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Abstract

Banks such as Rabobank depend on multi-year mortgage prepayment forecasts in order to
make provisions for the associated prepayment risks. The econometric models they use are
fitted to historical data, and as a consequence their models are fitted to a decreasing interest
rate regime. Given the current economic climate of increasing interest rates, Rabobank has
ascertained that their models are underperforming. They expressed the need for an alternative
modeling approach that performs better in changing interest rate regimes.

This thesis takes a systems and control approach motivated by this need. We split the develop-
ment into two parts; a dynamical system for modeling mortgage payments and prepayments,
and a controller for simulating mortgagor behavior.

We model the dynamical system by following the principles of economic engineering. Eco-
nomic engineering is based on the method of analogs, and we develop specific analogies ap-
plicable to the mortgage market. We first derive a continuous model describing the mortgage
payment and partial prepayment dynamics. This model is then extended towards a hybrid
model to include the dynamics of full prepayment. The parameters of this economic engineer-
ing model can be identified with historical data and are relatively constant. The resulting
model is not affected by the variation of interest rates and performs well in any interest rate
regime.

We design an Economic Model Predictive Controller (EMPC) to simulate mortgagor behavior
that minimizes an objective function of its costs. This controller minimizes an economic
objective which is needed to simulate the behavior of mortgagors in changing interest rate
regimes. For different interest rate scenarios, we forecast prepayments with the model by
simulating this minimizing behavior. We perform simulations for different kinds of mortgagors
by varying the model parameters and the objective function. Based on these simulations,
we describe for each mortgagor both the exact cause and dynamics behind the mortgage
prepayments supplied.
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“Teach a parrot the terms ‘supply and demand’ and you’ve got an economist”
— Thomas Carlyle





Chapter 1

Introduction

From a bank’s perspective, mortgage prepayments lead to an uncertainty in estimating their
liquidity profile, and a mismatch in interest paid and received. Given the magnitude of a
typical balance sheet of a bank, banks need reliable forecasts to cover their prepayment risk.

Banks forecast prepayments with econometric models based on correlations, and these corre-
lations are estimated by fitting to historical data. In the history of interest rates there is a
structurally downward trend observed in the last 20 years [4]. Econometric models fitted to
this history produces a bias in the models [5]. Meaning a model fitted to this history might
perform well in a decreasing rates regime but might fail if interest rates are increasing.

The increase in interest rates as announced by the European Central bank [6] is a turning
point in prepayment behavior of mortgagors, and problems arise with using these econometric
models to forecast prepayments.

The main idea of this thesis is to do the forecasting of mortgage prepayments with an alter-
native modeling approach that does not primarily rely on historical data. In order to do that,
we formulate in this thesis the forecasting of mortgage prepayments as a systems and control
problem. We describe the dynamical system with a model of mortgage payments and pre-
payments. We forecast prepayments with this model by simulation behavior of a mortgagor
with a controller.

We derive the dynamics of mortgages by following the first principles of economic engineering
in Chapter 2. In economic engineering, economic systems are modeled as causal dynamic
systems based on analogies between economics and mechanics, similar to how mechanical and
electrical systems are modeled [7]. We derive analogies between mechanics and economics
applicable to the mortgage market by analyzing mortgage amortization schedules. By using
the intuitive economic perspective of the Lagrangian formalism in economic engineering, we
derive the economic forces responsible for prepayments. Based on these analogies, we de-
rive the dynamics of partial and full prepayments by analyzing their impact on repayment
schedules.
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2 Introduction

We formulate the forecasting of mortgage prepayments as a systems and control problem in
Chapter 3. We discuss the current challenge of forecasting prepayments in increasing interest
rates, and how interest rates will influence the model. We design an optimal controller known
as Model Predictive Control (MPC) to simulate behavior of a mortgagor that optimizes a cost
function or objective function. By implementing this controller, we simulate the dynamics of
partial and full prepayments derived in chapter 2.

The simulations with MPC in Chapter 3 show that the current dynamics of the model appear
to be too limited. In Chapter 4 we develop modeling techniques to include the option for
mortgage porting, to model full prepayments determined by their risk drivers (mortgage
rates and housing activity), and to model a new contract agreement after full prepayments.
A mortgagor can now choose for mortgage porting after moving to a new house, the full loan
prepayments are driving by their determinants, and it is possible to take out a new loan after
a full loan prepayment. These model extensions result in the hybrid model which we use for
the forecasting of mortgage prepayments.

The hybrid model is a dynamic gray-box model that relies on past data for the identification
of their parameters, but not for the dynamics of the model itself. This leads to an adapt-
able model with elements that have an economic interpretation. These gray-box models are
what sets economic engineering apart from other disciplines that seek to produce prepay-
ment models such as survival analysis [8], and logistic regression models from econometrics
[9, 10, 11, 5], and neural networks from machine learning [12]. These approaches result in
a black box model for forecasting mortgage prepayments. A black box model is a useful
approach if the economic system that this model describes (mortgages and its prepayments)
remains similar. However, if the system structure changes substantially, as is bound to hap-
pen for mortgage prepayments due to changes in interest rate trends over time, these models
lack interpretability to adapt to future scenarios [13].

We forecast prepayments for different interest rates scenarios in Chapter 5 with the hybrid
model designed in Chapter 4. We design an Economic Model Predictive Controller (EMPC)
to simulate behavior of a mortgagor that minimizes an objective function which is an economic
objective. We forecast prepayments in a decreasing interest rate scenario, and subsequently
in an increasing interest rate scenario. We perform the simulation of the increasing interest
rate scenario for different types of mortgagors. The type of mortgagor is varied by simulating
for different values of the parameters in the model and the objective function. In this way,
we forecast prepayments for different risk-averse, creditworthy, and rational mortgagors.

These simulations show how different types of mortgagors react to increasing interest rates
with prepayments. Based on these simulations, we describe the cause-and-effect relation
between interest rate changes and prepayments. Ultimately, this provides the bank with
better insight into the cause of varying levels of prepayments relative to different risk-averse,
creditworthy, and rational mortgagors.
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Chapter 2

An Economic Engineering Perspective
on Mortgages

To forecast prepayments, we need causalities describing the cause of a change in mortgage
repayments, and dynamics to describe the exact time change of mortgage repayments. In this
thesis, we resolve both by following the first principles of economic engineering.

Economic engineering is a new field of study developed over the past few years at the Delft
Center of Systems and Control, primarily by prof. em. Mendel. Together with several stu-
dents that wrote theses about the subject varying from modeling the electricity market of the
future [14], to using economic engineering for supply chain management [15], or developing a
macroeconomic model of the US economy [16]. They have all employed tools traditionally used
in engineering disciplines and physics to improve the predictive power of (macro)economic
models.

To derive the dynamics of mortgages, we first need to define the kinematics. We define
the kinematics of mortgages by analyzing repayment schedules of mortgage contracts till
maturity. Then, we derive the dynamics of mortgages by analyzing the consequences of
partial and full prepayments on repayment schedules. We use the Lagrangian formalism to
derive the economic forces causing mortgage prepayments. This is because, perhaps contrary
to classical mechanics, the Lagrangian formalism is the most intuitive from an economic
perspective, compared to Newtonian mechanics.

The structure of this chapter is as follows. First, in Section 2-1 the components of mortgage
products in the Dutch mortgage market are described. We provide the economic engineering
analogies applicable to the mortgage market in Section 2-2, and subsequently simulate mort-
gage amortization schedules of different mortgage products in Section 2-3. In Section 2-4 the
most common types of prepayments are described, the risks of prepayments for banks, and
the factors that influence a mortgagor’s decision to prepay. Then in Section 2-5, the dynamics
of mortgage prepayments are derived based on the economic engineering analogies, where a
distinction is made in the dynamics of partial prepayments and full prepayments.
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4 An Economic Engineering Perspective on Mortgages

2-1 The Terms of Mortgage Agreements

A mortgage loan is the largest loan contract for any individual. It is a private contract
between a lender (e.g., bank, insurance company), or mortgagee, and the borrower, known as
the mortgagor. The contract is an agreement between the mortgagor and mortgagee about
the various characteristics of the mortgage. Examples of such characteristic are the size of the
loan, amortization schedule, maturity, interest rate, collateral and so on. The role of collateral
distinguishes a mortgage loan from other loans or private placements, as the collateral is often
the house purchased with the funds from the mortgage. In this thesis, loan and mortgage will
alternately be used to refer to a level of money which is borrowed by a mortgagor where the
collateral of the agreed contract is a house.

A mortgage is a private contract as only two agents are involved in deciding upon the contract.
In general, a mortgage contract consists of a principal amount of money borrowed. This
principal amount is repaid within a predetermined period, or before the mortgage matures.
The maturity of a mortgage is mostly 30 years, which is also the maximum possible maturity.

The payments per month of a mortgage are outlined in an amortization schedule. An amor-
tization schedule shows, for each month till the mortgage contract matures, the principal
balance, the interest accumulated, and the monthly payments. The monthly payments of a
mortgage consist of two parts: a principal repayment and an interest payment.

The interest payment depends on the contractual interest rate (or contract rate) and the
principal balance. The interest payments are the return received on the mortgage contract
for the mortgagee; these are costs for a mortgagor. The interest rate is fixed for a prede-
termined period and could have different lengths from zero to thirty years. At the end of
each fixed interest rate period, a reset happens and a new contractual interest rate is agreed.
The principal repayment reduces the principal balance each month. The composition of the
principal repayments is determined by the mortgage product.

The Dutch tax code is the main determinant of the available mortgage products in the Nether-
lands [17, 18]. In general, three types of mortgage loans can be distinguished. The full amor-
tizing loans with maturity of mostly 30 years. These full amortizing loans are known as the
annuity and linear mortgage loans. Secondly, the interest-only mortgage loans and thirdly
the mortgage products including deferred principal repayment structures. In these products,
capital is accumulated in a linked account to take care of a bullet principal repayment due at
maturity of the loan [18]. The repayment schedule of this last mortgage product is similar to
the interest-only mortgage, however an extra savings or investment account is linked in which
capital is accumulated [19].

• Annuity mortgage: The monthly payments are fixed for the length of the fixed
interest rate period, but its composition changes. At the beginning of the term of the
mortgage, most of the monthly payment is made up by interest payments and just a
small amount is repayment of the principal. Due to these principal repayments, the
principal balance decreases as well as the interest payment. This is because the interest
payment is dependent on the principal balance. At the end of the mortgage term, the
interest payment gets smaller and more monthly amount goes for repaying the principal
amount.
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2-2 Modeling Mortgages with Economic Engineering 5

• Linear mortgage: Both the monthly payments and the interest payments are linear
decreasing as every month the borrower repays a fixed amount of principal. This fixed
amount of principal repayment is equal to the initial amount borrowed divided by the
maturity of the contract in months. This means that at the beginning of the mortgage
term, it has higher monthly payments and the actual debt reduces faster than with an
annuity contract. The accumulated interest at the end of the term will be lower for a
linear mortgage than for an annuity mortgage.

• Interest-only mortgage: The monthly payments are also fixed, however these monthly
payments consist only of an interest payment, and so the principal repayment is zero
during the mortgage term. The principal is entirely repaid at the end of the mortgage
term.

2-2 Modeling Mortgages with Economic Engineering

Economic engineering is a new field of study that models economic systems similarly as
mechanical systems. It has useful tools for analyzing mortgages from an engineering point of
view.

This section shows how we use economic engineering for modeling mortgages. We derive
analogies between mechanics and economics applicable to the mortgage market based on
Lagrangian mechanics. Moreover, we point out the consequences of mortgage contracts on
mortgage payments, and the succeeding section simulates different mortgage amortization
schedules. Later in this chapter, the analogies derived in this section will be used to derive
the dynamics of mortgage payments and prepayments.

2-2-1 A Mortgage as a Dynamical System

At a given time t, the state of a particle consists of its generalized position q and generalized
velocity v [20]. This statement translates to mortgages by asserting that the state of a
mortgage at a given time t is determined by its balances q = (q0, q1) and its payments
v = (v0, v1). The balances consist of a principal balance q0 and a balance of accumulated
interest q1, and the payments include a principal repayment v0 and interest payment v1. The
monthly payment P is the sum of the principal repayment and interest payment.

Figure 2-1 shows a path of a particle moving in the two-dimensional plane spanned by q0
and q1 called the principal-interest plane. A tangent to the path of the particle is v as it
is the time derivative of q, and can be decomposed in v0 and v1. The sum of the principal
repayment and interest payment is the monthly payment P , and so is the tangent to this
path of the particle.

The motion of a particle in this principal-interest plane is analogous to a mortgage amorti-
zation schedule. A mortgage amortization schedule is a complete table of periodic mortgage
payments and shows how a mortgage is repaid over a period of time. Each month (each
time step t) a schedule shows the principal balance q0(t), the interest accumulated q1(t), the
principal repayment v0(t), and the interest payment v1(t) until the mortgage is paid off at
the end of its term [21].
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6 An Economic Engineering Perspective on Mortgages

The principal balance is the current balance on a loan account. It is the unpaid balance of
the loan, which is the still outstanding debt for the mortgagor. The balance of accumulated
interest is the already received return by the mortgagee, which are the interest costs for a
mortgagor. In this thesis, a mortgage will be viewed from the perspective of a bank, and thus
the principal balance is the current balance outstanding, and the balance of accumulated
interest is the interest received over the loan account. Both axes are chosen positive for
convenience. A principal repayment reduces the principal balance, while an interest payment
increases the balance of accumulated interest.

Generally, a mortgage amortization schedule starts at the q0-axis with a zero value for q1, and
ends at the q1-axis with a zero value for q0. This is because at the beginning of the mortgage
term no interest is paid, and no principal is repaid, while at the end of the mortgage term
the total principal balance is repaid, and all the interest on the loan is received.
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q1(t)

Current balance
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v0(t)

v1(t)P (t)

Figure 2-1: A mortgage amortization schedule as a path in the principal-interest plane spanned
by q = (q0, q1) as analogous to the motion of a particle in the plane. The vector tangent to
this path is the monthly payment P , which is decomposed in the principal repayment v0 and
the interest payment v1, both in the units of euro per time. A principal repayment reduces the
principal balance q0, while an interest payment increases the balance of accumulated interest q1.
Both balances are in the units of euro.

Particles base their movement on the principle of least action. They do so by minimizing the
action S:

S(γ) =
∫ T

t=0
L(q, v) dt (2-1)

In the above equation, L will be the running cost (or the disutility) of the mortgage. The
mortgage is as a cost minimizing (or utility maximizing) mortgage if an amortization schedule
γ minimizes the accrued costs S for the period t to T . Here t = 0 is the starting time of the
mortgage contract and T the maturity of the contract in months.
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2-2 Modeling Mortgages with Economic Engineering 7

By using the tools of the calculus of variations, the solution of Equation (2-1) results in the
Euler-Lagrange equations

d
dt

∂L

∂v
− ∂L

∂q
= 0 (2-2)

From the Euler-Lagrangian equations in Equation (2-2), the characterizations of the marginal
costs are obtained. The marginal change in running cost for a marginal change in payments
v

p := ∂L

∂v
(2-3)

is called a risk factor. Risk factors have their roots in financial engineering for adjusting
assets, cash flows, or payoffs, for risk [22, 23]. The risk factor p0 is a risk factor valued to the
principal repayments of the mortgage, and the factor valued to the payments of interest is p1.
These factors are personal risk factors a mortgagor values to these mortgage payments.

p0 = ∂L

∂v0
p1 = ∂L

∂v1
(2-4)

The marginal change in running cost for a marginal change in balances q

F := ∂L

∂q
(2-5)

is referred to a risk appetite. Risk appetite is the amount of risk someone is willing to take
or accept to achieve its objectives.

F0 = ∂L

∂q0
F1 = ∂L

∂q1
(2-6)

The risk appetite for principal repayments and risk appetite for interest payments are F0 and
F1 in Equation (2-6) respectively.

Table 2-1 summarizes the analogies between mechanics and economics, and the specific analo-
gies applicable to the mortgage market.

Master of Science Thesis B. N. M. Krabbenborg



8 An Economic Engineering Perspective on Mortgages

Table 2-1: Analogies between mechanics and economics, and the extension of the analogies
applicable to the mortgage market.

Mechanics Economics Mortgage Market Units

q Position Balance q0 Principal balance e

q1 Accumulated interest e

v Velocity Flow v0 Principal repayments e/month
v1 Interest payments e/month

p Momentum Value p0 Risk factor principal repayments −
p1 Risk factor interest payments −

F Force Want F0 Risk appetite principal repayments 1/month
F1 Risk appetite interest payments 1/month

A velocity or a position, especially in case of a height, will be measured as a level and said
to be high or low. Thus, the level of the balances can be high or low. Normally, a flow of
money is measured as an amount and said to be large or small. But for the analogy we refer
to the payments as a level of supplied money that can be high or low. Momenta and forces
will be measured as an amount. The risk factors are an amount of risk, where the amount of
risk can be large or small. Similar a risk appetite can be large or small.

2-2-2 Mortgagor Characteristics as Model Parameters

A mortgagor’s characteristics such as his risk aversion and creditworthiness are respectively
analogous to masses and springs in mechanics.

The convexity of the running cost function L (or disutility function) measures the mortgagor’s
attitude towards risk. In general, the more convex the running cost function, the more risk-
averse the mortgagor will be, and the less convex the running cost function, the less risk-averse
the mortgagor will be.

Risk aversion is a well known term in economics for analyzing choice under uncertainty. It
explains the tendency of people to prefer outcomes with a more predictable, but possible
lower payoff, rather than another situation with a highly unpredictable, but possible higher
payoff [23].

The convexity of the running cost function depends on the choice of the masses m0 and m1
in the following mass tensor.

[
∂2L

∂v2

]
=

[
m0 0
0 m1

]
, (2-7)

where a heavy mass results in a more convex running cost function and a more risk-averse
mortgagor. While a lighter mass results in a less convex running cost function and a less
risk-averse mortgagor. The inverse of the mass tensor is known as the elasticity tensor E:
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2-2 Modeling Mortgages with Economic Engineering 9

E =
[
m0 0
0 m1

]−1

(2-8)

The supply and demand curves in economics are analogous to looking at masses in mechanics.
We use the elasticity tensor to determine the level of payments supplied v at a certain risk
factor p:

v = Ep[
v0

v1

]
=

[
m0 0
0 m1

]−1 [
p0

p1

] (2-9)

We show in Figure 2-2 a typical linear supply schedule that is equally recognizable as a graph
of the definition of momentum (in the usual ‘p = mv’ functional form). The risk factor
of principal repayments is related to the level of principal repayments supplied by a supply
curve. The slope of the supply curve is the risk aversion of a mortgagor, and depends on the
weight of the mass. Curve S1 represents the supply curve of a more risk-averse mortgagor,
while curve S2 represents the supply curve of a less risk-averse mortgagor. For a similar risk
factor p∗

0, a more risk-averse mortgagor will supply a lower level of principal repayments (v0,1)
than the less risk-averse mortgagor is willing to supply (v0,2).

v0 [e/month]
0

p0 [−]

v0,1 v0,2

p∗
0

S1

S2

Figure 2-2: Rotation of the supply curve due to different risk aversions of mortgagors. The more
risk-averse mortgagor with supply curve S1 will supply a lower level of principal repayments v0,1
for a similar risk factor p∗

0 than the less risk-averse mortgagor is willing to supply v0,2.

The creditworthiness of a mortgagor is analogous to the choice of the spring constants in the
following spring constant tensor:

[
∂2L

∂q2

]
=

[
k0 0
0 k1

]
, (2-10)
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10 An Economic Engineering Perspective on Mortgages

The Creditworthiness of a mortgagor represents how worthy a mortgagor is to receive new
credit when he applies for a debt obligation. A common score that is used to determine
a mortgagor’s creditworthiness is the Fair Isaac Credit Organization (FICO) credit score
[24], [25]. A higher FICO score is associated with a higher degree of creditworthiness [11].
The creditworthiness of a mortgagor has only significance with respect to a level of money
borrowed, or the principal balance. Therefore, k1 has no economic interpretation in this
thesis.

The inverse of the spring constant tensor is known as the convenience yield tensor C.

C =
[
k0 0
0 k1

]−1

(2-11)

In this tensor, k0 is the creditworthiness of a mortgagor. From Equation (2-10) follows that
a high spring constant translates to a mortgagor with a high creditworthiness, while a low
spring constant represents a mortgagor with a low creditworthiness.

The tensor in Equation (2-11) is known as a convenience yield tensor, as it ‘stores’ a benefit
of having a product available in storage. If the storage belongs to a mortgagor, then this
mortgagor will have a benefit of borrowing money. A mortgagor with a lower creditworthiness
is likely to benefit more from the borrowed money and therefore wants to repay the borrowed
money slower than a mortgagor with a higher creditworthiness. A mortgagor with a higher
creditworthiness will impose a larger force, or have a larger appetite for repaying the mortgage
as follows from eq. (2-12).

FC = −C−1q[
F0

F1

]
C

= −
[
k0 0
0 k1

] [
q0

q1

]
(2-12)

The slope of the convenience yield curves as shown in Figure 2-3 depends on the credit-
worthiness of a mortgagor. For a similar principal balance q∗

0, a mortgagor with a higher
creditworthiness has a steeper slope of the convenience yield curve (Y1) and a larger appetite
F0,C1 for repaying the loan, while a mortgagor with a lower creditworthiness has a less steep
slope of the convenience yield curve (Y2) and a smaller appetite F0,C2 for repaying the loan.
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q0 [e]
0

−F0,C [1/month]

F0,C1

F0,C2

q∗
0

Y1

Y2

Figure 2-3: Rotation of the convenience yield curve due to different creditworthy mortgagors.
The more creditworthy mortgagor with yield curve Y1 will have a larger appetite F0,C1 for repaying
the mortgage for a similar principal balance q∗

0 than the mortgagor with a lower creditworthiness
which has a smaller appetite F0,C2.

The analogies between mechanics and economics, and the specific analogies applicable to the
mortgage market are shown in Table 2-2.

Table 2-2: Analogies between mechanics and economics, and the extension of the analogies
applicable to the mortgage market.

Mechanics Economics Mortgage Market Units

m mass Price m0 Risk aversion principal repayments [month/e]
Inelasticity m1 Risk aversion interest payments [month/e]

k Spring Inverse convenience k0 Creditworthiness [1/(e-month)]
constant yield k1 - -

2-2-3 Mortgage Contracts Impose Constraints on Payments

The type of mortgage contract determines how the mortgage is paid off during the term of
the loan. A mortgage contract acts as a constraint that limits the motion of the dynamical
system. The level of payments is constrained each month till maturity depending on the type
of mortgage contract. In classical mechanics, constraints are classified depending on how the
conditions of the constraint can be expressed. The same approach is taken as in classical
mechanics to classify the constraints of mortgage contracts

A particle constrained to move along any curve or on a given surface is said to be a holonomic
constraint [26]. With the equations defining the curve or surface acting as the equations of
a constraint. If the conditions of constraint can be expressed as equations connecting the
coordinates (and possible time) of a particle in the principal-interest plane having the form

Master of Science Thesis B. N. M. Krabbenborg



12 An Economic Engineering Perspective on Mortgages

f(q0, q1, t) = 0 (2-13)

then the constraints are said to be holonomic.
Non-holonomic constraints are most often expressed as a differential relation of the form [27]:

f(v0, v1, q0, q1, t) = 0 (2-14)

If the constraints are non-holonomic, the equations expressing the constraint can not be used
to reduce the number of coordinates, or the number of degrees of freedom of the system as
opposed to holonomic constaints [27]. The constraints imposed by mortgage contracts on
the mortgage payments are non-holonomic constraints, because the degrees of freedom of the
system can not be reduced with the constraints.
The non-holonomic constraints for the different type of contracts are summarized in Table 2-3,
and we explain the constraints based on simulations in the next section.

Table 2-3: Mortgage contracts impose constraints on the payments of mortgages. The constraint
on the interest payments is equal for each mortgage product. Whereas the constraint on the
principal repayment differs per mortgage product.

Contract Constraints

Annuity v0 + v1 = P

v1 = rcq0

Linear v0 = A0/T

v1 = rcq0

Interest-only v0 = 0
v1 = rcq0

2-3 Simulating the Kinematics of Mortgages

We model a mortgage as a point mass which is constrained to move freely due to the mortgage
contract. The non-holonomic constraints constrain the payments at each time step till the
contract matures, and are therefore also sufficient to constrain the possible positions (or
balances) of the contract. We model the mortgage as a point mass because no external force
is acting on the system and the velocities are fixed (payments are scheduled) at each time
step.
To run simulations, we discretize the system with Forward Euler method, and we add the non-
holonomic constraints from Table 2-3 depending on the contract simulated. One time step is
equal to one month, because the payment frequency of a mortgage is monthly. The simulations
are in discrete time, however, the figures are generated by using a dashed (continuous) line to
make a clear distinction in the figures later on in this thesis. We use in the principal-interest
plane a solid line to indicate the level of the balances each month.
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2-3 Simulating the Kinematics of Mortgages 13

We simulate a mortgage with an initial level of money borrowed A0 equal to e500, 000. The
contract interest rate rc is 3% per year fixed for the entire mortgage term, and the maturity
T of the loan is 30 years.

Annuity Mortgage

The annuity mortgage is characterized by its fixed monthly payments P calculated with
Equation (2-15). The level of the monthly payment depends on the contractual interest rate
per month rc, the maturity in months T , and the initial level of money borrowed A0 .

P = A0
rc(1 + rc)T

(1 + rc)T − 1 (2-15)

The fixed monthly payment is the sum of a principal repayment and an interest payment:

v0 + v1 = P (2-16)

Here, the interest payment is calculated by multiplying the contractual interest rate per month
with the principal balance outstanding:

v1 = rcq0 (2-17)

The initial conditions of the loan balances and payments are.

q0[0] = A0 q1[0] = 0 v0[0] = rcq0[0] − P v1[0] = rcq0[0] (2-18)

The velocity v0 will be negative, because a principal repayment decreases the principal balance
q0, while the velocity v1 will be positive as this payment increases the balance of accumulated
interest. The simulation for one iteration has the following form:

q0[k + 1] = q0[k] + v0[k]
q1[k + 1] = q1[k] + v1[k]
v0[k + 1] = rcq0[k + 1] − P

v1[k + 1] = rcq0[k + 1]

(2-19)

We simulate the mortgage amortization scheme from the start of the contract t = 0 till the
end of the contract t = T = 360 months. The mortgagor starts repaying the loan at t = 0.

In Figure 2-4 the balances and the payments per month are shown till the end of the contract.
We plot the payments both as positive numbers for convenience. At t = 0, the principal
balance is equal to the initial level of money borrowed, while the interest accumulated is zero.
At the end of the mortgage term, the principal balance is zero, and the interest accumulated
is e258, 882 euros.
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Figure 2-4: The monthly balances and payments of an annuity contract with a maturity of 30
years and an initial level of e500, 000 borrowed. An annuity contract is characterized by its fixed
monthly payments till the contract matures. As a result, the interest payment is at the beginning
of the contract higher than the principal repayments, and vice versa at the end of the term.

