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Preface

Three and a half years ago I started with the Master programme Media and Knowledge Engi-
neering. I had decided to take it a bit more slowly and spent some time on extra courses and
other projects. I was looking forward to my graduation project, which I would choose such
that it would �t perfectly with my interests.

Of course it was not as easy as I thought to �nd a suitable project. I preferred to graduate
at a company to gain some practical experience but most companies did not have what I was
looking for. In the end, my search brought me back to Delft University of Technology where a
very interesting assignment was waiting for me.

The assignment concerned investigating the use of digital image processing on imagery of hid-
den paintings. In the summer of 2008 an international research team including members from
the 3ME faculty of Delft University of Technology 1 had visualized a lost painting by Van Gogh
and the question was whether the imagery could be enhanced with image processing techniques.

The topic of my graduation project thus became virtual reconstruction of hidden paintings,
using X-Ray based imagery. And now, one year later, my work is done and the report is writ-
ten. It describes a promising methodology and discusses the main di�culties.

Since it concerns a graduation project, this report is mostly meant for the graduation com-
mission and supervisor. However, anyone interested in new developments in art restoration is
invited to read this report as well.

The reconstruction process has been divided into two stages. Readers interested in �nding
the hidden painting's composition in the X-Ray based images are directed to chapter 4. Chap-
ter 5 is of interest when looking for information on how the virtual reconstruction is provided
with colour.

Given the multidisciplinary character of the study, some terms from the �eld of Computer
Science may be new to art experts while the artistic aspects may be unfamiliar to computer
scientists. In most cases the terms are explained as they appear but a glossary is added as
well such that they can be looked up more easily. The glossary also holds explanations of most
abbreviations.

Finally, I would like to thank my supervisor Dr.ir. Jan van der Lubbe for his support and
guidance. I had a great time working with him. I also would like to thank Dr. Joris Dik for
his explanations about the chemical and artistic processes that are involved, and Dr. Emile
Hendriks for his ideas regarding the image processing issues.

Last but not least, I would like to thank my boyfriend and my parents. They were not only
a great mental support but were also willing to give their opinion on the content of my work.

Delft, December 16th 2009

Marije Nieuwenhuizen

1Dik et al. [10]
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Summary

Hidden paintings are very common in the �eld of art: art historians estimate that one of the
�ve paintings contains a buried composition. Retrieving those hidden layers by scraping o� the
top layer is generally not an option. For this reason,virtual reconstruction should be studied.
Without such methods, hidden paintings might never become visible. This would be a loss
since they are often great art historical value.

The main objective of this thesis is to investigate how a virtual colour reconstruction of a
hidden painting can be obtained from imagery produced by an X-Ray based method called
X-Ray Fluorescence Spectroscopy (XRF). With this technique the chemical elements of the
painting can be visualized and a recent study has shown that these visualizations can give a
clear view of the hidden painting [10].

Until now, virtual reconstruction of hidden paintings based on XRF images has not been
studied yet. The main objective of this study is therefore to obtain a general approach that
can be used as starting point for further research.

The XRF technique is frequently applied on paintings to analysespeci�c points. It o�ers
insight into the chemical composition of the paint at those locations. This knowledge can help
identify the pigments that the artist has used which is valuable information for art historians
and conservation experts.

XRF can also be used to analyseentire regions of the painting. The produced XRF images
(XRFs) are then visualizations of chemical elements: each XRF shows in what concentration
a certain chemical element is present at each point of the analysed region. When the hidden
painting contains chemical elements that are not or di�erently used in the surface painting, the
XRF images of these elements may show the composition of the buried layer.

In this study, the virtual reconstruction is divided into two stages . First, XRFs of only the
hidden painting are obtained. Such a step is necessary since the original XRFs are mixtures of
the chemical elements present in all layers of the painting. In the second stage colour is added:
the original XRFs are in greyscale which means that some form of colourization is required.

The �rst step , obtaining the XRFs of the hidden painting, is performed using object matching
and inpainting. Based on greyscale values objects are discerned in the XRFs and colour is used
to �nd objects in the image of the surface painting. Then, all XRF and surface layer objects
are compared: the similarities between the objects found in an XRF and the objects of the
surface painting are computed.

When the similarity between an XRF-object and a surface painting object is above a certain
threshold, the pixels of the XRF-object are said to correspond to the surface layer rather than
the hidden layer. This means that these pixels should not be used in the reconstruction process.

Leaving out the surface painting pixels causes the XRF images to have 'holes': areas where
no information is available. To �ll in the missing regions, inpainting is applied. This algorithm
(proposed by Criminisi et al. [8]) reconstructs the holes by copying pixels from the remaining
image.

The second step, providing the virtual reconstruction with colour information, is performed
using an example image. The chemical data provided by the XRF images does relate to the
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colours of the pixels but a direct translation is practically impossible. Therefore, some other
source is needed for the colour information and an example image is often available. An art
expert should provide an image that is likely to contain the same colours as the hidden painting.

The colours of the example painting need to be expressed in terms of the same chemical
elements as represented by the XRFs. This can be done using XRF point measurements such
that the chemical composition of a selected group of pixels is obtained. The chemical values of
the pixels of the example can also be estimated: this method is used in this study.

The example data is used to 'learn' which chemical composition corresponds to which colour.
More formally, a classi�er is trained such that it can classify the pixels of the actual XRF data
into certain classes, based on their chemical compositions.

As a classi�er, the nearest-neighbour approach is used. The chemical composition of each
pixel is compared to the known chemical compositions of the example. The classi�er assigns
the colour that appears most frequent among the example compositions that match best with
the new composition.

Quantitative and qualitative evaluation (using visual inspection) indicates that the presented
methods, when combined together, are able to obtain a virtual colour reconstruction of a hidden
painting. The procedure has been applied on data of the paintingPatch of Grass by Vincent
Van Gogh and the colours and composition of the produced reconstruction correspond with
what is expected.

Future research may address several issues. Each of the steps of the described method could
be examined in more detail. For example, future research may look into partial matching
methods for the detection of surface painting regions in the XRF or experiment with other
inpainting algorithms to �ll in the missing areas.

Important issues of the colourization process to address in future research are the acquisi-
tion of training data and classi�er design. Research should investigate the use of XRF point
measurements in more detail for example and experiment with other classi�ers.

In this study, an example image is used to provide the virtual reconstruction with colour since
the colours are highly di�cult to determine (if at all) based on XRFs alone. Future research
may address this issue more thoroughly however, by cooperating with more experts (especially
from the �eld of art and/or chemistry).
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1 Introduction: research overview

This chapter presents an overview of the thesis research. First, the problem addressed in
this study is described in section 1.1 along with the research objective. Section 1.2 describes
the approach used to achieve the objective and section 1.3 discusses the scope. Finally, the
structure of the thesis report is given in section 1.4.

1.1 Research objective

Experts have estimated that approximately twenty percent of all paintings, including Old Mas-
ter pieces, have other paintings buried beneath their surfaces. These hidden paintings could
be revealed by removing the upper layer but in general this is not an option. It is therefore
necessary to investigatevirtual reconstruction of hidden paintings.

A technique recently applied to paintings, X-Ray Fluorescence Spectroscopy, can produce
images that give a good impression of the hidden painting [10](see �gure 1.1). Although these
images were made at a special facility, the application of portable XRF is now amongst the
standard techniques for characterization of elements in painted works of art [35]. For these
reasons, the study of virtual reconstruction should be focused onusing XRF images.

Figure 1.1: Image A shows the paintingPatch of Grass by Vincent van Gogh. The red frame indicates
the region that is scanned with XRF: the amounts of mercury and antimony are given by the XRF images
B and C respectively.

Until now no method exists that obtains a colour reconstruction of a hidden painting based on
XRF images. Dik et al. [10] has provided a starting point by showing a colour visualization1

of chemical elements. They use it as an illustration however and do not investigate the recon-
struction process itself.

The research of Dik et al. is addressed in more detail in chapter 3, as well as three other
studies that look into retrieving hidden layers. Although they are interesting, neither of the
proposed methods can be used to obtain a colour reconstruction of a hidden painting.

Without a method to obtain a virtual reconstruction, a lot of valuable paintings remain buried.
This would be a loss since they are often of equal, if not greater art historical value than the sur-
face paintings. They can also provide insight into the artist's working methods or artistic ideas.

1A visualization is merely making data visible; the term reconstruction is used to indicate that the data is
processed and interpreted to obtain an image.
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Chapter 1: Introduction: research overview

The research objective of this thesis is therefore:

Develop a method that uses XRF images to produce a virtual colour reconstruction of a
hidden painting in such a way that the reconstruction contains colours that, according to
art experts, are consistent with the real hidden painting.

Throughout this study, the XRF images made by Dik et al. [10] are used to illustrate the
described methods. Although there are no other XRF images available (yet), the aim of this
study is to develop ageneric method for virtual reconstruction of hidden paintings.

The lack of examples makes it di�cult to ensure good results on other paintings but all
approaches are chosen such that they should work on other paintings as well. For example, the
proposed methods are not based on characteristics that are typical for the Van Gogh painting.

1.2 Research methodology

To achieve the main research goal, two processes are studied. First of all, the original XRF
images of a painting with a hidden layer are mixtures of all layers contained in the painting. If
such XRFs were used directly, the resulting image would be a mixture of paintings instead of
an image of the hidden painting. This means that some separating procedure is required.

Secondly, the XRF images are still in greyscale and to obtain a colour reconstruction of a
hidden painting, colour has to be added in some way. This indicates that a colourization step
is needed as well.

Therefore, the approach used in this study to achieve the research objective is to divide the
main goal into two subgoals :

1. Develop a method that can obtain XRF images of only the hidden layer of a painting.

2. Develop a method that can construct a colour image of a painting that is represented by
a number of XRF images.

The methodology applied to achieve the sub goals is addressed in section 4.1 and 5.1 respec-
tively. A brief summary is given below as well as a graphical overview (�gure 1.2).

The methodology used for the �rst subgoal consists of three main steps. First, objects from
both the XRFs and the surface painting are retrieved. In the second step these are compared to
�nd XRF-objects that closely resemble an object of the surface painting. When the similarity
is above a certain threshold, the XRF-object is said to belong to the surface painting rather
than the hidden layer. Subsequently, the pixels of the XRF-object in question are removed.
The holes that are left are reconstructed in step three using an inpainting algorithm.

For the second subgoal a two-step methodology is studied. First, an example image is used
to train a classi�er to learn which chemical compositions should be linked to which colours.
This is done by expressing the colours in terms of the chemical elements represented by the
XRF images. In the second step the classi�er is applied to XRF data of a hidden painting: it
assigns each pixel to a certain class based on the pixel's chemical composition. Since each class
corresponds to a colour of the example image, the pixels are e�ectively colourized.
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Chapter 1: Introduction: research overview

Figure 1.2: Illustration of the methodology studied to achieve the research objective. The two main blocks
correspond with the two subgoals set in this study; the smaller blocks show the intermediate steps of the
procedures.

1.3 Scope of research

The paintings that are quali�ed as 'hidden painting' are paintings that are fully covered by
another painting such that they aren't visible to the naked eye any more. The painting that
covers the hidden one and that is visible to the naked eye, is called'surface painting' .

Until now, virtual reconstruction of hidden paintings based on XRF images has not been stud-
ied and it is therefore important to obtain a general approach that can be used asstarting
point for further research. This study therefore focuses on investigating the entire process
rather than �nding the optimal intermediate steps. Each step is currently implemented such
that it illustrates its function; they can be improved in future research.

This study has a multidisciplinary character : �elds of interests are mostly art, chemistry and
computer science. Although aspects of all three areas play a role in the research, the point of
view is mainly that of computer science.

This is particularly important for the colourization process, where some artistic and chemi-
cal knowledge is required. This information should be submitted by an expert: this study does
not elaborate on the artistic and/or chemical interpretations.

The data on which the reconstruction method is applied, consists of XRF images and an image
of the surface painting. The XRF images often correspond to only a part of the surface painting:
in most cases a certain region of the painting is scanned and the XRF maps thus show only
the elements of this region of the painting.

In this study it is assumed that the image of the surface painting is already cut out to
correspond with the region shown by the XRFs. Moreover, it is assumed that the images are
registered, either manually or automatically. This means that a pixel at location P in the XRF
image corresponds with the pixel at locationP in the image of the surface painting.
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Chapter 1: Introduction: research overview

1.4 Report structure

This thesis report has the following structure :

Chapter 2 gives background information on the analysis technique that is of special interest
in this study: X-Ray Fluorescence Spectroscopy. The technique itself as well as applications
found in literature are discussed.

Chapter 3 presents an overview of the current state of research on the topic of this study,
virtual reconstruction of hidden paintings using XRF images.

Chapter 4 addresses the �rst stage of the reconstruction method: an object matching and
inpainting procedure that can obtain XRF images of only a hidden painting.

Chapter 5 discusses the second stage of the reconstruction method: it shows how a colour
image is constructed from an XRF image and an example, using classi�cation.

Chapter 6 presents the conclusions of the research as well as an overall discussion with
suggestions for future research.

The Glossary explains the technical terms that may be unfamiliar to the reader. Many
abbreviations that are used are described as well.

Appendix A shows how the literature presented in section 2.3 and chapter 3 is found using
keyword searches in a scienti�c database.

Appendix B is added to provide background information on painting and pigments. A
number of important pigments are described including their chemical composition.
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2 X-Ray Fluorescence Spectroscopy

This chapter provides background information on X-Ray Fluorescence Spectroscopy (XRF):
the technique that produces the images that will be used for the reconstruction of a hidden
painting. It is a technique that is nowadays frequently used for art analysis.

Given the chemical character of this chapter, the information seems to be beyond the scope
of this research. However, it is important to understand the nature of the images used for the
virtual reconstruction. This chapter therefore covers the most important aspects and directs
readers for further details to sources as [1] and [24].

Section 2.1 starts by explaining the chemical background of XRF. The images that are con-
structed with XRF are addressed in section 2.2. Finally, section 2.3 presents applications of
XRF found in literature to give an impression of the use of XRF.

2.1 Chemical background

Development of electronics in recent decades has brought new analytical instruments, one of
which is X-Ray Fluorescence Spectroscopy (XRF) [29]. This technique is used to examine the
chemical composition of all kinds of samples.

A recent study [10] (see chapter 3) has shown that XRF is able to visualize a hidden layer more
clearly than X-Radiography (XR) and Infrared Re
ectography (IR) . These are the two most
often applied analysis techniques on paintings [20].

X-Radiography is also commonly used in hospitals: an X-Ray beam is shot through the
sample and wherever the X-Rays penetrate through all layers, the photographic plate behind
the sample will be blackened. Infrared Re
ectography records the infrared light that an object
emits using a camera adapted to receive infrared radiation.

Although both techniques have their uses, their images do not always provide a clear view on
the paint layer hidden beneath the surface painting. For example, if a painting was covered with
a basis of Lead White before the surface painting was painted, X-Radiography cannot visualize
the buried layer very clearly because the ground layer will absorb all the X-Rays. Infrared
Re
ectography has a similar shortcoming: the infrared radiation from the hidden painting is
too weak to reach through the upper paint layers.

Figure 2.1 presents a very simpli�ed graphical overview of the XRF technique. The starting
point is a small X-Ray beam that is shot through a speci�c point of the sample. If the energy
is high enough, some electrons of the atoms that are hit may be expelled from their orbital.
This causes the electronic structure of the atom to become unstable, and electrons in higher
orbitals 'fall' into the lower orbital to �ll in the hole left behind.

The size and strength of the X-Ray beams depends on the source that is used. Sealed X-ray
tubes and radioactive sources are most commonly used but X-rays can also be produced in
synchrotron radiation facilities. The latter has the advantage that the beam is very precise
(0.5x0.5 mm2) and powerful (38.5 keV).

There are a limited number of ways in which the electrons of an atom can fall from their or-
bital. The main transitions are K-alpha and beta and L-alpha and beta (see �gure 2.2). Each
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Chapter 2: X-Ray Fluorescence Spectroscopy

Figure 2.1: Graphical overview of X-Ray Fluorescence Spectroscopy. The atoms that are hit by the X-
Ray beam may react by emitting energy. These energies can be used to deduce which chemical elements
are present at the targeted location.

of the electron transitions yields a 
uorescent photon of which the voltage is unique for each
element. For example, the K-alpha transition of lead yields a di�erent voltage of energy than
the K-alpha transition of mercury. In addition, the K-alpha transition of lead also yields a
di�erent voltage than the L-alpha transition of lead.

