters in deze tabel blijkt dat de onderlinge overeenstemming goed is. Omdat de aanwezige natuurlijke spreiding van dezelfde orde van grootte is, is de conclusie gerechtvaardigd dat er geen invloed van de modelschaal aanwezig is. Bovendien mag de invloed van de relative waterdiepte kennelijk verwaarloosd worden voor deze waarden van h/H_s.

Meetnauwkeurigheid

De bepaling van de frontparameters is gebaseerd op drukmetingen op het talud. De volgende factoren spelen hierbij een rol:

- De nauwkeurigheid van de drukopnemers.

 De meetafwijking ligt globaal onder de 1 cm stijghoogte. Deze afwijking kan echter een tijdelijke verschuiving ondergaan tot ongeveer 2 cm stijghoogte. Dit moet worden toegeschreven aan golfklappen.

- De nauwkeurigheid van de positie van karakteristieke punten van het front.

 De nauwkeurigheid van het frontniveau wordt bepaald door de verdeling van de drukopnemers langs het talud. De karakteristieke waarden van het front zijn ϕ_{top}, ϕ_{dal}, x_{top}, x_{dal}, x_{sny}. Daarom zal de nauwkeurigheid van deze laatste vijf parameters nader beschouwd worden.
top
Voor hoge fluwe golven is gebleken dat het maximum op de maatgevende tijdstippen niet altijd binnen het meetgebied heeft gelegen. In deze gevallen is het maximum als volgt bepaald:

Als mag worden aangenomen dat de werkelijke waarde van \(\Phi_{\text{max}} \) wordt onder- schat met de waarde op het maatgevende tijdstip, dan moet de programmaturuur een betere schatting van \(\Phi_{\text{max}} \) baseren op de maximale stijghoogte van de meest zeewaarts gelegen drukopnemer in de periode vlak na het maatgevende tijdstip. Dit is reeds beschreven in sectie 4 van (Klein Breteler, 1990).

De nauwkeurigheid van de waarde \(\Phi_{\text{top}} \) die met deze procedure wordt bereikt, wordt naar verwachting vrijwel volledig bepaald door de nauwkeurigheid van de instrumenten.

dal
De minimale stijghoogte heeft altijd binnen het meetgebied gelegen. Door de kleine onderlinge afstand tussen de drukopnemers (verticaal ongeveer 1 cm) en de bovendien gebruikte interpolatiemethode mag verondersteld worden dat de fout aanzienlijk kleiner dan 10% is geweest.

x_{top}
De positie van de fronttop is tamelijk onnauwkeurig. Dit wordt veroorzaakt door de volgende factoren:
- De bovenzijde van het golffront heeft meer de vorm van een brede "bult" dan van een scherpe piek. Hierdoor ligt het maximum van nature al niet scherp vast.
- In het gebied waar de golftop optreedt is de onderlinge afstand tussen de drukopnemers relatief groot.
- In een aantal gevallen ligt de fronttop op het maatgevende tijdstip buiten het meetgebied. In die gevallen wordt de positie van de meest zee- waarts drukopnemer aangehouden als positie van de fronttop.

Uit het voorgaande valt af te leiden dat het niet zinvol is om de waarde van \(x_{\text{top}} \) te beschouwen als een goede schatting van de positie van de fronttop. Toch kan \(x_{\text{top}} \) zeer zinvol geïnterpreteerd worden als gegeven dat op deze positie de waarde van de stijghoogte gelijk is aan de waarde van de maximale stijghoogte \(\Phi_{\text{top}} \).
De positie van het snijpunt van het front met de stilwaterlijn is door interpolatie tot stand gekomen. De onderlinge afstand tussen de drukopnemers waartussen geïnterpoleerd is, heeft in de meeste gevallen 4 cm bedragen. Bovendien verloopt de stijghoogte van het front rond de waterlijn vrij steil, waardoor \(x_{sny} \) nauwkeurig bepaald kon worden.

De positie van het frontdal is de horizontale positie van de (eventueel geïnterpoleerde) waarde van \(\phi_{dal} \). Omdat de onderlinge afstand tussen de drukopnemers in dit gebied ongeveer 4 cm is geweest, en omdat het frontdal in het algemeen goed herkenbaar is, is de nauwkeurigheid van \(x_{dal} \) groot.

4.2 Kansverdeling van fronthoogte en frontsteilheid

Fronthoogte

Uit figuur 4.1 blijkt dat de verhouding van de 2%-waarde tot de sig-waarde van de fronthoogte \(\phi_b \) voor het talud 1:4 enigszins afhankelijk is van de golfsteilheid \(H_s/L_o \). De gegevens voor het talud 1:3 stemmen redelijk goed hiermee overeen, maar de afhankelijkheid van de golfsteilheid is voor dit talud niet goed herkenbaar. Als gemiddelde verhouding voor beide taluds tezamen kan gesteld worden:

\[
\frac{\phi_{b2\%}}{\phi_{bsig}} = 1.25 \tag{4.2}
\]

Voor een Rayleigh-verdeling zou deze verhouding 1.40 moeten bedragen.

Frontsteilheid

Voor de eerste 9 proeven op de rechte taluds zijn histogrammen gemaakt van de gemeten waarden van de steilheid (in de groep geselecteerde fronten). Om een indicatie te geven van de voorkomende vorm van deze histogrammen, zijn deze (onder andere naar proef te maken) in figuur 4.2 weergegeven. De verschillen in vorm tussen de kansverdelingen van de frontsteilheid (binnen het meetbereik) zijn aanzienlijk, vooral als de resultaten bij het talud 1:3 vergeleken worden met die bij het talud 1:4. Hierbij is het opvallend dat bij het talud 1:4 de meest voorkomende frontsteilheid voor de meeste proeven rond de 60° ligt. Bij het talud 1:3 ligt de meest voorkomende steilheid vaker rond de 30°, al zijn ook hier proeven met een piek rond de 60° aan-
wezig. Waarschijnlijk zorgt bij het talud 1:3 het grotere percentage niet-brekkende golven voor meer fronten met een kleine frontsteilheid, hetgeen met name voor de proeven met een kleine golfsteilheid het geval zal zijn. Hoeken kleiner dan ongeveer 10° en groter dan ongeveer 80° kunnen niet gemeten worden. De 2%-waarde is vaak van de orde van 70° en ligt daarmee vrij dicht bij de maximaal meetbare hoek. Mede hierdoor is de variatie in de 2%-waarde veel kleiner dan de variatie in de 10%-waarde.

4.3 Correlatie tussen frontparameters

De fronthoogte is wellicht de meest aansprekende frontparameter omdat de samenhang tussen fronthoogte en belasting zo begrijpelijk is. Het is van belang om inzicht te hebben in de correlatie tussen de fronthoogte en de overige frontparameters.

Correlatie tussen fronthoogte en frontsteilheid

Uit tabel 4.3 blijkt dat er praktisch gesproken niet of nauwelijks verband bestaat tussen de fronthoogte en de frontsteilheid. Bij het bepalen van de kans op het optreden van combinaties van fronthoogte en frontsteilheid kunnen deze parameters dus bij goede benadering als onafhankelijk van elkaar beschouwd worden.

Correlatie tussen fronthoogte en frontniveau

Uit tabel 4.4 blijkt dat het frontniveau bij kleine fronthoogtes een grote variatie vertoont. Voor grotere fronthoogtes neemt de spreiding in de waarde van het frontniveau af. Het is mede daarom zinvol om het gemiddelde frontniveau van alleen de hogere fronten te bestuderen.

Correlatie tussen fronthoogte en schadediepte

Overeenkomstig de verwachting blijkt uit tabel 4.5 dat relatief hoge fronten gemiddeld gepaard gaan met een relatief grote schadediepte. Toch is de spreiding in voorkomende waarden van de schadediepte voor iedere fronthoogte relatief groot en het is daarom niet verstandig om de schadediepte rechtstreeks te koppelen aan de fronthoogte zonder rekening te houden met deze spreiding. Voor de analyse van de invloed van bermen en het ondiepe voorland is de gemiddelde schadediepte van de hogere fronten een zinvolle parameter. In de praktijk zal steeds rekening gehouden moeten worden met de spreiding in de schadediepte. Dit geldt met name voor situaties waarbij overgangsconstructies in het talud een rol spelen.
5. Relatie tussen frontparameters en golfrandvoorwaarden

5.1 Bestaande kennis

5.1.1 Regelmatige golven op een recht talud

De bestaande kennis is vrijwel volledig gebaseerd op regelmatige golven op een recht talud. Op basis van proeven met regelmatige golven op taluds 1:2, 1:3 en 1:4 in de Scheldegoot en een talud 1:3 in de Deltagoot zijn de volgende formules voor de frontparameters bepaald (Banach 1987a en 1987b, Klein Breteler 1988):

Fronthoogte

\[\phi_b = 0.36 \left(\tan \alpha \right)^{1/2} \sqrt{HL_O} \]; met als maximum 2.2 H \hspace{1cm} (5.1)

Frontsteilheid

\[\tan \beta = \frac{0.17}{\sqrt{H/L_O}} \hspace{1cm} (5.2) \]

Hierin is \(\beta \) de hoek tussen de steilste raaklijn aan het stijghoogteverloop en de verticaal. Bovenstaande formule is dus van toepassing op de frontsteilheid volgens de oude definitie (zie ook paragraaf 3.4).

Schadediepte

\[d_s = 0.11 H \left(\tan \alpha \right)^{0.8} \sqrt{H/L_O} \hspace{1cm} (5.3) \]

In de analyse die tot bovenstaande formule heeft geleid is geen duidelijk onderscheid gemaakt tussen de frontdaldiepte en de schadediepte.

Bovenstaande formules voor de frontparameters worden wel aangeduid als de formules van Banach, omdat hij het onderzoek in de Scheldegoot heeft uitgevoerd.
5.1.2 **Concept formules voor onregelmatige golven op een recht talud**

Voor onregelmatige golven is aanbevolen om de twee karakteristieke golf-fronten te bepalen, namelijk een veel voorkomend front met "significante" frontparameters, en een extreem golffront met "2%" frontparameters. De significante frontparameters zijn de waarden die gevonden worden als voor \(H \) en \(T \) in de formule voor regelmatige golven gebruik wordt gemaakt van \(H_s \) en \(T_p \). De 2% frontparameters worden gevonden bij gebruik van 1.4 \(H_s \) en \(T_p \). Deze werkwijze wordt aanbevolen in (CUR/TAW 1992) en is gebaseerd op (De Waal, 1990a), waarin een viertal proeven met onregelmatige golven op een talud 1:3 is geanalyseerd.

Uitgeschreven levert deze werkwijze de volgende formules voor de frontparameters op.

Fronthoogte

\[
\phi_{b, \text{sig}} = 0.36 \left(\tan \alpha\right)^{\frac{3}{4}} \frac{H}{L^\text{so}} \quad \text{met als maximum } 2.2 H_s \quad (5.4)
\]

\[
\phi_{b, 2\%} = 0.43 \left(\tan \alpha\right)^{\frac{3}{4}} \frac{H}{L^\text{so}} \quad \text{met als maximum } 3.1 H_s \quad (5.5)
\]

Afgezien van de maximale waarde voor \(\phi_b \) is dit te schrijven als:

\[
\phi_{b, 2\%} = 1.2 \phi_{b, \text{sig}} \quad (5.6)
\]

Frontsteilheid

\[
\tan \beta_{\text{sig}} = \frac{0.17}{\sqrt{H_s/L_o}} \quad (5.7)
\]

\[
\tan \beta_{2\%} = \frac{0.14}{\sqrt{H_s/L_o}} \quad (5.8)
\]

Schaduwdiepte

\[
d_{s, \text{sig}} = 0.11 H_s \left(\frac{\tan \alpha}{H_s/L_o}\right)^{0.8} \quad \text{met als maximum } 1.5 H_s \quad (5.9)
\]

\[
d_{s, 2\%} = 0.13 H_s \left(\frac{\tan \alpha}{H_s/L_o}\right)^{0.8} \quad \text{met als maximum } 2.1 H_s \quad (5.10)
\]
5.1.3 Toepassing van bestaande kennis in huidige analyse

Hieronder wordt aangegeven op welke wijze bij het onderhavige onderzoek gebruik wordt gemaakt van bovenstaande kennis.

Fronthoogte

Voor brekende golven is de fronthoogte evenredig met \(\sqrt{H_s L_0} \):

\[
\frac{\phi_b}{\sqrt{H_s L_0}} = c_1
\]

(5.11)

Hierin is \(c_1 \) alleen afhankelijk van constructiekenmerken zoals \(\tan \alpha \). Gewoonlijk wordt bovenstaande formule gepresenteerd als:

\[
\frac{\phi_b}{H_s} = \frac{c_1}{\sqrt{H_s / L_0}}
\]

(5.12)

Voor rechte taluds is in het verleden geconstateerd dat \(c_1 \), recht evenredig is met \(\tan \alpha \). Voor regulatiete brekende golven zou gelden:

\[
c_1 = 0.36 \sqrt{\tan \alpha}
\]

(5.13)

Frontsteilheid

De nieuwe schematisatie van de frontsteilheid is nog niet eerder onderzocht. Op basis van de definitie is te verwachten dat de nieuwe frontsteilheid kleiner is dan volgens de oude formules. De oude formules zijn echter gebaseerd op modelonderzoek met regulatiete golven waarbij bovendien de gemeten maximale frontsteilheid mogelijk beperkt is geweest door de relatief grote onderlinge afstand tussen de drukopnemers.

Frontniveau

Ook het frontniveau is in het verleden niet afzonderlijk bestudeerd. Uit bestaande kennis kan echter wel een verwachte vorm voor de relatie met de golfrandvoorwaarden worden afgeleid. Hierbij moet worden teruggevallen op de kennis met betrekking tot de frontdaldiepte en de fronttophoogte:

\[
\theta_h = \arctan \left(\frac{h_f}{d_f} \right)
\]

(5.14)
Frontdaldiepte d_f

In voorgaande onderzoeken is geen duidelijk onderscheid gemaakt tussen de frontdaldiepte en de schadediepte. In werkelijkheid is er wel degelijk een verschil tussen deze parameters omdat ter plaatse van het frontdal nog een waterlaag op het talud aanwezig kan zijn. Hierdoor geldt voor iedere individuele golf dat de schadediepte minstens gelijk is aan de frontdaldiepte:

$$d_s \geq d_f$$ \hspace{1cm} (5.15)

Bij regelmatige golven is een verband in de volgende vorm gevonden:

$$\frac{d_f}{H_s} = c_2 \left(\frac{H_s}{L_o} \right)^{-0.8} \quad \text{met} \quad c_2 = 0.11 \tan^{0.8}$$ \hspace{1cm} (5.16)

Dit is te herschrijven tot:

$$\frac{d_f}{\sqrt{H_s L_o}} = c_2 \left(\frac{H_s}{L_o} \right)^{-c_3} \quad \text{met} \quad c_3 = 0.3$$ \hspace{1cm} (5.17)

Fronttophoogte h_f

De fronttophoogte is in het verleden niet afzonderlijk bestudeerd. Er bestaat voor iedere golf echter een rechtstreeks verband tussen de fronttophoogte enerzijds en de (wel bestudeerde parameters) fronthoogte en frontdaldiepte anderzijds:

$$h_f = \phi_b - d_f$$ \hspace{1cm} (5.18)

Hieruit kan een relatie tussen de fronttophoogte en de golfrandvoorwaarden van de volgende vorm afgeleid worden:

$$\frac{h_f}{\sqrt{H_s L_o}} = c_1 - c_2 \left(\frac{H_s}{L_o} \right)^{-c_3}$$ \hspace{1cm} (5.19)

Voor de relatie tussen het frontniveau en de golfrandvoorwaarden leidt het bovenstaande tot:

$$\theta_h = \arctan \left(\frac{c_1}{c_2} \left(\frac{H}{L_o} \right)^{c_3} - 1 \right)$$ \hspace{1cm} (5.20)
Voor hoeken θ_h kleiner dan ongeveer 40° kan deze formule ook goed benaderd worden met:

$$\theta_h = c_4 \left(\frac{H_S}{L_O}\right)^{c_5}$$

met $c_4 = \frac{180}{\pi} \frac{c_1}{c_2}$ en $c_5 = c_3$ \hspace{1cm} (5.21)

Schadeldiepte

Een verband als voor de frontschadeldiepte wordt in eerste instantie ook aangenomen voor de schadeldiepte d_S:

$$\frac{d_S}{\sqrt{H_S L_O}} = c_6 \left(\frac{H_S}{L_O}\right)^{c_5} \hspace{1cm} (5.22)$$

5.2 **Meetgegevens bij rechte taluds**

5.2.1 **Invloed van golfsteilheid en taludhelling**

Fronthoogte

Zie figuur 5.1 en 5.2.

Voor de dimensieloze fronthoogte ϕ_b/H_S is voor beide taludhellingen onderdaad sprake van een duidelijke evenredigheid met $1/\sqrt{H_S L_O}$. De verhouding van ϕ_b tot $\sqrt{H_S L_O}$ is nagenoeg constant. De waarde van deze constante (c_1) is in onderstaande tabel weergegeven:

<table>
<thead>
<tr>
<th>Talud 1:3</th>
<th>c_1 voor $\phi_{b,2%}$</th>
<th>Talud 1:4</th>
<th>c_1 voor $\phi_{b,sig}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.225</td>
<td></td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td>0.210</td>
<td></td>
<td>0.170</td>
</tr>
</tbody>
</table>

De waarden bij het talud 1:3 zijn gemiddeld een factor 1.065 groter dan bij het talud 1:4. Dit is een kleinere factor dan uit de veronderstelde relatie van c_1 met $\sqrt{\tan\alpha}$ zou volgen (namelijk 1.155). In plaats van $(\tan\alpha)^{1/4}$ zou beter $(\tan\alpha)^{1/5}$ gebruikt kunnen worden. De waarde van de exponent is echter meer met het oog op de praktische bruikbaarheid gekozen, dan dat hieraan een exacte betekenis moet worden toegekend. Voor dit laatste is de basis van meetgegevens bij twee taludhellingen te klein.

Samenvattend zijn de formules voor de fronthoogte bij een recht talud als volgt te formuleren:
\[\phi_{b,\text{sig}} = 0.24 (\tan \alpha)^{\frac{4}{5}} \sqrt{\frac{H_s L_o}{o}} \] \hspace{1cm} (5.23)

\[\phi_{b,2\%} = 1.25 \phi_{b,\text{sig}} \] \hspace{1cm} (5.24)

De verhouding van de significante fronthoogte tot de significante golfhoogte heeft een fysische bovengrens. Zo zal bij toenemende golflengte de fronthoogte eerst toenemen volgens de gegeven formule, totdat de golflengte zo groot wordt dat de golven niet meer breken op het talud. De fronthoogte blijft vervolgens bij benadering constant.

Dit fysische maximum is in de meetgegevens niet aangetroffen omdat dit buiten het gebied van de gehanteerde golfrandvoorwaarden lag. Om dit maximum toch in de formule op te nemen wordt teruggeweken op het empirisch gevonden maximum voor de fronthoogte bij regelmatige golven:

\[\phi_b = 2.2 H \] \hspace{1cm} (5.1)

In de eerste plaats nemen we nu aan dat de fysische bovengrens voor de verhouding van de significante fronthoogte tot de significante golfhoogte overeenkomt met de bovengrens voor de fronthoogte bij regelmatige golven. Deze aannames zijn gerechtvaardigd omdat de significante golfhoogte representatief is voor veel voorkomende golven.

In de tweede plaats nemen we aan dat de verhouding van de 2%-waarde van de fronthoogte tot de significante fronthoogte gelijk is aan 1.25, onafhankelijk van de brekerparameter. Deze aannames leiden tot een verhouding van de 2%-fronthoogte tot de significante golfhoogte van maximaal 2.8. Voor het meest extreme geval waarin de golven volledig reflecteren geldt fysisch gezien dat \(\phi_{b,2\%} \) overeenkomt met 2.0 \(H_{2\%} \). Omdat \(H_{2\%} \) overeenkomt met 1.4 \(H_s \), wordt voor deze situatie inderdaad een verhouding van 2.8 gevonden tussen \(\phi_{b,2\%} \) en \(H_s \). Dit is een ondersteuning van de aannamen van een constante verhouding van 1.25.

