Master Thesis:
Sea Change / See Change: a walk to the bay

Dec 2017
Graduation studio: Flowscapes
Landscape Architecture
The faculty of Architecture
TU Delft

This thesis has been produced with the guidance of the mentors:
First mentor: Inge Bobbink,
TU Delft - Faculty of Architecture
Department of Urbanism
Chair of Landscape Architecture
Second mentor: Liussa Calabrese
TU Delft - Faculty of Architecture
Department of Urbanism
Chair of Architectural Composition - Public Building
1. Framework

1.1 Fascination
1.2 Introduction
1.3 Migrating Richmond
1.4 Problem Statement
1.5 Research Question
1.6 Relevance
1.7 Methodology

2. Design by Research

2.1 Migration pattern
2.2 Socio-economical process
2.3 Anthropocenic and natural processes
2.5 Design principles
3. Research by design

3.1 Design Concept
3.2 Extending the sea
3.3 Offering new perspectives
3.4 Regenerating opportunity
3.5 Islands Development
3.6 leevee

4. Epilogue

4.1 Reflection
4.2 Bibliography
Fascination

elements
global warming and sea level rises

river

lake mosaic pattern

industry

urban shrinkage
When whales travel thousands of miles back to Antarctic, in the spring, we know, they migrate.

When butterflies flew from South Africa to Brazil, in the autumn, we know, they migrate.

When your car starts up, the fuel burns, CO2 release to atmosphere, from liquid to gaseous state, the Carbon element, it migrates.

When river shifts its channel, when the drought season arrived, water migrates.

When Tycoon Ford moved its factory to developing countries for lower labor cost, industry migrates.

When migrate happens, it leave marks on landscape, like writing on a paper, it tells stories.

The sea is rising and cities are being flooding, because carbon migrates.
The lake has mosaic wetland landscape, because water migrates.
The city of Detroit is shrinking, because industry migrates.
Fascination

What is Migrating Landscape – Why?

The act of migration is inseparable from the material and spatial dynamics in which a living thing or group of living things interact; rendering migration as “a complicated, challenging and diverse phenomenon involving changing statuses and multiple geographic trajectories.” — Michael Samers, Migration (2010)

When speaking of migration, we imagine migration as the movement of isolated things (birds, fish, people) against a fixed background. For example, brent geese Branta bernicla migrating from the Taymyr Peninsula to the Wadden Sea.

At a planetary scale, we know that landforms migrate through plate tectonics. Scientists are always visualizing, monitoring, and anticipating earthquakes, volcanic eruptions, and other geologic events. The San Andreas Fault in California is a tangible artifact of these processes: a trench bordered on both sides by jagged hills where the North American Plate rubs against the Pacific. Aerial views reinforce the fact that material in motion creates qualitative difference. If we accept the idea that the entire surface of the earth is migratory, then why not landscapes in particular?

A landscape — as a scene, landschap, ecosystem, and socio-political territory — is a material assembly of moving entities, a dynamic medium which changes in quality and structure through the aggregate movements or actions of the things that constitute it.

In this case, landscape are no backgrounds or supports, just like things and beings, they migrate across time and space. We know that environmental conditions are always changing, but we allow us the fiction of background stability. As Brett Milligan proposed, we can view migration as a patterned movement across space and time. Then look beyond the movement of individuals and species to the migration of landscape. A landscape migrates when its unique assembly of components— the materials, entities and actors that define it— shifts over time, then a new assembly forms. Just like plate tectonics, landscape migration is both spatial and qualitative.
The starting point of this research are the concept of Anthropocene and the "migration landscape" and their relation to landscape architecture along with a very specify site of interest- Richmond city in San Francisco.

we are living in the age of Anthropocene, where we, as human, have become a geologic force of change, but we struggle to grasp the consequence of that.

By Anthropocene, it refers to the contemporary geological epoch in which human have become the dominant geologic force altering the planet. we move more than twice the earth and soil than all oceans, seas, rivers and lakes together. We change the atmosphere way up high, the rock deep down and everything in between.
How attuned are we—as species and agency—to the consequences of our changes? Can Architects and landscape architects stop being just a reaction to change to become also a propositional dialogue with the many world beyond humanity? Richmond in San Francisco, once an industrial city relying on its shipping industry are now facing the crisis both from natural aspect and economic aspect. The shifting of shipyard resulted in city’s unemployment and commute problem, along with increasing threat from sea level rising. The channel supporting old shipping industry require heavily maintenance continuously yet it failed to bring up economic beneficial as planned.

To approach the site, the research starts with an understanding of landscape migration, of how, a landscape assembly arrived at its present state, by which processes, what are their martial and affective outcome. This involved examine Brett’s concept of landscape migration, urban ecology and assemblies. Next to this, idea of Anthropocene and new materialism are exploded to provide a renew view on infrastructural landscape and on thinking about landscape as a “plurality of forms, then belief in a fixed criterion of optimality disappears” where enable a boarder spectrum of choice and possibilities.
In Detroit and other shrinking cities, we witness the emigration of the human population and the emergence of feral urban lands. Like many migrations, the Rust Belt exodus is “driven by the transitory availability and shifting location of resources.” De-industrialization is not the disappearance of industry, but rather the migration of industrial production elsewhere. Detroit’s transformation is part of a board, complex set of economic processes, yet not so complex that we fail to see the spatial patterns. Richmond is also an example of a city encountered with migrating natural landscape as well as shifting industry. Its natural shoreline is along with the rising water level from Pacific Ocean, locating on artificial filled land. The city not only have to face the erosion from tidal impact but also threaten by crustal movement underground. Due to the relocating of shipyard and manufactory industry, as well as the dramatic fall on limber economic, city of Richmond is in urgent. In short, the historical research showed that from Golden Rush to Silicon Valley. Richmond have been bounded tightly with regional to global economic and environmental
transition.
Not every migration is one of return. The most promising design and planning strategies for shrinking cities work opportunistically and protectively with emergent conditions, rather than trying to counter or reverse the trajectories of change.
Problem statement

THREATEN BY SEA LEVEL RISES

Due to landfill and channelization and other human intervention, the constructed bay edge has lost the exchange with the nature dynamic and is no longer economically, ecologically, or socially relevant. So the problems statement were made.