This means that when the energy emitted by a targeted point is recorded, the detected
voltages can reveal which chemical elements are present at that location.

Figure 2.2: Graphical overview of the electron transitions between the shells of an atom.

When the emitted energy of a targeted point is recorded, anenergy spectrumis acquired (an
example is shown in �gure 2.3). The peaks in the spectrum correspond to the energy that is
emitted by a speci�c electron transition of a speci�c element. For example, in �gure 2.3 the two
leftmost peaks correspond to energy emitted by an L-alpha transition and L-beta transition in
the element lead.

The spectra can be processed using the software package AXIL [44]. This software can
subtract background signals and determine net peak areas for all identi�ed elements. This is
done by �tting a mathematical model to the recorded energy spectrum.

The software package can also calculate meaningful chemical concentrations from the peak
intensities [16]. This computation is based on the link between 
uorescence intensity of a chem-
ical element and its concentration. E�ectively, this means that based on the recorded energy
emitted by a K-alpha transition of lead for example, the concentration of lead at the targeted
location is computed.
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Chapter 2: X-Ray Fluorescence Spectroscopy

Figure 2.3: Example of a possible energy spectrum at the targeted location. Since each transition of each
element has its own characteristic voltage, the elements can be identi�ed by examining the peaks.

In theory, X-Ray Fluorescence Spectroscopy can be used to determine the concentration of
most elements of the periodic system [29]. However, many element with a low atomic number
(i.e. low Z-value) are di�cult to measure and require advanced instrumentation, such that
practical work is often limited to elements with an atomic numbers above 13. In addition,
L-lines rather than K-lines are measured at higher atomic numbers (above 50) due to higher
costs of equipment and di�cult radiation protection measures.

Figure 2.4 shows the X-Ray 
uorescence of the elements of the periodic system, given that
only elements with Z > 13 are measured and that for elements withZ > 50 only the L-
transition is recorded. It appears that in general the energy increases with the atomic number.
However, due to the fact that for high-Z elements only the L-transition is measured, the emitted
energy may be lower than for certain low-Z elements.

Using spectrum evaluation software, the exact chemical composition of a targeted point can be
determined. The software can compute the concentration of all elements that correspond to
certain peaks in the spectrum. As a result, each targeted point (pixel of the painting) can be
represented as a vector of values, corresponding to the concentrations of the recorded chemical
elements.

It should be noted that the recorded chemical elements can be present at any layer of the
painting, i.e. at any 'depth'. This means that the chemical vectors are not very useful as a
source of information about the hidden painting: sometimes the vector contains chemical values
of the surface painting, sometimes of the hidden paintings and in most cases of both paintings.

2.2 Producing an elemental distribution map

By directing the beam along a whole area of a painting, the concentration of a particular el-
ement along this area can be obtained. At each point of the area the concentration of the
element in question is computed from the net peak intensity of a recorded electron transition.
For example, at each point of an area, the concentration of lead is computed from the recorded
energy corresponding to an L-alpha transition.

The concentrations can be visualized in an image by relating the concentration with a colour:
for example, a white colour corresponds to a high intensity whereas black corresponds to low
intensities. Such an elemental distribution map is also calledXRF map or XRF image.
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Chapter 2: X-Ray Fluorescence Spectroscopy

Figure 2.4: Overview of the X-ray 
uorescence energy of the elements of the periodic system. The red
coloured dots show the electron transitions to the K-line and the blue dots the transitions to the L-line.
Some dots are greyed out since the aren't commonly recorded: the energy of low-Z elements is too low
and for the high-Z elements, only the L-line transitions are measured.

Figure 2.5 presents four XRF maps (XRFs) acquired for the painting Patch of Grass by Van
Gogh; the maps show the elemental distribution along the region indicated by the square in
image A. The XRF maps of mercury, antimony, lead and zinc are shown by image B to E. The
chemical concentrations are computed from L-transitions in case of mercury and lead. The
concentrations of antimony and zinc are computed from the intensity of their K-transitions.

Several things can be deduced from the XRF maps. For example, the XRF image of mer-
cury indicates that the lips of the woman contain relatively high concentrations of mercury. In
addition, lead and zinc are either not used in the hidden painting or their energy doesn't reach
through the surface layer: the XRFs of lead and zinc don't show much of the woman's head.

As said in section 2.1, XRF analysis does not distinguish between layers: the energy recorded
at a certain point can come from any paint layer. This means that the values shown by an
XRF map also can correspond to any paint layer. For example, the high values of mercury
visible at the top left corner of the mercury XRF probably correspond to the surface painting
while the high values in the lower middle quite clearly correspond to the woman's lips.

Some XRF maps are more likely to show the buried layer than others however. This is
caused by their di�erence in energy emission strength. Each element emits energy of a speci�c
voltage and when the voltage is very low, it is not likely that it can reach through a paint layer.
Hence, it is not likely that the energy comes from an element in a lower layer since it wouldn't
be able to penetrate through the upper layers. The e�ect is that the XRF of an element that
emits low-voltage energy probably doesn't show a buried layer. High-voltage energy on the
other hand can reach through all layers which means that the XRF map of such elements can
show the hidden painting.
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Chapter 2: X-Ray Fluorescence Spectroscopy

Figure 2.5: Image A shows the paintingPatch of Grass by Van Gogh (rotated 90� counter-clockwise).
Images B to E are XRF maps, showing the distribution of mercury, antimony, lead and zinc respectively.
The images are made by Dik et al. [10], see chapter 3.

2.3 XRF applications in literature

As said in section 2.1, X-Ray Fluorescence Spectroscopy is now frequently used to analyse
paintings. This section presents literature in which XRF is used to examine surface paintings.
The chemical information helps to identify the pigments in the paint since the compounds are
part of those pigments (see appendix B). The pigment information is often valuable for both
art and conservation experts [29].

Two types of applications are addressed: using point measurements (section 2.3.1) and using
XRF maps (section 2.3.2).

2.3.1 Analyses using XRF point measurements

The pigments of a painting are often analysed by usingpoint measurements: X-Ray Fluores-
cence Spectroscopy is only performed on pre-selected points of the object. By examining the
energy spectrum, the chemical composition of the paint at those locations can be estimated. If
the points are selected with care (e.g. such that they represent distinct colours of the object),
the conclusions can be very informative for the conservation expert.

Hochleitner et al. [17] examined not the paint of a painting but single pigment samples.
They investigated approximately 500 di�erent inorganic pigments, ranging from di�erent types
of white to yellow, orange, red, brown, blue, green and black. Their aim was to point out
di�erences in the elemental composition of di�erent pigments.

As an example, they showed the analyses of a number of blue pigments: Ultramarine, Bre-
mer Blue and Cobalt Blue. For each pigment, they analysed samples obtained from di�erent
manufacturers and it appeared that it is not always certain that pigments with the same name
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Chapter 2: X-Ray Fluorescence Spectroscopy

also contain the same compounds. This is shown by the spectra in �gure 2.6 where di�erent
samples of Ultramarine seem to contain di�erent elements (e.g. pigment 94 doesn't contain
calcium while the others do).

Figure 2.6: XRF spectra of di�erent samples of the pigment Ultramarine (Hochleitner et al. [17]).

Ferrero et al. [11] present a selection of case studies that illustrate the application of XRF
to the pigment analysis of art objects of the Spanish cultural heritage. They used a portable
device to analyse the elemental composition of various objects.

One case study shows the analysis of a painting by Joaqu��n Sorolla that obtained objective
information about the materials he used. One of the conclusions was that Sorolla used Lead
White in mixtures with other pigments in order to achieve di�erent colours because lead was
detected in all of the analysed pigments.

Zieske [53] studied nine watercolours by C�ezanne to investigate C�ezanne's colour palette. She
conducted elemental analysis of the major pigments by using XRF on a number of pre-selected
locations. She was especially interested in the green colour because is was applied frequently
but seemed deteriorated.

The presence of copper and arsenic detected by XRF indicated that that many strokes of
dark green that occurred were indeed patches of previously bright emerald green watercolour
that had deteriorated and darkened.

Sz•okefalvi-Nagy et al. [40] show how XRF can be used to determine whether a painting is a
forgery or an authentic one. In some cases this is possible because the detection of a particular
element can be evidence of a forgery. For example, when a certain pigment is not used at the
time the painting is said to be painted.

Sz•okefalvi-Nagy et al. studied the example of identifying the presence of titanium at white
coloured spots. Taking into account that Titanium White is available since about 1920, its
presence provides an indisputable indication for either forging or later repainting. Indeed, the
investigation of two paintings of M�esz•oly proved that they were forgeries, as was expected based
on a rather strong consensus among the restorers that they were fakes.

Hall and Tinklenberg [14] used XRF to determine the relative concentrations of titanium
(Ti), zinc (Zn), and lead (Pb) in lead-based house paints of di�erent manufacturers. The ob-
jective was to demonstrate that these elements can be used to identify the manufacturer. It can
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Chapter 2: X-Ray Fluorescence Spectroscopy

also provide a better understanding of past manufacturing practices and assist conservation.
They analysed multiple samples of each manufacturer. Figure 2.7 shows a three-dimensional

plot of the relative concentrations of Ti, Zn, and Pb in the white house paints (for presentation
clarity, only 30 paints are plotted). The data shows clear separations into clusters of the dif-
ferent manufacturers brands of paints. This means that when an unknown white paint sample
is analysed, the resulting XRF spectrum can be used to determine the manufacturer.

Figure 2.7: Three-dimensional plot of relative concentrations of Ti, Zn, and Pb in multiple samples
of white lead-based house paints of di�erent manufacturers, each having a di�erent symbol (Hall and
Tinklenberg [14]).

Rosi et al. [35] examined two paintings by Paul C�ezanne with XRF and infrared spec-
troscopy1. Their aim was to characterize the elements used by C�ezanne and try to put in
evidence possible di�erences in the artist palette at the beginning and at the end of his career.

They selected a number of areas on the paintings for which they obtained the XRF spectra.
The data for the green areas were the most complex to interpret because C�ezanne employed
both pure pigments and mixtures, obtaining a large variety of green shades. In order to better
characterize the di�erent pigments, Principal Component Analysis (PCA) was applied on the
XRF spectra recorded only in the green areas.

Figure 2.8 shows the score on the PCA components of the green samples of the two paint-
ings. The presence of three clusters in �gure 2.8(b) provides evidence that the green shades
showed di�erent elemental compositions. In addition, since the clusters are composed of spectra
collected from both paintings, C�ezanne seems to have used similar pigments for both paintings.

2.3.2 Analyses using XRF maps

Instead of analysing speci�c points, XRF maps of a painting can be examined. These images,
also called elemental distribution maps, show the concentration of a single chemical element
for an entire region of the studied object (see section 2.2).

Chapter 3 addresses how XRF maps can be used to investigate hidden paintings. Here,
studies are presented that use XRF images to examine surface paintings.

1They actually used Fourier transform infrared (FTIR) spectroscopy, a measurement technique that collects
the same infrared spectra but in a more sophisticated (and cheaper) way.
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Figure 2.8: Score plots for the PCA components of the 17 XRF spectra recorded for the green colours of
La Route Tournante (CZ1902) and L'�etang des Soeurs (CZ1875) by Paul C�ezanne (Rosi et al. [35])
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Scott [38] presented a number of applications for XRF maps. One example is the investiga-
tion of a small oil painting on a copper support. The elemental maps illustrate the presence of
di�erent pigment areas (see �gure 2.9). In addition, it seemed that the palette the girl in the
painting is holding originally had a slightly di�erent position. The shift is indicated with the
arrows in �gure 2.9 and it is good evidence for an original pentimenti2.

Figure 2.9: The painting An Allegory of Painting (on copper support) by Frans van Mieris, showing the
results of elemental scanning for the indicated elements (Scott [38])

A more elaborate study is given byMantler and Schreiner [29] . They present examples of
analyses by XRF of pigments in paint layers and illuminated manuscripts, iridescent glasses
and medieval coins.

In one case study they examine a paint layer cross-section by means of XRF to illustrate the
e�ect of shielding 
uorescent radiation of one paint layer by other paint layers. For example,
the paint comprised Vermilion mixed with Lead White and Red Lead mixed with Lead White
but it was impossible to distinguish between the lead in di�erent layers. The total intensities
were also decreased with increasing thickness of the top layer.

Cotte et al. [7] present the analysis of materials in two paintings by Mathias Gr•unewald, an
important painter of the German Renaissance. Preliminary analyses had revealed the presence
of antimony, lead, and possibly sulfur. Antimony is usually associated with Naples Yellow
(lead antimony) but this didn't correspond with the colour of the pigment and the date of the
painting. The main aim of the new study was therefore to determine whether the antimony
are associated with lead and/or sulfur.

The analyses were conducted on three samples taken in regions where antimony had been
identi�ed. The XRF maps of the elements in the sample were examined to detect correlation:
this would indicate that certain elements were chemically associated. In this case it appeared
that antimony and lead were not correlated, whereas antimony and sulfur seemed to be linked
(see �gure 2.10). This led to the conclusion that the antimony was present as the pigment
Stibnite (antimony sul�de) and not as Naples Yellow.

2A pentimento (plural pentimenti) is an alteration in a painting, showing that the artist has changed his
mind as to the composition during the process of painting. Marks revealing a totally di�erent subject are not
usually described as pentimenti.
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Figure 2.10: The XRF maps of antimony (Sb), lead (Pb) and sulfur (S) for two samples. There is no
correlation visible between Sb and Pb, but Sb and S seem to be linked.

As in the study of Ziekse, Cotte et al. [6] also use XRF in the context of degradation. The
degradation is an important process to examine because a degraded pigment may have changed
in chemical composition which requires a di�erent treatment.

Cotte et al. have examined the blackening of Pompeian Cinnabar paintings (the pigment
Cinnabar is also known as Vermilion). They collected four samples from a Cinnabar wall
painting that corresponded to di�erent degradation states and retrieved elemental distribution
maps for each sample. By studying the XRF images for correlation between certain chemical
elements and darkened colours, they were able to get insight into the degradation process of
Cinnabar.
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3 State of research on virtual reconstruction
of hidden paintings

This section presents a review of existing literature on the topic of virtual reconstruction of
hidden paintings, using XRF images. The studies are found with the search methodology de-
scribed in appendix A.

Dik et al. [10] studied a painting of Van Gogh that contains a hidden layer with X-Ray

uorescence spectroscopy. Earlier examinations (including X-Radiography and Infrared Re-

ectography) of the painting Patch of Grass had already shown that there was possibly a
woman's head hidden beneath the surface though no facial characteristics could be recognised,
see �gure 3.1.

Figure 3.1: Image A shows the paintingPatch of Grassby Vincent van Gogh (Paris, April-June 1887).
The red frame indicates the region shown in images B and C - rotated 90o counter-clockwise. These
images are produced by X-Radiography and Infrared Re
ectography respectively.

They obtained XRF maps (XRFs) using synchrotron based radiation and a high-resolution
detector. From these XRFs it appeared that mercury (Hg) and antimony (Sb) were the most
noticeable elements of the hidden layer. This can be seen in �gure 1.1 of section 1.1.

Based on the XRF maps and knowledge on painting pigments, a colour visualization of the
woman's head was constructed with Photoshop. At locations where Hg was measured, the
pixels were given a red colour since they associated mercury with the red pigment Vermilion.
Pixels located at areas with high intensities for Sb, were given a yellowish white colour because
they found that antimony was present as the pigment Naples Yellow. The result of this 'recon-
struction' is given in �gure 3.2.

The main objective of the research of Dik et al. was to show that visualizing the concentration
of certain chemical elements for a certain region of the painting can image the hidden painting
more clearly than X-Radiography or Infrared Re
ectography. By assigning colours to chemical
elements with Photoshop they showed how their research could be used obtain a colour recon-
struction of the woman's head but they did not investigate reconstruction techniques.

Janssens et al. [23] also present an overview of the use of synchrotron XRF. A number of case
studies are discussed, one of which is the visualization of invisible handwriting on a historic
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Figure 3.2: Colour visualization of the painting hidden beneathPatch of Grass made by Dik et al. [10]
using Photoshop. It is constructed by assigning a red colour to high mercury intensities and a yellowish
white colour to high antimony concentrations.

document. The document, a sales contract for an estate, showed signs of alterations (the orig-
inal name of the owner had been removed by scraping) but the original text was unreadable.

