
Strategy Configuration and Selection for
Automated Negotiation Agents

by

Bram M. Renting

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday May 22, 2019 at 13:00.

Student number: 4081137
Project duration: March 2, 2018 – May 22, 2019
Thesis committee: Prof. Dr. ir. C.M. Jonker, TU Delft, supervisor

Prof. Dr. H.H. Hoos, Leiden University
Dr. M.M. de Weerdt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

In front of you lies the epitome and long-awaited end point of my studies. After my Bachelor’s in
Marine Technology, I can now say that I have successfully converted into a Computer Scientist.
The topic of this thesis originates from my interests in multi-agent systems that I developed during
my Master studies. The concept of autonomous multi-agent systems collaborating to achieve
emergence fascinates me and I hope to see more of it in the near future.

Although this is merely a small step into the direction of that concept, I hope that my work will
contribute to the automated negotiation research community, by providing new insights into the
development of strategies and by lowering the threshold of developing dynamic strategies.

My gratitude goes to Catholijn for her guidance during my project, teaching me the ways of
scientific research and letting me attend the International Joint Conference on Artificial Intelligence
(IJCAI). Her ability to put the results of my work into perspective always boosted my motivation.
My gratitude also goes to Holger, his insights in algorithm configuration and selection often left
me mind blown on the train back home from Leiden University.

Finally, I would like to thank my parents for their patience and support during my studies. The
unrestricted freedom they gave me to develop myself made me the person I am today. This thesis
marks a milestone as, after all these years, it heralds the end of my life as a student.

Bram Renting
Delft, May 2019

Contents

1 Introduction 4

2 Related work 7

2.1 Algorithm configuration . 7

2.2 Algorithm configuration in negotiation . 8

2.3 Algorithm selection in negotiation . 8

3 Preliminaries 9

3.1 Terminology . 9

3.1.1 Negotiation scenario . 9

3.1.2 Negotiation protocol . 13

3.1.3 Negotiation agents . 15

3.1.4 Special outcomes . 17

3.2 Problem definition . 18

3.2.1 Algorithm configuration . 18

3.2.2 Algorithm selection . 19

3.2.3 Formal problem definitions . 21

4 Dynamic agent 23

4.1 Bidding strategy . 23

4.1.1 Fitness function . 24

4.1.2 Outcome space exploration . 26

4.1.3 Configuration space . 26

4.2 Acceptance strategy . 29

1

4.2.1 Configuration space . 30

4.3 Opponent model . 30

4.3.1 Preference estimation . 30

4.3.2 Opponent classification . 36

4.4 Results . 36

5 Features 38

5.1 Scenario features . 38

5.2 Opponent features . 38

5.2.1 Normalised time . 39

5.2.2 Concession rate . 39

5.2.3 Average rate . 40

5.2.4 Default algorithm performance . 42

5.2.5 Disassociation of opponent features with scenario 42

6 Algorithm configuration for negotiation 44

6.1 Problem definition . 45

6.2 SMAC . 46

6.2.1 Structure . 46

6.2.2 Adding features . 47

6.3 Baselines . 49

6.4 Method . 50

6.5 Results . 52

6.5.1 Influence of instance features . 52

6.5.2 Performance on test set . 52

7 Algorithm selection for negotiation 55

7.1 Algorithm selector . 56

7.1.1 AutoFolio . 56

7.1.2 Performance measure . 58

7.2 Algorithm portfolio . 58

7.2.1 HYDRA . 60

7.3 Method . 61

2

7.4 Results . 63

7.4.1 Quality of the portfolio . 63

7.4.2 Performance of the algorithm selector . 64

8 Discussion 68

8.1 Dynamic Agent . 68

8.2 Strategy configuration . 69

8.2.1 Strategies . 69

8.3 Strategy selection . 70

8.3.1 Portfolio . 70

8.4 Overall contribution . 71

8.5 Future work . 72

9 Conclusion & Reflection 74

9.1 Conclusion . 74

9.2 Reflection . 77

A Training and testing set 86

B Genetic algorithm procedures 89

C Predicted concession rate 90

C.1 Results . 91

D Predicted average rate 93

D.1 Results . 93

3

Chapter 1

Introduction

Negotiation occurs in every aspect of our lives, to the extent that we are not always aware of
it. Commercial negotiations are easily identifiable in human society. For example, buying a car,
merging companies, or negotiating your salary. Non-commercial negotiation is much more invisible
and embedded into our daily lives. For example, setting an appointment with another person,
discussing where to go on a holiday, or participating in traffic. All problems that need to be solved
while involving multiple people with colliding interests are a form of negotiation. Since negotiation
is such a big part of everyday live, researchers have studied the topic of negotiation from different
perspectives, as well as a science perspective [1], [2].

Since the 1980s researches have tried to design computer negotiators that can replace or assist
humans in negotiation. Early adopters in this field are Smith, Sycara, Robinson, Rosenschein
and Klein [3]–[8]. Many publications followed, improving the capabilities of computer negotiators
with success. Computer negotiators are capable of reaching more optimal solutions compared to
a negotiation between human negotiators [9]. However, there was a lack of a standardised testbed
for negotiation, so researchers had to create their own. It made it difficult to compare the state
of the art in automated negotiation, as testbeds were not compatible and negotiators were tested
against a limited pool of other strategies. With current knowledge, we know that the success of a
negotiator also depends on the strategy of the opponent [10]. In 2010 General Environment for
Negotiation with Intelligent multi-purpose Usage Simulation [11] (GENIUS) was created to resolve
the issue of incompatible negotiators and to provide a testbed for testing new developments in the
field of automated negotiation. Alongside, the Automated Negotiating Agents Competition [12]
(ANAC) was organised to stimulate negotiator development in the academic field. Today, the
combined effort of GENIUS and ANAC resulted in a standardised testbed with more than one
hundred opponents and negotiation problems to use for research [13].

Negotiators are still being developed every year for the ANAC and every year a new challenge
is added that contestants have to cope with. The negotiators are generally hard coded pieces
of software based on a strategy with parameters that must be set to characterise its behaviour.
Developing a basic negotiator is not that difficult, however, developing a well performing negotiator
is. Strategy and parameter configuration can be time consuming depending on the negotiation

4

settings. Especially when negotiation budgets or deadlines are bound to real time1, which is the
case in stock exchange negotiations and auctions, making computational speed-up unprofitable.
Strategy tuning via trial and error on a large and diverse testbed is time consuming and impractical,
so agents in the literature are optimised on smaller testbeds [14]. Some attempts were made to
automate this process, often using genetic programming [15], but again only on much more specific
and simplified environments. For instance, agents were only tested in one or two scenarios or only
optimised against itself [16], [17], which is partly due to the lack of a general testbed. To our
knowledge, no attempts have been made at automating this configuration problem on significantly
sized training sets with a large range of scenarios as well as opponent strategies.

In this work, we make a first attempt at solving this automated configuration challenge for negoti-
ation settings and the difficulties it brings. With as most important difficulty, the computational
expense of testing a single configuration on a larger training set of negotiation settings. We recreate
a negotiation agent from literature that is configured by hand, combine it with existing opponent
learning techniques and create a configuration space of its parameters and strategic decisions. This
negotiator is then configured automatically by an algorithm that is capable of training on subsets
of training sets by extruding the results over the entire set based on similarities. This algorithm
was successfully applied to configure solvers for Boolean Satisfiability (SAT) and Mixed Integer
Programming (MIP) problems, which are known to be computationally expensive. The difference
is that these problems are single-agent problems, while negotiation is a multi-agent problem. Our
method overcomes this incompatibility by considering the opponent negotiators as part of the
problem, making the problem instances a combined problem. The aim of our attempt is to create
an agent that achieves good results on a wide variety of scenarios and opponents.

We distinguish between optimising a configuration to create a strategy that works well in general,
and one that works well for specific settings. The latter is done in the configuration procedures
using genetic programming as described earlier, resulting in strategies that are outperformed easily
when used outside of their “comfort zone”. In contrast, we attempt to configure a strategy that
works well in general, but might still be outperformed in specific settings, as it is widely observed
that no single strategy is optimal for all negotiation settings [11], [18]. Having a fixed strategy
that performs well in general is beneficial when switching strategies is difficult (e.g. due to a lack
of information), but if the aim is to improve our pay-off even further, then switching between
strategies is a must. This introduces the problem of algorithm selection [19] into automated
negotiation. Attempts on applying algorithm selection in automated negotiation have been made
by Ilany et al. [18], [20], but they only selected a strategy based on the negotiation scenario without
considering the opponent.

We introduce a method that learns from opponents while repeatedly encountering them in negoti-
ation, using this additional information for algorithm selection. The problem that remains, is that
of constructing a portfolio of algorithms to select from. Ilany et al. solved this by selecting from a
pool of agents that competed in the ANAC 2012, depending on negotiation strategies developed by
other people. This, yet again, introduces the question if these strategies are configured properly. So
finally, we use HYDRA [21] to combine algorithm selection and configuration and fully automate
the process of creating a portfolio of negotiation strategies that can be used for algorithm selection
in automated negotiation. Only a single highly parameterised strategy is required to build an
optimised and dynamic negotiation agent.

1The ANAC maintains a 3 minute deadline for a single negotiation session.

5

This thesis is structured as follows. In Chapter 2 we elaborate upon current literature in related
topics. Chapter 3 describes the basics of negotiation theory and the structure of negotiation
sessions. We end with a formal problem definition to introduce the goal of the thesis. In Chapter 4,
we introduce the agent with a highly parameterised strategy that we used for configuration. For
both configuration and algorithm selection we need a feature model of the negotiation settings.
The features that we used are described in Chapter 5. The method of configuration and the results
are presented in Chapter 6. Chapter 7 explains the algorithm selection method that we used, as
well as the process of building a portfolio and the results of using this portfolio in negotiation.
Finally we conclude with a discussion (Chapter 8) and a conclusion (Chapter 9).

6

Chapter 2

Related work

In this chapter we discuss related work in the field on algorithm configuration and selection, as
well as some past applications in the research area of automated negotiations.

2.1 Algorithm configuration

In literature, algorithm configuration is also referred to as parameter tuning or hyperparameter
optimisation. I can be formally described as follows: given a parameterised algorithm A, a set of
problem instances I and a cost metric c, find parameter settings of A that minimise c on I [22].
The configuration problem occurs for example in solvers for MIP problems [23], neural networks,
classification pipelines, and every other algorithm that contains performance-relevant.

These configuration problems can be solved by basic approaches such as manual search, random
search, and grid search, but over the years researchers developed more intelligent methods to obtain
the best possible configuration for an algorithm. Two separate part within these methods can be
identified: how new configurations are selected for evaluation and how a set of configurations is
evaluated.

F-Race [24] races a set of configurations against each other on an incremental set of target instances
and drops low performing configurations in the process. This saves computational budget as not all
configurations have to be tested on the full target instance set. The set of configurations to test can
be selected either manually, as a grid search, or at random. Balaprakash et al. [25] extended upon
F-Race by implementing it as a model-based search [26], which iteratively models and samples the
configuration space in search of promising candidate configurations.

ParamILS [27] does not use a model, but instead performs a local tree search operation to itera-
tively find better configurations. Like F-Race, ParamILS is capable of eliminating low performing
configurations without evaluating them on the full set of instances.

Finally, a last popular method of algorithm configuration is GGA [28], which makes use of evolu-
tionary programming to find configurations that perform well. This method does not model the
configuration space and has no method to eliminate low performing configurations early.

7

2.2 Algorithm configuration in negotiation

Earlier attempts for solving the algorithm configuration problem in automated negotiations mostly
used basic approaches, such as manual and grid search. To the best of our knowledge, the only
advanced method used to automatically set negotiation strategies is the genetic algorithm.

Matos et al. [14] encoded a mix of baseline tactics as an chromosome and optimised it using a
genetic algorithm. They assumed perfect knowledge of opposing party’s preferences and tested
against itself on a single negotiation domain. Eymann [16] encoded a more complex strategy as
a chromosome with 6 parameters, again only testing its performance on itself and using the same
domain. Dworman et al. [17] implement the genetic algorithm in a coalition game with 3 players,
with a strategy in the form of a hard coded if-then-else rule. The parameters of the rule are
implemented as a chromosome. The strategy is tested against itself on a coalition game with
varying coalition values.

Lau et al. [29] use a genetic algorithm to explore the outcome space during a negotiation session,
but do not use it to change the strategy.

2.3 Algorithm selection in negotiation

Not all algorithms are well suited to solve all target problem, which is widely observed in classifica-
tion problems. To exploit differences between individual problem instances, algorithm selection is
applied [19]. Algorithm selection is a classification problem itself: What algorithm to choose given
the faced problem instance (features). A popular application of algorithm selection methods is the
selection of SAT, Answer Set Programming (ASP), and Constraint Satisfaction Problem (CSP)
solvers [30]–[32].

To the best of our knowledge, only one attempt is made to apply algorithm selection methods in
automated negotiation. Ilany et al. [18], [20] used a set of past ANAC strategies and predicted
which strategy would perform best given the negotiation scenario. They would then enter that
strategy into the negotiation session. Although they were capable of improving the pay-off of the
agent, they were unable to win the ANAC.

8

Chapter 3

Preliminaries

This chapter provides an overview of the terminology and symbols that are used throughout the
thesis. The second part provides a formal problem definition.

3.1 Terminology

The idea behind automated negotiation is to replace human negotiators by computers. Here,
humans are replaced by software agents that act on their behalf. We call these software agents
parties, negotiation agents or simply agents. Agents that represent opposing parties in negotiation
are also referred to as opponents.

We refer to a multilateral negotiation as a negotiation between three or more parties. However, this
thesis focusses solely on negotiations between two parties, which is known as bilateral negotiation.
The software platform that we use for agent construction and testing is GENIUS [11], which
contains all the necessary components to setup a negotiation, allowing us to focus only on agent
construction.

There are three component types that form a negotiation setting [33]. Their relations are illustrated
in Figure 3.1:

• Negotiation scenario, we denote a set of scenarios by S with s ∈ S as variables

• Negotiation protocol

• Negotiation agents, we denote a set of agents by A with a ∈ A as variables

3.1.1 Negotiation scenario

The protocol defines the rules, the agents perform the interactions, the last component that is
required is the negotiation problem itself along with details on the preferences of every party. This

9

Figure 3.1: Overview of the components of a negotiation setting (bilateral) [33]

is called the negotiation scenario, which is discussed in this section. The first part focusses on
the negotiation domain that defines all the possible outcomes of the negotiation. The second part
focusses on the preference profiles, which describes the preferences of both agents.

Negotiation domain

The negotiation domain is a description of the negotiation problem that has to be solved. A
negotiation domain is built up by one or more issues that form the issue set I. For each issue, a
solution must be agreed upon by both agents. Every continuous or integer issue can be interpreted
as a discreet issue, which we do in this thesis. All the possible solutions within an issue are called
values and the set of values within an issue is denoted by V .

All possible solutions in the negotiation domain are called outcomes and the agreed outcome at the
end of a negotiation is called the agreement. The total set of possible outcomes of the negotiation
domain is called the outcome space and is denoted by Ω, where a single possible outcome is denoted
by ω ∈ Ω. The total amount of possible outcomes in a negotiation domain is given by Equation 3.1.

|Ω| =
∏
i∈I
|Vi| (3.1)

where:

Vi : The set of values V of issue i

Preference profiles

The negotiations are performed under incomplete information, meaning that an agent does not
know the preferences of an opponent. The negotiation domain is common knowledge for both
agents in the negotiation. The preferences of a party are defined in a preference profile and thus
private information for both parties. The profile contains all agent specific details regarding pay-
off, which we call utility. The achieved utility of a party calculated is after the negotiation has
ended.

10

There are three types of components that form a preference profile:

1. Utility function

2. Discount factor

3. Reservation utility

Utility function A utility function is defined in the preference profile by specifying a evaluation
function and issue weight for every issue in the domain. This type of utility function is also know as
the linear additive utility function and is commonly used in the literature. It provides information
to map any outcome ω ∈ Ω to a utility following Equation 3.2. In this thesis, we will limit ourselves
to this type of utility function.

u(ω) =
∑
i∈I

wi ∗ ei(ωi) (3.2)

where:

u : Utility function, where u : Ω→ [0, 1]
wi : Issue weight as a measure of issue importance, where

∑
i∈I wi = 1 and wi ∈ [0, 1]

ei : Evaluation function of an issue i, where ei : ωi → [0, 1]
ωi : Sub-outcome for issue i in the outcome ω

We use u(ω) to indicate our utility function and uo(ω) to indicate the opponents utility function.
As the opponents utility function is not common knowledge, we add a hat to our notation to
indicate predictions (ûo(ω)).

Discount factor The discount factor is used in negotiation scenarios with time pressure. It
reduces the utility of an agent when time passes by Equation 3.3, putting pressure on reaching an
agreement quickly.

ud(ω) = u(ω) ∗ dt (3.3)

where:

ud : Discounted utility function
d : Discount factor, where d ∈ [0, 1]
t : Time, where t ∈ [0, 1]

Reservation utility The reservation utility, which is also referred to as reservation value, is set
to implement the Best Alternative To a Negotiation Agreement [34] (BATNA). In GENIUS it is
handled as the achieved utility when no agreement is reached between agents. Typically, an agent
should not consider any outcome below the reservation utility. If a discount factor is applied to
the negotiation scenario, it also reduces the reservation utility over time similar to Equation 3.3.

In this thesis, we simplify by setting both the discount factor and reservation utility to zero
for all scenarios.

11

Visualising the outcome space

The outcome space is multidimensional, which makes it difficult to visualise. However, using the
preference profiles, every outcome can be mapped to a utility pay-off for both party. This allows
us to map the outcome space to two values in bilateral negotiation, a utility for our agent u(ω)
and a utility for the opponent uo(ω). We can now visualise the outcome space in two dimensions
based on the utilities of both parties. The outcome space is plotted in Figure 3.2 along with some
points of interests.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

uo(ω)

u
(ω

)

Outcome

Pareto frontier

Nash solution

Kalai solution

Figure 3.2: Outcome space plotted by utility

Pareto frontier The Pareto frontier is the set of Pareto optimal outcomes Ωp. It is the set of
outcomes that are not strictly dominated by another outcome, i.e. it is the set of outcomes for
which there does not exist another outcome that improves the utility for at least one party without
making the other party worse off [1]. A formal description of the Pareto set in Figure 3.2 is given
in Equation 3.4 [33].

Ωp = {ω ∈ Ω | ¬∃ω′ ∈ Ω : (u(ω′) > u(ω) ∧ uo(ω′) ≥ uo(ω))

∨
(u(ω′) ≥ u(ω) ∧ uo(ω′) > uo(ω))}

(3.4)

Nash solution The Nash solution [35] of a negotiation problem balances between individual
utility and social welfare. In our bilateral negotiation case it is defined by Equation 3.5.

ωNash = arg max
ω∈Ω

(u(ω) ∗ uo(ω)) (3.5)

12

Kalai solution The Kalai-Smorondinsky solution [36] maintains the ratio between utilities of
parties while being Pareto optimal. As utility is normalised by default within GENIUS, we can
define the Kalai solution by Equation 3.6.

ωKalai = arg min
ω∈Ωp

|u(ω)− uo(ω)| (3.6)

3.1.2 Negotiation protocol

The negotiation protocol defines the manner of negotiation by setting the rules. These rules restrict
for example the actions that can be performed by the agents or the deadline for the negotiation. A
popular protocol that is widely used in automated negotiation literature is the Alternating Offers
Protocol. In this thesis, we will use a generalised version of this protocol called Stacked Alternating
Offers Protocol [37] (SAOP), which is an extension of the Alternating Offers Protocol that can
also be used for multilateral negotiation. SAOP puts agents around a virtual table and lets them
take clock-wise turns in rounds. At every turn, an agent can perform one of three actions:

1. Make a(n) (counter) Offer

2. Accept an offer (not possible if the agent must make the opening offer)

3. End negotiation (walk away)

An action is visible to all agents that are sitting at the table. Every time an agent makes an offer,
the last offer is wiped of the table and replaced by the new offer. This process is continued until
either, all agents accept an offer, an agent ends the negotiation, or if the deadline is reached (if
applicable). The last two cases result in a failure of reaching an agreement and cause the agents
to receive no pay-off (we do not set a reservation utility).

We can set a deadline that is based on real time, or based on played rounds around the table. We
will follow the line of the ANAC by setting a real time based deadline. Note that this introduces
a dependency on calculation efficiency of the agents. We represent time by t′ ∈ [0, td], where td
is the real time deadline. Within GENIUS, time is normalised simplifying it to t = t′

td
∈ [0, 1]. A

pseudo code description of SAOP is given in Algorithm 1.

We introduce the list offered outcomes by the opponent Ht at time t, which is a simplified version
of the negotiation thread [33] or negotiation dance [1]. It is an incremental list that grows as offers
are received. We present the formulation in Equation 3.7.