There have been significant advances in the scientific understanding of the risk of accelerating sea level rise (NRC 2012). Present sea level rise projections suggest that global sea level in the 21st century will be much higher due to both the expansion of the oceans by warming and, increasingly, by the melting of land-based glaciers and ice sheets. These projections are summarized in the recent National Research Council report on West coast sea level rise (NRC 2012) which provides estimates of regional sea level rise for San Francisco. By 2030, the mid-range projection for sea level rise is 5 inches with an upper projection of 11 inches and by 2050, the mid-range projection is 11 inches with an upper projection of 24 inches.

Industrial zone disconnected city from the bay

Due to over 100 years of heavily industrial development along the shoreline of Richmond, the city of Richmond are segregated from its waterfront life style. More over, the industrial site also leave the its waterfront with water pollution and soil containmination. Continuely dredging and channelization alone the shoreline to maintain its navigation function has cause huge marsh land loss.

Social Problem

Historically, Kaisher Shipyard was the 3rd biggest navy shipyard in war time, which construct ed on the landfill of the original tidal marshland that protects lands from erosion. Over the past century, landfill and navigation matainance (dredging and channelization) has cause huge marsh land loss. After the war, Kaisher shiyard retired from its military service and now is occupied mainly by commercial port and oil refinery. Yet with the falling of heavily industry, this industrial hard land is no longer economically, ecologically, or socially relevant. The city has suffer from high crime rate and
Research Objective

By examine of the concept of landscape migration and the Anthropocene in the specific case of Richmond redevelopment project, rethinking of the common way of landscape design for stability but to acknowledge the migrating phenomenon both in the design process and the design result.

Research Question

- How to reconnect Richmond, a city segregated by its industrial history, to its shoreline for new opportunities and new life?

- How was Richmond developed and what is the driven force behind its landscape pattern movement? What are the consequences on Richmond today?

- Which infrastructure can we choose and articulate on to guide the landscape process?

- How can Richmond local residents benefit from landscape migration without being leftover?

- How to adapt Richmond for future instability?
Theoretic background:

Landscape migration

from migration to landscape

Methodology

Link to landscape design

Landscape as assemblage

Infrastructure as specify assemblise are choosen and articulated

Landscape migration as Ecological and social phenomenon

Research

deterritorialization

landscape emergency

panarchy theory

landscape forensic

Panarchy

Resilience

Terra fluxus

design
Objective question

1. how landscape is assembled
2. which part/process do we choose to engage and which course of action do we take.

1. what is privileged in infrastructure's assembly, and what is left out.
2. Who does the choosing and who or what benefits?

how the landscape will move in the future
In definition, Brett Milligen articulated landscape as—“a scene, landscape, ecosystem, and socio-political territory—it’s a material assembly of moving entities, a dynamic medium which changes in quality and structure through the aggregate movements or actions of the things that constitute it.” He applies the concept of migration—patterned movement across space and time—to landscape by three strands of theory: ecology, assembly and infrastructure. Then How can be practice these theory to landscape analysis to design?

Following the theory of Landscape Migration, several are the concrete element we can deduct and used for approaching the site.

Firstly, to understand the process and production of current landscape assemblage, it’s necessary to identify patterned movement and critical moments of site. Landscape architects uses landscape reading to provide answer to such question. Gathered data is most commonly communicated through mappings or diagrammatic representations of different layers that together form a piece of landscape.

It looks into nature factors: natural factors (geology, soil, topography, vegetation, animal life, climate), historical factors (development, cultural significance, heritage) and human factors (social aspects, landscape experience, spatial and visual quality).

By approaching to the site, examining the landscape along a historical trajectory, we can observe period of stability as well as critical moment or bifurcation when the assemblage is rapture and a new assemblage is formed.

As city of Richmond in research particularly, it’s necessary to understand the landscape in regional scale. what drivers of change are most relevant to the development of regional choreography? This part of analysis will answer the following questions: First, which are the crucial processes will be involved in different time period? Second, Which are the crucial factor to affect others within layers? The analysis of the landscape first focuses on the driving forces of the delta area. Including natural processes (crustal movement, sea dynamic, terrestrial alluvium) and human intervention (diking, reclaim the land, landfilled.)

Patterned movement are also being investigate as the production of change agent. In Richmond in particular, patterned movement are focusing to answer following question:
Infrastructure is where specific landscape assemblies are chosen and articulated, and it is here that design can play its most influential role. In my case the sediment itself have been the crucial infrastructure in Bay-Delta as well as in Richmond. Unlike the critical infrastructures of previous generations of design—dams, levees, channels, and so on—intentional sedimentary infrastructure is capable of aggregating, expanding, and adapting to novel conditions. This flexibility will be needed as we seek to adapt to and mitigate anthropogenically-accelerated change.
Location & Site Visit

San Francisco Bay-Delta

Richmond

Bay Scale
The city of Richmond in Contra Costa County is just a 10 minute drive across the San Rafael Bridge but it's also a world away. It is a city of 100,000 people with merely more than 10 percents of residents working in the city. With over a 100 years history of heavy industrial production and construction, resulting in soil/air/water pollution. With threat from global warming and sea level rising, the city is in need of coastal management and protection.