The XRFs helped to obtain the original text: in the XRF map of calcium the (falsi�ed) vis-
ible text could be seen while in the XRF map of zinc of the same area, a di�erent text became
visible. Apparently, the forger used di�erent ink for the alteration, resulting in another chem-
ical composition. Since the text was readable, Janssens et al. did not attempt to reconstruct
the original text any further (e.g. retrieving the original colours).

Another approach used to examine hidden paintings isconfocal XRF, a method that obtains
elemental distribution maps including a 'depth dimension'. This means that for each pixel it
also is known at which depth, i.e. at which layer of paint, they are detected.

The method is investigated by Woll et al. [49] [50], Mantouvalou et al. [30] and
Janssens et al. [22] . The main aspects are described below.

A confocal x-ray 
uorescence microscope (CXRF) uses two optics placed perpendicularly to
each other, such that depth information (i.e. layer information) can be acquired by gathering

uorescence only from the region of the sample where the two optics intersect.

The depth information can be very valuable for the examination of hidden paintings. XRF
images may give an impression of a buried layer but the image remains a mixture of all layers.
The CXRF technique can resolve this issue since it gives the 'depth' of a chemical element:
the depth reveals at which paint layer the element is present. Now it can be determined which
chemical elements belong to the surface painting and which to the hidden one.

Although the CXRF technique is very promising, it is not yet generally applicable. For exam-
ple, given the time it takes to scan a sample1, only a small number of samples can be measured.
This means that for most of an XRF image the depth information is not available. In addition,
due to the high costs and practical issues, not many paintings can be examined with the CXRF
microscope whereas the application of portable XRF2 is now amongst the standard techniques
for characterization of elements in painted works of art [35].

1To examine the painting The Armorers Shop, two separate experimental runs of approximately three days
each were performed [48]

2Currently, the portable XRF device produces lower quality images than the synchrotron facility but given
the active research in this area, the results are expected to improve in the future.
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There are two researches that examined XRF images to retrieve the hidden layer of the
Archimedes palimpsest(a medieval parchment manuscript of Archimedes that has been over-
written with a religious text, see �gure 3.3).

Figure 3.3: A leaf (nr. 28 verso) of the Archimedes palimpsest. The arrows on the right indi-
cate where the Archimedes text hidden underneath the top layer can be seen. (image retrieved from
www.archimedespalimpsest.org)

Knox [26] examined images taken of the palimpsest at di�erent spectral bands (visible light
and infrared) and XRF images. They characterized the di�erent classes present at the parch-
ment (Archimedes text, overwritten text and mould) with di�erent spectral signatures. These
signatures are representative vectors of values for the di�erent bands. By visualizing how much
each pixel resembles one of the signatures, it becomes clear to which class the pixel belongs.

Although retrieving the hidden text in the Archimedes palimpsest seems very similar to
that of retrieving a hidden painting, there are a few important di�erences. The �rst di�erence
is that the ink of the hidden text in the palimpsest pages is consistent over the entire page: the
whole layer can be characterized using a single spectral signature. This will not be the case for
a hidden painting since di�erent parts of the painting consist of di�erent paints.

Moreover, the spectral signature of the hidden ink is clearly di�erent from that of the surface
text. In contrast, the chemical elements used in the surface painting and the hidden painting
can be similar. This means that if there would be spectral signatures corresponding to the
surface painting and the hidden one, they might be very similar.

Bergman and Knox [2] try to visualize the hidden text by using a linear show-through model
to separate di�erent layers of text in the XRF images. In general, the show-through problem
refers to the situation in which pages with double-sided printing are scanned and the printing
on the back-side shows through in the scan of the front-side [39].

The show-through model uses the fact that a text is brighter in the image corresponding
to the detector to which it is closer. In case of the Archimedes palimpsest, the hidden text is
expected to be dark in one XRF image and bright in the XRF image of the reverse side.

The results of Bergman and Knox are promising but this approach is not directly applicable
to the XRF images of a painting since there are in general no XRF images of both sides of
the object. In addition, two XRF images of the same side of the object (corresponding to two
di�erent elements) cannot be used instead because they are not as correlated as two images
from separate sides.
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4 Object matching and inpainting: obtain-
ing XRF of hidden painting

This chapter addresses the �rst subgoal of the research: the method that obtains XRF images
of only the hidden layer of a painting. Such a step is necessary because the original XRF
images are mixtures of all layers contained in the painting. Using these 'mixed' XRFs in the
colourization process would result in a mixture of paintings and not in a reconstruction of the
hidden painting.

First, section 4.1 explains the chosen methodology. The three separate steps of the procedure
are addressed in section 4.2, 4.3 and 4.4 respectively. A discussion of the results follows in
section 4.5, as well as a short conclusion.

4.1 Introduction: chosen methodology

This section discusses the methodology used to obtain XRF images that correspond only to
the hidden painting. First, section 4.1.1 presents a short discussion of literature on separating
image mixtures since an XRF could be seen as a mixture. Another approach, where regions in
the XRF that belong to the surface painting are identi�ed, is discussed in section 4.1.2. Finally,
an overview of the chosen methodology is given in section 4.1.3.

4.1.1 Literature on separating image mixtures

The objective is to obtain the XRF of only the hidden painting. A direct approach would be
to denote an XRF image as an image mixture such that the problem is similar tosource sepa-
ration : extracting the underlying sources of a mixture of two or more signals [52]. This process
is called blind source separation (BSS) when it is done without strong additional information
about the individual sources or constraints on the mixing process.

In general, BSS considers problems where a number of samples is given, each a (di�erent)
mixture of the same signal sources [25] (see �gure 4.1). In most BSS approaches, these sources
are estimated by maximizing the statistical independence of the original source signals.

Figure 4.1: Illustration of (blind) source separation techniques. They estimate the original sources of
the signal mixture samples that are supplied.
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BSS algorithms cannot be applied directly to XRF images. One reason is that the XRFs strictly
speaking cannot be seen as samples of the same signal mixture: the sources mixed in one XRF
may be di�erent from those mixed in another XRF. Each XRF seems to be a sample of the
same signal mixture, namely a mixture of the surface painting signal and hidden painting sig-
nal. However, the surface painting source in one XRF might be very di�erent from the surface
painting source in another XRF. For example, the 'grass' expressed in zinc is not the same
image as the 'grass' expressed in mercury.

Furthermore, when an XRF is considered as a mixture of surface painting signal and hidden
layer signal, the mixture is probably not linear: for example, the observed concentration of lead
is not only the result of the lead in the hidden and in the surface layer but also of the presence
of other elements, the thickness of the layers etc. This non-linearity makes source separation
more complex: solving the non-linear BSS problem is in general not easy and requires addi-
tional prior information [25].

Other approaches that retrieve one of the images of an image mixture directly can be found
in literature on retrieving text or images that have been overwritten. Chapter 3 addressed
two studies that investigated how to retrieve the original text of the Archimedes palimpsest, a
medieval parchment manuscript of Archimedes that has been overwritten with a religious text.

It was shown that these approaches were not applicable to retrieve hidden layers in XRF
images. One reason was that the hidden layer of the palimpsest contained only one type of ink
whereas a hidden painting consists of multiple regions with di�erent paints. In addition, the
presented show-through model cannot be applied since there are no XRF images of both sides
of the object.

Bleed-through is a problem similar to that of show-through and occurs often in the �eld of
cultural heritage. It refers to cases where the ink from the reverse side of an ancient document
has seeped through, making the original text or image di�cult to retrieve [43].

Tan et al. [41] point out that bleed-through requires a di�erent approach than show-through.
In case of bleed-through, the images on both sides may not be completely matched as in the
show-through situation. However, the methods developed for bleed-through are very similar to
those for show-through and require images of both sides of the object as well. For this reason
these methods are also not applicable in the current research.

4.1.2 Indirect approach: identifying regions in XRF

As opposed to the direct approach, the XRFs of only the hidden painting could be obtained
indirectly . In this case, the pixels of each XRF are �rst divided into two groups: those that
concern the surface layer and those that concern the hidden painting. Then, the XRF of the
hidden painting could be reconstructed using the hidden layer's pixels and some inpainting
technique [32].

Most XRF regions that belong to the surface painting are areas where the recorded energy
comes from the surface painting (situation A in �gure 4.2). However, there are also regions
where the surface painting has blocked the energy from the hidden layer, leaving a dark area
(situation B in �gure 4.2). In both cases the area in question does not say anything about
the use of the chemical element in the hidden layer, and as such should not be used in the
reconstruction.

A method often applied to separate two layers in an image isthresholding [27]. In that case,
the layers of the image are separated based on the pixel values: pixels with a value higher than
the threshold correspond to one layer and pixels with lower values belong to another.
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Figure 4.2: With the XRF image of mercury of Patch of Grass it is shown that two types of regions
need to be detected. In situation A, the energy of the indicated region corresponds directly to the surface
painting. In situation B, there is a lack of energy in the indicated region that is caused by the surface
layer. In both cases, the pixels of the regions should not be used in the reconstruction since they do not
contain information about the hidden painting.

Thresholding cannot be applied in this way to �nd the pixels of the surface layer in an XRF
image, since a pixel's value doesn't say anything about the layer in which the element is present
(see section 2.1). This means that separating based on pixel value will not yield a surface and
hidden layer.

An XRF image is actually a mixture of the XRF of the surface painting and the XRF of the
hidden painting. Hence, to obtain only those regions that correspond to the hidden one, the
XRF of the surface painting should be subtracted from the mixed XRF. An XRF of only the
surface painting is unavailable but an 'arti�cial XRF' of the surface painting could be made
based on its colours.

When the pigments of the colours are known (or can be estimated), the corresponding chem-
ical elements can be determined as well. The translation from colours to pigments, and from
pigments to chemical elements, is di�cult however. Moreover, this method would not give the
regions of an XRF where the surface layer has blocked the energy from the hidden layer.

Another approach is to use the link between uniformity in colour and uniformity in a chemical
element. When some pixels have the same colour, they are likely to have similar chemical
elements as well. This indicates that an XRF can showsimilarities with the surface painting:
wherever a certain pigment is used uniformly, the feature may show up on an XRF.

This approach is implicitly employed by a human observer. The observer would look at
both the XRF and the surface painting and detect a hidden layer by tracing back features of
the XRF to the surface painting (see �gure 4.2). Subsequently, areas that cannot be traced
back to the surface painting are said to correspond to some hidden layer.

To �nd the 'surface painting regions' in an XRF, digital image processing techniques could be
applied, after which certain characteristics of the images can be compared. For example, edge
detection [12] could be used to identify edges in both the surface painting and the XRF images
and these edges could then be compared to �nd the ones of the hidden painting.

The drawback of edge detection is that the methods are often sensitive to noise, which is
a problem in case of XRFs. In addition, �nding hidden edges does not su�ce sinceregions of
the XRF that belong to the hidden painting need to be obtained.
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Another approach using image processing techniques is texture-based comparison [12]. In case
of the Patch of Grass, the surface painting has a signi�cantly di�erent texture than the hidden
painting and separating based on texture is a possibility.

However, in other cases where the hidden painting is more similar to the surface layer, the
texture is likely to be more similar as well. This would make the detection more di�cult.
Furthermore, the performance of this approach may also be reduced by the noisy character of
the XRF images.

4.1.3 Overview of chosen methodology

Since there seem to be no suitable methods in literature that can retrieve (one of) the sources of
an XRF mixture directly, the indirect method is chosen: �rst separating the XRF into regions
that correspond to the surface painting and regions that show a hidden layer, then use the
hidden parts to reconstruct the entire XRF of the hidden painting.

The chosen indirect approach follows from the point of view of ahuman observer. As said
before, the observer looks for features in the XRF that are also found in the surface painting.
More speci�cally, the examination of the observer mostly consists of�nding similar objects :
for example, a round shape in the XRF is said to belong to the surface painting if the surface
painting shows a round shape at the same location. Objects that cannot be traced back to the
surface painting are said to correspond to the hidden layer.

Finding objects of the XRF in the surface painting is possible since there is a relation
between uniformity in colour and uniformity in a chemical element. If an area is painted in
a certain colour, this whole area is likely to be painted with the same paint, with the same
pigment(s). This causes all pixels of the area to contain the same chemical elements, in similar
concentrations. Hence, the same area can appear on one or more XRF(s).

The steps of the separating procedure in this study are based on this 'human approach'. To
determine which parts of an XRF correspond to the surface painting, objects in both the surface
painting and the XRF images need to be detected; this is discussed in section 4.2.

The second step is to compare the XRF-objects to the objects discerned in the surface
painting to determine which XRF-objects belong to the surface painting and not to the hidden
one. This step is addressed in section 4.3.

When the XRF is divided into two parts, the 'surface-parts' should be discarded before the
XRF is used in the colourization process. This will leave holes in the image and section 4.4
describes how an inpainting algorithm can �ll in these areas.

4.2 Object detection in surface painting and XRF images

This section addresses the procedures that distinguish objects in the XRF images and in the
surface painting. These objects can be compared to determine the areas in the XRF images
that correspond to the surface painting instead of the hidden one. This approach resembles
that of a human observer, who would also try to �nd similar shapes in the XRF and the surface
painting to locate the hidden composition (see section 4.1).

Discerning objects in an image is often referred to asimage segmentation , a technique that
tries to �nd distinct regions in an image [12]. The goal is to obtain regions that are uniform
and homogeneous with respect to some characteristic and adjacent regions of a segmentation
should have signi�cantly di�erent values for that characteristic [15].

Hundreds of segmentation techniques are present in the literature since there is no single

21



Chapter 4: Object matching and inpainting: obtaining XRF of hidden painting

method that is good for all images, nor are all methods equally good for a particular type of
image [33]. This implies that, although there are some general approaches, each application
requires its own segmentation method.

In this study, the main objective is reconstructing a hidden painting: individual steps such
as the segmentation, can be improved in future research. Therefore, relatively simple methods
are investigated and the proposed segmentation algorithm should be seen as a starting point.

Section 4.2.1 starts by discussing the detection procedure for objects in the XRF images.
Then, detecting objects in the surface painting is described in section 4.2.2. The method is
somewhat di�erent since the objects in the surface painting need to be found based on another
characteristic, namely colour.

4.2.1 Finding objects in XRF images

As explained in section 4.1 the goal is to distinguish objects in an XRF based on their unifor-
mity in concentration. This means that for each XRF, areas having pixels with similar values
are seen as objects. Athresholding algorithm is a well-known method that can �nd such
areas [33].

Thresholding is a common approach to image segmentation [36]. The main idea is to separate
the data by grouping all pixels with intensities greater than a certain threshold into one class
and all other pixels into another class.

In this case, thresholding is applied in such a way thatmultiple levels are distinguished;
each XRF image is divided into severalslices. Each slice contains pixels that have a similar
value for the chemical element represented by the XRF.

The multilevel approach is used since the goal is to distinguish objects by �nding areas that
have similar chemical concentrations. When only two levels are used, an object may comprise
many di�erent grey values which means that it need not be painted in a uniform colour. The
latter is required since this ensures that the object can also be found on the surface painting.

The number of slices determines the uniformity of the chemical values within an object. When
a large number of slices are made, each slice contains values within a small range. Hence, the
chemical concentrations comprised in the slice are all very similar, making the objects very
uniform. Vice versa, a low number of slices implies that the discerned objects can comprise
many di�erent chemical concentrations.

The 'ideal' number of slices thus depends on how uniform the chemical concentrations of the
detected objects need to be. Since the XRF measurements are not very precise (they depend
on a number of factors, for example the layer thickness), requiring a very high uniformity is
incorrect. On the other hand, when less uniform concentrations are allowed (e.g. when using
two-level thresholding), objects may be found that are not painted in the same colour and this
is not the intent either.

Just as a starting point, the XRFs are currently divided into �ve slices. Experiments with
the XRFs of Patch of Grass have shown that for this painting, using �ve slices yields the best
�nal result. However, when more data becomes available, the number of slices should be re-
examined.

Before the slices are made, the values of each XRF are scaled to the range [0,1]. This scaling
seems unnecessary since the range of each XRF is already the same (zero to 256). However, the
actual maximum value of each XRF is di�erent due to their di�erence in 
uorescence power.
Every element emits energy with di�erent strength so the maximum energy that could be
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recorded varies between elements (see �gure 2.4 in section 2.1). The data is therefore scaled
such that the minimum value is mapped to zero and the maximum to one.