Ht =
[
xt1 , xt2 , xt3 , . . . , xtn

]
(3.7)

where:

xtk : An offer made by the opponent, it represents an outcome ω ∈ Ω
tk : Timestamp of the offers, where tk ≥ tl for k ≥ l, and tk ≤ t

13

Algorithm 1 Stacked Alternating Offers Protocol [37] (SAOP)

Input A Set of agents
Variables a Agent

ω Outcome that lies on the table (last offer)
AagreeSet of agents that agreed with ω

1: possibleActions← {Offer,End}
2: loop until EndNegotiation
3: for a ∈ A do
4: Action← a.chooseAction(possibleActions)
5: messageAgents(A,Action)
6: if Action == Offer then
7: possibleActions← possibleActions ∪ {Accept} . Accept possible after first offer
8: ω ← Action.getOutcome()
9: Aagree ← ∅

10: else if Action == Accept then
11: Aagree ← Aagree ∪ {a}
12: if |Aagree| == |A| − 1 then
13: EndNegotiation(ω) . End with agreement ω
14: break
15: else if Action == End then
16: EndNegotiation(null) . End without agreement
17: break
18: if getT ime() ≥ 1 then
19: EndNegotiation(null) . End without agreement
20: break

14

3.1.3 Negotiation agents

Negotiation agents are autonomous pieces of software that are capable of negotiating conform the
style that is imposed by the negotiation protocol and the negotiation scenario. They produce the
negotiation activity and represent a person/company/entity who’s interests they try to serve. They
make the decision whether to concede towards the opponent, maintain their ground or walk away
from the negotiation. Baarslag separates negotiation agents in three components, also referred to
as BOA-components [33]:

• Bidding strategy

• Acceptance strategy

• (optionally) Opponent model

Bidding strategy

The bidding strategy is the most important part of the agent in terms of agent performance [38],
as it determines what to offer, when, and why. There are two common tactics implemented in
literature based on time or opponent behaviour called: time-dependent tactics and behaviour-
dependent tactics.

Time-dependent tactics Time-dependent tactics aim to offer outcomes near a utility target
that varies over time ut(t). Agents usually start with a higher utility target at the start of a
negotiation (t = 0) and decrease this target as time approaches the deadline (t = 1) due to the risk
of reaching no agreement at all. A popular utility target function is presented in Equation 3.8 [39],
which can be set to various behaviours depending on its parameters. We present some examples
of utility target curves with a variety of parameter settings in Figure 3.3.

ut(t) = Pmin + (Pmax − Pmin) ∗ (1− F (t)) (3.8)

F (t) = k + (1− k) ∗ t 1
e (3.9)

where:

Pmin : Lower bound of utility target, where Pmin ∈ [0, 1]
Pmax : Upper bound of utility target, where Pmax ∈ [0, 1]
k : Factor of initial utility target between Pmax and Pmin, where k ∈ [0, 1]
e : Factor to control the shape of the utility target curve, where e ∈ (0.∞). Boulware if

0 < e < 1, linear conceder if e = 1, conceder if e > 1.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t

u
t
(t
)

k = 0
k = 0.5

e = 4
e = 1 e = 0.25

e = 4

e = 1

e = 0.25

Figure 3.3: Examples of utility target curves with varying k and e. (Pmax = 1 Pmin = 0)

Behaviour-dependent tactics Behaviour-dependent tactics respond to the behaviour of the
opponent by mirroring their concessions. One of the best known behaviour-dependent tactic is
Tit-For-Tat, which can be separated into three families [39]:

1. Relative Tit-For-Tat, where the agent mimics the opponents concessions based on percent-
ages. e.g. The opponent conceded 5% between the last two offers, so we also concede by
5%.

2. Random Absolute Tit-For-Tat, where the agent mimics the opponent by absolute concessions
and adds a random amount. e.g. The opponent conceded by 2$ between the last two offers,
so we concede by 2± 0.5$.

3. Averaged Tit-For-Tat, which is similar to the Relative Tit-For-Tat tactic, but calculates the
average percentage of concession over a window in the past.

Baseline tactics There is a number of very simplistic baseline tactics that are often used as
baselines in agent performance analytics. These include basic time-dependent tactics with no
other intelligent functionality that are classified according to their settings of the target utility
curve Equation 3.8: Boulware if 0 < e < 1, Linear conceder if e = 1, Conceder if e > 1. There
is also the Hardliner strategy (or Hardball strategy [40]), which persistently offers its own best
outcome and does not concede at all. The final baseline tactic is the Random walker (or Zero
Intelligence strategy [41]), that only makes random offers.

Acceptance strategy

Negotiating does not only require an agent to make offers, but also requires agents to accept offers
of opponents. After all, a negotiation without parties that accept will always result in failure to
reach an agreement. Within its turn, an agent has to decide whether to accept an outcome that is
offered by the opponent, or to make a counter offer. Analysis of the ANAC indicated four regularly
used basic acceptance conditions [42] described below. Out of these four conditions, most agents
use either one of the conditions, or a combination of the conditions.

16

1. The agent compares the last offer of the opponent against his upcoming offer and decides
whether to accept or not (known as ACnext).

2. The agent compares the last offer of the opponent against his own last offer and decides
whether to accept or not (known as ACprev).

3. The agent accepts based on a fixed pay-off constant (known as ACconst).

4. The agent accepts after a fixed amount of time has passed (known as ACtime).

3.1.4 Special outcomes

We will define a few special outcomes that will be used throughout this thesis. A visualisation of
the special outcomes is presented in Figure 3.4, which uses the same example as Figure 3.2.

The best outcome for our agent ω+ that maximises the opponent’s utility:

Ω+ = arg max
ω∈Ω

u(ω)

ω+ = arg max
ω∈Ω+

uo(ω)
(3.10)

The worst outcome for our agent ω− that maximises the opponent’s utility:

Ω− = arg min
ω∈Ω

u(ω)

ω− = arg max
ω∈Ω−

uo(ω)
(3.11)

The best outcome for the opponent ω+
o that maximises our utility:

Ω+
o = arg max

ω∈Ω
uo(ω)

ω+
o = arg max

ω∈Ω+
o

u(ω)
(3.12)

The worst outcome for the opponent ω−o that maximises our utility:

Ω−o = arg min
ω∈Ω

uo(ω)

ω−o = arg max
ω∈Ω−o

u(ω)
(3.13)

17

We define the same principles for the offered outcomes by the opponent by replacing the outcome
space Ω with the negotiation thread Ht:

x+ = arg max
x∈Ht+

uo(x) Ht+ = arg max
x∈Ht

u(x) (3.14)

x− = arg max
x∈Ht−

uo(x) Ht− = arg min
x∈Ht

u(x) (3.15)

x+
o = arg max

x∈Ht+
o

u(x) Ht+
o = arg max

x∈Ht

uo(x) (3.16)

x−o = arg max
x∈Ht−

o

u(x) Ht−
o = arg min

x∈Ht

uo(x) (3.17)

The last offered outcome by the opponent:

xlast =
{
xtn ∈ Ht : n = |Ht|

}
(3.18)

We like to introduce a fictional average outcome ω̄ and expand the utility function u with this
outcome. This outcome generally does not exist, but we define it as an outcome that would result
in the average utility of the entire outcome set for both parties:

u(ω̄) =
1

|Ω|
∑
ω∈Ω

u(ω)

uo(ω̄) =
1

|Ω|
∑
ω∈Ω

uo(ω)

(3.19)

Finally we introduce the similar fictional average offer x̄, such that:

u(x̄) =
1

|Ht|
∑
x∈Ht

u(x)

uo(x̄) =
1

|Ht|
∑
x∈Ht

uo(x)

(3.20)

3.2 Problem definition

In this section, we describe the problems that we try to solve in this thesis. In the first part, we
will present the two main problems and elaborate on them in a top-down approach. In the last
section, we will formally define the problems that lie at the basis of the overarching goal.

3.2.1 Algorithm configuration

The negotiation agents in the GENIUS environment are mostly based on a fixed strategy, hand
designed by competitors in ANAC. These agents almost always contain parameters that are set

18

uo(ω−
o) uo(ω̄) uo(ω+

o)

u(ω−)

u(ω̄)

u(ω+)

uo(x−
o)

uo(xlast)
uo(x̄) uo(x+

o)

u(x−)

u(x̄)

u(x+)

Opponent offers (Ht)

Outcome (ω)

Pareto frontier

Figure 3.4: Special outcomes visualised

by trial and error, despite the abundance of automated algorithm configuration techniques (e.g.
Genetic Algorithm [15]). Manually exploring configuration spaces rarely leads to optimal config-
urations, so automatic configuration seems a better solution. A few attempts were made in the
past to automate this process as discussed in Chapter 2, but on very specific problem sets. Tuning
an agent on a larger representative training set of opponents and scenarios is much more time
consuming, as many automatic configuration algorithms require to evaluate a challenging configu-
ration on the full training set. To illustrate, obtaining the performance of a configuration on the
training set that we use in this thesis Table 3.1 would already take 18.5 hours, regardless of the
hardware due to the real-time deadline. These conventional methods of algorithm configuration
are therefore impractical.

Description Value

agents 20
scenarios 28
deadline 60 [s] (ANAC = 180 [s])

Table 3.1: Training set for agent configuration

3.2.2 Algorithm selection

Assuming we are able to tackle the problem of automated algorithm configuration, we are still
far from producing an optimal negotiation agent. So far, it has been observed that there is no
single best strategy optimal for all negotiation settings [11]. Our agent needs to select a strategy
based on the negotiation setting if we are to increase its performance further. This introduces
the problem of algorithm selection[19] to our agent. In [43], four conditions are formulated that a
problem should hold to be amenable to algorithm selection.

19

1. There are multiple instances of the problem with diverse complexities.

2. There exists a portfolio of algorithms for solving the problems with diverse complexity and
performance.

3. There exist general and well defined metrics for measuring algorithm performance on the
problem.

4. There is a set of known features that characterise problem instances that can be computed
off-line and that correlate with the computational hardness/complexity of the problem.

Multiple instances

Every negotiation setting, which is the combination of an opponent and a scenario, is considered
to be a problem instance.

Portfolio of algorithms

A portfolio of strategies can be constructed by selecting agents that already exist within GENIUS,
which is the approach used (successfully) by Ilany et al. [18]. However, this relies again on manually
tuned agents that have been submitted in the ANAC. Combining algorithm configuration with
selection can be a solution to this problem by configuring the strategy on a subset of the negotiation
instances.

Performance measure

The performance measure is well defined in the negotiation problem. It is the utility obtained by
the agent at the end of the negotiation.

Instance features

To actually perform the selection, we need a feature model of the negotiation setting that has
to be performed. In bilateral negotiation there are two components that impact the negotiation,
the opponent and the scenario. Modelling the scenario by features is already done in previous
work [18], which we will follow. Modelling opponents by features is done on a smaller scale
for opponent classification (e.g. Concession Rate [33]), but not for the sole purpose of strategy
selection. We like to point out that the opponents and scenarios are independent of each other
and can be combined in every possible manner to create a new negotiation problem. This implies
that their features should also be independent, i.e. no scenario information should be hidden in
the opponent features and vice verse. Failing to achieve that introduces noise in the feature model
of the negotiation setting.

20

3.2.3 Formal problem definitions

Problem 1: Dynamic Agent

Before we can optimise a configuration, we need something to configure. For the negotiation prob-
lem, we must construct a Dynamic Agent DA(θ) that varies in strategy based on its configuration
θ. The range of strategies must be as broad as possible to ensure that there are well performing
strategies within the configuration space. We deem the Dynamic Agent successful if there is a
configuration θ ∈ Θ such that our agent DA(θ) outperforms the test set of opponent agents Atest
on the test set of scenarios Stest. We define outperforming as achieving a higher average utility in
a bilateral ANAC-like bilateral tournament.

Problem 2: Feature construction

Suppose we have a set of opponent agents A and a set of scenarios S, such that combining a single
agent a ∈ A and a single scenario s ∈ S creates a new negotiation setting or instance π ∈ Π. Can
we derive a set of features for both the opponent agent and the scenario, that are independent of
each other and provide insight in the complexity of the negotiation instance.

As this is difficult to prove, we want to test this by analysing if the following two statements are
true:

1. The feature set helps the automated algorithm configuration method in converging to a better
configuration while maintaining the computational budget.

2. The feature set contains sufficient information, such that algorithm selection improves the
utility pay-off of our agent.

Problem 2.1: Preference estimation model accuracy Knowing the preferences profile of
the opponent helps us in modelling the opponents behaviour by features. However, the negotiation
happens under incomplete information, making such information unavailable. We try to estimate
opponent preferences by taking an opponent preference estimation method from literature and use
it for opponent feature construction. Inaccuracies in the model will lead to noise in these features,
so we aim to improve the accuracy.

We take a preference estimation model from literature that performs well and use two accuracy
measures that correlate with agent performance: Pearson Correlation of outcomes and difference
in Pareto frontier surface [44]. Can we improve the preference estimation model based on these
two measures?

Problem 3: Automated configuration

Suppose we have an agent with a dynamic strategy called Dynamic Agent DA(θ), with a parameter
setting θ. We want to configure this agent, such that it performs generally well, using automated
algorithm configuration methods. More specifically, we want the agent to perform generally well
in bilateral negotiations with a real time deadline of 60[s]. To do so, we take a diverse and large

21

set of both agents Atrain of size |Atrain| = 20 and scenarios Strain of size |Strain| = 56 that we use
for training, making the total amount of training instances |Πtrain| = |Atrain| ∗ |Strain| = 1120.
Running all negotiation settings in the training set would take 1120 minutes or ∼ 18.5 hours,
regardless of the hardware as we use real time deadlines.

Now suppose we have a setting for the Dynamic Agent based on the original literature θlit and a
setting that is hand tuned based on intuition, modern literature and trial-and-error θhand that we
consider baselines. Can we automatically tune a parameter configuration θopt that outperforms
the baselines on average on a never before seen test set of negotiation instances?

Problem 4: Portfolio creation

Suppose we have an agent with a dynamic strategy called Dynamic Agent DA(θ), with a param-
eter configuration θ ∈ Θ. We use this agent in a negotiation instance π and obtain a utility of
o(DA(θ), π). Since we know that no single strategy is optimal for all instances and that we must
revert to algorithm selection, we need more than a single configuration.

How do we create a portfolio of configurations ~Θ consisting of configurations that outperform
each other on specific subsets of negotiation instances Π′ ⊂ Π. i.e. Assuming that we are capable
of selecting the best algorithm for every negotiation instance (oracle selector θπ = OR(~Θ, π)),

DA(OR(~Θ, π)) must outperform DA(θi) on average over the testing set of negotiation instances

Πtest, for all θi ∈ ~Θ.

Problem 5: Algorithm selection

Suppose we have an agent with a dynamic strategy called Dynamic Agent DA(θ), with a portfolio

of configurations ~Θ = {θ1, θ2, . . . , θn} and θ1 is the single best performing algorithm. Can we apply

an algorithm selection method AS(~Θ, π) = θπ that selects a configuration θπ from ~Θ based on the

negotiation instance π, such that DA(AS(~Θ, π)) outperforms the single best strategy DA(θ1) in
an ANAC-like bilateral tournament?

22

Chapter 4

Dynamic agent

In this section, the Dynamic Agent that is used for optimisation is discussed. We define the
following main requirements:

• The agents bidding behaviour must be as flexible as possible on the spectrum of competi-
tiveness and conceding behaviour depending on a parameter configuration.

• The agents accepting behaviour must be flexible.

• Negotiation domains can be vast, containing many possible outcomes. To prevent every
negotiation agent from needing a powerful computer, the agent should be capable of exploring
a large outcome space without relying of brute force methods.

• The agent needs to build an opponent model during negotiations. This opponent model
can be used to estimate opponent preferences in an attempt to approach Pareto optimal
agreements, and is also required for opponent feature extraction for future encounters.

In Section 4.1 we will discuss the bidding strategy that solves the first requirement, the statements
we make are based on the assumption of a perfect opponent model. In Section 4.2 we explain the
implemented acceptance strategy. Finally, the required opponent model is discussed in Section 4.3.

4.1 Bidding strategy

Lau et al. [29] proposed a bidding strategy that uses a heuristic to assign a fitness value to every
outcome. When the agent needs to choose an action, the outcome with the highest fitness at that
time is selected as potential offer. Before making the actual offer, the agent checks if the opponents
offer is acceptable via its acceptance strategy. In this section we first discuss the fitness function.
The second part of this section elaborates on the process of exploring the outcome space without
relying on brute force.

23

4.1.1 Fitness function

The main difference between this fitness and our utility is that it also considers opponent preference.
The paper was published before the GENIUS framework existed, so some modifications are in place.
We will start by presenting the original fitness function from [29] and expand upon it until we reach
the current implementation.

f(ω, t) = δ ∗ TP (t) ∗ u(ω)

maxω∈Ω u(ω)
+ (1− δ ∗ TP (t)) ∗

(
1− dist(ω, xlast)

MaxDist(Ω)

)
TP (t) = 1−

(
min(t, td)

td

) 1
e

(4.1)

where:

δ : Trade-off factor to control the relative importance of optimising one’s own
pay-off or reaching a deal, where δ ∈ [0, 1]

TP : Time-pressure function
xlast : Last offered outcome by opponent (Equation 3.18)
MaxDist(Ω) : Maximum distance in outcome space
t : Time
td : Time of deadline
e : Factor to control an agents eagerness to concede relative to time, where

e ∈ (0.∞). Boulware if 0 < e < 1, linear conceder if e = 1, conceder if e > 1.

Both the time in the time pressure function and our utility in the fitness function are normalised.
This is a default setting in GENIUS and can be simplified by using the normalised values. The
last part in the fitness function tries to minimise the normalised distance between the considered
outcome and the opponents last offered outcome in an attempt to cater to the opponent. Such a
distance measure will, however, make less sense in a discrete non-linear scenario as changing the
value of a single issue can make a large difference in utility. Instead of using a distance measure, we
will use the preference estimation (Section 4.3.1) to minimise the difference in terms of estimated
opponent utility. It resembles the original idea, but we consider it to be a more robust approach.
The fitness function now becomes:

f(ω, t) = δ ∗ TP (t) ∗ u(ω)︸ ︷︷ ︸
fmy(ω,t)

+ (1− δ ∗ TP (t)) ∗ (1− |ûo(ω)− ûo(xlast)|)︸ ︷︷ ︸
fo(ω,t)

TP (t) = 1− t 1
e

(4.2)

where:

ûo : Estimated opponent utility function (Equation 4.30)
t : Time, where t ∈ [0, 1]

We will defined the fittest outcome that should be selected for offering by Equation 4.3.

ωfit(t) = arg max
ω∈Ω

f(ω, t) (4.3)

24

Limitations

We consider Equation 4.2 to be the baseline fitness function from the literature, as it resembles the
original fitness function most. For convenience we split up the fitness function into an opponent
part, and a part for our own agent as displayed in Equation 4.2. The first two rows of Figure 4.1
represent a visualisation of the fitness function. There are two points of criticism regarding the
opponent part of this function:

• By taking the absolute difference in utility between the opponents last offered outcome and
the considered outcome, an improvement of the opponents utility beyond the last offered
outcome is penalised. This can lead to outcomes not being selected for offering, because they
improve the opponents utility to much, even tough they strictly dominate the highest scoring
outcome in terms of utility for both parties. This behaviour can be observed in Figure 4.1
and in Table 4.1, where a specific example is elaborated. This behaviour leads to less Pareto
efficient bidding behaviour.

• The choice of comparing the considered outcome to the last offered outcome is slightly restric-
tive. It can lead to less optimal behaviour when facing a less intelligent agent or a Random
Walker [41]. A less intelligent agent might fail to propose Pareto efficient outcomes, while
thinking it is. It might be willing to concede more than it is actually doing because it is
incapable of estimating our preferences. Facing a Random Walker causes the fitness values of
outcomes to fluctuate heavily in between rounds, as the utility of the opponents last offered
outcome is randomised.

Outcome u(ω) ûo(ω) δ e t ûo(x
last) f(ω, t)

ω1 0.57 0.65 1 0.5 0.7 0.52 0.717
ω2 0.60 0.78 1 0.5 0.7 0.52 0.669

Table 4.1: Comparison of fitness values between outcomes (Equation 4.2)

To solve the points of criticism, we propose four alternative fitness functions. We then add the
selection of a fitness function to the configuration space of the agent, providing more flexibility to
the strategy. Out of this set, one of the functions must be picked during configuration:

fn(ω, t) = fmy(ω, t) + fo,n(ω, t) (4.4)

fo,1(ω, t) = (1− δ ∗ TP (t)) ∗ (1− |ûo(ω)− ûo(xlast)|) (4.5)

fo,2(ω, t) = (1− δ ∗ TP (t)) ∗min(1 + ûo(ω)− ûo(xlast), 1) (4.6)

fo,3(ω, t) = (1− δ ∗ TP (t)) ∗ (1− |ûo(ω)− ûo(x+)|) (4.7)

fo,4(ω, t) = (1− δ ∗ TP (t)) ∗min(1 + ûo(ω)− ûo(x+), 1) (4.8)

fo,5(ω, t) = (1− δ ∗ TP (t)) ∗ ûo(ω) (4.9)

TP (t) = 1− t 1
e

The behaviour of every fitness function is illustrated in Figure 4.1. An intuitive description is given
below.

25

• Equation 4.5 converges to the outcome where ûo(ω) = ûo(x
last)

• Equation 4.6 converges to the outcome where ûo(ω) >= ûo(x
last)

• Equation 4.7 converges to the outcome where ûo(ω) = ûo(x
+)

• Equation 4.8 converges to the outcome where ûo(ω) >= ûo(x
+)

• Equation 4.9 converges to the outcome where ûo(ω) = 1

4.1.2 Outcome space exploration

The last requirement to fulfil concerns outcome space exploration without brute-force methods.
Every round, the agent has to find or approach the outcome with the highest fitness value as
defined in Section 4.1.1 within a possibly large outcome space. Lau et al. [29] solved this problem
by using a Genetic Algorithm [15]. As outcome space exploration is not a main topic of interest for
this thesis, we will follow Lau and implement the algorithm as given in pseudocode in Algorithm 2.
We do add the genetic algorithm parameters to the configuration space, as these must also be
tuned. Standard Genetic Algorithm procedures are applied, which will not be elaborated upon in
this section. However, they are included in Appendix B for reference.

4.1.3 Configuration space

We present the final configuration space hyperparameters for the bidding strategy in Table 4.2.