A dialog is needed here, between city and cities, between urban context and natural environment, giving the opportunity to urban redevelopment. Not only creating a platform for public to enjoy the wonder of Bay, but also protect the home of the precious flora and fauna species from sea level rise and other environmental crisis.
Bay in migration
Sea dynamic
Geologic Cross-section of the San Francisco Bay Area

Crustal Movement
Geologic Cross-section of the San Francisco Bay Area

Terrestrial Alluvium
Geologic Cross-section of the San Francisco Bay Area

Anthropocenic activities
anthropocene activities

landscape patterned movement
Forming Richmond

By mapping the historical pattern of landfill, marsh land and sedimentation accumulation. This analysis aims to understand the forming process by both anthropogenic and natural forces. The analysis also points out the natural resource and natural shoreline loss in the landfilling.
The earliest inhabitants were the Ohlone Indians, who settled here an estimated 3,000 years ago, with a culture based on strong community ties, spirituality, and rich artistic creativity. The Ohlone were hunters and gatherers that built extensive shell mounds along the Bay. Amid the coming of the Europeans, the Ohlone way of life gradually came to an end and was destroyed.

Spanish Era

Spanish explorers Pedro Fages and Reverend Juan Crespi, who passed through the East Bay in 1772. After Mexico won independence from Spain in 1821, large tracts of land in California were granted to military heroes and loyalists. The city of Richmond was established on a portion of Castro's land grant about seventy years after his death.

Rail Terminal & Ferry

In 1893, Augustus S. Macdonald visited Point Richmond and conceived the idea of a transcontinental rail terminal and ferry service to provide a direct route from Richmond to San Francisco. In 1899 the railroad established its western terminus in Point Richmond. The first local passenger train arrived in Richmond from Chicago in 1900.

Early Industry

In 1901, Santa Fe moved its shops to Richmond and the Standard Oil Company built its refinery.

Industrial Growth

When Richmond incorporated as a city in 1903 it was an unincorporated industrial town. The city charter was adopted in 1909, and by 1910 substantial industries locate to Richmond: Winehaven, Fullman Palace Car Shops, American Radiator, Standard Sanitary Company, Sutliff Chemical Company, and several others less well known.

Harbor Construction

As the city grew during the 1920s and 1930s, Construction of shipping port terminals began in this period. By 1937 harbor construction was being promoted and major dredging and terminal construction was authorized by bond issues in 1912 and 1920. Stevedore limits or part of the harbor dredging in the 1920s made possible the opening of the Ford Motor Assembly Plant and the Pacific and Peninsular Company in 1931. The prohibition era forced the closing of Winehaven.

World War II and the Shipyards

The next chapter was by far the most dramatic and earth-shaking in Richmond's history. World War II began, and the Kaiser Richmond Shipyards, one of the biggest wartime shipbuilding operations on the West Coast, sprang up on Richmond's South Shoreline in January, 1941. The shipyards covered much of the vacant industrial land.

Public Housing

At the end of the war, the shipyards closed in 1945. Industrial production rapidly declined and the population decreased in 1960. A number of new industries moved in to occupy vacated shipyard structures. Among them were Kaiser Aircraft, Garwood, Buell, Southwest Welding, Pacific Vegetable Oil, Unitled-Heckathorn.

Chemical Industry

Redevelopment Warehouses

The Harbor Gate Redevelopment Project cleared war housing in 1955. A strong growth in warehousing, distribution, and chemical and research facilities were evident among the post-war developments. Throughout this history Standard Oil, now called Chevron USA, have grown steadily and have remained the city's major industry and employer, land annexations by the City between 1953 and 1957 to the east, north and northwest resulted in a geographically enlarged but boreal confugitive city.
A thorough historical research of Richmond history was carried to identify in separated era, what is the driven forces in the change of landscape pattern and what could be the socio/economical/ecological consequences for the change.

Downtown business declined

It is important to note that a major retailers (Macy's, J.C. Penney's, Thrifty, and Woolworth's) all either moved to Hilltop or closed their Richmond operations entirely.

Hilltop Mall Center

Opening in 1976, Hilltop Mall Regional Shopping Center had a major impact on Richmond's economy and its old downtown area in particular. Hilltop is a 1.3 million square foot enclosed shopping center located in the northern corner of the city along Interstate 80.

Harbour Redevelopment Project

The transformation of the old Inner Harbor Basin (the site of the wartime shipyards) into the Marina Bay development, a 300-acre master-planned waterfront community that will eventually comprise 2,000 residential units, 600,000 square feet of commercial space, several restaurants, a 1,300-berth pleasure boat marina, and a chain of lagoons, parks, and waterfront promenades.

Hoffman Freeway

The Knoll Freeway, Interstate 580, was designated a part of the Interstate Highway system, thereby ensuring its construction. The new freeway passes across Richmond's South Shoreline and connects Interstate 80 with the Richmond-San Rafael Bridge. The freeway provided seven new interchanges along the South Shoreline, and has made it a very attractive corridor for new high-tech industrial and commercial development.

Richmond Parkway

The Parkway is a 7.1/2-mile, four lane scenic expressway providing a speedy link between the northern edge of Richmond (Interstate 80 at Hilltop) and the city's southwest corner (the new Interstate 80/580 freeway and the Richmond-San Rafael Bridge). The Parkway has fostered development of a large industrial-zoned area in northwest Richmond that has historically remained largely undeveloped, due to poor access.