Het bovenstaande leidt tot de volgende formules:

\[\phi_{b,\text{sig}} = 0.24 (\tan \alpha)^{\frac{4}{5}} \sqrt{\frac{H_s L_o}{o}}; \text{ met als maximum 2.2 } H_s \] \hspace{1cm} (5.25)

\[\phi_{b,2\%} = 1.25 \phi_{b,\text{sig}} \] \hspace{1cm} (5.24)
Frontsteilheid
Zie figuur 5.3.
Er is geen duidelijke relatie tussen de frontsteilheid en de golfsteilheid herkenbaar. De spreiding in de waarde van $\theta_{f,10\%}$ is vrij groot, in tegenstelling tot de spreiding van $\theta_{f,2\%}$. Voor beide karakteristieken is een waarde gekozen die representatief lijkt voor de gemeten grotere waarden van θ_f.

<table>
<thead>
<tr>
<th>Talud</th>
<th>$\theta_{f,2%}$</th>
<th>$\theta_{f,10%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud 1:3</td>
<td>72°</td>
<td>65°</td>
</tr>
<tr>
<td>Talud 1:4</td>
<td>69°</td>
<td>63°</td>
</tr>
</tbody>
</table>

Het verschil tussen de 2% frontsteilheid en de 10% frontsteilheid wordt groter naarmate het talud steiler is en de golfsteilheid kleiner. Het is aannemelijk dat voor deze tendens in de randvoorwaarden een groeiend percentage golven niet breekt op het talud. Bij deze niet-brekende golven is de frontsteilheid van nature aanzienlijk kleiner dan bij brekende golven. Dit percentage niet-brekende golven heeft in eerste instantie vrijwel alleen invloed op de waarde van $\theta_{f,10\%}$.

Vanwege de grote spreiding wordt vooralsnog afgezien van het formuleren van een relatie tussen de frontsteilheid enerzijds en de golfsteilheid en de taludhelling anderzijds. Bovenstaande constante waarden zullen gebruikt worden als referentie bij het bepalen van de invloed van de berm en het voorkant op de frontsteilheid.

Frontniveau
Zie figuur 5.4.
Het frontniveau is, zoals verwacht, eindzins afhankelijk van de golfsteilheid. Met behulp van curve-fitting is gezocht naar een relatie met de vorm (gebaseerd op regelmatige golven):

$$\theta_h = c_s(H/L_o)^{c_s}$$ \hspace{1cm} (5.10)

Uit praktische overwegingen is gezocht naar constanten met als voorwaarde dat c_s een vaste constante is (naar verwachting ongeveer gelijk aan 0.3) en c_s afhankelijk is van de taludhelling. De volgende formuleringen bleken goed te voldoen:
\[\theta_h = 75 \left(\frac{H_s}{L_o} \right)^{1/4} \] (voor talud 1:3) \hspace{5em} (5.26)

\[\theta_h = 90 \left(\frac{H_s}{L_o} \right)^{1/4} \] (voor talud 1:4) \hspace{5em} (5.27)

Bovenstaande formuleringen kunnen als volgt samengevoegd worden:

\[\theta_h = \frac{45}{\sqrt{\tan \alpha}} \left(\frac{H_s}{L_o} \right)^{1/4} \] \hspace{5em} (5.28)

Schadiediepte

Zie figuur 5.5 en 5.6.

De schadiediepte \(\frac{d_s}{H_s} \) is niet helemaal recht evenredig met \(1/\sqrt{H_s/L_o} \). De waarde van \(\frac{d_s}{\sqrt{H_s/L_o}} \) is dan ook enigszins afhankelijk van de golfsteilheid. Deze afhankelijkheid komt niet overeen met de aangenomen vorm \(c_s (H/L_o)^{c_s} \). In dit geval kan het verband voor beide taluds echter wel benaderd worden met een rechte lijn:

<table>
<thead>
<tr>
<th>Talud 1:3</th>
<th>(0.130 + 0.0075 \left(100 \frac{H_s}{L_o} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud 1:4</td>
<td>(0.120 + 0.0060 \left(100 \frac{H_s}{L_o} \right))</td>
</tr>
</tbody>
</table>

Opmerkelijk is dat de schadiediepte toeneemt voor toenemende golfsteilheid, terwijl het front relatief hoger ten opzichte van SWL komt te staan, bij gelijkblijvende (totale) fronthoogte. De waterlaagdiepte op het talud neemt kennelijk toe met toenemende golfsteilheid. Als toch gekozen wordt voor de benadering \(\frac{d_s}{\sqrt{H_s/L_o}} = c_4 \), dan zijn de volgende waarden van \(c_4 \) te gebruiken:

<table>
<thead>
<tr>
<th>(c_4) voor (d_s)</th>
<th>(c_1) voor (\phi_{b,\text{sig}})</th>
<th>verhouding (d_s/\phi_{b,\text{sig}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud 1:3</td>
<td>0.150</td>
<td>0.180</td>
</tr>
<tr>
<td>Talud 1:4</td>
<td>0.135</td>
<td>0.170</td>
</tr>
</tbody>
</table>

Uit bovenstaande vergelijking met de formule voor \(\phi_{b,\text{sig}} \) blijkt dat bij benadering de volgende vuistregel bruikbaar is:

\[d_s = 0.8 \phi_{b,\text{sig}} \] \hspace{5em} (5.29)
5.2.2 Vergelijking tussen nieuwe en oude formules

In deze paragraaf wordt een vergelijking gemaakt tussen de oude formules (paragraaf 5.1) en de nu gevonden formules voor de fronthoogte en de schadediepte (paragraaf 5.2).

<table>
<thead>
<tr>
<th>(\phi_{b,sig} / \sqrt{H_{s,o}})</th>
<th>Regelmatige golven</th>
<th>Concept onregelmatige golven</th>
<th>Definitieve formules</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cot \alpha = 3)</td>
<td>0.21</td>
<td>0.21</td>
<td>0.18</td>
</tr>
<tr>
<td>(\cot \alpha = 4)</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
</tr>
<tr>
<td>(\cot \alpha = 5)</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>(\phi_{b,2%} / \sqrt{H_{s,o}})</td>
<td>-</td>
<td>0.43 ((\tan \alpha))</td>
<td>0.30 ((\tan \alpha))</td>
</tr>
<tr>
<td>(\cot \alpha = 3)</td>
<td>-</td>
<td>0.25</td>
<td>0.23</td>
</tr>
<tr>
<td>(\cot \alpha = 4)</td>
<td>-</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>(\cot \alpha = 5)</td>
<td>-</td>
<td>0.19</td>
<td>0.20</td>
</tr>
</tbody>
</table>

In bovenstaande tabel en in figuur 5.31 is de relatieve fronthoogte volgens de nieuwe formules voor drie taludhellingen vergeleken met de uitkomsten van voorheen aanbevolen formules (De Waal, 1990a). De algemene tendens is dat de invloed van de taludhelling in de nieuwe formules kleiner is. De significante fronthoogte is in de nieuwe formules iets kleiner dan in de oude, behalve voor het talud 1:5 (en flauwere taluds). De 2%-waarde van de fronthoogte is voor het talud 1:4 precies gelijk voor de verschillende formules.

In figuur 5.32 is de relatieve schadediepte volgens de nieuwe formules vergeleken met de oude. In de nieuwe formules is de invloed van zowel de taludhelling als de golfsteilheid kleiner dan in de oude formules. Gemiddeld genomen is er een redelijke overeenkomst. De afwijkingen zijn overigens in dit geval veel minder van belang dan afwijkingen in de waarde van de fronthoogte, omdat de belasting ten gevolge van waterstandsvariatie en onregelmatige golven op een breed gebied op het talud kan plaatsvinden en daardoor niet nauwkeurig in de vorm van de schadediepte kan worden vastgelegd.
5.3 Meetgegevens bij taluds met een berm

5.3.1 Invloed van bermbreedte bij berm op SWL

De invloed van de bermbreedte is onderzocht voor de volgende dimensieloze waarden:

\[0.3 < \frac{B}{\sqrt{H_{s}L_{o}}} < 1.4 \quad (5.30) \]

Fronthoogte

Zie figuur 5.7 en 5.8.

In de figuren is geen duidelijk verschil te zien in proeven met verschillende bermbreedte. In tegenstelling met de fronthoogte bij een recht talud neemt de relatieve fronthoogte \(\frac{\phi_{b}}{\sqrt{H_{s}L_{o}}} \) bij de proeven met berm toe voor toenemende golfsteilheid. Voor kleine golfsteilheid is de fronthoogte kleiner dan bij recht talud en bij grote golfsteilheid iets groter. Er is een waarde van de golfsteilheid binnen dit bereik waarvoor de invloed van de berm nihil is ten opzichte van de constructie zonder berm. De volgende formule geeft voor beide taludhellingen goede resultaten.

\[\phi_{b, \text{sig}} = 0.24 \left(\frac{H_{s}/L_{o}}{0.025 \tan \alpha} \right)^{1/4} \sqrt{H_{s}L_{o}} \quad (5.31) \]

Dit is te herschrijven tot:

\[\phi_{b, \text{sig}} = 0.60 H_{s} \left(\frac{\tan \alpha}{H_{s}/L_{o}} \right)^{1/4} \quad (5.32) \]

Bovendien geldt weer:

\[\phi_{b, 2\%} = 1.25 \phi_{b, \text{sig}} \quad (5.24) \]

Als bovengrens wordt bij gebrek aan gegevens weer aanbevolen:

\[\phi_{b, \text{sig}} = 2.2 H_{s} \quad (5.25) \]
Frontsteilheid
Zie figuur 5.9 en 5.10.
De frontsteilheid blijkt enigszins afhankelijk te zijn van de golfsteilheid. Deze afhankelijkheid is echter zo grillig, dat het kwantificeren ervan nauwelijks mogelijk is. Voorlopig wordt daarom weer uitgegaan van een representatieve hoge waarde van de meetwaarden.

<table>
<thead>
<tr>
<th>Talud 1:3</th>
<th>Talud 1:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_f,2%$</td>
<td>$\theta_f,10%$</td>
</tr>
<tr>
<td>B = 0.0 m</td>
<td>72°</td>
</tr>
<tr>
<td>B = 0.4 m</td>
<td>75°</td>
</tr>
<tr>
<td>B = 1.0 m</td>
<td>75°</td>
</tr>
</tbody>
</table>

In het algemeen blijkt de berm de waarde van de frontsteilheid enigszins te vergroten. Deze trend komt overeen met de geconstateerde invloed van de berm op de frontsteilheid (volgens de oude definitie) in (De Waal, 1989).

Frontniveau
Zie figuur 5.11.
De berm zorgt voor verlaging van de waarde van θ_h, onafhankelijk van de bermbreedte. Voor de gemiddelde waarde van θ_h van het derde deel hoogste fronten geldt:

<table>
<thead>
<tr>
<th>Talud 1:3</th>
<th>Talud 1:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_h zonder berm</td>
<td>$\frac{75}{(H_s/L_o)^{1/4}}$</td>
</tr>
<tr>
<td>θ_h met berm</td>
<td>$\frac{65}{(H_s/L_o)^{1/4}}$</td>
</tr>
</tbody>
</table>

Bovenstaande tabel is samen te vatten in de volgende benaderende formule:

$$\theta_h = \left[\frac{45}{\sqrt{\tan \alpha}} - 10\right] \left(\frac{H_s}{L_o}\right)^{1/4} \quad (5.33)$$

Schadediepte
Zie figuur 5.12.
Bij constructies met een berm op SWL is de schadediepte steeds zodanig dat de maximale belasting nooit op de berm plaatsvindt, maar altijd op het talud onder de berm. Voor de gemiddelde schadediepte van het derde deel hoogste fronten kan het volgende geconstateerd worden.
Voor het talud 1:4 geldt dat de invloed van de berm op de schadediepte nagenoeg nihil is. Dit geldt ook voor de smalle berm bij het talud 1:3, behalve bij de kleinste golfsteilheid, waarbij een kleinere schadediepte wordt gevonden. Bij de proeven op het talud 1:3 met de brede berm is de schadediepte bij de kleine golfsteilheid gelijk aan de waarde bij de constructie zonder berm. Bij grote golfsteilheid liggen de meeste meetwaarden echter hoger dan bij de constructie zonder berm. Samenvattend kan echter de invloed van de bermbreedte op de schadediepte in het algemeen bij redelijk goede benadering wel verwaarloosd worden.

5.3.2 Invloed van bermdiepte bij smalle berm

De invloed van de bermdiepte is onderzocht voor de volgende dimensieloze waarden:

\[-0.5 < \frac{d_B}{H_s} < 1.0\] (5.34)

Fronthoogte
Zie figuur 5.13 en 5.14.

Als de berm boven SWL ligt \((\frac{d_B}{H_s} = -\frac{1}{4})\), dan is de invloed van de berm op de fronthoogte voor beide taludhellingen verwaarloosbaar. Als de berm onder SWL ligt treedt een kleine reductie van de fronthoogte op ten opzichte van de situatie met de berm op SWL. Dit geldt met name voor het talud 1:3. Daar bedraagt de reductie maximaal ongeveer 10%. Er is echter wel sprake van enige spreiding. Daarom is het voor de praktijk aan te bevelen om de invloed van de bermdiepte voor de berm onder SWL te verwaarlozen.

Frontsteilheid
Zie figuur 5.15 en 5.16.

Als de berm boven SWL ligt \((\frac{d_B}{H_s} = -\frac{1}{4})\), dan is de invloed van de berm op de frontsteilheid voor beide taludhellingen verwaarloosbaar. De frontsteilheid voor de situaties met de berm onder SWL wijkt voor \(\frac{d_B}{H_s} = +\frac{1}{2}\) nauwelijks af van de situatie met de berm op SWL. Als de berm echter dieper ligt \((\frac{d_B}{H_s} = +1)\), dan wordt de frontsteilheid aanzienlijk (orde 10°) gereduceerd. Bij deze situatie bevindt het frontdal zich meestal boven de berm en kan het zich niet meer ongestoord langs het talud terugtrekken. Hierdoor breekt de golf in de waterlaag op het talud en is de frontsteilheid relatief klein.
Frontniveau
Zie figuur 5.17.
De bermdiepte bij de smalle berm zorgt ervoor dat het frontniveau verschuift naar grotere waarden als de berm onder SWL ligt. Voor het talud 1:3 wordt de waarde van het frontniveau 35° à 40° en voor het talud 1:4 40° à 45°, onafhankelijk van de golfsteinheid. Dit is als volgt in een formule te beschrijven:

$$\theta_h = \frac{21}{\sqrt{\tan \alpha}}$$ \hspace{1cm} (5.35)

Deze relatie houdt in de verhouding van de fronttophoogte tot de frontdal-diepte toeneemt in vergelijking met de situatie zonder berm of met de berm op SWL. In aansluiting op de verklaring van de invloed van de bermdiepte op de frontsteinheid kan dit verklaard worden door het feit dat het uitdiepen van frontdal sterk beperkt wordt door de berm als de berm zich onder SWL bevindt.

Als de berm boven SWL ligt is de invloed van de berm op het frontniveau verwaarloosbaar ten opzichte van de situatie zonder berm.

Schadediepte
Zie figuur 5.18.
De bermdiepte heeft geen invloed op de schadediepte bij de smalle berm in het talud 1:4. Bij de smalle berm in het talud 1:3 daarentegen wordt voor kleine golfsteinheid de schadediepte gereduceerd als de berm onder SWL ligt. Voor grote waarden van de golfsteinheid is de invloed van de bermdiepte ook hier verwaarloosbaar.

In de meeste gevallen is de gemiddelde schadediepte van het derde deel hoogste fronten zodanig dat de maximale belasting op het talud onder de berm plaatsvindt. Door de spreiding in de voorkomende waarden van de schadediepte bij onregelmatige golven moet er rekening mee worden gehouden dat de maximale belasting ook op de berm kan plaatsvinden als de berm zich enigszins onder SWL bevindt.

Als de berm boven SWL ligt is de invloed van de berm op de schadediepte verwaarloosbaar ten opzichte van de situatie zonder berm.
5.3.3 Invloed van bermdiepte bij brede berm

Fronthoogte
Zie figuur 5.19 en 5.20.
Zowel voor de brede berm in het talud 1:3 als in het talud 1:4 is de invloed van de bermdiepte op de fronthoogte als de berm onder SWL ligt verwaarloosbaar ten opzichte van de situatie met de berm op SWL. Als de berm boven SWL ligt komen de metingen overeen met de situatie zonder berm.

Frontsteilheid
Zie figuur 5.21 en 5.22.
De frontsteilheid wordt ook bij de brede berm gereduceerd als de berm onder SWL ligt. De spreiding is met name voor de 10%-waarde van de frontsteilheid tamelijk groot. In onderstaande tabel worden enkele karakteristieke (grote) frontsteilheden vermeld:

<table>
<thead>
<tr>
<th></th>
<th>Talud 1:3</th>
<th>Talud 1:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{B/H_s}</td>
<td>$\theta_f,2%$</td>
<td>$\theta_f,10%$</td>
</tr>
<tr>
<td>$-\frac{1}{2}$</td>
<td>72°</td>
<td>55°</td>
</tr>
<tr>
<td>$+\frac{1}{2}$</td>
<td>68°</td>
<td>44°</td>
</tr>
<tr>
<td>$+1$</td>
<td>60°</td>
<td>47°</td>
</tr>
</tbody>
</table>

Frontniveau
Zie figuur 5.23.
De invloed van de bermdiepte van de brede berm komt kwalitatief overeen met de waargenomen invloed bij de smalle berm. Kwantitatief gezien is de invloed van de bermdiepte bij de brede berm echter aanzienlijk kleiner. Vooral bij het talud 1:4 is nauwelijks nog sprake van invloed van de bermdiepte. Voor beide taluds is het frontniveau 30° à 40°.

Schadediepte
Zie figuur 5.24.
Er is nauwelijks invloed van de bermdiepte op de schadediepte waarneembaar. Dit geldt voor beide taluds.
5.3.4 Samenvatting invloed berm

In het algemeen is de invloed van een berm op de frontparameters niet groot. Zeker als de berm duidelijk boven SWL ligt kan de invloed van de berm verwaarloosd worden. Onderstaande formules worden aanbevolen voor:

\[-0.4 < d_B/H_s < 0.4\] \hspace{1cm} (5.36)

Voor alle andere situaties zijn de formules voor een recht talud van toepassing.

De relatieve fronthoogte is voor kleine golfsteilheid iets kleiner dan bij een recht talud en bij grote golfsteilheid iets groter. Hierbij is geen invloed van de bermhoogte herkenbaar binnen het gebied van gerepresenteerde bermbreedten. De volgende formule is dan ook bruikbaar voor alle gerepresenteerde bermbreedtes:

\[\phi_{b, \text{sig}} = 0.60 H_s \left(\frac{\tan \alpha}{H_s/L_o}\right)^{\frac{4}{3}} \text{ met als maximum } 2.2 H_s\] \hspace{1cm} (5.32)

\[\phi_{b, 2\%} = 1.25 \phi_{b, \text{sig}}\] \hspace{1cm} (5.24)

Als de berm zich op SWL bevindt \((-0.4 < d_B/H_s < 0.4)\), dan is de frontsteilheid enkele graden groter dan bij de situatie zonder berm:

\[\theta_{f, 2\%} = 75^\circ\] \hspace{1cm} (5.37)

\[\theta_{f, 10\%} = 68^\circ\] \hspace{1cm} (5.38)

Als de berm zich onder SWL bevindt \((0.4 < d_B/H_s < 1.0)\), dan wordt de frontsteilheid gereduceerd. Voor deze situaties worden de waarden voor de frontsteilheid bij een recht talud weer aanbevolen.

Als de berm zich op SWL bevindt \((-0.4 < d_B/H_s < 0.4)\), dan is het frontniveau kleiner dan in een situatie zonder berm:

\[\theta_n = \left(\frac{45}{\sqrt[4]{\tan \alpha}} - 10\right) \left(H_s/L_o\right)^{\frac{4}{3}}\] \hspace{1cm} (5.33)
Voor situaties met de berm onder SWL \(0.4 < d_B / H_S < 1.0\) is het frontniveau aanzienlijk groter en onafhankelijk van de golfsteelheid. De constante waarden voor het frontniveau zijn echter op onduidelijke wijze afhankelijk van de taludhelling en de bermbreedte. Daarom wordt aanbevolen voor deze situaties de formule voor het rechte talud weer te gebruiken, waarin in ieder geval het frontniveau hoger is dan bij de situatie met een berm. De trend in de frontsteelheid en het frontniveau bij een berm onder SWL duidt erop dat het frontdal in de woelige waterlaag op de berm niet goed kan uitdiepen.