Symbol Description Use Type Value range

nfit Fitness function selection Fitness function Categorical {1, 2, 3, 4, 5}
δ Trade-off factor Fitness function Real [0, 1]
e Conceding factor Fitness function Real (0, 1]
Npop Population size Space exploration Integer [50, 400]
Ntour Tournament size Space exploration Integer [1, 10]
E Evolutions Space exploration Integer [1, 5]
Rc Crossover rate Space exploration Real [0.1, 0.5]
Rm Mutation rate Space exploration Real [0, 0.2]
Re Elitism rate Space exploration Real [0, 0.2]

Table 4.2: Configuration space of bidding strategy

26

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u
(ω

)

Outcome

Pareto frontier

Opponent offers (Ht)

Best offer (x+)

Last offer (xlast)

Opponent max (ω+
o)

Example offer

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
t=0.1

t=0.5

t=0.7

t=0.85

t=0.95

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f o
,1
(ω

,t
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f o
,2
(ω

,t
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f o
,3
(ω

,t
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f o
,4
(ω

,t
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

uo(ω)

f o
,5
(ω

,t
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.8

1.6
1.4

1.2

1.2

1

1

1

0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.8

1.6
1.4

1.2

1.2

1

1

1

0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.8

1.6
1.4

1.2

1.2

1

1

1

0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.8

1.6
1.4

1.2

1.2

1

1

1

0.8

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.8

1.6
1.4

1.2

1.2

1

1

1

0.8

0.8

0.6

0.4

0.2

fmy(ω, t)

Figure 4.1: Behaviour of fitness functions (δ = 0.9, e = 0.5)

27

Algorithm 2 Genetic Algorithm for outcome space exploration

Input Ω Outcome Space
f(ω, t)Fitness function
Npop Population size
Ntour Tournament size
E Evolutions
Rc Crossover rate
Rm Mutation rate
Re Elitism rate

Variables Pop Population, where Pop = [Ind1, . . . , IndSize(Pop)]
Ind Individual, where Ind = 〈fitness, ω〉

Output ωfit Highest scoring outcome

1: Pop← RandomInitialise(Ω, Npop)
2: t← GetT ime()
3: Pop← CalculateF itness(Pop, f(ω, t))
4: for i := 1, . . . , E do
5: Popnew ← GetElites(Pop,Re)
6: while Size(Popnew) < Npop do
7: Inda ← TournamentSelect(Pop,Ntour)
8: Indb ← TournamentSelect(Pop,Ntour)
9: Indnew ← Crossover(Inda, Indb, Rc)

10: Indnew ←Mutate(Indnew, Rm)
11: Popnew ← Popnew + [Indnew]

12: Pop← Popnew
13: Pop← CalculateF itness(Pop, f(ω, t))

14: return GetF ittest(Pop)

28

4.2 Acceptance strategy

In Section 3.1.3, we introduced a base set of acceptance conditions that are often used in negotiation
agent as a single condition or a combination of conditions. Baarslag et al. [45] analysed the
performance of the acceptance condition and concluded the following:

1. There is not single constant that makes ACconst an effective condition, as it is very domain
dependent.

2. ACnext will always outperform ACprev.

3. ACtime always reaches an agreement, but of relatively low utility.

4. A combination of conditions, such as ACtime and ACnext, outperforms other acceptance
conditions.

We aim to follow Baarslag et al. by implementing a combination ACcombi as described in the paper,
though we relax the parameter space a bit further. We will now describe the acceptance condition.

Suppose we are at time t′, which is beyond the time of the last offer by the opponent t = tn. We
consider the following negotiation thread (Section 3.1.2):

Ht =
[
xt1 , xt2 , . . . , xtn−1 , xtn

]
(4.10)

At this point, our agent has to decide whether to accept or not and the remaining time is r = 1−t′.
We define a time window of equal size to the remaining time, but in the past W = [t′ − r, t′] ⊆ T .
All the offers made by the opponent within this window are denoted by:

HW =
{
xs ∈ Ht|s ∈W

}
(4.11)

We now define a maximum and average utility for our agent over this window:

MAXW = max
x∈HW

u(x) (4.12)

AV GW =
1

|HW |
∑
x∈HW

u(x) (4.13)

Following Baarslag et al. [45], we define the combined acceptance condition ACcombi:

ACcombi(α, β, tacc, γ) ⇐⇒ ACnext(α, β) ∨ACtime(tacc) ∧ (u(xt) ≥ γ) (4.14)

ACnext(α, β) ⇐⇒ α ∗ u(xt) + β ≥ u(ωfit(t
′)) (4.15)

ACtime(tacc) ⇐⇒ t′ ≥ tacc (4.16)

where:

α : Scale factor by which the opponents offer utility is multiplied
β : Minimal utility gap to accept
tacc : Time after which ACtime accepts
γ : Lower utility to accept, where γ ∈ {MAXW , AV GW }
xt : Offer of opponent at time t
ωfit(t

′) : Offer that our agent wants to make at time t′

29

4.2.1 Configuration space

We present the final configuration space hyperparameters for the acceptance strategy in Table 4.3.

Symbol Description Type Value range

α ACnext scale factor Real [1, 1.1]
β ACnext utility gap Real [0, 0.2]
tacc ACtime accepting time Real [0.9, 1]
γ Lower utility to accept Categorical {MAXW , AV GW }

Table 4.3: Configuration space of acceptance strategy

4.3 Opponent model

An opponent model is an abstract representation of the opponent that is learning during interaction
with the opponent and revolves around three questions according to Baarslag [33]:

• Preference estimation. What does the opponent want?

• Strategy prediction. What will the opponent do, and when? Not considered in this thesis

• Opponent classification. What kind of player is the opponent, and how should we act ac-
cordingly?

4.3.1 Preference estimation

The negotiations are performed under incomplete information, this means without knowledge of
the opponents preference profiles. It is beneficial to make offers that lie close to the Pareto frontier
as this can improve agreement utility for all parties. However, in order to be able to propose
Pareto optimal bids, we need the preference profile of the opponent, which we do not have. The
preference profile of the opponent can be estimated based on the offers that the opponent makes.
In the ANAC, estimating opponent preference profiles is applied by a large part of the participants.
A comparison of the methods used by the participants showed that frequency models and value
models perform well [44]. From this comparison, we picked the Smith Frequency Model [46] (SFM)
as our preference estimation model, due to it’s performance and simplicity. This model keeps track
of how many times a value within an issue is offered by the opponent and calculates issue weight
and value weight based on this count. The estimated utility function of the SFM is presented in
Equation 4.17.

30

û(ω) =

(∑
i∈I

ŵi ∗ êi(ωi)
)
∗ 1∑
i∈I

ŵi
(4.17)

ŵi =
C+
i

Csumi

(4.18)

êi(ωi) =
Cωi

C+
i

(4.19)

C+
i = max

v∈Vi

Cv (4.20)

Csumi =
∑
v∈Vi

Cv (4.21)

where:

û : estimated utility function
ωi : Sub-outcome for issue i
I : Set of issues
ŵi : estimated weight of issue (i)
êi : estimated evaluation function of issue (i)
vi : Value for issue (i) in the outcome (ω)
Cvi : Count of value ωi in received offers
C+
i : Max value count within issue (i)

Csumi : Sum of value counts of issue (i)
Vi : Set of values in issue (i)

Modifications

We performed a few negotiations sessions with the SFM and gathered offer trajectories of oppo-
nents. We used these trajectories to analyse the performance of the SFM by hand, which led to
the following observations:

1. The weight of an issue is typically overestimated when the issue has a small set of values.

2. The weight of sub-optimal values is typically underestimated when the issue weight is high.

We make an attempt to improve the preference estimation by analysing the observations. Im-
proving the preference profile estimation directly influences the quality of the opponent model, as
behavioural features are extracted using opponent utility estimations.

Issue weight calculation In the SFM, the weight of an issue is calculated based on the offer
distribution over the values in the issue. It simply finds the maximum value count in an issue and
divides it by the total value count (Equation 4.18). A maximum weight of ŵi = 1 is assigned if the
opponent exclusively offers a single value within an issue, as it is likely to be an important issue

31

for the opponent. Intuitively, if an opponent does not care at all about an issue, the offered values
will spread out over the set of values within the issue. We could say that perfect distribution over
the set of values implies little importance for the issue, so the issue weight must be set to ŵi = 0.
Doing so, every issue has a predicted weight assigned of ŵi ∈ [0, 1].

However, this is not the case with Equation 4.18, as issue weight is lower bounded in relation to
the size of the value set. In order for ŵi to be zero, C+

i must be zero, but at perfect distribution:

C+
i =

Csumi

|Vi|
(4.22)

And thus:

ŵi =
C+
i

|Vi|
=

Csum
i

|Vi|
Csumi

=
1

|Vi|
(4.23)

This lower bound approaches zero when an issue has a large value set, but in the extreme case
of |Vi| = 2 the predicted issue weight is lower bounded by ŵi ∈ [0.5, 1]. This lower bound causes
overestimation of issue weights with a smaller set of values. We illustrated this overestimation in
an example in Figure 4.2 where we created a fictional distribution of 100 offers over two different
issues. Although both issues have the same estimated weight, intuitively, Figure 4.2 (a) seems to
be more important to the opponent.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
0

20

40

Vi

C
v

ŵi =
45
100 = 0.45

(a)

v1 v2 v3
0

20

40

Vi

C
v

ŵi =
45
100 = 0.45

(b)

Figure 4.2: Comparison of issue weights for original SFM

We propose a correction to the issue weight estimation such that ŵi ∈ [0, 1], despite the size of
the issue value set. The new proposal is given in Equation 4.24. We compare the new method in
Figure 4.3 using the same example as in Figure 4.2.

ŵi =
C+
i − Cbasei

Csumi − Cbasei

(4.24)

C+
i = max

v∈Vi

Cv (4.25)

Csumi =
∑
v∈Vi

Cv (4.26)

Cbasei =
Csumi

|Vi|
(4.27)

32

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
0

20

40

Vi

C
v

ŵi =
45−10
100−10 ≈ 0.39

(a)

v1 v2 v3
0

20

40

Vi

C
v

ŵi =
45−33.3
100−33.3 ≈ 0.18

(b)

Figure 4.3: Comparison of issue weights for modified SFM

Evalutation function Frequency models estimate both issue weight and value weight sepa-
rately [44]. This is also the case for the SFM, where value weight is estimated according to
Equation 4.18. We observed that value weights are systematically underestimated for issues with
a higher issue weight. This applies to all values that are sub-optimal (êi(v) < 1). We argue that
the value weight cannot be estimated separately from the issue weight for frequency models, but
that estimated issue weight must be included in value weight calculation.

We again present a fictional example to illustrate the problem in Figure 4.4. Suppose we receive
the illustrated distributions over two equally sized issues for which the opponent has different issue
weights. The estimated evaluation of value v2 is displayed on top for both cases. The question is
whether the estimation is realistic or not. According to this estimation:

1. In case (a), offering v2 over v1 leads to an estimated decrease in utility of (1−0.1)∗0.9 = 0.81.

2. In case (b), offering v2 over v1 leads to an estimated decrease in utility of (1−0.1)∗0.3 = 0.27.

v1 v2 v3 v4
0

20

40

60

80

100

Vi

C
v

êi(v2) =
10
100 = 0.1

(a) ŵi ≈ 0.9

v1 v2 v3 v4
0

20

40

60

80

100

Vi

C
v

êi(v2) =
10
100 = 0.1

(b) ŵi ≈ 0.3

Figure 4.4: Comparison of value weights for original SFM

The second case is realistic, conceding by 0.27 utility is a lot, but an opponent might still consider
it. The first case is less realistic, as it is unlikely that an opponent will concede by 0.81 utility,

33

especially not 10 times. The fact that an opponent considers another value within a very important
issue at all, implies that the value also has a reasonable pay-off. To correct this observation we
introduce a new method of value weight estimation, that also includes estimated weight of the
issue in Equation 4.28. The proposal is identical to the SFM at ŵi = 0, but increasingly scales up
estimated value weights for sub-optimal values when ŵi > 0. We present the same example with
updated value weight estimation in Figure 4.5.

êi(ωi) =
(Cωi + 1)

1−ŵi − 1

(C+
i + 1)

1−ŵi − 1
(4.28)

C+
i = max

v∈Vi

Cv (4.29)

v1 v2 v3 v4
0

20

40

60

80

100

Vi

C
v

êi(v2) =
(10+1)1−0.9−1

(100+1)1−0.9−1
≈ 0.45

(a) ŵi ≈ 0.9

v1 v2 v3 v4
0

20

40

60

80

100

Vi

C
v

êi(v2) =
(10+1)1−0.3−1

(100+1)1−0.3−1
≈ 0.18

(b) ŵi ≈ 0.3

Figure 4.5: Comparison of value weights for modified SFM

Computational expense SFM has a high accuracy according to [44]. It performs best in ne-
gotiations with round based deadlines, but performs less in negotiations with time based deadlines
due to its computational expensiveness [47], decreasing the amount of negotiation rounds that can
be played. This makes SFM not the best choice as preference estimation model in our time based
deadline setup, despite being very accurate. However, for future opponent feature extraction, an
accurate preference estimation model reduces the amount of noise. We aim to decrease the com-
putational expensiveness of the SFM by recoding the original model to a more efficient version.
To do so, we look at the two main functionalities of an preference estimation model. The first is
registration of an offer made by an opponent to update the model. The second is using the model
to estimate the opponents utility of an outcome.

The model keeps a list of offered values per issue during negotiation, at every received offer it
registers a value for every issue resulting in O(|I|) time complexity (|I| = size of issue set). At
utility estimation, the SFM cycles the list of registered values per issue to estimate both the issue
weight and issue weight resulting in O(|I| ∗ n) time complexity (n = amount of offers received).
Note that this means that utility estimation becomes increasingly computational expensive as the
amount of rounds progresses. In bilateral negotiation, only one offer is received every round and,

34

generally, many utility estimations are performed. The computational complexity is therefore on
on the wrong side of the balance.

We made two modifications that aim to improve the balance of computational expense. First,
instead of keeping a list of values offered per issue, we keep a counter per value that we increment.
This improves the time complexity for utility estimation to O(|I| ∗ |Vi|), where |Vi| is the size of
the value set for issue i. It also decreases memory usage and removes the increasing computational
expensiveness as the negotiation progresses through rounds. Secondly, we moved the calculation
of issue and value weights at utility estimation to the point of offer registration as this is much less
frequent. The resulting time complexities are presented in Table 4.4, which provides an overview
of the time complexities for the original SFM and the modified SFM.

Operation Original Modified Frequency per round

estimate utility O(|I| ∗ n) O(|I|) many
register offer O(|I|) O(|I| ∗ |Vi|) once

Table 4.4: Time complexity of original and modified SFM operations. |I| = size of the issue set,
n = amount of received offers, |Vi| = size of value set for issue i.

Final version

The final version of the utility estimation equation after combining all that is discussed is displayed
in Equation 4.30.

û(ω) =

(∑
i∈I

ŵi ∗ êi(ωi)
)
∗ 1∑
i∈I

ŵi
(4.30)

ŵi =
C+
i − Cbasei

Csumi − Cbasei

(4.31)

êi(ωi) =
(Cωi

+ 1)
1−ŵi − 1

(C+
i + 1)

1−ŵi − 1
(4.32)

C+
i = max

v∈Vi

Cv (4.33)

Csumi =
∑
v∈Vi

Cv (4.34)

Cbasei =
Csumi

|Vi|
(4.35)

Performance measure

In this section, we proposed two modifications the original SFM based on observed shortcomings.
The next step is to validate if both modifications can be justified. The overarching goal of the
agent in this thesis is to improve utility of the agreements. Baarslag et al. [44] proposed a number

35

of accuracy measures that measure differences between the predicted outcome space and the true
outcome space (Figure 3.2). He also showed how the accuracy measures correlate with actual
agent performance in terms of utility. We follow Baarslag et al. [44] and use two of his proposed
accuracy measures that correlate best with agent performance. Should we be able to improve on
these accuracy measures by modifying SFM, then we can justify the modifications made to SFM.

The first accuracy measure is the Pearson Correlation of outcomes between the estimated opponent
utility and the opponent utility:

PC(uo, ûo) =

∑
ω∈Ω

(uo(ω)− uo(ω̄)) (ûo(ω)− ûo(ω̄))√∑
ω∈Ω

(uo(ω)− uo(ω̄))
2 ∑
ω∈Ω

(ûo(ω)− ûo(ω̄))
2

(4.36)

The second accuracy measure is the difference in Pareto frontier surface, which is a measure of
difference in predicted Pareto frontier Ω̂p and true Pareto frontier Ωp. Both pareto frontiers are
mapped on the true outcome space and the area below the frontier is calculated. The absolute
difference between the two surfaces is the difference in Pareto frontier surface measure and is
illustrated in Figure 4.6.

Figure 4.6: Visualisation of the difference in Pareto frontier surface [44]

4.3.2 Opponent classification

In this thesis, we will not adapt our negotiation strategy during a negotiation session, so classifica-
tion of opponents is not necessary online. Instead, the opponents are classified between negotiation
sessions and effective counter strategies are selected at the start of the negotiation session. This
is possible since we assume repeated encountering of opponents. We want to revert the reader
to Chapter 5 and Chapter 7 for, respectively, the modelling of opponents and the adaptation to
opponents.

4.4 Results

In this section, we will already show results related to problem 2.1 in Section 3.2 concerning
preference estimation accuracy. To do so, we take the Dynamic Agent as discussed in this chapter
and lock its strategy by setting a parameter configuration. The configuration that is set is found in
a later stage of this thesis (Chapter 6) and is considered to be the single best strategy. Since we are
interested in preference estimation accuracy, the strategy of our own agent is of less importance.

36

We take the training set of negotiation instances that we use throughout this thesis (Appendix A)
and run 10 negotiation sessions with our Dynamic Agent on each of the instances with a 60 second
deadline for a total of 11200 negotiation sessions. The difference in Pareto frontier surface and
the Pearson correlation of outcomes (Section 4.3.1) are calculated at the end of every negotiation
session. We compare a total of 4 preference estimation methods by exact value and increase ratio
relative to the original SFM:

1. The original SFM, which is the baseline

2. SFM with modified ŵi and original êi(ωi)

3. SFM with original ŵi and modified êi(ωi)

4. SFM with modified ŵi and modified êi(ωi)

We present the results for the Pearson correlation of outcomes measure and for the difference in
Pareto surface measure in Table 4.5. As can be seen, both modifications result in an improve-
ment for both accuracy measures. The largest improvement is achieved with the modified value
evaluation function in Equation 4.28, causing a 6.43% improvement of the Pearson correlation
measure and a 3.64% decrease of the difference in Pareto surface. We further discuss the results
in Chapter 8.

Modifications Pearson correlation

ŵi êi(ωi) value increase ratio

original original 0.7301 0
modified original 0.7312 0.0015
original modified 0.7771 0.0643
modified modified 0.7779 0.0655

Modifications Pareto surface

ŵi êi(ωi) value increase ratio

original original 0.0772 0
modified original 0.0770 -0.0036
original modified 0.0744 -0.0364
modified modified 0.0742 -0.0391

Table 4.5: Preference estimation accuracy measures comparing modified SFM to original SFM

37

Chapter 5

Features

In this chapter, we will attempt to define a feature description of a negotiation setting that stipulate
differences between negotiation settings. We will use this feature description for both configuration
and selection of our Dynamic Agent as presented in Chapter 4. As described in Section 3.1, a
negotiation setting can be separated into three types of components. Should we engage in bilateral
negotiation, then there are three components that define the negotiation environment for our agent:
a protocol, an opponent, and a scenario. The features are meant to indicate differences between
negotiation, so we do not have to model the protocol as it remains fixed throughout this thesis.

This leaves us with two components that we want to model by features:

1. The negotiation scenario

2. The opponent

5.1 Scenario features

The negotiation scenario consists of a domain and a preference profile for all agents involved
(Section 3.1.1). Only the domain and our own preference profile are known in advance and can be
used for feature extraction. Ilany et al. [18] specified a list of scenario features that they used for
agent selection in bilateral negotiation, which we will follow. The features are calculated before the
negotiation starts and are fully independent of the opponent faced. An overview of the scenario
features is provided in Table 5.1.

5.2 Opponent features

In contrast to the scenario features, opponent features cannot be calculated in advance of a ne-
gotiation session. Since this thesis revolves around repeatedly encountering opponents, we can
extract features after a negotiation session and store them for future opponent encounters. For

38

Feature type Description Equation Notes

Domain Number of issues |I|
Domain Average number of values

per issue

1
|I|
∑
i∈I
|Vi|

Domain Number of possible out-
comes

|Ω|

Preference Standard deviation of is-
sue weights

√
1
|I|
∑
i∈I

(wi − 1
|I|)

2

Preference Average utility of all pos-
sible outcomes

1
|Ω|

∑
ω∈Ω

u(ω) denoted by u(ω̄)

Preference Standard deviation utility
of all possible outcomes

√
1
|Ω|

∑
ω∈Ω

(u(ω)− u(ω̄))
2

Table 5.1: Scenario features

each opponent, we store both the mean and the Coefficient of Variance (CoV) of all features and
update them after every negotiation round with the opponent.

Storing opponent features for future encounters does introduce a difficulty, as opponent behaviour
is influenced by the scenario. Using behavioural features that are influenced by the scenario blurs
our model when we encounter the opponent in a different scenario. We therefore aim to construct
opponent features that are disassociated from the scenario. In this section, we will describe every
opponent feature.

5.2.1 Normalised time

The time t ∈ [0, 1] it takes to reach an agreement with the opponent.

5.2.2 Concession rate

To measure how much an opponent is willing to concede towards our agent, we use the notion of
Concession Rate (CR) introduced by Baarslag et al. [48]. The CR is a normalised ratio CR ∈ [0, 1],
where CR = 1 means that the opponent fully conceded and CR = 0 means that the opponent
did not concede at all. By using a ratio instead of an absolute value (utility), the feature is
disassociated from the scenario. The original paper on CR defined a value for every time point in
the negotiation session, but we simplify by only calculating the CR at the end of the negotiation
session.