Now and future

Richmond covers 56 square miles and has a population estimated at 103,468 (source: CA State Dept. of Finance as of January 1, 2006). Richmond's economy is currently undergoing a major transition from its former heavy industrial character toward more high technology ("high tech") and light industrial companies with new business parks accommodating light industrial and office/flex land use. Biotechnology, in particular, has developed as an important new "niche" in Richmond's growing economy.
The cross mapping from the patterned movement and the history of Richmond clearly show that. In the process of landscape migration, we can always observed a moment of stability and a critical moment. Thus moments was determined by its driven forces. In City of Richmond we can found out that the critical moment for the city vast development is the Kaisher shipyard. And yet in the past few decades, the city is also supported by heavy industry and its ports.
As a city had over 100 years of industrial history, Industrial land had cover 1/3 of Richmond. From the analysis we can see that the city of Richmond is separated from its own shoreline, as well as other cities in San Francisco Bay.

Also, the Hazard Analysis found out that Richmond is also heavily contaminated. Which will be taken account into future design process and result.
costal problems

edge hardening reduced success soil contamination

riparian zone decontamination aquatic habitat reduction shoreline rigid from sea level rise

costal problems
river problems

chaninalization
damming
decresed water runoff
direct discharge
urbanization
land filling
Problem statement

By mapping Richmond and cross mapping data from ecological, historical, industrial structural and demographical aspects. We can see that the city of Richmond is facing the following 5 problems:

- ecological value lose
- threat of sea level rise
- spatial and ethnic segregation
- connection to the bay and other city
- industrial remains and pollution remediation
Industrials and pollution remediation
existing ecological value

Historical city center

existing separated neighborhood

industrial site
Richmond Spatial Quality Analysis

bayland industry
North Richmond + Castro Cove: Richmond, Ca

1905
1959
Current

1905
1959

2007
Castro Cove marsh restoration

2012
Chevron fire
North Richmond
2013
Income below poverty level
NORTH SHORELINE PARK

INACCESSIBLE WITH SLUDGE PONDS
URBAN CORE

EMPTY RAILYARDS
The shoreline view analysis bring to the conclusion that, not only the shoreline has been occupied by industrial facilities, but also in visually the Richmond are totally block. The city lack quality platform for reaching out to the bay.
Ecology buffer
+
Urban farming/Biofuel

WELCOME
ENTRANCE

City Center
mix used
new city platform
It's time more people talked about dredge. The techniques of dredging—and the galaxy of technologies that surround it—constitute perhaps the greatest unrecognized landscape architecture project in the world. Dredge shapes our beaches and waterways, it plays a key role in global shipping networks and in coastal real estate. Silt is scooped from sea floors to deepen underwater highways for container ships; it is diverted from river basins to control flood-prone urban waterways; it is collected, sorted, managed, and moved to cap and treat contaminated grounds. Anthropogenic action now moves more sediment annually than geologic and natural processes—yet this reshaping of the earth's surface is invisible to the average observer, and under-explored in contemporary design practice.

In short, sediment is critical infrastructure to our nation’s economic and ecologic health. Though invisible, sediment infrastructure (like much American infrastructure) is in crisis. Dredging budgets are dropping, navigation channels are filling up, sediment extraction expenses are rising, environmental regulations are tightening, dams are backing up, and disposal sites are at capacity. A lack of sediment is causing lower Louisiana to disappear. Too much sediment required NYC to conduct a massive dredging project to ensure that trade with Asia could continue. Any human settlement near a river or shoreline must grapple with erosion control.
Even more disturbingly, sediment is treated as a waste product or 'spoils'—a material to be dumped rather than a life-giving resource and ecological asset. At a national scale, sediment management is broken, a one-way system of extraction and deposition that reveals its weakest points during disasters like Hurricane Katrina, where sediment starved wetland buffers and engineered hydrologic control structures failed catastrophically. In this context, what is the future of sediment management, and how can designers engage in crafting productive sedimentary futures?

This analysis cross mapping reveal that after the golden rush, sedimentation in Delta-Bay area are facing a downfall. The sediment resources should be treated as valuable material that could implement the shoreline erosion.
Sediment Sinks
- Clam Shell Dredge $10.46/CY
- Hydraulic Dredge $8/CY
- Removal of Sediment Behind Dams $10.50/CY

Conveyance
- Pipeline $0.05/CY/mi
- Barge $1.14/CY/mi
- Truck $6.50/CY/mi

Sediment Sources
- Deep Ocean (5,000-9,840') $23-25/CY
- Open Ocean (36-47') $11/CY
- Near Shore (29-46') $11/CY
- In-Bay (12-37') $9-11/CY
- Wetland Restoration $25-30/CY
- Contaminated Sediment Disposal $31-55/CY
- Levee Maintenance $24/CY
Diagram of the Dredge Cycle. The natural paths of erosion and sedimentary geology (white) are overlaid by the alternately accelerating and decelerating paths (orange) produced by various anthropogenic inputs. The diagram is divided between gravity-fed erosive paths on the right and forced uplift on the left. Distance from the center of the diagram abstractly represents time – the farther the orbits are from the center, the slower they are. At the bottom, dredging is the key moment at which sediments shift from being under the influence of gravity to defying gravity.
The diagram of the Dredge Cycle shows the natural paths of erosion and sedimentary geology (white) overlaid by the alternately accelerating and decelerating paths (orange) produced by various anthropogenic inputs. The diagram is divided between gravity-fed erosive paths on the right and forced uplift on the left. Distance from the center of the diagram abstractly represents time -- the farther the orbits are from the center, the slower they are. At the bottom, dredging is the key moment at which sediments shift from being under the influence of gravity to defying gravity.