De invloed van de bermbreedte en de bermdiepte op de schadeldiepte is ver- waarloosbaar, mede gezien het feit dat in de praktijk met een grote range van mogelijke schadelocaties rekening gehouden moet worden. Als richtlijn kan, net als bij een recht talud, gebruik gemaakt worden van:

\[
d_s = 0.8 \phi_{b,sig}
\]

(5.29)

5.4 Meetgegevens bij taluds met een ondiep voorland

In voorgaande paragrafen is bij iedere proef slechts één waarde voor de waterdiepte en de significante golfhoogte vermeld. Deze waarden zijn repre- sentatief voor de waarden bij de teen van de constructie. In tabel 2.6 worden de waterdiepte en significante golfhoogte zowel bij het golfschot gegeven als ter plaatse van de teen van de constructie. Net als in de overige analyses worden in deze paragraaf de waterdiepte \(h\) en de signifi- cante golfhoogte \(H_S\) ter plaatse van de teen van de constructie als uitgangs- punt in de tabellen en grafieken genomen.

Fronthoogte

Voor diep water is de waarde van \(\phi_b / \sqrt{H_S L_O}\) constant. Deze parameter is voor alle proeven met het ondiepe voorland uitgezet tegen \(h/H_S\) (de bovenste figuur). De invloed van de waterdiepte is pas goed merkbaar voor:

\[
h/H_S < \text{ca. } 2.0
\]

(5.39)

Voor dergelijke kleine waterdieptes kan worden aangenomen dat \(\phi_{b,sig}\) bepaald wordt door \(H_S\) en niet meer door de golfperiode, geregistreerd door \(L_O\).
Daarom is ook $\phi_{b,\text{sig}}/H_S$ uitgezet tegen h/H_S (de onderste figuur). Hoewel ook voor $h/H_S < 2.0$ de spreiding in $\phi_{b,\text{sig}}/H_S$ nog aanzienlijk is, lijkt voor dit gebied $\phi_{b,\text{sig}}/H_S$ toch redelijk benaderbaar met een constante waarde.

Voor $h/H_S < 2.0$ geldt:

$$\phi_{b,\text{sig}}/H_S = 1.1 \quad \text{(voor talud 1:3)}$$ \hspace{1cm} (5.40)

$$\phi_{b,\text{sig}}/H_S = 1.0 \quad \text{(voor talud 1:4)}$$ \hspace{1cm} (5.41)

Om deze formules van de verschillende taluds samen te voegen wordt gezocht naar een verband met dezelfde vorm als bij constructies zonder voorland, waarin de factor $\tan \theta$ voorkomt. De volgende formule blijkt goed bruikbaar:

$$\phi_{b,\text{sig}}/H_S = 1.44 (\tan \theta)^{0.4}$$ \hspace{1cm} (5.42)

Voor de 2%-waarde van de fronthoogte kan weer bij goede benadering worden aangenomen:

$$\phi_{b,2\%} = 1.25 \phi_{b,\text{sig}}$$ \hspace{1cm} (5.24)

Voor $h/H_S \geq 2.0$ is de invloed van het voorland verwaarloosbaar en kunnen de formules gebruikt worden die voor diep water zijn bepaald.

Frontsteilheid

Zie figuur 5.27.

De waarde van de frontsteilheid is voor het talud 1:4 nagenoeg onafhankelijk van de waterdiepte. De waarden zijn hier overigens een paar graden lager dan de referentiewaarden bij de constructie zonder voorland.

Bij het talud 1:3 komt de frontsteilheid voor grote waterdieptes goed overeen met de gemeten waarden bij de referentieconstructie. Voor de kleinste waterdieptes is een lichte tendens naar kleinere frontsteilheden te bespeuren. Gezien de spreiding in de frontsteilheid in het algemeen is deze tendens voor de praktijk wel te verwaarlozen. Overigens is een groot aantal 10%-waarden opvallend laag. Hiervoor is (nog) geen verklaring gevonden.

Frontniveau

Zie figuur 5.28.

Evenals bij de fronthoogte is de invloed van het ondiepe voorland pas merkbaar voor $h/H_S < 2.0$. Voor deze waarden geldt dat de frontdaldiepte beperkt
wordt door de invloed van de kleine waterdiepte bij de teen. Daardoor komt het front hoger ten opzichte van SWL te liggen hetgeen tot uitdrukking komt in grotere waarden voor θ_h.

Voor $1.6 < h/H_S < 2.0$ wordt de volgende formule aanbevolen:

$$\theta_h = 30 + \frac{1}{h/H_S - 1.55} \quad (5.43)$$

Schadediepte

Zie figuur 5.29 en 5.30.

Voor diep water is de waarde van $d_s/\sqrt{H_{s0}}$ in slechts geringe mate afhankelijk van de golfsteilheid. Ter wille van de eenvoud wordt nu deze afhankelijkheid verwaarloosd. De parameter $d_s/\sqrt{H_{s0}}$ is voor alle proeven met het ondiepe voorland uitgezet tegen h/H_S. Ook de schadediepte ondervindt pas invloed van de beperkte waterdiepte voor $h/H_S < 2.0$. Onder deze omstandigheden kan worden aangenomen dat de schadediepte voornamelijk bepaald wordt door de waterdiepte zelf en minder door de golfhoogte en de golfperiode. Daarom is ook d_s/h uitgezet tegen h/H_S. Hoewel ook voor $h/H_S < 2.0$ de spreiding in d_s/h nog aanzienlijk is, lijkt d_s/h voor dit gebied toch redelijk benaderbaar met een constante waarde.

Voor $h/H_S < 2.0$ geldt globaal:

$$d_s/h = 0.45 \quad \text{(voor talud 1:3)} \quad (5.44)$$

$$d_s/h = 0.41 \quad \text{(voor talud 1:4)} \quad (5.45)$$

Dit zou samengevoegd kunnen worden, waaruit de volgende formule volgt:

$$d_s/h = 0.59 \left(\tan \alpha\right)^{\frac{1}{4}} \quad (5.46)$$

Voor $h/H_S \geq 2.0$ is de invloed van het voorland verwaarloosbaar. Bovenstaande resultaten voor de invloed van een ondiep voorland kunnen als volgt worden samengevat.

De **fronthoogte** wordt voor $h/H_S < 2.0$ alleen nog bepaald door de golfhoogte H_S. Bij benadering geldt:
\[
\phi_{b, \text{sig}} = 1.44 \frac{H_s}{\text{tan} \alpha}^{\frac{4}{3}} \tag{5.42}
\]
\[
\phi_{b, 2\%} = 1.25 \phi_{b, \text{sig}} \tag{5.24}
\]

De **frontsteilheid** wordt niet beïnvloed door het ondiepe voorland.

Het **frontniveau** (de gemiddelde waarde van het derde deel hoogste golven) neemt voor \(h/H_s < 2.0 \) toe doordat de frontdaldiepte beperkt wordt als gevolg van de beperkte waterdiepte. Voor \(1.6 < h/H_s < 2.0 \) geldt bij benadering:

\[
\theta_h = 30 + \frac{1}{h/H_s - 1.55} \tag{5.43}
\]

De **schadediepte** (de gemiddelde waarde van het derde deel hoogste golven) wordt voor \(h/H_s < 2.0 \) alleen nog bepaald door de waterdiepte \(h \) bij de teen. Bij benadering geldt:

\[
d_s = 0.59 h \ (\text{tan} \alpha)^{\frac{1}{3}} \tag{5.46}
\]

5.5 Vergelijking tussen gemeten en berekende frontparameters

In figuur 5.33 tot en met 5.36 zijn voor alle proeven de gemeten frontparameters vergeleken met de berekende frontparameters.

De berekende relatieve **fronthoogte** ligt gemiddeld een fractie boven de gemeten waarde, zie figuur 5.33. De spreiding is relatief klein: de standaardafwijking wordt geschat op 5%. De formule voor de fronthoogte is dus licht conservatief maar vrij nauwkeurig.

De aanbevolen formules voor de **frontsteilheid** zijn vrij sterk conservatief, zie figuur 5.34. Hiervoor is gekozen omdat de spreiding in de meetgegevens groot is, en er geen duidelijke tendens geconstateerd is.

De formules voor het **frontniveau** geven een redelijke schatting van de gemeten waarde, zie figuur 5.35. Omdat het frontniveau niet een echte maat voor de grootte van de belasting is, is gekozen voor een formule die het gemiddelde redelijk beschrijft. Dit komt in de figuur tot uitdrukking.

In figuur 5.36 blijkt dat ook de berekende relatieve **schadediepte** gemiddeld redelijk overeenkomt met de gemeten waarden.
6. **Schematisatie van het stijghoogteverloop**

6.1 **De waterlaag op het talud vóór het front**

In hoofdstuk 4 en 5 is de aandacht gericht op de frontparameters. Hiermee zijn de belangrijkste kenmerken van de fronten vastgelegd. De feitelijke belasting op de taludbekleding wordt echter gevormd door verschillen tussen het stijghoogteverloop op en onder de zetting. Er is daarom nog een functievoorschrift nodig om op basis van de frontparameters het stijghoogteverloop op het talud te reproduceren. (Het stijghoogteverloop onder de zetting wordt dan alleen nog bepaald door de lek lengte van de constructie). Als de frontparameters in dit functievoorschrift worden gesubs titueerd, dan wordt een weergave van het stijghoogteverloop verkregen, waarin de belangrijkste aspecten (namelijk de frontparameters) correct worden geregistreerd. Dit hoofdstuk handelt over de keuze van het functievoorschrift voor het stijghoogteverloop. Eén van de aspecten in dit functievoorschrift is de schematisatie van de waterlaag op het talud.

In veel gevallen valt het frontdal niet samen met het talud. Er is dan namelijk nog water op het talud vóór het front aanwezig. In de meeste gevallen betreft dit een relatief dunne waterlaag die bestaat uit het terugstromende water van de voorafgaande golfoploop.

![Diagram](attachment:waterlaag.png)

Waterlaag op het talud
Het is gebruikelijk om deze waterlaag op het talud voor het front te beschouwen als een laag met constante dikte, gelijk aan de dikte van de waterlaag onder het frontdal. Zo beschouwd heeft de dikte van de waterlaag geen invloed op het stijghoogteverschil over de zetting. Het maximale stijghoogteverschil over de zetting wordt verondersteld loodrecht onder het frontdal op te treden.

In werkelijkheid neemt de dikte van de waterlaag opwaarts langs het talud in de meeste gevallen af. Dit betekent dat de hoek tussen het stijghoogteverloop ter plaatse van het front en dat ter plaatse van de waterlaag op het talud in werkelijkheid iets minder scherp is dan in de schematisatie. Het volgens de schematisatie berekende maximale stijghoogteverschil over de zetting is daardoor een licht conservatieve benadering van het werkelijke stijghoogteverschil.

Voor ieder afzonderlijk front is de dikte van de waterlaag ter plaatse van het frontdal gelijk aan het verschil tussen de schadediepte en de frontdaldiepte \(d_s - h_s \). Om uit de meetgegevens een globale indruk te krijgen van de relatieve waterlaagdikte wordt aangenomen dat voor iedere afzonderlijke combinatie van randvoorwaarden de significante waterlaagdikte gelijk is aan het verschil tussen de significante schadediepte en de significante frontdaldiepte (De significante frontdaldiepte wordt gebaseerd op de significante fronthoogte en het significante frontniveau). Voor de proeven op een recht talud met een diep voorland is deze significante waterlaagdikte dimensieloos gemaakt met de significante fronthoogte en vervolgens uitgezet tegen de golfsteilheid, zie figuur 6.1.

De volgende twee aspecten van figuur 6.1 zijn opvallend. In de eerste plaats kan de significante waterlaagdikte vrij groot zijn, namelijk 30% van de fronthoogte. In de tweede plaats valt op dat de waterlaagdikte toeneemt met toenemende frontsteilheid. Dit kan verklaard worden door het feit dat bij steile golven het oplopende water relatief minder tijd heeft om terug te stromen dan bij lange golven.
Een in het verleden gebruikte eenvoudige schematisatie van de belasting wordt volledig gekenmerkt door de fronthoogte ϕ_b en de frontsteilheid θ_f, zie onderstaande figuur.

Eenvoudige schematisatie van het front (variant I)

Deze schematisatie met de twee rechte lijnen is tamelijk grof. In de eerste plaats zorgt de overgang tussen de schuine en de horizontale lijn voor een wat onnatuurlijk verloop van het stijghoogteverschil over de zetting bij constructies met een kleine leklengte. In de tweede plaats levert de (in zeewaartse richting oneindige) horizontale lijn voor een onnatuurlijk hoge waarde van het maximale stijghoogteverschil bij constructies met een grote leklengte.

Om de twee genoemde nadelen van de huidige schematisatie te elimineren is stapsgewijs gezocht naar alternatieve schematisaties. In een alternatieve schematisatie moet de stijghoogte in het front vloeiend verlopen (zonder knik) en/of moet de stijghoogte zeewaarts van het front afnemen naar SWL.

In appendix I wordt een viertal varianten naast elkaar gezet. Variant I is in feite geen variant maar is de 0-optie: handhaving van de oude schematisatie. Deze is opgenomen ter vergelijking. In variant II is alleen de knik uit het stijghoogteverloop verdwenen. De stijghoogte neemt niet af zeewaarts van het front, zie onderstaande figuur.
Schematisatie van het front volgens variant II

In variant III en IV zijn beide doelstellingen verwezenlijkt: een vloeiend front en afname van de stijghoogte naar SWL zeewaarts van het front. Voor variant IV (de meest gecompliceerde) is het bestreken meetgebied zeewaarts echter niet groot genoeg geweest. Daarom valt deze variant af. Variant III is in onderstaande figuur gegeven.

Schematisatie van het front volgens variant III

Variant III is voor een aantal gemeten fronten toegepast, zie figuur 6.2 en 6.3. De overeenkomst tussen deze schematisatie en de gemeten vormfronten is (in deze gevallen) zonder meer goed te noemen. Een ander voordeel van deze variant is het feit dat de differentiaalvergelijking voor de stijghoogte onder de zetting ook bij deze geschematiseerde belasting een analytische oplossing blijkt te hebben (zie appendix 3). Het blijft dus mogelijk om een analytische oplossing voor de maximale verschilddruk te bepalen, afhankelijk van de lek lengte.
De conclusie is dat een nieuwe schematisatie van het golffront volgens variant III de voorkeur verdient boven variant II en de oude schematisatie met twee rechte lijnen (variant I).

6.3 Verschillen ten aanzien van het maximale stijghoogteverschil

Bij het stijghoogteverloop op het talud treedt een stijghoogteverloop onder de zetting op dat afhankelijk is van de lekklengte A van de zetting. Het maximale stijghoogteverschil over de zetting (in opwaartse richting) treedt op ter plaatse van het frontdal. Dit stijghoogteverschil vormt de belasting op de zetting en wordt \(\phi_w \) genoemd.

In deze paragraaf worden de verschillen bepaald tussen de waarden van het maximale stijghoogteverschil bij de drie varianten voor de schematisatie van het front uit paragraaf 6.3. Hierbij is uitgegaan van een recht talud op diep water, met de volgende randvoorwaarden:

\[
\begin{align*}
\cot \alpha &= 4 \\
H_s &= 1.0 \text{ m} \\
T_p &= 5.0 \text{ s} \\
(\xi_p) &= 1.6 \text{ -}
\end{align*}
\]

In paragraaf 7.3 zal worden aangetoond dat voor een veel voorkomende belasting dan de volgende waarden voor de frontparameters van toepassing zijn:

\[
\begin{align*}
\phi_{b,m} &= 0.97 \text{ m} \\
\theta_{f,m} &= 55 ^\circ \\
\theta_{n} &= 36 ^\circ \\
(d_s) &= 0.78 \text{ m}
\end{align*}
\]

De hoogte van de freatische lijn in het filter \(z_t \) is gelijkgesteld aan de fronthoogte bij het betreffende front. Dit is een vrij grove vereenvoudiging, die waarschijnlijk een conservatieve schatting van het stijghoogteverschil oplevert.
Formules voor het maximale stijghoogteverschil

Variant I:

\[\phi_w = \frac{A}{2} \left[a(1 - \exp\left(-\frac{\phi_b}{aA}\right) + \sin(\alpha)] \left[1 - \exp\left(-\frac{2z_1}{A\sin(\alpha)}\right) \right] \right. \tag{6.1} \]

Met: \[a = \tan(\theta_f)\cos(\alpha) \]

Variant II (zie appendix 3):

\[\phi_w = \frac{A}{2} \left[c \cos(\alpha) + \sin(\alpha)] \left[1 - \exp\left(-\frac{2z_1}{A\sin(\alpha)}\right) \right] \right. \tag{6.2} \]

Met:

\[c = \frac{1}{1+\tan(\theta_h)^2} = \frac{1+\tan(\theta_h)\tan(\theta_f)}{\phi_b} \ln\left(1+\frac{\tan(\theta_h)}{\tan(\theta_f)}\right) \]

Variant III (zie appendix 3):

\[\phi_w = \frac{A}{2} \left[-\frac{a}{(1+cA)^2} - \frac{bc}{1+cA} + \sin(\alpha)] \left[1 - \exp\left(-\frac{2z_1}{A\sin(\alpha)}\right) \right] \right. \tag{6.3} \]

Met:

\[a = -\tan(\theta_f)\cos(\alpha) \]

\[b = -\frac{\phi_b}{1+\tan(\theta_h)} \]

\[c = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{1+\tan(\theta_h)}{\phi_b} \tan(\theta_f)\cos(\alpha) \]

In figuur 6.4 is de relatie tussen het maximale stijghoogteverschil en de lekklengte voor de verschillende varianten weergegeven. De volgende aspecten in deze figuur zijn opvallend:

- Voor grote waarden van de lekklengte benaderen de stijghoogteverschillen volgens variant I en II elkaar. Dit wordt verklaard door het feit dat voor grote lekklengtes alleen de grote structuur van het front nog van belang is. Voor variant I en II gaat de stijghoogte op het talud op grote afstand naar dezelfde waarde, namelijk \(h_f \) boven SWL. Voor variant III gaat echter de stijghoogte naar SWL. Bij grote waarden van de lekklengte is het maximale stijghoogteverschil daardoor voor variant III kleiner dan voor variant I en II.
Voor kleine waarden van de lek lengte zijn de stij ghoogeteverschillen bij variant II en III vrijwel gelijk. Voor deze waarden van de lek lengte is het stij ghoogeteverloop op het talud op korte afstand van het frontdal van belang. Voor variant II en III is dit stij ghoogeteverloop zeer gelijkvormig gekromd. Het rechtlijnige stij ghoogeteverloop van variant I wijkt hier sterk van af.

Voor zeer kleine waarden van de lek lengte is het (relatieve) stij ghoogeteverschil volgens variant I niet meer gedefinieerd, terwijl dit voor variant II en III nog wel het geval is. Dit wordt veroorzaakt door het feit dat bij het rechtlijnige front voor zeer kleine lek lengtes het stij ghoogeteverschil volledig wordt bepaald door de front steilheid en niet meer door de front hoogte. De varianten II en III hebben dus een breder toepassingsgebied in waarden van de lek lengte dan variant I.

De invloed van de lek lengte op het stij ghoogeteverschil is bij variant I het grootst en bij variant III het kleinst.

Samenvattend blijkt variant III bij de beschouwing van de relatie tussen het maximale stij ghoogeteverschil en de keuze van het functievoorschrift het meest aantrekkelijk te zijn. Deze conclusie ondersteunt de gemaakte keuze in paragraaf 6.2.
7. **Stijghoogteverschil over de zetting**

7.1 **Opzet van de analyse**

Bij onregelmatige golven op een bepaalde constructie treedt bij ieder front een andere waarde van het stijghoogteverschil \(\phi_w \) op. Bij de beoordeling van de stabiliteit van de constructie wordt zowel gekeken naar een veel voorkomende waarde voor het stijghoogteverschil als naar een extreme waarde. Voor de veel voorkomende waarde is de significante waarde een gebruikelijke keuze en voor de extreme waarde de waarde met een overschrijdingskans van 2%.