To calculate the CR, Baarslag et al. [48] used two constants. The minimum utility an opponent
has demanded during the negotiation session uo(x

−
o) (Section 3.1.4) and the Full Yield Utility

(FYU), which is the utility that the opponent receives at our maximum outcome uo(ω
+). Baarslag

et al. [48] analysed the CR under perfect knowledge of the opponent’s utility function, which is
impossible in our application, so we use the estimated utility function ûo(ω) instead.

39

We present a formal description of the CR in Equation 5.1 and a visualisation in Figure 5.1. As
this CR is based on an estimated opponent utility, we compared the quality of the approximation
along with two alternative methods of approximating the CR. As this comparison is a detail with
relation to the main goal of this thesis, we moved it to Appendix C for reference.

CR(x−o) =

{
1 if ûo(x

−
o) ≤ ûo(ω+),

1−ûo(x−o)
1−ûo(ω+) otherwise.

(5.1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x−
o

ω+

a
b

ûo(ω)

u
(ω

)

a
b =

1−ûo(x
−
o)

1−ûo(ω+)

Opponent offers (Ht)

Outcome (ω)

Pareto frontier

Figure 5.1: Visualisation of Concession Rate (CR)

5.2.3 Average rate

We introduce the Average Rate (AR) that indicates the average utility an opponent has demanded
as a ratio depending on the scenario. The two constants needed are the FYU (uo(ω

+)) as described
in the previous section and the average utility an opponent demanded (uo(x̄)). The AR is a
normalised ratio AR ∈ [0, 1], where AR = 0 means that the opponent only offered his maximum
outcome and AR = 1 means that the average utility the opponent demanded is less than or equal to
the FYU. As with the CR, we use the estimated opponent utility function ûo(ω) to approximate the
true function. We present a definition of the AR in Equation 5.2 and a visualisation in Figure 5.2.

AR(x̄) =

{
1 if ûo(x̄) ≤ ûo(ω+),
1−ûo(x̄)

1−ûo(ω+) otherwise.
(5.2)

The AR is an indication of competitiveness of the opponent based on average utility demanded
instead of minimum demanded utility as the CR is. A combination of the AR and the CR can
classify time-dependent opponent tactics.

40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x̄

ω+

a
b

ûo(ω)

u
(ω

)

a
b = 1−ûo(x̄)

1−ûo(ω+)

Opponent offers (Ht)

Outcome (ω)

Pareto frontier

Average offer

Figure 5.2: Visualisation of Average Rate (AR)

Lemma 5.2.1 For time-dependent opponent tactics that start at maximum utility, AR < 1
2 ∗ CR

indicates a Boulware strategy, while AR > 1
2 ∗ CR indicates a conceding strategy.

To prove this, we take both otherwise cases from Equation 5.1 and Equation 5.2 and expand
the Boulware indicator from Theorem 5.2.1 in Equation 5.3. Assume that the opponent is a
linear conceding strategy, in that case its average demanded utility ûo(x̄) lies exactly halfway in
between its maximum demanded utility 1 and its minimum demanded utility ûo(x

−
o), so ûo(x̄) =

1
2 (1 + ûo(x

−
o)). In case of a Boulware opponent, the average demanded utility is greater than the

average demanded utility of a linear conceding opponent ûo(x̄) > 1
2 (1 + ûo(x

−
o)), which is what we

found in Equation 5.3. The opposite is also true for a conceding opponent.

AR <
1

2
∗ CR

1− ûo(x̄)

1− ûo(ω+)
<

1

2
∗ 1− ûo(x−o)

1− ûo(ω+)

1− ûo(x̄) <
1

2
(1− ûo(x−o))

ûo(x̄) >
1

2
+

1

2
ûo(x

−
o)

(5.3)

As with the CR, we calculate the AR under incomplete information to approximate the true AR. We
compared the quality of this approximation, as well as an alternative method of AR approximation,
with the true AR. As this comparison is a detail with relation to the main goal of this thesis, we
moved it to Appendix D for reference.

41

5.2.4 Default algorithm performance

According to Hutter et al. [22], the performance of any default algorithm on a problem works
surprisingly well as a feature for that specific problem. For negotiation, this translates to the
obtained utility of a hand-picked default strategy on a negotiation instance. The obtained utility
is normalised and can be used as a feature for that negotiation instance.

We implement this concept as an opponent feature by selecting a default strategy and use it to
obtain an agreement ωagree and a utility u(ωagree) against an opponent. We then normalise this
obtained utility an rename it as our Default Algorithm Performance (DAP) feature. We present
the formal definition of this feature in Equation 5.4 and a visualisation in Figure 5.3.

DAP (ωagree) =

{
0 if u(ωagree) ≤ u(ω−),
u(ωagree)−u(ω−)

1−u(ω−) otherwise.
(5.4)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ωagree

ω−

b a

ûo(ω)

u
(ω

)

a
b =

u(ωagree)−u(ω−)
1−u(ω−)

Figure 5.3: Visualisation of Default Algorithm Performance (DAP)

5.2.5 Disassociation of opponent features with scenario

We now demonstrate to what extent the opponent features, as described in this section, are dis-
associated with the features from the scenario component. As we store opponent features for
future encounters in new scenarios, we should avoid hidden scenario information embedded in the
opponent features, as the new scenario is different. In general, it is unlikely that we succeed in
completely removing the influence of the scenario on the opponent features, especially since the
negotiation is performed under incomplete information. Therefore, it is prudent to aim for features
that provide more informational value on the opponent, than on the scenario.

42

As stated before, we store the mean and the CoV of the opponent features per opponent after
every negotiation session. We use these features at future encounters with the same opponent. For
the sake of this demonstration, we also store the mean and the CoV of the opponent features per
scenario. To prove that the opponent features contain more informational value on the opponents
than on the scenarios, we must show that the standard deviation of the features is higher over the
opponents than over the scenarios.

To do so, we take the Dynamic Agent as described in Chapter 4 and fix its strategy by setting
the single best strategy configuration that we find in Chapter 6. The single best strategy is also
the default strategy, for which we can extract the DAP. In our demonstration we use the training
set of negotiation instances (Appendix A) and run every negotiation session 10 times with the
Dynamic Agent. We calculate the mean and the CoV of the opponent features per opponent and
per scenario. Per feature, we calculate the standard deviation over the opponent set and over the
scenario set. The results are provided in Table 5.2.

Feature StdDev over
opponents

StdDev over
scenarios

mean(t) 0.232 0.105
CoV (t) 0.101 0.063
mean(AR) 0.206 0.127
CoV (AR) 0.139 0.121
mean(CR) 0.217 0.064
CoV (CR) 0.080 0.042
mean(DAP) 0.236 0.102
CoV (DAP) 0.057 0.051

Table 5.2: Standard deviation of opponent features over opponents & scenarios

The results in Table 5.2 show that we managed to construct opponent features that satisfy the
requirement. Especially the mean of the opponent features show a much higher standard deviation
over the opponents as compared to the standard deviation over the scenarios.

43

Chapter 6

Algorithm configuration for
negotiation

We created an agent in Chapter 4 with a dynamic strategy depending on a parameter configuration.
So far, we defined every parameter as a hyperparameter for which a value must be selected. The
total hyperparameter set or configuration space Θ is summarised in Table 6.1. Setting a parameter
configuration θ ∈ Θ within this hyperparameter space “locks” the strategy of our Dynamic Agent.
We will denote our Dynamic Agent set by a parameter configuration as DA(θ). We now want to
obtain a parameter configuration θ that results in a well performing negotiation strategy. In this
chapter, we will address this hyperparameter optimisation problem for negotiation.

Symbol Description Use Type Value range

α ACnext scale factor Accepting Real [1, 1.1]
β ACnext utility gap Accepting Real [0, 0.2]
tacc ACtime accepting time Accepting Real [0.9, 1]
γ Lower utility to accept Accepting Categorical {MAXW , AV GW }
nfit Fitness function selection Fitness function Categorical {1, 2, 3, 4, 5}
δ Trade-off factor Fitness function Real [0, 1]
e Conceding factor Fitness function Real (0, 1]
Npop Population size Space exploration Integer [50, 400]
Ntour Tournament size Space exploration Integer [1, 10]
E Evolutions Space exploration Integer [1, 5]
Rc Crossover rate Space exploration Real [0.1, 0.5]
Rm Mutation rate Space exploration Real [0, 0.2]
Re Elitism rate Space exploration Real [0, 0.2]

Table 6.1: Configuration space Θ

44

6.1 Problem definition

The problem definition is already briefly described in Section 3.2, but in this section we describe the
problem in more detail. We defined both a set of agents (opponents) and scenarios in Appendix A.
As is standard procedure in optimisation problems, we split the set of agents and scenarios in
a training set used for optimisation and a test set used for testing to ensure unbiased results.
Combining a training opponent a ∈ Atrain with a training scenario s ∈ Strain gives us a single
training instance 〈a, s〉 = π ∈ Πtrain, for a total of |Πtrain| = 1120 training instances.

The subscript “train” is dropped throughout the rest of the chapter to improve readability.

Hyperparameter optimisation algorithms evaluate configurations on the considered problem to
observe a performance and use this information to obtain new promising configurations. As stated
before, the goal is to achieve a configuration that results in a well performing agent. This requires
us to define what well performing is. A logical value to measure performance is the obtained utility
o(θ, π) by playing strategy θ on instance π. As we are interested in optimising on the full set of
training instances and not on a single instance, we define the performance of a configuration on an
instance set as the average obtained utility (Equation 6.1).

O(θ,Π) =
1

|Π|
∑
π∈Π

o(θ, π) (6.1)

where:

o : Obtained utility of configuration θ on instance π
O : Average obtained utility of configuration θ on instance set Π
θ : Parameter configuration, where θ ∈ Θ
π : Single negotiation instance consisting of opponent agent a ∈ A and scenario s ∈ S, where

π = 〈a, s〉 ∈ Π
Π : Set of instances

Generally, many configurations are evaluated to let the optimisation converge to a (local) optimum,
which is not a problem if calculating the performance is computational inexpensive. For example,
the exploration of the outcome space as described in Section 4.1.2 is also an optimisation problem
and its performance (the fitness function) is calculated within a millisecond.

However, obtaining the performance on the training set as defined in Equation 6.1 requires us to
test a configuration on the full training set of negotiation instances. A single negotiation round has
a deadline of 60 seconds, so in the worst case scenario, obtaining the performance of a configuration
would take 1120 minutes or 18.5 hours. We conclude that optimisation algorithms that require
configurations to be evaluated on the full training set of instances, thus requiring Equation 6.1 to
be calculated, are impractical for our application.

Sequential Model-based optimization for general Algorithm Configuration [22] (SMAC) uses a dif-
ferent approach to the automated configuration problem by using a approach that races promising
configurations against each other based on single instances. As a result, SMAC generally does not
need to evaluate a challenging configuration on the full set of instances before making a decision
about its performance.

45

6.2 SMAC

To solve the described problem, we bring SMAC into the research area of automated negotiation.
SMAC is a hyperparameter optimisation algorithm that is well suited to solve our optimisation
problem for multiple reasons:

1. It can handle hyperparameters that are real, integers, or categorical, which is required (Ta-
ble 6.1).

2. It can optimise using only subsets of the training instance set, reducing the computational
expense.

3. It has a mechanism to terminate poorly performing configurations early, saving additional
computation time. If it detects that a configuration is performing very poor on a small set
of instances (e.g. a very eager conceder), it stops evaluating and drops the configuration.

4. The optimisation can be run in parallel, significantly reducing execution time.

6.2.1 Structure

In Algorithm 3, the basic structure of a parallel Sequential Model-Based Optimisation [22] (SMBO)
procedure is provided, which also forms the body of SMAC. SMAC keeps a runhistory (Equa-
tion 6.3) consisting of a parameter configuration θi with its obtained utility oi on a negotiation
instance. This runhistory is combined with runhistories of parallel pools and a random forest
regression model is fitted to the full runhistory, mapping the configuration space to an estimated
performance ô (Equation 6.2). This model is then used to predict promising configurations ~Θnew,
which are send to the Intensify procedure. We want to refer the reader to [22] for further details
on the Initialise, FitModel, and SelectConfigurations procedures, as they are less relevant for the
topic of this thesis.

M : Θ→ ô (6.2)

R = {(θ1, o1), . . . , (θn, on)} (6.3)

Intensify procedure

The Intensify procedure, see Algorithm 4 for a simplified form, provides valuable insight into the
optimisation process. The intensify procedure starts with a single random negotiation instance
on which it evaluates θinc. It then races new configurations from ~Θnew against the incumbent
configuration, starting with a comparison on a single negotiation instance. If the challenging
configuration loses, it is dropped immediately. If not, then it compares the two configurations
on an incremented set of instances. Finally, the challenging configuration replaces the incumbent
configuration if it outperformed the incumbent on all instances that the incumbent was previously
run on. The performance metric used to compare the performance of configurations is identical to

46

Algorithm 3 Parallel Sequential Model-Based Optimisation [22] (SMBO)

Input Θ Configuration space
Π Negotiation instances
O Performance metric
topt Optimisation time budget

Variables Ri Runhistory of pool i
Rfull Full runhistory of parallel pools, where Rfull = [R1, . . . , Rm]
M Random forest regression model
~Θnew List of promising configurations

Output θinc Optimised parameter configuration

1: [Ri, θinc]← Initialise(Θ,Π)
2: loop until GetT ime() > topt
3: Rfull ← ReadParallelRunhistories()
4: M← FitModel(Rfull)

5: ~Θnew ← SelectConfigurations(M, θinc,Θ)

6: [Ri, θinc]← Intensify(~Θnew, θinc, Ri,Π, O)

7: return θinc

Equation 6.1, but is calculated using a subset of instances to approximate the actual performance
(Equation 6.4).

O(θ,Π) ≈ O(θ,Π′) =
1

|Π′|
∑
π∈Π′

o(θ, π) (6.4)

where:

Π′ : Subset of instance, where Π′ ⊆ Π

6.2.2 Adding features

The random forest regression model tries to capture relations between parameter configurations
and performances by training on the runhistory as illustrated in Equation 6.3. This runhistory is
gathered by running a configuration θi on an instance π ∈ Π and observing its obtained utility oi.
However, the instances vary in opponents and scenarios, meaning that a configuration θi might
obtain a different utility on another instance. The current regression model does not consider
differences between instances and assumes a direct relation between parameter configuration and
performance. With sufficient training data, the model captures configuration trends that perform
well in general, rendering it capable of finding promising configurations.

Hutter et al. [22] introduced the use of features to capture the differences between instances and
implemented them into SMAC. Given a vector of features F(π) = x ∈ X describing a training
instance π ∈ Π, a model is fitted using the joint vector of configuration and features [θi,F(π)] with
its observed utility oi as output. We make a distinction between opponent features and scenario
features, as the two feature spaces are supposedly independent. Therefore, the total feature space
X is the Cartesian product between the opponent feature space and the scenario feature space

47

Algorithm 4 Intensify(~Θnew, θinc, R,Π, O) [22]

Input ~Θnew List of promising configurations
θinc Incumbent configuration (current best)
R Runhistory
Π Negotiation instances
O Performance metric
tint Time budget for intensify procedure

Variables θnew Challenging configuration
Output R Runhistory

θinc Incumbent configuration (current best)

1: for i := 1, . . . , |~Θnew| do
2: Π′ ← {π′ ∈ Π : Count(θinc on π′) ≤ Count(θinc on π′′),∀π′′ ∈ Π}
3: π ← Random(Π′)
4: R← ExecuteNegotiation(R, DA(θinc), π)

5: θnew ← ~Θnew[i]
6: N ← 1
7: loop
8: Πmissing ← {π ∈ Π : Exists(θinc on π) ∧ ¬Exists(θnew on π)}
9: Πtorun ← random subset of Πmissing of size Min(N, |Πmissing|)

10: for π ∈ Πtorun do R← ExecuteNegotiation(R, DA(θnew), π)
11: Πmissing ← Πmissing/Πtorun

12: Πcommon ← {π ∈ Π : Exists(θnew on π) ∧ Exists(θinc on π)}
13: if O(θnew, Πcommon) < O(θinc, Πcommon) then break
14: else if Πmissing = ∅ then θinc ← θnew; break
15: else N ← 2 ∗N
16: if (GetT ime() > tint) ∧ i ≥ 2 then break

17: return [R, θinc]

48

X = (Xopp×Xsc). The regression model that maps the combined configuration space and feature
space to a predicted utility is described by Equation 6.5. The model now considers differences
of instances when predicting performance of a configuration over the full set of instances. The
expanded version of the runhistory is illustrated in Equation 6.6.

M : (Θ× (Xsc ×Xopp))→ ô (6.5)

R = {(〈θ1,F(π)〉, o1), . . . , (〈θn,F(π)〉, on)} (6.6)

We already defined features of a negotiation instance in Chapter 5. If these features manage to cap-
ture the differences between instances accurately, then we should observe an improved optimisation
result compared to optimisation without features.

6.3 Baselines

We must set baseline configurations to analyse the result of the optimisation. The basis of our
Dynamic Agent is derived from a paper by Lau et al. [29]. Though we added some functionalities,
it is possible to set our agents strategy configuration to resemble that of the original agent. We
refer to this configuration from the literature as θlit, its parameters can be found in Table 6.2.

The paper was published in times when there was not a general testbed for automated negotiations
agent like GENIUS. As a result this agent was only tested against itself on a single domain with
varying preference profiles. We decided to add a baseline configuration by hand, as the literature
configuration is outdated. To achieve this configuration, we use a combination of intuition, past
research, and manual search, which we consider the standard procedure for all agents that are
tuned by hand. We present the hand tuned configuration parameters θhand in Table 6.2 and an
explanation below:

• Accepting : The acceptance condition parameters of the literature configuration set a pure
ACnext strategy with parameters α = 1, β = 0. Baarslag et al. [45] performed an empirical
research on a variety of acceptance conditions and showed that there are better alternatives.
We set the accepting parameters of our configuration to the best performing condition as
found by Baarslag et al. [45].

• Fitness function: Preliminary testing showed that the literature configuration concedes much
faster than the average ANAC agent, resulting in a poor performing strategy. We set a more
competitive parameter configuration for the fitness function by manual search, to match the
competitiveness of the ANAC agents.

• Space exploration: The domain used in the paper has a relatively small set of outcomes. We
increased the population size, added an extra evolution to the genetic algorithm and made
some minor adjustments to cope with larger outcome spaces.

49

Accepting Fitness function Space exploration

θ α β tacc γ nfit δ e Npop Ntour E Rc Rm Re

θlit 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1
θhand 1 0 0.98 MAXW 4 0.95 0.05 300 5 4 0.6 0.05 0.05

Table 6.2: Baseline configurations parameters

6.4 Method

Figure 6.1 provides an overview of the structure of the optimisation process.

Pa
ra

lle
l (

x3
00

)

Training
Instances

 Πtrain

Configuration
Space

 Θ

Scenario
Features

 Xsc

Opponent
Features

 Xopp

Training
Agents

 Atrain

Training
Scenarios

 Strain

π
SMAC

(Python)

o
output

GENIUS

(Java)
Runhistories

[,… ,]R1 R300

R

θopt

Select Best θinc

Dynamic
Agent

 DA(θ)
θ

negotiation
setting

 θ

W
ra

pp
er

(P
yt
ho
n)

Logging

Figure 6.1: Overview of SMAC structure

Runtime specifics

The interaction between SMAC, the wrapper function, and GENIUS happen via the command
line interface. SMAC is run in embarrassingly parallel mode on a computing cluster by starting
a separate SMAC thread within every computation pool. SMAC selects a negotiation instance
and a configuration to evaluate on that instance and calls a wrapper function that handles the
communication with GENIUS. This wrapper function sends the configuration to the Dynamic
Agent, creates the negotiation setting, calls GENIUS to execute the negotiation, post-processes

50

the results, and finally returns the obtained utility to SMAC.

Input

The training instances are provided in Appendix A, the scenario features are calculated in advance
according to Section 5.1, and the configuration space is defined is Table 6.1.

The opponent features, as defined in Section 5.2, can only be gathered by performing negotiations
against the opponent, which is not done in this thesis up until this point. To gather these features,
we use our baseline hand configuration θhand, evaluate it 10 times on every training instance, and
construct the features.

Hardware & budget

We run the optimisation in parallel spread over 300 computation pools on a computing cluster
running Simple Linux Utility for Resource Management [49] (SLURM). As some opponent agents
are very RAM inefficient, we had to assign 12 gigabytes of RAM to every pool. Each parallel
optimisation pool receives a budget of 4 hours (topt in Algorithm 3), resulting in 1200 hours of
total optimisation time or 2400 CPU hours (2 CPU’s per pool). An overview of the hardware and
budget is presented in Table 6.3.

Brand Intel R© Xeon R© E5-2683 v4
Frequency 2.10 [GHz]
Cache L3 40 [Mb]
Computation pools 300
Cores per pool 1
CPU’s per pool 2
RAM per pool 12 [Gb]
Budget per pool 4 [hours]

Table 6.3: Hardware & budget SMAC

Output

Every parallel optimisation problem outputs its own incumbent configuration θinc at the end of
the optimisation process. As we ran 300 parallel processes, we had to decide which of the 300
incumbent configurations to use. To do so, we created a post-processing script that rebuilds the
random forest regression model conform Equation 6.5 and used it to predict the performance of
every incumbent over the full training set of instances. The incumbent with the best predicted
performance was selected as final output.