Erosion Control:
- Cellular confinement
- System
- Slit fences
- Ringnets
- Detention basins
- Sand bags
 (failure/lack of maintainness)

Deposition and Sediment Accumulation

Re-use/Placement
- Containment area
- Aquaculture
- Construction material
- Decorative landscape products
- Topsoil
- Shore protection
- Fish and wildlife habitats
- Fisheries improvement
- Wetland restoration
- Beach nourishment
- Born creation
- Capping
- Lad creation
- Land improvement
- Replacement fill

Dredging event in San Francisco Estuarine

SAN PABLO BAY + SAN FRANCISCO BAY
Harbor deepening projects abound, exposing aquatic habitats to salinity intrusion

CHANNELS + DREDGING
Clamshell dredge were used to build levees and deepen channels for navigation

RESIDENTIAL AND INDUSTRIAL AREA
Increased Metal Usage and Chemical Sources of Waste Discharge to the Bay due to Urbanization and Industrialization

SEDIMENT SOURCES
River flows provided water for agriculture but also threatened livelihoods with flooding.

ISLANDS + LEVEES
In the 1850’s, homesteaders dredged channels and used the material to build up levee edges. By the 1950s, the bay delta began to experience net erosion, as sediment inputs vanished. Farm land is subsiding and levees are at risk of failure.
Dredging event in San Francisco Estuarine.

SEDIMENT SOURCES

River flows provided water for agriculture but also threatened livelihoods with flooding.

ISLANDS + LEVEES
In the 1850's, homesteaders dredged channels and used the material to build up levee edges.

By the 1950s, the bay delta began to experience net erosion, as sediment inputs vanished. Farm land is subsiding and levees are at risk of failure.

SEDIMENT SOURCES

Kings Canyon National Park

Hydraulic mining in the late 1800's generated huge sediment runoff from the Sierra Nevadas. Today, sediment inputs come from urbanization and snowmelt.

SEDIMENT SINKS + SOURCES

Agricultural Use

SACRAMENTO RIVER Basin: 27,580 sq mi

SAN JOAQUIN RIVER Basin: 31,800 sq mi

WATER INFRASTRUCTURE IN THE FOOTHILLS

However, sediment inputs are limited today, as dam and water infrastructure projects trap sediment upstream.
Dredging impact on Ecosystem

Pacific Ocean Coastal Scrub Sand Dunes

San FranciscoOak Woodlands Riparian

Salt Water Wetlands Fresh Water Wetlands Grasslands
people environment flora and fauna
Historical levee study

NATURAL LEVEE
Formed by sediments deposited during floods and stabilized by vegetation

FRESHWATER TIDAL MARSH
The historical landscape of the central delta was tidal islands vegetated with freshwater emergent wetland of tule and willow

GREAT SEDIMENT PULSE - 1852
Hydraulic mining debris, particularly in the Sacramento River, dramatically elevated the river bed and reduced tidal influence to 2 inches

Overwashed Sediments
Some of the hydro sediments overwashed into the tracts by flooding, damaging the fertility of the soil
CLAMSHELL DREDGING - 1880s
Clamshell dredge invented to deepen shipping channels.

LEVEE CONSTRUCTION
Development of levee system to prevent tidal inundation of land in central delta.

LAND RECLAMATION
Reclamation started in the 1880s, and was encouraged in the 1960s-70s. By the 1930s, the delta was almost reclaimed.

SEDIMENT SHORTFALL
Dams, river bank protection, and flood management contribute to the deficit of sediment supply to the Bay-Delta Estuary.

LEVEE AUGMENTATION
Rising flood levels, frequent failure of old levees, and sea level rise demands the reinforcement of levees to protect farmland and infrastructure.

ELEVATION DIFFERENCE BETWEEN LAND AND WATER
Surface elevation of the land significantly lower than the water level.
Fase 1: De sawbodem bestaat uit schoon zand, samen met eigenwater een voedselarme basis.

Fase 2: In de sawa neemt water toe. In deze habitat ondervoedheid wordt niet uitgesaaied. De retegatatie ontwikkelt zich zodanig dat een dichte wortelnet ontstaat.

Fase 3: Het water wordt opgezocht, door afbraak van organische materiaal ontstaat een laag waarboven grasdieren van de rivier geen drijven.

Fase 4: De uitwegende vegetatie wordt vervolgens afgehaald en strenger en zal de waterlaag steeds meer opvullen, zodat uiteindelijk een verslaag ontstaat.

Sanering Volgermeerpolder, 2009
The study about Volgermeer polder provide a new perspective on how to deal with the polluted soil in a long term. By growing vegetation on top of the polluted soil, peat development in four phases.
buildings

We need to design for rising seas at multiple scales. From floating apartment buildings to floodable parks, designers and engineers around the world are imagining and constructing resilient solutions to rising sea levels. Flexibility and adaptability are at the core of resilient design. This thinking will allow our buildings and infrastructure to bounce back from a storm or adjust to rising tides.

Spaulding Rehabilitation Hospital

Amphibious Homes
How can we build for rising sea?
Port Richmond’s future architecture should build to a new standard of flood protection and flood accommodation. Existing buildings, including historic residences and commercial properties, will need to be retrofitted to keep water out. New buildings will provide the opportunity to take a different approach, built to adapt to changing water levels.

Floating Houses, IJburg

Rebuild by Design, Coastal Commercial Resiliency
public space

The Greater New Orleans Urban Water Plan

Cheonggyecheon Portland Green Streets
How can we adapt existing open spaces to accommodate water? Close to the Richmond city core, there are barely no open space. Rather than trying to keep water completely out, the city can leverage this existing space by designing areas that periodically accommodate flooding, stormwater, and high tides. These public spaces can be constructed to be absorbent or to withstand submersion when flooding occurs. In dry or wet conditions, they can serve as desirable amenities to the city.