At the beginning of the contract, the principal repayments are lower than the interest pay-
ments, while at the end of the contract the principal repayments are higher than the interest
payments. The total monthly payments P are constant over time till the contract matures
which characterizes an annuity contract.

The motion of the annuity schedule in the principal-interest plane looks like a quarter ellipse
located in the first quadrant as shown in Figure 2-5. The starting point is in the right bottom
at (q0, q1) = (5 · 105, 0) and the mortgage matures at (q0, q1) = (0, 2.59 · 105). This means
that at the end of the contract, a total interest of e258, 882 is received by the bank.
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Figure 2-5: A schedule of an annuity mortgage contract in the principal-interest plane. The
contract starts at t = 0 at (q0, q1) = (5 · 105, 0) and the end of the mortgage term is at
(q0, q1) = (0, 2.58 · 105).
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Linear Mortgage

A linear mortgage is characterized by its fixed monthly principal repayment v0 calculated
with the initial level of money borrowed A0 divided by the maturity T in months:

v0 = A0
T

The interest payment is calculated by multiplying the contract interest rate per month with
the principal balance: v1 = rcq0.
The initial conditions of the loan balances and payments are:

q0[0] = A0 q1[0] = 0 v0[0] = −A0/T v1[0] = rcq0[0] (2-20)

The simulation for one iteration has the following form:

q0[k + 1] = q0[k] + v0[k]
q1[k + 1] = q1[k] + v1[k]
v0[k + 1] = −A0/T

v1[k + 1] = rcq0[k + 1]

(2-21)

In Figure 2-6 we plot the balances till the mortgage matures at t = T = 360 months, and the
payments per month. At t = 0, the principal balance is equal to the initial level borrowed,
while the interest accumulated is zero. At the end of the contract, the principal balance is
zero, and the interest accumulated is e225, 621. A characteristic of a linear contract is that
the principal repayments are constant over time till the contract matures. Consequently, the
interest payments as well as the monthly payments decrease linearly over time.
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Figure 2-6: The monthly balances and payments of a linear contract with maturity of 30 years
and an initial level of e500, 000 borrowed. A linear contract is characterized by its fixed principal
repayments till the contract matures. As a result, the monthly payment and interest payment is
high at the beginning of the contract and decreases linearly over time.
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The schedule of a linear mortgage in the principal-interest plane is quite similar to the one
of an annuity contract as shown in Figure 2-7. The schedule starts is in the right bottom at
(q0, q1) = (5 · 105, 0) and stops at (q0, q1) = (0, 2.256 · 105). This means that at the end of the
contract, a total interest of e225, 621 euros is received by the bank.
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Figure 2-7: The schedule of a linear contract in the principal-interest plane. The contract starts
at t = 0 in (q0, q1) = (5 · 105, 0) and the end of the contract term is in (q0, q1) = (0, 2.256 · 105).

Compared with the annuity mortgage, a lower total interest is paid at the end of the linear
contract which means that a linear mortgage is more favorable for mortgagors. Although,
often an annuity mortgage is chosen due to the fixed monthly payments and the relatively
higher payments at the beginning of a linear contract.

Interest-Only Mortgage

An interest-only mortgage, or bullet loan, is characterized by a repayment of the entire
principal due at the end of the loan term. Only interest is paid during the term of the
mortgage and is calculated similar as with the other two mortgage types: v1 = rcq0. The
principal repayment is zero v0 = 0 and the principal balance remains constant during the
term of the mortgage. At the end of the term, the interest payment is zero and the principal
repayment consists of the entire principal outstanding.

The initial conditions of the loan balances and payments are:

q0[0] = A0 q1[0] = 0 v0[0] = 0 v1[0] = rcq0[0] (2-22)

The interest-only mortgage is characterized for monthly payments consisting only of interest
payments (principal repayments are zero v0 = 0), and the total principal balance is paid off
at the end of the contract. Therefore, we add final conditions:

v0[T ] = −q0[k] v1[T ] = 0 (2-23)

B. N. M. Krabbenborg Master of Science Thesis



2-3 Simulating the Kinematics of Mortgages 17

The simulation of one iteration has the following form:

q0[k + 1] = q0[k] + v0[k]
q1[k + 1] = q1[k] + v1[k]
v0[k + 1] = 0
v1[k + 1] = rcq0[k + 1]

v0[T ] = −q0[k]
v1[T ] = 0

(2-24)

We show in Figure 2-8 the balances till the mortgage matures at t = T = 360 months, and
the payments per month. At t = 0, the principal balance is equal to the initial level of
money borrowed, while the interest accumulated is zero. At the end of the contract, the
principal balance is zero, and the interest accumulated is e448, 750. A characteristic of an
interest-only contract is that the principal repayments remain zero during the contract term
and only interest is paid during the contract. The principal is entirely repaid at the end of
the mortgage contract.
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Figure 2-8: The monthly balances and payments of an interest-only contract with maturity of
30 years and an initial level of e500, 000 borrowed. An interest-only contract is characterized
by its fixed interest payments and no principal repayments during the contract term. The total
principal balance is repaid back at the end of the term.

The schedule of the interest-only contract in the principal-interest is shown in Figure 2-9.
The mortgage contract starts in right bottom at (q0, q1) = (5 · 105, 0) and the end of the
mortgage term is at (q0, q1) = (0, 4.488 · 105). This means that at the end of the contract, a
total interest of e448, 750 is received by the bank.

Clearly, a bank receives the highest interest for an interest-only contract compared to an
annuity contract and linear contract. This kind of mortgage was often contracted in the past
due to the high tax incentives given by the state on loan interests. Nowadays, the popularity
of this type of mortgage has lowered, but still a large portion of mortgage portfolios consists
of interest-only mortgages [1].
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Figure 2-9: The schedule of an interest-only contract in the principal-interest plane. The contract
starts at t = 0 in (q0, q1) = (5 · 105, 0) and the end of the term is in (q0, q1) = (0, 4.488 · 105).
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2-4 Prepayments as Embedded Option in Mortgage Contracts

All mortgage contracts have a repayment schedule, but it is an incomplete contract as it
does not contain clauses for all possible states of nature. A change in economic conditions
may give the mortgagor incentives to deviate from that repayment schedule. An extreme
deviation is a full prepayment of the mortgage loan, but partial prepayments are also possible
during the term of the loan. Prepaying mortgage principal can save large interest costs for
the mortgagor, and results in interest losses for a bank.

The focus of this research will be on the modeling of the types of prepayments described in
Section 2-4-2, since these prepayments represent the largest amount of prepayments in the
Dutch mortgage market. Although, not all determinants for prepayments were found in liter-
ature specific to the Netherlands, most, if not all the risk drivers described in Section 2-4-3 can
be applied to the Dutch mortgage market. We identify the risk drivers of prepayments in this
section as the most relevant ones from literature, whatever the mortgagor his demographics
or mortgage type.

2-4-1 The Risk of Prepayments

Mortgage prepayments are a risk from the perspective of the issuer of the loan. In this thesis,
a bank will be the issuer of loans to borrowers (individuals). A borrower has the option of
prepaying a part of the principal or fully redeeming the loan. Both prepayment types result
in an early mortgage termination and a deviation of the expected return on the mortgage
(interest received). These two consequences of mortgage prepayments result in the following
two types of prepayment risks for banks:

• Interest rate risk in general arises when there is a mismatch in the fixation of the
interest rates paid and received by the bank [24]. A bank attracts resources from
elsewhere to fund mortgages on which a certain agreed upon rate has to be paid over a
fixed period. If the mortgagor decides to prepay (part of) the principal before its original
maturity, the bank has to find alternative use for these funds. If market interest rates
have fallen since the origination of the loan, the bank will incur a loss on these funds.
Usually, fixed interest rate mortgages are hedged against market interest rate changes
using Interest Rate Swaps (IRS) [24]. Two parties exchange or ’swap’ one set of interest
payments for another set of interest payments. The bank receives a variable interest rate
and pays a fixed interest rate. However, a mortgage prepayment may expose the bank
to the possibility of paying a fixed interest rate which is higher than the one obtained
on the newly originated loans.

• Liquidity risk arises from the fact that the liquidity profile of the bank is influenced
by the maturity profile of loans [24]. The uncertainty in this maturity profile subjective
to prepayments has a considerable impact on a bank’s liquidity profile. An incorrect
estimation of this profile leads to the risk of overestimating or underestimating future
liquidity requirements, as well as increased long-term liquidity costs.

In order to cover their prepayment risk, a bank must be able to forecast prepayments for the
coming years in order to implement some effective hedging strategies.
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2-4-2 Types of Prepayments

In Figure 2-10 the Conditional Prepayment Rate (CPR) is shown for three different types
of prepayments of Rabobank’s mortgage portfolio in the Dutch mortgage market from 2005
till 2016. The CPR is expressed as an annual percentage and is calculated by dividing the
amount of prepayments with the amount of outstanding principal of a portfolio of loans.
Therefore, the CPR represents the percentage of a mortgage portfolio’s principal that is paid
off prematurely. Most of the mortgage prepayments in the Netherlands are prepayments due
to principal curtailments, relocation, and refinancing [1].

• Principal curtailments: These prepayments are defined as prepayments in excess of
the principal repayments scheduled under the contractual amortization payment scheme,
often also referred to as curtailments or partial prepayments [1, 13]. Some mortgagors
are in the habit of repaying more than the scheduled principal repayment each month
to build up equity in their homes faster and as a form of forced savings. Typically,
curtailments of up to 10% − 20% of the money borrowed can take place without a
prepayment penalty. Partial prepayments show up in the amortization schedule as extra
repayments on top of the principal repayment [13]. Partial prepayments are an effective
way for shortening the term of the mortgage. By making a partial prepayment, a loan
will amortize more quickly than the nominal remaining term implies. Curtailments are
relatively a small contributor to overall prepayments, simply because they are a lot
smaller in amount than the full repayments related to refinancing or relocation.

• Relocation: These prepayments are full loan prepayments of mortgages due to mort-
gagors that take a new mortgage loan on a new property when relocating, and are
mainly driven by home sales. Selling a home will usually trigger a full loan prepayment.
However, mortgages in the Netherlands are generally portable, which means the mort-
gagor who sells the house and buys a new one can transfer the terms and conditions
of the current mortgage to the new house (i.e., mortgage porting or mortgage transfer-
ring). There are no additional costs involved by transferring the current mortgage to
a new home. However, the option of taking out a new loan on a new property is also
penalty free. Taking out a new mortgage after relocating is favorable if the mortgage
rate of a new contract is lower than the one of the existing mortgage contract at the
moment of the selling [13]. This new loan can be contracted by a different mortgagee.

• Refinancing: These prepayments are full loan prepayments of mortgages due to mort-
gagors that take a new mortgage loan on the same property. If a loan is refinanced,
the current loan is paid off with a new loan. Refinancing is attractive if the market
mortgage rate is below the mortgage rate of the current mortgage contract. In the case
of a refinancing, a prepayment penalty is imposed if a refinancing is not at a reset date
of the contract rate, or the mortgagor is not moving to a new home. The prepayment
penalty is an amount of money equal to the present value of the difference in monthly
interest payments between the current loan and a newly originated loan with the same
characteristics [28]. Additional costs as administration costs and tax rates are also part
of the prepayment penalty. Moreover, it is possible to refinance your loan by a different
lender [29].
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Figure 2-10: The CPR of the three different types of prepayments of Rabobank’s mortgage
portfolio in the Dutch mortgage market in the period 2005-2016 [1].

Prepayments due to defaults are caused by the foreclosure and subsequent liquidation of a
mortgage. Defaults are relatively a minor component of aggregate prepayments in most cases
[13]. The mortgage market in the Netherlands is characterized by low default rates and a low
number of foreclosures [17]. Therefore, prepayments due to defaults will not be considered in
the model.

2-4-3 The Risk Drivers of Mortgage Prepayments

Factors that have influence on a mortgagor’s decision to prepay are known as the risk drivers
or determinants of prepayments. We describe the risk drivers per type of prepayment.

• Principal curtailments appear not to be an optimal strategy for a borrower at first
sight. If the contractual rate of a borrower is above mortgage market rates, a borrower
derives maximum benefit from a full refinancing. Contrary, if the contractual rate is
above the market mortgage rate, it is not beneficial to send in an amount above the
monthly payment [13]. However, a refinancing can be inconvenient and may involve
transaction cost. If a borrower does not want to refinance because of the transaction
costs, partial prepayments represent the optimal strategy. Reasons to partially prepay
are related to deleveraging. Also, principal curtailments are positively related to loan
age due to a greater risk aversion of older householders with respect to holding debt, as
well as an increased financial ability to make extra payments [13]. Another factor that
explains the amount of partial prepayments are alternative investments. Funds used
for mortgage prepayment could be used for other purposes. A borrower has options for
placing this money in investments such as stocks, bonds, futures, savings accounts etc.
If returns on these investments exceeds the mortgage rate, these investments represent
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a wiser economic choice. Even if an investment pays a lower rate than a mortgage
(such as a savings deposit), it can give a borrower a benefit of having liquidity or cash
available on demand. [30].

• The relocation incentive is mainly driven by sales of existing homes. In periods of
house price appreciation, home sales and mortgage originations may increase as the
expected return on investment increases and borrowers are becoming less constrained
by negative equity [1, 11]. On the contrary, during house price depreciation periods, the
sale of homes and mortgage originations tend to decrease as risk-averse home-buyers
are reluctant to enter the market. As a result, the prepayments due to relocation will
drop. The sale of existing homes has a direct relationship with prepayments due to
relocation [1, 13]. However, mortgages are portable, and it is allowed to transfer the
terms and conditions of the existing mortgage contract to a new house without extra
costs involved. So the incentive to fully prepay due to relocation is twofold: first there
should be an incentive for housing, and second an incentive to take out a new mortgage
after housing.

• The refinance incentive is generally motivated by lower interest rates in the market,
but can also occur because the mortgagor wants to access increased equity in the house
or to take advantage of an improvement in credit [13]. The incentive is mainly driven by
the difference between the contractual rate and market mortgage rates. If the market
mortgage rate is lower than the contractual rate, it is favorable to refinance the loan. A
refinancing can be thought of as an exercise of a call option on the existing loan by the
mortgagor. However, several complications exist by stating that the refinancing decision
simply involves comparing the rate on the existing loan with that available on a new
loan [1, 13]. First, there is not a single mortgage rate, but many, which vary by lender,
by region, by mortgage maturity, and by the creditworthiness of the borrower. Second,
the means to reach a decision on whether to refinance or not differs per borrower, as
borrowers are not an efficient corporation and not always behaving rationally. Third,
substantial costs can be involved in taking out a new mortgage, and these costs can
vary per loan depending on the borrower and loan characteristics (such as loan amount,
loan age, contractual rate).

The seasonal pattern of the overall CPR observed in Figure 2-10 is mainly due to the partial
prepayments and prepayments due to relocation. Prepayments peak around year-end as a
large share of all housing transactions take place in December due to the gift tax framework
[1]. Moreover, there might be an incentive to use wealth to pay down mortgage debt prior to
the end of December, since it is the measurement date for tax authorities.

2-5 Modeling Mortgage Prepayments with Economic Engineering

A prepayment is a repayment of extra principal on top of the scheduled principal repayment.
A distinction can be made between partial prepayments and full prepayments.

Borrowers are allowed to partially prepay every month (the frequency of prepayment is up
to the mortgagor), and the level of the principal prepaid is up to the mortgagor, but there
is a maximum allowed per year which is a certain percentage of the initial level of money
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borrowed. A partial prepayment reduces the principal balance faster, and this increased
reduction in the principal balance results in a faster decrease in interest payments, and less
interest received on the mortgage.

A full loan prepayment is one repayment of the remaining principal balance outstanding, and
may involve a penalty. The main difference between full prepayments and partial prepayments
is that full prepayments end the mortgage contract immediately, whereas after a partial
prepayment the mortgage contract continues.

For modeling prepayments with economic engineering, we also make a distinction between the
dynamics of partial prepayments and full prepayments. Partial prepayments are continuous,
because the frequency can be monthly, and the level of money prepaid is up to the borrower
with a maximum that is penalty-free. Full prepayments are discontinuities in the state vector,
because the remaining debt is repaid in one time step, and this results in an instantaneous
change in the state of the system.

From this point on, the contract constraints of an annuity mortgage will be used as an example
for the simulations. However, these constraints can easily be changed to another contract type
by using the contract constraints in Section 2-2-3.

2-5-1 Partial Prepayments and Newton’s Second Law

Partial prepayments show up in the amortization schedule as extra repayments on top of the
scheduled principal repayment [13]. These extra repayments result in a faster decrease of
the principal balance. In Figure 2-11, an illustration is shown of the consequence of partial
prepayments on the schedule of an annuity mortgage in the principal-interest plane. The left
figure shows the principal repayments and interest payments without partial prepayments,
and the right figure the consequence of partial prepayments on the schedule of the contract.

Clearly, partial prepayments increase the principal repayment per month (each time step). In
mechanics, this is analogous to an acceleration that increases the velocity at one time step.

v0 = v∗
0 +

∫
a0 dt (2-25)

Here, v0 is a principal repayment including partial prepayments, v∗
0 a scheduled principal

repayment, and a0(= v̇0) a partial prepayment. Due to this increase of the velocity vector v0,
the tangent vector to the curve of the contract schedule tilts more to the left. This change in
tangent vector (monthly payment) results in a different mortgage repayment schedule.

Partial prepayments increase the principal repayments supplied by the mortgagor, or the
velocity v0. In Figure 2-12 we show a supply curve for principal repayments. An increase in
principal repayments is caused by a change in risk factor ṗ0 = F0. Assuming that the risk
aversion of a borrower remains a constant and differentiating with respect to time, to arrive
to the relationship between a risk appetite F0 and the consequent extension of the supply of
principal repayments v̇0

v̇0 = m−1
0 F0 (2-26)
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Figure 2-11: An illustration of the schedule of an annuity contract in the principal-interest plane.
The left figure shows the schedule without partial prepayments and the right figure the schedule
with partial prepayments. As a consequence of the partial prepayments the tangent vector to the
path of the schedule tilts more to the left resulting in a different repayment schedule.

analogous to Newton’s second law in engineering F = ma. Thus, a partial prepayment
increases the principal repayment due to economic forces acting on the mortgage, analogous to
forces acting on a body in mechanics. Equation (2-26) expresses how the principal repayments
supplied are adjusted based on economic forces impinging on it, and this is shown graphically
as a movement along the supply curve in Figure 2-12.

v0 [e/month]
0

p0 [−]

m0

1

S

F0 = ṗ0

v̇0

Figure 2-12: A supply curve that shows the relation between a risk factor and the level of
principal repayments supplied. An increase in principal repayments is due to a change in risk
factor. This is analogous to an increase in velocity v̇0 due to a change in momentum ṗ0 as a
consequence of forces acting on a body, or Newton’s second law of motion in mechanics.
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We perform simulations of an annuity contract with partial prepayments. We simulate a
mortgage with a level of money borrowed A0 equal to e500, 000, a contract rate of 3%, and
maturity of 10 years. A shorter maturity is chosen such that the time steps in the principal-
interest plane are better visible.
The borrower partially prepays the maximum allowed level of money per month. The maxi-
mum allowed prepayments per year is a percentage ρ of the initial level of money borrowed.
We assume from now on that the maximum allowed partial prepayments will be equal to ρ/12
per month of the initial level of money borrowed. In reality, the frequency and level of partial
prepayments is up to the borrower as long as the level prepaid per year is the maximum
allowed.
The simulation of one iteration has the following form:

q0[k + 1] = q0[k] + v0[k]
q1[k + 1] = q1[k] + v1[k]

v0[k + 1] = rcq0[k + 1] − P − ρ

12A0

v1[k + 1] = rcq0[k + 1]

(2-27)

We use the following initial conditions:

q0[0] = A0 q1[0] = 0 v0[0] = rcq0[0] − P − ρ

12A0 v1[0] = rcq0[0] (2-28)

Here ρ is 10%, and P is the fixed monthly payments of an annuity contract calculated with
Equation (2-15).
In Figure 2-13 we show the mortgage payments per month and the balances each month. The
partial prepayments result in an early mortgage termination, and less interest received by the
bank due to the change in contract schedule.
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Figure 2-13: An annuity contract with and without partial prepayments. The left figure shows the
scheduled payments per month (·)∗ and the scheduled payments with prepayments (·). The right
figure shows the schedule of the annuity mortgage without prepayments and with prepayments.
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We model a mortgage as a mass m with values for m0 and m1, and a linear horizontal spring
with a spring stiffness k0 as shown in Figure 2-14. The mass is analogous to a borrower’s
risk aversion for mortgage payments, and the spring constant is analogous to a borrower’s
creditworthiness.

q0

v̇0

k0

F0,ext(t)
F0,C

m

Figure 2-14: We model a mortgage as a mass-damper system. The spring constant k0 is
analogous to a mortgagor’s creditworthiness, and the mass m is analogous to a mortgagor’s risk
aversion. The appetite F0,C (spring force) incentivizes the mortgagor to reduce his debt with
prepayments v̇0. The risk-free rates act as an external market force F0,ext(t) on the mortgage.

The spring has a displacement equal to the principal balance q0 of the mortgage contract. The
maximum elongation of the spring is equal to q0 = A0, and the spring has a rest state of q0 = 0.
This means that a borrower will have a risk appetite resulting from its creditworthiness called
F0,C :

F0,C = −k0q0 (2-29)

Partial prepayments are from the mortgagor’s perspective a voluntary action that may be
done at any point in time and any level less than the maximum allowed per year. Therefore,
a partial prepayment can be seen as an expression of the mortgagor’s desired debt level of
the mortgage [31].

The risk appetite shown in Equation (2-29) is a mortgagor’s appetite to reduce his debt. This
appetite will be larger at the beginning of the mortgage term and smaller at the end of the
mortgage term (displacement of the spring decreases over time).

The magnitude of this force (for an equal spring displacement) will depend on the credit-
worthiness of the mortgagor, or the spring constant k0. A higher creditworthiness will result
in a larger, and therefore in a larger appetite for principal repayments. Whereas, a lower
creditworthiness will result in a smaller force, and thus in a smaller appetite for principal
repayments.

The desirability or appetite of a mortgagor to reduce his debt is a determinant for partial
prepayments, however, short-term risk-free rates are also a driver for partial prepayments
[31, 32]. The short-term risk-free rates can be used to measure the relative attractiveness
of partial prepayments as an alternative investment opportunity. A risk-free investment is
assumed to be an investment that carries zero risk, where the rate of return on this investment
is known as the risk-free rate. A risk-free rate is something of a theoretical concept, as
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every investment carries some level of risk. In practice, the interest rate paid on short-term
government debt is assumed to be risk-free [33].

If the interest rate on its loan is higher than interest rates for other possible investments,
prepayment can bring significant savings in interest, while if returns on these investments
exceeds its contractual rate, investments represent a wiser economic choice than repaying the
mortgage [30]. If a mortgagor can not refinance, the more in the money the mortgage is, the
more likely the mortgagor is going to partially prepay [13]. We assume that risk-free rates
act as an external market force impinging on the mortgage.

The force is supplemented with additional forces to arrive at an effective force that determines
the change in its risk factor. The effective force or effective risk appetite is the sum of the
appetite resulting from its creditworthiness and the appetite resulting from economic market
forces or risk-free rate changes.

F0 = F0,C + F0,ext(t) (2-30)

To model the influence of these economic forces on the level of principal repayments supplied,
the state of the model is

x =


q0

q1

v0

v1

 (2-31)

and the state space is written in the form ẋ = Ax + Bu:


q̇0

q̇1

v̇0

v̇1

 =


0 0 1 0
0 0 0 1

− k0
m0

0 0 0
0 0 0 0




q0

q1

v0

v1

 +


0
0
1

m0

0

 u (2-32)

Here, the input is equal to the external force exerted on the mass u = F0,ext(t). The effective
force or effective risk appetite is now the sum of the appetite to reduce debt F0,C , and the
external market force F0,ext(t).

Additional principal repayments are allowed of maximum ρ = 10% per year of the initial
level of money A0 borrowed. Partial prepayments above this level will result in a prepayment
penalty, but we assume that a borrower will only partially prepay within the allowable bounds.

This maximum allowed percentage of partial prepayments per year results in the following
inequality constraint on principal repayments in Equation (2-33). The lower bound of the
inequality constraint is equal to the scheduled principal repayments with the maximum al-
lowed partial prepayment per month, and the upper bound is equal to the scheduled principal
repayments.

− P + v1 − ρ

12A0 ≤ v0 ≤ −P + v1 (2-33)

Master of Science Thesis B. N. M. Krabbenborg



28 An Economic Engineering Perspective on Mortgages

2-5-2 Full Prepayments and Jumps in the Continuous State

Both prepayments due to relocation and refinancing are full prepayments of a loan. A full
prepayment of a loan is modeled as a discontinuity in the continuous dynamics. The contin-
uous state jumps after a full repayment towards a different value. We model a jump in the
state as a jump from the current valuex to a new value x+. [34, 35]. The notation x+ repre-
sents the value of the state after an instantaneous change [36]. In this thesis, the notation x+

represents the value of the state after a full prepayment due to relocation or a refinancing.

The state of the model is:

x =


q0

q1

v0

v1

 (2-34)

And a jump in the state is

x → x+ (2-35)

An illustration of the two different jump in states is shown in Figure 2-15. Here, x → x+
RL

is the jump in state for a full loan prepayment due to relocation, and x → x+
RF is the jump

in state for a full loan prepayment due to refinancing. The mortgage state can jump from
a position x to one of the two different jumps in state. To which state the mortgage state
jumps depends on how the loan is full prepaid.