51

6.5 Results

The results of the optimisation process and method described in this chapter, are presented with
an emphasis on the following two topics:

1. The influence of the instance features on the optimisation process.

2. The performance of the optimised configurations.

6.5.1 Influence of instance features

To study the influence of the instance features on the optimisation process, we compare strategies
obtained by optimisation with features and by optimisation without features. We also compare
the strategies with the baseline. Only the training set of instances is used for the performance
comparison, as we are purely interested in convergence of the optimisation. We have run the
optimisation process as described in this chapter three times without instance features and three
times with instance features, all with the same optimisation budget. A total of 8 strategies is
obtained: 2 baselines [θlit, θhand], 3 optimised without features [θ1, θ2, θ3], and 3 optimised with
features [θ4, θ5, θ6]. An overview of the final configurations is presented in Table 6.4.

Accepting Fitness function Space exploration

θ α β tacc γ nfit δ e Npop Ntour E Rc Rm Re

θlit 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1
θhand 1 0 0.98 MAXW 4 0.98 0.05 300 5 4 0.4 0.05 0.05
θ1 1.001 0.048 0.901 AV GW 3 0.879 0.00183 345 10 4 0.437 0.003 0.176
θ2 1.041 0.001 0.904 AV GW 4 0.913 0.00130 384 5 4 0.431 0.126 0.198
θ3 1.009 0.026 0.910 MAXW 1 0.977 0.00113 361 2 5 0.279 0.181 0.072
θ4 1.032 0.022 0.931 AV GW 3 0.914 0.00429 311 8 3 0.251 0.082 0.132
θ5 1.015 0.017 0.925 AV GW 5 0.961 0.00105 337 5 3 0.192 0.090 0.138
θ6 1.027 0.022 0.943 AV GW 3 0.985 0.00227 283 7 4 0.294 0.057 0.156

Table 6.4: Optimised configurations parameters

We run each of these configurations 10 times on the set of training instances and calculate the
average obtained utility by Equation 6.1. The results are presented in Table 6.5, including an
improvement ratio over θhand.

6.5.2 Performance on test set

In the previous section we compared the obtained configurations by using the training set of
instances. We showed that automated optimisation results in a better performing configuration
than manual search on the training set of instances. However, it is still possible that overfitting
plays a role in this process. Testing the optimised configurations on a never before seen set of
opponent agents and scenarios is needed to rule this out. The test set of instances is presented in
Appendix A.

52

θ O(θ,Π) O(θ,Π)−O(θhand,Π)
O(θhand,Π) Description

θlit 0.533 -0.307 Literature
θhand 0.769 0 Hand tuned
θ1 0.785 0.020 Optimised without features
θ2 0.770 0.000 Optimised without features
θ3 0.792 0.029 Optimised without features
θ4 0.800 0.040 Optimised with features
θ5 0.816 0.060 Optimised with features
θ6 0.803 0.044 Optimised with features

Table 6.5: Optimised configurations performance on Πtrain

Performance of configurations

We compare the configurations by running them 10 times on the test set of instances Πtest and
calculate the performance by Equation 6.1. We compare the same configurations as presented in
Table 6.4. The results are presented in Table 6.6, including an improvement ratio over θhand.

In both Table 6.5 and Table 6.6 we observe that SMAC is capable of improving the performance
of the Dynamic Agent on the training set of negotiation instances. The usage of instance features
leads to less variation in final configuration parameters (Table 6.4), which also reflects in the
performance of these configurations.

θ O(θ,Πtest)
O(θ,Πtest)−O(θhand,Πtest)

O(θhand,Πtest)
Description

θlit 0.563 -0.261 Literature
θhand 0.763 0 Hand tuned
θ1 0.779 0.021 Optimised without features
θ2 0.760 -0.004 Optimised without features
θ3 0.774 0.015 Optimised without features
θ4 0.792 0.038 Optimised with features
θ5 0.795 0.042 Optimised with features
θ6 0.789 0.034 Optimised with features

Table 6.6: Optimised configurations performance on Πtest

ANAC tournament performance of best configuration

The results from the previous section indicate that the configurator is successful in finding improved
configurations, but the results are only compared against the other configurations of our Dynamic
Agent. This does not say much about the performance compared to other negotiation agents. In
this section, we show the performance of the best configuration that we found compared to the
ANAC agents in the test set of opponents.

We select θ5 as our best configurations based on performance on the training set and enter our

53

Dynamic Agent in an ANAC-comparable bilateral tournament with a 60 second deadline. We take
the agents (16) and the scenarios (14) from the test set as defined in Appendix A and add our
Dynamic Agent to the pool of agents. Next, we let every combination of 2 agents negotiate 10 times
on both sides of every scenario, for a total amount of 38080 negotiation sessions (Equation 6.7).
To speed up the process, we use a computing cluster to run the negotiations and assign that same
hardware to a negotiation session as we assigned to a single SMAC run (Table 6.3). We present
the results in Table 6.7.

Using the Dynamic Agent with θ5 results in a successful negotiation agent that is capable of
winning a ANAC-like bilateral tournament. We managed to obtain a 0.795−0.756

0.756 ∗ 100% ≈ 5.1%
higher utility than SimpleAgent, the number two in the ranking. We also beat the number two
on every other performance measure and were able to achieve a fairly low average distance to the
Pareto frontier. We refer the reader to Chapter 8 for a more elaborate discussion of the results.

(
17

2

)
∗ 14 ∗ 2 ∗ 10 = 136 ∗ 14 ∗ 2 ∗ 10 = 38080 (6.7)

Agent Utility Opp. utility Social welfare Pareto distance Nash distance Agreement ratio

RandomCounterOfferParty 0.440 0.957 1.398 0.045 0.415 1.000
HardlinerParty 0.496 0.240 0.735 0.507 0.754 0.496
AgentH 0.518 0.801 1.319 0.118 0.408 0.904
ConcederParty 0.577 0.848 1.425 0.047 0.358 0.964
LinearConcederParty 0.600 0.831 1.431 0.046 0.350 0.964
PhoenixParty 0.625 0.501 1.125 0.263 0.468 0.748
GeneKing 0.637 0.760 1.396 0.061 0.383 0.993
Mamenchis 0.651 0.725 1.377 0.087 0.360 0.927
BoulwareParty 0.662 0.786 1.448 0.043 0.319 0.968
Caduceus 0.677 0.486 1.163 0.241 0.453 0.784
Mosa 0.699 0.640 1.339 0.113 0.385 0.902
ParsCat2 0.716 0.671 1.386 0.108 0.286 0.904
RandomDance 0.737 0.716 1.453 0.024 0.344 0.998
ShahAgent 0.744 0.512 1.256 0.188 0.389 0.821
AgentF 0.751 0.605 1.356 0.100 0.367 0.918
SimpleAgent 0.756 0.437 1.194 0.212 0.470 0.801
DA(θ5) 0.795 0.566 1.361 0.087 0.407 0.922

Table 6.7: Bilateral ANAC tournament results using DA(θ5) (bold = best, underline = worst)

54

Chapter 7

Algorithm selection for negotiation

In Chapter 4, we developed a Dynamic Agent DA(θ) with a parameterized strategy that depends
on a parameter configuration θ. We created a successful method to automatically configure this
agent (Chapter 6), such that it outperforms both the comparable configuration from the literature
θlit and the configuration that we tuned by hand θhand. However, up until this point, we ignored
the fact that there is no single strategy that is optimal for all negotiation settings [11]. Although
the configuration results in a well performing strategy, it is still a fixed strategy.

In this chapter, we add a layer of algorithm selection [19] to our Dynamic Agent to exploit the
differences between negotiation instances. We attempt to improve the average obtained utility by
switching between strategies depending on the negotiation instance at hand. Instead of a single
best strategy, we aim to form a range of strategies that might include less efficient strategies that
specialise on specific instances.

Figure 7.1 provides a schematic overview of the algorithm selection problem at hand.

AS(, π) = θΘ⃗

Feature

Extraction

(π)

Negotiation Instance

Space

π ∈ Π

Selection
Mapping

(x)

Feature
Space

x ∈ (×)Xsc Xopp

Performance

Mapping

o(θ,π)

Algorithm

Space

θ ∈ Θ⃗

Performance

Performance

Space

o(θ,π) ∈ [0, 1]

Figure 7.1: Algorithm selection schematics [19]

55

The subscript “train” (e.g. Πtrain) is dropped throughout this chapter to improve readability.

7.1 Algorithm selector

Suppose we already have a portfolio of strategies ~Θ = {θ1, . . . , θn} for the Dynamic Agent DA(θ), a
feature space X that is the combined feature space of scenario features Xsc and opponent features
Xopp, a training set Π and test set Πtest of negotiation instances. We must train an algorithm
selector using the training set of negotiation instances to improve the performance of the Dynamic
Agent on the test set. We define the algorithm selector AS(~Θ, π) as a mapping from the negotiation
instance space to the algorithm space (Figure 7.1 & Equation 7.1).

AS : Π× ~Θ→ ~Θ (7.1)

Ilany et al. [18] also faced this algorithm selection problem and analysed the performance of multiple
classifiers that map the feature space to the algorithm space. The process of selecting a classifier
and configuring the accompanying parameters is again an algorithm configuration problem like we
faced in Chapter 6. We chose to automate the configuration of an algorithm selector by using
AutoFolio [50], leveraging the full power of a broad range of algorithm selection methods and
removing human bias.

7.1.1 AutoFolio

The algorithm selection tool AutoFolio constructs the algorithm selector. The benefit of this tool is
that we are not bothered with the decision which algorithm selection approach to use. The tool has
a range of regression and classification methods to choose from and uses SMAC to determine both
the selection method to use and the setting of its hyperparameters. The data AutoFolio requires
as input is the performance o(θ, π) of every strategy on every instance and a feature vector x for
every instance in the training set.

AutoFolio’s goal is set to maximise utility for the instances in the training set. For each negotiation
instance, it obtains the feature set and assigns a strategy from the portfolio based on the feature
data. It then reads the performance of the selected strategy on that negotiation instance for
optimisation purposes. As we collected performance data of every strategy on every negotiation
instance in advance, no negotiation sessions had to be run during the optimisation process. As
|Π| = 1120 and X ∈ R14, we can state that fitting a selector is computationally inexpensive relative
to the process of gathering performance data on the negotiation instances in this thesis.

Cross validation

AutoFolio uses 10-fold cross validation during optimisation to avoid overfitting by dividing the
negotiation instances in the training set in 10 subsets and leaving one subset out for performance
testing. However, due to the nature of our negotiation instance being a combined problem of an

56

opponent and a scenario, this still leads to overfitting of the algorithm selector. We demonstrate
this behaviour by example.

The training set of negotiation instances is the Cartesian product of the training set of opponents
and scenarios Π = A× S. We plot the training set of negotiation instances represented by square
markers in Figure 7.2 and indicated a random subset of instances that represents a single fold Πfold.
We refer to the remaining negotiation instances as Πrest. By fitting the algorithm selector to Πrest,
the unique combinations of opponent and scenario in Πfold are not seen before at performance
testing. However, we must be thoughtful that it is highly likely that we did see both the opponent
and scenario before in Πrest, but combined with a different scenario/opponent. As a result, the
algorithm selector will overfit. A straightforward solution is to remove all the instances in Πrest

that contain either the opponent or the scenario, but this heavily reduces or even eliminates the
entire set Πrest.

1 28 56
1

20

S

A

Πfold

Πrest

Figure 7.2: Default AutoFolio cross validation visualisation

As a solution, we modified AutoFolio to split the cross validation folds based on the set of opponents
and scenarios that build the negotiation instances. Both the set of opponents and the set of
scenarios are split into 4 subsets, such that Afold ⊂ A, |Afold| = 5 and Sfold ⊂ S, |Sfold| = 14. We
now define a single cross validation fold as Πfold = Afold × Sfold, so that the total amount of folds
is 4 ∗ 4 = 16.

We eliminate the set of negotiation instances Πelim that contain either an opponent or a scenario
that is present in the fold Πfold (but not both as those instances are in Πfold). The remaining set
of negotiations is again indicated by Πrest, such that Π = Πfold ∪ Πelim ∪ Πrest. We present a
visualisation of the three separate instance sets for a single fold in Figure 7.3.

The presented approach of cross validation reduces the workable size of the instance set, but it
does prevent overfitting. The decision to split both the opponent set and scenario set into 4
subsets is explained by the wish to maintain the ratio between training and test set size within the
cross validation procedure to the original AutoFolio ratio. AutoFolio originally uses 10-fold cross
validation, giving a train-test ratio of 1

9 . The presented approach results in a ratio of:

|Afold| ∗ |Sfold|
|A \Afold| ∗ |S \ Sfold|

=
5 ∗ 14

15 ∗ 42
=

70

630
=

1

9
(7.2)

57

1 28 56
1

20

S

A

Πfold

Πrest

Πelim

Figure 7.3: Modified cross validation visualisation

7.1.2 Performance measure

We measure the algorithm selector’s performance as a normalised value between a baseline and
the oracle selector (Equation 7.3) on the test set of negotiation instances. The oracle selector
always makes the perfect choice for every negotiation instance and is an upper bound of selection
performance of the considered portfolio.

We define the single best strategy as the fixed strategy in the portfolio that obtains the highest
performance on the set of negotiation instances (Equation 7.4). We refer to this strategy as θ1

as it is the first strategy in the portfolio due to the working of HYDRA (see next section). The
performance of the single best strategy is considered to be the baseline. We define the performance
measure in Equation 7.5, where p(AS,Π) = 0 means no improvement over the single best strategy
and p(AS,Π) = 1 means perfect performance (Oracle).

OR(~Θ, π) = arg max
θ∈~Θ

o(θ, π) (7.3)

θ1 = arg max
θ∈~Θ

O(θ,Π) (7.4)

p(AS,Π) =
1

|Π|
∑
π∈Π

(
o(AS(~Θ, π), π)− o(θ1, π)

o(OR(~Θ, π), π)− o(θ1, π)

)
(7.5)

7.2 Algorithm portfolio

In this section we discuss the details of the problem of creating an algorithm portfolio that we
defined in Section 3.2. Algorithm selection is the study of selecting the best performing algorithm
for a certain problem at hand. In this thesis, the problems are the negotiation instances and the
algorithms are negotiation strategies. The algorithm selector is discussed in the previous section,
however, making a selection requires a portfolio of negotiation strategies to select from.

A simple solution is to build a portfolio of negotiation agents that already exist within the GENIUS
environment, which is the approach used by Ilany et al. [18]. However, we consider this a less ideal

58

approach for the following reasons:

1. It requires a number of agents that already exist, which is the case for the negotiation settings
used in this thesis, but might not be the case if the settings are changed (e.g. using a different
protocol).

2. The agents might all be optimised with a different performance measure than we use for
algorithm selection (optimised for Nash solution vs. optimised for utility), resulting in a low
performing portfolio to start with.

3. There might be agents in the portfolio that are always outperformed by another agent.
They only increase the size of the portfolio without contributing, needlessly complicating the
algorithm selection problem.

4. The portfolio might not be robust, i.e. there can be a negotiation instance for which all the
negotiation agents in the portfolio fail to achieve a decent performance, thus introducing
“weak spots” in our agent.

In Chapter 6, we developed a method to automatically set a well performing negotiation strategy to
our Dynamic Agent. We used the method to create a single best strategy based on the performance
on the training set of negotiation instance. However, due to the flexible nature of the Dynamic
Agent, there is more than a single strategy to find within its hyperparameter space. Theoretically,
the hyperparameter space of the Dynamic Agent can be increased until every possible strategy is
within its domain, but we will continue with the Dynamic Agent as defined in Chapter 4.

We aim to use the automated configuration method and the Dynamic Agent to create multiple
strategies for the portfolio. This solves the issue of relying on a pool of already existing negotiation
agents as it only requires a single Dynamic Agent. It also allows us to specialise the portfolio, since
we can influence both the training set of instances as well as the performance measure used for
configuration. This can be useful if we are certain about boundaries in the negotiation instance
space that the agent will face (e.g. only larger domains, no discount, etc.), or if we aim to reach a
fair share of utility instead of being greedy.

The portfolio of strategies we create is thus a portfolio of configurations for our Dynamic Agent
~Θ. We set the condition that every strategy must add value to the portfolio:

∀θ ∈ ~Θ ∃π ∈ Π ∀θ′ ∈ (~Θ \ {θ}) : o(θ, π) > o(θ′, π) (7.6)

Which means that for every strategy θ there must exist an instance π, such that using θ on that
instance provides better results than any of the other configurations in ~Θ.

The portfolio can be viewed as a set of strategies that each specialise on a sub-space of the
negotiation instance space. Similarities in the negotiation instance space are found by mapping
the space to the feature space. A simple solution to achieve a portfolio is to divide the feature
space of the negotiation instances into multiple sectors by hand and run the configurator on training
instances who’s features lie within that sector. We than obtain a portfolio of configurations that
each specialise on a subspace of the feature space. We risk, however, cutting the feature space in
such a way that we split negotiation instances that are similar.

A more sophisticated approach would be to use clustering techniques to cluster the training in-
stances based on their features and run the configurator on every cluster separately. We thus would

59

obtain a portfolio of strategies that each specialise on a cluster of negotiation instances. However,
both approaches lean on human input (how many sectors/clusters, which clustering technique,
where to cut the feature space, etc.) and dictate the configurator on which sub-spaces it can op-
timise. The quality of the sectors/clusters is disputable, as they are created based on similarities
in the feature space without regards for the performance gain it may bring. Instead we chose
to automate the portfolio creation method by using HYDRA [21], removing the requirement of
human input in problem space separation.

7.2.1 HYDRA

HYDRA automatically generates a portfolio given only a parameterised algorithm (Chapter 4)
and a set of negotiation instances with features (Chapter 5) while using an algorithm configurator
(Chapter 6) and an algorithm selector (Section 7.1). We provide a pseudocode description of
HYDRA in Algorithm 5, modified for this thesis. The input is already introduced throughout
this thesis, as well as the “RunAlgorithmConfigurator” procedure (Algorithm 3) and the algorithm
selector (Section 7.1).

Algorithm 5 HYDRA [21]

Input Θ Configuration space
Π Training set of negotiation instances
O Performance metric

Variables θk Configuration
~Θ Portfolio of configurations
Ok Modified performance metric
AS Algorithm selector

Output ~Θ Portfolio of configurations

1: k ← 1
2: θ1 ← RunAlgorithmConfigurator(Θ,Π, O)
3: TestPerformance(Π, θ1)

4: ~Θ← {θ1}
5: AS ← FitAlgorithmSelector(~Θ,Π)
6: loop until condition
7: k ← k + 1
8: Ok ← GetModifiedPerformanceMetric(O,AS)
9: θk ← RunAlgorithmConfigurator(Θ,Π, Ok)

10: TestPerformance(Π, θk)

11: ~Θ← ~Θ ∪ {θk}
12: AS ← FitAlgorithmSelector(~Θ,Π)

13: return AS, ~Θ

The main idea of HYDRA is to run multiple identical configurator sessions on an identical train-
ing set of instances, while only modifying the performance metric. Due to the modifications to
the metric, the configurator converges towards different strategies. In Algorithm 5, the modified
performance metric is obtained through “GetModifiedPerformanceMetric”. We provide a formal

60

definition of the modified performance measure in Equation 7.7.

Ok(θ,Π) =
∑
π∈Π

max
(
o(θ, π), o(AS(~Θ, π), π)

)
(7.7)

C
ha

pt
er

 6
C

ha
pt

er
 7

H
YD

R
A

k
=

k
+

1

AS(,π)Θ⃗

Configurate & fit
algorithm selector

(AutoFolio)

θk

Run configurator
(SMAC)

Ok

Modify performance
measure

Θ⃗

Test performance

θk

= ∪ { }Θ⃗ Θ⃗ θk

Θ⃗

Test performance

θ1

= { }Θ⃗ θ1

Test performance on
Πtest

AS(,π)Θ⃗

AS(,π) =Θ⃗ θ1

k = 2

θ1

Run configurator
(SMAC)

Figure 7.4: Overview HYDRA

The modified performance is the better of the strategy that is
assessed and the performance of the strategy that is selected by
the algorithm selector. By optimising using the increase of per-
formance as compared to the current portfolio, the configurator
converges to the configuration that adds the most value to the
portfolio. In other words, the automated configuration will “fill
the weaker spots” of the current portfolio in the negotiation in-
stance space.

At the first configurator run, the default performance metric is
used. The resulting configuration θ1 is, therefore, the configura-
tion that works best in general over the full set of training in-
stances, also known as the single best strategy. We already ran
the configuration process under these conditions three times in
Chapter 6, so we select θ5 from Table 6.4 and rename it to θ1 in
this current chapter.

7.3 Method

Figure 7.4 provides an overview of the total HYDRA procedure,
which is explained in this section.

Runtime specifics

The first configurator run with the default performance metric
results in the single best strategy θ1 on the training set of negoti-
ation instances. This step is the main topic of Chapter 6, where we
obtain three of these configurations using instance features. We
pick the best performing configuration θ5 from Table 6.4 based on
observed performance on the training set of negotiation instances
as our single best strategy θ1 and use it to initialise the portfolio
and the algorithm selector.

We aim to complement the portfolio with an additional three
strategies, so we iterate through HYDRA until |~Θ| = 4 keeping a
small portfolio for initial testing. It also allows us to analyse the
performance of portfolios of size 1, 2 and 3 due to the incremental
approach of HYDRA. The working of SMAC is elaborated upon
in Chapter 6. The obtained configuration is tested 10 times on
every negotiation instance in the training set and the obtained

61

utility is stored on disc. Finally the portfolio and the performance data is used along with the
instance features, all in csv-file format, to configure an algorithm selector using AutoFolio. The
configured algorithm selector is fitted to the training set and saved as binary file to disk.

Input

The training instances are provided in Appendix A, the scenario features are calculated in advance
according to Section 5.1, and the configuration space is defined is Table 6.1.

The opponent features, as defined in Section 5.2, can already be extracted from the negotiation
results of Chapter 6. Since θ1 is the single best strategy, we consider θ1 to be the default con-
figuration for the DAP feature. We will not update the opponent features during the HYDRA
procedure.