In het verleden is de aanbevolen ontwerpprocedure gebaseerd op de volgende veronderstellingen: De combinatie van de significante fronthoogte en de significante frontsteilheid levert het significante stijghoogteverschil en de combinatie van de 2% fronthoogte en de 2% frontsteilheid levert het 2% stijghoogteverschil. In dit hoofdstuk wordt bepaald of deze veronderstellingen juist zijn.

Voor de proeven op de rechte taluds zijn de waarden voor \(\phi_{w,sig} \) en \(\phi_{w,2\%} \) bepaald voor twee verschillende lekhoogtes: \(\lambda = 0.2 \text{ m} \) en \(\lambda = 0.7 \text{ m} \). (Voor het talud 1:3 geldt dan \(\Lambda = 0.6 \text{ m} \) en \(\Lambda = 2.2 \text{ m} \) en voor het talud 1:4 geldt: \(\Lambda = 0.8 \text{ m} \) en \(\Lambda = 2.9 \text{ m} \)). Hierbij is iedere proef omgekeerd naar prototyperugingen door de lengtematen met 10 te vermenigvuldigen. De gevonden karakteristieke stijghoogteverschillen worden in het vervolg aangeduid als gemeten stijghoogteverschillen, om onderscheid te maken met de stijghoogteverschillen die berekend worden op basis van ontwerpformules. (In werkelijkheid zijn in het onderzoek geen stijghoogteverschillen gemeten.)

De volgende ontwerpformules zijn gebruikt:

\[
\phi_b = C (\tan \alpha) \frac{1}{\sqrt{H_s L_o}}; \quad \text{met als maximum } \ 9.2 C H_s \quad (6.4)
\]

voor \(\phi_{b,sig} \) geldt \(C = 0.24 \)
voor \(\phi_{b,2\%} \) geldt \(C = 0.30 \)

\[
\theta_f = \text{constant} \quad (6.5)
\]

\(\theta_{f,10\%} = 65^\circ \)
\(\theta_{f,2\%} = 70^\circ \)
\[\theta_h = \frac{45}{\sqrt{\tan \alpha}} \left(\frac{H_s}{L_o} \right)^{\frac{1}{4}} \]

(5.16)

De uitkomsten zijn in tabel 7.1 vergeleken met de berekende stijghoogteverschillen op basis van de volgende combinaties van fronthoogte en frontsteilheid:

| \(\phi_{b,2\%} \) en \(\theta_{f,2\%} \) | (C = 0.30 en \(\theta_f = 70^\circ \))
| \(\phi_{b,\text{sig}} \) en \(\theta_{f,2\%} \) | (C = 0.24 en \(\theta_f = 70^\circ \))
| \(\phi_{b,2\%} \) en \(\theta_{f,10\%} \) | (C = 0.30 en \(\theta_f = 65^\circ \))
| \(\phi_{b,\text{sig}} \) en \(\theta_{f,10\%} \) | (C = 0.24 en \(\theta_f = 65^\circ \))

In de volgende paragrafen worden de resultaten nader geanalyseerd.

7.2 Bepaling van een representatief extreem stijghoogteverschil

In figuur 7.1 is de overeenkomst aangegeven tussen het gemeten stijghoogteverschil \(\phi_w,2\% \) en het berekende stijghoogteverschil op basis van de vier mogelijke combinaties van \(\{ \phi_{b,2\%}, \phi_{b,\text{sig}} \} \) met \(\{ \theta_{f,2\%}, \theta_{f,10\%} \} \). (Het serienummer op de horizontale as is het serienummer dat in tabel 7.1 bij iedere proef is aangegeven).

De combinatie van \(\phi_{b,2\%} \) en \(\theta_{f,2\%} \) levert een duidelijke overschatting van \(\phi_w,2\% \). Dit wordt verklaard door het feit dat beide parameters nagenoeg ongecorreleerd zijn, waardoor de kans op het optreden van (een overschrijding van) deze combinatie van frontparameters veel kleiner is dan 2%.

Uit figuur 7.1a blijkt dat voor de optimale keuze van de karakteristieke waarde voor \(\phi_{b,e} \) en \(\theta_{f,e} \) moet gelden:

\[\phi_{b,\text{sig}} \leq \phi_{b,e} \leq \phi_{b,2\%} \]

\[\theta_{f,10\%} \leq \theta_{f,e} \leq \theta_{f,2\%} \]

Overeenkomstig met de verwachting blijkt uit figuur 7.1b dat de invloed van de frontsteilheid \(\theta_f \) op het stijghoogteverschil zeer klein is voor constructies met een grote lekhoogte. Deze figuur biedt daarom de gelegenheid om een goede keuze voor \(\phi_{b,e} \) te maken. Uitgaande van deze keuze kan dan de constructie met een kleine lekhoogte een geschikte keuze voor \(\theta_{f,e} \) gemaakt worden. Het resultaat is als volgt:
\[\phi_{b,e} : \text{ voor } \phi_{b,e} \text{ geldt } C_1 = 0.27 \] \hspace{1cm} (7.3)

\[\theta_{f,e} : \quad \theta_{f,e} = 66^\circ \] \hspace{1cm} (7.4)

De overeenstemming tussen het gemeten en het op basis van \(\phi_{b,e} \) en \(\theta_{f,e} \) berekende stijghoogteverschil is weergegeven in figuur 7.2. De relatieve fout is doorgaans kleiner dan 10%.

7.3 Bepaling van een veel voorkomend stijghoogteverschil

Voor de benadering van \(\phi_{w, \text{sig}} \) is dezelfde methode gehanteerd als voor de benadering van \(\phi_{w,2\%} \). Dit heeft geleid tot het volgende resultaat:

\[\phi_{b,m} : \text{ voor } \phi_{b,m} \text{ geldt } C = 0.22 \] \hspace{1cm} (7.5)

\[\theta_{f,m} : \quad \theta_{f,m} = 55^\circ \] \hspace{1cm} (7.6)

De overeenstemming tussen het gemeten en het op basis van \(\phi_{b,e} \) en \(\theta_{f,e} \) berekende stijghoogteverschil is weergegeven in figuur 7.3. In de meeste gevallen is de relatieve fout kleiner dan 10%. Voor een aantal proeven bij het talud 1:3 met een kleine lekhoogte is de relatieve fout echter vrij groot (namelijk 10 tot 30%). Dit wordt veroorzaakt door het feit dat bij deze proeven veel meer kleine waarden voor de frontsteilheid zijn gemeten dan bij de andere proeven, zie figuur 5.3. Omdat bij de kleine lekhoogte de invloed van de frontsteilheid groot is, leidt de conservatieve benadering voor de frontsteilheid bij deze proeven tot een aanzienlijke overschatting van het stijghoogteverschil.

7.4 Vergelijking tussen nieuwe en oude ontwerpfomules

Voor het verkrijgen van een indicatie van het verschil tussen de nieuwe en de oude aanbevolen formules is in figuur 7.4 voor één constructie de berekende waarde van \(H/AD \) voor het begin van bewegen uitgezet tegen de breker-\(\hat{f}_{\text{op}} \). De gekozen constructie heeft de volgende kenmerken:
\[\cot(\alpha) = 4 \]
\[\Delta = 1.3 \]
\[\Gamma = 1.2 \]
\[\lambda = 0.5 \text{ m} \quad (\Delta = 2.1 \text{ m}) \]
\[D = 0.4 \text{ m} \]

In de figuur valt op dat de waarde van \(H/\Delta D \) voor grote waarden van \(\xi_{op} \) geleidelijk naar een constante waarde gaat, en niet plotseling naar oneindig gaat zoals bij de oude formules. Daardoor is het toepassingsgebied van de nieuwe schematisatie veel breder dan van de oude.

In de tweede plaats valt op dat voor waarden van \(\xi_{op} \) tussen 1 en 2 (dit zijn veel voorkomende waarden voor deze constructie) de waarde van \(H/\Delta D \) volgens de nieuwe formules 10 à 30 % groter is dan volgens de oude formules. Omdat de empirische basis van de nieuwe formules voor de frontparameters beter is dan die van de oude en omdat bovendien de schematisatie van het stijghoogteverloop beter aansluit bij het gemeten stijghoogteverloop kunnen de oude ontwerpformules nu als te conservatief beschouwd worden.
8. **Samenvatting en conclusies**

Samenvatting

In de Scheldegoot van het Waterloopkundig Laboratorium "De Voorst" is een uitgebreid modelonderzoek uitgevoerd naar de waterbeweging bij onregelmatige golven op taluds.

De hierbij uitgevoerde drukmetingen zijn geanalyseerd met als doel de golffronten bij onregelmatige golven te karakteriseren en bovendien de invloed van een berm en een ondiep voorland op de golfbelasting te bepalen. De golfbelasting is in dit kader beperkt tot de belasting die maatgevend is voor de stabiliteit van taludbekledingen van gezette steen. Hierbij is het stijghoogteverloop van het golffront vlak vóór het breken van de golf van belang. Golfklappen worden dan ook niet beschouwd.

Voor iedere golf is het maatgevende tijdstip bepaald. Het stijghoogteverloop op dit maatgevende tijdstip is beschreven met enkele frontkarakteristieken, zoals positie en waarde van de maximale stijghoogte. Uit deze frontkarakteristieken zijn de frontparameters bepaald. Voorbeelden hiervan zijn de fronthoogte en de frontsteilheid. Van de frontparameters zijn per proef enkele statistische grootheden bepaald, zoals de 2%-waarde en de significante waarde. Vervolgens is getracht een verband te leggen tussen deze statistische waarden van de frontparameters en de hydraulische en constructieve randvoorwaarden.

Afhankelijk van de lek lengte van de constructie treedt bij ieder golffront een andere waarde van het stijghoogteverschillen over de toplaag op. Voor het ontwerp van de bekleding is het van belang een veel voorkomende waarde en een extreme waarde van dit stijghoogteverschil onder bepaalde golfcondities te kunnen berekenen. Daarom is op grond van een aantal berekeningen bij een recht talud een aanbeveling gedaan voor de te hanteren formules voor de frontparameters die leiden tot de significante waarde van het stijghoogteverschil en de waarde met overschrijdingskans van 2%.

De resultaten van de analyse vormen een aanzienlijke verbetering van de beschrijving van de golfbelasting in het analytisch model. Hierbij kunnen de volgende punten worden onderscheiden:
Frontparameters

Er zijn nieuwe (empirische) relaties bepaald voor de frontparameters:
- De definitie van de frontsteilheid is aangepast zodat de frontsteilheid zowel beter te meten is als beter te interpreteren is in functievoorschriften voor het stijghoogteverloop.
- Het frontniveau \(\theta_h \) is als frontparameter toegevoegd bij de reeds gebruikte frontparameters fronthoogte \(\phi_b \), frontsteilheid \(\theta_f \) en schade diepte \(d_s \). Hierdoor is nu het mogelijk om de positie van de stilwaterlijn in het functievoorschrift voor het stijghoogteverloop op te nemen.
- De relatie tussen enerzijds de golfstandvoorwaarden en anderzijds de vier frontparameters is bepaald voor onregelmatige golven. De oude relaties waren vrijwel volledig gebaseerd op meetgegevens met regelmatige golven.
- De invloed van een berm en een ondiep voorland op de vier frontparameters is bepaald.

Functievoorschrift voor het stijghoogteverloop

Er is een nieuw functievoorschrift gekozen voor de beschrijving van het stijghoogteverloop op de zetting:
- Het nieuwe functievoorschrift sluit aanzienlijk beter aan bij het gemeten stijghoogteverloop dan het oude functievoorschrift (dat uit twee rechte lijnen bestaat).
- Het nieuwe functievoorschrift is veel breder toepasbaar voor het berekenen van het stijghoogteverschil over de zetting dan het oude.

Ontwerpformules

Op basis van de nieuwe frontparameters en het nieuwe functievoorschrift voor het stijghoogteverloop zijn nieuwe ontwerpformules bepaald voor het berekenen van het stijghoogteverschil over de zetting:
- De ontwerpformules zijn nu gericht op statistische karakteristieken van het stijghoogteverschil. De oude ontwerpformules gingen slechts uit van statistische karakteristieken van de frontparameters.
- De voordelen van de nieuwe frontparameters, het nieuwe functievoorschrift voor het stijghoogteverloop en de nieuwe statistische achtergrond werken door in de ontwerpformules. Deze zijn nu aanzienlijk nauwkeuriger (minder conservatief) en veel breder toepasbaar.
Conclusies

1. Uit algemene controles van de meetgegevens blijkt dat de metingen goed voldoen aan de vooraf gestelde eisen.

2. De spreiding in de meetresultaten is klein. Afwijkingen zijn meestal in de orde van 5%. De proeven zijn dan ook onderling goed vergelijkbaar.

3. De fronthoogte is niet Rayleigh-verdeeld. De verhouding van de 2%-waarde tot de significante waarde bedraagt 1.25.

4. De gemeten kansverdelingen van de frontsteilheid variëren vrij sterk in vorm. De 2%-waarde is voor verschillende proeven redelijk vergelijkbaar (metingen liggen binnen een band met een breedte van ca. 5°), maar de spreiding in de 10%-waarde is zeer groot (metingen liggen binnen een band met een breedte van ca. 25°). Deze variatie wordt waarschijnlijk grotendeels bepaald door het percentage golven dat niet breekt op de constructie. (Dit percentage hangt af van H_s, T_p en cotα).

5. Er is een voor de praktijk verwaarloosbare correlatie tussen de fronthoogte enerzijds en de frontsteilheid en het frontniveau anderzijds. De fronthoogte en de schadendiepte zijn wel duidelijk gecorreleerd, maar bij iedere waarde van de fronthoogte is de spreiding in voorkomende waarden van de schadendiepte groot.

<table>
<thead>
<tr>
<th></th>
<th>recht talud</th>
<th>invloed voorland</th>
<th>invloed berm op SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h/Hₘ > 2</td>
<td>1.6 < h/Hₘ < 2</td>
<td>0.3 < B/(Hₘ/Lo) < 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.4 < dₜ/Hₘ < 0.4</td>
</tr>
<tr>
<td>Φₜ, sig</td>
<td>0.24 (tanα)² Hₘ / Lo</td>
<td>1.44 (tanα)² Hₘ</td>
<td>0.60 Hₘ (tanα)² (Hₘ/Lo)²</td>
</tr>
<tr>
<td>(maximaal 2.2 Hₘ)</td>
<td></td>
<td></td>
<td>(maximaal 2.2 Hₘ)</td>
</tr>
<tr>
<td>Φₜ, 2%</td>
<td>1.25 Φₜ, sig</td>
<td>1.25 Φₜ, sig</td>
<td>1.25 Φₜ, sig</td>
</tr>
<tr>
<td>θₜ, 2%</td>
<td>70°</td>
<td>70°</td>
<td>75°</td>
</tr>
<tr>
<td>θₜ, 10%</td>
<td>65°</td>
<td>65°</td>
<td>68°</td>
</tr>
<tr>
<td>dₜ</td>
<td>0.80 Φₜ, sig</td>
<td>0.59 h (tanα)²</td>
<td>0.80 Φₜ, sig</td>
</tr>
<tr>
<td>θₜ, h</td>
<td>45 (Hₘ/Lo)² tanα</td>
<td>30 + 1/hₘ - 1.55</td>
<td>[45 tanα - 10] (Hₘ/Lo)²</td>
</tr>
</tbody>
</table>

Als de bermparameters B en dₜ niet binnen de aangegeven range liggen, dan worden de formules bij het rechte talud weer aanbevolen. Bovenstaande formules vervangen de formules van Banach die gebaseerd waren op regelmatige golven en waarin de combinatie Hₘ en Tₚ werd gebruikt om de significante frontparameters te bepalen en waarin de combinatie 1.4 Hₘ en Tₚ werd gebruikt om de 2% frontparameters te bepalen.

7. Bovenstaande formules leveren een licht conservatieve, maar vrij nauwkeurige waarde voor de fronthoogte op. (De standaardafwijking wordt geschat op ongeveer 5%, hetgeen globaal overeenkomt met de spreiding in de meetgegevens.) De aanbevolen waarde voor de frontsteilheid is vrij sterk conservatief. De formules voor het frontniveau en de schadediepte komen gemiddeld redelijk overeen met de meetgegevens. De spreiding is bij deze twee parameters groter dan bij de fronthoogte.

8. In het algemeen is de invloed van de taludhelling op de frontparameters kleiner dan in de voorheen aanbevolen formules. De verschillen in uitkomsten voor de fronthoogte zijn in absolute zin klein, en in het geval van de 2%-fronthoogte bij een talud 1:4 zelfs nihil.
9. Nu deze nauwkeurige meetgegevens beschikbaar zijn, wordt een nieuwe schematisatie voorgesteld van de belasting op het talud. Deze schematisatie komt neer op een benadering van het stijghoogtefront met een kromme lijn in plaats van twee rechte lijnstukken:

\[\phi = (as + b) \exp(cs) - b \]

Hierin is: \(\phi = \) stijghoogte ten opzichte van het frontdal
\(s = \) horizontale afstand tot het frontdal (positief kustwaarts)
\(a = -\tan(\theta_f) \)
\(b = -\frac{\phi_b}{1+\tan(\theta_h)} \)
\(c = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{a}{b} \) (bij benadering)

![Schematisatie van het front volgens variant III](image)

De voordelen van deze schematisatie ten opzichte van de oude schematisatie met twee rechte lijnen zijn:
- De stijghoogte verloopt vloeiend en neemt zeewaarts van het front af naar SWL. De overeenkomst met gemeten stijghoogteverlopen is daardoor beter dan bij de oude schematisatie.
- De invloed van de lek lengte op het maximale stijghoogteverschil is kleiner.
- De schematisatie is ook voor zeer kleine lek lengtes bruikbaar voor het bepalen van het maximale stijghoogteverschil. Daarmee is het toepassingsgebied veel breder.
10. Voor het berekenen van het maximale stijghoogteverschil over de zetting geldt de volgende formule:

\[\phi_w = \frac{A}{2} \left[-\frac{a}{(1+cA)^2} - \frac{bc}{1+cA} + \sin(\alpha) \right] \left[1 - \exp\left(-\frac{2z_1}{\Delta \sin(\alpha)} \right) \right] \]

\[z_1 = \phi_b \text{ (bij benadering)} \]

In deze formule worden naast de formules voor \(\theta_h \) de volgende karakteristieke frontparameters aanbevolen:

- Voor een extreme waarde van het stijghoogteverschil \(\phi_w,2\% \):
 \[\phi_{b,e} = 1.13 \phi_{b,\text{sig}} \]
 \[\theta_{f,e} = 0.94 \theta_{f,2\%} \]

- Voor een veel voorkomende waarde van het stijghoogteverschil \(\phi_{w,\text{sig}} \):
 \[\phi_{b,m} = 0.92 \phi_{b,\text{sig}} \]
 \[\theta_{f,m} = 0.79 \theta_{f,2\%} \]

11. Op basis van berekeningen bij een veel voorkomend constructietype kan geconcludeerd worden dat de significante golfhoogte waarbij (bij een veel voorkomende belasting) sprake zal zijn van begin van blokbeweging volgens de hierboven aanbevolen ontwerpformules aanzienlijk (10 - 30%) groter is dan volgens de voorheen aanbevolen ontwerpformules.

Aanbeveling voor nader onderzoek
Het onderhavige onderzoek heeft goed bruikbare informatie opgeleverd met betrekking tot de belasting van (de zetting op) het talud. De gehanteerde definitie voor de vorm en het tijdstip van de maatgevende belasting hebben geleid tot karakteristieke fronten, waarbij de maximale belasting steeds op het talud van de constructie optrad en niet op de berm.

De aard en grootte van de belasting van (de zetting op) de berm zelf is daardoor onderbelicht gebleven. Door de flauwe bermhelling en het niet optreden van de hoge fronten met de maximale belasting op de berm kan worden verwacht dat de zetting op de berm lichter uitgevoerd kan worden dan op het talud. Om dit verschil met de dimensionering van het talud te kunnen kwanti-ificeren is een nader onderzoek nodig. Bij dit onderzoek kan gebruik gemaakt worden van de nu beschikbare meetgegevens. In deel B zal dit onderwerp nader aan de orde worden gesteld.
REFERENTIES

Stability of block revetments.
Evaluation of measurements of the wave pressures on a slope.
Large scale tests in Delta flume.
Opgenomen in deel XVII als sectie 2.