Watersquare Benthemplein

Portland Green Streets
shoreline

HafenCity

Rebuild by Design, Asbury Park Boardwalk + Dunes
How can we adapt the Richmond shoreline to rising seas? Richmond city’s coast was long time segregated from its residents by industrial developments. The future reopening comprises public space, islands, beaches, backyards, and industrial facilities. Bulkheads, seawalls, and revetments, these are the inflexible structures make it difficult for Richmond to gradually adapt to rising sea levels. Alternative edge conditions like terraced public space, floating neighborhoods, floodable open space, and absorbent parks are more responsive to changing water levels—and provide engaging community amenities.

NYC Special Initiative for Rebuilding and Resiliency (SIRR)

Masonville Cove Urban Refuge
In the face of rising waters and increased storm-related flooding, communities will have to decide what to do with their flood-prone areas. Continually repairing storm damages and providing services to these vulnerable neighborhoods demands significant government resources. For these areas, cities have three major options to consider: keep water out, adapt to live with water, or move to higher ground. Unfortunately, there are no clear answers when it comes to these options—they all have pros and significant cons.

Storm barriers can be effective, but at a great cost. To protect the Richmond from increasing risk of sea level rises, one strategy is to construct a storm barrier within Richmond Harbor. Storm barriers cannot protect the city from permanent sea level rise, but they can be effective in protecting key areas during a major storm. Unfortunately, storm barriers can be expensive and time intensive, and can have negative impacts on the local ecology. With both significant pros and cons, building a barrier would require a rigorous cost-benefit analysis.

TOUGH QUESTIONS

We need to weigh the costs and benefits of all our options.
1. Fortify
(Keep Water Out)

2. Adapt
(Live with Water)

3. Retreat
(move to higher ground)

what are alternative uses for regions that are threatened by sea level rises?

- **1. Ecological**
 - Increased habitat
 - Wave attenuation
 - Pollutant filtration

- **2. Open Space &**
 - Floodable parks
 - Cultural amenities

- **3. New Opportunities**
 - Aquaculture
 - Maritime industry
Waterfront Port study

The Port of Richmond encompasses five (5) City-owned terminals and ten (10) privately owned terminals for handling bulk liquids, dry bulk materials, metals, vehicles and break-bulk cargoes.

Address: 1145 Harbour Way South, Richmond, CA 94804, USA
Use: Storage and distribution of liquid bulk
Land Area: Approximately 8 acres
Physical Data: Draft: -35’ MLLW
Concrete Wharf: 50’ X 45’
Timber Wharf: 225’ X 45’
Berthing Length: 720’ with two dolphins at north end
Warehouse: Two totals 140,000 SF
Rail Services: Connection to terminal (BNSP/UPSP)
Cargo Handling Equipment: None

abandon

Address: 1411 Harbour Way South, Richmond, CA 94804, USA
Use: Import, storage and distribution of break bulk, project cargo, and containers.
Land Area: 20 acres
Physical Data: Draft: -35’ MLLW
Concrete Wharf: 1,009’ X 105’
Berthing Length: 1,250’ with two dolphins at north
Warehouse: 80,000 SF
Rail Services: Connection to adjacent terminal (BNSP/UPSP)
Cargo Handling Equipment: Two (2) 37 short ton Portainers (wharf side container crane)
Address: 1301 Canal Blvd
Richmond, CA 94804, USA
Use: Import, storage and distribution of autos, break bulk, dry and liquid bulk.
Land Area: Approximately 130 acres
Physical Data: Draft: -35’ MLLW
Concrete Wharf: 2,300’ X 135’
Concrete Pier: 2 (550’ X 50’)
Berthing Length: 1,620’, 300’ & 400’
Warehouse: Two total 170,000 SF
Rail Services: Connection to terminal (BNSF/UPSP)
Cargo Handling Equipment:
None

Address: 2101 Western Drive
Richmond, CA 94804, USA
Use: Pending
Land Area: Approximately 37 acres
Physical Data: Draft: -28’ MLLW
Timber Wharf: 1,000’ X 25’
Berthing Length: 1,000’ with two dolphins at north
Warehouse: 12,000 SF
Rail Services: Connection to terminal (BNSF/UPSP)
Cargo Handling Equipment:
None

Address: 1411 Harbour Way South
Richmond, CA 94804, USA
Use: Import, storage and distribution of break bulk, project cargo, and containers.
Land Area: Approximately 20 acres
Physical Data: Draft: -35’ MLLW
Concrete Wharf: 1,009’ X 105’
Berthing Length: 1,250’ with two dolphins at north
Warehouse: 80,000 SF
Rail Services: Connection to adjacent terminal (BNSF/UPSP)
Cargo Handling Equipment:
Two (2) 37 short ton Portainers (wharf side container crane)
View analysis from Port Richmond (Kaisher Shipyard)
1930
Kaisher shipyard is still tidal marshland

1943 first construction

1944 complication and retire from military service

Richmond nowadays is being used by Fort Plant and Oil Refinery company
current land use
Income map
Infrastructure and urban grid
Natural resources and historic heritage
Tideal and bythy
Problem conclusion map
Some of the ways that urban development impacts natural systems are by impeding plant migration, altering the hydrologic cycle, and exacerbating coastal erosion due to man-made infrastructures.
From floating apartment buildings to floodable parks, designers and engineers around the world are imagining and constructing resilient solutions to rising sea levels. Flexibility and adaptability are at the core of resilient design. This thinking will allow our buildings and infrastructure to bounce back from a storm or adjust to rising tides.