Hardware & budget

We ran SMAC under identical conditions and as we did in Chapter 6, so we refer the reader to
Table 6.3 for details on hardware and budget.

Running AutoFolio for our problem is not computationally expensive, so we chose to not run it in
parallel for convenience. We used a single dual core processor on the computing cluster, assigned
it 4 gigabytes of RAM, and provided it with a budget of 0.5 hours. An overview of the hardware
and budgets is provided in Table 7.1.

Brand Intel R© Xeon R© E5-2683 v4
Frequency 2.10 [GHz]
Cache L3 40 [Mb]
Cores 1
CPU’s 2
RAM 4 [Gb]
Budget 0.5 [hours]

Table 7.1: Hardware & budget AutoFolio

Output

The fitted algorithm selector is saved as a binary file at the final step of HYDRA and forms the
final result of the process. If we are faced with a new negotiation instance for which we want
to select a configuration, we obtain the instance features, load the binary file, use the selector to
select a configuration, and start the negotiation session with that configuration.

62

7.4 Results

We discussed the process and method of building a portfolio and selecting configurations in this
chapter. We now present the results of this process. More specifically, there are two topics we
address:

1. The quality of the portfolio.

2. The performance of the algorithm selector.

7.4.1 Quality of the portfolio

By applying HYDRA, we obtained an algorithm selector with a portfolio of four configurations,
which correspond to four strategies, which are presented in Table 7.2. We tested the quality of the
portfolio by running every configuration on the train and test set of negotiation instances. The
results can be found in Table 7.3.

Accepting Fitness function Space exploration

θ α β tacc γ nfit δ e Npop Ntour E Rc Rm Re

θ1 1.015 0.017 0.925 AV GW 5 0.961 0.00105 337 5 3 0.192 0.090 0.138
θ2 1.073 0.049 0.916 AV GW 4 0.951 0.01920 362 3 1 0.460 0.198 0.020
θ3 1.015 0.001 0.939 MAXW 4 0.998 0.00133 367 8 2 0.146 0.001 0.009
θ4 1.018 0.001 0.993 AV GW 3 0.914 0.05114 365 10 1 0.488 0.170 0.195

Table 7.2: Portfolio configurations parameters

Best performing on Π by ratio

θ O(θ,Π) Best Single best 1 of 2 best 1 of 3 best 1 of 4 best

θ1 0.816 0.579 0.213 0.152 0.121 0.094
θ2 0.772 0.233 0.077 0.025 0.038 0.094
θ3 0.808 0.598 0.156 0.201 0.147 0.094
θ4 0.785 0.388 0.093 0.062 0.139 0.094

Best performing on Πtest by ratio

θ O(θ,Πtest) Best Single best 1 of 2 best 1 of 3 best 1 of 4 best

θ1 0.793 0.576 0.188 0.145 0.087 0.156
θ2 0.767 0.308 0.071 0.027 0.049 0.156
θ3 0.782 0.621 0.150 0.183 0.132 0.156
θ4 0.780 0.438 0.094 0.060 0.127 0.156

Table 7.3: Individual configuration performance on Π and Πtest

63

For every configuration in the portfolio, the performance on a set of instances is calculated accord-
ing to Equation 6.1. We also include ratios to demonstrate how many times on the instances a
configuration is the best, the single best, one of two best, one of three best, or one of four best in
the portfolio.

As a final quality check, the performance of the oracle selector (Equation 7.3) is calculated for
varying sizes and combinations of the portfolio. This selector always makes the best choice for
every instance and is an upper limit of performance of the Dynamic Agent. We present the results
in Table 7.4.

~Θ O(OR(~Θ, π),Π) O(OR(~Θ, π),Πtest)

{θ1} 0.816 0.793
{θ1, θ2} 0.868 0.857
{θ1, θ2, θ3} 0.876 0.860
{θ1, θ2, θ3, θ4} 0.882 0.870
{θ1, θ3} 0.846 0.819
{θ1, θ4} 0.866 0.855

Table 7.4: Oracle selector performance

Table 7.2 shows the selected parameter values of all strategies in the portfolio, separated by agent
component (Chapter 4). The configuration space in which the values of these parameters lie can
be found in Table 6.1. The differences between the strategies are clearly visible.

Table 7.3 shows the results per strategy in the portfolio in the form of an individual performance
over a set of instances O(θ,Π). It is clearly visible that θ1 is the single best strategy over the full
set Π. Furthermore, as every strategy is at least once the single best on individual instances (single
best ratio > 0), we can conclude that every strategy contributes to the portfolio.

Finally, Table 7.4 shows us that, at every iteration of HYDRA, potential performance of the
portfolio is increased on both Π and Πtest. This improvement decreases on Π as the amount of
iterations increase, indicating that HYDRA finds the largest “weaknesses” in the portfolio first. We
also show the performance of alternative portfolios by combining arbitrary iterations of HYDRA.

Further discussion on the results can be found in Chapter 8.

7.4.2 Performance of the algorithm selector

We now present the performance results of the algorithm selector. The results of Section 7.4.1 show
that there is potential in the portfolio to improve utility of the Dynamic Agent by 0.870− 0.793 =
0.077 on the test set of instances if we use the Oracle selector. In this section, we replace the
Oracle selector with the actual selector and test its performance in two parts:

• In the first part we assume that opponent features are already fully known to the Dynamic
Agent, as if we already faced the opponents before. Doing so allows us to observe the absolute
performance of the algorithm selector by eliminating the lack of opponent features of first
encounters.

64

• In the second part we once again test our agent in an ANAC tournament setting, comparing
our agents performance against other agents from the test set. We simulate a realistic setting
including first encounters of opponents at which there is a lack of opponent features.

Absolute performance of algorithm selector

In this section, we test the absolute performance of the algorithm selector by assuming perfect
knowledge of opponent features of the opponents in the test set of negotiation instance Πtest. The
opponent features are gathered by running 10 negotiation sessions with configuration θ1 on the
test set of instances.

We train and test multiple algorithm selectors on different portfolio sizes by extending the portfolio
as we did in Table 7.4, starting with the single best strategy θ1. We report both the performance
of the agent using Equation 6.1, as well as the normalised performance of the algorithm selector
according to Equation 7.5 per portfolio ~Θ. The results are presented in Table 7.5.

On both Π and Πtest the performance of the Dynamic Agent increases as the size of the portfolio
increases. The normalised performance p(AS,Π) also increases for Π, but fluctuates for Πtest. The
“N/A” values are explained by Equation 7.5, which calculates performance of the portfolio relative
to the single best strategy θ1. Since {θ1} is a portfolio with only the single best strategy, the value
would make no sense. Further discussion on the absolute performance can be found in Chapter 8.

Π Πtest

~Θ O(AS(~Θ, π),Π) p(AS,Π) O(AS(~Θ, π),Πtest) p(AS,Πtest)

{θ1} 0.816 N/A 0.793 N/A
{θ1, θ2} 0.853 0.725 0.819 0.416
{θ1, θ2, θ3} 0.861 0.760 0.810 0.256
{θ1, θ2, θ3, θ4} 0.872 0.856 0.825 0.419

Table 7.5: Absolute algorithm selector performance

ANAC tournament performance of algorithm selector

The final results we present in this thesis combines the effort of all previous chapters. We test the
performance of the Dynamic Agent with a portfolio of strategies in a bilateral ANAC tournament
setup where opponent learning between negotiation sessions is allowed. The tournament is run
using the test set of agents, the test set of scenarios and a deadline of 60 seconds to resemble the
original deadline of 180 seconds.

First encounters Up until now, we assumed opponent features to be fully known, which is
not realistic. Opponent features cannot be calculated in advance, in contrast to the scenario
features, but must be learned from previous encounters. In this section, we simulate a realistic
negotiation tournament where this problem occurs. The question rises what strategy to select at
first encounters with opponents, when no opponent features are available. The first strategy in the

65

portfolio is the single best strategy due to the working of HYDRA, which is confirmed in Table 7.3.
The logical answer is, therefore, to select the single best strategy θ1 if no opponent features are
available and algorithm selection is impossible. We illustrate this behaviour in Figure 7.5.

No Yes

Seen opponent
before?

Strategy: θ1

Strategy: AS(,π)Θ⃗

New negotiation instance
 π

Yes

No Samples of opponent
features > 2?

Yes

No

?AS(,π) =Θ⃗ θ1
Log opponent

features

Figure 7.5: Realistic strategy selection of Dynamic Agent

Opponent features All opponent features in this chapter are pre-calculated by negotiation with
the single best strategy θ1, which is also required to calculate the DAP feature. Opponent features
are influenced by the strategy that is selected by the Dynamic Agent, so we simplify the feature
extraction process and only gather features when strategy θ1 is selected. This aligns with the
decision to select θ1 at first opponent encounters.

Both the CoV and the mean of every opponent feature are stored for future use (Section 5.2).
The CoV of a feature needs at least two samples to be meaningful, so we set a second condition
that forces the Dynamic Agent to select strategy θ1 for the first two encounters with an opponent
(Figure 7.5).

Results To obtain the results, we take the Dynamic Agent with ~Θ = {θ1, θ2, θ3, θ4} and the
training set of negotiation instances Πtest. We iterate randomly through the test instances and use
the Dynamic Agent to negotiate following the procedure as illustrated in Figure 7.5. Additionally,
we let every opponent in the test set negotiate with every other opponent in the test set on every
test scenario and combine the results with the results of the Dynamic Agent. This procedure is
repeated 10 times to reduce influence of variance for a total of 38080 negotiations. We present the
results averaged per agent in Table 7.6.

Finally, we compare the performances of three Dynamic Agents in a realistic ANAC tournament
setup in Figure 7.6:

1. Dynamic Agent with the hand tuned strategy θhand that was used throughout Chapter 6

2. Dynamic Agent with the single best strategy θ1 from Table 7.2

3. Dynamic Agent with the strategy selector AS(~Θ, π) with ~Θ = {θ1, θ2, θ3, θ4}

66

Agent Utility Opp. utility Social welfare Pareto distance Nash distance Agreement ratio

RandomCounterOfferParty 0.440 0.956 1.397 0.046 0.415 1.000
HardlinerParty 0.504 0.244 0.748 0.498 0.747 0.504
AgentH 0.509 0.802 1.312 0.122 0.411 0.900
ConcederParty 0.577 0.848 1.425 0.046 0.357 0.964
LinearConcederParty 0.600 0.831 1.431 0.046 0.350 0.964
PhoenixParty 0.627 0.504 1.131 0.259 0.464 0.751
GeneKing 0.637 0.760 1.397 0.061 0.383 0.993
Mamenchis 0.652 0.725 1.377 0.087 0.360 0.927
BoulwareParty 0.662 0.786 1.448 0.043 0.318 0.968
Caduceus 0.680 0.491 1.171 0.236 0.447 0.790
Mosa 0.699 0.640 1.339 0.113 0.385 0.902
ParsCat2 0.710 0.673 1.383 0.111 0.287 0.901
RandomDance 0.737 0.716 1.453 0.024 0.344 0.998
ShahAgent 0.744 0.517 1.260 0.186 0.384 0.823
AgentF 0.751 0.605 1.356 0.100 0.365 0.918
SimpleAgent 0.760 0.443 1.203 0.207 0.463 0.806

DA(AS(~Θ, π)) 0.819 0.570 1.390 0.069 0.381 0.939

Table 7.6: Bilateral ANAC tournament results using DA(AS(~Θ, π)) (bold = best, underline =
worst)

In Table 7.6 we see that we are capable of winning an ANAC-like bilateral tournament with our
Dynamic Agent using the strategy selector. We outperform the number two (SimpleAgent) by
0.819−0.760

0.760 ∗ 100% ≈ 7.8%, which is a significant increase. We also beat the number two on all the
other performance measures. Further discussion on the result can be found in Chapter 8.

Utili
ty

Opp. u
tility

Socia
l Welfare

Pare
to Dista

nce

Nash
Dista

nce

Agre
ement r

atio
0

0.5

1

1.5

0.
76
3

0
.5
83

1.
3
46

9.
5
·1
0
−
2

0.
39
5

0.
90
6

0.
79
3

0.
56
2

1.
35
4

9
.1
·1
0
−
2

0.
41
1

0.
92
2

0
.8
19

0.
57
0

1
.3
90

6
.9
·1

0−
2

0
.3
81

0.
93
9

DA(θhand)

DA(θ1)

DA(AS(~Θ, π))

Figure 7.6: Comparison of three Dynamic Agents strategies in an ANAC tournament setting

67

Chapter 8

Discussion

We created a negotiation agent with a flexible strategy that is capable of winning an ANAC-like
bilateral tournament when properly configured. We showed that configuring this agent can be done
automatically to achieve such a winning strategy, even with a computational expensive training set.
Finally, we showed that we can find multiple strategies within the strategy space of the Dynamic
Agent that complement each other and can apply strategy selection to improve agent performance.

In this chapter we will discuss the contributions of this thesis and interpret the most important
results split into three topics in line with the thesis: The Dynamic Agent, Strategy configuration
and Strategy selection. We finalise the chapter by discussing future work.

8.1 Dynamic Agent

The agents that are designed for the Automated Negotiating Agents Competition [12] (ANAC)
contain parameters that are set by its creators. Obtaining a well performing strategy depends on
the settings of the parameters, which requires human effort to optimise. We faced the same problem
with the Dynamic Agent that we developed in Chapter 4, but we automated this configuration
process. We only define the domain of a parameter (so-called hyperparameter) that is likely to
contain a successful strategy, instead of finding the exact setting for a successful strategy.

The configuration process used (SMAC) allows specification of categorical parameters and condi-
tional parameters, providing large flexibility to the Dynamic Agent. Additional functionalities with
their own parameters can be made optionally by setting a boolean parameter with conditionals.
This allows us to add functionalities to the agent while being unsure if it is beneficial for agent
performance. The configuration process will decide whether to use the module or not.

68

8.2 Strategy configuration

Developing a successful strategy for the ANAC is not straightforward, we can justify this statement
by looking at the differences in utility between the winning and losing agents in the ANAC. We
attempted to set our Dynamic Agent by hand θhand to create a decent strategy and were quite
successful in achieving a high utility, but we must keep in mind that the opponents were designed
for different negotiation settings and that we had access to more modern literature. Despite
already being a successful strategy, we managed to improve the utility of the Dynamic Agent
by 0.795−0.763

0.763 ∗ 100% ≈ 4.2% by using automated configuration methods. This is a considerable
increase in utility and suggests that manual search configuration for such parameterised agents is
less optimal.

Suppose we would use a configuration process that requires testing of strategies on the full set
of training instances, then a time budget of 18.7 hours (Appendix A) would be required per
challenging strategy. The total configuration budget that is assigned in this thesis is 1200 hours
(Table 6.3), which allows approximately 64 strategies to be tested on the full training set in a
single configuration run. Far to few considering the configuration space of the Dynamic Agent
and the random nature of many automated configuration methods. By using SMAC, we optimised
on subsets of the training set, enabling early detection of low performing configurations. Even
with the relatively low budget, we managed to obtain consistent performance gains and similar
configurations on three independent configuration runs. We, therefore, deem SMAC to be an
effective strategy configurator for automated negotiation agents.

The training set is a good representation of the test set of instances, as the improvement ratios
compared to the hand tuned configuration show similarities for both sets. The best configuration
on the training set θ5 is also the best configuration on the test set and sets an improvement of
4.2% over the hand tuned configuration θhand. Surprisingly, this configuration also outperformed
all other agents in the ANAC tournament simulation and beat the second place winner on all 5
measures. Also surprising is the position of the ANAC 2016 winner Caduceus, which is unable to
achieve a decent agreement ratio. Caduceus applied a very competitive strategy, which might have
back fired in the composition of test agents used in this agent.

8.2.1 Strategies

The baseline strategy that resembled the configuration of the original agent θlit performed very
poor, as we expected. Compared to the strategy that is optimised by hand θhand, it results in a
31% decrease of average obtained utility.

The three best strategies [θ4, θ5, θ6] show some interesting settings. The parameter tacc of all three
strategies is set to a value that was not included in the range that Baarslag et al. [45] defined in
their grid search for the best possible acceptance condition. The parameter setting γ = MAXW

was found to be superior by Baarslag, yet none of the strategies preferred that setting. We also
left both α and β flexible within ACcombi, instead of setting them to 1 and 0 respectively as was
done by Baarslag, which seems to be less optimal.

All three strategies use a fitness function where the opponent part (fo(ω, t) in Equation 4.2) does
not depend on the last offered outcome xlast as proposed by Lau et al. [29]. Both the trade-off

69

factor δ and the concede eagerness e are also set much more selfish than the original proposed
values by Lau. Finally, the concede eagerness factor that we set for our hand tuned strategy is
still more then 10 times higher than the values obtained via configuration.

8.3 Strategy selection

We repeated the statement that there is no single best strategy optimal for all negotiation set-
tings [11] multiple times. In Chapter 6, we obtained a single best strategy that was already
performing well by winning an ANAC-like tournament with a margin. Despite being a successful
strategy, we found an additional 3 strategies within the strategy space of the Dynamic Agent us-
ing HYDRA that boost performance by nearly 10% in case of perfect selection. This increase is
substantial and justifies the statement.

The quality of the portfolio is good, but the performance of the strategy selector on the test set is
not in line with the performance on the training set, so we conclude that the selector is overfitted. A
possible reason can be the small size of the workable training set (Figure 7.3) during configuration
with AutoFolio. Nevertheless, 41.9% of the potential performance increase (0.077) on the test set
is reached, but we must keep in mind that these results are achieved by assuming fully known
opponent features.

Applying the algorithm selector with the full portfolio (Table 7.2) in a realistic ANAC-like tour-
nament without pre-known opponent features yields an improvement in performance of 0.819 −
0.793 = 0.026 compared to the single best strategy. As the single best strategy was already the
winning strategy in an anac setup using the test set of opponents and scenarios, this achievement
furthers our dominance in performance.

It is interesting that the performance of the Dynamic Agent, in the realistic setting with first
encounters, approaches the performance of the case where opponent features are known in advance.
The final performance of the Dynamic Agent with strategy selection is 7.8% higher than the
performance of the second placed SimpleAgent in an ANAC-like tournament setup. This is a
significant margin that was not achieved with the single best strategy. We conclude that strategy
selection can greatly improve agent performance if repeated encountering of opponents is applicable.

Finally, we compared the performance of the Dynamic Agent with the baseline strategy θhand,
the single best strategy θ1 and the strategy selector AS(~Θ, π) in Figure 7.6. We note that the
single best strategy is more competitive than the baseline as it increases our utility and decreases
opponent utility, but still manages to increase the agreement ratio. What is also notable, is that
the utility of both the Dynamic Agent and the opponent increase by using the algorithm selector
instead of the single best strategy. Being able to find outcomes with a higher utility for the
opponent increases our chances of them accepting our offer, which in turn increases our utility.

8.3.1 Portfolio

The usage of HYDRA automates the creation of a portfolio for the Dynamic Agent, without
requiring human input in making divisions in the problem space for specialised strategies. As
HYDRA always uses the full set of negotiation instances for portfolio construction, the risk of

70

weaknesses of the portfolio in sub-spaces of the problem space is reduced. We see similar potential
performance increase of the portfolio on the training set and on the test set as the portfolio
increases. Apparently, HYDRA is capable of finding general weaknesses of the incumbent portfolio
and does not overfit by adding strategies that counter single negotiation instances.

The resulting four created strategies (Table 7.2) are time-dependent Boulware with low values for
e making them competitive strategies. Between the four, θ4 is the most cooperative strategy in
the portfolio.

Due to the working of HYDRA the first strategy in the portfolio is the single best strategy, which
is confirmed in Table 7.3 for both the test and the training set of instances. Having a single best
strategy in the portfolio is useful for strategy selection when new opponents are encountered and no
selection is possible due to a lack of opponent features. Additional strategies are found iteratively
based on performance gain compared to the current portfolio. This behaviour is visible in Table 7.4,
as the largest performance increase of the Oracle selector on the training set of instances is achieved
by adding the second strategy θ2.

Interestingly, the second strategy in the portfolio θ2 achieves the lowest performance on both the
test and train set of instances by itself (Table 7.3), but adds the most potential performance
increase to the portfolio as a second strategy (Equation 7.3) besides the single best θ1. Notable
are the low ratios of best performing strategy for θ2. Apparently, the single best strategy θ1 has a
weak spot in the problem space where it fails to achieve a decent performance. This weak spot is
filled by θ2.

The condition that every strategy must contribute to the portfolio by outperforming all other
strategies on at least one negotiation instance is satisfied (Table 7.3). There is a single best
strategy for 53.8% of the instances in the training set and for 50.3% in the test set. The best
performing strategy ratios are similar for the test set and training set of instances.

8.4 Overall contribution

The overall contribution of this thesis is to reduce human effort in the design of automated negoti-
ation agents and to provide a general approach to add strategy selection to automated negotiation
agents.

Human effort shifts by replacing manual search methods with automated search methods for strat-
egy configuration, while drastically increasing the size of the training set. It allows us to focus more
on defining the boundaries of the problem space, e.g. the same Dynamic Agent can be configured
for negotiation scenarios with a discount by adding those scenarios to the training set. In other
words, we can find a single best strategy for the Dynamic Agent for every possible negotiation
problem space by altering the training set accordingly.

We demonstrated that algorithm selection for automated negotiations is beneficial for agent perfor-
mance, which is also found in literature [11], [18]. Still, the amount of agents that apply algorithm
selection in the ANAC is surprisingly low. We believe that this is due to the difficulties it brings
in the form of creating multiple strategies that complement each other and creating a successful
method of strategy selection. In this thesis, we demonstrated a method to automate both, re-
ducing human effort by limiting it to designing a single parameterised strategy and gathering a

71

representative training set of negotiation instances.