A full loan prepayment drastically decreases the principal balance to zero, and a full prepay-
ment due to relocation is free of a prepayment penalty. At the time the loan is fully prepaid,
the principal repayment is equal to the outstanding principal balance (still outstanding debt
of the mortgagor). The state x after a full loan prepayment due to relocation has the value
x+

RL as shown in Equation (2-36). The principal balance jumps to zero, the level of accu-
mulated interest remains constant (as no interest is paid anymore), and both the principal
repayment and interest payment jump to zero.

x+
RL =


0
q1

0
0

 (2-36)

A mortgagor is allowed to refinance his loan at every moment in time, but a refinancing is
only penalty-free when selling a house or at the reset date of the fixed-interest rate period.
Otherwise, a penalty should be paid for the interest income the bank misses. This penalty is
also known as a prepayment penalty. The prepayment penalty discourages mortgagors from
paying more than their scheduled periodic payment or completely paying off their loan. This
penalty is equal to the present value of the difference between the monthly interest payments
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q00

q1

x+
RL x

x+
RF

ε

Figure 2-15: An illustration of the discontinuous dynamics of full loan prepayments in the
principal-interest plane. A full loan prepayment results in a jump of the continuous state: x → x+.
The state jumps from x → x+

RL for a full loan prepayment due to relocation, and jumps from
x → x+

RF for a full loan prepayment due to refinancing. A prepayment penalty ε must be paid
when a mortgagor refinances. The spring is left out for this figure.

of the existing mortgage contract and of a newly originated mortgage at the mortgage rate
for the remaining term [28]. The penalty ε is approximated as

ε(t) = (rc − rm(t))︸ ︷︷ ︸
Interest difference

(q0(t) − ρA0)︸ ︷︷ ︸
Balance level

(T − t)︸ ︷︷ ︸
Remaining term

(2-37)

We calculate the penalty as the difference between the contractual interest rate rc and the
market mortgage interest rates rm(t) which vary over time. This is multiplied with the
principal balance level on which a penalty should be paid. This balance level is the difference
between the outstanding principal balance at the time a refinancing is requested, and the
penalty-free part. The penalty-free part is mostly 10% (sometimes 20% depending on the
contract) per year of the initial level of money A0 borrowed. This is multiplied with the
remaining term of the contract in months.

The difference with the present value calculation is that the level of money the bank misses
per month for the remaining term of the contract is not discounted with a discount factor [28].
We also assume that partial prepayments do not influence the prepayment penalty. Normally,
the already conducted partial prepayments in that year should be subtracted from the allowed
percentage per year to calculate the part of the balance on which a penalty should be paid.

The outstanding principal balance is completely prepaid during a full loan prepayment due
to refinancing. At the the moment a loan is refinanced, the principal repayment is equal to
the outstanding principal balance, and the interest payment equal to the prepayment penalty
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ε. The state x after a full loan prepayment due to refinancing has the value x+
RF as shown in

Equation (2-38). The principal balance jumps to zero, and the level of accumulated interest
jumps to the current level plus a prepayment penalty. Both the principal repayment and
interest payment jump to zero.

x+
RF :=


0

q1 + ε

0
0

 (2-38)

2-5-3 A Combination of Partial and Full Prepayment Dynamics

The combination of modeling partial prepayments and the two types of full prepayments,
results in a combination of continuous and discontinuous dynamics. In Figure 2-16, we show
an illustration of the combination of these two dynamics in the principal-interest plane. We
use the continuous dynamics for modeling the monthly mortgage payments and partial pre-
payments, and the discontinuous dynamics for modeling the full loan repayments due to a
relocation and refinancing.

To derive a model that simulates these two prepayment dynamics of a mortgage, we need to
combine them in one model. Here, a borrower has control over the level of prepayments he
wants to supply. Therefore, the switching between the continuous dynamics and discontinuous
dynamics is controlled by the borrower. In this illustration below, a borrower wants to fully
prepay his mortgage when his principal balance crosses a certain lower value q∗

0. So the loan
is prepaid fully if a borrower’s principal balance in a certain month t is lower than this value:
q0(t) ≤ q∗

0.

This interaction of discontinuous dynamics and continuous dynamics in systems are called
hybrid systems. A simple hybrid system as for example the regulation of temperature in
a house is quite similar to the hybrid system of mortgage prepayments. In a simplified
description, the heating element is assumed to either to work at its maximum power or to be
turned off. The switching between the heating element from “on” to “off” is controlled by
the thermostat, and the evolution of the temperature in each mode (“on” and “off” mode) is
described by a differential equation. The heating is turned off when the temperature in the
room crosses a certain upper value (determined by the desired temperature) [35].

Similarly, the dynamics of a mortgage has a continuous mode and a discontinuous mode,
where the switching between these two modes is controlled by a borrower. The evolution of
the mortgage balances and payments in the continuous mode is described with differential
equations, and the evolution of the mortgage balances and payments in the discontinuous
mode with a jump in state. A borrower switches to a full loan prepayment when his principal
balance crosses a certain lower value for example. In Chapter 3, we implement a controller
that simulates these dynamics.
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continuous

discontinuous

q00

q1

v1

v0

v1

v0

v1

v0

v1

v0

x+
RL

q∗
0

x+
RF

x

Figure 2-16: An illustration of the combination of the continuous dynamics describing mortgage
payments and partial prepayments and the discontinuous dynamics describing full prepayments.
The continuous state x can jump after crossing q∗

0 either to a full loan prepayment due to
relocation x+

RL or to a full loan prepayment due to refinancing x+
RF. The spring is left out for this

figure.
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Chapter 3

The Systems and Control Approach
for Forecasting Mortgage Prepayments

In this chapter, we formulate the forecasting of mortgage prepayments as a systems and control
problem. We describe the system with a model of the dynamics of mortgage payments and
prepayments derived in the previous chapter, and we simulate the behavior of a mortgagor
with a controller. By simulating mortgagor behavior, we can forecast prepayments with the
model for various interest rate scenarios.

First, we discuss the current challenge of forecasting prepayment in increasing interest rates
in Section 3-1. Second, we formulate the forecasting of mortgage prepayments as a systems
control problem in Section 3-2. Finally, we simulate the dynamics of mortgage payments and
prepayments derived in Chapter 2 with optimal control in Section 3-3.

3-1 The Current Challenge of Forecasting Mortgage Prepayments

Economic conditions have a considerable influence on a mortgagor’s prepayment behavior,
and prepayments will fluctuate as economic conditions change. Economic conditions refer to
the state of macroeconomic variables and trends in a country at a point in time. Economic
conditions such as inflation, unemployment rate, interest rates, fiscal systems, etc., all find
their way in prepayment behavior of mortgagors.

One of the most important risk driver of prepayments is interest rates. In 2022, the European
Central Bank (ECB) decided to raise the three key interest rates of the ECB by two percentage
points, marking the sharpest and most aggressive rate hike ever in the history of the ECB
[6]. By raising these rates, the essence of ECB’s monetary policy is to influence liquidity in
the economy and subsequently reduce inflation. There exists a strong economic relationship
between these interest rates decided by the ECB and other interest rates in liquidity markets
(e.g, Euribor rates, risk-free rates, mortgage rates) such as the 5-years interest rates on
government bonds shown in Figure 3-1
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Figure 3-1: The historical 5-year interest rate on German government bonds. This is the interest
paid on short-term government debt of Germany, and this interest rate can be assumed risk-free.
A downward trend of interest rates is observed from 2003 till the beginning of 2022. Data is
retrieved from [2].

This increase in interest rates ends an unusual and eight-year-long period of negative interest
rates. When looking at the history of interest rates, is this increase in interest rate extraor-
dinary. A raise in interest rates of 0.5 percentage point or more only occurred during the
financial crisis in 2008-2009, and during the dot-com crisis1 in 2001.

At this moment, banks use econometric models for forecasting prepayments which are fitted
to historical data. By fitting to historical data, correlations are derived between interest rates
and prepayments. Regression techniques such as logistic regression is a common approach for
finding these correlations (a more detailed explanation of the econometric approaches is in
Appendix A).

Fitting to the history of 20-years of interest rates seems large, but economic business cycles
can last longer [13]. Moreover, a downward trend is observed in Figure 3-1 of the short-term
5-year interest rate from 2003 till this year. Econometric models fitted to this history of
interest rates produces a bias in the models [5]. This means a model fitted to the history of
interest rates might perform well in a decreasing rates regime, but might fail if interest rates
are increasing.

The increase of interest rates after a long period of decreasing interest rates is a turning point
in borrowers prepayment behavior. Increasing interest rates result in structurally lower pre-
payment rates. The first signals for higher interest rates might temporarily increase prepay-
ment rates due to last minute switching borrowers, the long-term effect is lower prepayment
rates [1].

Activity on the housing market will slow down as mortgages will be more expensive, and re-
financing also becomes less attractive. Moreover, most mortgage contracts offer the borrower

1The dot-com crisis was a stock market bubble in the late 90’s characterized by a period of massive growth
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the possibility to carry the existing structure and interest rate to a new house when moving.
This means that prepayments due to relocation will slow down, because more people will
transfer the terms and conditions of their current mortgage to their new house, i.e, mortgage
porting. Increasing interest rates will slow down prepayments significantly.

3-2 Formulating Mortgage Prepayments as a Systems and Control
Problem

We formulate the forecasting of mortgage prepayments as a system and control problem as
shown in Figure 3-2. The system is a dynamical system for modeling mortgage payments and
prepayments, and the controller simulates mortgagor behavior.

Mortgage Dynamics
System

Mortgagor Behavior
Controller

Risk drivers
Disturbances

Desired payments
Reference

Risk appetite
Control input

Payments
Output

Figure 3-2: The systems and control problem for forecasting mortgage prepayments. The dynam-
ical system is described with a model of mortgage payments and prepayments, and the controller
simulates behavior of a mortgagor. This behavior is a mortgagor’s risk appetite that he can adjust
to reach a desired level of payments. Risk drivers such as interest rates act as disturbances to the
system.

The dynamical system is described with a model of mortgage payments and prepayments,
and with this model we can forecast prepayments by implementing a controller. A mortgagor
determines his own risk appetite for supplying mortgage payments, which will be the control
input. By determining his desire for risk a mortgagor can reach a desired level of mortgage
payments while subject to disturbances from risk drivers. From now on, macroeconomic
risk drivers (e.g., interest rates, mortgage rates, housing activity) that influence a borrower’s
decision to prepay are disturbances to the system.

By using risk drivers as disturbances to the system allows for forecasting prepayments under
different interest rate scenarios. We derive the mortgage dynamics based on analogies between
mechanical laws and economic laws. These economic laws apply in any market regime and
to every mortgagor. Thus, we can forecast prepayments with this model without drastically
changing the dynamics or structure of the model for any interest rate scenario and for any
mortgagor.

Choosing a suitable controller for this control problem depends on the desired feedback ap-
plication or the desired implemented behavior of a mortgagor.

Robust control is an approach for controller design that explicitly deals with uncertainty.
Robust control derives control laws such that constraints are satisfied despite uncertainties in

in the use and adoption of the internet.
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the system. Unfortunately, methodologies for robust stabilizing controller synthesis developed
for continuous systems (such as H∞) do not apply to hybrid dynamics [37]. Moreover, a
robust control method does not optimize for a mortgagor’s economic objective. The goal of
a robust controller would be to reach a desired level of payments while having uncertainties
in the model dynamics. For example, the uncertainty from the parameters representing a
mortgagor’s creditworthiness and risk-aversion.
Proportional–Integral–Derivative (PID) control is a classical control method that is suitable
for feedback control applications such as reference tracking or disturbance rejection [38]. PID
control could be used in this application to determine a borrower’s risk appetite that steers the
mortgage to a desired level of payments, or to reject disturbances from changing interest rates.
If this desired level of payments would be the scheduled mortgage payments, a mortgagor will
serve the desires from the bank with applying PID control: following the scheduled payments.
However, a borrower will not necessarily benefit from this financially himself.
PID control is unable to optimize for a borrower’s desires or objectives such as minimizing
mortgage costs. Also, it is difficult to put constraints for example on the maximum allowable
partial prepayments. Complex optimization problems can not be solved with PID control.
A mortgagor can choose between full prepayments due to refinancing, relocation or partial
prepayments at each moment in time. Each with different costs associated and different
consequences on the mortgage amortization schedule. A PID controller can not optimize this
choice over time, because there will be a constant trade-off between the different prepayments.
This requires an active optimization approach.
These limits of PID control and Robust control can be solved by using optimal control.
Using optimal control, a mortgagor can trade off prepaying his mortgage with the different
prepayment types at optimal moments, i.e, prepaying in low interest rate regimes and investing
in high interest rate regimes. This requires a model that can be used for optimal control.
We simulate the dynamics of mortgage payments and prepayments derived in the previous
chapter by implementing a Model Predictive Control (MPC).

3-3 Simulating the Mortgage Dynamics with MPC

A MPC is a controller that solves optimal control problems using a receding horizon. MPC
solves with a finite-horizon an open-loop optimal control problem in which the initial state
is the current state of the system. The optimal control action sequence is based on the
current states of the model, and only the first control action is applied at the next time step.
The states update, and based on the new initial states and for the same finite horizon, the
optimization is repeated. MPC is capable of solving the optimal control problem online for
the current state of the system, as opposed to the classical optimization problems where a
feedback policy is determined offline for all states and perfect information of the future is
assumed [39].
A diagram of an MPC is shown in Figure 3-3. The dynamical system for modeling mortgage
payments and prepayments is not a ‘real’ system, and so the model and the system will be the
same. The cost function will be a general quadratic cost function. A more appropriate cost
function with an economic interpretation will be designed later in Chapter 5 where we design
an Economic Model Predictive Controller (EMPC). Constraints include the constraints of
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the mortgage contract, the state update equations of mortgage payments and partial prepay-
ments, the state values of full prepayments, and constraints on the balance levels. The main
disturbance for now will be the risk-free rates as depicted in Figure 3-1.

Mortgage
Dynamics

Risk appetite
Control input

Balances
Payments

Output

Mortgage
Dynamics

Optimizer

Risk-free rates
Disturbances

Constraints Objective
function

Mortgagor Behavior
MPC

Figure 3-3: Forecasting mortgage prepayments as a systems and control problem. With MPC
a mortgagor determines his risk appetite which minimizes an objective function for a prediction
horizon based on the current states of the mortgage and predictions of risk-free rates. After the
first risk appetite (control action) is applied, the states of the mortgage update, and based on
the new initial states and for the same finite horizon, the optimization is repeated.

We assume that a mortgagor optimizes an objective function while having information about
the ’dynamics’ of his mortgage or in other words he is subject to the constraints of the
mortgage dynamics which are mainly the constraints of his mortgage contract. A mortgagor
can not arbitrarily vary his risk appetite such that it minimizes the objective function.

The mortgagor can adjust influence his repayment schedule by adding or subtracting an
appetite of risk he wants to take, which will be the control input for the optimal controller.
The output of the system are the states of the mortgage consisting of the mortgage balances
and payments.

Alternatively, offline optimization could be used, however offline optimization assumes perfect
information of the future. To simulate realistic behavior of a mortgagor, we assume that a
mortgagor does not have perfect information of the future. A mortgagor has no information
about future interest rates, only about current interest rates. They make decisions based on
imperfect information about interest rates, and can adapt later on when they receive updates
on interest rates. The receding horizon aspect is analogous to the time window a borrower
uses for determining his risk strategy, and therefore we design a MPC with receding horizon
instead of using offline optimization.
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Additionally, MPC is suitable for developing a prepayment model that is adaptable to new
mortgage market environments. The model can be adapted according to your own wishes and
requirements. This is mainly due to adding and changing constraints with MPC. Constraints
can be changed to account for different types of mortgage contracts and constraints can be
added to include more prepayments types e.g., delinquent and default payments or partial
prepayments with a higher allowed partial prepayment percentage.

We introduce the ease of adding constraints in this section by first simulating scheduled
mortgage payments, and changing the model to simulate partial prepayments. Subsequently,
we add constraints to simulate full prepayments, and eventually to make a distinction between
full loan prepayments due to refinancing and full loan prepayments due to relocation.

3-3-1 Mortgage Payments and Partial Prepayments

The state space from Section 2-5-1 is extended with additional control inputs and written in
the form ẋ = Ax + Bu + Fd:


q̇0

q̇1

v̇0

v̇1

 =


0 0 1 0
0 0 0 1

− k0
m0

0 0 0
0 0 0 0




q0

q1

v0

v1

 +


0 0
0 0
1

m0
0

0 1
m1


[
u0

u1

]
+


0
0
1

m0

0

 d (3-1)

The risk-free rates are now disturbances of the model d = F0,ext(t)

A mortgagor has a control input u =
[
u0 u1

]T
that can be actively controlled. The mort-

gagor can actively determine his own appetite for risk with respect to principal repayments
and interest payments, u0 and u1 respectively.

The economic market force from risk-free rate changes, a mortgagor’s appetite to reduce his
debt, and his own appetite for risk, determine the effective risk appetite of a mortgagor
for principal repayments. This risk appetite leads to a change in his risk factor, which
subsequently leads to a change in his level of principal repayments supplied as visualized
as a movement along the supply curve in fig. 2-2.

To run simulations, we discretize the model with Forward Euler method:


q0[k + 1]
q1[k + 1]
v0[k + 1]
v1[k + 1]

 =


q0[k]
q1[k]
v0[k]
v1[k]

 + Ts


0 0 1 0
0 0 0 1

− k0
m0

0 0 0
0 0 0 0




q0[k]
q1[k]
v0[k]
v1[k]

 + Ts


0 0
0 0
1

m0
0

0 1
m1


[
u0[k]
u1[k]

]
+ Ts


0
0
1

m0

0

 d̂[k]

(3-2)

Here m0, m1, k0 and Ts are model parameters. The control inputs are u0 and u1, and the
predicted disturbance is d̂.

An objective function will be optimized subject to the state update equations from the contin-
uous dynamics, and the contract constraints. We perform simulations in MATLAB using the
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YALMIP toolkit to program the MPC. The optimization problem is solved using "quadprog"
solver with the interior-point-convex algorithm. The "quadprog" solver is used as the opti-
mization problem concerns the problem of optimizing a quadratic objective function subject
to linear constraints, known as Quadratic Programming (QP).

The minimization problem is given by a quadratic objective function minimized over time with
constraints. The state equations, the contract constraints, and a constraint on the principal
balance are constraints on the system. We add a constraint on the principal balance, because
it is not possible to have a negative principal balance. A negative balance would mean that a
mortgagor has no debt anymore, but is funding money to the bank. The optimization of one
iteration looks as follows:

minimize
u

Th∑
k=1

1
2m0v0[k]2 + 1

2m1v1[k]2 − 1
2k0q0[k]2 + 1

2Ru0[k]2

subject to x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
x[0] = x0

v1[k] = rcq0[k],

−P + v1[k] − ρ

12A0 ≤ v0[k] ≤ −P + v1[k],

q0[k] ≥ 0,

(3-3)

Where the contract parameters are ρ, A0, P and rc. The prediction horizon is Th, and the
penalty on the control input is R.

The optimal control sequence is calculated for one iteration for k ∈ [0, Th]. The control input
for the first time step is implemented, and the new states are determined. The updated states
are used as the new initial condition x0, and the optimal control sequence for k ∈ [1, Th + 1]
is determined, which repeats the process.

We add a penalty on the control input u0. If the penalty on the control input is high, a
mortgagor can not completely counteract the disturbances from interest rates changes with
his risk appetite, resulting in a change of his risk factor which leads to partial prepayments.
Meanwhile, if the penalty on the control input is close to zero, a mortgagor can counteract all
the disturbances from interest rate changes with adjusting his risk appetite. The risk factor
of the mortgagor will not change, and he supplies the scheduled payments.

A mortgagor does not have perfect information of future interest rates, and they make deci-
sions based on imperfect information about interest rates. Therefore, during the prediction
horizon we assume that a mortgagor only has information about the current observed risk-
free interest rate. To model this imperfect information, we sample the risk-free rates with a
delayed first-order hold method.

We consider the historic 5-years interest rates on government bonds of Germany as risk-free
rates from Figure 3-1. We increase the risk-free rates with a scaling factor such that they
act as an economic force impinging on the system. Without scaling the risk-free rates a
borrower’s risk factor is barely disturbed by risk-free rate changes, because of the difference
in magnitudes. The risk-free rates are in decimal points and a borrower’s appetite to reduce
his debt is depending on the principal balance which is in hundreds of thousands. The
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disturbance need to be scaled to have some influence on the system. We choose a scaling
factor of β = 4.3 · 107, and will remain so for each simulation in this thesis. Alternatively, k0
could be tuned, such that the interest rates have influence on a borrower’s risk factor without
scaling them.

To run simulations, we simulate a mortgage of e500, 000 with a contract rate of 3% per year
and a maturity of 10 years. The maximum allowed partial prepayments per year is ρ is 10%.
The sampling time Ts will be one month and the prediction horizon Th is two months. The
model parameters chosen are m0 = 1

0.35 , m1 = 1
0.1 , and k0 = 1

0.1 , and the penalty on the
control input is R = 0. The initial conditions x0 are:

q0[0] = A0 q1[0] = 0 v0[0] = rcq0[0] − P v1[0] = rcq0[0] (3-4)

In Figure 3-4 the mortgage payments together with the balances levels each month are shown.
We use a continuously looking line to make a distinction between the scheduled contract pay-
ments and the payments with prepayments. The mortgagor is rejecting all the disturbances
from risk-free rate changes, and is not adjusting his risk factor based on these interest rate
changes, and supplies each month the scheduled payments. The mortgagor does not supply
any prepayments and the mortgage contract is paid off as scheduled.
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Figure 3-4: A simulation of the scheduled payments with MPC. The left figure shows the
payments per month, and the right figure the schedule in the principal-interest plane. Risk-free
rate changes act as a disturbance d̂ on the system, and the penalty on the control input is
R = 0. The mortgagor is not prone to changes in risk-free rates in the market, and rejects all the
disturbances. He is not willing to adjust his risk factor and supplies the scheduled payments.

The penalty on the control input will be set to R = 0.3. This means that the borrower will
be more prone to changes in risk-free rates and partially prepay. The controller is not able
to reject all the disturbances from risk-free rates when interest rates are falling the fastest as
visible Figure 3-5.
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Figure 3-5: The disturbances from risk-free rate changes in the left figure, and a mortgagor his
own risk appetite (control input) in the right figure. The penalty on the control input penalizes a
mortgagor’s risk appetite. When the interest rates decrease fast (in 2015, before 2017, and end
of 2019), the mortgagor can not reject all the disturbances as visible in the right figure.

The mortgagor can not reject all the disturbances from risk-free rate changes resulting in a
change in his risk factor. This change in risk factor result in an increase of the level of principal
repayments supplied. The principal repayments per month are bounded by the inequality
constraint in Equation (2-33), so a mortgagor must always supply the scheduled principal
repayments and can deviate to the maximum allowed partial prepayments per month. A
major decrease in risk-free rates results in an increase in partial prepayments, and result in a
deviation from the schedule of the annuity contract as can be seen in Figure 3-6. The annuity
mortgage is repaid earlier due to the partial prepayments as visible in the left figure, and the
bank receives less interest on the mortgage as visible in the right figure.
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Figure 3-6: The mortgagor is prone to changes in risk-free rates in the market as he can not
adjust his own risk appetite to the quantity needed to reject the disturbances from risk-free rate
changes. This is due to the penalty on the control input. The risk factor of the mortgagor changes
which results in an increase of the level of principal repayments supplied.
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3-3-2 Combination of Partial and Full Prepayments

In this section the state update equations of the continuous model, as well as the discontinuous
dynamics from the full prepayments, are constraints on the system. For simulations, we
simulate the same mortgage contract and use the same model parameters as in the previous
section.
An objective function will be optimized subject to the constraints from the continuous dynam-
ics, the discontinuous dynamics, and the contract constraints. We perform the simulations
in MATLAB using the YALMIP toolkit (the documentation of YALMIP is followed for the
implementation in Matlab [40]), and as solver the ‘Gurobi’ solver is used. We use this type of
solver as the combination of continuous and discontinuous dynamics results in an optimization
problem containing both discrete and continuous decision variables, giving rise to a Mixed-
Integer Programming (MIP) problem. MIP models with a quadratic objective but without
quadratic constraints are called Mixed-Integer Quadratic Programming (MIQP) problems.
The Gurobi solver uses a branch-and-bound algorithm (tree search) for MIP problems [41].
A branch-and-bound algorithm for MIQP problems consists of solving and generating new
QP problems in accordance with a tree search. The nodes of the three correspond to QP
subproblems. The QP subproblems are explored and solved systematically through a binary
tree until the solution is an optimal solution of the original MIQP [42, 41, 35].
We add the discrete dynamics of a full loan prepayment due to relocation in Equation (2-
36) to the constraints of the MPC. The MPC is now subject to two different modes, where
one mode is continuous and simulating the mortgage payments per month including possible
partial prepayments (Mortgage Payments Mode), and the other mode is a jump of the
continuous state representing a full loan prepayment due to relocation (Relocation Mode).
The discrete decision variables arise in the optimization problem as it is only possible to be
in one mode at a time. In Section 5-2-3, we explain this in more detail.
The optimization of one iteration looks as follows:

minimize
u

Th∑
k=1

1
2m0v0[k]2 + 1

2m1v1[k]2 − 1
2k0q0[k]2 + 1

2Ru0[k]2

subject to

Mortgage Payments Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
x[0] = x0

v1[k] = rcq0[k],

−P + v1[k] − ρ

12A0 ≤ v0[k] ≤ −P + v1[k],

q0[k] ≥ A0/2.5]
Relocation Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

0 ≤ q0[k] ≤ A0/2.5]

(3-5)
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To allow switching between the two different modes, we add a condition on the state q0. The
mode will switch to a full prepayment if the principal balance is lower than A0/2.5:

q0[k] ≤ A0/2.5, (3-6)

and we add this condition as constraint of the relocation mode. We add the following condition
as constraint of the mortgage payments mode:

q0[k] ≥ A0/2.5. (3-7)

Both the mortgage payments and the contract schedules are shown in Figure 3-7. When the
principal balance q0 in the principal-interest plane is less than A0/2.5 = 2 · 105 euros the loan
is fully repaid. This is visible with the jump in state x → x+ in the figures. The state jumps
from the continuous state x to x+

RL as in Equation (2-36).
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Figure 3-7: A simulation of partial prepayments and a full loan prepayment with MPC. The
penalty on the control input is R = 0.3, and the loan is fully prepaid if the principal balance is
lower than half of the borrowed money q0[k] ≤ A0/2.5. In the right figure this is visible with the
jump in state.

From the left figure in Figure 3-7 it is notable that the full prepayment is not visible. The
principal repayment should be equal to the outstanding debt of the mortgagor. To explicitly
model the full loan prepayments, extra constraints on the payments are added to the relocation
mode:

v0[k] = −q0[k]
v1[k] = 0

(3-8)

These extra constraints on the payments increase the principal repayment significantly, re-
sulting in the peak as visible in Figure 3-8. This peak of principal repayment is equal to the
principal balance before the jump in state as visible in Figure 3-7 of the mortgage contract
in the principal-interest plane.
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Figure 3-8: We model the full loan prepayment explicitly with extra constraints on the payments.
The peak of the principal repayment is equal to the principal balance before the jump in state in
Figure 3-7.
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Figure 3-9: The large shocks in a mortgagor’s risk appetites (relocation incentive) result in the
jump in state of a full loan prepayment due to relocation. This is analogous to how forces or
control inputs can be used to steer a mechanical system to a desired state.