But our city and region are still vulnerable. The strategies and case studies exhibited here illustrate an array of tangible solutions for how the Richmond region can protect its edge while introducing greater vibrancy, connectivity, and economic opportunities along the water. Layered together, all of these strategies provide more holistic opportunities for protection.
Design Concept

Incremental pixelation

embrace the city to its water front
Function of the new levee system

- Moderate
- Communicate
- Collect
- Remediate

- Flexible
- Digest
- Production

accumulating sediment for new levee

aquacultural
Urban farming
water channel
Dredge Container Typology dewater + phytoremediate + application

- a sealed drainage mat with polymer membrane
- b dredge slurry input @ 80% water content
- c geotextile filter fabric
- d coarse drainage aggregate
- e perforated drainage pipe
- f hydraulic dredge pipe
- g internal water infiltration beams
- h dump truck/crane

1 Little Bluestem *Andropogon scoparius*
2 Pennsylvania Sedge *Carex pensylvanica*
3 Joe Pye Weed *Eupatorium fistulosum*
4 Blue Lobelia *Lobelia siphilitica*
5 Swamp White Oak *Quercus bicolor*
6 Sunflower *Helianthus annuus*
7 Common Cattail *Typha latifolia*

species list: raised planting beds

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
species list: *phytoremediation* + *rhizofiltration*
Dredge, hydraulic input
via barge, from shipping channel - 20% solid, 80% water

Dredge, hydraulic dewater + retain + output
21,950 cu.yd. fill capacity

Dredge, dewatered phytoremediate + output
37,600 cu.yd. fill capacity

Dredge, dewatered apply admixtures + output
25,500 cu.yd. fill capacity
<table>
<thead>
<tr>
<th>Cycle</th>
<th>typ.</th>
<th>cycle length</th>
<th>output</th>
<th>beneficial re-use strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>amount per in cu. yd.</td>
<td># per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>continuous</td>
<td>continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 weeks</td>
<td>15,8831¹</td>
</tr>
<tr>
<td>output (class B)</td>
<td></td>
<td></td>
<td>2 weeks</td>
<td>3,704</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 months</td>
<td>37,600</td>
</tr>
<tr>
<td>output (class A1)</td>
<td></td>
<td></td>
<td>6 months</td>
<td>37,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 weeks</td>
<td>25,500</td>
</tr>
<tr>
<td>output (final output)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ This number is determined by the turnover rates of 6 months and 4 weeks for the phytoremediation container and admixture container, respectively.
² An 8% reduction from the maximum allotted dredge volume leaves room for the attenuation and removal of organics.
In the connection to the city grid. In order to create a new leisure platform for residents and enterpuer in Port Richmond Neighbourhood. A wetland park is created.

Thus, from the formation of land and natural habitat, you can see the changing dynamic of daily wonders.
Revetments
Revetments are used to provide permeable surface protection to exposed soil surfaces. TenCate provides a wide range of geotextile and containment solutions depending on the type of revetment being constructed.

Breakwaters
Breakwaters reduce water forces offshore before they reach land thus preventing erosion. TenCate provides a wide range of geotextile and containment solutions depending on the type of breakwater being constructed.

Dykes and Levees
Dykes and levees are used to prevent flooding, enable construction to occur within calm water and protect from storm activity. TenCate provides a range of containment solutions for the cores of dykes and levees.

Riprap
Riprap is used to provide armor to erosion prone areas. TenCate provides a wide range of geotextile and containment solutions for riprap applications.

Offshore Structures
TenCate provides a range of geotextile and containment solutions to prevent erosion around offshore structures and to provide ballast weight to offshore pipelines.

Geotube - engineering structure
Geotubes are used to contain and transport material. TenCate provides a wide range of geotextile and containment solutions for geotubes.

Use dredge material as infrastructure
Dredge material can be used as infrastructure. TenCate provides a wide range of geotextile and containment solutions for dredge material applications.
phasing of the wetland park

1. geotube and dredge material as base construction

tidal and wave gradually bring in materials
Tidal and wave gradually bring in materials

Marsh land start forming and natural success began
Phasing perspective

1. geotube and dredge material as base construction

phase 3 frontier plants starts to grow on tidal flat land
1. geotube and dredge material as base construction

phase 2 high tide brings in sediments and starts to accumulate

phase 4 habitats starts to establish. Local fauna and flora settle in.
Floodable park

now

high tide

sea level rises
Reflection

relationship between the theme of the graduation studio and graduation project

The graduation studio of landscape architecture has established the concept of Flowscapes. "Flowscapes explores infrastructure as a type of landscape and landscape as a type of infrastructure. The hybridisation of the two concepts seeks to redefine infrastructure beyond its strictly utilitarian definition, while allowing spatial design to gain operative force in territorial transformation processes". It suggested that "when conceiving landscape as infrastructure, landscape is treated as an operative field that defines and sustains the urban development and ecological and economic processes are employed as formative design tools". On the other hand, "considering infrastructure as landscape, the infrastructure is treated as an interdisciplinary landscape design brief with emphasis on the scapes" (Nijhuis and Jauslin, 2015)

The core of Flowscape lays within two dimensions: rethinking the landscape and infrastructure and appreciating the dynamic movements in natural, socio-economical and spatial aspects.

Following the core of Flowscape, the project site is located in Richmond, San Francisco Bay. The formation of bay area was once influenced by natural processes such as wind, erosion, and wave, not to mention the crustal movement that generate bay area millions years ago — resulting in a landscape constantly in flux. Over the past century, the bay shoreline has become amore static, constructed edge. This landscape was formed over time through the deployment of a complex framework for saltation and accretion.

San Francisco bay area, which is a combination not only influenced by different natural forces but also by the human intervention(dike,dredge,landfill, reclamation). The project location of Richmond as a specific case not only presents the consequence of human intervention on landscape performace but also reveal the how social/economical aspect play crucial part in the landscape experience and spatial quality. Booming industrial development in Richmond coastal region brings opportunity to develope Richmond from a native america settlement to a city of over 10,000 of population, it also results in poor connection from the city to the bay as well as heavy pollution. Just like everything else in this world that is always in motion, heavy industrials , the no. 1 tex donater migrates away, leaving the city in ergent with a change. The site of Richmond Kaisher Shipyard is chosen, due to 3 aspect: location; historical/economical context; dynamics of natural processes.