8.5 Future work

In this section we propose future work to expand upon this thesis. The future work is focussed on
weaknesses that we spotted in our work during the experiments. We also propose steps towards
removing the limitations we defined in the beginning of this work for simplification. Now that the
initial is taken we can look towards expansion of the problem space.

Expanding problem space complexity

In the beginning of the thesis we set some boundaries in the negotiation problem space to lower
the step towards our goal. Now that the initial step was successful, the problem space should be
expanded to check whether our approach remains useful. For example, by adding discount factors
and reservation utilities (Section 3.1.1) to the scenarios.

Extension to multilateral negotiation

We simplified in this thesis by limiting the work to bilateral negotiation settings. The current
training and testing set of opponents and scenarios can also be used to create a training set of
multilateral negotiation instances, but this increases the size of the set of instance set significantly,
making automated configuration more difficult. It might be possible to configure the Dynamic
Agent exclusively on bilateral settings and apply the resulting strategies in multilateral negotiations
settings. There are three separate parts of the Dynamic Agent with parameters to configure as
displayed in Table 6.1. We would like to investigate the performance of applying strategy selection
in multilateral negotiation based on selecting a separate strategy for every opponent as if it would
be a bilateral setup. As an initial suggestion, we propose the following steps to select and combine
bilateral strategies:

1. Construct two algorithm selectors, one to select outcome space exploration configuration
based on scenario features and one to select bidding strategy and accepting condition con-
figuration based on opponent and scenario features.

2. Select a configuration for outcome space exploration based on the scenario

3. Select a configuration for bidding strategy and acceptance condition per opponent based on
the opponent and scenario

4. Apply the acceptance conditions only to offers from the corresponding opponent

5. Use the bidding strategy to obtain a separate fitness value per opponent for an outcome and
combine them via min operator

The handling of multiple opponents does add complexity to the problem. Failing to select a decent
strategy for one of the opponents can result in failed negotiation for not only yourself, but also for

72

all the other parties. Another potential complexity lies in the opponent modelling, as opponents
not only react to our offers but also to other opponent offers.

Opponent features

The opponent features are influenced by the strategy of the Dynamic Agent. To solve this, we
restricted the gathering of opponent features to negotiation sessions where the Dynamic Agent
uses the single best strategy, which reduces opportunities to learn opponent characteristics. More
research is needed to study the influence of a strategy on the opponent features.

Strategy selection on first encounters

In a first encounter with an opponent we solve the incapability of strategy selection by selecting
the single best strategy. Although it is a decent approach, it is a missed optimisation opportunity
since we do know characteristics of the scenario. This is especially true if scenarios become more
complex due to discount factors or reservation utilities. Future work should be focused on an
approach of strategy selection at first encounters with opponents.

Partner selection

The automated configuration cost is linked directly to utility. Since we simplified in this thesis by
assuming a reservation value of 0 for every scenario, the configurator ends up with a strategy that
will desperately seek an agreement. After all, a small utility is more than 0 utility. We believe that
opponents should not be punished of being very competitive by walking away from a small utility,
refusing the opponent a good deal. Instead, opponents should be punished by our willingness to
negotiate with them in the future, which is possible if it is possible to choose an opponent for a
scenario (e.g. multiple sellers of the same product).

Implement multi-objective outcome space exploration

The Dynamic Agent uses a single-objective genetic algorithm to explore the outcome space. As
we must optimise not only our own utility, but also the opponents utility, we added a heuristic to
obtain a single objective value. However, there are genetic algorithms that are specifically build
for multi-objective optimisation by focusing on finding Pareto solutions [51]. This seems ideal for
outcome space exploration.

73

Chapter 9

Conclusion & Reflection

9.1 Conclusion

We now look back to the original problem statements as defined in Section 3.2 and answer the
research questions in retrospect. We structure this section based on the separate problem defini-
tions.

Dynamic Agent

We created a Dynamic Agent in Chapter 4 with a strategy that is based on a parameter config-
uration within a manually designed configuration space. We made the following statement as a
requirement for a Dynamic Agent to be successful:

We deem the Dynamic Agent successful if there is a configuration θ ∈ Θ such that our agent
DA(θ) outperforms the test set of opponent agents Atest on the test set of scenarios Stest. We
define outperforming as achieving a higher average utility in a bilateral ANAC-like tournament
setup.

In Chapter 6, the Dynamic Agent was automatically configured on the training set to create a single
best strategy for the agent. We tested the configuration in an ANAC-like tournament setting as
described above and showed that the resulting strategy was able to outperforming all other agents
with a 5% performance increase compared to the number 2. We conclude that the Dynamic Agent
is successful as its strategy space contains successful strategies.

Features

We constructed a set of features that describe a negotiation setting in Chapter 5, split up between
opponent features and scenario features. These features are used to indicate differences between

74

negotiation settings for a potential faster convergence of the configuration procedure (SMAC) and
as a problem description for selecting a good strategy.

To check the quality of the features, we wanted to test if the following two statements are true:

1. The feature set helps the automated algorithm configuration method in converging to a
better configuration while maintaining the computational budget.
2. The feature set contains sufficient information, such that algorithm selection improves the
utility of the Dynamic Agent.

Using SMAC in combination with instance features leads to less variation in parameter values
between the final configurations of separate optimisation runs (Table 6.4, Table 6.5). We also see
that the performance improvement is more significant and consistent for these configurations. One
of the configurations that is optimised without features θ2 leads to a worse performance on the
test set of negotiation instances compared to the baseline. We conclude that the features have a
notable positive impact on the optimisation process.

In Table 7.5 we showed that strategy selection based on the features increases the utility of the
Dynamic Agent. We conclude that the features provide sufficient information for successful strategy
selection.

Opponent preference estimation

Accurately modelling the preference profile of an opponent is important, as it allows us to observe
the opponents behaviour and to find Pareto efficient outcomes. We measured the performance of
a preference estimation model by calculating the Pearson correlation of bids and the difference in
Pareto frontier surface. Both measures correlate highly with the negotiation performance, as is
showed in opponent model comparison literature. We took an existing state-of-the-art preference
estimation model (SFM) that is know to perform well and defined the following research question:

Can we improve the Smith Frequency Model [46] (SFM) based on the Pearson correlation of
bids and the difference in Pareto frontier surface measures?

We tested the SFM method of preference estimation and made observations about its shortcomings.
We proposed two modifications in estimated utility calculation and applied it in our negotiation
agent. In Table 4.5 we showed the results of the accuracy measures after 11200 negotiation ses-
sions. Both modifications improved the accuracy of the opponent model for both measures. The
combined improvement is 6.55% for the Pearson correlation measure and 3.91% for the Pareto
surface measure. We conclude that the modifications are beneficial for preference estimation.

Configuration

The Dynamic Agent we created does not have a fixed strategy, but a configuration space that
maps to a strategy. We set two baseline strategies by defining two parameter configurations. The

75

first configuration θlit is based on the original paper that we derived the agent from. The second
configuration θhand is set by hand based on intuition, modern literature and manual search, which
we considered the default approach if no automated configuration method is applied. We defined
the following research question:

Can we automatically tune a parameter configuration θopt that outperforms the baselines on
average on a never before seen test set of negotiation instances?

In Chapter 6 we automatically configured the Dynamic Agent and obtained an optimised configu-
ration using SMAC. We tested the performance of both baseline configurations and the optimised
configuration on the test set of negotiation instances and presented the results in Table 6.6.

The configuration based on the original paper θlit, performed poorly compared to the hand tuned
configuration θhand by achieving a 26.1% lower utility. The optimised configuration θopt out-
performed both baseline configuration, obtaining a 4.2% increase in utility compared to the hand
tuned configuration. We conclude that the automated configuration method is successful in finding
strategies that outperform manual configuration.

Portfolio creation

We created the Dynamic Agent DA(θ) with a configuration space Θ and found a single best
strategy within that configuration space in Chapter 6. We also stated that no single strategy is
optimal for all negotiation instances, so we neded multiple strategies that complement each other.
To avoid the need of constructing a portfolio of strategies manually, we automated this process by
using HYDRA to find multiple successful strategies within the configuration space of the Dynamic
Agent and used them as portfolio ~Θ. As a benefit, this approach required us to only design a
single negotiation agent with a flexible parameterised strategy. We set the following requirement
to verify the quality of the portfolio:

Assuming that we are capable of selecting the best strategy for every negotiation instance
(oracle selector θπ = OR(~Θ, π)), DA(OR(~Θ, π)) must outperform DA(θi) on average over the

testing set of negotiation instances Πtest, for all θi ∈ ~Θ.

We created a portfolio of 4 strategies and tested the performance of every strategy on the testing
set of negotiation instances. In Table 7.4 and Table 7.3 we showed that, at perfect selection, the
Dynamic Agent achieves a utility of 0.870 compared to a utility of 0.793 for the single best strategy.
We conclude that the requirement is satisfied.

Selection

In the final part of the thesis we used the portfolio of strategies ~Θ and added a layer of algorithm
selection to the Dynamic Agent that selects a strategy based on the negotiation instance to exploit
differences between instances. We defined the following research question:

76

Can we apply an algorithm selection method AS(~Θ, π) = θπ that selects a configuration θπ
from ~Θ based on the negotiation instance π, such that DA(AS(~Θ, π)) outperforms the single
best strategy DA(θ1) in an ANAC-like bilateral tournament?

To avoid having to choose the method of algorithm selection, we implemented AutoFolio that
treats the construction of an algorithm selection pipeline as an algorithm configuration problem.
We trained and fitted an algorithm selector on the training set of negotiation instances and imple-
mented this selector in the Dynamic Agent, increasing the performance of the Dynamic Agent by
0.819−0.793

0.793 ∗ 100% ≈ 3.4% compared to the Dynamic Agent with the single best strategy.

9.2 Reflection

In this section we reflect on the research of this thesis and point towards limitations that impact
the value of the results presented.

Dynamic Agent

We aimed to create a flexible negotiation agent with a broad strategy space, set by a parameter
configuration. However, we limited the strategy to a time-dependent tactic, which is the more
popular tactic in the ANAC, undermining our goal. Other common tactics, like the behavioural
dependent tactic, are not within the configuration space of the Dynamic Agent (Chapter 4) for
reasons of simplifying our initial step towards automated configuration on a broad problem space.

The most famous behavioural tactic, tit-for-tat, performs less when optimising for utility, as it
behaves as a Matcher instead of an Inverter [48]. Optimising for utility means exploiting conceding
opponents, which is opposite behaviour of the tit-for-tat tactic. Since the Dynamic Agent already
has a component of opponent behaviour adaptation (strategy selection), we chose to use time-
dependent tactics in the Dynamic Agent.

Scenarios

We simplified the scenarios by setting the discount factor to 0. A discount factor of 0 makes
competitive strategies more effective, as the time it takes to reach agreement is not penalised. It
is likely that the single best strategy found in Chapter 6 would be more cooperative if the training
set of scenarios contained scenarios with a large discount factor. The current single best strategy
is probably ineffective in discounted scenarios, regardless of the opponent. This makes the decision
to select the single best strategy if no opponent features are present disputable.

The scenarios do not contain inter-dependent issues, i.e. issues that are only considered when
specific values are set to other issues. This allows us the usage of the linear additive utility
function (Equation 3.2). Although these scenarios are most commonly used, we must note that

77

the opponent models (Section 4.3) and outcome space exploration method (Section 4.1.2) used by
our Dynamic Agent are not suited to handle scenarios with inter-dependent issues.

Deadline

We set a time based deadline for the negotiation settings, following the ANAC competition. The
idea behind this is that automated negotiation is commonly used in applications where agreements
are needed within a real-time deadline. Examples are bidding on advertisement spots online while
loading a web page, selling green energy to the grid, or regulating traffic at intersections. A
round based deadline is an alternative, but that allows agents to use unlimited real-time, which
is impractical in these applications. By setting a real-time deadline, agent designers are forced to
focus on computational efficiency.

Real-time deadlines cause inconsistencies between tested performance on different hardware. More
powerful hardware allows for more negotiation rounds, which in turn gives agents more time to
explore/learn. In an attempt to resolve this issue, we limited ourselves to computation nodes
with identical architecture, but we are not able to eliminate dynamic effects within those nodes.
For example, slower memory due to memory clogging, CPU’s going in saving mode due to lower
computational node demand, and input output delays. These are all affecting the negotiation
sessions, and thus influencing the performance.

Opponents

We focused on bilateral negotiation settings in this thesis. As we showed in Chapter 6 we are
capable of performing very well against the opponents from the ANAC competition. However,
these agents were made for multilateral negotiation settings with a deadline of 180 seconds, which
is comparable but not identical. The Dynamic Agent in this thesis can also be used in multilateral
negotiations with adaptations (Section 8.5), but its performance might differ.

Opponent model

We use the opponent model to extract opponent features for future use. The model is updated
every time the opponent makes an offer. However, in this work we treated an accept as an offer
made by the opponent and updated the model accordingly. There is something to say for this
approach, as the opponent is willing to accept that outcome, but it is likely not identical to the
offer it would have made otherwise. In a bilateral negotiation settings, there is only 1 accept at
max, making this discussion less important. However, in multilateral negotiation, it is possible that
there are many more accepts by opponents (Algorithm 1), making this an important discussion.

Performance metric

The performance metric in Equation 6.1 perfectly aligns with the goal of creating a well performing
agent in general. However, it does not align with the goal to win the ANAC. In ANAC, it is not
only important to obtain a high utility, but also to prevent opponents from achieving an even

78

higher utility. A very competitive agent will achieve a high performance in a competition with
many conceders. In such a case, it is better to walk away from a negotiation with a competitive
agent when you are not capable of winning the negotiation, resulting in 0 utility for both. The
current performance metric results in a strategy that “desperately” tries to obtain an agreement,
as little utility is always more than 0 utility.

79

Abbreviations

ANAC Automated Negotiating Agents Competition [12]. 4, 5, 8, 13, 16, 18–22, 30, 49, 53, 54,
65–71, 74, 77, 78, 86

AR Average Rate. 40, 41, 43, 93, 94

ASP Answer Set Programming. 8

BATNA Best Alternative To a Negotiation Agreement [34]. 11

CoV Coefficient of Variance. 39, 43, 66

CR Concession Rate. 39–41, 43, 90–92

CSP Constraint Satisfaction Problem. 8

DAP Default Algorithm Performance. 42, 43, 62, 66

FYU Full Yield Utility. 39, 40

GENIUS General Environment for Negotiation with Intelligent multi-purpose Usage Simula-
tion [11]. 4, 9, 11, 13, 18, 20, 24, 49, 50, 58, 87, 88

MIP Mixed Integer Programming. 5, 7

SAOP Stacked Alternating Offers Protocol [37]. 13, 14

SAT Boolean Satisfiability. 5, 8

SFM Smith Frequency Model [46]. 30–37, 75

SLURM Simple Linux Utility for Resource Management [49]. 51

SMAC Sequential Model-based optimization for general Algorithm Configuration [22]. 45–47, 50,
51, 53, 54, 56, 61, 62, 68, 69, 75, 76

SMBO Sequential Model-Based Optimisation [22]. 46, 47

80

Nomenclature

AutoFolio an automatically configured algorithm selector [50]. 56, 57, 62, 70, 77

HYDRA a method for automatically designing algorithms to complement a portfolio [21]. 5, 58,
60–64, 66, 70, 71, 76

81

Bibliography

[1] H. Raiffa, The art and science of negotiation. Harvard University Press, 1982.

[2] J. Z. Rubin, Negotiation behavior, 13. Academic Press, 1983, vol. 17, pp. 911–912, isbn:
9780125662505. doi: 10.1016/0277-9536(83)90290-3.

[3] R. G. Smith, “The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver,” IEEE Transactions on Computers, vol. C-29, no. 12, pp. 1104–
1113, 1980, issn: 00189340. doi: 10.1109/TC.1980.1675516.

[4] K. Sycara, “Resolving Goal Conflicts via Negotiation,” The Seventh National Conference on
Artificial Intelligence, pp. 245–249, 1988.

[5] K. Sycara-Cyranski, “Arguments Of Persuasion In Labour Mediation,” Proceedings of the
International Joint Conference on Artificial Intelligence, vol. 1, pp. 294–296, 1985.

[6] W. Robinson, “Negotiation behavior during requirement specification,” [1990] Proceedings.
12th International Conference on Software Engineering, pp. 268–276, 1990, issn: 02705257.
doi: 10.1109/ICSE.1990.63633.

[7] J. S. Rosenschein, “Rational interaction: cooperation among intelligent agents,” PhD thesis,
Stanford, CA, USA, 1986, p. 145.

[8] M. Klein and S. C. Lu, “Conflict resolution in cooperative design,” Artificial Intelligence
in Engineering, vol. 4, no. 4, pp. 168–180, 1989, issn: 09541810. doi: 10 . 1016 / 0954 -

1810(89)90013-7.

[9] T. Bosse and C. M. Jonker, “Human vs. computer behaviour in multi-issue negotiation,”
Proceedings - First International Workshop on Rational, Robust, and Secure Negotiation
Mechanisms in Multi-Agent Systems, RRS 2005, vol. 2005, pp. 11–24, 2005, issn: 18387640.
doi: 10.1109/RRS.2005.8.

[10] T. Baarslag, K. Fujita, E. H. Gerding, K. Hindriks, T. Ito, N. R. Jennings, C. Jonker,
S. Kraus, R. Lin, V. Robu, and C. R. Williams, “Evaluating practical negotiating agents:
Results and analysis of the 2011 international competition,” Artificial Intelligence, vol. 198,
pp. 73–103, 2013, issn: 00043702. doi: 10.1016/j.artint.2012.09.004.

[11] R. Lin, S. Kraus, T. Baarslag, D. Tykhonov, K. Hindriks, and C. M. Jonker, “Genius: An
integrated environment for supporting the design of generic automated negotiators,” Compu-
tational Intelligence, vol. 30, no. 1, pp. 48–70, 2014, issn: 08247935. doi: 10.1111/j.1467-
8640.2012.00463.x.

82

https://doi.org/10.1016/0277-9536(83)90290-3
https://doi.org/10.1109/TC.1980.1675516
https://doi.org/10.1109/ICSE.1990.63633
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1016/0954-1810(89)90013-7
https://doi.org/10.1109/RRS.2005.8
https://doi.org/10.1016/j.artint.2012.09.004
https://doi.org/10.1111/j.1467-8640.2012.00463.x
https://doi.org/10.1111/j.1467-8640.2012.00463.x

[12] T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin, “The first automated negotiating
agents competition (ANAC 2010),” Studies in Computational Intelligence, vol. 383, no. Anac,
pp. 113–135, 2012, issn: 1860949X. doi: 10.1007/978-3-642-24696-8_7.

[13] T. Baarslag, R. Aydoğan, K. V. Hindriks, K. Fujita, T. Ito, and C. M. Jonker, “The Auto-
mated Negotiating Agents Competition, 2010–2015,” AI Magazine, vol. 36, no. 4, pp. 2010–
2014, 2015, issn: 0738-4602. doi: 10.1609/aimag.v36i4.2609.

[14] N. Matos, C. Sierra, and N. R. Jennings, “Determining successful negotiation strategies:
An evolutionary approach,” Proceedings - International Conference on Multi Agent Systems,
ICMAS 1998, pp. 182–189, 1998, issn: 0254-1319. doi: 10.1109/ICMAS.1998.699048.

[15] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992, p. 232, isbn:
9780262082136.

[16] T. Eymann, “Co-evolution of bargaining strategies in a decentralized multi-agent system,”
AAAI Fall 2001 Symposium on Negotiation Methods for Autonomous Cooperative Systems,
pp. 126–134, 2001.

[17] G. Dworman, S. O. Kimbrough, and J. D. Laing, “Bargaining by artificial agents in two
coalition games: A study in genetic programming for electronic commerce,” Proceedings of
the First Annual Conference on Genetic Programming, pp. 54–62, 1996.

[18] L. Ilany and Y. Gal, “Algorithm selection in bilateral negotiation,” Autonomous Agents
and Multi-Agent Systems, vol. 30, no. 4, pp. 697–723, 2016, issn: 15737454. doi: 10.1007/
s10458-015-9302-8.

[19] J. R. Rice, “The Algorithm Selection Problem,” Advances in Computers, vol. 15, no. C,
pp. 65–118, 1976, issn: 00652458. doi: 10.1016/S0065-2458(08)60520-3.

[20] L. Ilany and Y. Gal, “The Simple-Meta Agent,” in Novel insights in agent-based complex
automated negotiation, I. Marsa-Maestre, M. A. Lopez-Carmona, T. Ito, M. Zhang, Q. Bai,
and K. Fujita, Eds., vol. 535, Springer, 2014, pp. 197–200, isbn: 978-4-431-54757-0. doi:
10.1007/978-4-431-54758-7.

[21] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically Configuring Algorithms for
Portfolio-Based Selection.,” Aaai 2010, vol. 10, pp. 210–216, 2010.

[22] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based optimization for
general algorithm configuration,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6683 LNCS,
pp. 507–523, 2011, issn: 03029743. doi: 10.1007/978-3-642-25566-3_40.

[23] ——, “Automated configuration of mixed integer programming solvers,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6140 LNCS, pp. 186–202, 2010, issn: 03029743. doi: 10.1007/
978-3-642-13520-0_23.

[24] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-Race and Iterated F-Race: An
Overview,” in Experimental Methods for the Analysis of Optimization Algorithms, T. Bartz-
Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, Eds., Springer Berlin Heidelberg,
2010, pp. 311–336, isbn: 978-3-642-02538-9. doi: 10.1007/978-3-642-02538-9_13.

[25] P. Balaprakash, M. Birattari, and T. St, “Improvement Strategies for the F-Race Algorithm
:” Strategies, pp. 108–122, 2007.