The principal repayment equals the principal balance (still outstanding debt) due to a mort-
gagor’s risk appetite as visible in Figure 3-8. When he fully prepays, the mortgagor decreases
his risk appetite for principal repayments immediately (force in the negative q0 direction) such
that his principal repayment is equal to the still outstanding debt. Subsequently, he increases
his risk appetite (force in the positive q0 direction) to decrease the principal repayment to
zero. His risk appetite for interest payments decreases (force in the negative q1 direction) to
reduce the interest payment to zero.

The large shocks in the risk appetite of a mortgagor are needed to fully prepay a loan.
These shocks (or force impulses) that result in a jump of the continuous state will be called
incentives. The relocation incentive is thus the adjustment needed from a mortgagor’s risk
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3-3 Simulating the Mortgage Dynamics with MPC 45

appetite to supply a full loan prepayment due to relocation as visible in Figure 3-8. The
conditions (for example the constraints in Equation (3-6), and Equation (3-7)) that ‘trigger’
an incentive will be called the switching conditions. These conditions need to be added to the
constraints of the modes.
A distinction should be made between full loan prepayments due to refinancing and full loan
prepayments due to relocation. We make this distinction easily by adding an extra mode, and
using the value of the state in Equation (2-38) as constraints. This results in the following
optimization problem for one iteration:

minimize
u

Th∑
k=1

1
2m0v0[k]2 + 1

2m1v1[k]2 − 1
2k0q0[k]2 + 1

2Ru0[k]2

subject to

Mortgage Payments Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
x[0] = x0

v1[k] = rcq0[k],

−P + v1[k] − ρ

12A0 ≤ v0[k] ≤ −P + v1[k],

q0[k] ≥ A0/2.5]
Relocation Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

v0[k] = −q0[k],
v1[k] = 0,

q0[k] ≥ A0]
Refinance Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k] + ε[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

v0[k] = −q0[k],
v1[k] = ε[k],

0 ≤ q0[k] ≤ A0/2.5]

(3-9)

Here ε is the prepayment penalty. The prepayment penalty for this simulation is set equal to
a constant penalty of ε[k] = 3000. The mortgage payments mode will switch to the refinance
mode if q0[k] ≤ A0/2.5. We add this switching condition as a constraint to the refinance
mode.
The mortgage payments and contract schedules are shown in Figure 3-10. The interest pay-
ment is equal to the prepayment penalty, and the principal repayment is equal to the out-
standing principal balance. The state q0 jumps to zero in the principal-interest plane, and
the state q1 jumps to a higher level of accumulated interest due to the prepayment penalty.
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Figure 3-10: The prepayment penalty causes an increase in interest payment in the left figure
and an increase in accumulated interest as visible in the right figure. The state q1 jumps to a
higher level of accumulated interest. The penalty on the control input is R = 0.3. The loan is
fully prepaid if the condition on the principal balance holds: q0[k] ≤ A0/2.5.

The incentive needed to refinance is shown in Figure 3-11. His risk appetite for interest
payments first increases (force in the positive q1 direction) such that the interest payment
equals the prepayment penalty, and decreases (force in the negative q1 direction) to decrease
the interest payment to zero. His risk appetite for principal repayments first decreases (force
in the negative q0 direction), and subsequently increases (force in the positive q0 direction)
such that the principal repayment equals the still outstanding debt and reduces to zero.
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Figure 3-11: The large shocks in a mortgagor his risk appetites (refinance incentive) result in
the jump in state of a full loan prepayment due to refinancing. This is analogous to how forces
can be used to steer a system to a desired state.
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Chapter 4

The Hybrid Economic-Engineering
Model

The mortgage dynamics simulated in the previous chapter are too simplified to forecast pre-
payments. At this moment, a mortgagor has no option after moving to choose between fully
prepaying his mortgage (and taking out a new mortgage contract), or transferring his existing
contract to the new house. Moreover, the full loan prepayments are not determinant by their
risk drivers: mortgage rates and housing activity.

In this chapter, we extend the dynamics of the model by modeling the possibility for mortgage
porting, using the risk drivers of full loan prepayments as switching conditions, and modeling
a new contract agreement after full loan prepayments. These extensions result in a hybrid
model that is quite similar to what is known as jump-flow systems in hybrid systems modeling.

First in Section 4-1, we describe and visualize the hybrid model in general, and we describe the
jump-flow behavior. Subsequently, we describe in Section 4-2 till Section 4-4 how we model
the proposed extensions of the dynamics, and in Section 4-5 we discuss the adaptability of
the model.

4-1 Modeling the Mortgage Dynamics as Hybrid System

Jump-flow systems are a possible model structure for hybrid systems and form a quite natural
extension of differential equations [36, 35]. The behavior of a dynamical system that can be
described by a differential equation is referred to as a flow. The discontinuous dynamics that
can be described by a difference equation is referred to as jumps.

The continuous model written in differential equations derived in Section 2-5-1 and extended
in Section 3-3-1 is the flow part. This flow part contains the continuous dynamics of mortgage
payments and prepayments. The value of the states derived in Section 2-5-2 form the two
possible jumps in the continuous state. The continuous state can either jump to the state
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Figure 4-1: A block diagram of the hybrid economic-engineering model. The flow part consists
of the state update equations in the rectangular blocks, and the two jumps are indicated with
the circular blocks. The flow part contains the continuous dynamics of mortgage payments
and prepayments with additional contract constraints, and the jumps the two different full loan
prepayments. A full loan prepayment occurs due to either the refinance incentive or relocation
incentive. After each full loan prepayment, a new contract is agreed upon. A mortgagor has the
option to transfer his mortgage via the mortgage porting incentive. We add a discrete state that
counts the times a mortgagor has moved.

of a full loan prepayment due to refinancing or to the state of a full loan prepayment due to
relocation.
A jump in the continuous state occurs due to either a refinance incentive or a relocation incen-
tive. These incentives are activated if the conditions of either the refinance mode or relocation
mode hold. We add these conditions as constraints to these modes. These conditions will in
this chapter depend on risk drivers such as mortgage rates and housing activity.
The controller, or mortgagor, ensures that the specifications of the jump in states are satisfied
whenever a full loan prepayment happens. These incentives are a large force for a short period
of time (shock) exerted by the controller. This behavior can be observed from the control
input u during full loan prepayments as shown in the previous chapter.
We add to the model a discrete state that counts the times a mortgagor has moved. If some
memory is present in the switching between jumps and flows, then one needs the explicit
inclusion of a discrete state in the model [35]. We use the discrete state to indicate whether
a mortgagor has already moved or not during the mortgage contract. The discrete state can
jump via the mortgage porting incentive or the relocation incentive.
Moreover, we add extra states to the model such that the mortgage contract can be updated
after full loan prepayments. This new mortgage contract will have different contract specifi-
cations with a new level of money borrowed, a new contractual interest rate, and a new level
of monthly payments. This new contract also resets all the balances q and payments v after
each jump, such that continuation is possible in the flow part of the model.
Keep in mind that still the constraints of an annuity mortgage will be used in this section as
an example. These constraints can easily be changed to another contract type by using the
contract constraints as derived in Section 2-2-3.
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4-2 Modeling Mortgage Porting

Generally, in the Netherlands mortgages are portable, and it is allowed to transfer the terms
and conditions of the existing mortgage contract to the new property without extra costs
involved. Especially, in an increasing interest rate environment it is expected that more
mortgages will be transferred to the new property instead of fully prepaying the current
mortgage and taking out a new mortgage on the new home. Simply, this is due to the
probably lower interest rate on the current mortgage than the mortgage rates in the market.

We add an incentive to the model for housing to determine when a mortgagor moves. We
keep track if a mortgagor has already moved or not with a discrete state that counts the times
a mortgagor moves.

4-2-1 Discrete State and Moving

We add a discrete state to the model such that the model ‘remembers’ if a mortgagor has
already moved or not. This discrete state does not affect the continuous dynamics.

The discrete state can take the values

m ∈ {0, 1}, (4-1)

and is used to indicate whether a mortgagor has moved (m = 1) or has not moved (m = 0).

We use data on housing activity to determine when the discrete state switches. The sale
of existing homes is a relevant housing activity statistic for prepayment analysis as it has a
direct relationship with prepayments [13, 1]. A sale of an existing home usually triggers a
prepayment, unless the mortgage is transferred or the home has no mortgage.

The discrete state can only change from not moved (m = 0) to moved (m = 1). We assum
that a mortgagor does not move more than one time during the contract.

4-2-2 Housing Incentive

Given data on the amount of existing houses sold per month nationally, we normalize the data
by rescaling the range to the interval [0, 1]. We assume that this normalized data represents
the probability that a mortgagor moves in a particular month.

We add a Gaussian noise to the data such that the probability a mortgagor moves varies per
mortgagor. The probability a mortgagor moves in a certain month is translated to a binary
signal of 0’s and 1’s, called h.

We calculate the average amount of existing houses sold over an interval equal to the contract
maturity, called paverage. When the probability of moving in a certain month exceeds paverage
a 1 is produced and a 0 otherwise. Here, a h = 1 means there is an inventive for housing, and
a h = 0 means there is no incentive for housing.

The possible discrete state transitions of m are shown in Table 4-1. The discrete state
transition m = 0 → m = 0 indicates that a mortgagor has not moved and remains in this
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state, and the transition m = 1 → m = 1 indicates that a mortgagor is already moved and
remains in this state.

Table 4-1: The discrete state jumps due to an incentive for housing. We assume that a mortgagor
moves only one time during the mortgage contract.

Discrete State Jumps Housing Incentive

m = 0 → m = 0 h = 0
m = 0 → m = 1 h = 1
m = 1 → m = 1 h = 0
m = 1 → m = 1 h = 1

4-2-3 Mortgage Porting Incentive

If a mortgagor sells his existing house and moves to a new one, he has the possibility to carry
the existing structure and interest rate of his current mortgage contract to the new house (i.e.,
porting the mortgage). The mortgage porting incentive in the model refers to a mortgagor
that moves to a new home, but transfers the terms and conditions of his existing mortgage
contract to this new house.

The mortgage porting incentive depends on the housing incentive, the discrete state, and the
difference between the monthly payments under the current mortgage contract and a new
mortgage contract at the mortgage market rates

A mortgagor has an incentive for mortgage porting if there is an incentive for housing (h = 1)
while he has not yet moved (m = 0), and if

Pcontract ≤ Prelocation(t). (4-2)

Here, Pcontract is calculated with Equation (2-15) and Prelocation is equal to the monthly
payments of a new mortgage contract at the mortgage market rates.

Prelocation(t) = q0(t)rm(t)(1 + rm(t))Tr

(1 + rm(t))Tr − 1 . (4-3)

Here, rm are the mortgage market rates, q0 is the principal balance, and Tr = T − t the
remaining term of the mortgage.

The mortgage porting mode will have additional constraints which are m = 0, h = 1, and the
condition in Equation (4-2). If these conditions hold the mortgagor moves and transfers his
existing contract to the new house, because the monthly payments of his current mortgage
contract are lower than the monthly payments of a new mortgage contract.
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4-3 Modeling Full Prepayments with Risk Drivers

A mortgagor his decision for a full loan prepayment is influenced by many factors as described
in Section 2-4-3.

Clearly, one of the most important risk driver is the interest rates on new mortgages in the
market. These interest rates both influence a mortgagor’s decision for taking out a new loan
after selling a house, or to refinance a loan.

However, refinancing involves extra costs, known as the cost of refinancing. These cost should
be taking into account as these influence a borrower’s decision to refinance or not.

The conditions (refinance conditions) that lead to a switch to the refinance mode depends
on the mortgage rates and the cost of refinancing. The conditions (relocation conditions)
that lead to a switch to the relocation mode depends on the mortgage rates and the housing
incentive. These refinance and relocation conditions need to be added as constraints to the
refinance mode and relocation mode, respectively. If these conditions do not hold, a mortgagor
will remain in the mortgage payment mode according to the payment conditions.
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Figure 4-2: Each full prepayment type will have different conditions triggering the incentive. The
conditions determine when there will be a switching between the continuous and discontinuous
dynamics. The left figure shows the jump in state of a full loan prepayment due to relocation,
and the right figure the jump in state of a full loan prepayment due to refinancing. The relocation
conditions depend on the market mortgage rates and housing activity. The refinance conditions
depend on market mortgage rates and refinancing costs. The payment conditions are all the
conditions for which a mortgagor does not want to fully prepay his mortgage.
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4-3-1 Refinance Incentive

Refinancing is taking a new mortgage loan on the same property. The inventive to refinance
is mainly driven by the interest rate differential between a borrower’s current contract and
new mortgage contracts. An approach is to compare the monthly payments under the current
and new mortgages, factoring in the costs of refinancing [13].

We assume that a mortgagor compares the monthly payments of his current mortgage contract
with the monthly payments of a new mortgage contract for the remaining term of the mortgage
and the remaining outstanding principal balance. A mortgagor refinances if the following
condition holds:

Pcontract ≥ Prefinance(t) (4-4)

The mortgagor refinances because the monthly payments of his current mortgage contract are
higher than the monthly payments of a new mortgage contract. Here, Pcontract is calculated
as in Equation (2-15).

Here Prefinance is the monthly payment of a new mortgage contract with factoring in the cost
of refinancing ε(t) is calculated as:

Prefinance(t) = q0(t)rm(t)(1 + rm(t))Tr

(1 + rm(t))Tr − 1 + ε(t) (4-5)

Here, rm(t) are prevailing mortgage rates in the market, expressed as monthly decimals. The
outstanding principal balance, or remaining debt of the mortgagor is q0(t), and the remaining
term of the loan is Tr.

Refinancing cost are included with a prepayment penalty ε(t):

ε(t) = max(rc(t) − rm(t), 0) max(q0(t) − ρA0, 0)Tr (4-6)

A prepayment penalty only applies if the contract rate is higher than the mortgage market
rates, and if the outstanding principal balance is higher than the penalty-free part.

Extra refinancing costs could be taken into account such as administration costs. The cost
of refinancing can be adjusted by simply adding the additional costs to the calculation of the
prepayment penalty.

4-3-2 Relocation Incentive

If a mortgagor sells his existing house and moves to a new one, he has the possibility to fully
prepay his current mortgage and take out a new mortgage on his new property. We assume
that a mortgagor moves and takes out a new mortgage contract (penalty-free), if the following
condition holds:

Pcontract ≥ Prelocation(t), (4-7)
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and if there is an incentive for housing (h = 1) while he has not yet moved (m = 0). Here
is Prelocation equal to the monthly payments of a new mortgage contract without factoring in
extra costs:

Prelocation(t) = q0(t)rm(t)(1 + rm(t))Tr

(1 + rm(t))Tr − 1 . (4-8)

4-4 Modeling a New Mortgage Contract after Full Loan Prepay-
ments

We assume that a new mortgage contract is agreed upon after a full loan prepayment by the
same bank. A new contract agreement results in a new determined contractual interest rate,
a new initial amount of money borrowed, and a new level of fixed monthly payments. We
assume that a mortgagor does not want to shorten or extend the maturity of the contract,
and does not want to borrow more money than he has already in debt.

In Figure 4-3, we show an illustration of how we model a new mortgage contract after a full
loan prepayment. The new contract agreement after a full loan prepayment results in a reset
of the continuous states. The principal balance resets to the still outstanding debt before the
full loan prepayment, and the level of accumulated interest resets to zero. Also, the principal
repayment and interest payment reset according to the newly determined contract rate and
level of money borrowed. This means that x0 reset with the updated A0 and rc.
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Figure 4-3: After each jump in state of either x → x+
RL or x → x+

RF, the state resets due to
the new contract agreement. The new contract has an initial level of money equal to the still
outstanding debt, an updated contract rate, and thus a new schedule of principal repayments and
interest payments. This new contract will also update the switching conditions.
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The new contract agreement will have a contract rate equal to the prevailing mortgage market
rates, a level of money borrowed equal to the still outstanding debt, and a fixed monthly
payment calculated with Equation (2-15) for a new A0 and rc. This new fixed monthly
payment also updates the conditions in Equation (4-4) and Equation (4-7).
We assume that a new mortgage is contracted at the same mortgagee. In reality, it is allowed
to take out a new loan by a different mortgagee after a full loan prepayment. This model
assumption could be changed by assuming that a certain amount of mortgagors contract at a
different mortgagee after a full loan prepayment. These mortgagors ’leave’ the system which
is equal to a stop of the optimization problem for these mortgagors.

4-5 An Adaptable Economic-Engineering Model

We derived a model in this chapter that can be adjusted as desired. This is because the
structure of the model is interpretable, and so assumption in the model can be changed.
To allow for moving multiple times during the contract term, the discrete state can be used as
a counting variable. Each count implies that a mortgagor has moved, and the probability of
moving again reduces. This would extend the model in Figure 4-1, by adding extra mortgage
payments blocks (rectangular blocks). Each block contains the discrete state with a number
representing the times a mortgagor has moved. If m = 0 the borrower has not moved, m = 1
has moved one time, m = 2 has moved two times, m = 3 has moved three times, etc... To
reduce the probability of moving, the binary signal h should be recalculated each time a
borrower has moved, and the times the binary signal produces a 1 should be reduced.
Additional mortgage payments are added with adding more circular blocks. Mortgage pay-
ments such as delinquent and default payments are straightforward to model with economic
engineering. For delinquent and default payments the continuous state will not jump, but
the balances will remain constant as no payments are received. The principal repayment and
interest payment will be zero, meaning that the balances will remain the same. Delinquent
and default payments depend on unemployment rates [11, 12]. Unemployment rates can be
used as switching condition.
We assume that the conditions to switch to a full loan prepayment involves comparing the
monthly payments of the current contract with the monthly payments of a new mortgage
contract at the market mortgage rates. However, this full prepayment strategy is not always
that favorable for a mortgagor. Sometimes the contract rate resets to a higher interest rate,
meaning more money will go to interest payments and eventually a mortgagor will pay more
interest to the bank. To design a more favorable full prepayment strategy, the conditions for
full loan prepayments can be changed. For example, the contract rate could be compared with
the mortgage market rates, or the interest payment of the current contract with the interest
payment of a new contract. This will result in a full prepayment strategy of a mortgagor that
only fully prepays if the new mortgage contract has a lower interest rate.
Also, we assume that a mortgagor immediately prepays if he observes that the monthly
payment of his current contract exceeds the monthly payment of a new loan contract. This
represents behavior of a mortgagor that fully prepays at optimal moments. To account for an
inefficient exercise of this option, a probability could be added to these conditions resulting
in a chance constraint. Moreover, a budget constraint can be used to constrain the level of
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money a borrower can spend on partial prepayments, because a borrower does not always
have enough budget to prepay due to his income, or other expenses. Budget constraints are
commonly used in economics to constrain the level of money a consumer can spend on goods
[23].

4-6 Parameter Estimation with System Identification

System identification is a methodology for estimating the parameters in dynamic systems
from experimental data. Typical gray-box system identification requires measurements of the
system’s input/output signals to estimate the values of adjustable parameters in the given
model structure [43].

Historical data can be used for parameter identification as the parameters in the model
are relatively fixed and do not specifically depend on the movement of interest rates. The
parameters that are unknown do have an actual economic interpretation, and this helps with
choosing appropriate values. The parameters are related to the characteristics of a mortgagor.
These characteristics are a mortgagor’s creditworthiness and risk aversion. A mortgagor’s
creditworthiness is already ‘measured’ by banks with a FICO score which is a type of credit
score. A mortgagor’s risk aversion is harder to determine, but could for example be derived
from the responsiveness in prepayments of a mortgagor to interest rate changes. A more
risk-averse mortgagor will respond later, and with lower levels of prepayments, than a less
risk-averse mortgagor. We demonstrate this behavior of different risk-averse mortgagors with
simulations in Chapter 5.

Accurate parameter estimation is not within the scope of this thesis, and so there will not
be an extensive search to find proper values. We use different values for the parameters in
Chapter 5 to forecast prepayments for different risk-averse and creditworthy mortgagors. The
model is in this chapter used as a proof of concept.
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Chapter 5

Cost-Minimizing Mortgagor Behavior
with Economic MPC

In this chapter, we design an Economic Model Predictive Controller (EMPC) to simulate the
behavior of a mortgagor. By simulating mortgagor behavior, we forecast prepayments with
the model derived in the previous chapter for different interest rate scenarios and for different
types of mortgagors. These simulations provide insights in the difference in prepayments
supplied for mortgagors with various degrees of risk aversion, creditworthiness, and rationality.
Based on these simulations we describe the causal and dynamic relation between interest rate
changes and prepayments.

First, we argue in Section 5-1 how a mortgagor can minimize his mortgage costs by using
funds for prepayments or investments, and in Section 5-2 we design an EMPC to simulate this
cost minimizing behavior. Subsequently, in Section 5-3 we simulate mortgagor behavior in a
decreasing interest rate regime to explain the dynamic and causal relation between interest
rates changes and prepayments. In Section 5-4 we forecast prepayments for different types
of mortgagors for an increasing interest rate scenario. We explain the level of prepayments
supplied for each mortgagor based on these simulations.

5-1 Cost Minimization through Prepaying or Investing

Mortgage prepayments result in an early mortgage termination and a reduction in the total
level of interest paid. Despite the interest costs that can be saved with prepayments, a
mortgagor should consider in decisions regarding mortgage prepayments factors as alternative
investments

Alternative investments is an opportunity to invest in alternative assets such as stocks, bonds,
or certificates of deposit. These investments represent a wiser economic choice if returns on
these investments exceed the interest rate on the mortgage. Moreover, funds used to prepay
could be used for other purposes such as paying off other consumer credit loans. If a mortgagor
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pays a higher interest rate on these loans than the mortgage loan, prepayment of these would
bring greater returns than prepayment of the mortgage.

Also, a mortgagor might choose to place money in an investment which pays a lower interest
rate than the mortgage (e.g, savings account). Since savings deposits are available on demand,
it guarantees a mortgagor quick access to money, and thus liquidity or cash availability. Any
extra money that is spent on reducing mortgage debt faster, is money that is not used for
other financial goals. Paying off a mortgage earlier can be at the expense of retirement savings,
emergency funds or other higher return opportunities.

In economics, more often the term opportunity costs of funds is used, i.e., the value or benefit
given up by engaging in one activity over another activity. Interest rates can be used as
a measure for the opportunity cost of funds, because it measures the amount of interest
(expected return) is sacrificed by not holding an alternative asset [44, 23]. Every stream of
payments should be compared to the best alternative. The interest rate on the best forgone
option will be compared with the interest rate on the chosen option.

A mortgagor will make a trade-off between using funds for paying off his mortgage early (and
reducing his interest costs) and using funds for investments. These investments can have a
higher return, but also a lower return to benefit from having liquidity available on demand.

5-2 Economic MPC Design for Minimizing Costs

In this chapter, we design an EMPC that minimizes costs of a mortgagor. By having a
mortgagor minimizing his costs, we simulate mortgagor behavior. A diagram is shown in
Figure 5-1. The model and the system are the same and represent the model derived in
the previous chapter. The disturbance are the risk-free rates, mortgage rates, and housing
activity.

5-2-1 Economic Model Predictive Control

In the traditional Model Predictive Control (MPC) used for optimization and control a two
layer design is employed. A Real-Time Optimization (RTO) computes the economically op-
timal steady-states that are subsequently sent down to a tracking MPC layer that uses this
optimal economic steady-state as a reference input. The tracking MPC layer computes control
actions that are applied to the closed loop system to force the state to the optimal steady-state
[45]. The objective function has usually the objective to achieve fast tracking to set point
changes, and is usually unrelated to the economic costs of operating a plant or process; the
steady state may be economically optimal, but the path to this steady-state is most probably
not economically optimal.

An EMPC merges economic optimization and control and thus employs a one-layer approach
to optimization and control [45]. Both the optimal steady-state and optimal transient (tran-
sient is the evolution of the system to the steady-state) are found in the same optimization
step. The objective function is not the usual trade-off between minimizing the control input
and driving the state to the reference state, but has a direct economic interpretation. Main-
taining a division between economic optimization and control is still more suitable in some
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Figure 5-1: The control diagram of the EMPC. The objective function is an economic objective.
The behavior of a mortgagor minimizes this economic objective over a prediction horizon. A
mortgagor determines his risk appetite for the prediction horizon while constraint to the dynamics
of the hybrid model and subject to disturbances from risk-free rates, mortgage rates, and activity
in the housing market.

applications, especially where there is an explicit timescale separation between the system
dynamics and the update frequency or timescale of evolution of economic factors. However,
for problems for which dynamic economic performance is crucial, the hierarchical separation
of economic analysis and control is either inefficient or inappropriate [46].

The dynamic economic performance is crucial for the economic systems modeled with eco-
nomic engineering, therefore the two-layer design of RTO and MPC will not be sufficient.
This is because the mortgage balances and payments are dynamic, and therefore the balances
and principal payments are a state of the system as well as present in the objective function.
The path of the transient has an influence on the mortgage balances and payments. We use
an EMPC to compute both the economically optimal transient and steady state at the same
optimization step.

5-2-2 Objective Function

An objective function that minimizes costs for a mortgagor needs to keep track of the accrued
interest during the mortgage term, the opportunity of investing in alternative assets, and
the liquidity benefit that arises from having money on demand. Additionally, we include a
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penalty on the control input as a measure of how rational the behavior of the mortgagor is.
The objective function will have the following form:

J = q1,acc[Th]︸ ︷︷ ︸
Accumulated interest

+
Th∑

k=1
[(r[k] − rc[k])v0[k]︸ ︷︷ ︸

Opportunity cost

− 1
2k0q0[k]2︸ ︷︷ ︸

Liquidity benefit

+ 1
2Ru0[k]2]︸ ︷︷ ︸
Rationality

(5-1)

The principal repayments are continuously changing based on a mortgagor’s risk appetite
and disturbances from interest rates. The dynamics of mortgage payments and prepayments
included in the economic engineering model therefore immediately influence the objective
function. This means that an economically optimal steady-state within the horizon of the
MPC can not be computed if these payments are continuously changing as a result of control
inputs and disturbances. This shows the importance of an EMPC compared to the two-layer
design. The system is controlled to move along the economically optimal path over the time
horizon of the EMPC.

Accumulated interest

The costs of a mortgage are the interest payments each month. In the current model, the
state q1 representing the balance of accumulated interest. This state resets to zero each
new contract agreement. However, the costs incurred on interest payments and prepayment
penalties should accumulate over the whole simulation time. We add an extra state q1,acc to
the model that accumulates the interest and penalty costs over the simulation time. This
state will not reset to zero after a full loan prepayment.

Opportunity costs

We calculate the opportunity cost by taking the difference of the return on risk-free invest-
ments r and the interest rate of the mortgage contract rc multiplied with the stream of
principal repayments v0. If the return on risk-free investments is higher than the contract
rate, the difference will be positive, and therefore investing in risk-free assets is a wiser eco-
nomic choice. Contrary, if the return on risk-free investments is lower than the contract rate,
the difference will be negative, and prepayments are a wiser economic choice. This relation-
ship is well-known for mortgage prepayments, where prepayments increase in low interest rate
environments and decrease in high interest rate environments [13]. This part of the objective
function is linear.