Now that for each XRF the data ranges from zero to one, the range of values shown by
a certain slice can be obtained. They are computed such that all values are divided into the
requested number of slices. Hence, when �ve slices are requested each slice will have pixels
within a range of (1/5 = ) 0.2 values.

Figure 4.3 shows the slices of the XRFs of the Van Gogh paintingPatch of Grass. The white
pixels in each slice are the pixels that have a value within the indicated range. Thus, the �rst
slice of each XRF shows pixels with a value of zero up to 0:2, the second slice shows pixels with
a value higher than 0:2 up to 0:4 and so on.

Figure 4.3: Example of dividing the pixels of each XRF into �ve slices: each slice shows the pixels
that have a value within the indicated range. Note that the values were �rst normalized such that the
minimum value is mapped to zero and the maximum to one.

The 'objects' detected by the multilevel thresholding algorithm (i.e. the object formed by the
white pixels in each slice) need further processing because a slice as a whole may not be traced
back to the surface painting. Each slice actually contains a number of smaller objects that
have pixels within the same range.

To obtain the separate objects, the Matlab function bwlabel is applied to each slice. This
function uses the general procedure of Haralick and Shapiro [15] and de�nes objects by look-
ing for connected pixels. For example, pixels that are connected with each other within an
8-neighbourhood are said to belong to the same object.

Figure 4.4 shows the result whenbwlabelis applied to the slices shown in �gure 4.3. Here, each
separate object is shown in a di�erent colour. Some colours may be indistinguishable since
a certain slice may have more than 800 objects and it is di�cult to distinguish 800 di�erent
colours.
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Figure 4.4: Objects are formed in each slice of �gure 4.3 using Matlab's function bwlabel (method of
Haralick and Shapiro [15]). Each object is visualized in a di�erent colour though some colours may be
indistinguishable: a slice may have more than 800 objects and it is di�cult to distinguish 800 di�erent
colours.

4.2.2 Finding objects of surface painting

For detecting objects in the surface painting, colour should be used. This is explained in section
4.1: an area might show up on an XRF image when it is painted in a uniform colour since it is
then likely that the area comprises a chemical element in a uniform concentration. The latter
is required for discerning the area as an object on the XRF.

The literature on colour image segmentation is not as extensive as that on greyscale image
segmentation [5]. Many studies use grey level image segmentation approaches with di�erent
colour representations. In this case, the same approach as described in section 4.2.1 is applied
but the thresholding-step is replaced bycolour quantization .

Colour quantization aims at reducing the number of distinct colours in an image while pre-
serving the same overall colour appearance as the original image [37]. The colour quantization
e�ectively divides the image into slices, similar to the XRFs (see section 4.2.1). Each 'slice'
holds the pixels that have a similar colour: how similar depends on the number of slices. When
many slices are made, each slice contains pixels with a very similar colour values. Vice versa,
using a low number of slices results in many di�erent colour values within each slice.

Similar to the XRF case, the multilevel approach is used to ensure that the discerned objects
comprise only a small range of values, in this case colours. The exact number of slices depends
on how di�erent the colours represented by a single slice may be. Also in this case, �ve slices
are made as a starting point.

In this study, the Matlab function rgb2ind is used for the colour quantization. This method uses
minium variance quantization; it works by associating pixels into groups based on the variance
between their pixel values. For example, a set of blue pixels might be grouped together because
they have a small variance from the centre pixel of the group.

Since �ve slices should be made, the colours of the image of the surface painting are reduced
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to a set of �ve. Figure 4.5 shows the slices that are obtained whenrgb2ind is used for this step.
In white the pixels are shown that have RGB values within the indicated range.

Figure 4.5: Example showing how the pixels of the surface painting are divided into �ve slices: each slice
shows the pixels that have an RGB value within the indicated range (the actual colours are presented as
well).

Similar to the XRF slices, the slices of the surface painting are 'containers' of objects: each
slice shows the pixels that have similar colours but they often form not one, but a number of
objects.

To obtain separate objects, the same procedure as for the XRFs is applied. The Matlab
function bwlabel �nds all objects by looking for connected pixels. Figure 4.6 shows the result.

Figure 4.6: Objects are formed in each slice of �gure 4.5 using Matlab's function bwlabel (method of
Haralick and Shapiro [15]). Each object is visualized in a di�erent colour though some colours may be
indistinguishable: a slice may contain more than 800 objects and it is di�cult to distinguish 800 di�erent
colours.

4.3 Determination of hidden parts in XRF images

This section addresses the comparison procedure that is used to compare the objects located
in the XRF images to those found on the surface painting. The purpose is to determine which
objects of the XRFs (denoted asx-objects) are also found on the surface painting. This is said
to be the case if anx-object resembles an object of the surface painting (ans-object) more than
a prede�ned amount.

The problem is similar to that of shape matching: given two shapes, measure the resemblance
between them and decide whether the similarity is greater than a threshold [45]. To do this,
a similarity measure is required along with a threshold and the objects need to be represented
by some shape descriptor. The shape descriptor represents each shape or object by its charac-
teristics such that the similarity between di�erent shapes can be measured more easily.
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Section 4.3.1 discusses the use of a feature vector as a shape descriptor. The similarity measure,
as well as the thresholds are addressed in section 4.3.2. Finally, the result is presented in section
4.3.3.

4.3.1 Feature vector as shape descriptor

Often the shape descriptor is afeature vector that uniquely characterizes a shape with a set of
values [28]. By using such a numerical representation, the similarity measure becomes a dis-
tance measure: two shapes are alike when the distance between their feature vectors is smaller
than a prede�ned threshold [51].

Finding suitable features can be complex because for many applications they have to be in-
variant under translation, scaling and rotation (e.g. �nding a certain real-life object in a movie
frame). However, in this case the objects should have the same shape and size, and appear at
the same location in the image. This means that these aspects (shape, size and location) need
to be described by the features.

In this study, the features that describe objects in terms of shape, size and location are taken
from the Matlab function regionprops. This function measures a set of properties for each
labelled region (i.e. object) in an image. By choosing the right set of properties, the required
aspects of the objects are described by the features. The chosen properties are the following
(see also �gure 4.7):

� Area: the number of pixels in the region

� Centroid: the centre of mass of the region in terms of a horizontal and vertical coordinate.
This property represents the location of the object.

� Major axis length: the length (in pixels) of the major axis of the smallest ellipse containing
the region

� Minor axis length: the length (in pixels) of the minor axis of the smallest ellipse containing
the region

� Orientation: the angle (in degrees ranging from -90 to 90 degrees) between the x-axis and
the major axis of the smallest ellipse containing the region

Figure 4.7: The properties used in a feature vector to represent an object's shape, size and location.
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When the feature vectors are calculated, the values arenormalized. Each feature value is
divided by the maximum value possible for that feature. For example, the maximum value for
the 'Area' feature is the size of the whole image. Hence, the feature value for 'Area' of each
object is divided by this number.

Now, all objects found in the XRFs and on the surface painting can be represented by a
set of numbers, i.e. for each slice a numerical matrix is acquired where the rows correspond to
the objects and the columns to their values for each feature. In addition, the values of each
column range from zero to one.

4.3.2 Similarity measure and thresholds

As said before, when the shape descriptor is a vector of numbers, the similarity measure be-
comes a distance measure [51]: it measures the distance between two points inRp space, where
p is the number of features. In this case, theEuclidean distance is used since it is a straight-
forward metric that is applied in many types of applications.

Although all properties were measured at once, the Centroid-property is treated separately
from the other features. The reason is that when the location of the object is mixed with the
other features, some objects may be de�ned as 'similar' even if they do not appear at the same
location. For example, if a certain object has exactly the same size and shape as another object
but their location is di�erent, they might still be classi�ed as similar. This should be prevented
because the location of the object is very important in case of the XRF images: only if they
appear at the same spot they are a true match.

It should be noted that the properties remain linked since the Centroid is a�ected by the
shape and size of the object. For example, if one object has a slightly di�erent shape than
the other, its Centroid will also be at a slightly di�erent location but the objects may still be
perceived as similar.

To compare the Centroids separately from the shape and size,two thresholdsneed to be de�ned.
The �rst one determines whether an x-object is 'very near' an s-object. This is the case when
the distance between the Centroids of thex-object and x-object is smaller than the de�ned
threshold. Then, the second threshold determines whether the shape and size of the objects
matches as well: when the distance between the feature vectors of thex-object and s-object is
smaller than the second threshold, they are said to be similar based on shape and size.

Setting good thresholds is often done by training on a large dataset but in this case, only
XRF images of the Van Gogh painting Patch of Grass are available. Therefore, exact numbers
for the best thresholds cannot be given at this point.

The thresholds of the current study are chosen such that they are optimal for thePatch of
Grass-images. In this case, anx-object has to be within a 5-neighbourhood of ans-object to
match. In addition, the distance between their feature vectors should be smaller than 5% of
the maximum distance (where the maximum distance is

p
k for two feature vectors holding k

features, each having range [0,1]).

4.3.3 Matching result

When the comparison procedure determines that anx-object is similar to an s-object, the area
of the XRF that is represented by the x-object is assumed to show the surface painting and
not the hidden one. Hence, the pixels ofx-objects that match an s-object should not be used
to reconstruct the hidden painting.

Figure 4.8 shows the pixels ofx-objects that matched with an s-object as white pixels.
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Hence, the black pixels show the areas where the XRF is likely to correspond only to the hid-
den painting and these areas should be used in the further reconstruction of the hidden painting.

Figure 4.8: Example of �nding the areas of the XRF image that correspond to the hidden painting.
In white, the pixels are shown that were part of an object that matched with an object of the surface
painting. Hence, those pixels should be discarded and the areas indicated in black should be used in
further reconstruction of the hidden painting.

To assess the performance of the matching procedure, some 'reference images' are required.
The performance cannot be measured based on the real XRFs and the hidden painting: it is
unknown what the XRF of the hidden painting looks like so that there is no ground truth.
An indication of the performance can be obtained by applying the procedure on 'fake' images
where the outcome is known or can be estimated.

The reference images are the greyscale version of the surface painting image and an image
of another Van Gogh painting, showing the head of a woman. From each of those images,
the preferred outcome of the matching procedure can be determined. All of the pixels of the
greyscale surface painting image should be detected as part of the surface layer. In contrast,
none of the pixels of the image with the woman's head should be seen as surface painting pixels.

Figure 4.9 shows the results when the matching procedure is applied to the reference images
described above. The top row shows the references and the bottom row the matching outcomes.

The outcomes correspond to a great extend with the desired results. Most of the pixels of
the greyscale surface painting are detected as surface painting pixels: 47298 pixels are set to
white, which is 75.7% of all pixels. Ideally, this should be 100%. In the other reference image,
the Head of a Woman, the matching procedure �nds 1994 pixels to be part of the surface
painting. This is 3.2% of all pixels, where 0% would be ideal. This means however that 96.8%
of all pixels are correctly identi�ed as 'hidden'.

A third test image is the XRF of lead. This is a special case since most pixels correspond to the
ground layer of Lead White (between surface and hidden layer). All pixels that deviate from
the average grey colour (e.g. black or white objects) should to be found as surface painting
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Figure 4.9: To asses the performance of the matching procedure the algorithm is applied on two 'reference
images': these are shown in the top row. The matching outcome is shown at the bottom row.

Figure 4.10: To asses the performance of the matching procedure the algorithm is also applied on a third
'reference image': the XRF of lead. The preferred outcome (shown at the bottom right) is obtained by
�nding all pixels that deviate from the average grey value. The actual matching outcome is shown on
the bottom left.
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pixels. This 'preferred outcome' is shown by the image in the middle of the bottom row in
�gure 4.10: when the image showing all average values grey values is inverted, the pixels in
white now correspond to all pixels that deviate from the average.

The actual outcome of the matching procedure for the XRF of lead is shown by the image
at the bottom left of �gure 4.10. Here, 60198 pixels have the same value as in the preferred
outcome, this is 96.3% of all pixels.

4.4 Using inpainting to complete the XRF

This section shows how example-based inpainting can be used to �ll in holes that appear when
the surface painting areas in the XRF are discarded.

The surface painting areas cannot simply be set to zero since that would imply that the
chemical element is not detected at those locations. This might be incorrect: there is just no
information there, the element may still be present.

Section 4.4.1 describes the inpainting procedure of Criminisi et al. [8]. Inpainting methods
were investigated in a preliminary study and the algorithm of Criminisi et al. was expected to
produce the best result [32]. The results when inpainting is applied to the XRFs ofPatch of
Grass are given in section 4.4.2.

4.4.1 Inpainting method of Criminisi et al.

The method proposed by Criminisi et al. [8] is meant for removing large objects from digital
images. The challenge is to �ll in the hole that is left behind in a visually plausible way, a
procedure that is often referred to as inpainting.

Criminisi et al. combined ideas from two classical approaches to inpainting. The �rst class of
algorithms aims at joining isophotes; the level-lines that represent upper boundaries of regions
of equal grey values. Since isophotes are usually associated with the structure1 in an image, this
approach works well on object boundaries. Reconstructing textured areas is often a problem;
they tend to get 'over-smoothed'.

Inpainting algorithms of the second type, exemplar-based methods, are derived from texture
synthesis. They try to �ll in a missing region by copying a suitable patch from the remaining
image. This patch is in general found with a texture-based search; the algorithm tries to �nd
a patch that is likely to resemble the texture of the area to be �lled in. The problem with
exemplar-based methods is that they often have di�culty reconstructing object boundaries.

According to Criminisi et al., edges can be reconstructed properly with an exemplar-based
method if a special �lling order is used. They propose a �lling algorithm that gives a higher
priority to those regions of the target area that lie on the continuation of image structures.
Using this approach, they succeed in �lling in the edges correctly, as is shown in �gure 4.11.

4.4.2 Inpainting applied to XRFs of Patch of Grass

An implementation of the algorithm of Criminisi et al. [3] was adjusted to use the black-and-
white image produced by the object comparison procedure (see section 4.3.3). In these images,
the white pixels are those that are part of an XRF object that has been detected on the surface

1The main parts of an image are seen as structure: the objects whose surface is homogeneous without having
any details. The texture of an image is seen on the surface of the objects. They are the details which make the
images more realistic.
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Figure 4.11: The algorithm of Criminisi et al. [8] demonstrated for the Kanizsa triangle (a famous optical
illusion). The white area in image A is inpainted as shown by in-between images B to F, resulting in
image G. Strong edges are reconstructed inside the missing region �rst.

painting. For this reason they need to be inpainted: since the energy recorded at those pixels
relates to the surface painting, there is no information at that point for the hidden painting
(i.e. there is a hole at that location).

Figure 4.12 shows the result when the inpainting procedure is applied to the XRF images.
Here, the top row shows the original XRFs while the bottom row shows the reconstructed
ones. In the middle the mask images are given that are produced with the object detection
and comparison process of section 4.2 and 4.3.

4.5 Discussion of results and conclusions

Sections 4.2 to 4.4 have presented a procedure that reconstructs XRF images of only a hidden
layer, from XRF images of the complete painting. This section discusses the results, addresses
di�culties and suggests approaches to possibly improve the results. A short conclusion is given
as well.

First, section 4.5.1 addresses the performance of the procedure that �nds surface painting
objects in the XRF images. The separate steps of this procedure as well as inpainting are dis-
cussed in section 4.5.2. Finally, section 4.5.3 presents the conclusions concerning the addressed
subgoal.

4.5.1 Performance of surface painting detection

The performance of the object detection procedure is di�cult to quantify since there is no
ground truth: it is strictly speaking unknown which parts of an XRF shows elemental concen-
trations of the hidden layer of the painting. For this reason, the procedure is applied on some
'reference images' of which a preferred outcome could be estimated.

The results indicate that the matching procedure is able to correctly identify most of the
XRF pixels. When the outcomes of all three test images are equally important, the average
performance is (75.7 + 96.8 + 96.3)/3 = 89.6%. This means that on average, 87% of all pixels
in an XRF are classi�ed correctly.