83

https://doi.org/10.1007/978-3-642-24696-8_7
https://doi.org/10.1609/aimag.v36i4.2609
https://doi.org/10.1109/ICMAS.1998.699048
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1007/s10458-015-9302-8
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-4-431-54758-7
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-13520-0_23
https://doi.org/10.1007/978-3-642-02538-9_13

[26] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based search for combinatorial
optimization: A critical survey,” Annals of Operations Research, vol. 131, no. 1-4, pp. 373–
395, 2004, issn: 02545330. doi: 10.1023/B:ANOR.0000039526.52305.af.

[27] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: An automatic algo-
rithm configuration framework,” Journal of Artificial Intelligence Research, vol. 36, pp. 267–
306, 2009, issn: 10769757. doi: 10.1613/jair.2861.

[28] C. Ansótegui, M. Sellmann, and K. Tierney, “A Gender-Based Genetic Algorithm for the Au-
tomatic Configuration of Algorithms,” in Principles and Practice of Constraint Programming
- CP 2009, I. P. Gent, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 142–157,
isbn: 978-3-642-04244-7.

[29] R. Y. Lau, M. Tang, O. Wong, S. W. Milliner, and Y. P. P. Chen, “An evolutionary learn-
ing approach for adaptive negotiation agents,” International Journal of Intelligent Systems,
vol. 21, no. 1, pp. 41–72, 2006, issn: 08848173. doi: 10.1002/int.20120.

[30] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-based Algorithm
Selection for {SAT},” J. Artif. Intell. Res., vol. 32, pp. 565–606, 2008, issn: 1076-9757. doi:
10.1613/jair.2490.

[31] H. Hoos, M. Lindauer, and T. Schaub, “Claspfolio 2: Advances in algorithm selection for an-
swer set programming,” Theory and Practice of Logic Programming, vol. 14, no. 4-5, pp. 569–
585, 2014, issn: 14753081. doi: 10.1017/S1471068414000210.

[32] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan, “Using case-based
reasoning in an algorithm portfolio for constraint solving,” Irish Conference on Artificial
Intelligence and Cognitive Science, no. 05, pp. 210–216, 2008.

[33] T. Baarslag, What to bid and when to stop, september. 2014, isbn: 9789461863058. doi:
10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca.

[34] R. Fisher and W. L. Ury, Getting to Yes: Negotiating Agreement Without Giving In. Penguin
Group, 1981, p. 200, isbn: 9780395317570.

[35] J. F. Nash, “The Bargaining Problem,” Econometrica, vol. 18, no. 2, p. 155, 1950, issn:
00129682. doi: 10.2307/1907266.

[36] E. Kalai and M. Smorodinsky, “Other Solutions to Nash’s Bargaining Problem,” Economet-
rica, vol. 43, no. 3, p. 513, 1975, issn: 00129682. doi: 10.2307/1914280.

[37] R. Aydoğan, D. Festen, K. V. Hindriks, and C. M. Jonker, “Alternating offers protocols for
multilateral negotiation,” in Studies in Computational Intelligence, vol. 674, Springer, 2017,
pp. 153–167, isbn: 978-3-319-51563-2. doi: 10.1007/978-3-319-51563-2_10.

[38] T. Baarslag, A. Dirkzwager, K. V. Hindriks, and C. M. Jonker, “The significance of bidding,
accepting and opponent modeling in automated negotiation,” Frontiers in Artificial Intelli-
gence and Applications, vol. 263, pp. 27–32, 2014, issn: 09226389. doi: 10.3233/978-1-
61499-419-0-27.

[39] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions for autonomous
agents,” Robotics and Autonomous Systems, vol. 24, no. 3-4, pp. 159–182, 1998.

[40] R. J. Lewicky, D. M. Saunders, and B. Barry, Essentials of Negotiation. McGraw-Hill/Irwin
Boston, MA, 2011, p. 289.

84

https://doi.org/10.1023/B:ANOR.0000039526.52305.af
https://doi.org/10.1613/jair.2861
https://doi.org/10.1002/int.20120
https://doi.org/10.1613/jair.2490
https://doi.org/10.1017/S1471068414000210
https://doi.org/10.4233/uuid:3df6e234-a7c1-4dbe-9eb9-baadabc04bca
https://doi.org/10.2307/1907266
https://doi.org/10.2307/1914280
https://doi.org/10.1007/978-3-319-51563-2_10
https://doi.org/10.3233/978-1-61499-419-0-27
https://doi.org/10.3233/978-1-61499-419-0-27

[41] D. K. Gode and S. Sunder, “Allocative Efficiency of Markets with Zero-Intelligence Traders:
Market as a Partial Substitute for Individual Rationality,” Journal of Political Economy,
vol. 101, no. 1, pp. 119–137, 1993, issn: 0022-3808. doi: 10.1086/261868.

[42] T. Baarslag, K. Hindriks, and C. Jonker, “Acceptance conditions in automated negotiation,”
in Complex Automated Negotiations: Theories, Models, and Software Competitions, Springer,
2013, pp. 95–111.

[43] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning for algorithm selec-
tion,” ACM Computing Surveys, vol. 41, no. 1, pp. 1–25, 2008, issn: 03600300. doi: 10.
1145/1456650.1456656.

[44] T. Baarslag, M. Hendrikx, K. Hindriks, and C. Jonker, “Predicting the performance of op-
ponent models in automated negotiation,” in Proceedings - 2013 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology, IAT 2013, vol. 2, IEEE, Nov. 2013,
pp. 59–66, isbn: 9781479929023. doi: 10.1109/WI-IAT.2013.91.

[45] T. Baarslag, K. Hindriks, and C. Jonker, “Effective acceptance conditions in real-time auto-
mated negotiation,” Decision Support Systems, vol. 60, no. 1, pp. 68–77, 2014, issn: 01679236.
doi: 10.1016/j.dss.2013.05.021.

[46] N. Van Galen Last, “Agent Smith: Opponent model estimation in bilateral multi-issue nego-
tiation,” Studies in Computational Intelligence, vol. 383, pp. 167–174, 2012, issn: 1860949X.
doi: 10.1007/978-3-642-24696-8_12.

[47] T. Baarslag, M. Hendrikx, K. Hindriks, and C. Jonker, “Measuring the performance of on-
line opponent models in automated bilateral negotiation,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), M. Thielscher and D. Zhang, Eds., ser. Lecture Notes in Computer Sci-
ence, vol. 7691 LNAI, Springer Berlin Heidelberg, 2012, pp. 1–14, isbn: 9783642351006. doi:
10.1007/978-3-642-35101-3_1.

[48] T. Baarslag, K. Hindriks, and C. Jonker, “Towards a quantitative concession-based classifi-
cation method of negotiation strategies,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7047
LNAI, pp. 143–158, 2011, issn: 03029743. doi: 10.1007/978-3-642-25044-6_13.

[49] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux Utility for Resource
Management,” pp. 44–60, 2006. doi: 10.1007/10968987_3.

[50] M. Lindauer, F. Hutter, H. H. Hoos, and T. Schaub, “AutoFolio: An automatically configured
algorithm selector,” IJCAI International Joint Conference on Artificial Intelligence, vol. 53,
pp. 5025–5029, 2017, issn: 10450823. doi: 10.1613/jair.4726.

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective ge-
netic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2,
pp. 182–197, 2002, issn: 1089778X. doi: 10.1109/4235.996017.

85

https://doi.org/10.1086/261868
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1109/WI-IAT.2013.91
https://doi.org/10.1016/j.dss.2013.05.021
https://doi.org/10.1007/978-3-642-24696-8_12
https://doi.org/10.1007/978-3-642-35101-3_1
https://doi.org/10.1007/978-3-642-25044-6_13
https://doi.org/10.1007/10968987_3
https://doi.org/10.1613/jair.4726
https://doi.org/10.1109/4235.996017

Appendix A

Training and testing set

This appendix provides an overview of the training and testing set of both agents and scenarios
that is used throughout this thesis. A single training instance requires an agent as opponent and
scenario from the train set, the same is true for a test instance.

The set of agents is provided in Table A.1. We used a total of 31 agents from the ANAC, which
were all finalists in either the nash category or the individual utility category. The set of ANAC
agents is split up in 20 training agents and 11 test agents. We added an additional 5 baseline tactic
agents as described in Section 3.1.3 to the test set for analysis. The set of scenarios is provided in
Table A.2. A total of 42 scenarios is used of which both sides can be played by our agent resulting
in 84 playable scenarios. The set of scenarios is selected based on diversity using the features as
described in Section 5.1 and their discount factor and reservation utility are removed. The set is
split up in 56 training scenarios and 28 test scenarios.

The total amount of training instances:

|Πtrain| = |Atrain| ∗ |Strain| = 20 ∗ 56 = 1120 (A.1)

The total amount of test instances:

|Πtest| = |Atest| ∗ |Stest| = 16 ∗ 28 = 448 (A.2)

86

Train/Test Agent ANAC Finalist Type

train Rubick 2017 individual/nash
train PonPokoAgent 2017 individual
train CaduceusDC16 2017 individual
train AgentKN 2017 individual/nash
train ParsCat 2016 individual
train YXAgent 2016 individual
train Terra 2016 individual
train MyAgent 2016 individual
train GrandmaAgent 2016 individual
train Farma 2016 individual
train Atlas32016 2016 individual
train AgentHP2 main 2016 individual
train PokerFace 2015 individual
train ParsAgent 2015 individual
train kawaii 2015 individual
train Atlas3 2015 individual/nash
train AgentX 2015 nash
train AgentBuyogMain 2015 individual/nash
train Gangster 2014 nash
train DoNA 2014 individual
test SimpleAgent 2017 individual
test ParsCat2 2017 nash
test ShahAgent 2017 individual/nash
test Mosa 2017 nash
test Mamenchis 2017 individual/nash
test GeneKing 2017 nash
test AgentF 2017 individual
test Caduceus 2016 individual
test RandomDance 2015 individual/nash
test PhoenixParty 2015 individual
test AgentH 2015 nash
test RandomCounterOfferParty N/A N/A
test BoulwareParty N/A N/A
test ConcederParty N/A N/A
test HardlinerParty N/A N/A
test LinearConcederParty N/A N/A

Table A.1: Overview of agent set used in GENIUS

87

Train/Test Profile 1 Profile 2 Comment

train ItexvsCypress Cypress.xml ItexvsCypress Itex.xml x2 (both sides are played)
train laptop buyer utility.xml laptop seller utility.xml x2 (both sides are played)
train Grocery domain mary.xml Grocery domain sam.xml x2 (both sides are played)
train Amsterdam party1.xml Amsterdam party2.xml x2 (both sides are played)
train camera buyer utility.xml camera seller utility.xml x2 (both sides are played)
train energy consumer.xml energy distributor.xml x2 (both sides are played)
train EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml x2 (both sides are played)
train Barter-A-prof1.xml Barter-A-prof2.xml x2 (both sides are played)
train FlightBooking-A-prof1.xml FlightBooking-A-prof2.xml x2 (both sides are played)
train HouseKeeping-A-prof1.xml HouseKeeping-A-prof2.xml x2 (both sides are played)
train MusicCollection-A-prof1.xml MusicCollection-A-prof2.xml x2 (both sides are played)
train Outfit-A-prof1.xml Outfit-A-prof2.xml x2 (both sides are played)
train RentalHouse-A-prof1.xml RentalHouse-A-prof2.xml x2 (both sides are played)
train Supermarket-A-prof1.xml Supermarket-A-prof2.xml x2 (both sides are played)
train Animal util1.xml Animal util2.xml x2 (both sides are played)
train DogChoosing util1.xml DogChoosing util2.xml x2 (both sides are played)
train Icecream util1.xml Icecream util2.xml x2 (both sides are played)
train Lunch util1.xml Lunch util2.xml x2 (both sides are played)
train Ultimatum util1.xml Ultimatum util2.xml x2 (both sides are played)
train DefensiveCharms util1.xml DefensiveCharms util2.xml x2 (both sides are played)
train SmartEnergyGrid util1.xml SmartEnergyGrid util2.xml x2 (both sides are played)
train DomainAce util1.xml DomainAce util2.xml x2 (both sides are played)
train Smart Grid util1.xml Smart Grid util2.xml x2 (both sides are played)
train DomainTwF util1.xml DomainTwF util2.xml x2 (both sides are played)
train ElectricVehicle profile1.xml ElectricVehicle profile2.xml x2 (both sides are played)
train PEnergy util1.xml PEnergy util2.xml x2 (both sides are played)
train JapanTrip util1.xml JapanTrip util2.xml x2 (both sides are played)
train NewDomain util1.xml NewDomain util2.xml x2 (both sides are played)
test England.xml Zimbabwe.xml x2 (both sides are played)
test travel chox.xml travel fanny.xml x2 (both sides are played)
test IS BT Acquisition BT prof.xml IS BT Acquisition IS prof.xml x2 (both sides are played)
test AirportSiteSelection-A-prof1.xml AirportSiteSelection-A-prof2.xml x2 (both sides are played)
test Barbecue-A-prof1.xml Barbecue-A-prof2.xml x2 (both sides are played)
test EnergySmall-A-prof1.xml EnergySmall-A-prof2.xml x2 (both sides are played)
test FiftyFifty-A-prof1.xml FiftyFifty-A-prof2.xml x2 (both sides are played)
test Coffee util1.xml Coffee util2.xml x2 (both sides are played)
test Kitchen-husband.xml Kitchen-wife.xml x2 (both sides are played)
test Wholesaler-prof1.xml Wholesaler-prof2.xml x2 (both sides are played)
test triangularFight util1.xml triangularFight util2.xml x2 (both sides are played)
test SmartGridDomain util1.xml SmartGridDomain util2.xml x2 (both sides are played)
test WindFarm util1.xml WindFarm util2.xml x2 (both sides are played)
test KDomain util1.xml KDomain util2.xml x2 (both sides are played)

Table A.2: Overview of scenario set used in GENIUS

88

Appendix B

Genetic algorithm procedures

Algorithm 6 Crossover

Input Inda Individual, where Ind = 〈fitness, ω〉
Indb Individual, where Ind = 〈fitness, ω〉
Rc Crossover rate

Variables v Value in outcome ω
Output Ind Individual, where Ind = 〈fitness, ω〉

1: ωa ← GetOutcome(Inda)
2: ωb ← GetOutcome(Indb)
3: for v in ωb do
4: if Random() < Rc then
5: ωa ← ReplaceV alue(ωa, v)

6: return 〈null, ωa〉

Algorithm 7 Mutate

Input Ind Individual, where Ind = 〈fitness, ω〉
Rm Mutation rate

Output Ind Individual, where Ind = 〈fitness, ω〉
1: ω ← GetOutcome(Ind)
2: for i := 1, . . . , Length(ω) do
3: if Random() < Rm then
4: ω[i]← GetRandomV alue(ω[i])

5: return 〈null, ω〉

89

Appendix C

Predicted concession rate

The Concession Rate (CR), as described by Baarslag et al. [48], is calculated under perfect in-
formation, meaning that the opponents utility function uo(ω) is available. We do not have the
luxury of knowing the opponents preferences, so we must revert to the estimated utility function
ûo(ω). As a result, the minimum demanded utility by the opponent is an estimation as well, so
the prediction of the CR relies heavily on the quality of the opponent model.

We propose two alternative methods of predicting the CR that rely less on the quality of the
opponent preference estimation method. Instead, they rely more on the capability of the opponent
to offer Pareto efficient outcomes and on the shape of the outcome utility space. We present all
three methods of CR prediction in Equation C.1 and their visualisations in Figure C.1. We also
present a brief textual description of the three methods below:

• ĈR1 does not use an estimated opponent utility function. In fact, the only uncertainty is
the estimation of the opponents best outcome ω̂+

o . It approaches the true CR if the Pareto
frontier is a straight line, if we are capable of accurately predicting ω̂+

o , and if the opponent
is capable of offering Pareto efficient outcomes.

• ĈR2 uses an estimated opponent utility function, but does not have to predict special out-
comes or offers of the opponent. The best offered outcome by the opponent x+, and our best
outcome ω+ are fully known, since they are measured in our utility. It approaches the true
CR if our estimated opponent utility function is accurate and if the opponent is capable of
offering Pareto efficient outcomes.

• ĈR3 is the original version of the CR, but without perfect information. It uses an estimated
opponent utility function and has to estimate the opponents minimum demanded utility x̂−o .
It approaches the true CR if our estimated opponent utility function is accurate, as well
as our prediction of x̂−o . It does not rely on the capability of the opponent to offer Pareto
efficient outcomes.

90

ĈR1(x+) =

{
0 if u(x+) ≤ u(ω̂+

o),
u(x+)−u(ω̂+

o)

1−u(ω̂+
o)

otherwise.

ĈR2(x+) =

{
1 if ûo(x

+) ≤ ûo(ω+),
1−ûo(x+)
1−ûo(ω+) otherwise.

ĈR3(x̂−o) =

{
1 if ûo(x̂

−
o) ≤ ûo(ω+),

1−ûo(x̂−o)
1−ûo(ω+) otherwise.

(C.1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x+

ω̂+
o

b a

ûo(ω)

u
(ω

)

ĈR1:
a
b =

u(x+)−u(ω̂+
o)

1−u(ω̂+
o)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x+

ω+

a
b

ûo(ω)

ĈR2:
a
b = 1−ûo(x

+)
1−ûo(ω+)

Opponent offers

Outcome (ω)

Pareto frontier

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x̂−
o

ω+

a
b

ûo(ω)

ĈR3:
a
b =

1−ûo(x̂
−
o)

1−ûo(ω+)

Figure C.1: Visualisation of predicted Concession Rate (CR)

C.1 Results

We want to use the CR as an informational feature of the opponent. We compared the three
methods of CR prediction with the true CR on the basis of maintaining informational value. We,
thus, use comparison via Pearson correlation coefficient instead of absolute or squared error. We
ran a total of 11200 negotiation sessions on the training set as described in Appendix A using the
single best strategy for our Dynamic Agent as described in Chapter 7, while measuring the true
and predicted CR. The results showed that ĈR3 best approaches the true CR (Figure C.2), so we
use this approximation as CR feature.

91

ĈR1 ĈR2 ĈR3

0

0.2

0.4

0.6

0.8

1

Pearson correlation coefficient with CR

Figure C.2: Comparison predicted and true Concession Rate (CR)

92

Appendix D

Predicted average rate

The Average Rate (AR) is calculated under perfect information, meaning that the opponents utility
function uo(ω) is available. We do not have the luxury of knowing the opponents preferences, so
we must revert to the estimated utility function ûo(ω).

We present two methods of predicting the AR in Equation D.1 and their visualisations in Fig-
ure D.1. We also present a brief textual description of the two methods below:

• ÂR1 does not use an estimated opponent utility function. In fact, the only uncertainty is
the estimation of the opponents best outcome ω̂+

o . It approaches the true AR if the Pareto
frontier is a straight line, if we are capable of accurately predicting ω̂+

o , and if the opponent
is capable of offering Pareto efficient outcomes.

• ÂR2 is the original version of the AR, using an estimated opponent utility function. It
approaches the true AR if our estimated opponent utility function is accurate.

ÂR1(x̄) =

{
0 if u(x̄) ≤ u(ω̂+

o),
u(x̄)−u(ω̂+

o)

1−u(ω̂+
o)

otherwise.

ÂR2(ˆ̄x) =

{
1 if ûo(ˆ̄x) ≤ ûo(ω+),
1−ûo(ˆ̄x)

1−ûo(ω+) otherwise.

(D.1)

D.1 Results

As in Appendix C, we compared the true AR with the predicted versions using the Pearson
correlation coefficient. We ran a total of 11200 negotiation sessions on the training set as described
in Appendix A using the single best strategy for our Dynamic Agent as described in Chapter 7,
while measuring the true and predicted AR. The results showed that ÂR2 best approaches the
true AR (Figure D.2), so we use this approximation as AR feature.

93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x̄

ω̂+
o

b
a

ûo(ω)

u
(ω

)
ÂR1: a

b =
u(x̄)−u(ω̂+

o)

1−u(ω̂+
o)

Opponent offers

Outcome (ω)

Pareto frontier

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ˆ̄x

ω+

a
b

ûo(ω)

ÂR2: a
b = 1−ûo(ˆ̄x)

1−ûo(ω+)

Figure D.1: Visualisation of predicted Average Rate (AR)

ÂR1 ÂR2

0

0.2

0.4

0.6

0.8

1

Pearson correlation coefficient with AR

Figure D.2: Comparison predicted and true Average Rate (AR)

94

	Introduction
	Related work
	Algorithm configuration
	Algorithm configuration in negotiation
	Algorithm selection in negotiation

	Preliminaries
	Terminology
	Negotiation scenario
	Negotiation protocol
	Negotiation agents
	Special outcomes

	Problem definition
	Algorithm configuration
	Algorithm selection
	Formal problem definitions

	Dynamic agent
	Bidding strategy
	Fitness function
	Outcome space exploration
	Configuration space

	Acceptance strategy
	Configuration space

	Opponent model
	Preference estimation
	Opponent classification

	Results

	Features
	Scenario features
	Opponent features
	Normalised time
	Concession rate
	Average rate
	Default algorithm performance
	Disassociation of opponent features with scenario

	Algorithm configuration for negotiation
	Problem definition
	SMAC
	Structure
	Adding features

	Baselines
	Method
	Results
	Influence of instance features
	Performance on test set

	Algorithm selection for negotiation
	Algorithm selector
	AutoFolio
	Performance measure

	Algorithm portfolio
	HYDRA

	Method
	Results
	Quality of the portfolio
	Performance of the algorithm selector

	Discussion
	Dynamic Agent
	Strategy configuration
	Strategies

	Strategy selection
	Portfolio

	Overall contribution
	Future work

	Conclusion & Reflection
	Conclusion
	Reflection

	Training and testing set
	Genetic algorithm procedures
	Predicted concession rate
	Results

	Predicted average rate
	Results