Liquidity benefit

Liquidity benefit refers to the benefit of having cash available. In economic engineering,
we say that potential energy represents the benefit of holding a good. Here, the good is
money, and therefore the potential energy represents the benefit of having liquidity available.
A mortgagor wants to maximize this benefit, therefore the minimization of this term has a
minus sign in front of it. This part of the objective function is quadratic and shaped concave,
because it is the negative of a convex function.
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Rationality

The option to prepay can be viewed as an exercise of a call option in which the value of
the outstanding loan repayments at a market interest rate is compared with the value of
the outstanding loan repayments at the original contract interest rate [47]. If interest rates
go down then the option is in the money (positive payoff), and if interest rates go up than
the option is out of the money. Rationally, the call should only be exercise if the above-
mentioned difference is positive, otherwise the option is worth more if you do not exercise
it. Meaning that it is more convenient to put money for example in a savings account rather
than prepaying the mortgage. However, people do not always act economically rationally
though, and the term irrational will be used to identify mortgagor behavior that differs from
the economically rationally behavior described above.

The penalty R on the control input, we call it the rationality parameter of a mortgagor,
determines how easily a mortgagor can add a risk appetite on top of his appetite to reduce
debt. This additional risk appetite is a control input in the form of an economic want that
will change a mortgagor’s risk factor.

If the penalty on the control input is close to zero, the mortgagor is able to add a risk appetite
to any quantity he sees fit to reject the disturbances from risk-free rate changes to supply the
scheduled payments. This means he will pay the scheduled principal and interest payments
of the mortgage contract without deviating from it if interest rates are going up or down.
This is in some way irrational behavior, because the mortgagor is not exercising the partial
prepayment option. However, the mortgagor is still prone to the full prepayment option and
can not reject this prepayment exercise even if the control penalty is zero.

The risk aversion parameter and rationality parameter both determine to which extent a
mortgagor is subject to external market forces that result in prepayments. The difference is
that the penalty on the control input determines to which extent a mortgagor can counteract
the economic forces from interest rate changes, while the mass determines to which extent
a mortgagor supplies addition repayments due to economic forces. Despite the chosen mass,
the penalty on the control input can be used to simulate mortgagors that are in some sense
irrational, e.g, mortgagors that are not partially prepaying and only fully prepaying.

This part of the objective function that penalizes the control input is quadratic and shaped
convex.

5-2-3 Constraints

The minimization problem is given by the objective function J minimized over time subject to
constraints. The states can not just arbitrarily be changed to determine an optimal control
sequence, since the system is constrained to its own dynamics (the state equations of the
continuous and discontinuous dynamics), and additional constraints. The control sequence
that minimizes the objective function changes the states of the system after the control
input for the first timestep is implemented, and therefore changes the objective function.
The optimization of one iteration with the economic objective function and including all
the constraints is shown in Appendix B. The hybrid economic-engineering model has eight
possible modes in which it can operate.
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The control variable is not explicitly in the entire objective function, and so the state equations
need to be included in the objective function to be able to solve the optimization problem. A
costate variable µ[k]− similar to a Lagrange multiplier− is used, according to Pontryagin’s
maximum principle [48]. The state equations become soft constraints on the objective func-
tion, and the minimization problem is solved both for u[k] and µ[k]. This method is similar
to how Lagrangian multiplies λ[k] are used for optimization problems with non-dynamical
constraints [49]. The Hamiltonian or resulting objective function H that is formed by using a
time-varying auxiliary multiplier µ[k] is decomposed in the objective function J and the state
equations f in the following form:

H[x, u, k, µ] = J [x, u, k] + µ[k]f [x, u, k] (5-2)

Here, J is the original objective function and f are the state update equations. The costate
variable can then be interpreted as the marginal costs for disobeying the state update equa-
tions. Hence, these equations are soft constraints in this optimization problem.

Binary variables

The hybrid model has eight modes, and it is only possible to be in one mode at a time. We
introduce binary variables in the constraints of the model for representing the ’or’ operator
between the different modes. This method indicates more clearly where binary variables are
introduced. Here d is a binary variable that can only take two values, for example 0 or 1, true
or false, yes or no. The binary variable can only select one mode that is ’true’, due to the
extra constraint that the sum of the binary variables should be equal to 1. In other words,
if a mode is selected the binary variable will take a value of 1 for that specific mode and the
binary variables for the other modes will take a value of 0. The ’or’ operator is essentially
equivalent by adding the following constraints to the model [40].

implies(d[k](1), Mortgage Payments Mode
implies(d[k](2), Mortgage Porting Mode
implies(d[k](3), Mortgage Payments Mode (and moved=1)
implies(d[k](4), Mortgage Payments Mode (and moved=1)
implies(d[k](5), Refinance Mode
implies(d[k](6), Refinance Mode
implies(d[k](7), Refinance Mode
implies(d[k](8), Relocation Mode
sum(d[k]) == 1

Model mode

We add a variable mdl to the constraints to keep track of the mode of the model. Each mode
has its own number assigned, i.e, for the mortgage payments mode mdl[k] = 1, mortgage
porting mode mdl[k] = 2, mortgage payments mode while moved mdl[k] = 3, etc. . .
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Accumulate interest without resets

We include additional constraints to accumulate interest without resetting the state to zero
after a new contract agreement. During mortgage payments mode, the state accumulates
interest with the general state update equation:

q1,acc[k + 1] = q1,acc[k] + Tsv1[k] (5-3)

During a refinancing, the prepayment penalty will add to the accumulated interest:

q1,acc[k + 1] = q1,acc[k] + ϵ[k] (5-4)

And during a relocation

q1,acc[k + 1] = q1,acc[k] (5-5)

Terminal constraints

A terminal constraint can be used to improve performance, and also acts in a system stabi-
lizing manner as a terminal constraint forces the state to the best equilibrium point at the
end of the horizon [50]. For an economic system, this could be considered as the economically
optimal steady-state at the end of the horizon.

In case of a mortgagor it forces a mortgagor to push their balance levels to a certain steady
state deemed economically optimal at the end of their control horizon. This optimal state
indicates a preference for a specific long-term behavior. It ensures that mortgagors do not
engage in unexpected behavior to generate short-term results. However, a mortgagor is
already quite restricted due to the constraints imposed by mortgage contracts, and we are
particular interested in unexpected behavior of mortgagors. There is not one optimal balance
level (principal balance and balance of accumulated interest), and therefore we can relax this
constraint by imposing a region constraint on the terminal state [50].

We add a terminal region to the principal balance that should always be positive and less than
the initial amount of money borrowed. The balance of accumulated interest should always
be positive, but the upper limit will not be restricted, because there is no restriction in the
costs accumulated on a mortgage contract.

5-2-4 Stability

An MPC is used to find the control sequence that minimizes the objective function J subject to
system equations and additional constraints as described in the previous section. This results
in a MIQP problem, and these are classified as NP-hard [49, 51, 52]. This means that there is
no algorithm that answers the question of stability in polynomial time. Moreover, the stability
of the submodels do not say something about the stability of the whole switched system [35].
It is not possible to study stability properties of the subsystems only, the switching structure
has to be taken into account as well.
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For an EMPC, the system is stable if the system converges to the optimal trajectory. However,
the stabilization conditions of the tracking objective function used in a standard MPC design
do not apply [46], and the stabilization conditions do not apply when hybrid models are used
for prediction [37]. Determining if the system always converges to its optimal trajectory, by
using Lyapunov-based stability proofs and LaSalle’s invariance principles [34, 35, 37, 53], is
well beyond the scope of this research. A sufficient condition for optimal operation is that a
system is dissipative [46], however applying this dissipative condition to systems for which the
operating regime fails to be an equilibrium or steady-state [46], is more challenging. Economic
engineering systems do not have an optimal steady-state within the prediction horizon. The
principal repayments are essential for determining optimal operation, and these repayments
are continuously changing due to the model dynamics.

In this thesis we assume that the EMPC with the hybrid model is stable with the chosen
parameters. The terminal region does guarantee that at least the balance levels return to
their steady-state region after the end of the prediction horizon. Convergence behavior can
be verified through trial-and-error with simulations. During the process of deriving and
tuning this model with simulations, the terminal constraints, and the constraints on the level
of payments and balances are important to have a stable model. The extra constraints on
the payments as proposed at the end in Section 3-3 appear to be too restrictive to obtain
solutions, and we do not use them for the eventual model simulation in this chapter.

Assuming that the system is stable and converges to some optimal path is admissible since
the current application is restricted purely to simulations. EMPC is also used to include
economic goals in real-life systems such as chemical processes and chemical plants [46, 54].
For operation of these systems it is of greater importance to proof stability for safety and
economic reasons.

5-2-5 Tuning

The sampling time is a trade-off between simulation accuracy and computation time. A
smaller value of the sampling time Ts does come at the expense of computational power.
Economically, the sampling time represents the smallest reaction time of a mortgagor to adjust
his risk strategy for prepayments. Currently, partial prepayments can be done online at any
time of the month. But, full prepayments due to relocation or refinancing is a longer process,
and often a meeting with an adviser from the bank is needed. Moreover, macroeconomic
variables such as interest rate update on a monthly frequency, and thus it is not needed that
a mortgagor has a smaller reaction time than one month. A mortgagor can adjust his risk
strategy monthly, and so the sampling Ts is chosen to be 1 month.

The length of the prediction horizon Th is economically a trade-off between uncertainty on pre-
dicting interest rates and a mortgagor’s cost minimization performance. A longer prediction
horizon result in a higher uncertainty on interest rates, but most likely a better performance
in minimizing a mortgagor’s costs. Interest rates update monthly, and looking too far in the
future will suffer from a higher uncertainty on these interest rates. It is difficult to predict
what interest rates will do in the upcoming half year, one year, or even five years. Especially,
short-term interest rates fluctuate more than long-term interest rates.

Additionally, how far in the future a mortgagor speculates about interest rates is mortgagor
specific. Some mortgagors will only look at the interest rates of the current month, others
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speculate for three months, or others even half a year. The further ahead a mortgagor
speculates about interest rates, the uncertainty on the interest rate predictions will increase.
If a longer prediction horizon is chosen, noise should be added to the interest rates with
an increasing deviation for values far in the future. This is a method to represent a higher
uncertainty on interest rates for predictions further away. For simulations in this thesis, a
mortgagor will look at the level of current interest rates and the slope (upward or downward)
to determine his payment strategy for the upcoming two months, resulting in a prediction
horizon of 2 months.

The control horizon is set equal to the prediction horizon. For a typical MPC design used
for tasks such as reference tracking the control horizon is chosen less than the prediction
horizon [55, 56]. This can reduce the computational time. The system reaches a steady-state
within the time frame of the control horizon, and the control input remains constant for
the remainder of the prediction horizon. If we choose the control horizon shorter than the
prediction horizon the performance of the optimization reduces, because this steady-state is
never reached within the prediction horizon.

5-3 The Dynamic Effect of Interest Rate Changes on Prepayments

We forecast prepayments with the hybrid model and the EMPC. By simulating mortgagor
behavior with an EMPC, we forecast prepayments with the hybrid model. We describe the
effect of economic forces on the level of mortgage repayments supplied. These economic forces
are forces from interest rate changes (disturbances), a mortgagor his cost minimizing behavior
(control inputs), and a mortgagor his appetite to reduce debt (spring force). In Figure 5-2,
we show the order of the causal and dynamic relation between interest rates changes and
prepayments. This relation will be clarified in this section.

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Date [Years]

Interest Rates [%/year]

Risk-free rates
Mortgage rates

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Date [Years]

Risk Appetite [1/month]

Interest payments
Principal repayments

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
Date [Years]

Mortgage Prepayments [e/month2]

Figure 5-2: The dynamic effect of interest rate changes on prepayments. Interest rates are the
disturbances of the model. We simulate the control inputs or behavior of a mortgagor which is
his risk appetite with an EMPC. When interest rates substantially decrease, a mortgagor will not
reject all the disturbances from interest rate changes with his risk appetite resulting in a change
in his risk factor. A small change in his risk factor causes partial prepayments (low accelerations),
while a substantial change in his risk factor causes full prepayments (high accelerations).

We simulate an annuity mortgage contract with a maximum partial prepayment of 10% per
year of A0 = e500, 000. The maturity of the contract is 10 years, and the contract rate is 3%
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per year. The sampling time is one month, and the prediction horizon is two months. We
use the same model parameters as in the Chapter 3, and the penalty on the control input is
R = 0.3. The initial conditions are:

q0[0] = A0 q1[0] = 0 v0[0] = rcq0[0] − P v1[0] = rcq0[0] (5-6)

Here, P is calculated as in Equation (2-15).

5-3-1 Generating Interest Rate Scenario

First, we generate interest rate scenarios of risk-free rates and mortgage rates. We use the
historical interest rates of German government bonds as risk-free rates [2], and the interest
rate on outstanding mortgages by Dutch banks to households in the same time frame [4].
Both interest rates are reconstructed with a delayed first-order hold method as shown in
Figure 5-3. We scale the risk-free rates with the same factor as in Section 3-3-1 and these
interest rates act as an external force, while we use the mortgage rates as switching conditions
for full loan prepayments.

We use data on housing sales per month in the Netherlands as shown in the right figure of
Figure 5-3. We transform this housing activity to a binary signal as explained in Section 4-2-2.
We use this binary signal to determine when a mortgagor has an incentive for housing.
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Figure 5-3: The risk-free rates are external force of the model, and the mortgage rates determine
the switching conditions for full loan prepayments. We use the activity in the housing market
to determine a mortgagor his incentive for housing. This activity in the housing market are the
housing sales per month in the Netherlands. We retrieve data on housing sales in the Netherlands
from [3].

We use the mortgage market rates to calculate the switching conditions for full loan pre-
payments. These conditions determine the switching behavior of the model, and are made
visible in Figure 5-4. In this figure, Pcontract is the fixed monthly payment of the current
mortgage contract calculated with Equation (2-15), and updates after each full loan prepay-
ment. The monthly payment of a newly originated contract without prepayment penalty is
Prelocation, and these are calculated with the mortgage market rates as in Equation (4-8). The
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monthly payments of a new contract including a prepayment penalty is Prefinance calculated
with Equation (4-4).
These conditions determine when a mortgagor switches to a full loan prepayments. A mort-
gagor switches to a full loan prepayment if he can reduce his monthly payment by taking
out a new mortgage contract. The mortgage will be fully prepaid at the beginning of 2015,
at the end of 2019, and in the middle of 2020. These are all full loan prepayments due to
refinancing. The mortgagor fully prepays because he observes that:

Pcontract ≥ Prefinance(t), (5-7)
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Figure 5-4: The switching conditions determine when a mortgagor fully prepays. A mortgagor
compares his monthly payment of his current contract with the monthly payment of a new contract
with and without a prepayment penalty. If a mortgagor can reduce his monthly payment by taking
out a new mortgage contract he fully prepays, and the model switches to the full prepayment
dynamics.

5-3-2 Simulating Mortgagor Behavior

We simulate the behavior of a mortgagor with the EMPC designed in this chapter. The
controller determines a mortgagor his cost minimizing risk appetite. In mechanics, these are
the control inputs or reaction forces that steer a system’s state to a desired state.
A mortgagor his risk appetite for principal repayments (or control input u0) clearly follows
a similar pattern as the disturbances from the risk-free rates but mirrored as visible in the
left figure of Figure 5-5. The mortgagor tries to reject the disturbances from the risk-free
rate changes. However, due to the penalty on his risk appetite for principal repayments the
disturbances are not fully rejected. When risk-free rates are falling fast (end of 2015, in 2016,
and in 2019), the mortgagor can not fully reject these market forces which results in a change
in his risk factor, and will supply partial prepayments as visible in Figure 5-6.
When a mortgagor supplies a full loan prepayment (begin 2015, end of 2019, and mid 2020),
his appetite for principal repayments decreases significantly such that the principal repayment
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is equal to the principal balance outstanding. This behavior is observed in his appetite for
principal repayments in Figure 5-5. When the mortgage is fully prepaid, this risk appetite
decreases significantly which results in a substantial change in his risk factor to supply full
prepayments. This full prepayment is exactly equal to the still outstanding mortgage debt
as visible with the jumps in state in Figure 5-7. These shocks in risk appetite are the forces
needed to steer the mortgage to a full loan prepayment.
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Figure 5-5: The control inputs of the model, analogous to a mortgagor’s risk appetite. A
mortgagor his risk appetite is influenced by disturbances from interest rate changes.

A mortgagor his risk appetite for interest payments (or control input u1) steers the states
of the mortgage such that the constraints of an annuity contract are always satisfied. When
the mortgage is fully prepaid, this risk appetite decreases significantly to steer the interest
payment to zero while the principal repayment is equal to the principal balance outstanding.
After a full loan prepayment, this risk appetite steers the mortgage to the new interest
payment determined with the new contract rate. These shocks in risk appetite are the forces
needed to steer the mortgage to a full prepayment and to subsequently update the interest
payment according to the new contract.

5-3-3 Deriving Mortgage Prepayments

We use the states of the model as model outputs. In Figure 5-6 the balance and payment
levels of the mortgage are shown till all mortgage debt is paid off. We simulate the scheduled
payments with the method described in Section 2-3, and we also update these after each new
contract agreement.

With the simulation shown in Figure 5-6, we derive prepayments with Equation (2-25) by
calculating for each month (for each time step t) the difference between the scheduled principal
repayments v∗

0 and the principal repayments supplied by the mortgagor v0. This is the
difference between the solid lines and dashed lines of the principal repayments in Figure 5-6:

Prepayments(t) = v0(t) − v∗
0(t) (5-8)
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Figure 5-6: The mortgage payments and balances per month of the mortgage contracts. In
the left figure, the dashed lines are the scheduled payments, and the solid lines the scheduled
payments with prepayments. The peaks (outside y-axis limit) are the full prepayments equal to
the principal balance outstanding before the jump of the state in the right figure. After each full
prepayment a new contract is agreed upon with a new schedule. The repayment schedules with
and without prepayments are shown in the right figure.

We visualize these prepayments in Figure 5-7.

The Conditional Prepayment Rate (CPR) is a mortgage prepayment rate that estimates
the proportion of a loan’s notional that be prepaid in each period. The CPR is an annual
percentage, and can be derived from the Single Monthly Mortality (SMM). The SMM can
be derived from the prepayments per month, and is defined as the percentage by which
prepayments reduce the month-end principal balance compared to what it would have been
with no prepayments:

SMM(t) = Prepayments(t)
Scheduled principal balance(t) (5-9)

In this equation, the prepayments are the partial prepayments and full prepayments per month
as shown in Figure 5-7. The scheduled principal balance is the level of principal balance
outstanding at the end of each month, and thus with the scheduled principal repayment
already subtracted. We derive this scheduled principal balance from the state q0 without
prepayments in Figure 5-6.

From the SMM, the CPR can be derived:

CPR(t) = 1 − (1 − SMM(t))12 (5-10)
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Figure 5-7: The partial and full prepayments per month supplied by the mortgagor. The full
loan prepayments (the peaks outside y-axis limit) are equal to the principal balance before each
jump in state in Figure 5-6.
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Figure 5-8: We derive the CPR from the states of the model. The CPR is an annual percentage
that expresses the loan’s principal that is paid off prematurely due to prepayments.
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The CPR expresses the annual percentage of a loan’s principal that is likely to be paid off
prematurely. In Figure 5-8, the CPR is shown for the simulated mortgage contract.

We calculate the CPR of one mortgage, and therefore the peaks are 100%. This is because
the loan’s principal is paid off completely during a full loan prepayment, and therefore 100%
of the loan’s principal is paid off prematurely.

5-4 Forecasting Mortgage Prepayments in Increasing Interest Rates

In this section, we simulate and explain the response of different kinds of mortgagors to
increasing interest rates with prepayments. We generate an increasing interest rate scenario
by using the historical data of the risk-free rates and mortgage rates from the previous section.
In this section, we use the interest rate scenario shown in Figure 5-9.
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Figure 5-9: An interest rate scenario generated to forecast prepayments in increasing interest
rates. These interest rates are disturbances of the model.

To generate this scenario, we flip the historical trends from both interest rates from Figure 5-
3. By flipping the trends we create an increasing interest rate trend. We shift both trends
upwards 1% representing a shift in interest rates, and add a cosine to these trends. The
cosine is added to represent the cyclical behavior of short-term interest rates. Interest rates
are closely related to business cycles, and therefore have a cyclical behavior [44, 33, 57].
Subsequently, a Brownian noise is added representing the uncertainty in predicting interest
rates. Brownian noise is chosen over white noise, because the deviation in the interest rates
should not be completely random. Brownian motion is commonly used for modeling short-
term (zero-coupon) interest rates such as in the Hull-White model and Heath-Jarrow-Morton
model [58].

We perform the simulations in Matlab using the YALMIP toolkit to program the MPC and
we use the ‘gurobi’ solver that uses a branch-and-bound algorithm to solve Mixed-Integer
Programming (MIP) problems.
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We use for the simulations a prediction horizon of two months. A mortgagor determines his
optimal risk appetite for two months ahead based on predictions of interest rates. After the
optimal control sequence is calculated for the prediction horizon and implemented for the
first time step, an update is received on interest rates for k ∈ [1, Th + 1]. The deviation of
the noise will not increase for values further away. If a longer prediction horizon is preferred,
the deviation of the noise should be increased for interest rates far in the future, because the
predictions of these values will be more uncertain.

We run simulations for different values of the parameters m0, m1, k0, and R. This changes the
dynamics of the model and the objective function. The optimizer object will be called with
different values of these parameters following the approach described in the YALMIP docu-
mentation [59, 60]. We define the parameters as decision variables such that the optimization
problem can be solved for different values of the parameters simultaneously.

The optimizer object will be called three times simultaneously representing three different
types of mortgagors. As a result, the state update equations, objective function, switching
conditions, and the new contract agreements will differ per mortgagor. Based on these sim-
ulations, we explain the causes of the differences in mortgage prepayments supplied with the
derived causalities, and compare the results with literature.

5-4-1 Different Risk-Averse Mortgagors

We vary the value of the parameter representing a mortgagor’s risk aversion (the mass) to
model different risk-averse mortgagors. We use the following values listed in Table 5-1. Each
mortgagor will be equally creditworthy with k0 = 0.05. We simulate an annuity mortgage of
e500, 000 with maturity of 10 years, and a contract interest rate of 3% per year. The penalty
on the control input is R = 0.3.

Table 5-1: A different value for the parameter representing a mortgagor’s risk aversion is analo-
gous to a different value for a mass in mechanics. A heavier mass corresponds to a more risk-averse
mortgagor and a lighter mass to a less risk-averse mortgagor.

Risk-Averse Mortgagor Risk Aversion [month/e]

Least m0 = 10, m1 = 10
Medium m0 = 100, m1 = 100
Most m0 = 1000, m1 = 1000

We derive the CPR from the model states following the method described in Section 5-3-3.
The CPR of each mortgage is shown in Figure 5-10.

Risk aversion is related to the tendency of people to prefer outcomes with low uncertainty to
those outcomes with high uncertainty, even if the average payoff of the latter is equal or higher
in value than the more certain outcome. In short, risk aversion is the tendency of people to
avoid risk. The value of this model parameter can be changed to forecast prepayments in
situations when a change in the risk aversion of mortgagors is expected.

Crises such as the financial crisis or COVID-19 crisis have influence on the risk aversion of
mortgagors. During the COVID-19 crisis the savings of households increased sharply, but,
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Figure 5-10: The CPR of different risk-averse mortgagors. The most risk-averse mortgagor sup-
plies less partial prepayments and full prepayments than the least risk-averse mortgagor supplies.
The most risk-averse mortgagor corresponds to the largest value for the mass, and is therefore
less influenced by the economic forces impinging on the mass.

mortgage prepayments did not increase during the same period [61]. This is remarkable,
as prepayments usually account for a substantial share of free savings. The decrease in
prepayments and the increase in total savings suggest an increased preference for more liquid
savings in households as a precautionary measure against the high uncertainty surrounding
the development of the pandemic and the economy [61]. Unlike deposits, assets accumulated
in a home are not immediately withdrawable, and so households cannot use them to absorb
income drops or unexpected expenses. This means that households during the COVID-19
crisis were more risk averse.

In Figure 5-10, the most risk-averse mortgagor barely supplies partial prepayments, because
the economic forces from risk-free rate changes have no influence on him. He supplies one time
a full prepayment, because he can reduce his monthly payments by refinancing his mortgage
according to the condition in Equation (5-7). In general, low-income persons are found to be
more risk-averse because they have little margin for error or loss [62].

In mechanics, when a similar force is exerted on a mass, a lighter mass will have a higher
acceleration than a heavier mass. This explains the very low levels of partial prepayments
supplied by the most risk-averse mortgagor. The economic forces from risk-free rate changes
and a mortgagor’s appetite to reduce debt cause lower levels of partial prepayments supplied
from the most risk-averse mortgagor than from the least risk-averse mortgagor.

The least risk-averse mortgagor clearly supplies the highest levels of partial prepayments
and the most full prepayments. This is because the value of the risk aversion parameter is
the lowest for this mortgagor and therefore the mass is the lightest. The least risk-averse
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mortgagor reduces his principal balance faster with partial prepayments, meaning he has
earlier opportunities to reduce his monthly payments. The condition shown in Equation (5-
7) is more frequently satisfied for this mortgagor, and therefore there are more frequently
switches to the dynamics of full prepayments.

The increasing economic force from increasing interest rates together with the decreasing
appetite of a mortgagor to reduce his debt (spring force), explains the very low levels of partial
prepayments after mid 2026. The least risk averse supplies as only one partial prepayments
at the end of 2025, this is because of the fast decrease of risk-free rates in the middle of 2025.
These partial prepayments are delayed because of the delayed signal of the risk-free rates
which is used as input.

5-4-2 Irrational Mortgagors

In this section, we only change the penalty on the control input to R = 0 for all three
mortgagors to show the difference between the risk aversion parameter and the rationality
parameter. We keep all other parameters equal and simulate the same mortgage contract as
in the previous section.

The prepayments supplied of all the three mortgagors is shown in Figure 5-11. All three
mortgagors do not supply any partial prepayments anymore. This is because they can adjust
their risk appetite to any quantity needed such that their risk factor does not change. They
reject all the disturbances from economic forces. In mechanics, this means that the reaction
forces from the controller reject all the disturbances from the forces acting on the mass.

All three mortgagors follow the scheduled contract, and only supply a full prepayment at the
same time when they can reduce their monthly payments. They still have an incentive to
refinance, because the mortgage rates determine the switching behavior between the model
dynamics. This switching behavior can not be rejected, and the mortgagors adjust their risk
factor to supply a full loan prepayment.