The test results are a good indication of the overall performance but they are not conclusive.
Only three images were used and two of them were no XRF images. This a�ects the results
since XRF images are expected to contain more noise for example, such that correct object
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Figure 4.12: Example of the inpainting procedure when applied to the XRFs ofPatch of Grass, using
the masks obtained by the object detection and matching algorithm of section 4.2 and 4.3.
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detection and matching is more di�cult.

Qualitative assessment by visual inspectioncan also give an indication of the performance. As
said in section 4.1, human observers are often quite capable of detecting the hidden painting's
composition in an XRF image.

In this case, visual inspection suggests that the performance is di�erent for each XRF. Most
of the light stripes in the upper left corner of the XRF of mercury are correctly detected as
surface painting areas. The same holds for the black regions in the cheek of the woman, in
both the XRF of mercury and of antimony. On the other hand, some additional areas of the
Zn-XRF should perhaps been detected as 'surface painting' because a human observer would
say that all stripes in the XRF of zinc correspond to the stripes of grass in the surface painting.
In addition, in the antimony XRF two large areas on the right are identi�ed as surface painting
regions while this may not be the case: the visual inspection does not indicate that there are
surface painting objects at those locations in the XRF.

4.5.2 Discussion of procedure steps

Visual inspection shows the di�culties for the object detection step. For example, the XRF
of zinc seems to contain a lot of separate brush strokes, similar to the stripes of grass in the
surface painting. However, the object detection procedure does not retrieve the separate strokes
but detects only a few big objects.

The problem seems to be that the stripes in the zinc XRF aren't very distinctive in their
grey values and they are often connected. This causes the algorithm to see them as a single
object. Since such an object is not detected on the surface painting (where the stripes are more
distinctive and thus seen as separate objects) the stripes of the XRF aren't matched to those
of the surface painting.

Another reason may be that the stripes of grass are painted such that the zinc is not present
in a 'uniform' way. The procedure only works if a single-coloured object also contains a single
concentration of a certain chemical element. If for example a certain stripe of grass has one
colour but the pigment Zinc White is not applied in the same concentration along the stripe,
the stripe will not show up as a whole on the XRF of Zinc. Certain parts will be lighter than
others, causing the algorithm to perceive them as di�erent objects.

Assuming that not all separate objects are obtained, thematching procedure can be ad-
justed to �nd the right matches between the x-objectsand s-objects. The comparison procedure
is now designed such that entirex-objects have to match with entire s-object. However, in lit-
erature there are also algorithms forpartial shape matching [4].

Partial shape matching methods are designed to detect situations in which two objects are
not similar but some of their parts are. In case of the XRF images it might be worthwhile to
use such an algorithm since surface painting objects are sometimes not present as a whole on
the XRF image but parts of it are.

Instead of only comparing the XRF-objects to those of the surface painting, the objects of one
XRF may also be compared to those of another XRF. For example, the XRF of mercury and
that of antimony show the same dark regions on the cheek of the woman: the energy of both
elements is blocked at those locations by the paint at the surface layer.

However, the similarity between objects from di�erent XRFs does not necessarily indicate
that those objects correspond to the surface painting. The pupils of the woman's eyes for
example, appear as objects in more than one XRF but they do not belong to the surface layer.
Even if at all XRFs the pupils are dark, this does not mean that the paint of the surface layer
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blocked the energy of the hidden painting.

The accuracy of the inpainting depends on a number of factors. For example, the larger the
missing area, the lower the reliability of the reconstructed content: when the algorithm has
little (boundary) information, it is di�cult to �nd a good patch that can �ll in the void.

In addition, the new content of the holes depends on the remaining image. For example,
a missing area is only �lled in with an edge if that edge was apparent at the boundary of the
hole. Hence, if a lot of pixels need to be inpainted, there is little (boundary) information that
can be extended and the resulting image will be rather 
at and without remarkable features.

On the other hand, a mask containing too few pixels may also produce inaccurate results.
When the detection algorithm marks too few pixels as surface painting pixels, some of the
unmarked pixels are incorrectly seen as hidden pixels. This means that when the inpainting
algorithm uses a patch from the remaining image as content for a missing region, this patch
may very well belong to the surface painting, causing the hole to be �lled in with incorrect
information.

It may be possible to inpaint one XRF using information provided by other XRFs as well.
For example, when for a certain region the concentration of mercury is unknown, the amount
of antimony at that location may be used to �nd a suitable replacement patch for mercury.
This approach only holds however when the chemical elements relate to the same pigment:
if two chemical elements are part of the same pigment, their relative concentrations will be
approximately the same all over the painting. For instance, since Vermilion consists of mercury
and sulphur, the intensities of mercury and sulphur will always be correlated.

On the other hand, when two elements are not part of the same pigment, their concentrations
need not be correlated. Hence, when the intensity of one of the elements is unknown at some
location, the concentration of the other element does not directly indicate the concentration of
the �rst.

4.5.3 Conclusions

This chapter addressed the �rst subgoal of the study:

Develop a method that can obtain XRF images of only the hidden layer of a painting.

This goal has been achieved by using a procedure consisting of three steps:

1. Objects are detected in the XRFs and in the surface painting based on uniformity in grey
value (in case of the XRFs) and in colour (in case of the surface painting).

2. The objects of the XRF are compared to those found in the surface painting: when an
XRF-object is more similar to an object of the surface painting than a certain threshold,
the pixels of XRF-object are saidnot to correspond to the hidden layer of the painting.

3. The pixels that do not correspond to the hidden layer should not be used in the recon-
struction process. They are therefore discarded and the holes that are left are �lled in
using an inpainting procedure.

The results indicate that the presented method can be seen as a good starting point. Quanti-
tative results obtained using test images showed that on average 87% of all pixels are correctly
identi�ed as either surface painting pixels or hidden painting pixels. Since the inpainting pro-
cedure is able to reconstruct the holes that are left when surface painting pixels are removed
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from the XRFs, the obtained XRF can be seen as the XRF of only the hidden painting.

Further investigation of the intermediate steps could lead to better result. Currently, standard
Matlab functions are used wherever possible. It might be worthwhile to investigate whether
these methods could be replaced by other, perhaps more sophisticated algorithms. For exam-
ple, partial matching techniques could improve the object comparison results.

It might also be bene�cial to study entirely di�erent methodologies such as Blind Source
Separation or texture-based comparison (see section 4.1.1). Though these methods were not
found to be directly applicable, they may be adjusted to work in case of XRF images.

To simplify the separating procedure, two approaches seem interesting. First of all, the con-
focal XRF (CXRF) technique described in chapter 3 would be very valuable. CXRF yields
depth information for the acquired chemical intensities which could be used to determine what
chemical information corresponds to which layer.

Secondly, Bergmann and Knox [2] (see section 3) have shown that a show-through model
can be applied to separate layers in an XRF image. This approach was not applicable in this
study since there are no XRF images from both sides of a painting. It would be very interesting
however to investigate whether it is possible to obtain such images and whether a show-through
model can be applied in that case.
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5 Colourization by classi�cation based on ex-
ample painting

This chapter addresses the second subgoal of the research: the method that constructs a colour
image of a painting that is represented by a number of XRF images. If the XRF images that
are used only show a hidden painting (such as the XRF images obtained in chapter 4), the
resulting image will also be a reconstruction of only the hidden image.

The methodology applied to achieve the second subgoal is addressed in section 5.1. The two
main steps of the procedure are discussed in section 5.2 and 5.3 respectively. Finally, section
5.4 presents a discussion of the procedure and its results as well as a short conclusion.

5.1 Introduction: chosen methodology

This section describes the approach that is used to obtain a colour image from XRF images.
First, colourization algorithms found in literature are addressed in section 5.1.1. Section 5.1.2
discusses the approach where the chemical values are used to determine colour. An overview
of the �nal methodology is given in section 5.1.3.

5.1.1 Example-based colourization

The goal at this stage is to obtain a colour image from XRF images. Since the XRFs are
greyscale, the problem seems related to that ofcolourization: converting a greyscale image to
a colour image. This topic was addressed in a preliminary research [32] and a short overview
is given here.

The main di�culty of colourization is that a single grey value can map to di�erent colour values
since di�erent colours may have the same grey value. This means that for any colourization,
additional information is needed. Two general approaches are used in literature:

� Example-basedmethods search in an example image for pixels that resemble the pixel to
be colourized, or for regions that are similar to regions that need to be colourized. The
resemblance is based on some statistics of the pixel and its neighbourhood.

� Scribble-basedmethods require that a user applies some colour scribbles to the image.
The rest of the image is colourized by propagating the samples to the other pixels, for
example by minimizing colour di�erences in small neighbourhoods or by blending several
samples based on the distance between pixel and samples.

Scribble-based colourization could work for XRF images but the user (e.g conservation expert)
may not know which colours to apply. In addition, the 'discontinuous' character of the image,
due to both noise and painting technique (e.g. lots of separate brush strokes), can cause the
propagation to fail.

Example-based colourization seems to be a good approach since there are often example
images available: in many cases a painting can be found that contains colours that are likely
to resemble those of the hidden painting.
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Figure 5.1 illustrates the main approach of example-based colourization algorithms. The fol-
lowing steps are taken:

1. The example image is converted to greyscale (image B is converted to image C).

2. The source image (image A) is scanned: for each pixel some statistics are collected such
as its grey value, the average grey value of its neighbourhood and the standard deviation
in the neighbourhood.

3. For each greyscale pixel, the algorithm searches in the example image for the pixel with
statistics that are most similar to those of the greyscale pixel (the algorithm looks in
image C for a match with the selection in image A).

4. The colours that the best-matching example pixel has in the original example image are
used to colourize the corresponding pixel in the source image (the colours of the matching
selection are found in image B and used to produce image D).

Figure 5.1: An illustration of example-based colourization. Image A is colourized using example image
B: each pixel of image A is matched with a pixel of image C and the colour that the latter pixel has in
image B is used to obtain the colour of the pixel in A. This results in image D.

It should be noted that this is the most general approach of such algorithms. There are many
di�erent techniques using di�erent steps. Some algorithms include for example a segmentation
phase and search for matching pixels in particular regions.

� � � Pixel values should be luminance values

In general, if the actual colours of a greyscale source image are unknown, the image is said to
be colourized correctly if a human observer thinks the colours are 'plausible': the clouds are
white and the grass is green. This implies that the pixels of the greyscale clouds need to be
matched with the pixels of the clouds in the example image, and the grey grass pixels with the
coloured grass pixels.

For this to happen, the greyscale patterns of the clouds in the source image should be similar
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to those of the clouds in the example. Hence, since the clouds in the example are lighter than
their surroundings, the cloud pixels in the source image should also be lighter than the pixels
of their surroundings.

More generally speaking, for 'correct' matches the greyscale patterns of the source image need
to be similar to those of the example. The greyscale values in the example e�ectively represent
the luminance of the pixels, i.e. how light or dark a pixel appears. Hence, for correct matches,
the pixel values on the source image should also indicate the luminance of each pixel.

However, the grey values of an XRF neednot be consistent with the actual luminance of the
pixels. A pixel value of an XRF represents the intensity of a certain element, i.e. a light pixel
indicates that a high concentration of that element is used there. This does not mean that the
pixel at that location in the hidden painting actually has a light colour. For example, if dark
red is painted with a pigment that contains a lot of mercury, the XRF of mercury will be very
light at areas where the artists painted dark red.

It is therefore incorrect to use an XRF as input to the example-based colourization pro-
cedure. The following example illustrates the problem when example-based colourization is
applied to an XRF:

Assume that an example-based colourization algorithm is applied directly to the XRF of mercury
(Hg) of Patch of Grass(image A in �gure 5.2), using the example given by image B of �gure 5.2.
The algorithm will examine each pixel and its neighbourhood of image A and look in image C for a
pixel with the same characteristics. So, when studying pixels of the woman's mouth, the algorithm
searches in image C for pixels that are white themselves and have a fairly dark neighbourhood.

However, the mouth of the woman depicted in the example doesn't have these characteristics:
here, the mouth is relatively dark compared to its surroundings. Therefore, the algorithm may not
match the source pixels from the mouth to the example pixels of the mouth but to another part of
the example image. Hence, the mouth in image A might receive colours that belong to something
other than the mouth of the woman in image C.

Figure 5.2: Image A is the XRF of mercury of Patch of Grass. Image B shows another painting by
Van Gogh (called Head of a Woman, from winter 1884-85, Nuenen) that resembles the hidden painting.
The greyscale version of the example is given by image C: this image would be used in example-based
colourization algorithms to determine the colours of image A.

5.1.2 Translating chemical values to colours

Colourization algorithms presented in literature cannot be applied since the values of the XRFs
do not correspond to luminance values but to chemical intensities. The chemical elements do
relate to colours however and this section investigates whether the colour can be deduced from
chemical values.
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The colours in a painting are the result of the use ofpigments and these materials have dis-
tinctive chemical compositions (see appendix B). The pigment 'Cadmium Yellow' consists of
cadmium-sul�de for example while 'Egyptian Blue' is a calcium copper silicate.

X-ray 
uorescence analysis has been demonstrated to be of great value for the characteriza-
tion of artists palette because it provides information about the chemical composition of the
paint (see section 2.3). If the chemical composition of a pixel is given by the XRF, the pigment
applied at that location may be determined.

� � � Link between a pixel's chemical composition and its colour

Given the above reasoning, it seems straightforward to convert a set of XRFs to a colour image:
look at the chemical composition of each pixel, deduce the pigment and set the corresponding
colour. However, the XRF technique has some important limitations, making it practically
impossible to deduce the exact pigments from the recorded intensities [35].

The emission intensity of each element depends not only on its concentration but also on
the overall composition of the area under investigation (e.g. layer thickness). In addition, the
XRF only shows the single elements and an unambiguous identi�cation of the corresponding
pigment is not always possible. For example, the elements copper, lead, cobalt and chromium
are each contained in a number of di�erent pigments, with di�erent colours.

The limitations are especially troublesome for the modern artists palette, because those can
contain both natural and synthetic pigments, as well as complex mixtures (mixed by either the
artist or used as ready-made tube paint).

Although the chemical composition of a pixel cannot be linked to the colour of a pixel directly,
it seems reasonable to assume that if two pixels have di�erent chemical values, their colour is
also di�erent. The rationale behind this assumption is that two di�erent chemical composi-
tions correspond to two (mixtures of) di�erent pigments or similar pigments but with di�erent
concentrations. The latter would also cause a di�erence in colour: the colour of Naples Yellow
becomes more reddish when more lead is used for instance.

Based on this assumption, objects of di�erent colours can be distinguished in the XRF data,
even though the actual colours are unknown. This is done by applyingclustering, i.e. grouping
pixels based on their chemical compositions. All pixels of such a 'chemical cluster' are assumed
to be painted with the same (unknown) colour.

� � � Linking example colours to chemical clusters

Although di�erent coloured objects could now be found, still it is unclear which colour the
pixels have. As alternative source for the colour information anexample image can be used
that is submitted by an art expert. This expert is able to supply an image that contains colours
that are likely to be used in the hidden painting.

To determine which example colour is used for which chemical cluster (without using chemical
information), an idea presented by Green�eld and House [13] could be used. The objective of
Green�eld and House was to recolour a source image based on the colours of an example using
'palette matching'. They construct the palette (i.e. a set of representative colours) of both
images and then make associations between those palettes.

The colour responsible for the largest area of the source image is matched with that of the
example. Then, further pairing of colours is done by examining their relative deviation from
these anchor colours.

In case of the XRF data, the 'palette' does not contain colours but chemical compositions.
Although the distance between those compositions can be computed, matching these distances
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with distances between colours of the example fails.
Assuming that the distance between two chemical clusters isX , they should be linked to two

colours that also have a distance ofX . However, this might be the case for red and blue and
for red and green: the distance between red and blue is similar to that between red and green.
This example shows that matching based on relative distances does not yield unambiguous
colour assignments.

5.1.3 Overview chosen methodology

Since chemical values do not correspond with luminance values, colourization algorithms found
in literature cannot be applied. The chemical values relate to certain pigments but a direct
translation is practically impossible.

Pixels can be grouped together based on their chemical values and these groups are likely
to correspond with di�erent colours. The actual colours are still unknown however and linking
the colours of an example to the chemical clusters is not straightforward.

Instead of clustering,classi�cation is required. A clustering procedure assigns chemical compo-
sitions to unknown classes but for the colourization they should be assigned toknown classes,
namely the colours of the example image. This is calledsupervised classi�cation [21]: the
chemical composition of a pixel needs to be recognized as a composition corresponding to a
speci�c colour in the example image.