Evaluation of measurements of the wave pressures on a slope.
Small scale tests in Schelde flume.
Waterloopkundig Laboratorium, H195.20.
Opgenomen in deel XVII als sectie 3.

Handboek voor dimensionering van gezette taludbekledingen.

Taludbekleding van gezette steen.
Stabiliteit toplaag zonder inklemming of interlocking.
Opgenomen in deel XX.

Stability of block revetments.
Evaluation of the wave pressures on a slope.
Re-evaluation of Schelde flume investigations.
Opgenomen in deel XVII als sectie 4.

Taludbekleding van gezette steen, Deel XVII.
Waterbeweging en golfbelasting op een glad talud.
Waterloopkundig Laboratorium, M1795, Grondmechanica Delft, maart 1990.
REFERENTIES (vervolg)

Taludbekledingen van gezette steen.

Taludbekledingen van gezette steen, Deel XX.
Stabiliteit van de toplaag.

Taludbekledingen van gezette steen.
Invloed van berm op golfbelasting.

J.P. De Waal (1990a).
Taludbekledingen van gezette steen.
Onregelmatige golfbelasting op recht talud.

J.P. De Waal (1990b).
Taludbekledingen van gezette steen.
Notitie N426.
Waterloopkundig Laboratorium, aug. 1990.

Waterbeweging op gladde taluds.
Invloed van berm en ondiep voorland op golfdrukken, golfoploop, golfoverslag en snelheden, Meetverslag.
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIELOOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diep water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cota h H_s T_p</td>
<td>2% sig 10%</td>
<td>H_s/L_o h/H_s d_b/B_s B/\sqrt{HL} sig</td>
</tr>
<tr>
<td></td>
<td>(-) (m) (m) (s) (m) (m) (m) (m) (m)</td>
<td>(\phi_b) (\phi_r) (\theta_f) (\theta_h) (d_s)</td>
<td>(-) (-) (-) (-) (-) (-)</td>
</tr>
<tr>
<td>3001</td>
<td>3.60 .100 2.56 .00 .00 .60 .100</td>
<td>.237 .189 66 41 22 .143</td>
<td>.010 6.00 .00 .00 .187 .142</td>
</tr>
<tr>
<td>3002</td>
<td>3.60 .143 2.19 .00 .00 .60 .143</td>
<td>.220 .177 69 46 27 .147</td>
<td>.019 4.20 .00 .00 .171 .142</td>
</tr>
<tr>
<td>3003</td>
<td>3.60 .173 1.95 .00 .00 .60 .173</td>
<td>.218 .175 71 48 29 .157</td>
<td>.029 3.47 .00 .00 .172 .155</td>
</tr>
<tr>
<td>3004</td>
<td>3.60 .185 1.88 .00 .00 .60 .185</td>
<td>.223 .173 71 55 30 .157</td>
<td>.034 3.24 .00 .00 .171 .156</td>
</tr>
<tr>
<td>3005</td>
<td>3.60 .190 1.75 .00 .00 .60 .190</td>
<td>.211 .173 71 54 30 .159</td>
<td>.040 3.16 .00 .00 .182 .167</td>
</tr>
<tr>
<td>3006</td>
<td>3.60 .171 1.69 .00 .00 .60 .171</td>
<td>.188 .154 70 57 31 .141</td>
<td>.038 3.51 .00 .00 .176 .162</td>
</tr>
<tr>
<td>3007</td>
<td>3.60 .100 1.76 .00 .00 .60 .100</td>
<td>.166 .132 69 62 31 .100</td>
<td>.021 6.00 .00 .00 .190 .144</td>
</tr>
<tr>
<td>3008</td>
<td>3.60 .103 1.38 .00 .00 .60 .103</td>
<td>.125 .100 63 57 36 .081</td>
<td>.035 5.83 .00 .00 .180 .146</td>
</tr>
<tr>
<td>3009</td>
<td>3.60 .144 1.57 .00 .00 .60 .144</td>
<td>.166 .134 68 63 34 .113</td>
<td>.037 4.17 .00 .00 .180 .152</td>
</tr>
<tr>
<td>3010</td>
<td>3.60 .114 1.57 .00 .00 .60 .114</td>
<td>.148 .119 69 62 33 .096</td>
<td>.030 5.26 .00 .00 .180 .145</td>
</tr>
<tr>
<td>3011</td>
<td>3.60 .135 1.69 .00 .00 .60 .135</td>
<td>.175 .145 70 65 32 .117</td>
<td>.030 4.44 .00 .00 .187 .151</td>
</tr>
<tr>
<td>3012</td>
<td>3.60 .154 1.88 .00 .00 .60 .154</td>
<td>.197 .163 71 63 30 .136</td>
<td>.028 3.90 .00 .00 .177 .147</td>
</tr>
<tr>
<td>3013</td>
<td>3.60 .117 2.56 .00 .00 .60 .117</td>
<td>.209 .165 70 56 31 .120</td>
<td>.011 5.13 .00 .00 .183 .144</td>
</tr>
<tr>
<td>4001</td>
<td>4.60 .101 2.48 .00 .00 .60 .101</td>
<td>.200 .163 70 63 35 .127</td>
<td>.011 5.94 .00 .00 .167 .122</td>
</tr>
<tr>
<td>4002</td>
<td>4.60 .143 2.21 .00 .00 .60 .143</td>
<td>.189 .157 69 63 37 .128</td>
<td>.019 4.20 .00 .00 .156 .122</td>
</tr>
<tr>
<td>4003</td>
<td>4.60 .164 1.95 .00 .00 .60 .164</td>
<td>.201 .170 70 62 39 .143</td>
<td>.028 3.66 .00 .00 .159 .130</td>
</tr>
<tr>
<td>4004</td>
<td>4.60 .182 1.82 .00 .00 .60 .182</td>
<td>.197 .163 68 62 38 .142</td>
<td>.035 3.30 .00 .00 .175 .148</td>
</tr>
<tr>
<td>4005</td>
<td>4.60 .194 1.74 .00 .00 .60 .194</td>
<td>.144 .117 68 61 37 .091</td>
<td>.041 3.09 .00 .00 .170 .149</td>
</tr>
<tr>
<td>4006</td>
<td>4.60 .105 1.78 .00 .00 .60 .105</td>
<td>.171 .142 67 63 38 .118</td>
<td>.021 5.71 .00 .00 .162 .126</td>
</tr>
<tr>
<td>4007</td>
<td>4.60 .158 1.70 .00 .00 .60 .158</td>
<td>.200 .159 68 57 29 .124</td>
<td>.035 3.80 .00 .00 .168 .139</td>
</tr>
<tr>
<td>4008</td>
<td>4.60 .100 2.48 .00 .00 .60 .100</td>
<td>.162 .135 68 61 42 .114</td>
<td>.010 6.00 .00 .00 .163 .126</td>
</tr>
<tr>
<td>4009</td>
<td>4.60 .165 1.55 .00 .00 .60 .165</td>
<td>.162 .135 68 61 42 .114</td>
<td>.044 3.64 .00 .00 .171 .145</td>
</tr>
</tbody>
</table>

Tabel 2.1 Meetgegevens referentieproeven
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIELOOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deep water</td>
<td>2% sig 2% 10%</td>
<td>H_s/L_o h/H_s d_B/H_s B/HL sig</td>
</tr>
<tr>
<td></td>
<td>cota h H_s T_p B d_B h H_s φ_b φ_b θ_f θ_f θ_h d_s</td>
<td>(m) (m) (m) (m) (m) (m) (m)</td>
<td>(m)</td>
</tr>
<tr>
<td>3101</td>
<td>0.52 0.166 1.79 0.40 -0.08 0.52 0.166</td>
<td>0.206 0.166 72 55 29 0.144</td>
<td>0.033 3.13 -0.48 0.44 0.183 0.158</td>
</tr>
<tr>
<td>3102</td>
<td>0.52 0.144 2.15 0.40 -0.08 0.52 0.144</td>
<td>0.240 0.185 71 47 23 0.154</td>
<td>0.020 3.61 -0.56 0.39 0.182 0.151</td>
</tr>
<tr>
<td>3103</td>
<td>0.60 0.101 2.56 0.40 0.00 0.60 0.101</td>
<td>0.196 0.148 71 59 21 0.128</td>
<td>0.010 5.94 0.00 0.39 0.145 0.126</td>
</tr>
<tr>
<td>3104</td>
<td>0.60 0.141 2.16 0.40 0.00 0.60 0.141</td>
<td>0.217 0.170 74 65 24 0.141</td>
<td>0.019 4.26 0.00 0.39 0.168 0.139</td>
</tr>
<tr>
<td>3105</td>
<td>0.61 0.100 1.96 0.40 0.00 0.60 0.173</td>
<td>0.233 0.187 75 66 24 0.153</td>
<td>0.029 3.46 0.00 0.39 0.183 0.150</td>
</tr>
<tr>
<td>3106</td>
<td>0.60 0.184 1.84 0.40 0.00 0.60 0.184</td>
<td>0.235 0.191 75 68 26 0.153</td>
<td>0.035 3.26 0.00 0.39 0.194 0.155</td>
</tr>
<tr>
<td>3107</td>
<td>0.61 0.196 1.76 0.40 0.00 0.60 0.196</td>
<td>0.234 0.195 75 67 25 0.153</td>
<td>0.041 3.06 0.00 0.41 0.200 0.163</td>
</tr>
<tr>
<td>3108</td>
<td>0.60 0.173 1.71 0.40 0.00 0.60 0.173</td>
<td>0.208 0.171 74 68 26 0.139</td>
<td>0.038 3.47 0.00 0.45 0.192 0.156</td>
</tr>
<tr>
<td>3109</td>
<td>0.60 0.103 1.78 0.40 0.00 0.60 0.103</td>
<td>0.161 0.124 71 60 25 0.101</td>
<td>0.021 5.83 0.00 0.56 0.174 0.141</td>
</tr>
<tr>
<td>3110</td>
<td>0.68 0.100 1.71 0.40 0.08 0.68 0.100</td>
<td>0.148 0.114 58 42 37 0.084</td>
<td>0.022 6.80 0.80 0.59 0.169 0.124</td>
</tr>
<tr>
<td>3111</td>
<td>0.68 0.172 1.71 0.40 0.08 0.68 0.172</td>
<td>0.203 0.162 72 61 35 0.135</td>
<td>0.038 3.95 0.47 0.45 0.183 0.152</td>
</tr>
<tr>
<td>3112</td>
<td>0.68 0.184 1.89 0.40 0.08 0.68 0.184</td>
<td>0.229 0.176 74 63 35 0.149</td>
<td>0.033 3.70 0.43 0.40 0.174 0.147</td>
</tr>
<tr>
<td>3113</td>
<td>0.68 0.170 1.95 0.40 0.08 0.68 0.170</td>
<td>0.223 0.171 72 64 35 0.139</td>
<td>0.029 4.00 0.47 0.40 0.170 0.139</td>
</tr>
<tr>
<td>3114</td>
<td>0.68 0.141 2.20 0.40 0.08 0.68 0.141</td>
<td>0.194 0.149 67 58 38 0.120</td>
<td>0.019 4.82 0.57 0.39 0.144 0.116</td>
</tr>
<tr>
<td>3115</td>
<td>0.73 0.144 2.17 0.40 0.13 0.73 0.144</td>
<td>0.191 0.156 62 50 38 0.127</td>
<td>0.020 5.07 0.90 0.39 0.152 0.124</td>
</tr>
<tr>
<td>3116</td>
<td>0.73 0.174 1.73 0.40 0.13 0.73 0.174</td>
<td>0.194 0.153 67 58 38 0.133</td>
<td>0.037 4.20 0.75 0.44 0.170 0.148</td>
</tr>
<tr>
<td>3117</td>
<td>0.60 0.152 1.66 0.40 0.00 0.60 0.152</td>
<td>0.191 0.155 72 65 28 0.127</td>
<td>0.035 3.95 0.00 0.49 0.192 0.157</td>
</tr>
<tr>
<td>3118</td>
<td>0.68 0.099 1.82 0.40 0.08 0.68 0.099</td>
<td>0.141 0.114 60 41 37 0.085</td>
<td>0.019 6.87 0.81 0.56 0.159 0.119</td>
</tr>
</tbody>
</table>

Tabel 2.2 Meetgegevens talud 1:3 met berm
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIELOOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deep water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cota h H_s T_p</td>
<td>phi_b theta_b</td>
<td>H_s/L_0 h/H_s</td>
</tr>
<tr>
<td></td>
<td>Berm d_b h H_s</td>
<td>theta_f theta_f</td>
<td>d_b/H_s B/HL</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>(-)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>3201</td>
<td>.73 .172 1.74</td>
<td>.13 .73 .172</td>
<td>.194 .157 .60</td>
</tr>
<tr>
<td>3202</td>
<td>.73 .140 2.10</td>
<td>.13 .73 .140</td>
<td>.211 .166 .52</td>
</tr>
<tr>
<td>3203</td>
<td>.68 .141 2.13</td>
<td>.08 .68 .141</td>
<td>.216 .167 .70</td>
</tr>
<tr>
<td>3204</td>
<td>.68 .173 1.97</td>
<td>.08 .68 .173</td>
<td>.221 .176 .66</td>
</tr>
<tr>
<td>3205</td>
<td>.68 .175 1.82</td>
<td>.08 .68 .175</td>
<td>.218 .171 .66</td>
</tr>
<tr>
<td>3206</td>
<td>.68 .170 1.72</td>
<td>.08 .68 .170</td>
<td>.193 .155 .67</td>
</tr>
<tr>
<td>3207</td>
<td>.68 .100 1.86</td>
<td>.08 .68 .100</td>
<td>.145 .114 .62</td>
</tr>
<tr>
<td>3208</td>
<td>.60 .101 1.88</td>
<td>.00 .60 .101</td>
<td>.157 .120 .68</td>
</tr>
<tr>
<td>3209</td>
<td>.60 .165 1.65</td>
<td>.00 .60 .165</td>
<td>.183 .144 .69</td>
</tr>
<tr>
<td>3210</td>
<td>.60 .190 1.74</td>
<td>.00 .60 .190</td>
<td>.224 .184 .73</td>
</tr>
<tr>
<td>3211</td>
<td>.60 .195 1.88</td>
<td>.00 .60 .195</td>
<td>.241 .192 .75</td>
</tr>
<tr>
<td>3212</td>
<td>.60 .168 1.88</td>
<td>.00 .60 .168</td>
<td>.235 .183 .73</td>
</tr>
<tr>
<td>3213</td>
<td>.60 .141 2.21</td>
<td>.00 .60 .141</td>
<td>.224 .175 .74</td>
</tr>
<tr>
<td>3214</td>
<td>.60 .102 2.45</td>
<td>.00 .60 .102</td>
<td>.207 .155 .69</td>
</tr>
<tr>
<td>3215</td>
<td>.52 .141 2.10</td>
<td>.08 .52 .141</td>
<td>.232 .184 .72</td>
</tr>
<tr>
<td>3216</td>
<td>.52 .165 1.80</td>
<td>.08 .52 .165</td>
<td>.205 .167 .72</td>
</tr>
<tr>
<td>3217</td>
<td>.60 .182 1.88</td>
<td>.00 .60 .182</td>
<td>.224 .181 .72</td>
</tr>
<tr>
<td>3218</td>
<td>.60 .149 1.64</td>
<td>.00 .60 .149</td>
<td>.185 .153 .71</td>
</tr>
</tbody>
</table>

Tabel 2.2 Meetgegevens talud 1:3 met berm (vervolg)
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIEOGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diep water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cota h H₂</td>
<td>Tₚ B dₚ h Hₛ</td>
<td>φ_b φ_b θ_f θ_f θ_h d_s</td>
</tr>
<tr>
<td></td>
<td>(-) (m) (m) (s) (m) (m) (m) (m)</td>
<td>(m) (m) () () () () (m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berm Bij teen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4101</td>
<td>.60 .00 .103 2.48 .40 .00 .60 .103</td>
<td>.175 .140 71 64 24 .116</td>
<td></td>
</tr>
<tr>
<td>4102</td>
<td>.60 .00 .143 2.21 .40 .00 .60 .143</td>
<td>.207 .160 73 66 29 .132</td>
<td></td>
</tr>
<tr>
<td>4103</td>
<td>.60 .00 .167 1.99 .40 .00 .60 .167</td>
<td>.206 .165 72 66 32 .136</td>
<td></td>
</tr>
<tr>
<td>4104</td>
<td>.60 .00 .183 1.86 .40 .00 .60 .183</td>
<td>.206 .171 73 67 34 .138</td>
<td></td>
</tr>
<tr>
<td>4105</td>
<td>.60 .00 .198 1.74 .40 .00 .60 .198</td>
<td>.206 .172 71 65 34 .145</td>
<td></td>
</tr>
<tr>
<td>4106</td>
<td>.60 .00 .107 1.78 .40 .00 .60 .107</td>
<td>.151 .119 68 60 31 .095</td>
<td></td>
</tr>
<tr>
<td>4107</td>
<td>.60 .00 .165 1.74 .40 .00 .60 .165</td>
<td>.179 .149 71 65 36 .122</td>
<td></td>
</tr>
<tr>
<td>4108</td>
<td>.68 .08 .103 1.82 .40 .08 .68 .103</td>
<td>.136 .111 63 55 46 .083</td>
<td></td>
</tr>
<tr>
<td>4109</td>
<td>.68 .08 .135 2.10 .40 .08 .68 .135</td>
<td>.177 .145 69 63 44 .108</td>
<td></td>
</tr>
<tr>
<td>4110</td>
<td>.68 .08 .169 1.95 .40 .08 .68 .169</td>
<td>.203 .161 71 64 43 .126</td>
<td></td>
</tr>
<tr>
<td>4111</td>
<td>.68 .08 .185 1.82 .40 .08 .68 .185</td>
<td>.197 .160 71 64 42 .130</td>
<td></td>
</tr>
<tr>
<td>4112</td>
<td>.68 .08 .167 1.71 .40 .08 .68 .167</td>
<td>.185 .147 68 61 44 .121</td>
<td></td>
</tr>
<tr>
<td>4113</td>
<td>.76 .16 .139 2.21 .40 .16 .76 .139</td>
<td>.173 .139 55 45 42 .134</td>
<td></td>
</tr>
<tr>
<td>4114</td>
<td>.76 .16 .163 1.74 .40 .16 .76 .163</td>
<td>.164 .134 54 43 41 .149</td>
<td></td>
</tr>
<tr>
<td>4115</td>
<td>.52 .08 .145 2.10 .40 .08 .52 .145</td>
<td>.207 .168 71 63 31 .132</td>
<td></td>
</tr>
<tr>
<td>4116</td>
<td>.52 .08 .162 1.82 .40 .08 .52 .162</td>
<td>.192 .158 70 63 37 .128</td>
<td></td>
</tr>
<tr>
<td>4117</td>
<td>.68 .18 .176 1.95 .40 .08 .68 .176</td>
<td>.208 .167 70 65 41 .133</td>
<td></td>
</tr>
<tr>
<td>4118</td>
<td>.60 .00 .129 2.82 .40 .00 .60 .129</td>
<td>.210 .166 72 64 27 .137</td>
<td></td>
</tr>
<tr>
<td>4119</td>
<td>.60 .00 .168 2.00 .40 .00 .60 .168</td>
<td>.215 .168 70 57 33 .141</td>
<td></td>
</tr>
<tr>
<td>4120</td>
<td>.60 .00 .184 1.86 .40 .00 .60 .184</td>
<td>.208 .172 70 60 36 .142</td>
<td></td>
</tr>
<tr>
<td>4121</td>
<td>.60 .00 .173 2.21 .40 .00 .60 .173</td>
<td>.228 .182 73 66 30 .148</td>
<td></td>
</tr>
<tr>
<td>4122</td>
<td>.60 .00 .140 2.48 .40 .00 .60 .140</td>
<td>.215 .172 73 66 28 .138</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hₛ/Lₒ h/Hₛ dₚ/Hₛ B/√HL</th>
<th>φ_b/√HL dₛ/√HL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-) (-) (-) (-) (-) (-) (-)</td>
<td>K</td>
</tr>
</tbody>
</table>