People do not act rationally, meaning they do not prepay whenever there is an incentive to do
so, and they sometimes prepay when it is not optimal. In literature, an explanatory variable
named the burnout effect tries to explain and take into account that not all mortgagor behave
rationally when presented an incentive to refinance [63, 64, 11].

This term is used to describe for a pool of mortgages that has experienced an earlier exposure
to refinancing opportunities will, other things being equal, have lower refinancing rates than
a pool with no such prior exposure. Burnout can be explained as the effect of changes in the
composition of the pool of mortgages caused by refinancings which remove the most capable
or most eager mortgagors from the pool, and the remaining mortgagors have less of a tendency
to refinance [13]. The most aware mortgagors refinance immediately, while other mortgagor
may not be aware that a refinancing opportunity has been presented. They may be reacting
slow, and thus acting irrationally [63, 64].

We expect that the penalty on the control input together with the switching conditions can
be used to model the rationality of mortgagors, or the burnout effect in a pool of mortgages.

A high penalty on the control input will result in less irrational behavior, i.e, make use of the
partial prepayment option and full loan prepayment option when interest rates are decreasing.
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Figure 5-11: The CPR of different risk-averse mortgagors that behave irrational. We set the
penalty on the control input to R = 0 to simulate irrational behavior. The mortgagors can reject
all the disturbances from risk-free rate changes, meaning that they do not supply any partial
prepayments when interest rates are decreasing. They still supply a full loan prepayment when
optimal, because they can not reject the mortgage rates changes that determine the switching to
a full prepayment.

A low control penalty will result in more irrational behavior, because the mortgagor will not
make use of the partial prepayment option when interest rates are decreasing, and will only
exercise the full prepayment option to reduce his monthly payments.

The switching conditions can be used to model the tendency of people to refinance. For the
most eager and aware mortgagors an optimal switching condition should be used, while a
margin on the switching condition should be added to model mortgagors with a less tendency
to refinance.

5-4-3 Different Creditworthy Mortgagors

We vary the value of the parameter representing a mortgagor’s creditworthiness (the spring
constant) to model different creditworthy mortgagors. We use the following values listed in
Table 5-2. Each mortgagor will be equally risk averse with m0 = 100 and m1 = 100. We
simulate the same mortgage contract as in the previous sections, namely an annuity mortgage
of e500, 000. The maturity of the mortgage is 10 years and the contract interest rate is 3%
per year. The penalty on the control input is R = 0.3.

From the states of the model we derive the CPR. In Figure 5-12, the CPR of each mortgage
is shown.
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Table 5-2: A different value for the parameter representing a mortgagor’s creditworthiness is
analogous to a different value for a spring constant in mechanics. A higher spring constant
corresponds to a more creditworthy mortgagor and a lower spring constant to a less creditworthy
mortgagor.

Creditworthy Mortgagor Creditworthiness [1/(e− month)]

Most k0 = 0.1
Medium k0 = 0.05
Least k0 = 0.01

In literature, a mortgagor’s creditworthiness is an explanatory variable that tries to explain
partial prepayments based on data on FICO scores [11, 5, 13, 5]. A higher FICO score is
associated with a higher degree of creditworthiness [11]. Previous studies have shown that
FICO score at mortgage origination is positively associated with partial prepayments [32].
Meaning that these prepayments are more likely for mortgagors with higher scores [32]. These
mortgagors have an increased financial ability to make extra mortgage payments when it is
beneficial to do so [13, 32].

The most creditworthy clearly supplies the highest levels of partial prepayments and the most
full prepayments in Figure 5-12. This is because the value of this parameter is the highest
for this mortgagor and therefore his appetite to reduce is debt is the largest compared to the
other mortgagors for a similar principal balance.

In mechanics, for a similar displacement, a higher spring constant results in a larger restoring
force than for a spring with a lower spring constant. The most creditworthy mortgagor
has therefore the largest appetite to reduce his debt which causes a higher level of partial
prepayment supplied. For the least creditworthy mortgagor his appetite to reduce debt is the
smallest and therefore a lower level of partial prepayments is supplied.

This economic force from the spring gradually decreases over time, because the principal
balance decreases over time. Together with the increasing economic force from increasing
interest rates explains the very low levels of partial prepayments after 2026.

The most creditworthy mortgagor also supplies the most full prepayments. This is because
he reduces his principal balance faster with partial prepayments, meaning he has earlier
opportunities to reduce his monthly payments with fully prepaying and taking out a new
mortgage contract. The condition shown in Equation (5-7) is more frequently satisfied for
this mortgagor, and therefore there are more frequently switches to the dynamics of full
prepayments compared to mortgagors with a lower creditworthiness.
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Figure 5-12: The CPR of different creditworthy mortgagors. The least creditworthy mortgagor
supplies less partial prepayments and full prepayments than the most creditworthy mortgagor
supplies. The least creditworthy mortgagor corresponds to the lowest value for the spring constant,
and therefore has the smallest appetite to reduce his debt.
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Chapter 6

Conclusions and Recommendations

Conclusions

Human behavior is inherently hard to forecast and so are mortgage prepayments. Instead
of traditional forecasting methods using an all-inclusive econometric model, this thesis con-
tributes to developing a systems and control approach for the forecasting of mortgage pre-
payments. By following the principles of economic engineering, a method is developed to
build a dynamical model of mortgage prepayments which captures both the cause and dy-
namics behind changing mortgage repayments, and therefore performs in changing interest
rate regimes.

In this thesis, we derive that the cause of changing mortgage repayments is a change in a
mortgagor’s risk factor. This causality remains reliable even when interest rates drastically
change. This is because the law of demand and supply remains valid in any interest rate
regime. This thesis contributes to developing a causal model for forecasting mortgage pre-
payments. In equilibrium situations are econometric models based on correlations efficient
to forecast prepayments, but economic situations such as the financial crisis have shown that
econometric models underperform due to changing parameters. The current economic situa-
tion is not an equilibrium situation as interest rates are drastically increasing, and the causal
model derived in this thesis is able to dynamically forecast prepayments for disequilibrium.

We derive the dynamics of mortgage prepayments by specifying a risk appetite—an economic
force—as the time derivative of a risk factor. This is based on Newton’s laws of motion.
As a consequence, we derive differential equations that describe the dynamics of mortgage
payments and partial prepayments. We demonstrate the functioning of these dynamics in
Chapter 3 by simulating repayment schedules including partial prepayments. These differen-
tials describe in a fully deterministic manner the exact time change of mortgage repayments
caused by economic forces. In economics, such economic forces are not defined explicitly and,
hence, econometric models do not describe the dynamics for this changing.

The dynamics of mortgage payments and prepayments depend on economic interpretable
parameters. These parameters are personal characteristics of mortgagors, namely their risk
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aversion and creditworthiness, and these remain relatively constant. Personal characteristics
do not specifically depend on interest rates, and therefore these parameters can be estimated
with historical data. The values of these parameters are economically interpretable as opposed
to the parameters of econometric models which only reflect the degree of association between
variables. For different creditworthy and risk-averse mortgagors, we forecast prepayments in
an increasing interest rate scenario in Section 5-4. We explicitly explain prepayment behavior
for each mortgagor based on the values of these parameters. As a result, this model can be
used as a forward-looking model. This means that we can forecast prepayments for economic
situations leading to more risk-averse mortgagors such as in a financial crisis.

The structure of the hybrid model allows implementing the kinematics of any mortgage con-
tract, and the dynamics of any prepayment type. We specify the kinematics with constraints
which limit the mortgage payments, and use an inequality constraint to define the maximum
allowable percentage of partial prepayments. A jump of the continuous state describes the
dynamics of full prepayments. This results in a hybrid model that switches between con-
tinuous and discontinuous dynamics. This hybrid model is a preliminary design. We have
not estimated the model parameters, and the conditions that determine the switching be-
tween the different dynamics are simplified. However, this model shows the ease with which
different prepayment dynamics can be added, and how switching conditions can be used to
determine if and when mortgagors fully prepay. As a result, the model can be adapted to any
mortgage contract and prepayment type, even nonexistent ones, to forecast prepayments. In
these situations, only what-if scenarios are possible with econometric models because of data
unavailability.

In addition, we have designed an EMPC to simulate the economic forces from the behavior of
a mortgagor. The choice of an EMPC is essential because of the receding horizon aspect, the
minimization of an objective function directly representing a mortgagor’s costs, and adding
constraints easily to account for limitations to either states or inputs. The objective function is
an economic objective of the mortgagor. This can be changed to simulate mortgagor behavior
with other optimizing needs such as maximizing tax deductions or minimizing environmental
footprint. Repeatedly solving a minimization problem over a receding horizon is not possible
with other constrained optimization or control methods.

For optimization problems in finance such as multi-period portfolio optimization, EMPC is
a useful tool. Maximizing profits or minimizing costs is a common objective in finance, and
with a EMPC it is possible to optimize an objective over multiple periods while assuming
imperfect information of the future. This is contrary to (offline) constrained optimization
methods that assume perfect information of the future. However, when perfect information
of the future can be assumed, constrained optimization methods are easier to implement.

Overall, the developed economic engineering model in this thesis positively contributes to
forecasting prepayments using a completely different modeling approach. Instead of relying
on correlations as a basic premise, we rely on causalities. This economic engineering approach
is useful for producing a challenger model for banks to uncover potential other biases in their
models from relying on historical data (e.g., tax regimes, client behavior). As a challenger
model, both the forecasting power of economic engineering models and the performance of
the models of banks can be tested by comparing prepayment forecasts.
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Recommendations

Economic engineering and asset-liability management

In this thesis, we have shown how to develop specific analogies for the mortgage market by
following the principles of economic engineering. We derived the dynamics of a single mortgage
with these analogies. For deriving the dynamics, we used the linear economic engineering
analog, and we viewed the motion of a mortgage amortization schedule as a translation
horizontally and vertically each month. However, similar as with a pendulum in mechanics,
it could be more convenient to derive the dynamics of a mortgage with rotational mechanics,
because the motion of mortgage contracts in the principal-interest plane is rotational.

When modeling a balance sheet consisting of multiple assets and liabilities and for the man-
agement of the balance sheet, the rotational analog yields especially interesting insights.
Specifying the economic interpretation of the rotational analog applicable to banks, translat-
ing a pool of assets and liabilities to a mechanical system of rigid bodies, and formulating
a bank’s practice of managing assets and liabilities as a systems and control problem, is a
way to extend the economic engineering research for banks. The economic interpretation of
rotational mechanics and rigid body dynamics will also contribute to the field of economic
engineering in general.

The hybrid economic-engineering model

The focus of this research was on formulating the forecasting of mortgage prepayments as
a systems and control problem, and describing the system with a model of mortgage pay-
ments and prepayments derived with economic engineering. To facilitate this process, some
assumptions and or simplifications were made.

The simulated mortgage contract is simplified by assuming that the interest rate of the con-
tract is fixed till the mortgage matures. Normally, the interest rate is fixed for a predetermined
period which is not necessarily equal to the term of the contract, but could have different
lengths from zero to thirty years.

Also, we assumed that a new contract agreement is at the same bank after each full loan
prepayment. However, a mortgagor is allowed to contract at another bank during a refinancing
or relocation, and so an outflow of mortgages is expected. A probability should be taken into
account that a mortgagor takes out a new mortgage contract at another bank.

The conditions that determine the switching between different dynamics in the model are an
important feature. We assumed that a mortgagor compares his monthly payment (without
partial prepayments) with the monthly payment of a new mortgage contract at the prevailing
mortgage rates. In this way, we could easily add a prepayment penalty (which discourages
mortgagors to refinance) on top of the monthly payment.

In reality, a mortgagor compares the interest rate of his current mortgage with that available
on a new mortgage, or compares the value of his mortgage with the value of other mortgages
in the market. A mortgagor’s incentive to refinance changes over time, depending on macroe-
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conomic conditions. It is not a simple comparison of interest rates. It is not always exercised.
When designing these switching conditions, these uncertainties should be taken into account.

Moreover, we assumed that the incentive for housing remains constant and does not change
for different interest rate scenarios. Housing activity is negatively correlated with mortgage
rates, and so it is more realistic to also generate future expected housing activity scenarios.
It is expected that activity in the housing market reduces with increasing mortgage rates.
Also, the assumption that a mortgagor moves only one time during the mortgage contract of
10 years should be revised. For example, by assuming that a mortgagor can move unlimited
times, but the probability a mortgagor moves reduces each time after moving.

Defining uncertainty with control methods

The current EMPC design uses a deterministic objective function, deterministic constraints
and deterministic disturbances. The disturbances from risk-free rates, mortgage rates and
housing activity do vary over time using noise, but at every optimization step, the MPC
assumes everything completely deterministic.

However, uncertainty is present in the objective function of a mortgagor, in predictions of
macroeconomic variables such as interest rates, the parameters of the model, and the switching
conditions. To account for uncertainties when using MPC, there are two common possibilities.

Robust Model Predictive Control (RMPC) is a methodology to design controllers for uncertain
systems, where the uncertainty is assumed to be bounded, and a control law is computed
that satisfies the constraints for every possible uncertainty realization [65]. This leads to a
large set of deterministic constraints and while robustness against the bounded uncertainty
can be ensured, however, this requirement may significantly degrade the overall controller
performance by the need to protect against low probability outliers.

Often uncertainties are of probabilistic nature, like the uncertainties in the refinance, reloca-
tion and mortgage porting incentives, and the uncertainty that a mortgagor takes out a new
contract by another bank. Stochastic Model Predictive Control (SMPC) is a relaxation of
RMPC, in which the objective function is formulated as an expectation and the constraints
are interpreted probabilistically via chance constraints, allowing for a small constraint viola-
tion probability. The optimization will be a trade-off between fulfilling the control objectives
and satisfying the constraints, a mix of performance and robustness. Unfortunately, chance
constrained control problems are difficult to model, and must often be approximated [65].

Defining the uncertainty in the systems and control problem formulated in this thesis is an
important step. This will not only contribute to obtain more realistic forecasts of mortgage
prepayments with the method proposed in this thesis, but also contribute to dealing with
uncertainty in economic engineering models in general.
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Econometric Models

The two main approaches for modeling mortgage termination and subsequently forecasting
prepayment rates are option theoretic models and exogenous models.

A-1 Optional Theoretical Models

Optional theoretical models only look at the financial considerations of a mortgagor, which
means that a mortgagor would prepay only if the actual value of the asset is greater than
the remaining mortgage principal balance with possible transaction costs. The prepayment
option is viewed as a call option which is assumed to be exercised only under optimal con-
ditions. Option theoretic models assume that borrowers behave purely rational and model
prepayments endogenously, without incorporating driving factors that trigger mortgage pre-
payments. Using optional theoretical model as modeling approach removes all the irrational
behavior of mortgagors. Exogenous models on the other hand model mortgage termination
exogenous and can incorporate borrower heterogeneity.

A-2 Exogenous Models

The exogenous models make use of two different statistical frameworks. These two frame-
works are logistic regression and survival analysis. The logistic regression models simply add
exogenous calls to the optimal prepayment models in order to take into account the non-
optimal behavior of mortgagors. The latter framework looks into the observed prepayments
to determine which explanatory variables (i.e. driving factors) can explain such prepayment
behavior. The main difference between the two frameworks is that the dependent variable
in survival analysis is the survival time to prepayment, while the dependent variable in a re-
gression model is a binary variable, indicating the occurrence of a prepayment. An extension
of the logistic regression models are Markov models or conditional logistic regression models
that can account for dependence between observations.
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A-2-1 Logistic Regression

Logistic regression indicates the occurrence of a certain event, in this case a prepayment, as a
binary variable. In the case of prepayment modeling, we are interested in whether a mortgage
will prepay (Yit = 1) or not (Yit = 0). Here Yit is the dependent variable (also known as a
response variable or output variable) which can only take values of 0 or 1 [12].
Logistic regression applied to multi class problems (i.e. with more than two possible discrete
outcomes) is known as Multinomial Logit (MNL) models. A MNL model measures the relative
probability of being in one state compared to another [5].
The dependent variable is a binary variable indicating the occurrence of a prepayment Yit = j
for possible payment states j = 1, ..., n for each mortgagor i = 1, ..., N . These models estimate
the probability that either one of the categories in the dependent variable occurs P (Yit = j)
using a set of explanatory variables. The logistic model assumes a logistic distribution, where
the logistic is defined as

ln
(

F (.)
1 − F (.)

)
= X ′

itβj , (A-1)

where F (.) is the logistic cumulative distribution function. The vector Xit (also called inde-
pendent variables or predictor variables) contains the explanatory variables and the vector
βj the regression coefficient estimates. Consequently, the probability that mortgage i at time
t classifies as category j is defined as

P (Yit = j) = eXitβj∑
j eX′

itβj
. (A-2)

The log-likelihood of the MNL model is defined as

ln L(β) =
∑

t

∑
i

∑
j

dijt ln P (Yit = j) , (A-3)

for all mortgagors i over all time periods t and possible states j. Here, dijt is the dummy
variable for the category of Yit. The dummy variable takes values of 1 if j is equal to the
payment state of mortgagor i on any time t, and 0 otherwise.
Typically, the regression coefficients are estimated by some sort of optimization procedure,
e.g. Maximum Likelihood Estimation (MLE). The estimates are obtained by maximizing
eq. (A-3) with respect to βj . This method finds regression coefficients that best fit the
observed data, and give the most accurate predictions for the data already observed [5], [11].
For prepayment modeling, a three state classification and a five state classification could
be used [11]. The three state classification leads to a dependent variable with three states:
contractual payment, default, and prepayment. The reference state or the default category is
contractual payment. The probability of the ith mortgage at time t being classified as being
in the reference state reads as:

P (Yit = 0) = 1
1 +

∑
i=1 eX′

itβj
(A-4)
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The five state classification includes five states to the dependent variable: contractual pay-
ment, principal curtailment, prepayment, delinquent, and default.

The MNL models are the most common approach as starting point for modeling mortgage
termination due to the relative ease with which the models can be estimated [11, 5, 12, 66].
Moreover, contrary to the survival analysis, logistic models are able to include time varying
covariates. However, the MNL models have the drawback that it is assumed that all draws
to be independent observations. So the models are unable to take into account dependence
in observations. However, mortgage termination cannot be assumed to be independent over
time, as the same mortgage contract is observed over multiple time periods.

A-2-2 Survival Analysis

Survival models focus on modeling the time until the occurrence of a certain event. In
prepayment modeling, we are interested in the time until the occurrence of a prepayment
event. Within the survival analysis, the link between the survival function and the covariates
is expressed on the basis of the proportional hazard model as introduced by Cox [9]. The
quantity of interest is the hazard (risk) of a prepayment occurring in the next month, given the
mortgage has not been prepaid yet. The hazard rate is modeled as the product of a baseline
hazard rate and a multiplier. The baseline hazard rate describes the time development of a
’typical’ prepayment profile (depends on mortgage age and has a so-called S-shape1). The
multiplier of the hazard rate contains borrower-specific factors and loan-specific factors, which
are outlined in section 2-4-3.

The hazard rate is defined as the probability of a mortgage termination for cause j at time t
given the nonoccurence of prepayment event until time t.

hj(t, x) = lim
∆t→0

P (t ≤ Tj < t + ∆t | Tj ≥ t)
∆t

= hj0(t)e−X′
itβj . (A-5)

The first part hj0(t) captures the distribution of the failure time when the driving factors
explaining prepayments are zero (e.g. the baseline hazard rate). It should reflect the ’typical’
prepayment rate and varies only with the age of the loan. The multiplier in the hazard
rate contains the explanatory variables X ′

it describing observation i, and βj the weights
(or regression coefficients) corresponding to mortgage termination j. The multiplier is a
proportionality factor that includes the effects of the driving factors on the hazard rate, and
it incorporates both borrower-specific and loan-specific effects per mortgage i. The survival
time is a discrete random variable T , analogous to the classification of the dependent variable
in the MNL model.

The survival function is the probability of surviving from failure type j up to time t and is
given by

Sj(t, x) = e−Hj(t,x) (A-6)
1Prepayment rates often exhibit an S-shaped relation with loan age. Prepayment rates are generally low

shortly after origination of the loan and increase as the mortgage matures to finally arrive at a steady state
level at the end of the mortgage term.
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Here, Hj(t, x) is the cumulative hazard for cause j:

Hj(t, x) =
∑

t

∑
i

hj(t, x) (A-7)

Combining these results, the cause-specific density function fj(t, x) describes the uncondi-
tional probability that a mortgage i is terminated at time t due to cause j.

fj(t, x) = hj(t, x)Sj(t, x) (A-8)

Mortgages face multiple reasons for contract termination. When there is more than one
hazard affecting the survival of a mortgage, they compete. Simultaneous estimation of these
hazards produces a competing risk model [67]. The log likelihood of the competing risk model
is given by

ln L(βj) =
∑

t

∑
i

∑
j

dijt ln fj(t, x) (A-9)

Here, dijt is a dummy variable indicating the reason for contract termination. This likelihood
is very similar to the likelihood of the MNL model in eq. (A-3). When the effect of the
baseline hazard rate is small relative to the effect of the covariates, the competing risk model
and the MNL model are comparable [11].

One of the problems in using these type of models is the difficulty of including time varying
covariates in the analysis [11, 12, 13]. As the dependent variable in survival analysis is the
survival time of mortgage i from cause j: Tij . This variable does not depend on time t
over which mortgages are observed. So for each mortgage, only one observation on each
covariate can be used. Meis [11] transforms a historic data set of mortgages (containing data
of loan and borrower characteristics, and prepayment rates) into a cross-sectional dataset by
combining information per time-varying covariate per mortgage. The time varying covariates
per mortgage are averaged or randomly selected for a time period t for each mortgage i from
which covariate information is included.

Moreover, these competing risk models implicit assume an independence between consecutive
observations [11, 12]. Which means that the next state of the model is independent of the
current state. Dependence is accounted for by conditioning on the current state in mortgage
termination. Markov models can be used to account for this dependence between observations
[11].

A-2-3 Markov Models

Both logistic models and survival models lack the ability to account for dependence between
observations. The simplest Markov model is the Markov chain. It is a stochastic model
describing a sequence of possible events (i.e. states). The probability of each event is modeled
with a random variable that changes through time. The future states depend only on the
current state and not on the events that occurred before it.

A stochastic process Yt with t ≥ 0 is a discrete time Markov chain if for all states i, j
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P (Yt+1 = j|Yt = i). (A-10)

Hence, the future state Yt+1 only depends on the present state Yt and not on the past states
Yt−1. The (one-step) transition probabilities from state i to state j are defined as

pij = P (Yt+1 = j|Yt = i), (A-11)

and are conditional probabilities. For a Markov chain with m states, the one-step transition
matrix is given by

P =



p00 p01 . . . p0m

p10 p11 . . . p1m
...

...
...

...
pi0 pi1 . . . pim

pm0 pm1 . . . pmm


, (A-12)

where the transition probabilities pij can be estimated from data by maximizing a likelihood
function (MLE) or by using covariate information [11, 5]. Using Markov chains, a dependency
is built in between the current state and the next state. The model does not exhibit the mem-
oryless property anymore as with logistic regression models and survival analysis models. The
model is estimated by conditioning on a transient state and performing a logistic regression.
These type of models are often referred to as a conditional logistic regression model.

For modeling mortgage termination, Meis [11] uses a Markov chain with three states where
the borrower can decide to continue with contractual payments, fully prepay the mortgage
or default on the mortgage. The states of full prepayment and default are end states. The
Markov model can be extended to five states as suggested by Meis [11] and Wesseling [5] by
including partial prepayments and delinquency state of the borrower. In this Markov chain
model the transient states are partial prepayments, delinquent and contractual payment.
Therefore, a complete estimation of this model thus entails estimating a conditional logistic
regression model for partial prepayment, delinquent and contractual payment.

A-2-4 Time-Varying Markov Models

The problem with Markov models is that the transition probabilities are time independent. A
time-varying Markov model can be used to correct for the time-dependency of driving factors.
Since, macroeconomic variables differ during different economic regimes, and the state of the
economy, hence time, has an effect on mortgage prepayments.

Wesseling [5] develops a time-varying Markov model for mortgage prepayments. In a regular
Markov model the transition probabilities are assumed to be the same at all time. In a time-
varying Markov model, multiple Markov models are set up for which there exist transition
probabilities between different payment states and different economic states. So for each
economic state, a regular Markov model (as described in the previous section) is set up,
where transition probability matrices represent the switching between the different economic

Master of Science Thesis B. N. M. Krabbenborg



88 Econometric Models

regimes. A downside of this method is that more parameters need to be estimated compared
to the regular Markov model, and therefore a less accuracy in terms of variance. However,
the advantage of this method is that it is able to give a more precise estimate for different
time intervals.
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Appendix B

The Objective Function with
Constraints

The minimization problem is given by the objective function J minimized over time with con-
straints. The state update equations of the continuous dynamics, state values of discontinuous
dynamics, contract constraints, and terminal constraints are constraints on the system. More-
over, constraints are added for the switching conditions of the modes, to keep track of the
model mode, and to accumulate interest without resetting the state. The optimization of one
iteration looks as follows:

minimize
u

q1,acc[Th] +
Th∑

k=1
[(r[k] − rc[k])v0[k] − 1

2k0q0[k]2 + 1
2Ru0[k]2]

subject to

Mortgage Payments Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
q1,acc[k + 1] = q1,acc[k] + Tsv1[k],

x[0] = x0

0 ≤ q0[Th] ≤ A0

q1[Th] ≥ 0
v1[k] = rc[k]q0[k],

−Pcontract[k] + v1[k] − ρ

12A0[k] ≤ v0[k] ≤ −Pcontract[k] + v1[k],

Pcontract[k] ≤ Prefinance[k],
m[k] = 0,

h[k] = 0,

mdl[k] = 1]
. . .