For this, some labelled patternsare required such that the recognition system learns which
kind of patterns correspond to which class. Labelled patterns refer to points in the example
image where the colour as well as the chemical composition is known.

In this study it is therefore assumed that the chemical composition of the colours in the
example is known. This is a reasonable assumption since they can be obtained by XRF point
measurements and such analyses (with portable XRF devices) are done frequently [35]. Oth-
erwise, the chemical values of the example image need to be estimated.

The construction of the training set (i.e. set of labelled patterns) and the classi�er itself are
discussed in section 5.2. Section 5.3 describes how the trained classi�er is applied to actual
XRF data.

5.2 Classi�er design and training using example image

This section discusses the classi�cation approach used to determine the colours of the pixels
represented by the XRF data. The classi�cation uses training data supplied by an example
image to learn which kind of chemical compositions correspond to which colours of the example.

Obtaining training data from an example image is addressed in section 5.2.1. Section 5.2.2
discusses which classi�er is used to classify the chemical compositions given by the XRF data.

5.2.1 Creating training set of example data

The training set consists of the feature vectors and class labels of the training samples: the
feature vectors are the chemical compositions of the samples, the class labels are the colours
at corresponding locations.

� � � Feature vectors

The training samples can be supplied as the results ofXRF point measurements that are
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performed on the painting that serves as an example. These analyses give the chemical com-
position at certain locations of the painting such that at these locations, the colour as well as
the chemical elements are known.

The number of required point measurements depends on the colours of the example image.
For most images the colour information can be represented by a set of few quantized colours,
typically ten to twenty [9]. This would imply that at least ten measurements are required. It is
however preferred that there are multiple measurements for each colour since a larger training
set will in general improve the classi�cation results [34].

Although the complete chemical composition for an example pixel is given by a point measure-
ment, there are often only a few XRF images that show the hidden painting's composition,
for example two or three. This means that for the pixels of the hidden painting, the chemical
compositions consist of only a two or three intensity values. These compositions need to be
classi�ed so the classi�er should also be trained on only the example's values for these elements.

In case of the paintingPatch of Grass, only the XRF images of mercury (Hg) and antimony
(Sb) show the hidden painting. Hence, of all point measurements, only their values for Hg and
Sb should be used in the training.

A training dataset could also be madewithout actual XRF point measurements byestimating
the chemical values . The approach is then to express the colours of the example image in
terms of the required chemical elements. For example, when mercury values are required and
it is known that mercury is used as red in the painting, the 'redness' of a pixel can be taken as
its value for mercury.

Such a translation is made for an image of a painting that resembles the painting hidden
beneathPatch of Grass. This example is shown as image A in �gure 5.3. Image B and C show
the estimated amounts of mercury and antimony respectively: the 'redness' is used as estimate
for mercury and the 'lightness' as the estimate for antimony (since antimony is here associated
with the pigment Naples Yellow, a light colour)1.

Figure 5.3: Image A shows a cut-out of the paintingHead of a Womanby Van Gogh that resembles the
painting hidden beneathPatch of Grass. The 'redness' of each pixel is used as estimate for the amount
of mercury at that location (image B), the 'lightness' as estimate for the antimony concentration (image
C).

The data collected from the example is represented in a matrix ordataset . Here, the rows
correspond to the observations, in this case the pixels. The columns represent the variables
or features, in this case the chemical elements. Thus, each pixel is represented by a vector of

1The chemical estimates are computed by converting the example image to Lab colour space: the a-channel
value indicates how red a pixel appears (which is the estimated concentration of mercury) and the l-channel
value gives the luminance of a pixel (which is used as the estimated amount of antimony).
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numbers, namely the values for the chemical elements of which there is an XRF image.

To ensure that the classi�cation is independent of measurement units, the data must be
scaled [46]. The values are scaled for each element separately in such a way that the fea-
ture values represent relative amounts: the minimum observed value for a single chemical
element is mapped to zero and the maximum to one.

A pattern classi�cation procedure usually contains some form of feature selection or ex-
traction [46]. The main purpose of these techniques is dimension reduction: by reducing the
number of features, redundant or irrelevant information is removed for example, which may
improve the classi�cation result.

In case of the XRF data however, the number of features is already low. The number of
features depends on the number of XRF images that show the hidden painting since the values
for these elements are used as features. Given that often only two or three XRF images show
a buried layer, the number of features will be low as well.

� � � Class labels

The class labels are the colours that are visible on the example image at the locations of the
point measurements. It is therefore important to register these locations such that the colours
can be retrieved from the example image.

When no point measurements are used but the chemical concentrations of the example image
are estimated, the class labels are the colours of each pixel of the example image. However,
there may be as many colours as there are pixels. Therefore, colour quantization should be
applied and the retrieved colour indices are used as labels.

The colour quantization can be done as described in section 4.2.2, with Matlab'srgb2ind.
Since the colours of most natural images can be represented by a set of ten to twenty colours
[9],the number of colours of the example is reduced to twenty.

This procedure should not only yield colour labels but also acolour map, where the colour
values corresponding to the colour of each label are stored. This is shown in �gure 5.4: the
colour map on the right shows which class label correspond to which colour. After the new
patterns have received their colour labels, the precise colour can be retrieved using the colour
map.

Figure 5.4: On the left, the example painting given by image A of �gure 5.3 is shown after colour
quantization is applied to reduce the colours to a set of twenty. A close-up is presented in the middle,
showing a close-up of the woman's mouth. The bar on the right is the colour map that shows which class
labels correspond with which colours.
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5.2.2 Choosing a classi�er

Once the example data is represented by a dataset, the classi�er should be designed. Jain et
al. [21] identify two main approaches to classi�cation:

� The simplest and the most intuitive approach is based on the concept of similarity:
patterns that are similar should be assigned to the same class. In this case patterns can
be classi�ed by template matching.

� In statistical classi�cation , each pattern is represented in terms ofd features and is viewed
as a point in a d-dimensional space (the feature space). The objective is to �nd decision
boundaries in this space that separate patterns belonging to di�erent classes.

In this study, the template matching approach is studied for two reasons. First of all, the
objective of this research is to present a starting point for the virtual reconstruction of hidden
paintings. The classi�cation is an intermediate step that can be improved in future research.
For now, template matching is a good approach since it is a straightforward method that can
still obtain good results [21].

Secondly, template matching also �ts with the size of the training set. When the training
set is made up of XRF point measurements, the number of samples will be low: only a limited
number of point measurements are usually taken (ten to twenty). Such a small training set
makes it di�cult to obtain good results with a more complex classi�er [34].

According to Jain et al. [21], the most straightforward one nearest-neighbour decision rule(1-
NN) rule is a good a starting point since it appears to always provide a reasonable classi�cation
performance in most applications. With the nearest-neighbour approach, each pattern in the
training set is a template. An unlabelled pattern is classi�ed by assigning the label which is
most frequent among the training samples nearest to that pattern. The distance is commonly
measured using Euclidean distance.

The 1-NN approach is a good method to use in this study since it does not require any user-
speci�ed parameters (except for a distance metric). This means that the implementation is
very straightforward. However, results may be improved by using more neighbours.

In general, the larger the number of neighbours (k), the more robust the procedure will
be [46]. This is caused by the fact that the e�ect of noise is reduced when more neighbours
are taken into account. The value for k should however be small in respect to the number of
training patterns, so that the neighbourhood is still the local neighbourhood of the sample.

The optimal choice for k can be found using cross-validation. Each pattern of the training
set is then classi�ed using the remaining samples for various values ofk such that the overall
performance can be computed. In this case, experiments showed that the optimal number of
neighbours is mostly found to be �ve; three, seven or nine neighbours are found often as well.
Therefore, when the classi�er is applied to the actual XRF data, results of all four options are
given.

A disadvantage of the nearest-neighbour approach is that the classi�cation can be become
computationally expensive for a large dataset since then many comparisons have to be made.
However, if the point measurements are used as example data, the number of templates to
which the chemical patterns need to be compared is limited since in most cases only ten to
twenty measurements are taken.

When for each pixel in the example its chemical values are estimated, the training set will
be large (e.g. 62500 patterns for an image of 250x250). In this case, the computation time can
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be reduced by using a random subset of the training dataset. This is also done in the current
study: from each class 100 samples are randomly selected such that the training set contains
2000 samples in total (due to the colour quantization, there were 20 di�erent colour classes
de�ned for the example image).

5.3 Applying classi�er on XRF data

This section discusses how the classi�er as presented in section 5.2 can be applied to the actual
XRF data, in this case the data from the painting Patch of Grass.

To apply the nearest-neighbour classi�er described in section 5.2 to true XRF data, the data
should be formatted similarly to the training set. This means that the input variables must
�rst be scaled .

The same scaling as for the training set is applied: the values are scaled for each element
separately in such a way that the minimum observed value for a single chemical element is
mapped to zero and the maximum value to one. As described in section 5.2.1, no feature
selection or extraction is applied.

The nearest-neighbour classi�er used in this study is theknnc function of PRTools, a Matlab
toolbox that supplies user routines for traditional statistical pattern recognition tasks [18]. The
best number of neighbours can also be determined with this function as it can optimize the
value of k using cross-validation.

As said in section 5.2.2, experiments showed that for the estimated XRF data of the example
image, the optimal number of neighbours was �ve. However, three, seven and nine neighbours
were often found by theknnc function as well and therefore all four options are used here.

The knnc function is �rst applied on the training set, i.e. the dataset consisting of data and
labels of the example image (see section 5.2.1). This yields amapping: the classi�er is trained
to map a k-feature data vector to a 1-dimensional output space, i.e. the class label.

The trained mapping can then be applied to the actual XRF data such that each feature
vector is assigned to a speci�c class, namely the class that appears most frequent among the
templates that are most similar to the new pattern.

After the classi�cation, the assigned class labels are used to obtain the colours of the pixels.
When the colours are given by point measurements, the class label indicates with which point
measurement the new XRF feature vector is matched. The colour at this point in the example
image is applied to the pixel represented by the XRF feature vector.

In case the chemical values of the example image were estimated, the class labels correspond
to the quantized colours of the example. These were stored in a colour map, such that for each
label, the corresponding colour can be retrieved. Hence, the colour of each pixel can be looked
up in the colour map using the label assigned to its XRF feature vector.

The top left image of �gure 5.5 shows the result when aone nearest-neighbour classi�er is used
on the data given by the mercury and antimony XRF maps of Patch of Grass. The example
shown at the top right of the �gure is used, with the estimated values for mercury and anti-
mony values as presented in �gure 5.3. Only the chemical values for mercury and antimony
are required since only those XRFs show the composition of the hidden layer.

Colourization results when using three, �ve, seven and nine neighbours are also shown in
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�gure 5.5. It seems that there are no large di�erences between the colourizations. They also
don't deviate very much from the result obtained with the 1-NN approach.

Figure 5.6 shows the result when another example image is used for the colourization (the
example is shown in the upper right corner). The chemical values are estimated in the same
way as for the �rst example image (see section 5.2).

Multiple experiments with the cross-validation method of the knnc routine indicated that in
this case the optimal number of neighbours was one. However, �gure 5.6 also shows the results
of using three, �ve, seven and nine neighbours. It appears that there are no large di�erences
between these results and the image obtained with the 1-NN approach.

5.4 Discussing of results and conclusions

This section discusses the method and results presented in section 5.2 and 5.3. There, it was
described how classi�cation applied to XRF data obtains a colour image when a training set is
constructed from data of an example painting.

First, the performance of the classi�cation is discussed in section 5.4.1. Section 5.4.2 addresses
the training data (i.e. example image) that is used in the procedure, as well as the classi�er.
A short conclusion is given in section 5.4.3.

5.4.1 Classi�cation performance

It is di�cult to quantify the performance of the classi�er since the true colours of the hidden
painting are unknown. The labels (i.e. colours) that are assigned to the chemical compositions
(i.e. pixels) cannot be checked against their actual labels.

It is possible to assess the performancequalitatively using visual inspection . A human
observer could examine whether the pixels of the reconstruction have received a colour of the
example that is expected at those locations.

In case of thePatch of Grass, the virtual reconstruction shown by the ' k = 5'-image in �gure
5.5 is examined. This is the result of applying a 5-nearest-neighbour classi�er to the XRF data
comprised of values for mercury and antimony. The classi�er was trained on the estimated
chemical values of the�rst example image, shown in �gure 5.3.

The visual inspection suggests that the classi�cation performs reasonably well. The woman's
head is clearly visible and the light and dark areas are consistent with the example: shadows
and highlights are located in the same regions of the composition. Moreover, there is a red
colour visible at the lips of the woman, which corresponds with the red lips of the woman in
the example.

On the other hand, the colours of the obtained image appear rather uniform. This seems to
be consistent with the example image, that doesn't have many di�erent colours as well. How-
ever, the main di�erence is that the colours in the example appear clustered, forming uniform
regions of colours. In the XRF colour image, the colours are more 'mixed', causing an overall
brown tint.

The mixing is caused by the classi�cation: pixels in the same region are classi�ed to di�erent
classes, causing them to get di�erent colours. The result is that each region contains the same
colours, albeit in di�erent amounts (see �gure 5.7). This makes the overall appearance uniform.

Visual inspection of the virtual reconstructions obtained with the second example(shown in
�gure 5.6) indicates a similar performance: shadows and highlights are located at the expected
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Figure 5.5: Colourization results using di�erent numbers of neighbours in thek-nearest-neighbour clas-
si�cation applied on the mercury and antimony XRF maps of Patch of Grass. The data shown in �gure
5.3 is used to train the classi�er; for convenience, the example image is repeated here in the upper right
corner.
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Figure 5.6: Colourization results using di�erent numbers of neighbours in thek-nearest-neighbour clas-
si�cation applied on the mercury and antimony XRF maps of Patch of Grass. The example image used
for the training data is shown in the upper right corner; its chemical values are estimated as described
in �gure 5.3.
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regions and the lips are correctly colourized with more red. On the other hand, the colours of
this reconstruction appear rather uniform as well, implying that the classi�cation again assigns
di�erent colours to pixels of the same region.

Figure 5.7: The close-ups of the virtual reconstruction (obtained with a 5-nearest-neighbour classi�er)
show that each region is actually a mixture of the same colours, instead of a uniform region of one
colour.

5.4.2 Training data and classi�er

The colours that are used in the reconstructed hidden painting need not be assessed because
they are taken from the example image that is supplied by an expert. Since this example
is chosen such that its colour are likely to resemble those of the hidden painting, the colours
of the virtual reconstruction are similarly consistent with those of the actual hidden painting.
This means however that the example image should be chosen with great care.

To obtain a virtual reconstruction with the exact colours of the real hidden painting, the
example image should contain exactly those colours that are used in the hidden composition.
Since these colours are unknown, it may be di�cult to �nd such an example but the chemical
data does provide some clues. For example, the presence of certain chemical elements may be
evidence for the use of certain pigments and hence, a certain colour. Combining the chemical
information with knowledge on the artist's usual palette, (estimated) date of the painting and
its place of origin, an art expert may be able to select an example painting that is likely to
contain the colours of the hidden painting.

The procedure may be extended to usemultiple example images. The images can be used
to obtain more training samples, which may increase the reliability of the classi�cation. The
examples may provide the same information or each example image is used to give information
on a particular aspect. For instance, two di�erent examples may provide chemical compositions
of two di�erent sets of pigments.

Another approach is to obtain a colourization for each example image separately and then
combine the results. For example, the �nal colour of a pixel may be the colour that is most
frequently assigned to the pixel or the average colour of all outcomes for the pixel. This could
also improve the colourization result.

The virtual reconstructions shown in this study are based onestimated chemical values of
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the example image. This was su�cient to illustrate the use of a classi�er to obtain colours.
It should be noted however that the quality of the colourization depends greatly on the exact
translation.

The colours that are assigned to the XRF pixels depend on which chemical compositions
are formulated for the colours in the example image. If these are incorrect, the colours that
are assigned to the XRF values are incorrect as well.

To estimate the chemical values of the example painting correctly, again the knowledge of
an expert is required. For example, when the colours need to be expressed in terms of cobalt,
it is not immediately clear which kind of characteristic can be used to estimate the cobalt con-
centrations: either the amount of yellow or blue should be used as estimation for the cobalt,
depending on whether the cobalt is associated with Cobalt Yellow or Cobalt Blue in this case.