Tabel 2.3 Meetgegevens talud 1:4 met berm
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIELOOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diep water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cota h H_s T_p B d_B h_H_s</td>
<td>θ_b θ_f θ_h d_s</td>
<td>H_s/L_o h/H_s d_B/H_s B/√HL</td>
</tr>
<tr>
<td></td>
<td>(-) (m) (m) (m) (m) (m) (m) (m)</td>
<td>(m) (m) () () (*) (m)</td>
<td>(-) (-) (-) (-) (-) (-) (-)</td>
</tr>
<tr>
<td>4201</td>
<td>4 .60 144 2.10 1.00 .08 .52 .144</td>
<td>.207 .165 71 55 30 .140</td>
<td>.021 3.61 -.56 1.00 .165 .140</td>
</tr>
<tr>
<td>4202</td>
<td>4 .52 165 1.82 1.00 .08 .52 .165</td>
<td>.194 .154 69 58 36 .132</td>
<td>.032 3.15 -.48 1.08 .166 .143</td>
</tr>
<tr>
<td>4203</td>
<td>4 .60 102 2.48 1.00 .00 .60 .102</td>
<td>.192 .149 71 59 24 .120</td>
<td>.011 5.88 .00 1.01 .151 .122</td>
</tr>
<tr>
<td>4204</td>
<td>4 .60 142 2.21 1.00 .00 .60 .142</td>
<td>.204 .161 72 62 31 .133</td>
<td>.019 4.23 .00 .96 .155 .128</td>
</tr>
<tr>
<td>4205</td>
<td>4 .60 168 1.91 1.00 .00 .60 .168</td>
<td>.208 .165 71 63 34 .139</td>
<td>.030 3.57 .00 1.02 .169 .142</td>
</tr>
<tr>
<td>4206</td>
<td>4 .60 183 1.86 1.00 .00 .60 .183</td>
<td>.208 .168 70 62 36 .144</td>
<td>.034 3.28 .00 1.01 .169 .144</td>
</tr>
<tr>
<td>4207</td>
<td>4 .60 191 1.74 1.00 .00 .60 .191</td>
<td>.200 .166 70 61 35 .143</td>
<td>.040 3.14 .00 1.05 .174 .150</td>
</tr>
<tr>
<td>4208</td>
<td>4 .60 105 1.86 1.00 .00 .60 .105</td>
<td>.140 .104 66 55 37 .081</td>
<td>.019 5.71 .00 1.33 .138 .108</td>
</tr>
<tr>
<td>4209</td>
<td>4 .60 166 1.74 1.00 .00 .60 .166</td>
<td>.175 .143 67 56 38 .125</td>
<td>.035 3.61 .00 1.13 .162 .142</td>
</tr>
<tr>
<td>4210</td>
<td>4 .68 172 1.95 1.00 .08 .68 .172</td>
<td>.208 .165 67 54 38 .150</td>
<td>.029 3.95 .47 .99 .163 .149</td>
</tr>
<tr>
<td>4211</td>
<td>4 .68 186 1.82 1.00 .08 .68 .186</td>
<td>.202 .173 48 25 34 .163</td>
<td>.036 3.66 .43 1.02 .176 .166</td>
</tr>
<tr>
<td>4212</td>
<td>4 .68 165 1.74 1.00 .08 .68 .165</td>
<td>.182 .148 64 47 36 .146</td>
<td>.035 4.12 .48 1.13 .168 .165</td>
</tr>
<tr>
<td>4213</td>
<td>4 .68 103 1.86 1.00 .08 .68 .103</td>
<td>.136 .114 61 49 38 .103</td>
<td>.019 6.60 .78 1.34 .152 .138</td>
</tr>
<tr>
<td>4214</td>
<td>4 .68 141 2.16 1.00 .08 .68 .141</td>
<td>.198 .159 68 45 34 .141</td>
<td>.019 4.82 .57 .99 .157 .139</td>
</tr>
<tr>
<td>4215</td>
<td>4 .73 139 2.10 1.00 .13 .73 .139</td>
<td>.193 .156 56 38 36 .139</td>
<td>.020 5.25 .94 1.02 .160 .142</td>
</tr>
<tr>
<td>4216</td>
<td>4 .73 171 1.74 1.00 .13 .73 .171</td>
<td>.185 .148 59 47 38 .154</td>
<td>.036 4.27 .76 1.11 .165 .171</td>
</tr>
<tr>
<td>4217</td>
<td>4 .68 103 1.78 1.00 .08 .68 .103</td>
<td>.143 .115 64 52 37 .086</td>
<td>.021 6.60 .78 1.40 .161 .121</td>
</tr>
</tbody>
</table>

Tabel 2.3 Meetgegevens talud 1:4 met berm (vervolg)
<table>
<thead>
<tr>
<th>proef</th>
<th>RANDVOORWAARDEN</th>
<th>FRONTPARAMETERS</th>
<th>DIMENSIEOLOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cota</td>
<td>Deep water</td>
<td>Tp</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>----</td>
</tr>
<tr>
<td>3301</td>
<td>3.53</td>
<td>.181</td>
<td>2.36</td>
</tr>
<tr>
<td>3302</td>
<td>3.53</td>
<td>.186</td>
<td>1.71</td>
</tr>
<tr>
<td>3303</td>
<td>3.53</td>
<td>.121</td>
<td>2.80</td>
</tr>
<tr>
<td>3304</td>
<td>3.53</td>
<td>.134</td>
<td>1.97</td>
</tr>
<tr>
<td>3305</td>
<td>3.64</td>
<td>.193</td>
<td>2.09</td>
</tr>
<tr>
<td>3306</td>
<td>3.64</td>
<td>.196</td>
<td>1.81</td>
</tr>
<tr>
<td>3307</td>
<td>3.64</td>
<td>.148</td>
<td>2.21</td>
</tr>
<tr>
<td>3308</td>
<td>3.64</td>
<td>.095</td>
<td>2.52</td>
</tr>
<tr>
<td>3309</td>
<td>3.68</td>
<td>.220</td>
<td>1.70</td>
</tr>
<tr>
<td>3310</td>
<td>3.76</td>
<td>.215</td>
<td>1.79</td>
</tr>
<tr>
<td>3311</td>
<td>3.76</td>
<td>.138</td>
<td>2.10</td>
</tr>
<tr>
<td>3312</td>
<td>3.76</td>
<td>.146</td>
<td>1.72</td>
</tr>
<tr>
<td>3313</td>
<td>3.76</td>
<td>.112</td>
<td>1.80</td>
</tr>
<tr>
<td>3314</td>
<td>3.95</td>
<td>.190</td>
<td>1.86</td>
</tr>
<tr>
<td>3315</td>
<td>3.95</td>
<td>.194</td>
<td>1.66</td>
</tr>
<tr>
<td>3316</td>
<td>3.95</td>
<td>.154</td>
<td>1.61</td>
</tr>
<tr>
<td>3317</td>
<td>3.53</td>
<td>.121</td>
<td>1.97</td>
</tr>
<tr>
<td>3318</td>
<td>3.95</td>
<td>.178</td>
<td>1.53</td>
</tr>
<tr>
<td>3319</td>
<td>3.95</td>
<td>.180</td>
<td>1.70</td>
</tr>
<tr>
<td>3320</td>
<td>3.95</td>
<td>.180</td>
<td>2.00</td>
</tr>
<tr>
<td>3321</td>
<td>3.95</td>
<td>.179</td>
<td>2.42</td>
</tr>
<tr>
<td>3322</td>
<td>3.95</td>
<td>.176</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Tabel 2.4 Meetgegevens talud 1:3 met voorland
Tabel 2.5 Meetgegevens talud 1:4 met voorland

<table>
<thead>
<tr>
<th>Proef</th>
<th>Randvoorwaarden</th>
<th>Berm</th>
<th>Bij teen</th>
<th>Frontparameters</th>
<th>Dimensie loos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deep water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$cota$</td>
<td>h</td>
<td>H_s</td>
<td>T_p</td>
<td>B</td>
</tr>
<tr>
<td>4301</td>
<td>4.53</td>
<td>.183</td>
<td>2.40</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4302</td>
<td>4.53</td>
<td>.184</td>
<td>1.76</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4303</td>
<td>4.53</td>
<td>.120</td>
<td>2.87</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4304</td>
<td>4.53</td>
<td>.134</td>
<td>1.98</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4305</td>
<td>4.64</td>
<td>.195</td>
<td>2.01</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4306</td>
<td>4.64</td>
<td>.196</td>
<td>1.82</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4307</td>
<td>4.64</td>
<td>.145</td>
<td>2.19</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4308</td>
<td>4.64</td>
<td>.096</td>
<td>2.50</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4309</td>
<td>4.68</td>
<td>.219</td>
<td>1.73</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4310</td>
<td>4.76</td>
<td>.213</td>
<td>1.81</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4311</td>
<td>4.76</td>
<td>.140</td>
<td>2.08</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4312</td>
<td>4.76</td>
<td>.145</td>
<td>1.76</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4313</td>
<td>4.76</td>
<td>.113</td>
<td>1.84</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4314</td>
<td>4.95</td>
<td>.193</td>
<td>1.80</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4315</td>
<td>4.95</td>
<td>.194</td>
<td>1.60</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4316</td>
<td>4.95</td>
<td>.151</td>
<td>1.58</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4317</td>
<td>4.53</td>
<td>.121</td>
<td>1.98</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4318</td>
<td>4.95</td>
<td>.179</td>
<td>1.58</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4319</td>
<td>4.95</td>
<td>.183</td>
<td>1.72</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4320</td>
<td>4.95</td>
<td>.178</td>
<td>1.98</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>4321</td>
<td>4.95</td>
<td>.180</td>
<td>2.38</td>
<td>.00</td>
<td>.00</td>
</tr>
</tbody>
</table>

Note:
- $cota$: cotangent of the angle
- H_s: Significant wave height
- T_p: Peak period
- B: Width of the berm
- d_B: Depth of the berm
- h: Water depth
- H_s: Significant wave height
- ϕ_b: Bottom friction angle
- ϕ_b: Bottom friction angle
- θ_f: Froude number
- θ_h: Height number
- d_s: Dimensional depth
- H_{s}/L_o: Dimensionless height
- h/H_s: Dimensionless water depth
- d_B/H_s: Dimensionless berm depth
- B/\sqrt{HL}: Dimensionless width
- ϕ_b/\sqrt{HL}: Dimensionless bottom friction angle
- d_s/\sqrt{HL}: Dimensionless depth
<table>
<thead>
<tr>
<th></th>
<th>RANDVOORWAARDEN</th>
<th>GHM 15</th>
<th>REFL. Hr/H</th>
<th>GHM15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>b_m</td>
<td>H_s</td>
<td>T_p</td>
</tr>
<tr>
<td>9301</td>
<td>.53</td>
<td>.18</td>
<td>.178</td>
<td>2.48</td>
</tr>
<tr>
<td>9302</td>
<td>.53</td>
<td>.18</td>
<td>.183</td>
<td>1.76</td>
</tr>
<tr>
<td>9303</td>
<td>.53</td>
<td>.18</td>
<td>.119</td>
<td>2.87</td>
</tr>
<tr>
<td>9304</td>
<td>.53</td>
<td>.18</td>
<td>.153</td>
<td>1.93</td>
</tr>
<tr>
<td>9305</td>
<td>.64</td>
<td>.29</td>
<td>.194</td>
<td>2.10</td>
</tr>
<tr>
<td>9306</td>
<td>.64</td>
<td>.29</td>
<td>.196</td>
<td>1.82</td>
</tr>
<tr>
<td>9307</td>
<td>.64</td>
<td>.29</td>
<td>.146</td>
<td>2.22</td>
</tr>
<tr>
<td>9308</td>
<td>.64</td>
<td>.29</td>
<td>.095</td>
<td>2.47</td>
</tr>
<tr>
<td>9309</td>
<td>.68</td>
<td>.33</td>
<td>.217</td>
<td>1.66</td>
</tr>
<tr>
<td>9310</td>
<td>.76</td>
<td>.41</td>
<td>.212</td>
<td>1.88</td>
</tr>
<tr>
<td>9311</td>
<td>.76</td>
<td>.41</td>
<td>.141</td>
<td>2.16</td>
</tr>
<tr>
<td>9312</td>
<td>.76</td>
<td>.41</td>
<td>.145</td>
<td>1.78</td>
</tr>
<tr>
<td>9313</td>
<td>.76</td>
<td>.41</td>
<td>.112</td>
<td>1.88</td>
</tr>
<tr>
<td>9314</td>
<td>.95</td>
<td>.60</td>
<td>.188</td>
<td>1.86</td>
</tr>
<tr>
<td>9315</td>
<td>.95</td>
<td>.60</td>
<td>.192</td>
<td>1.65</td>
</tr>
<tr>
<td>9316</td>
<td>.95</td>
<td>.60</td>
<td>.151</td>
<td>1.60</td>
</tr>
<tr>
<td>9317</td>
<td>.53</td>
<td>.18</td>
<td>.121</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Tabel 2.6 Meetgegevens van calibratieproeven op voorland
<table>
<thead>
<tr>
<th>proef</th>
<th>4001 4008</th>
<th></th>
<th>4103 4119</th>
<th></th>
<th>4104 4120</th>
<th></th>
<th>4213 4217</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cot(α)</td>
<td>4.00 4.00</td>
<td></td>
<td>4.00 4.00</td>
<td></td>
<td>4.00 4.00</td>
<td></td>
<td>4.00 4.00</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td></td>
<td>.40 .40</td>
<td></td>
<td>.40 .40</td>
<td></td>
<td>1.00 1.00</td>
<td></td>
</tr>
<tr>
<td>dB</td>
<td>-</td>
<td></td>
<td>.00 .00</td>
<td></td>
<td>.00 .00</td>
<td></td>
<td>.08 .08</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>.60 .60</td>
<td></td>
<td>.60 .60</td>
<td></td>
<td>.60 .60</td>
<td></td>
<td>.68 .68</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2.48 2.48</td>
<td>0</td>
<td>1.99 2.00</td>
<td>1</td>
<td>1.86 1.86</td>
<td>0</td>
<td>1.86 1.78</td>
<td>-4</td>
</tr>
<tr>
<td>HP</td>
<td>.101 .100</td>
<td>-1</td>
<td>.167 .168</td>
<td>1</td>
<td>.183 .184</td>
<td>1</td>
<td>.103 .103</td>
<td>0</td>
</tr>
<tr>
<td>Aäntal</td>
<td>994 994</td>
<td>0</td>
<td>979 966</td>
<td>-1</td>
<td>904 905</td>
<td>0</td>
<td>969 970</td>
<td>0</td>
</tr>
<tr>
<td>Φ_b</td>
<td>.209 .200</td>
<td>-4</td>
<td>.206 .215</td>
<td>4</td>
<td>.206 .208</td>
<td>1</td>
<td>.136 .143</td>
<td>5</td>
</tr>
<tr>
<td>sig</td>
<td>.165 .159</td>
<td>-4</td>
<td>.165 .168</td>
<td>2</td>
<td>.171 .172</td>
<td>1</td>
<td>.14 .115</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>.120 .124</td>
<td>3</td>
<td>.136 .141</td>
<td>3</td>
<td>.138 .142</td>
<td>3</td>
<td>.103 .086</td>
<td>-19</td>
</tr>
<tr>
<td>Θ_f</td>
<td>70.1 68.1</td>
<td>-3</td>
<td>71.7 70.4</td>
<td>-2</td>
<td>72.8 69.5</td>
<td>-5</td>
<td>61.0 64.4</td>
<td>5</td>
</tr>
<tr>
<td>Φ</td>
<td>55.6 56.5</td>
<td>2</td>
<td>66.1 56.8</td>
<td>-16</td>
<td>66.9 60.3</td>
<td>-11</td>
<td>49.1 51.8</td>
<td>5</td>
</tr>
<tr>
<td>Θ_h</td>
<td>31.4 29.0</td>
<td>-8</td>
<td>31.6 32.8</td>
<td>4</td>
<td>34.2 35.7</td>
<td>4</td>
<td>38.4 36.6</td>
<td>-5</td>
</tr>
</tbody>
</table>

Tabel 4.1 Vergelijking van herhalingsproeven
<table>
<thead>
<tr>
<th>proef</th>
<th>3003</th>
<th>3010</th>
<th>4002</th>
<th>4006</th>
<th>4004</th>
<th>4007</th>
</tr>
</thead>
<tbody>
<tr>
<td>cot(α)</td>
<td>(-)</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>h</td>
<td>(m)</td>
<td>.600</td>
<td>.600</td>
<td>.600</td>
<td>.600</td>
<td>.600</td>
</tr>
<tr>
<td>H</td>
<td>(m)</td>
<td>.173</td>
<td>.114</td>
<td>.143</td>
<td>.105</td>
<td>.182</td>
</tr>
<tr>
<td>T_p</td>
<td>(s)</td>
<td>1.950</td>
<td>1.570</td>
<td>2.210</td>
<td>1.780</td>
<td>1.820</td>
</tr>
<tr>
<td>θ_b</td>
<td>2%</td>
<td>.218</td>
<td>.148</td>
<td>.200</td>
<td>.144</td>
<td>.201</td>
</tr>
<tr>
<td>d</td>
<td>(m)</td>
<td>.175</td>
<td>.119</td>
<td>.163</td>
<td>.117</td>
<td>.170</td>
</tr>
<tr>
<td>d_s</td>
<td>(m)</td>
<td>.157</td>
<td>.096</td>
<td>.127</td>
<td>.091</td>
<td>.143</td>
</tr>
<tr>
<td>θ_f</td>
<td>2%</td>
<td>71</td>
<td>69</td>
<td>70</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>θ_h</td>
<td>10%</td>
<td>48</td>
<td>62</td>
<td>63</td>
<td>61</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>(*)</td>
<td>29</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
</tbody>
</table>

Dimensioenoos: %

cot(α)	(-)	3.000	3.000	4	4	4	4
h/H	(-)	3.468	5.263	4.196	5.714	3.297	3.797
H_p/H	(-)	.029	.030	.019	.021	.035	.035
θ_p/H	(-)	1.260	1.300	1.399	1.368	1.106	1.081
θ_f/H	(-)	1.009	1.045	1.138	1.113	1.931	1.896
d_s/H	(-)	.908	.842	.891	.864	.788	.745
θ_f	2%	71	69	70	68	70	67
θ_h	10%	48	62	63	61	62	63
	(*)	29	33	35	37	39	38

Tabel 4.2 Vergelijking van schaalproeven
In de correlatietabellen zijn de aantallen voorkomende combinaties van frontparameters weergegeven. De waarden langs de horizontale en verticale as zijn de centrale waarden van intervallen.