(B-1)
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Mortgage Porting Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
q1,acc[k + 1] = q1,acc[k] + Tsv1[k],

x[0] = x0

0 ≤ q0[Th] ≤ A0

q1[Th] ≥ 0
v1[k] = rc[k]q0[k],

−Pcontract[k] + v1[k] − ρ

12A0[k] ≤ v0[k] ≤ −Pcontract[k] + v1[k],

q0[k] ≥ 0,

Pcontract[k] ≤ Prelocation[k],
m[k] = 0,

h[k] = 1
mdl[k] = 2]

Mortgage Payments Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
q1,acc[k + 1] = q1,acc[k] + Tsv1[k],

x[0] = x0

0 ≤ q0[Th] ≤ A0

q1[Th] ≥ 0
v1[k] = rc[k]q0[k],

−Pcontract[k] + v1[k] − ρ

12A0[k] ≤ v0[k] ≤ −Pcontract[k] + v1[k],

q0[k] ≥ 0,

Pcontract[k] ≤ Prefinance[k],
m[k] = 1,

h[k] = 0
mdl[k] = 3]

Mortgage Payments Mode = [x[k + 1] = Ax[k] + Bu[k] + F d̂[k],
q1,acc[k + 1] = q1,acc[k] + Tsv1[k],

x[0] = x0

0 ≤ q0[Th] ≤ A0

q1[Th] ≥ 0
v1[k] = rc[k]q0[k],

−Pcontract[k] + v1[k] − ρ

12A0[k] ≤ v0[k] ≤ −Pcontract[k] + v1[k],

q0[k] ≥ 0,

Pcontract[k] ≤ Prefinance[k],
m[k] = 1,

h[k] = 1
mdl[k] = 4]

. . .
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Refinance Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k] + ϵ[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

q1,acc[k + 1] = q1,acc[k] + ϵ[k],
Pcontract[k] ≥ Prefinance[k],

m[k] = 0,

h[k] = 0
mdl[k] = 5]

Refinance Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k] + ϵ[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

q1,acc[k + 1] = q1,acc[k] + ϵ[k],
Pcontract[k] ≥ Prefinance[k],

m[k] = 1,

h[k] = 0
mdl[k] = 6]

Refinance Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k] + ϵ[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

q1,acc[k + 1] = q1,acc[k] + ϵ[k],
Pcontract[k] ≥ Prefinance[k],

m[k] = 1,

h[k] = 1
mdl[k] = 7]

Relocation Mode = [q0[k + 1] = 0,

q1[k + 1] = q1[k],
v0[k + 1] = 0,

v1[k + 1] = 0,

q1,acc[k + 1] = q1,acc[k],
Pcontract[k] ≥ Prelocation[k],

m[k] = 0,

h[k] = 1
mdl[k] = 8]
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Appendix C

Matlab Files

1 %% Pre Processing
2
3 yalmip ('clear ') ;clear all;
4 clc;close all
5
6 % Data inputs
7 load rfr.mat % risk -free rates
8 load housing .mat % housing sales
9 load mortgage .mat % mortgage rates

10
11 %% Mortgage Contract
12
13 maturity = 10; % maturity in years
14 T = 120; % maturity in months
15 interest = 3; % interest rate in percentage per

year
16 rc = interest /100/12; % contract rate per month
17 A0 = 500000; % initial amount of money borrowed
18 rho = 10/100; % max prepayment per year in

percentage
19 P = A0*(rc *(1+ rc)^T) /(((1+ rc)^T) -1); % monthly payment
20
21 %% Initialization
22
23 Ts = 1; % sampling time of 1 month
24 Horizon = 2; % prediction horizon of 2 months
25 Timesteps = T/Ts; % timesteps
26 terminal_constraint = 0;% terminal constraint
27
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28 %% Cost of refinancing
29
30 % To include additional cost of refinancing
31 penalty_extra = 0;
32
33 %% Forward Euler for simulating initial scheduled contract
34
35 q0_0 (1) = A0; % starting principal balance
36 q1_0 (1) = 0; % starting accumulated interest
37 v1_0 (1) = rc*q0_0 (1); % starting interest payment
38 v0_0 (1) = -P+v1_0 (1); % starting principal payment
39
40 for k = 1:T
41 q0_0(k+1) = q0_0(k) + Ts*( v0_0(k));
42 q1_0(k+1) = q1_0(k) + Ts*( v1_0(k));
43 v1_0(k+1) = rc*q0_0(k+1);
44 v0_0(k+1) = v1_0(k+1) -P;
45 end
46
47 P = P*ones (1, length (T)); % intiial fixed montlhy costs
48 beta = -v0_0 (1) *100*120; % sensitivity partial

prepayments and risk -free rates
49
50 x0 = [q0_0 (1);q1_0 (1);v0_0 (1);v1_0 (1) ]; % intial state
51
52 %% Dimensions
53
54 dim.N = Horizon ; % prediction horizon
55 dim.M = Timesteps ; % number of timesteps
56
57 %% Decision variables dimensions
58
59 % State space states , inputs and disturbance
60 q_0 = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
61 q_1 = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
62 v_0 = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
63 v_1 = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
64 dhat = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
65 u_0 = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
66 u_1 = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
67
68 % Penalty
69 e = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
70
71 % Contract cost
72 P_refinance = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
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73 P_relocation = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1)
);

74 P_contract = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1)
);

75
76 % Accumulated interest costs
77 q_1_interest = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
78
79 % Risk -free rate real and observed
80 r = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
81 r_obs = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
82
83 % Housing
84 h = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
85
86 % Binary
87 d = binvar ( repmat (8,1, dim.N),repmat (1,1, dim.N));
88
89 % Mode
90 mdl = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
91
92 % Contract reset
93 r_c = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
94 P = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
95 A = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
96
97 % Moved
98 m = sdpvar ( repmat (1,1, dim.N+1) ,repmat (1,1, dim.N+1));
99

100 % Model parameters
101 m0 = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
102 m1 = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
103 k0 = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
104 R_rational = sdpvar ( repmat (1,1, dim.N),repmat (1,1, dim.N));
105
106 constraints . mortgagor = [];
107 J. mortgagor = 0;
108
109 %% Define objective function , hybrid dynamics , and controller
110
111 for k = 1: dim.N
112
113
114 J. mortgagor = J. mortgagor + q_1_interest {dim.N} + (r{k}- r_c{

k})*v_0{k} - (1/2)*k0{k}* q_0{k}^2 + (1/2)* R_rational {k}*
u_0{k}^2;

115
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116 % Mortgage payments : scheduled payments and partial prepayments
117 Model1 = [
118
119 % Dynamics
120 q_0{k+1} == q_0{k} + Ts*( v_0{k})
121 q_1{k+1} == q_1{k} + Ts*( v_1{k})
122 v_0{k+1} == v_0{k} + Ts *( -1/ m0{k}*k0{k}* q_0{k}+ 1/m0{k}*

u_0{k} + 1/m0{k}* dhat{k})
123 v_1{k+1} == v_1{k} + Ts *(1/ m1{k}* u_1{k})
124 q_0{k}(1) >= 0
125
126 % Accumulated interest
127 q_1_interest {k+1} == q_1_interest {k} + Ts*( v_1{k})
128
129 % Contract constraints
130 -P{k} + v_1{k} - rho /12*A{k} <= v_0{k} <= -P{k} + v_1{k}
131 v_1{k} == r_c{k}* q_0{k}
132
133 % Conditions
134 P_contract {k} <= P_refinance {k}
135 m{k} == 0,
136 h{k} == 0,
137
138 % Mode
139 mdl{k} == 1];
140
141 % Mortgage porting
142 Model2 = [
143
144 % Dynamics
145 q_0{k+1} == q_0{k} + Ts*( v_0{k})
146 q_1{k+1} == q_1{k} + Ts*( v_1{k})
147 v_0{k+1} == v_0{k} + Ts *( -1/ m0{k}*k0{k}* q_0{k}+ 1/m0{k}*

u_0{k} + 1/m0{k}* dhat{k})
148 v_1{k+1} == v_1{k} + Ts *(1/ m1{k}* u_1{k})
149 q_0{k}(1) >= 0
150
151 % Accumulated interest
152 q_1_interest {k+1} == q_1_interest {k} + Ts*( v_1{k})
153
154 % Contract constraints
155 -P{k} + v_1{k} - rho /12*A{k} <= v_0{k} <= -P{k} + v_1{k}
156 v_1{k} == r_c{k}* q_0{k}
157
158 % Conditions
159 P_contract {k} <= P_relocation {k}
160 m{k} == 0,
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161 h{k} == 1,
162
163 % Mode
164 mdl{k} == 2];
165
166 % Mortgage payments : scheduled payments and partial prepayments
167 % Moved
168 Model3 = [
169
170 % Dynamics
171 q_0{k+1} == q_0{k} + Ts*( v_0{k})
172 q_1{k+1} == q_1{k} + Ts*( v_1{k})
173 v_0{k+1} == v_0{k} + Ts *( -1/ m0{k}*k0{k}* q_0{k}+ 1/m0{k}*

u_0{k} + 1/m0{k}* dhat{k})
174 v_1{k+1} == v_1{k} + Ts *(1/ m1{k}* u_1{k})
175 q_0{k}(1) >= 0
176
177 % Accumulated interest
178 q_1_interest {k+1} == q_1_interest {k} + Ts*( v_1{k})
179
180 % Contract constraints
181 -P{k} + v_1{k} - rho /12*A{k} <= v_0{k} <= -P{k} + v_1{k}
182 v_1{k} == r_c{k}* q_0{k}
183
184 % Conditions
185 P_contract {k} <= P_refinance {k}
186 m{k} == 1
187 h{k} == 0
188
189 % Mode
190 mdl{k} == 3];
191
192 % Mortgage payments : scheduled payments and partial prepayments
193 % Moved
194 Model4 = [
195
196 % Dynamics
197 q_0{k+1} == q_0{k} + Ts*( v_0{k})
198 q_1{k+1} == q_1{k} + Ts*( v_1{k})
199 v_0{k+1} == v_0{k} + Ts *( -1/ m0{k}*k0{k}* q_0{k}+ 1/m0{k}*

u_0{k} + 1/m0{k}* dhat{k})
200 v_1{k+1} == v_1{k} + Ts *(1/ m1{k}* u_1{k})
201 q_0{k}(1) >= 0
202
203 % Accumulated interest
204 q_1_interest {k+1} == q_1_interest {k} + Ts*( v_1{k})
205
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206 % Contract constraints
207 -P{k} + v_1{k} - rho /12*A{k} <= v_0{k} <= -P{k} + v_1{k}
208 v_1{k} == r_c{k}* q_0{k}
209
210 % Conditions
211 P_contract {k} <= P_refinance {k}
212 m{k} == 1
213 h{k} == 1
214
215 % Mode
216 mdl{k} == 4];
217
218 % Refinance
219 Model5 = [
220
221 % Discrete dynamics
222 q_0{k+1} == 0
223 q_1{k+1} == q_1{k} + e{k}
224 v_0{k+1} == 0
225 v_1{k+1} == 0
226 q_0{k} >= 0
227
228 % Accumulated interest
229 q_1_interest {k+1} == q_1_interest {k} + Ts*(e{k})
230
231 % Conditions
232 P_contract {k} >= P_refinance {k}
233 m{k} == 0
234 h{k} == 0
235
236 % Mode
237 mdl{k} == 5];
238
239 % Refinance
240 Model6 = [
241
242 % Discrete dynamics
243 q_0{k+1} == 0
244 q_1{k+1} == q_1{k} + e{k}
245 v_0{k+1} == 0
246 v_1{k+1} == 0
247 q_0{k} >= 0
248
249 % Accumulated interest
250 q_1_interest {k+1} == q_1_interest {k} + Ts*(e{k})
251
252 % Conditions
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253 P_contract {k} >= P_refinance {k}
254 m{k} == 1
255 h{k} == 0
256
257 % Mode
258 mdl{k} == 6];
259
260 % Refinance
261 Model7 = [
262
263 % Discrete dynamics
264 q_0{k+1} == 0
265 q_1{k+1} == q_1{k} + e{k}
266 v_0{k+1} == 0
267 v_1{k+1} == 0
268 q_0{k} >= 0
269
270 % Accumulated interest
271 q_1_interest {k+1} == q_1_interest {k} + Ts*(e{k})
272
273 % Conditions
274 P_contract {k} >= P_refinance {k}
275 m{k} == 1
276 h{k} == 1
277
278 % Mode
279 mdl{k} == 7];
280
281 % Relocation
282 Model8 = [
283
284 % Dynamics
285 q_0{k+1} == 0
286 q_1{k+1} == q_1{k}
287 v_0{k+1} ==0
288 v_1{k+1} == 0
289 q_0{k}(1) >= 0
290
291 % Accumulated interest
292 q_1_interest {k+1} == q_1_interest {k}
293
294 % Conditions
295 P_contract {k} >= P_relocation {k}
296 m{k} == 0
297 h{k} == 1
298
299 % Mode
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300 mdl{k} == 8];
301
302
303
304 constraints . mortgagor = [ constraints .mortgagor ,
305 implies (d{k}(1) , Model1 ) % Mortgage payments
306 implies (d{k}(2) , Model2 ) % Mortgage porting
307 implies (d{k}(3) , Model3 ) % Mortgage payments and

moved
308 implies (d{k}(4) , Model4 ) % Mortgage payments and

moved
309 implies (d{k}(5) , Model5 ) % Refinance
310 implies (d{k}(6) , Model6 ) % Refinance
311 implies (d{k}(7) , Model7 ) % Refinance
312 implies (d{k}(8) , Model8 ) % Relocation
313 0 <= q_0{k} <= A0
314 0 <= q_1{k}
315 -A0 <= v_0{k} <= 0
316 0 <= v_1{k} <= A0
317 0 <= q_1_interest {k}
318 1 <= mdl{k} <= 8
319 sum(d{k}) == 1];
320
321 % Terminal constraint
322 if k == dim.N && terminal_constraint == 1
323 constraints . mortgagor = [ constraints .mortgagor ,
324 0 <= q_0{k+1} <= A0
325 0 <= q_1{k+1}
326 0 <= q_1_interest {k+1}];
327 end
328
329
330 end
331
332 constraints . mortgagor = [ constraints .mortgagor ,
333 0 <= q_0{k+1} <= A0
334 0 <= q_1{k+1}
335 0 <= q_1_interest {k+1}];
336
337 % Parameters in
338 par. mortgagor = {[ q_0 {1}] ,[ q_1 {1}] ,[ dhat {1: dim.N}],[ v_1 {1}] ,[ v_0

{1}] ,[r{1: dim.N}],[e{1: dim.N}] ,[ P_contract {1: dim.N}],[
P_refinance {1: dim.N}],[ P_relocation {1: dim.N}],[ r_c {1: dim.N
}],[P{1: dim.N}],[A{1: dim.N}],[m{1: dim.N}],[h{1: dim.N}],[m0 {1:
dim.N}],[m1 {1: dim.N}],[k0 {1: dim.N}],[ q_1_interest {1}] ,[
R_rational {1: dim.N}]};

339
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340 % Parameters out
341 sol. mortgagor = {[ v_0 {:}] ,J.mortgagor ,[ q_0 {:}] ,[r{:}] ,[ v_1 {:}] ,[

q_1 {:}] ,[ mdl {:}] ,[ u_0 {:}] ,[ u_1 {:}] ,[ dhat {:}] ,[e{:}] ,[
P_contract {:}] ,[ P_refinance {:}] ,[ P_relocation {:}] ,[ r_c {:}] ,[
q_1_interest {:}]};

342
343 % Optimizer Object
344 mortgagor = optimizer ( constraints .mortgagor , J.mortgagor ,

sdpsettings ('solver ','gurobi '),par.mortgagor ,sol. mortgagor );
345
346
347
348 %% Data inputs
349
350 % define data inputs
351 ir = ... % riskfree rates
352 p_m = ... % market mortgage rates
353 q_housing = ... % housing sales per month
354
355 % create riskfree rate and mortgage rate disturbance
356 riskfreerate = ir(end -T -3: end -4) '/12/100;
357 mortgagerate = p_m(end -T:end -1) '/12/100;
358
359 % delayed first -order hold
360 r_rfr = [];
361 rfr_delay = [];
362 r_m = [];
363 r_rfr (1: dim.N) = beta* riskfreerate (1);
364 rfr_delay (1: dim.N) = riskfreerate (1);
365 r_m (1: dim.N) = mortgagerate (1);
366
367 for i = 1: dim.M/ Horizon +1
368 if i > 1
369 r_rfr(i*Horizon -1:i* Horizon ) = beta* riskfreerate ( Horizon

*i- Horizon );
370 r_m(i*Horizon -1:i* Horizon ) = mortgagerate ( Horizon *i-

Horizon );
371 rfr_delay (i*Horizon -1:i* Horizon ) = riskfreerate ( Horizon *

i- Horizon );
372 end
373 end
374
375 % Housing activity ( houses sold per month)
376 housingturnover = q_housing (end -T:end) ';
377 norm_housing = normalize ( housingturnover ,'range ');
378 P_average = sum( norm_housing )/ length ( norm_housing );
379
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380
381 %% Initial conditions
382
383 P = A0*(rc *(1+ rc)^T) /(((1+ rc)^T) -1);
384 m = 0;
385
386 %% Vary borrower characteristics
387
388 % m1: Mortgagor 1
389 % Risk aversion
390 m0_m1 = 10* ones (1, dim.N);
391 m1_m1 = 10* ones (1, dim.N);
392
393 % Creditworthiness
394 k0_m1 = 0.05* ones (1, dim.N);
395
396 % Rationality
397 R_m1 = 0.3* ones (1, dim.N);
398
399 % Housing sales
400 housing_noise_m1 = housingturnover + 2000* randn(size(

housingturnover ));
401 norm_housing_noise_m1 = normalize ( housing_noise_m1 ,'range ');
402
403 % Initial states
404 x_m1 = x0;
405 x0_m1 = x0;
406
407 % Contract
408 rc_m1 = rc;
409 A0_m1 = A0;
410 P_m1 = P;
411
412 % Accumulated interest
413 x_interest1 = x0;
414
415 % Moved
416 moved_m1 = m;
417
418 % m2: Mortgagor 2
419 % Risk averison
420 m0_m2 = 100* ones (1, dim.N);
421 m1_m2 = 100* ones (1, dim.N);
422
423 % Creditworthiness
424 k0_m2 = 0.05* ones (1, dim.N);
425
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426 % Rationality
427 R_m2 = 0.03* ones (1, dim.N);
428
429 housing_noise_m2 = housingturnover + 2000* randn(size(

housingturnover ));
430 norm_housing_noise_m2 = normalize ( housing_noise_m2 ,'range ');
431
432 % Initial states
433 x_m2 = x0;
434 x0_m2 = x0;
435
436 % Contract
437 rc_m2 = rc;
438 A0_m2 = A0;
439 P_m2 = P;
440
441 % Accumulated interest
442 x_interest2 = x0;
443
444 % Moved
445 moved_m2 = m;
446
447 % m3: Mortgagor 3
448 % Risk aversion
449 m0_m3 = 1000* ones (1, dim.N);
450 m1_m3 = 1000* ones (1, dim.N);
451
452 % Creditworthiness
453 k0_m3 = 0.05* ones (1, dim.N);
454
455 % Rationality
456 R_m3 = 0.3* ones (1, dim.N);
457
458 housing_noise_m3 = housingturnover + 2000* randn(size(

housingturnover ));
459 norm_housing_noise_m3 = normalize ( housing_noise_m3 ,'range ');
460
461 % Initial states
462 x_m3 = x0;
463 x0_m3 = x0;
464
465 % Contract
466 rc_m3 = rc;
467 A0_m3 = A0;
468 P_m3 = P;
469
470 % Accumulated interest
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471 x_interest3 = x0;
472
473 % Moved
474 moved_m3 = m;
475
476 %% Run MPC
477
478 for i = 1: dim.M
479 if i <= T-( dim.N -1)
480 rfr_obs = rfr_delay (i:i+dim.N -1); % observed risk free

rates
481 rfr = r_rfr(i:i+dim.N -1); % disturbance risk free rates
482 r_m_obs = r_m(i:i+dim.N -1); % observed mortgage rates
483 rm = mortgageraterate (i:i+dim.N -1); % real mortgage rates
484 else
485 rfr_obs = rfr_obs ;
486 rfr = rfr;
487 rm = rm;
488 r_m_obs = r_m_obs ;
489 end
490
491 % Remaining term
492 if i < T
493 Tr = T - i;
494 else
495 Tr = 1;
496 end
497
498 % Mortgagor 1:
499 % housing data
500 if norm_housing_noise_m1 (i) < P_average
501 p_housing_m1 = 0;
502 elseif norm_housing_noise_m1 (i) > P_average
503 p_housing_m1 = 1;
504 end
505 h0_m1 = p_housing_m1 *ones (1, dim.N);
506
507 % Initial reset variables
508 P0_m1 = P_m1*ones (1, dim.N);
509 A00_m1 = A0_m1*ones (1, dim.N);
510 rc0_m1 = rc_m1*ones (1, dim.N);
511 moved0_m1 = moved_m1 *ones (1, dim.N);
512
513 % Current states for scheduled payments
514 q0m1 = x0_m1 (1);
515 q1m1 = x0_m1 (2);
516 v0m1 = x0_m1 (3);
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517 v1m1 = x0_m1 (4);
518
519 % Current states
520 q0_m1 = x_m1 (1);
521 q1_m1 = x_m1 (2);
522 v0_m1 = x_m1 (3);
523 v1_m1 = x_m1 (4);
524
525 % Accumulated interest
526 q1_interest1 = x_interest1 (2);
527
528 % Prepayment penalty
529 epsilon_m1 = penalty_extra + (max( rc0_m1 (1) -r_m_obs (1) ,0)*Tr

*max (( x_m1 (1) -rho* A00_m1 (1)) ,0))*ones (1, dim.N);
530
531 % Current contract costs
532 Pcontract_m1 = P_m1*ones (1, dim.N);
533
534 % Contract costs relocation
535 Prelocation_m1 = x_m1 (1) .*( r_m_obs (1) .*(1+ r_m_obs (1)).^Tr)

./(((1+ r_m_obs (1)).^Tr) -1)*ones (1, dim.N);
536
537 % Contract costs refinancing
538 Prefinancing_m1 = Prelocation_m1 + epsilon_m1 ;
539
540 % Solve optimization problem mortgagor 1
541 [ solutions .mortgagor1 , diagnose . mortgagor1 ] = mortgagor {q0_m1

,q1_m1 ,rfr ,v1_m1 ,v0_m1 ,rfr_obs ,epsilon_m1 , Pcontract_m1 ,
Prefinancing_m1 , Prelocation_m1 ,rc0_m1 ,P0_m1 ,A00_m1 ,
moved0_m1 ,h0_m1 ,m0_m1 ,m1_m1 ,k0_m1 , q1_interest1 ,R_m1 };

542
543 % Retrieve solutions mortgagor 1
544 v0hist_m1 = solutions . mortgagor1 {1}(1) ;
545 v1hist_m1 = solutions . mortgagor1 {5}(1) ;
546 q0hist_m1 = solutions . mortgagor1 {3}(1) ;
547 q1hist_m1 = solutions . mortgagor1 {6}(1) ;
548 u0hist_m1 = solutions . mortgagor1 {8}(1) ;
549 u1hist_m1 = solutions . mortgagor1 {9}(1) ;
550 mode_m1 = solutions . mortgagor1 {7}(1) ;
551 ehist_m1 = solutions . mortgagor1 {11}(1) ;
552 qaccinterest1 = solutions . mortgagor1 {16}(1) ;
553 costs = solutions . mortgagor1 {2}(1) ;
554
555 % Mortgage payments : scheduled payments and partial

prepayments
556 if mode_m1 == 1
557
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558
559 % Update state equations
560 x_m1 = [q0_m1 + Ts*( v0hist_m1 (1));
561 q1_m1 + Ts*( v1hist_m1 (1));
562 v0_m1 + Ts *( -1/ m0_m1 (1)*k0_m1 (1)* q0hist_m1 (1) +

1/ m0_m1 (1)* u0hist_m1 (1) + 1/ m0_m1 (1)* rfr_obs
(1))

563 v1_m1 + Ts *(1/ m1_m1 (1)* u1hist_m1 (1))];
564
565 states_m1 = [ states_m1 x_m1 ];
566
567 % Accumulated interest
568 x_interest1 (2) = q1_interest1 + Ts* v1hist_m1 (1);
569 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
570
571 % Update state equations scheduled payments
572 x0_m1 = [q0m1 + Ts*( v0m1);
573 q1m1 + Ts*( v1m1);
574 rc_m1*q0m1 - P_m1;
575 rc_m1*q0m1 ];
576
577 states0_m1 = [ states0_m1 x0_m1 ];
578
579 % Mortgage porting
580 elseif mode_m1 == 2
581
582 % Update state equations
583 x_m1 = [q0_m1 + Ts*( v0hist_m1 (1));
584 q1_m1 + Ts*( v1hist_m1 (1));
585 v0_m1 + Ts *( -1/ m0_m1 (1)*k0_m1 (1)* q0hist_m1 (1) +

1/ m0_m1 (1)* u0hist_m1 (1) + 1/ m0_m1 (1)* rfr_obs
(1))

586 v1_m1 + Ts *(1/ m1_m1 (1)* u1hist_m1 (1))];
587
588 states_m1 = [ states_m1 x_m1 ];
589
590 % Accumulated interest
591 x_interest1 (2) = q1_interest1 + Ts* v1hist_m1 (1);
592 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
593
594 % Reset to moved
595 moved_m1 = 1;
596
597 % Update state equations scheduled payments
598 x0_m1 = [q0m1 + Ts*( v0m1);
599 q1m1 + Ts*( v1m1);
600 rc_m1*q0m1 - P_m1;
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601 rc_m1*q0m1 ];
602
603 states0_m1 = [ states0_m1 x0_m1 ];
604
605 % Mortgage payments : scheduled payments and partial

prepayments
606 % and moved
607 elseif mode_m1 == 3 || mode_m1 == 4
608
609 % Update state equations
610 x_m1 = [q0_m1 + Ts*( v0hist_m1 (1));
611 q1_m1 + Ts*( v1hist_m1 (1));
612 v0_m1 + Ts *( -1/ m0_m1 (1)*k0_m1 (1)* q0hist_m1 (1) +

1/ m0_m1 (1)* u0hist_m1 (1) + 1/ m0_m1 (1)* rfr_obs
(1))