In this study, the nearest-neighbour classi�cation approach is applied to obtain a starting
point. Experiments showed that the number of neighbours did not a�ect the colourization very
much but the leave-one-out cross-validation showed that for this painting,k = 5 was often the
optimal choice. The bestk may be di�erent for other paintings however so performing multiple
experiments with di�erent numbers of neighbours is recommended.

A di�erent classi�er could be used as well but it is unclear whether this would improve
the results. For example, statistical classi�ers make often assumptions about the underlying
probability density functions of patterns in a class. It should be studied whether it is possible
and reasonable to make correct assumptions.

5.4.3 Conclusions

This chapter addressed the second subgoal of the study:

Develop a method that can construct a colour image of a painting that is represented
by a number of XRF images.

This goal has been achieved by using a procedure consisting of two steps:

1. An example image is used to obtain a dataset that shows which chemical composition
corresponds to which colour in the example. The data is subsequently used to train a
nearest-neighbour classi�er.

2. The classi�er assigns each chemical compositions of the actual XRF data to a certain
class: a speci�c colour of the example image. This way a colour image is obtained.

Visual inspection of the reconstructions made with a 5-nearest-neighbour classi�er suggests
that classi�cation can indeed be used to obtain a colour image from XRF data. The pixels
are in general classi�ed correctly: the colours of the image regions correspond with what is
expected based on the given example image. Moreover, the performance seems to be consistent
since they were obtained using two di�erent example paintings.

The performance is highly dependent on the supplied example image. This image should there-
fore be chosen with great case and such that its colours are likely to be similar to those applied
in the hidden painting.

The performance also depends on whether the chemical values of the example colours are
estimated or given by XRF point measurements. The latter is preferable as it improves the
reliability of the colourization. Estimating the chemical values of colours is rather complex and
the knowledge of an art expert is required for good estimates.
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The experiments were inconclusive concerning the optimal number of neighbours used in the
classi�er. Cross-validation indicated most often that �ve neighbours should be used but three,
seven and nine neighbours were also frequently found. When the classi�er is applied on data
of other paintings, further experiments are recommended.

Colourization results may be improved by using multiple examples. It could increase the size
of the training set which in general leads to more reliable classi�cation. Another option is to
obtain a colourization for each example separately and combine the results.

It may also be possible that an entirely di�erent classi�cation approach improves the colour-
ization result. This requires further investigations however because it is not immediately clear
whether di�erent classi�ers are applicable and likely to produce better colourizations.
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6 Conclusions

This chapter presents the conclusions of the thesis research. Section 6.1 shows how the main
research objective has been achieved and section 6.2 presents a discussion of the results, with
respect to future research.

6.1 Concerning the main research objective

The main objective of this study was:

Develop a method that uses XRF images to produce a virtual colour reconstruction of a
hidden painting in such a way that the reconstruction contains colours that, according to
art experts, are consistent with the real hidden painting.

This goal has been achieved by describingtwo procedures that, when combined together, can
produce a virtual reconstruction of a hidden painting. The image contains the correct colours
when an example painting is supplied that is expected to have similar colours as the hidden
painting.

The following two procedures were presented:

1. Chapter 4 has shown that XRF images of only the hidden layer of a painting can be ob-
tained using object matching between the XRFs and the image of the surface painting,
combined with inpainting.

By discerning objects in both an XRF and the surface painting and comparing these,
objects of the XRF that belong to the surface layer are identi�ed. The remaining areas
of the XRF (i.e. those that couldn't be matched with the surface painting) are assumed
to belong to the hidden painting. The example-based inpainting algorithm of Criminisi
et al. [8] is applied to the image containing only these hidden regions to obtain the re-
constructed XRF.

2. Chapter 5 has shown that a colour image can be constructed from XRF images using
classi�cation based on an example image.

A training set consisting of chemical compositions of known colours is constructed from
the example painting by performing XRF point measurements or by estimating the chemi-
cal values. Then, the actual XRF data is classi�ed such that each pixel is assigned a colour
based on its chemical composition. The classi�cation is done with a nearest-neighbour
classi�er: for each chemical composition the most similar example compositions are de-
termined and the colour that appears most frequent among these samples is assigned to
the pixel.

Quantitative results and visual inspection indicated that the �rst method identi�ed most of
the XRF pixels correctly (approx. 87% of all pixels). This suggests that it is able to produce
a fair reconstruction of the XRF of the hidden painting.
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The colourization stage was evaluated using only visual inspection since the actual colours
are unknown. Examination of reconstructions obtained with two di�erent example paintings
suggested that the performance was consistent. Moreover, in both cases the colourizations were
found to correspond well with the expected colours.

A virtual reconstruction can be very valuable for art historians since the hidden painting might
otherwise never become visible. This would be a loss since the buried compositions are often
of great art historical value.

6.2 Discussion and future research

This thesis has provided a good starting point for virtual reconstruction of hidden paintings
based on XRF images. It has become clear that there are a lot of factors involved and that the
reconstruction is a complex issue. This section addresses the di�culties, especially with regard
to future research.

There are in total �ve main processes in the current procedure that could be investigated more
thoroughly. They are already discussed chapter 4 and 5; the most important issues are pre-
sented here.

Object detection
To �nd the objects in an XRF or in the surface painting, the image in question is divided
into several slices. The number of slices a�ects the uniformity of the values comprised
within an object. Future research may examine the optimal number of slices: how uniform
should the values be to consider them as a single object?

For each slice, its objects are found by looking for connected pixels. It may however
be worthwhile to investigate whether object could be found directly in an XRF or in the
surface painting, for example using edge detection.

Object matching
The objects retrieved from the XRFs and the surface painting are compared to determine
which XRF-objects correspond to the surface painting. Currently, the objects are com-
pared as a whole but partial matching could also be used. It may improve results since
objects of the XRF do not always appear as a whole on the surface painting.

Inpainting
In this study, the inpainting method of Criminisi et al. [8] was used to �ll in the regions of
the XRF where the information did not correspond to the hidden painting. A preliminary
study had shown that this method was expected to yield the best results [32]. However,
future research may look into this topic more thoroughly and perform experiments with
other inpainting procedures as well.

Acquiring training data
Two methods were discussed to obtain training data from an example inpainting: the
chemical values could either be obtained by performing XRF point measurements or by
estimation. The �rst option is preferred since it provides the most accurate values. Fu-
ture research should therefore focus on this approach. Here, it is important to make sure
enough point measurements are available and that the analyses provide precise chemical
values and colours of the selected points.
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The advantage of the second method is that it in general yields more training samples
since the chemical values of all pixels of the example image are available. This option
may therefore be studied thoroughly as well such that the estimation of chemical values
becomes more reliable.

Classi�er design
The classi�cation approach used in this study is template matching, implemented with the
nearest-neighbour classi�er. Although this provides a good starting point, future research
may look into the use of other, more complex classi�ers.

In addition, the optimal number of neighbours was unclear: in case ofPatch of Grass,
�ve neighbours was most often found as the best number but three, seven and nine were
suggested by the cross-validation as well. Therefore, this issue should be re-examined in
future research when more/other data becomes available.

This study has shown that the colours of the virtual reconstruction are di�cult to retrieve (if
at all) from the XRF data itself. An important limitation in this study was the lack of chem-
ical and artistic knowledge: linking the chemical elements to certain colours requires expert
knowledge on the composition of pigments, the use of pigments by the artist, etc.. Future
research could therefore investigate this more thoroughly by cooperation with other experts,
in particular from the �eld of art and/or chemistry.

The example image plays a crucial role in the reconstruction method presented in this thesis
since it determines the colours that are used in the virtual reconstruction. Although guidelines
for choosing an appropriate example are given in this study, it would be worthwhile to address
this issue in future research in more detail.

Moreover, future research may investigate how the current research could be extended to
use multiple examples. Since �nding an appropriate example may be di�cult, it could be useful
when the reconstruction method can use information from di�erent examples.
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Glossary

(Blind) Source Separation Source separation techniques try to extract the underlying sources
of mixtures of two or more signals. When this is done using lit-
tle to no information about the sources, it is called Blind Source
Separation. (page 18)

Classi�cation Classi�cation is a task of pattern recognition: a certain pattern
is recognized as being part of a special class of patterns. A
pattern is classi�ed when it has been assigned to a certain class.
(page 40)

Colour map A colour map is table or matrix in which for a number of labels
a certain colour is stored. (page 42)

Colour quantization This technique is used to reduce the colours of an image: instead
of many di�erent colours, only a few representative colours are
used. (page 24)

Colourization Colourization refers to the procedure where a greyscale image
is converted to a colour image. This can be done using exam-
ple images (i.e. example-based methods) or colour scribbled
supplied by the user (i.e. scribble-based methods). (page 36)

Dataset Most often a dataset is a matrix where the rows correspond to
the observations and the columns to the variables or features.
(page 41)

Elemental distribution map See XRF map or image. (page 7)

Euclidean distance The Euclidean distance or Euclidean metric is the 'ordinary'
distance between two points that one would measure with a
ruler, and is given by the Pythagorean formula. (page 43)

Feature space When patterns are represented in terms ofd features (i.e. with
a vector of numbers), then they can be viewed as a point in
a d-dimensional space. This space is called the feature space.
(page 43)

Feature vector The feature vector of an object is a vector holding numerical
values for some characteristics of the object, such as its size.
(page 26)

Hg Hg is the chemical symbol for mercury. When it is found as
part of a pigment, the pigment is most often Vermilion; a red
colour. (page 15)

Hidden painting Hidden paintings are paintings that are fully covered by another
painting (called surface painting) such that they aren't visible
to the naked eye any more (page 3)
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Image segmentation Image segmentation is a technique that separates the pixels of
an image into distinct regions. The regions can be separated
based on certain characteristics, depending on the application
and chosen algorithm. (page 21)

Infrared Re
ectography (IR) Infrared Re
ectography records the infrared light that an ob-
ject emits using a camera adapted to receive infrared radiation.
(page 5)

Inpainting The term inpainting is used to denote the procedure to �ll in
missing regions in an image. There are many alternative terms
used in literature, such as 'image completion' and 'image inter-
polation'. (page 30)

k-Neighbourhood of pixel The pixel neighbourhood is also known as the 'window'. It is
the collection of pixels that surround the pixel. (page 23)

Luminance Luminance is an indicator of how bright a surface appears. In a
greyscale image, the luminance of a pixel is just its pixel value:
the whiter the pixel, the higher its value and the higher its
luminance. (page 38)

Nearest-neighbour approach A nearest-neighbour classi�er assigns the label which is most
frequent among the training samples nearest to the new pat-
tern; when the most nearest label is applied directly, it is aone
nearest-neighbour classi�er (1-NN). (page 43)

Old Master painting The term 'Old Master' in general denotes a European painter
of skill who worked approximately from the 13th to the 16th
or 17th century. Examples of well-known Old Masters are
Leonardo da Vinci, Raphael, Pieter Bruegel the Elder and Rem-
brandt van Rijn. (page 1)

Pigment The colouring substance of a paint. These are chemical com-
pounds that selectively absorb certain wavelengths of light. Ex-
amples are Vermilion (red), Naples Yellow (yellowish white) and
Cobalt Blue (blue). (page 15)

Point measurements Analyses of only selected points of an object. (page 9)

Principle Component Analysis PCA is a mathematical procedure that transforms a number
of possibly correlated variables into a smaller number of uncor-
related variables called principal components. The �rst com-
ponent accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much
of the remaining variability as possible. (page 11)

Sb Sb is the chemical symbol for antimony. There are a number of
pigments that contain antimony, one example is Naples Yellow
(yellowish white). (page 15)

Shape descriptor A shape descriptor is used to represent a shape or object by its
characteristics. These characteristics can then be used to assess
the similarity between di�erent shapes. (page 25)
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Shape matching Shape matching is a technique that is used to measure the sim-
ilarity between shapes. For this, the shape should be described
by some shape descriptor and a similarity measure along with
a threshold is required. (page 25)

Similarity measure As the name implies, a similarity measure is a measure that
is used to assess the similarity between two objects. When the
objects are represented by numerical values, a distance measure
can be used. (page 60)

Slices The term 'slice' refers in this study to an image that contains
only those pixels of an image that have a value within a speci�ed
range. These pixels will appear white and the remaining pixels
as black. (page 22)

Surface painting The painting that is visible to the naked eye is called the surface
painting. (page 3)

Template matching The most simple approach to classi�cation is template match-
ing. Here, a new pattern is assigned to the class of which the
template pattern is most similar to the new pattern. (page 43)

Thresholding Thresholding is a technique often applied in image processing
to divide the pixels into groups: those that have a value lower
than the threshold and those that have a value equal or higher
than the threshold. (page 19)

Training set A dataset of labelled patterns that is used to train a classi�er is
called a training set. It is used to 'learn' which kind of patterns
correspond to which class. (page 43)

X-Radiography (XR) In this technique X-Rays are directed through a sample such
that they darken the photographic plate placed behind the sam-
ple wherever the radiation is not absorbed. (page 5)

XRF The abbreviation 'XRF' stands for X-Ray Fluorescence Spec-
troscopy, a technique used to examine the chemical composition
of a sample. However, in this study it is often used to denote
the XRF map or image; the meaning will be clear from the
context. (page 5)

XRF map or image The term XRF map or XRF image refers to the image that
shows the concentration of a speci�c chemical element in a re-
gion: white indicates a high concentration whereas black corre-
sponds to a low intensity. (page 7)

Z-value The Z-value is the atomic number of the chemical element in
the periodic system. (page 7)
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Appendix A Search methodology: key words
and results

This appendix addresses the search methodology that is used to �nd the literature presented
in section 2.3 and chapter 3. A set of key words is determined �rst, after which synonyms
are added to obtain more studies. Finally, the results are examined and the most important
researches are selected.

To �nd literature about virtual reconstruction of hidden paintings using XRF images 1 a set of
key words is determined as follows:

topic: virtual reconstruction of hidden paintings using XRF images
key words: virtual - reconstruction - hidden - painting - xrf

Of course, many queries can be made with these words, each with a di�erent combination of a
di�erent subset of the key words. However, queries with only 1 or 2 key words are expected to
retrieve too many general sources: they will yield sources that only slightly cover the topic of
this research. Therefore, the initial list of queries consists of combinations of 3 key words, as
shown in table A.1.

For each query (i.e. combination of key words), its relevance is determined. The relevance
depends on the key words: some are more important than others. For example, the key word
'hidden' is very important (this research is not about visualizing any painting) but if 'xrf '
in included, this also indicates that the research looks 'beyond' the surface of an object. In
addition, researches about visualizing not a painting from an XRF but something else that is
hidden, are relevant as well.

From the initial list of queries, a second list is made. This list (shown in �gure A.1), adds
synonyms to the queries that had a high relevance score. The synonyms used are the following:

� virtual = digital

� reconstruction = visualization (these are not really synonyms but for the search both key
words are relevant)

� hidden == buried = covered

� For 'painting' no true synonym is available (studies on for instance murals or frescoes will
be found by leaving out this key word).

� xrf = 'x-ray 
uorescence'

The table shown in �gure A.1 shows that in total 46 documents were found but 32 documents
remained after removing duplicates. The title, abstract, authors and sources were examined
to select truly relevant studies: when they investigated some form of hidden layer they are
discussed in chapter 3 and when they merely give a good impression of how XRF can be
applied in art analysis they are addressed in section 2.3.

1The focus is on XRF images because they are expected to yield the best view on the hidden painting (see
section 2.2).
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Table A.1: Set of queries constructed to �nd literature on virtual reconstruction of a hidden painting,
using XRF images. Note that the words are connected using 'AND'.

nr. Keywords Relevance
1 hidden painting xrf ++
2 reconstruction painting xrf ++
3 reconstruction hidden xrf ++
4 reconstruction hidden painting +++
5 virtual reconstruction xrf -
6 virtual reconstruction painting -
7 virtual reconstruction hidden +
8 virtual hidden painting ++
9 virtual painting xrf ++
10 virtual hidden xrf ++

Figure A.1: Second set of queries constructed to �nd literature on virtual reconstruction of a hidden
painting, using XRF images. This set consists of the most relevant queries from table A.1 and their
synonyms. Note that the words are connected using 'AND'. Some queries yield two numbers of results
due to di�erence in spelling: visualization vs. visualisation.
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Appendix B Painting and pigments

This appendix provides some background information on the artistic aspects of this study.
First, section B.1 addresses the paint and its components used by an artist. Several types of
pigments and their (chemical) composition are described in section B.2.