Voorbeeld:
Stel dat bij $\phi_b/H_s = 1.10$ en $\theta_f = 55^\circ$ het getal 12 staat. Dit betekent dan dat er 12 fronten zijn gemeten waarvoor geldt:

$$1.00 < \phi_b/H_s \leq 1.20 \quad \text{en} \quad 50^\circ < \theta_f \leq 60^\circ$$

Proef P3003

<table>
<thead>
<tr>
<th>ϕ_b/H_s</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>11</td>
<td>30</td>
<td>22</td>
<td>17</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.90</td>
<td>0</td>
<td>20</td>
<td>55</td>
<td>34</td>
<td>24</td>
<td>14</td>
<td>35</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.70</td>
<td>0</td>
<td>56</td>
<td>56</td>
<td>33</td>
<td>20</td>
<td>31</td>
<td>33</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.50</td>
<td>0</td>
<td>43</td>
<td>62</td>
<td>47</td>
<td>37</td>
<td>38</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.30</td>
<td>0</td>
<td>46</td>
<td>135</td>
<td>61</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.10</td>
<td>0</td>
<td>11</td>
<td>58</td>
<td>36</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.00 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00

Proef P4003

<table>
<thead>
<tr>
<th>ϕ_b/H_s</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>23</td>
<td>36</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.90</td>
<td>0</td>
<td>14</td>
<td>3</td>
<td>17</td>
<td>21</td>
<td>89</td>
<td>104</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.70</td>
<td>0</td>
<td>27</td>
<td>18</td>
<td>17</td>
<td>52</td>
<td>89</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.50</td>
<td>0</td>
<td>46</td>
<td>57</td>
<td>68</td>
<td>35</td>
<td>33</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.30</td>
<td>0</td>
<td>28</td>
<td>44</td>
<td>20</td>
<td>14</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.10</td>
<td>0</td>
</tr>
</tbody>
</table>

5.00 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00

Tabel 4.3 Correlatie tussen fronthoogte en frontsteilheid
Proef P3003

<table>
<thead>
<tr>
<th>(\phi_b/H_s)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>12</td>
<td>19</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>12</td>
<td>46</td>
<td>26</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.90</td>
<td>1</td>
<td>33</td>
<td>69</td>
<td>56</td>
<td>25</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.70</td>
<td>2</td>
<td>26</td>
<td>59</td>
<td>69</td>
<td>36</td>
<td>25</td>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.50</td>
<td>3</td>
<td>17</td>
<td>31</td>
<td>34</td>
<td>35</td>
<td>27</td>
<td>32</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>0.30</td>
<td>0</td>
<td>12</td>
<td>24</td>
<td>26</td>
<td>39</td>
<td>45</td>
<td>85</td>
<td>72</td>
<td>62</td>
</tr>
<tr>
<td>0.10</td>
<td>5</td>
<td>31</td>
<td>10</td>
<td>4</td>
<td>6</td>
<td>20</td>
<td>16</td>
<td>31</td>
<td>18</td>
</tr>
</tbody>
</table>

5.00 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00

\(\theta_h\)

Proef P4003

<table>
<thead>
<tr>
<th>(\phi_b/H_s)</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>2</td>
<td>27</td>
<td>31</td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.90</td>
<td>1</td>
<td>6</td>
<td>54</td>
<td>79</td>
<td>75</td>
<td>30</td>
<td>12</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0.70</td>
<td>1</td>
<td>15</td>
<td>48</td>
<td>78</td>
<td>60</td>
<td>37</td>
<td>23</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>3</td>
<td>11</td>
<td>35</td>
<td>53</td>
<td>45</td>
<td>32</td>
<td>26</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>0.30</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>17</td>
<td>6</td>
<td>25</td>
<td>25</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>0.10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

5.00 15.00 25.00 35.00 45.00 55.00 65.00 75.00 85.00 95.00

\(\theta_h\)

(Voor een toelichting op de tabelvorm zie tabel 4.3)

Tabel 4.4 Correlatie tussen fronthoogte en frontniveau
Proef P3003

<table>
<thead>
<tr>
<th>ϕ_b/H_s</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.70</th>
<th>0.90</th>
<th>1.10</th>
<th>1.30</th>
<th>1.50</th>
<th>1.70</th>
<th>1.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>54</td>
<td>22</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.90</td>
<td>4</td>
<td>21</td>
<td>52</td>
<td>82</td>
<td>31</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.70</td>
<td>5</td>
<td>20</td>
<td>53</td>
<td>53</td>
<td>83</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>41</td>
<td>70</td>
<td>60</td>
<td>39</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.30</td>
<td>166</td>
<td>120</td>
<td>60</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.10</td>
<td>81</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Proef P4003

<table>
<thead>
<tr>
<th>ϕ_b/H_s</th>
<th>0.10</th>
<th>0.30</th>
<th>0.50</th>
<th>0.70</th>
<th>0.90</th>
<th>1.10</th>
<th>1.30</th>
<th>1.50</th>
<th>1.70</th>
<th>1.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90</td>
<td>0</td>
</tr>
<tr>
<td>1.70</td>
<td>0</td>
</tr>
<tr>
<td>1.50</td>
<td>0</td>
</tr>
<tr>
<td>1.30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.10</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>37</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.90</td>
<td>0</td>
<td>0</td>
<td>63</td>
<td>128</td>
<td>56</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.70</td>
<td>2</td>
<td>21</td>
<td>140</td>
<td>71</td>
<td>28</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.50</td>
<td>21</td>
<td>83</td>
<td>102</td>
<td>37</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.30</td>
<td>28</td>
<td>31</td>
<td>49</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.10</td>
<td>0</td>
</tr>
</tbody>
</table>

(Voor een toelichting op de tabelvorm zie tabel 4.3)

Tabel 4.5 Correlatie tussen fronthoogte en schadediepte
<table>
<thead>
<tr>
<th>proef nr</th>
<th>cota</th>
<th>Hs</th>
<th>Tp</th>
<th>(\phi_b)</th>
<th>(\theta_f)</th>
<th>(\theta_h)</th>
<th>(\lambda) (m = .20)</th>
<th>(\lambda) (m = .70)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-)</td>
<td>(m)</td>
<td>(s)</td>
<td>2% sig</td>
<td>2% 10% gem</td>
<td>2% sig</td>
<td>2% 10% sig</td>
<td>2% 10% sig</td>
</tr>
<tr>
<td>3001 1</td>
<td>3</td>
<td>1.00</td>
<td>8.1</td>
<td>2.30 1.84</td>
<td>70 65 25</td>
<td>.60 .36</td>
<td>.73 .65 .65 .64</td>
<td>.48 .48</td>
</tr>
<tr>
<td>3002 2</td>
<td>3</td>
<td>1.43</td>
<td>6.9</td>
<td>2.36 1.89</td>
<td>70 65 29</td>
<td>.61 .38</td>
<td>.72 .65 .59 .63</td>
<td>.48 .48</td>
</tr>
<tr>
<td>3003 3</td>
<td>3</td>
<td>1.73</td>
<td>6.2</td>
<td>2.31 1.85</td>
<td>70 65 32</td>
<td>.63 .38</td>
<td>.71 .64 .53 .58</td>
<td>.62 .47</td>
</tr>
<tr>
<td>3004 4</td>
<td>3</td>
<td>1.85</td>
<td>5.9</td>
<td>2.30 1.84</td>
<td>70 65 33</td>
<td>.63 .39</td>
<td>.71 .63 .53 .58</td>
<td>.62 .47</td>
</tr>
<tr>
<td>3005 5</td>
<td>3</td>
<td>1.90</td>
<td>5.5</td>
<td>2.17 1.74</td>
<td>70 65 35</td>
<td>.62 .40</td>
<td>.68 .61 .62 .56</td>
<td>.60 .46</td>
</tr>
<tr>
<td>3006 6</td>
<td>3</td>
<td>1.71</td>
<td>5.3</td>
<td>1.99 1.59</td>
<td>70 65 34</td>
<td>.61 .38</td>
<td>.66 .59 .60 .54</td>
<td>.58 .44</td>
</tr>
<tr>
<td>3007 7</td>
<td>3</td>
<td>1.00</td>
<td>5.6</td>
<td>1.58 1.27</td>
<td>70 65 30</td>
<td>.56 .42</td>
<td>.59 .52 .55 .49</td>
<td>.53 .41</td>
</tr>
<tr>
<td>3008 8</td>
<td>3</td>
<td>1.03</td>
<td>4.4</td>
<td>1.26 1.01</td>
<td>70 65 34</td>
<td>.45 .36</td>
<td>.52 .45 .48 .43</td>
<td>.46 .37</td>
</tr>
<tr>
<td>3009 9</td>
<td>3</td>
<td>1.44</td>
<td>5.0</td>
<td>1.70 1.36</td>
<td>70 65 34</td>
<td>.54 .42</td>
<td>.61 .54 .56 .50</td>
<td>.54 .42</td>
</tr>
<tr>
<td>3010 10</td>
<td>3</td>
<td>1.14</td>
<td>5.0</td>
<td>1.51 1.21</td>
<td>70 65 32</td>
<td>.52 .40</td>
<td>.57 .50 .53 .48</td>
<td>.51 .40</td>
</tr>
<tr>
<td>3011 11</td>
<td>3</td>
<td>1.35</td>
<td>5.3</td>
<td>1.77 1.41</td>
<td>70 65 33</td>
<td>.59 .45</td>
<td>.62 .55 .57 .51</td>
<td>.55 .43</td>
</tr>
<tr>
<td>3012 12</td>
<td>3</td>
<td>1.54</td>
<td>5.9</td>
<td>2.10 1.68</td>
<td>70 65 33</td>
<td>.63 .45</td>
<td>.66 .61 .61 .56</td>
<td>.60 .46</td>
</tr>
<tr>
<td>3013 13</td>
<td>3</td>
<td>1.17</td>
<td>8.1</td>
<td>2.49 1.99</td>
<td>70 65 25</td>
<td>.63 .36</td>
<td>.75 .68 .67 .61</td>
<td>.66 .50</td>
</tr>
<tr>
<td>4001 14</td>
<td>4</td>
<td>1.01</td>
<td>7.8</td>
<td>2.09 1.67</td>
<td>70 65 29</td>
<td>.65 .45</td>
<td>.75 .66 .69 .62</td>
<td>.67 .52</td>
</tr>
<tr>
<td>4002 15</td>
<td>4</td>
<td>1.43</td>
<td>7.0</td>
<td>2.21 1.77</td>
<td>70 65 33</td>
<td>.66 .52</td>
<td>.77 .68 .70 .63</td>
<td>.68 .52</td>
</tr>
<tr>
<td>4003 16</td>
<td>4</td>
<td>1.64</td>
<td>6.2</td>
<td>2.09 1.67</td>
<td>70 65 37</td>
<td>.64 .52</td>
<td>.74 .65 .68 .61</td>
<td>.66 .51</td>
</tr>
<tr>
<td>4004 17</td>
<td>4</td>
<td>1.82</td>
<td>5.8</td>
<td>2.06 1.65</td>
<td>70 65 39</td>
<td>.66 .50</td>
<td>.73 .64 .67 .60</td>
<td>.63 .50</td>
</tr>
<tr>
<td>4005 18</td>
<td>4</td>
<td>1.94</td>
<td>5.5</td>
<td>2.03 1.62</td>
<td>70 65 41</td>
<td>.65 .51</td>
<td>.72 .64 .66 .59</td>
<td>.64 .50</td>
</tr>
<tr>
<td>4006 19</td>
<td>4</td>
<td>1.05</td>
<td>5.6</td>
<td>1.53 1.22</td>
<td>70 65 39</td>
<td>.54 .44</td>
<td>.62 .53 .58 .51</td>
<td>.55 .44</td>
</tr>
<tr>
<td>4007 20</td>
<td>4</td>
<td>1.58</td>
<td>5.4</td>
<td>1.79 1.43</td>
<td>70 65 39</td>
<td>.60 .49</td>
<td>.66 .59 .63 .56</td>
<td>.60 .47</td>
</tr>
<tr>
<td>4008 21</td>
<td>4</td>
<td>1.00</td>
<td>7.8</td>
<td>2.08 1.66</td>
<td>70 65 29</td>
<td>.64 .45</td>
<td>.75 .66 .69 .62</td>
<td>.67 .52</td>
</tr>
<tr>
<td>4009 22</td>
<td>4</td>
<td>1.65</td>
<td>4.9</td>
<td>1.67 1.33</td>
<td>70 65 41</td>
<td>.57 .46</td>
<td>.65 .56 .60 .53</td>
<td>.58 .45</td>
</tr>
</tbody>
</table>

Tabel 7.1 Berekening van het stijghoogteverschil bij verschillende frontparameters en lekhoogtes.
1/9 blokjes (3040-serie)

1/25 blokjes (3060-serie)
blokjes 25 x 25 x 22mm

BLOKJES ALS RUWHEDSELEMENTEN
3040- EN 3060-SERIE

WATERLOOPKUNDIG LABORATORIUM

TAW A
SCHELDEGOOT

H 1256 FIG. 2.6
Steenlaag: $D_{n50} = 61.3 \text{mm} \quad (D_{n85}/D_{n15} = 1.22)$

Filterlaag: $D_{50} \approx 10 \text{mm}$

RIBBELS EN STEENLAAG ALS RUWHEIDSELEMENTEN
3070- EN 3090-SERIE

WATERLOOPKUNDIG LABORATORIUM
MEETOPSTELLING OVERSLAGKRUIN

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 2.8
AFDEKPLAAT VOOR LAGE OVERSLAGKRUIN

WATERLOOPKUNDIG LABORATORIUM H 1256 FIG. 2.9
Opstelling golfhoogtemeter 1 t/m 18
g.h.m. 1-2 en 15-16 ook kruisspectra bepaald.
alle toleranties ± 0,25mm

aluminium 10 mm

T-20 x 20 x 3

Ø100 mm

staal 6 mm

120 mm

1600 mm

meetplaat

dro

bedrading

doorsnede

drukkoker

DWARSDOORSNEDE MEETKoker VOOR DRUKKEN

WATERLOOPKUNDIGE LABORATORIUM

H 1256 FIG. 2.11
BOVENAANZICHT

0,60m boven gootbodem

ZIJAANZICHT

MEETINSTRUMENTEN BIJ LAGE-KRUIN-PROEVEN

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 2.12
Fronthoogte
Recht talud 1:3

\[\frac{\phi_{b,2\%}}{\phi_{b,\text{sig}}} \]

\[\frac{H_s}{L_o} \]

Fronthoogte
Recht talud 1:4

\[\frac{\phi_{b,2\%}}{\phi_{b,\text{sig}}} \]

\[\frac{H_s}{L_o} \]

VERHOUDING TUSSEN 2%-E N SIG- WAARDE VAN DE FRONTHOOGTE

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 4.1
Frontsteilheid bij talud 1:3
Histogram proef 3001 t/m 3009

Frontsteilheid bij talud 1:4
Histogram proef 4001 t/m 4009

KANSVERDELING VAN DE FRONTSTEILHEID

WATERLOOPKUNDIG LABORATORIUM

FIG. 4.2
Frontniveau
Recht talud 1:3

Frontniveau
Recht talud 1:4

FRONTNIVEAU BIJ RECHT TALUD
WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.4
Schadediepte
Recht talud 1:3

$\frac{d_s}{H_s}$ vs $\frac{1}{\sqrt{H_s/L_o}}$

Schadediepte
Recht talud 1:3

$\frac{d_s}{VH_sL_o}$ vs H_s/L_o

SCHADEDIEPTE BIJ RECHT TALUD 1:3

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.5
Fronthoogte (2%)
Talud 1:4, dB = 0 m, invloed bermbreedte

- □ B = 0.0 m
- ● B = 0.4 m
- ▼ B = 1.0 m

\[\frac{\phi_d}{H_s/L_0} \] vs \[\frac{H_s}{L_0} \]

Fronthoogte (sig)
Talud 1:4, dB = 0 m, invloed bermbreedte

- □ B = 0.0 m
- ● B = 0.4 m
- ▼ B = 1.0 m

\[\frac{\phi_d}{H_s/L_0} \] vs \[\frac{H_s}{L_0} \]
Frontsteilheid (2%)

Talud 1:3, dB = 0 m, invloed bermbreedte

Frontsteilheid (10%)

Talud 1:3, dB = 0 m, invloed bermbreedte

INVLOED BERMBREEDTE OP FRONTSTEILHEID
BIJ TALUD 1:3

WATERLOOPKUNDIG LABORATORIUM

FIG. 5.9
INVLOED BERMBREEDTE OP FRONTEILHEID
BIJ TALUD 1:4

WATERLOOPKUNDIG LABORATORIUM

FRONTEILHEID (2%)
Talud 1:4, dB = 0 m, invloed bermbreedte

FRONTEILHEID (10%)
Talud 1:4, dB = 0 m, invloed bermbreedte

H_s/L_o

θ_r (°)

θ_r (°)
Frontniveau
Talud 1:3, $d_B = 0$ m, invloed bermbreedte

$\Theta_H(\degree)$

H_s/L_o

$\Theta_H(\degree)$

H_s/L_o

INVLOED BERMBOEDTE OP FRONTNIVEAU

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.11
Schadediepte
Talud 1:3, \(d_B = 0\) m, invloed bermbreedte

![Graph](image)

Schadediepte
Talud 1:4, \(d_B = 0\) m, invloed bermbreedte

![Graph](image)
Fronthoogte (2\%) Talud 1:4, B = 0.4 m, invloed bermdiepte

- $-0.6 < d_B/H_s < -0.4$
- $d_B/H_s = 0.0$
- $0.4 < d_B/H_s < 0.6$
- $0.7 < d_B/H_s < 1.2$

Fronthoogte (sig) Talud 1:4, B = 0.4 m, invloed bermdiepte

- $-0.6 < d_B/H_s < -0.4$
- $d_B/H_s = 0.0$
- $0.4 < d_B/H_s < 0.6$
- $0.7 < d_B/H_s < 1.2$

INVLOED BERMDIEPTE OP FRONTHOOGTE BIJ SMALLE BERM IN TALUD 1:4

WATERLOOPKUNDIG LABORATORIUM H 1256 FIG. 5.14
Frontsteilheid (2%)
Talud 1:3, B = 0.4 m, invloed bermdiepte

- $0.6 < d_B / H_s < -0.4$
- $d_B / H_s = 0.0$
- $0.4 < d_B / H_s < 0.6$
- $0.7 < d_B / H_s < 1.2$

Frontsteilheid (10%)
Talud 1:3, B = 0.4 m, invloed bermdiepte

- $0.6 < d_B / H_s < -0.4$
- $d_B / H_s = 0.0$
- $0.4 < d_B / H_s < 0.6$
- $0.7 < d_B / H_s < 1.2$

Invloed bermdiepte op frontsteilheid bij smalle berm in talud 1:3

Waterloopkundig Laboratorium

H 1256

Fig. 5.15
Frontsteilheid (2\%)
Talud 1:4, B = 0.4 m, invloed bermdiepte

-0.6 < d_B/H_s < -0.4
\(d_B/H_s = 0.0 \)
0.4 < d_B/H_s < 0.6
\(d_B/H_s = 0.7 < d_B/H_s < 1.2 \)

Frontsteilheid (10\%)
Talud 1:4, B = 0.4 m, invloed bermdiepte

-0.6 < d_B/H_s < -0.4
\(d_B/H_s = 0.0 \)
0.4 < d_B/H_s < 0.6
\(d_B/H_s = 0.7 < d_B/H_s < 1.2 \)
Frontniveau
Talud 1:4, B = 0.4 m, invloed bermdiepte

- $-0.6 < \frac{d_b}{H_s} < -0.4$
- $\frac{d_b}{H_s} = 0.0$
- $0.4 < \frac{d_b}{H_s} < 0.6$
- $0.7 < \frac{d_b}{H_s} < 1.2$

INVLOED BERMDIEPTE OP FRONTNIVEAU
BIJ SMALLE BERM
INVLOED BERMDIEPTE OP SCHADEDIEPTE
BIJ SMALLE BERM

WATERLOOPKUNDIG LABORATORIUM
H 1256 FIG. 5.18
Fronthoogte (2%)
Talud 1:3, B = 1.0 m, invloed bermdiepte

-0.6 < \frac{d_B}{H_s} < -0.4
\times \frac{d_B}{H_s} = 0.0
\downarrow 0.4 < \frac{d_B}{H_s} < 0.6
\star 0.7 < \frac{d_B}{H_s} < 1.2

\frac{\phi_b}{\sqrt{H_s L_o}}
\frac{H_s}{L_o}

Fronthoogte (sig)
Talud 1:3, B = 1.0 m, invloed bermdiepte

-0.6 < \frac{d_B}{H_s} < -0.4
\times \frac{d_B}{H_s} = 0.0
\downarrow 0.4 < \frac{d_B}{H_s} < 0.6
\star 0.7 < \frac{d_B}{H_s} < 1.2

\frac{\phi_b}{\sqrt{H_s L_o}}
\frac{H_s}{L_o}

INVLOED BERMDIEPTE OP FRONTHOOGTE
BIJ BREDE BERM IN TALUD 1:3
WATERLOOPKUNDIG LABORATORIUM
H 1256 FIG. 5.19
Fronthoogte (2%)
Talud 1:4, B = 1.0 m, invloed bermdiepte

-0.6 < d_B/H_s < -0.4
x d_B/H_s = 0.0
v 0.4 < d_B/H_s < 0.6
* 0.7 < d_B/H_s < 1.2

Fronthoogte (sig)
Talud 1:4, B = 1.0 m, invloed bermdiepte

-0.6 < d_B/H_s < -0.4
x d_B/H_s = 0.0
v 0.4 < d_B/H_s < 0.6
* 0.7 < d_B/H_s < 1.2

INVOLOD BERMDIEPTE OP FRONTHOOGTE
BIJ BREDE BERM·IN TALUD 1:4
WATERLOOPKUNDIG·LABORATORIUM
H 1256 FIG. 5.20
INVLOED BERMDIEPTE OP FRONTSTEILHEID
BIJ BREDE BERM IN TALUD 1:3

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.21
Frontsteilheid (2%)
Talud 1:4, B = 1.0 m, invloed bermdiepte

- $-0.6 < d_B/H_s < -0.4$
- $d_B/H_s = 0.0$
- $0.4 < d_B/H_s < 0.6$
- $0.7 < d_B/H_s < 1.2$