Historically,Kaisher Shipyard was the 3rd biggest navy shipyard in war time, which construct ed on the landfill of the original tidal marshland that protects lands from erosion. Over the past century, landfill and navigation matabinance (dredging and channelization) has cause huge marsh land loss. After the war, Kaisher shipyard retired from its military service and now is occupied mainly by commercial port and oil refinery. Yet with the falling of heavily industry, this industrial hard land is no longer economically, ecologically, or socially relevant.
From Research to Design
Method, context, application

When landscape was conceived as an infrastructure, an operative field for spatial designers, the next crucial question for designers to answer is what is landscape. In the research of Brett Miligen, he articulated landscape as - “a scene, landscape, ecosystem, and socio-political territory- it is a material assembly of moving entities, a dynamic medium which changes in quality and structure through the aggregate movements or actions of the things that constitute it.” He applies the concept of migration - patterned movement across space and time - to landscape by three strands of theory: ecology, assembly and infrastructure.

In order to read the site, understand the process and production of current Richmond assemblage, its necessary to identify patterned movement and critical moments of site. By mapping the patterned movement and identifying the crucial movements, I can understand the main driven forces that changes Richmond landscape is shifting in time.

This historical research also reveals that from Golden Rush to Silicon Valley, Richmond have been bounded tightly with regional to global economic and environmental transition, working and understanding through scales stressed the fact that economical and historical context is not only the background story, but in the age of Anthropocene, it become more that ever important. The research on understanding the natural processes and dynamics in given area provided design tools and principles.

The question is which parts and processes of landscape do we choose to engage, and which course of action can we take.

Following the research of migration landscape, in this design, shipyard infrastructure as well as the sedimentary infrastructure are the specific assemblies chosen and articulated by spatial designer to act upon.
the transformation of a given landscape, fixed the materials and socio-ecological constriction. The city of Richmond will benefit from the new opportunity of reconnection, both in the sense of reconnect to waterfront, reconnect to other cities. It also brings me confusion, who will be left out?

The old industry construction supplied the most of employment for Richmond locals, it also brings in the unstated fact that most of the locals, as industrial working class, not necessarily becapable for creative and intelligent-challenging works such as coding. when it drifted away, and upgraded high-technology industry move in, what would happen to the residents? The speech from Adria Lahoud on Floating Bodies, bring in the idea that we do not presupposed a common regime of intelligibility but instead starts with a proposition that embodies a kind of original asymmetry. By studying the demography of Richmond, such as income and educational attainment, ethical and criminal demography, in the design, the urban farming and biofuel are introduced taking account of the essence characters of local residents. With the new opening of the city shoreline, downtown historical center and herritage is also being embraced, tourism became a new opportunity for jobs.

The project in a wider social context

The case of Richmond in San Fransico Bay is facing with the common threat, sea level rises, like all other cities in Bay area, or to say all costal cities in global range. With most of population located in costal cities around the world, how a city can be resilient and adapt to future climate change becomes an urgent problems. By the rediscovery and application the forgotten sedimentary infrasturature, woking with natural dynamic and processes, this project present an alternative possibility or coastal defence and engineering.

The other objective of this projects is to explore the idea of Anthropocene, a time that changes in both natural and social aspects are accelerating in an unprecedent speed and how designer can act on this specific context. Richmond as an old industrial city, examining the idea of industrial migration. Just like the city of Detroit, when Ford move to other low labor cost country, the supporting industry migrates away, the city ends up shrinking and desperately needs a change. By acknowledging migration phenomenon, this design and planning strategies for shrinking cities work opportunistic ally and protectively with emergent conditions, rather than trying to counter or reverse the trajectories of change. In the specific case of redevelopmenting of Kaisher Shipyard is a begining point to upgrade the city’s industrial structure and an attraction for tourism. So in the functional transforming the Kaisher Shipyard, these social problems, such us high unemployment rate and long commute time for local residents, will also be considered. After the intervention hybrid landscape on an integrated surface will be developed, and different conditions which can provide jobs and also the accesses to the recreational function will be developed. Also, anthropocenic activities has become the driven force for the migration of sediment and marsh land, which is just a pacel of the whole picture. Instead of bring the costal back to its prehistoric stage, a ballence need to be find coexisting. By taking use of the force of natural processes (tide, wave, erosion, sedimentation, wind setup, etc) and take the product of the natural process as material for the urban development.

As a result the landscape transformation design plays a significant role to also develop the spatial quality
which people can have a totally different experience of the whole new platform of life.

Lesson learned

One of the important lesson I have learn in the process of developing my graduation project is to always stand in a position of a landscape architect. The fascination of for dredging process bring me in the theory of migration phenomenon. The richness in the natural and anthropocene processes is obsessingly interesting. Ecology, as I would now understand as a method to describe interrelationship within a landscape assemblage, once become the mainly focus point of my research. I study thoroughly how engineering and global trading changes the underwater world and coastal/river cities, as well as fauna and flora living conditions. But it also limited my vision as a spatial designer. Understanding infrastructure is merely enough to conduct the design, more importantly is to build up connection on its impact on spatial.

And also, interdiscipline study brings me different viewpoints. For example, when ecologist will argue by remediing the nature enviroment, we should retrace from it and let the natural succession take care of itself, which looks like an utopian idea. Where urban planner brings the idea of upgrading the infrastructure and attract investors, the natural environment and local labor workers then becomes the left-overs. The project tried to stand on a position by understanding the phenomenon of landscape migration, embracing the inevitable changes and and provided win-win solution by using multidisciplinary criteria and actors.