The following sources are used for this chapter. They are listed here because they do not
contribute to speci�c sections.

� The text book 'Het Schilderij: materiaal techniek-behoud' by Knut Nicolaus [31]

� The WebExhibit on pigments by the Institute for Dynamic Educational Advancement [19]
which refers itself to numerous validated sources

� Infrared spectra of paints and coatings found by the Testing Centre of the Faculty of
Physics and Chemistry, University of Tartu [42]

� Several pages from Wikipedia [47].

It should be noted that the last source (Wikipedia) generally cannot be seen as valid source to
build on. In this case however, the information is only used to gain elementary understanding
and give basic descriptions.

B.1 Components of paint

The paint used in old paintings (and in many new ones too) is made by the artists themselves.
It is constructed from a pigment and a binder:

� Pigments are granular solids incorporated into the paint to contribute colour. They
are materials that change the colour of light it re
ects as the result of selective colour
absorption. When white light (a roughly equal mixture of the entire visible spectrum
of light) reaches a pigment, some wavelengths are absorbed by the chemical elements
of the pigment, and others are re
ected. This new re
ected light spectrum creates the
appearance of a colour.

� Pigments need a specialbinder to bind the pigments together and onto the surface. The
pigment is not soluble in the binder, in contrast with a dye (which is soluble such that
mixing it with a binder results in a suspension).

The binder strongly in
uences properties as gloss potential, exterior durability, 
exibil-
ity, and toughness. Examples of binders are synthetic or natural resins such as acrylics,
polyurethanes, polyesters, melamine resins, epoxy, or oils.

To make paint, the dry pigment is �rst ground with mortar and pestle ( vijzel in Dutch) and
then mixed with water or oil by 'rubbing' it together on a plate of stone (e.g. marble) or glass.
Some pigments can be rubbed longer than others: the colour of Vermilion only improves when
rubbed for a long time, while Lead-tin Yellow loses its colour when rubbed too �ne.
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B.2 Pigments: their colours and chemical composition

The Old Masters could use natural inorganic, arti�cial inorganic or natural organic pigments
for their paintings. The �rst category consists mainly of earth colours such as Red Ochre and
Umber but also of pigments using minerals such as Ultramarine (made with lapis lazuli) and
Azurite. Lead White, Vermilion and Copper Green are made arti�cially. The natural organic
pigments are made from animal or botanical products, for example berries, carrots, coloured
types of wood and small animals. The black colours belong to the organic pigments as well.

Some of the pigments used most often in old paintings are discussed in section B.2.1 to B.2.7,
categorised according to the colours they produce.

B.2.1 White pigments

Lead White is historically, artistically and scienti�cally the most important pigment. It is
mentioned in all technical art sources and paint recipes since ancient history.

Until the 19th century this was the only white paint used in the paintings. Other white pig-
ments such as Zinc White and Titanium White that are nowadays also used, weren't applied
by artists until 1840 and 1918 respectively.

Lead White was mixed with almost all colours to make them lighter. It was also used as a base
layer for the painting. One reason for doing this was that Lead White, mixed with oil, dries
quickly.

When mixed with Vermilion or Black, Red or Yellow Earth, Lead White was used for skin
colours; the colour of the sky is produced by mixing with Azurite or Ultramarine. The white
shirt, cloths, blouses and big white collars of the Dutch and Flemish paintings consist of Lead
White, occasionally mixed with chalk (calcium carbonate).

� � � Chemical structure
As the name implies, the most important chemical element in Lead White is lead. The formula
of lead white is 2PbCO3Pb(OH )2: it contains ordinarily about 70% of lead carbonate and 30%
lead hydrate.

B.2.2 Yellow pigments

The most important yellow pigments are Lead-tin Yellow, King's Yellow (Orpiment), Naples'
Yellow and Yellow Ochre (see �gure B.1).

Figure B.1: Lead-tin Yellow (A), King's Yellow (B), Naples' Yellow (C) and Yellow Ochre (D).

Lead-tin Yellow was an important pigment. It is a granular, lemon yellow pigment that can
mostly be found on paintings from the 15th, 16th and 17th century. Before that time it wasn't
used very often and in the 17th century it was gradually replaced by Massicot and Naples
Yellow. Because of this, Lead-tin Yellow was often mistakenly identi�ed as one of those new
pigments. Only in 1940/41 it was rediscovered by Richard Jacobi from the Doerner Institute
at Munich and reconstructed from old recipes.
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� � � Chemical structure
The formula for Lead-tin yellow is Pb2SnO4: not surprisingly it contains lead and tin.

King's Yellow or Orpiment is a 'hell yellow' colour. It is mostly found on panel paintings
from the 12th and 13th century, and less in older paintings. The lack of use is probably not due
to the toxic nature of the pigment but to the fact that it dries very slowly. It is also di�cult
to mix King's Yellow with other colours.

� � � Chemical structure
King's Yellow is yellow arsenic sul�de: As2S3.

Naples Yellow can range from a somewhat muted, or earthy, reddish yellow colour to a bright
light yellow. The Old Masters used this pigment frequently in their paintings.

It is one of the oldest synthetic pigments, dating from around 1620, and was used well into
the 20th century. However, Chromate Yellow and Cadmium Yellow became available around
1820 and 1850 respectively and replaced the Naples Yellow.

� � � Chemical structure
Naples Yellow consists of lead combined with antimony. The formula is:Pb(SbO3)2 or Pb(SbO4)2

Ochre , including all shadings, is one of the oldest and most used pigment. It can be seen all
over Europe and was already used in prehistoric cave paintings. Ochres vary widely in trans-
parency; some are quite opaque, while others are valued for their use as glazes.

� � � Chemical structure
Ochre contains iron (it might therefore resemble the colour of rust). The formula isF e2O3H2O.

B.2.3 Blue pigments

The most used blue pigments are shown in �gure B.2. They are described below.

Figure B.2: Ultramarine (A), Azurite (B), Indigo (C), Smalt (D) and Prussian Blue (E).

Ultramarine , the most beautiful blue pigment, was as expensive as gold. It was made from
the Asian semi-precious stone lapis lazuli and mainly imported through Venice.

It was used from the 14th to the middle of the 15th century, mainly by Italian painters. The
scarcity and the di�cult and time-consuming production made it too costly for many painters
however.

When Ultramarine is mixed with oil, a dark, almost black blue is obtained. To compensate,
painters added a white or light blue layer underneath the Ultramarine such that light was
re
ected. Sometimes the Ultramarine was directly mixed with Lead White.

Ultramarine was not mixed with other colours than Lead White, except for other shades of
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blue and organic red pigments. The latter were used to obtain purple shades, since Ultramarine
with its violet undertone was more suitable for this than the more greenish Azurite.

� � � Chemical structure
Ultramarine is a complex sulphur, containing sodium aluminium silicate. The formula is
Na8 10Al 6Si6O24S2 4.

Azurite was often used instead of Ultramarine to reduce costs. Especially in bigger paintings
Azurite was used, or Azurite covered with a thin layer of Ultramarine. Azurite (in contrast
with Ultramarine) is known from ancient times and was used until the 18th century. In the
17th century it became less popular and in the 18th century it was replaced by Prussian Blue,
which was then discovered.

� � � Chemical structure
The formula for Azurite is 2CuCO3Cu(OH )2. It is a basic copper(II)-carbonate.

Indigo is another alternative for Ultramarine to paint blue. This blue botanical paint base
was used during all periods of the European art history. It was made from the East-Indian
indigo plant and imported in great amounts since the 16th century.

� � � Chemical structure
The chemical name for Indigo is 2; 20  Biindolinyliden  3; 30  dion. It consists of carbon,
oxygen, hydrogen and nitrogen molecules.

Smalt , consisting of �nely ground glass which is made blue with cobalt, was the earliest of
the cobalt pigments. The size of the grain determines the intensity of the colour: when the
pigment is ground too much, the colour turns pale.

Smalt can be seen quite frequently on paintings from the 16th, 17th and 18th century. For
example, Rubens (1577-1640) used this pigment very often but diluted with oil, possibly con-
taining resin. This resin �xated the pigment after the oil was evaporated. Further adding of
for instance Lead White sped up the drying process.

Cobalt has been used to produce blue glass in ancient times and in the 15th century Venice.
The discovery of using Cobalt as pigment is assumed to be made in the middle of the 16th
century. However, the pigment is already found on paintings from the 15th century, for example
on an altar by Michael Pacher (c.1435-1498).

� � � Chemical structure
Smalt contains potassium (kalium in Dutch), cobalt and silicate (glass). It can be made by
heating quartz, potassium carbonate and small amount of cobalt(II)-chloride to 115oC and
inserting the hot product into cold water. The disintegrated glass must then homogenized in a
mortar.

Prussian Blue is one of the �rst synthetic pigments, discovered by accident in Berlin in 1704.
Colourmaker Diesbach made the blue pigment accidentally when experimenting with the oxi-
dation of iron.

The pigment was available to artists by 1724 and was extremely popular throughout the
three centuries since its discovery. Its name comes from the fact that it was �rst extensively
used to dye the dark blue uniforms of the Prussian army.
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� � � Chemical structure
The composition of Prussian blue was uncertain until recently. One of the reasons is that even
pure Prussian blue is structurally complex. The formula isF e[F e3+ F e2+ (CN )6]3.

B.2.4 Green pigments

The Old Masters did not have a pure, clear and yet opaque green. The intense green colours
visible on paintings from the 13th to mid-16th century, consist most often of a mixture of Cop-
per Green, Lead White and/or Copper-tin Yellow. In the 17th and 18th century, Copper Green
appears to have been applied as top layer on Green Earth. Swatches of the green pigments can
be seen in �gure B.3.

Figure B.3: Verdigris (A), Green Earth (B) and Malachite (C).

Copper Green or Verdigris was the most vibrant green pigment available until the 19th
century and frequently used in painting. Because of its transparency, Verdigris was often mixed
with, or glazed over Lead White or Lead-tin Yellow.

Verdigris is lightfast in oil paint, as numerous examples of 15th century paintings show.
However, its lightfastness and air resistance is very low in other media.

� � � Chemical structure
Verdigris consists of a copper acetates, ranging in colour from green to blue. Neutral verdigris
is Cu(CH3COO)2H2O, and basic Verdigris contains moreCu(OH )2 and H2O.

Green earth has been known as a pigment since ancient times. The colour depends on the
point of origin: cool, soft shades are named 'Veronese Green Earth' and warm, somewhat
brownish shades are called 'Bohemian Green Earth'.

In early-Italian paintings the Green Earth was used as underpainting for the red parts such
as faces and hands.

� � � Chemical structure
Green Earth has complex structure, consisting of aluminosilicate minerals. The formula is
K [(Al; F e III ); (F eII ; Mg)](AlSi 3; Si4)O10(OH )2.

Malachite is another pigment used by painters for the colour green. Its use can be traced back
to ancient times but it was not frequently applied on paintings. The pigment can be found on
some paintings from the Flemish School.

� � � Chemical structure
Malachite is chemically similar to the blue pigment Azurite. The formula is 2CuCO3Cu(OH )2.

Copper Resinate was believed to have been used often as green pigment. However, in 2005
art historian dr. Margriet van Eikema Hommes found that this is not true. After thorough
analysis of old recipes and new laboratory results, it appeared that not a mixture of Verdigris
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and hot varnish (resulting in Copper Resinate) produced the green colour, but a mixture of
Verdigris with cold oil or varnish.

The original bluish green tint of the copper fades to brown in the course of time, which means
that once intense blue-green colours now appear much 'warmer'. Painters must have been aware
of this, since this process is already mentioned in old documentation. In addition, Leonardo
da Vinci advised to varnish Copper Green immediately after application because the contact
with air causes it to turn brown as well.[-2mm]
� � � Chemical structure
Since Copper Resinate is a mixture of Verdigris and hot varnish, its chemical composition is
very similar to that of Verdigris: Cu(C19H29COO)2.

B.2.5 Red pigments

The most common red pigments are shown in �gure B.4. The description follows below.

Figure B.4: Vermilion (A), Red Ochre (B) and Minium (C).

Vermilion is the most important red pigment: an opaque and clear pigment that is used in
many paintings made before the 20th century. It can be found in nature but has been arti�-
cially made since centuries. Nowadays the pigment Cadmium Red is used instead.

� � � Chemical structure
Chemically, the pigment is mercuric sul�de and like all mercury compounds it is toxic. The
formula is HgS.

Earth pigments were, beside Vermilion, the most used red paint bases. Red Ochre and Iron
Oxide can appear as shades from matted red to dark red brown; among these there are a
number of shades that show much resemblance with Vermilion.

� � � Chemical structure
Red Ochre is an anhydrous iron(III)-oxide. The formula is F e2O3.

Minium , also called Red Lead, is only found on a small number of paintings. It is on the
other hand frequently found on Roman and early-Gothic sculptures, mostly as ground layer
for Vermilion. Although old technical art sources mention it as possible pigment for the red
shades of a painting, not much of it is found.

Painters often constructed red parts in the painting with di�erent layers. Vermilion could be
used as basic layer on top of which shades are made with the more '�erce red' Minium. More
intense, darker shades were obtained by covering the Vermilion with red wax.

� � � Chemical structure
The formula for Minium is Pc3O4: is is a lead(II,IV)-oxide.
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B.2.6 Brown pigments

Brown pigments are not much applied in paintings from the Middle Ages. Only since the 16th
century the are used more frequently and in the 17th and 18th century they actually dominate
the palette of much paintings.

Often, brown was made by mixing black, yellow, red and blue pigments but the most com-
mon brown colours are the natural earth shades of Brown Ochre and Umber. Also Van Dyck
Brown was used. The three pigments are shown in �gure B.5.

Figure B.5: Brown Ochre (A), Umber (B) and Van Dyck Brown (C).

Brown Ochre is yet another variation of Ochre (see yellow and red, sections B.2.2 and B.2.5
respectively). It is made from a natural mineral consisting of silica and clay owing its colour
to iron oxide.

� � � Chemical structure
As Red and Yellow Ochre, Brown Ochre is an anhydrous iron(III)-oxide. It is partially hy-
drated, resulting in the formula F e2O3(H 2O).

Umber is a greenish brown earth shade, similar to Ochre. It is also made from natural mineral
found throughout the world, in many shades, in hues from yellow to brown, and faint blue. By
burning, Umber can become a reddish dark brown.

� � � Chemical structure
Umber is also an iron(III)-oxide but now containing manganese(IV)-oxide. The formula is
F e2O3MnO 2.

Van Dyck Brown is an 'earthy' brown coal which, when applied with oil, produces a dark
brown colour. Until now this pigment has not been found on paintings made before the 17th
century.

� � � Chemical structure
Van Dyck Brown contains organic residues of decaying organic matter, such as soil, peat or
brown coal.

B.2.7 Black pigments

For the production of black paint the Old Masters mostly used Vine Black, Bone Black or Soot.

Vine Black is a botanical black, traditionally produced by charring desiccated grape vines
and stems. It is similar to charcoal and has a bluish colour. Grey tints that are made with
white also have a bluish tinge.

Bone Black is blue-black in colour and fairly smooth in texture. It is made by charring
animal bones in closed retorts; usually bones from glue stock, boiled to remove fat and glue,
are used.

69



Chapter B: Painting and pigments

Soot could also be used as black pigment. It refers to the black, impure carbon particles
resulting from the incomplete combustion of a hydrocarbon.

� � � Chemical structure
All pigments used to make black paint consists of pure elemental carbon (C). For example,
Bone Black contains about 10% carbon, 84% calcium phosphate and 6% calcium carbonate,
resulting in the formula C + Ca3(PO4)2.

It should be noted that black parts on a painting don't always contain black pigments: they
are sometimes mixed from dark blue (for example Indigo) and a red wax. The portrait art of
the 16th and 17th century contain lots of black pigments however. The painted subjects wore
mostly dark clothing according to the time's fashion. These colours were put as black on the
canvas and Lead White was then used to add lighter shades.

Black could also be used as ground layer. In the Middle Ages for example, black or dark
grey was used as ground layer for Azurite, increasing the intensity of the blue. In turn, since
the black pigment dried badly when mixed with oil, painters often added an extra component,
such as Copper Green.
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