613 v1_m1 + Ts *(1/ m1_m1 (1)* u1hist_m1 (1))];
614
615 states_m1 = [ states_m1 x_m1 ];
616
617 % Accumulated interest
618 x_interest1 (2) = q1_interest1 + Ts* v1hist_m1 (1);
619 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
620
621 % Update state equations scheduled payments
622 x0_m1 = [q0m1 + Ts*( v0m1);
623 q1m1 + Ts*( v1m1);
624 rc_m1*q0m1 - P_m1;
625 rc_m1*q0m1 ];
626
627 states0_m1 = [ states0_m1 x0_m1 ];
628
629 % Refinance
630 elseif mode_m1 == 5 || mode_m1 == 6 || mode_m1 == 7
631
632 % Reset contract rate
633 rc_m1 = rm (1);
634
635 % Update money borrowed
636 A_ref_m1 = x_m1 (1);
637 A0_m1 = A_ref_m1 ;
638
639 % Update monthly cost
640 P_m1 = A_ref_m1 *( rc_m1 *(1+ rc_m1)^Tr) /(((1+ rc_m1)^Tr) -1);
641
642 % Jump in state
643 x_m1= [0;
644 q1hist_m1 (1) + ehist_m1 (1);
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645 -q0hist_m1 (1) ;
646 ehist_m1 (1) ];
647
648 states_m1 = [ states_m1 x_m1 ];
649
650 % Accumulated interest
651 x_interest1 (2) = q1_interest1 + Ts* ehist_m1 (1);
652 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
653
654
655 % Update state equations scheduled payments
656 x0_m1 = [q0m1 + Ts*( v0m1);
657 q1m1 + Ts*( v1m1);
658 rc_m1*q0m1 - P_m1;
659 rc_m1*q0m1 ];
660
661 states0_m1 = [ states0_m1 x0_m1 ];
662
663 % Contract reset
664 x_m1 (1) = A_ref_m1 ;
665 x_m1 (2) = 0;
666 x_m1 (3) = -P_m1 + rc_m1* A_ref_m1 ;
667 x_m1 (4) = rc_m1* A_ref_m1 ;
668
669 states_m1 = [ states_m1 x_m1 ];
670
671 % Accumulated interest
672 x_interest1 (2) = q1_interest1 + Ts*x_m1 (4);
673 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
674
675 % Update state equations scheduled payments
676 x0_m1 = [q0m1 + Ts*( x_m1 (3));
677 q1m1 + Ts*( x_m1 (4));
678 rc_m1* A_ref_m1 - P_m1;
679 rc_m1* A_ref_m1 ];
680
681 states0_m1 = [ states0_m1 x0_m1 ];
682
683 % Relocation
684 elseif mode_m1 == 8
685
686
687 % Reset contract rate
688 rc_m1 = rm (1);
689
690 % Update money borrowed
691 A_rel_m1 = x_m1 (1);
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692 A0_m1 = A_rel_m1 ;
693
694 % Update monthly cost
695 P_m1 = A_rel_m1 *( rc_m1 *(1+ rc_m1)^Tr) /(((1+ rc_m1)^Tr) -1);
696
697 % Jump in state
698 x_m1= [0;
699 q1hist_m1 (1);
700 -q0hist_m1 (1) ;
701 0];
702
703 states_m1 = [ states_m1 x_m1 ];
704
705 % Accumulated interest
706 x_interest1 (2) = q1_interest1 ;
707 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
708
709 % Update state equations scheduled payments
710 x0_m1 = [q0m1 + Ts*( v0m1);
711 q1m1 + Ts*( v1m1);
712 rc_m1*q0m1 - P_m1;
713 rc_m1*q0m1 ];
714
715 states0_m1 = [ states0_m1 x0_m1 ];
716
717 % Contract reset
718 x_m1 (1) = A_rel_m1 ;
719 x_m1 (2) = 0;
720 x_m1 (3) = -P_m1 + rc_m1* A_rel_m1 ;
721 x_m1 (4) = rc_m1* A_rel_m1 ;
722
723 states_m1 = [ states_m1 x_m1 ];
724
725 % Accumulated interest
726 x_interest1 (2) = q1_interest1 + Ts*( x_m1 (4));
727 q1accinterest1 = [ q1accinterest1 x_interest1 (2) ];
728
729 % Update state equations scheduled payments
730 x0_m1 = [q0m1 + Ts*( x_m1 (3));
731 q1m1 + Ts*( x_m1 (4));
732 rc_m1* A_rel_m1 - P_m1;
733 rc_m1* A_rel_m1 ];
734
735 states0_m1 = [ states0_m1 x0_m1 ];
736
737 % Reset to moved
738 moved_m1 = 1;
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739
740 end
741
742
743 % Mortgagor 2:
744
745 % housing data
746 if norm_housing_noise_m2 (i) < P_average
747 p_housing_m2 = 0;
748 elseif norm_housing_noise_m2 (i) > P_average
749 p_housing_m2 = 1;
750 end
751 h0_m2 = p_housing_m2 *ones (1, dim.N);
752
753 % Initial reset variables
754 P0_m2 = P_m2*ones (1, dim.N);
755 A00_m2 = A0_m2*ones (1, dim.N);
756 rc0_m2 = rc_m2*ones (1, dim.N);
757 moved0_m2 = moved_m2 *ones (1, dim.N);
758
759 % Current states for scheduled payments
760 q0m2 = x0_m2 (1);
761 q1m2 = x0_m2 (2);
762 v0m2 = x0_m2 (3);
763 v1m2 = x0_m2 (4);
764
765 % Current states
766 q0_m2 = x_m2 (1);
767 q1_m2 = x_m2 (2);
768 v0_m2 = x_m2 (3);
769 v1_m2 = x_m2 (4);
770
771 % Accumulated interest
772 q1_interest2 = x_interest2 (2);
773
774 % Prepayment penalty
775 epsilon_m2 = penalty_extra + (max( rc0_m2 (1) -r_m_obs (1) ,0)*Tr

*max (( x_m2 (1) -rho* A00_m2 (1)) ,0))*ones (1, dim.N);
776
777 % Current contract costs
778 Pcontract_m2 = P_m2*ones (1, dim.N);
779
780 % Contract costs relocation
781 Prelocation_m2 = x_m2 (1) .*( r_m_obs (1) .*(1+ r_m_obs (1)).^Tr)

./(((1+ r_m_obs (1)).^Tr) -1)*ones (1, dim.N);
782
783 % Contract costs refinancing
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784 Prefinancing_m2 = Prelocation_m2 + epsilon_m2 ;
785
786 % Solve optimization problem mortgagor 2
787 [ solutions .mortgagor2 , diagnose . mortgagor ] = mortgagor {q0_m2 ,

q1_m2 ,rfr ,v1_m2 ,v0_m2 ,rfr_obs ,epsilon_m2 , Pcontract_m2 ,
Prefinancing_m2 , Prelocation_m2 ,rc0_m2 ,P0_m2 ,A00_m2 ,
moved0_m2 ,h0_m2 ,m0_m2 ,m1_m2 ,k0_m2 , q1_interest2 ,R_m2 };

788
789 % Retrieve solutions mortgagor 2
790 v0hist_m2 = solutions . mortgagor2 {1}(1) ;
791 v1hist_m2 = solutions . mortgagor2 {5}(1) ;
792 q0hist_m2 = solutions . mortgagor2 {3}(1) ;
793 q1hist_m2 = solutions . mortgagor2 {6}(1) ;
794 u0hist_m2 = solutions . mortgagor2 {8}(1) ;
795 u1hist_m2 = solutions . mortgagor2 {9}(1) ;
796 mode_m2 = solutions . mortgagor2 {7}(1) ;
797 ehist_m2 = solutions . mortgagor2 {11}(1) ;
798 qinterest2 = solutions . mortgagor2 {16}(1) ;
799
800 % Mortgage payments : scheduled payments and partial

prepayments
801 if mode_m2 == 1
802
803 % Update state equations
804 x_m2 = [q0_m2 + Ts*( v0hist_m2 (1));
805 q1_m2 + Ts*( v1hist_m2 (1));
806 v0_m2 + Ts *( -1/ m0_m2 (1)*k0_m2 (1)* q0hist_m2 (1) +

1/ m0_m2 (1)* u0hist_m2 (1) + 1/ m0_m2 (1)* rfr_obs
(1))

807 v1_m2 + Ts *(1/ m1_m2 (1)* u1hist_m2 (1))];
808
809 states_m2 = [ states_m2 x_m2 ];
810
811 % Accumulated interest
812 x_interest2 (2) = q1_interest2 + Ts* v1hist_m2 (1);
813 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
814
815
816 % Update state equations scheduled payments
817 x0_m2 = [q0m2 + Ts*( v0m2);
818 q1m2 + Ts*( v1m2);
819 rc_m2*q0m2 - P_m2;
820 rc_m2*q0m2 ];
821
822 states0_m2 = [ states0_m2 x0_m2 ];
823
824 % Mortgage porting
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825 elseif mode_m2 == 2
826
827 % Update state equations
828 x_m2 = [q0_m2 + Ts*( v0hist_m2 (1));
829 q1_m2 + Ts*( v1hist_m2 (1));
830 v0_m2 + Ts *( -1/ m0_m2 (1)*k0_m2 (1)* q0hist_m2 (1) +

1/ m0_m2 (1)* u0hist_m2 (1) + 1/ m0_m2 (1)* rfr_obs
(1))

831 v1_m2 + Ts *(1/ m1_m2 (1)* u1hist_m2 (1))];
832
833 states_m2 = [ states_m2 x_m2 ];
834
835 % Accumulated interest
836 x_interest2 (2) = q1_interest2 + Ts* v1hist_m2 (1);
837 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
838
839 % Update state equations scheduled payments
840 x0_m2 = [q0m2 + Ts*( v0m2);
841 q1m2 + Ts*( v1m2);
842 rc_m2*q0m2 - P_m2;
843 rc_m2*q0m2 ];
844
845 states0_m2 = [ states0_m2 x0_m2 ];
846
847 % Reset to moved
848 moved_m2 = 1;
849
850 % Mortgage payments : scheduled payments and partial

prepayments
851 % and moved
852 elseif mode_m2 == 3 || mode_m2 == 4
853
854 % Update state equations
855 x_m2 = [q0_m2 + Ts*( v0hist_m2 (1));
856 q1_m2 + Ts*( v1hist_m2 (1));
857 v0_m2 + Ts *( -1/ m0_m2 (1)*k0_m2 (1)* q0hist_m2 (1) +

1/ m0_m2 (1)* u0hist_m2 (1) + 1/ m0_m2 (1)* rfr_obs
(1))

858 v1_m2 + Ts *(1/ m1_m2 (1)* u1hist_m2 (1))];
859
860 states_m2 = [ states_m2 x_m2 ];
861
862 % Accumulated interest
863 x_interest2 (2) = q1_interest2 + Ts* v1hist_m2 (1);
864 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
865
866 % Update state equations scheduled payments
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867 x0_m2 = [q0m2 + Ts*( v0m2);
868 q1m2 + Ts*( v1m2);
869 rc_m2*q0m2 - P_m2;
870 rc_m2*q0m2 ];
871
872 states0_m2 = [ states0_m2 x0_m2 ];
873
874 % Refinance
875 elseif mode_m2 == 5 || mode_m2 == 6 || mode_m2 == 7
876
877 % Reset contract rate
878 rc_m2 = rm (1);
879
880 % Update money borrowed
881 A_ref_m2 = x_m2 (1);
882 A0_m2 = A_ref_m2 ;
883
884 % Update monthly cost
885 P_m2 = A_ref_m2 *( rc_m2 *(1+ rc_m2)^Tr) /(((1+ rc_m2)^Tr) -1);
886
887 % Jump in state
888 x_m2= [0;
889 q1hist_m2 (1) + ehist_m2 (1);
890 -q0hist_m2 (1) ;
891 ehist_m2 (1) ];
892
893 states_m2 = [ states_m2 x_m2 ];
894
895 % Accumulated interest
896 x_interest2 (2) = q1_interest2 + Ts* ehist_m2 (1);
897 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
898
899 % Update state equations scheduled payments
900 x0_m2 = [q0m2 + Ts*( v0m2);
901 q1m2 + Ts*( v1m2);
902 rc_m2*q0m2 - P_m2;
903 rc_m2*q0m2 ];
904
905 states0_m2 = [ states0_m2 x0_m2 ];
906
907 % Contract reset
908 x_m2 (1) = A_ref_m2 ;
909 x_m2 (2) = 0;
910 x_m2 (3) = -P_m2 + rc_m2* A_ref_m2 ;
911 x_m2 (4) = rc_m2* A_ref_m2 ;
912
913 states_m2 = [ states_m2 x_m2 ];
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914
915 % Accumulated interest
916 x_interest2 (2) = q1_interest2 + Ts*x_m2 (4);
917 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
918
919 % Update state equations scheduled payments
920 x0_m2 = [q0m2 + Ts*( x_m2 (3));
921 q1m2 + Ts*( x_m2 (4));
922 rc_m2* A_ref_m2 - P_m2;
923 rc_m2* A_ref_m2 ];
924
925 states0_m2 = [ states0_m2 x0_m2 ];
926
927 % Relocation
928 elseif mode_m2 == 8
929
930
931 % Reset contract rate
932 rc_m2 = rm (1);
933
934 % Update money borrowed
935 A_rel_m2 = x_m2 (1);
936 A0_m2 = A_rel_m2 ;
937
938 % Update monthly cost
939 P_m2 = A_rel_m2 *( rc_m2 *(1+ rc_m2)^Tr) /(((1+ rc_m2)^Tr) -1);
940
941 % Jump in state
942 x_m2= [0;
943 q1hist_m2 (1);
944 -q0hist_m2 (1);
945 0];
946
947 states_m2 = [ states_m2 x_m2 ];
948
949 % Accumulated interest
950 x_interest2 (2) = q1_interest2 ;
951 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
952
953 % Update state equations scheduled payments
954 x0_m2 = [q0m2 + Ts*( v0m2);
955 q1m2 + Ts*( v1m2);
956 rc_m2*q0m2 - P_m2;
957 rc_m2*q0m2 ];
958
959 states0_m2 = [ states0_m2 x0_m2 ];
960
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961 % Contract reset
962 x_m2 (1) = A_rel_m2 ;
963 x_m2 (2) = 0;
964 x_m2 (3) = -P_m2 + rc_m2* A_rel_m2 ;
965 x_m2 (4) = rc_m2* A_rel_m2 ;
966
967 states_m2 = [ states_m2 x_m2 ];
968
969 % Accumulated interest
970 x_interest2 (2) = q1_interest2 + Ts*x_m2 (4);
971 q1accinterest2 = [ q1accinterest2 x_interest2 (2) ];
972
973 % Update state equations scheduled payments
974 x0_m2 = [q0m2 + Ts*( x_m2 (3));
975 q1m2 + Ts*( x_m2 (4));
976 rc_m2* A_rel_m2 - P_m2;
977 rc_m2* A_rel_m2 ];
978
979 states0_m2 = [ states0_m2 x0_m2 ];
980
981 % Reset to moved
982 m_m2 = 1;
983
984 end
985
986
987 % Mortgagor 3:
988
989 % housing data
990 if norm_housing_noise_m3 (i) < P_average
991 p_housing_m3 = 0;
992 elseif norm_housing_noise_m3 (i) > P_average
993 p_housing_m3 = 1;
994 end
995 h0_m3 = p_housing_m3 *ones (1, dim.N);
996
997 % Initial reset variables
998 P0_m3 = P_m3*ones (1, dim.N);
999 A00_m3 = A0_m3*ones (1, dim.N);

1000 rc0_m3 = rc_m3*ones (1, dim.N);
1001 moved0_m3 = moved_m3 *ones (1, dim.N);
1002
1003 % Current states for scheduled payments
1004 q0m3 = x0_m3 (1);
1005 q1m3 = x0_m3 (2);
1006 v0m3 = x0_m3 (3);
1007 v1m3 = x0_m3 (4);
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1008
1009 % Current states
1010 q0_m3 = x_m3 (1);
1011 q1_m3 = x_m3 (2);
1012 v0_m3 = x_m3 (3);
1013 v1_m3 = x_m3 (4);
1014
1015 % Accumulated interest
1016 q1_interest3 = x_interest3 (2);
1017
1018 % Prepayment penalty
1019 epsilon_m3 = penalty_extra + (max( rc0_m3 (1) -r_m_obs (1) ,0)*Tr

*max (( x_m3 (1) -rho* A00_m3 (1)) ,0))*ones (1, dim.N);
1020
1021 % Current contract costs
1022 Pcontract_m3 = P_m3*ones (1, dim.N);
1023
1024 % Contract costs relocation
1025 Prelocation_m3 = x_m3 (1) .*( r_m_obs (1) .*(1+ r_m_obs (1)).^Tr)

./(((1+ r_m_obs (1)).^Tr) -1)*ones (1, dim.N);
1026
1027 % Contract costs refinancing
1028 Prefinancing_m3 = Prelocation_m3 + epsilon_m3 ;
1029
1030 % Solve optimization problem mortgagor 2
1031 [ solutions .mortgagor3 , diagnose . mortgagor ] = mortgagor {q0_m3 ,

q1_m3 ,rfr ,v1_m3 ,v0_m3 ,rfr_obs ,epsilon_m3 , Pcontract_m3 ,
Prefinancing_m3 , Prelocation_m3 ,rc0_m3 ,P0_m3 ,A00_m3 ,
moved0_m3 ,h0_m3 ,m0_m3 ,m1_m3 ,k0_m3 , q1_interest3 ,R_m3 };

1032
1033 % Retrieve solutions mortgagor 2
1034 v0hist_m3 = solutions . mortgagor3 {1}(1) ;
1035 v1hist_m3 = solutions . mortgagor3 {5}(1) ;
1036 q0hist_m3 = solutions . mortgagor3 {3}(1) ;
1037 q1hist_m3 = solutions . mortgagor3 {6}(1) ;
1038 u0hist_m3 = solutions . mortgagor3 {8}(1) ;
1039 u1hist_m3 = solutions . mortgagor3 {9}(1) ;
1040 mode_m3 = solutions . mortgagor3 {7}(1) ;
1041 ehist_m3 = solutions . mortgagor3 {11}(1) ;
1042 qinterest3 = solutions . mortgagor3 {16}(1) ;
1043
1044 % Mortgage payments : scheduled payments and partial

prepayments
1045 if mode_m3 == 1
1046
1047 % Update state equations
1048 x_m3 = [q0_m3 + Ts*( v0hist_m3 (1));
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1049 q1_m3 + Ts*( v1hist_m3 (1));
1050 v0_m3 + Ts *( -1/ m0_m3 (1)*k0_m3 (1)* q0hist_m3 (1) +

1/ m0_m3 (1)* u0hist_m3 (1) + 1/ m0_m3 (1)* rfr_obs
(1))

1051 v1_m3 + Ts *(1/ m1_m3 (1)* u1hist_m3 (1))];
1052
1053 states_m3 = [ states_m3 x_m3 ];
1054
1055 % Accumulated interest
1056 x_interest3 (2) = q1_interest3 + Ts* v1hist_m3 (1);
1057 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1058
1059 % Update state equations scheduled payments
1060 x0_m3 = [q0m3 + Ts*( v0m3);
1061 q1m3 + Ts*( v1m3);
1062 rc_m3*q0m3 - P_m3;
1063 rc_m3*q0m3 ];
1064
1065 states0_m3 = [ states0_m3 x0_m3 ];
1066
1067 % Mortgage porting
1068 elseif mode_m3 == 2
1069
1070 % Update state equations
1071 x_m3 = [q0_m3 + Ts*( v0hist_m3 (1));
1072 q1_m3 + Ts*( v1hist_m3 (1));
1073 v0_m3 + Ts *( -1/ m0_m3 (1)*k0_m3 (1)* q0hist_m3 (1) +

1/ m0_m3 (1)* u0hist_m3 (1) + 1/ m0_m3 (1)* rfr_obs
(1))

1074 v1_m3 + Ts *(1/ m1_m3 (1)* u1hist_m3 (1))];
1075
1076 states_m3 = [ states_m3 x_m3 ];
1077
1078 % Accumulated interest
1079 x_interest3 (2) = q1_interest3 + Ts* v1hist_m3 (1);
1080 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1081
1082 % Update state equations scheduled payments
1083 x0_m3 = [q0m3 + Ts*( v0m3);
1084 q1m3 + Ts*( v1m3);
1085 rc_m3*q0m3 - P_m3;
1086 rc_m3*q0m3 ];
1087
1088 states0_m3 = [ states0_m3 x0_m3 ];
1089
1090 % Reset to moved
1091 moved_m3 = 1;
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1092
1093 % Mortgage payments : scheduled payments and partial

prepayments
1094 % and moved
1095 elseif mode_m3 == 3 || mode_m3 == 4
1096
1097 % Update state equations
1098 x_m3 = [q0_m3 + Ts*( v0hist_m3 (1));
1099 q1_m3 + Ts*( v1hist_m3 (1));
1100 v0_m3 + Ts *( -1/ m0_m3 (1)*k0_m3 (1)* q0hist_m3 (1) +

1/ m0_m3 (1)* u0hist_m3 (1) + 1/ m0_m3 (1)* rfr_obs
(1))

1101 v1_m3 + Ts *(1/ m1_m3 (1)* u1hist_m3 (1))];
1102
1103 states_m3 = [ states_m3 x_m3 ];
1104
1105 % Accumulated interest
1106 x_interest3 (2) = q1_interest3 + Ts* v1hist_m3 (1);
1107 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1108
1109 % Update state equations scheduled payments
1110 x0_m3 = [q0m3 + Ts*( v0m3);
1111 q1m3 + Ts*( v1m3);
1112 rc_m3*q0m3 - P_m3;
1113 rc_m3*q0m3 ];
1114
1115 states0_m3 = [ states0_m3 x0_m3 ];
1116
1117 % Refinance
1118 elseif mode_m3 == 5 || mode_m3 == 6 || mode_m3 == 7
1119
1120 % Reset contract rate
1121 rc_m3 = rm (1);
1122
1123 % Update money borrowed
1124 A_ref_m3 = x_m3 (1);
1125 A0_m3 = A_ref_m3 ;
1126
1127 % Update monthly cost
1128 P_m3 = A_ref_m3 *( rc_m3 *(1+ rc_m3)^Tr) /(((1+ rc_m3)^Tr) -1);
1129
1130 % Jump in state
1131 x_m3= [0;
1132 q1hist_m3 (1) + ehist_m3 (1);
1133 -q0hist_m3 (1) ;
1134 ehist_m3 (1) ];
1135
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1136 states_m3 = [ states_m3 x_m3 ];
1137
1138 % Accumulated interest
1139 x_interest3 (2) = q1_interest3 + Ts* ehist_m3 (1);
1140 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1141
1142 % Update state equations scheduled payments
1143 x0_m3 = [q0m3 + Ts*( v0m3);
1144 q1m3 + Ts*( v1m3);
1145 rc_m3*q0m3 - P_m3;
1146 rc_m3*q0m3 ];
1147
1148 states0_m3 = [ states0_m3 x0_m3 ];
1149
1150 % Contract reset
1151 x_m3 (1) = A_ref_m3 ;
1152 x_m3 (2) = 0;
1153 x_m3 (3) = -P_m3 + rc_m3* A_ref_m3 ;
1154 x_m3 (4) = rc_m3* A_ref_m3 ;
1155
1156 states_m3 = [ states_m3 x_m3 ];
1157
1158 % Accumulated interest
1159 x_interest3 (2) = q1_interest3 + Ts*x_m3 (4);
1160 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1161
1162 % Update state equations scheduled payments
1163 x0_m3 = [q0m3 + Ts*( x_m3 (3));
1164 q1m3 + Ts*( x_m3 (4));
1165 rc_m3* A_ref_m3 - P_m3;
1166 rc_m3* A_ref_m3 ];
1167
1168 states0_m3 = [ states0_m3 x0_m3 ];
1169
1170 % Relocation
1171 elseif mode_m3 == 8
1172
1173
1174 % Reset contract rate
1175 rc_m3 = rm (1);
1176
1177 % Update money borrowed
1178 A_rel_m3 = x_m3 (1);
1179 A0_m3 = A_rel_m3 ;
1180
1181 % Update monthly cost
1182 P_m3 = A_rel_m3 *( rc_m3 *(1+ rc_m3)^Tr) /(((1+ rc_m3)^Tr) -1);
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1183
1184 % Jump in state
1185 x_m3 = [0;
1186 q1hist_m3 (1);
1187 -q0hist_m3 (1);
1188 0];
1189
1190 states_m3 = [ states_m3 x_m3 ];
1191
1192 % Accumulated interest
1193 x_interest3 (2) = q1_interest3 ;
1194 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1195
1196 % Update state equations scheduled payments
1197 x0_m3 = [q0m3 + Ts*( v0m3);
1198 q1m3 + Ts*( v1m3);
1199 rc_m3*q0m3 - P_m3;
1200 rc_m3*q0m3 ];
1201
1202 states0_m3 = [ states0_m3 x0_m3 ];
1203
1204 % Contract reset
1205 x_m3 (1) = A_rel_m3 ;
1206 x_m3 (2) = 0;
1207 x_m3 (3) = -P_m3 + rc_m3* A_rel_m3 ;
1208 x_m3 (4) = rc_m3* A_rel_m3 ;
1209
1210 states_m3 = [ states_m3 x_m3 ];
1211
1212 % Accumulated interest
1213 x_interest3 (2) = q1_interest3 + Ts*x_m3 (4);
1214 q1accinterest3 = [ q1accinterest3 x_interest3 (2) ];
1215
1216 % Update state equations scheduled payments
1217 x0_m3 = [q0m3 + Ts*( x_m3 (3));
1218 q1m3 + Ts*( x_m3 (4));
1219 rc_m3* A_rel_m3 - P_m3;
1220 rc_m3* A_rel_m3 ];
1221
1222 states0_m3 = [ states0_m3 x0_m3 ];
1223
1224 % Reset to moved
1225 moved_m3 = 1;
1226
1227 end
1228
1229
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1230 end
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List of Acronyms

MPC Model Predictive Control
CPR Conditional Prepayment Rate
ECB European Central Bank
IRS Interest Rate Swaps
MNL Multinomial Logit
MLE Maximum Likelihood Estimation
Euribor Euro InterBank Offer Rate
MPC Model Predictive Control
MIP Mixed-Integer Programming
MIQP Mixed-Integer Quadratic Programming
EMPC Economic Model Predictive Controller
QP Quadratic Programming
SMM Single Monthly Mortality
CPR Conditional Prepayment Rate
RTO Real-Time Optimization
PID Proportional–Integral–Derivative
RMPC Robust Model Predictive Control
SMPC Stochastic Model Predictive Control
FICO Fair Isaac Credit Organization

List of Symbols

ρ Partial prepayment percentage
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ε Prepayment penalty
β Scaling factor risk-free rates

x+
RL Value state after a full prepayment due to relocation

d̂ Predicted risk-free rates
x State variable
A0 Initial level of money borrowed
F0 Risk appetite principal repayments
F1 Risk appetite interest payments
F0,C Appetite to reduce debt
h Housing incentive
k0 Creditworthiness
L Lagrangian
m Discrete state for moving
m0 Risk aversion principal repayments
m1 Risk aversion interest payments
P Monthly payment
p0 Risk factor principal repayments
p1 Risk factor interest payments
Pcontract Monthly payment current contract
Prefinance Monthly payment new contract with refinancing costs
Prelocation Monthly payment new contract
q0 Principal balance
q1 Accumulated interest
R Rationality mortgagor
r Risk-free rate
rc Contractual interest rate
rm(t) Market mortgage rates
S Action
T Maturity
t Time
Th Prediction horizon
Tr Remaining mortgage term
Ts Sampling time
u0 Risk appetite mortgagor principal repayments
u1 Risk appetite mortgagor interest payments
v Velocity
v0 Principal repayment
v1 Interest payment
x0 Initial state
q Position
x+

RF Value state after a full prepayment due to refinancing
k Discrete time
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