Frontsteilheid (10%)
Talud 1:4, B = 1.0 m, invloed bermdiepte

- $-0.6 < d_B/H_s < -0.4$
- $d_B/H_s = 0.0$
- $0.4 < d_B/H_s < 0.6$
- $0.7 < d_B/H_s < 1.2$
Frontniveau

Talud 1:3, B = 1.0 m, invloed bermdiepte

- $0.6 < \frac{d_B}{H_s} < 0.4$
- $\frac{d_B}{H_s} = 0.0$
- $0.4 < \frac{d_B}{H_s} < 0.6$
- $0.7 < \frac{d_B}{H_s} < 1.2$

Frontniveau

Talud 1:4, B = 1.0 m, invloed bermdiepte

- $0.6 < \frac{d_B}{H_s} < 0.4$
- $\frac{d_B}{H_s} = 0.0$
- $0.4 < \frac{d_B}{H_s} < 0.6$
- $0.7 < \frac{d_B}{H_s} < 1.2$

INVLOED BERMDIEPTE OP FRONTNIVEAU
BIJ BREDE BERM

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.23
Schadediepte
Talud 1:3, B = 1.0 m, invloed bermdiepte

-0.6 < dB/Hs < -0.4
dB/Hs = 0.0
0.4 < dB/Hs < 0.6
0.7 < dB/Hs < 1.2

Schadediepte
Talud 1:4, B = 1.0 m, invloed bermdiepte

-0.6 < dB/Hs < -0.4
dB/Hs = 0.0
0.4 < dB/Hs < 0.6
0.7 < dB/Hs < 1.2
INVLOED TEENDIEPTE OP FRONTHOOGTE
BIJ TALUD 1:3

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.25
INVLOED TEENDIEPTE OP FRONTHOOGTE
BIJ TALUD 1:4

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.26
INVLOED TEENDIEPTE OP SCHADEDIEPTE
BIJ TALUD 1:4
WATERLOOPKUNDIG LABORATORIUM
H 1256 FIG. 5.30
Relatieve frootoogte (2%)
Vergelijking nieuwe met oude formules

\[\frac{\phi_{b,2\%}}{H_s} (\text{)} \]

\[H_s / L_o (\text{)} \]

Relatieve frootoogte (sig)
Vergelijking nieuwe met oude formules

\[\frac{\phi_{b,sig}}{H_s} (\text{)} \]

\[H_s / L_o (\text{)} \]

VERGELIJKING TUSSEN OUDE EN NIEUWE FORMULES VOOR DE FROOTHOOGTE
WATERLOOPKUNDIG LABORATORIUM

FIG. 5.31
Relatieve schadediepte

Vergelijking nieuwe met oude formules

![Graph showing the comparison between new and old formulas for relative depth.](image)

VERGELIJKING TUSSEN OUDE EN NIEUWE FORMULES VOOR DE SCHADEDIEPTE

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.32
Fronthoogte (2%)

Vergelijking tussen meting en berekening

$\phi_{b,2\%}/H_s$ berekend (-)

$\phi_{b,2\%}/H_s$ gemeten (-)

Recht talud
Talud met berm niet op SWL
Talud met ondiep voorland
gewenst

Fronthoogte (sig)

Vergelijking tussen meting en berekening

$\phi_{b,sig}/H_s$ berekend (-)

$\phi_{b,sig}/H_s$ gemeten (-)

Recht talud
Talud met berm op SWL
Talud met berm niet op SWL
Talud met ondiep voorland
gewenst

VERGELIJKING TUSSEN GEMETEN EN BEREKENDE FRONTHOOGTE

WATERLOOPKUNDIG LABORATORIUM
Frontsteilheid (2%)
Vergelijking tussen meting en berekening

Frontsteilheid (10%)
Vergelijking tussen meting en berekening

VERGELIJKING TUSSEN GEMETEN EN BEREKENDE FRONTSNELHEID
WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 5.34
Frontniveau
Vergelijking tussen meting en berekening

VERGELIJKING TUSSEN GEMETEN EN BEREKENDE FRONTNIVEAU
WATERLOOPKUNDIG LABORATORIUM
Schadediepte
Vergelijking tussen meting en berekening

\[
\frac{d_s}{H_s} \text{ gemeten (−)}
\]

\[
\frac{d_s}{H_s} \text{ berekend (−)}
\]

- Recht talud
- Talud met berm niet op SWL
- Talud met ondiep voorland
- Gewenst

VERGELIJKING TUSSEN GEMETEN EN BEREKENDE SCHADEDIEPTE

WATERLOOPKUNDIG LABORATORIUM

H 1256
FIG. 5.36
Dikte van waterlaag op talud

Proeven met een recht talud, op diep water

\[\cot \alpha = 3 \]
\[\times \cot \alpha = 4 \]

\[(-)^{q \phi / (J_p - \varepsilon_p)} \]

\[H_3/L_o (-) \]

RELATIVE WATERLAAGDIKTE OP HET TALUD

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 6.1
VERGELIJKING SCHEMATISATIE III MET METINGEN
OP TALUD 1:3

WATERLOOPKUNDIG LABORATORIUM
VERGELIJKING SCHEMATISATIE III MET METINGEN
OP TALUD 1:4

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 6.3
Relatief stijghoogteverschil

Hier is 1.0 m; \(T_p = 5.0 \), \(\cot \alpha = 4 \) (\(\xi_{op} = 1.6 \))

\[L = f(\delta_{1S}, \sigma_{\phi}, \delta_{3S}, \sigma_{\phi}) \]

MAXIMAAL STIJGHOOGTEVERSCHIL BIJ
VARIANT I, II EN III

WATERLOOPKUNDIG LABORATORIUM

H 1256 FIG. 6.4
Benadering voor $\phi_{w,2\%}$
Lekhoogte 0.20 m

Benadering voor $\phi_{w,2\%}$
Lekhoogte 0.70 m

MOGELIJKE BENADERINGEN VOOR HET 2%-STIJGHOOGTEVERSCHEL
WATERLOOPKUNDIG LABORATORIUM H 1256 FIG. 7.1
Benadering voor $\phi_{w, 2\%}$
Lekhoogte 0.20 m

ϕ_w berekend / ϕ_w gemeten

Benadering voor $\phi_{w, 2\%}$
Lekhoogte 0.70 m

ϕ_w berekend / ϕ_w gemeten
Benadering voor $\Phi_{w,\text{sig}}$

Lekhoogte 0.20 m

$\phi_I = 55^\circ; C = 0.22$

Benadering voor $\Phi_{w,\text{sig}}$

Lekhoogte 0.70 m

$\phi_I = 55^\circ; C = 0.22$
Vergelijking nieuwe formules met oude

Voorbeeld voor 1 constructie

\(H_s/\Delta D \)

\(\xi_{op} \)

\(\cot \alpha = 4; \Delta = 1.3; \Gamma = 1.2; \lambda = 0.5m; D = 0.4m \)
APPENDIX 1

Varianten voor de schematisatie van het stijghoogtefront
Variant I. Recht front met $\phi = \phi_b$ voor $s \to -\infty$

Algemene vorm : $\phi = \min[as+b;c]$

Randvoorwaarden :
- $\phi = 0$ voor $s = 0$
- $\phi = d_f$ voor $s = -L_f$
- $\phi = \phi_b$ voor $s \to -\infty$

Uitgewerkte vorm: $\phi = \min\left\{-\frac{d_f}{L_f} s ; \phi_b\right\}$

= $\min\left\{-\tan(\theta_h) s ; \phi_b\right\}$
Variant II. Gekromd front met $\phi = \phi_b$ voor $s \rightarrow -\infty$

Algemene vorm: $\phi = a + b \left[\exp \left(\frac{s}{c} \right) \right]$

Randvoorwaarden: $\phi = 0$ voor $s = 0$
$\phi = d_f$ voor $s = -L_f$
$\phi = \phi_b$ voor $s \rightarrow -\infty$

Uitgewerkte vorm: $\phi = \phi_b - \phi_b \exp \left[-\frac{s}{L_f} \ln \left(\frac{h_f}{\phi_b} \right) \right]$

$$= \phi_b \left(1 - \left(\frac{h_f}{\phi_b} \right)^{-\frac{s}{L_f}} \right)$$
Variant III. Gekromd front met $\phi = d_f$ voor $s \rightarrow -\infty$

\[\text{Algemene vorm: } \phi = (as + b) \exp\left(\frac{s}{c}\right) - b \]

\[\text{Randvoorwaarden: } \phi = 0 \quad \text{voor} \quad s = 0 \]
\[\phi = d_f \quad \text{voor} \quad s = -L_f \]
\[\phi_{\max} = \phi_b \]
\[\phi = d_f \quad \text{voor} \quad s \rightarrow -\infty \]

\[\text{Uitgewerkte vorm: } \phi = \left[\frac{d_f}{L_f} s - d_f\right] \exp\left(\frac{s}{c}\right) + d_f \]

\[\text{met:} \quad \frac{c}{L_f} \exp\left(-\frac{L_f}{c} - 1\right) = \frac{h_f}{d_f} \]

(zie appendix 2)

\[\text{of: (benadering) } \quad \frac{c}{L_f} = 3.0 \left(\frac{h_f}{d_f} + 0.20\right) \]
Variant IV. Gekromd front met $\phi = d_f$ voor $s \to -\infty$

Algemene vorm: $\phi = a \left(1 - \sin(bs) \exp\left[\frac{s}{c}\right] \right)$

Randvoorwaarden:
- $\phi = 0$ voor $s = 0$
- $\phi = d_f$ voor $s = -L_f$
- $\phi_{\text{max}} = \phi_b$ voor $s \to -\infty$

Er is een extra randvoorwaarde nodig. Hiervoor bestaan verschillende mogelijkheden:

a. $\phi_{\text{max}} = \phi_b$ voor $s = -L_c$

b. $\phi = d_f$ voor $s = -L_f - L_0$

Voor beide principes is de nauwkeurigheid van de gemeten stijghoogte op vrij grote afstand van het talud van belang. Deze nauwkeurigheid is echter in de praktijk onvoldoende.
APPENDIX 2

Afleiding van a, b en c in variant III van de schematisatie van het golffront
\[\phi = (as + b) \exp\left(\frac{s}{c}\right) - b \]

Randvoorwaarde 1.

Voor \(s = 0 \) geldt: \(\phi = 0 \)
Tevens geldt daar: \(\phi = b \)
Hieruit volgt: \(b = -d_f \)

Randvoorwaarde 2.

Voor \(s = -L_f \) geldt: \(\phi = d_f \)
Tevens geldt daar: \(\phi = (-aL_f - d_f) \exp\left(-\frac{L_f}{c}\right) + d_f \)
Hieruit volgt: \(a = -\frac{d_f}{L_f} \)

Randvoorwaarde 3.

\(\phi_{\text{max}} = \phi_b \)

Tevens geldt daar:

\[
\frac{d\phi}{ds} = 0
\]

\[
\frac{1}{c}(as + b) \exp\left(\frac{s}{c}\right) + a \exp\left(\frac{s}{c}\right) = 0
\]

\[
\left(\frac{a}{c} s + \frac{b}{c} + a\right) \exp\left(\frac{s}{c}\right) = 0
\]

\[
a \frac{s}{c} + \frac{b}{c} + a = 0
\]

\[
s = -c - \frac{b}{a}
\]

Voor deze waarde van \(s \) geldt:

\[\phi = h_f \]

\[(a(-c - \frac{b}{a}) + b) \exp\left\{\frac{1}{c}(c - \frac{b}{a})\right\} = h_f \]

\[((-ac - b) + b) \exp\left\{-1 - \frac{b}{ac}\right\} = h_f \]

\[-ac \exp\left\{-1 - \frac{b}{ac}\right\} = h_f \]
\[
\frac{ac}{b} \exp\left(\frac{b}{ac} - 1\right) = \frac{h_f}{b}
\]

Invullen van \(a\) en \(b\) levert:

\[
\frac{c}{L_f} \exp\left(-\frac{L_f}{c} - 1\right) = \frac{h_f}{d_f}
\]
APPENDIX 3

Uitwerking analytische oplossing voor stijghoogte onder de zetting
Variant II

Stijghoogte op de zetting

Kies een s-as kustwaarts gericht, met de oorsprong ter plaatse van de minmale stijghoogte. De vorm van de stijghoogte langs deze as is dan als volgt:

\[
\begin{align*}
 s < 0 & : \quad \phi_o = a + \text{bexp}\{cs\} \\
 s > 0 & : \quad \phi_o = ds
\end{align*}
\]

Hierin zijn a, b, c en d constanten, die afhankelijk zijn van de frontkarakteristieken, de taludhelling en de keuze van de s-as. Deze constanten worden gegeven voor een horizontale s-as en een s-as schuin langs het talud.

Differentiaalvergelijking voor stijghoogte onder de zetting

\[
\frac{\partial^2 \phi_f}{\partial s^2} - \frac{\phi_f}{\beta^2} = - \frac{\phi_o}{\beta^2}
\]

Er bestaat een algemene oplossing met A, B, C en D als constanten. Deze constanten moeten bepaald worden op basis van rand- en overgangsvoorwaarden.

Algemene oplossing voor s < 0

\[
\phi_f = a + \text{Pexp}\{cs\} + A\exp\{\frac{s}{\beta}\} + B\exp\{-\frac{s}{\beta}\}
\]

met:

\[
P = \frac{b}{1-c^2\beta^2}
\]

Algemene oplossing voor s > 0

\[
\phi_f = ds + C\exp\{\frac{s}{\beta}\} + D\exp\{-\frac{s}{\beta}\}
\]

Rand- en overgangsvoorwaarden

\[
\phi_f(-\infty) = \text{begrensd}
\]

\[
\phi_f(-0) = \phi_f(+0)
\]
\[\frac{\partial \phi_f}{\partial s}(-0) = \frac{d\phi_f}{ds}(+0) \]

\[\phi_f(s_1) = z_1 \quad \text{(fretische lijn in de constructie; } ds_1 = z_1) \]

Oplossing van de constanten A, B, C en D

\[A = C + D - a - P \]
\[= \frac{1}{2} \left[a + \frac{b}{1+c\beta} + \beta d \right] \left[1 - \exp\left(\frac{2z_1}{\beta d}\right) \right] - a - \frac{b}{1-c^2\beta^2} \]

\[B = 0 \]

\[C = -D \exp\left(\frac{2z_1}{\beta d}\right) \]
\[= -\frac{1}{2} \left[a + \frac{b}{1+c\beta} + \beta d \right] \exp\left(-\frac{2z_1}{\beta d}\right) \]

\[D = \frac{1}{2} \left[a + \frac{b}{1+c\beta} + \beta d \right] \]

Maximale verschijndruk

De maximale verschijndruk wordt gevonden voor \(s = 0 \).

\[\phi_f - \phi_o = C + D \]
\[= \frac{1}{2} \left[a + \frac{b}{1+c\beta} + \beta d \right] \left[1 - \exp\left(\frac{2z_1}{\beta d}\right) \right] \]

Constanten \(\beta, a, b, c \) en \(d \) bij een horizontale \(s \)-as

\(\beta = \Lambda \times \cos(\alpha) \)

\(a = \phi_b \)

\(b = -\phi_b \)

\[c = \frac{1}{L_f} \ln\left(\frac{\phi_b}{h_f} \right) = \frac{1 + \tan(\theta_h)}{\phi_b} \tan(\theta_f) \ln\left(\frac{\tan(\theta_h)}{1 + \tan(\theta_h)} \right) \]

\(d = \tan(\alpha) \)
Constanten \(\beta, a, b, c \) en \(d \) bij een \(s \)-as schuin langs het talud

\[
\begin{align*}
\beta &= \Delta \\
a &= \phi_b \\
b &= -\phi_b \\
c &= \frac{1}{L_f} \ln\left(\frac{\phi_b}{h_f}\right) \cos(\alpha) = \frac{1 + \tan(\theta_h)}{\phi_b} \tan(\theta_f) \ln\left[\frac{\tan(\theta_h)}{1 + \tan(\theta_h)}\right] \cos(\alpha) \\
d &= \sin(\alpha)
\end{align*}
\]
Variant III

Stijghoogte op de zetting

Kies een s-as kustwaarts gericht, met de oorsprong ter plaatse van de minimale stijghoogte. De vorm van de stijghoogte langs deze as is dan als volgt:

\[s < 0 \quad : \quad \phi_s = (as + b)\exp(cs) - b \]
\[s > 0 \quad : \quad \phi_s = ds \]

Hierin zijn \(a, b, c \) en \(d \) constanten, die afhankelijk zijn van de frontkarakteristieken, de taludhelling en de keuze van de s-as. Deze constanten worden gegeven voor een horizontale s-as en een s-as schuin langs het talud.

Differentiaalvergelijking voor stijghoogte onder de zetting

\[\frac{\partial^2 \phi_f}{\partial s^2} - \frac{\phi_f}{\beta^2} = -\frac{\phi_s}{\beta^2} \]

Er bestaat een algemene oplossing met \(A, B, C \) en \(D \) als constanten. Deze constanten moeten bepaald worden op basis van rand- en overgangsvoorwaarden.

Algemene oplossing voor \(s < 0 \)

\[\phi_f = (Ps + Q)\exp(cs) - b + A\exp\left(\frac{s}{\beta}\right) + B\exp\left(-\frac{s}{\beta}\right) \]

met:

\[P = \frac{a}{1-c^2\beta^2} \]
\[Q = \frac{b}{1-c^2\beta^2} + \frac{2ac\beta^2}{(1-c^2\beta^2)^2} \]

Algemene oplossing voor \(s > 0 \)

\[\phi_f = ds + C\exp\left(\frac{s}{\beta}\right) + D\exp\left(-\frac{s}{\beta}\right) \]
Rand- en overgangsvoorwaarden

\[\phi_f(-\infty) = \text{begrensd} \]

\[\phi_f(0) = \phi_f(+0) \]

\[\frac{d\phi_f}{ds}(0) = \frac{d\phi_f}{ds}(+0) \]

\[\phi_f(s_1) = z_1 \quad \text{(freatische lijn in de constructie)} \]

Oplossing van de constanten A, B, C en D

A

\[A = C + D + b - Q \]
\[= \frac{\beta}{2} \left[- \frac{bc}{1+c\beta} - \frac{a}{(1+c\beta)^2} + d \right] \left[1 - \exp\left(\frac{-2z_1}{\beta d}\right) \right] + b - \frac{b}{1-c^2\beta^2} - \frac{2ac\beta^2}{(1-c^2\beta^2)^2} \]

B

\[B = 0 \]

C

\[C = -D \exp\left(\frac{-2z_1}{\beta d}\right) \]
\[= -\frac{\beta}{2} \left[- \frac{bc}{1+c\beta} - \frac{a}{(1+c\beta)^2} + d \right] \exp\left(\frac{-2z_1}{\beta d}\right) \]

D

\[D = \frac{\beta}{2} \left[- \frac{bc}{1+c\beta} - \frac{a}{(1+c\beta)^2} + d \right] \]

Maximale verschilddruk

De maximale verschilddruk wordt gevonden voor \(s = 0 \).

\[\phi_f - \phi_o = C + D \]
\[= \frac{\beta}{2} \left[- \frac{bc}{1+c\beta} - \frac{a}{(1+c\beta)^2} + d \right] \left[1 - \exp\left(\frac{-2z_1}{\beta d}\right) \right] \]
Constanten β, a, b, c en d bij een horizontale s-as

$\beta = \Lambda \times \cos(\alpha)$

$s_1 = z_1 / \tan(\alpha)$

$a = -\tan(\theta_f)$

$b = -d_f = -\frac{\phi_b}{1+\tan(\theta_h)}$

$c = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{a}{b} = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{1+\tan(\theta_h)}{\phi_b} \tan(\theta_f)$

$d = \tan(\alpha)$

Constanten β, a, b, c en d bij een s-as schuin langs het talud

$\beta = \Lambda$

$s_1 = z_1 / \sin(\alpha)$

$a = -\tan(\theta_f) \cos(\alpha)$

$b = -d_f = -\frac{\phi_b}{1+\tan(\theta_h)}$

$c = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{a}{b} = \frac{1}{3.0(\tan(\theta_h)+0.20)} \frac{1+\tan(\theta_h)}{\phi_b} \tan(\theta_f) \cos(\alpha)$

$d = \sin(\alpha)