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SUMMARY

Josephson junctions form a two-level system which is used as a building block for many
types of superconducting qubits. Junctions fabricated from semiconducting nanowires
are gate-tunable and offer electrostatically adjustable Josephson energy, highly desirable
in qubit architecture. Studying nanowire weak links is therefore important for future
quantum computing applications. The inherent spin-orbit interaction and high g-factor
of InSb nanowires promise rich physics when combined with superconductivity, espe-
cially when an external magnetic field is applied. In particular, it can give rise to topo-
logical state of matter including Majorana bound states, paving the way for a novel type
of fault-tolerant topological qubit. Such quantum computation can be realized when
Majorana bound states are braided through a network of topological wires. Probing the
magnitude and phase of the supercurrent through InSb nanowires provides insight on
the feasibility of realizing topological states in these wires. This thesis describes exper-
iments measuring the critical current and density of states of InSb nanowire Josephson
junctions which are either voltage- current- or phase-biased, as the chemical potential
or magnetic field inside the wire is changed.

In Chapter 3, the critical current through an InSb nanowire with NbTiN electrodes
is measured. The critical current can be as high as ∼ 100 nA but decays rapidly with
magnetic field followed by an aperiodic oscillation. Numerical simulations of the su-
percurrent through the nanowire show that this supercurrent profile is caused mostly
by the interference between the transverse modes carrying the supercurrent inside the
nanowire. This so–called orbital effect becomes significant beyond 100 mT, while the
spin–orbit and Zeeman interactions become substantial at magnetic field of the order
∼ 1 T.

The Josephson energy through cross-shaped nanowires, grown by merging individual
InSb nanowires, is investigated in Chapter 4. A finite Josephson coupling is measured
through all branches of the nanocross, even when the length of the weak link extends
beyond 1 µm. This is a requirement for braiding Majorana bound states hosted in such
nanowire networks.

In Chapter 5 we build a quantum dot with two superconducting and a normal con-
tact using the three legs of a nanowire cross. The superconducting terminals are joined
in a loop such that superconducting interference can be probed by threading a flux. The
density of states as a function of voltage bias, dot chemical potential and flux is probed
through the quantum dot via the normal lead acting as a tunnel probe. It is revealed that
the proximity effect can be turned on and off via both the bias and gate voltage. The
pairing amplitude on the dot remains finite for in-plane magnetic field values up to 600
mT, suggesting that the nanowire cross platform is suitable for braiding, since a topolo-
gical state can be reached at 100-200 mT. As the conductance through the dot is sensitive
to the flux through the loop, the device may also be used as a mangetometer converting
flux to current with a sensitivity of 1 nA

Φ0
.

xi



xii SUMMARY

The superconducting phase across a nanowire quantum dot as a function of the
magnitude and direction of a large in-plane magnetic field is investigated in Chapter6.
The nanowire is embedded in a DC-SQUID where one arm consists of a gate-defined
quantum dot in the nanowire and the other is a nanowire reference junction, also gate-
tunable. By measuring the critical current through the SQUID as a function of the flux
and the chemical potential of the dot, we can detect the change of phase through the
ground state of the dot. At zero-field we measure the 0-π transition of the quantum dot
Josephson junction as the ground state parity of the dot changes. When the magnetic
field exceeds 100 mT a 0-ϕ transition is measured indicating the presence of an anom-
alous supercurrent flow at vanishing phase difference across the quantum dot. This an-
omalous current is enabled by the breaking of the chiral symmetry due to spin-orbit
interaction in the nanowire and the time-reversal symmetry breaking of the magnetic
field. The phase of the 0-ϕ transition, or equivalently the magnitude of the anomalous
current, can be tuned continuously via the gate underneath the dot. Such a ϕ0 junction
may serve as a phase bias element and have applications in superconducting spintron-
ics.

Chapter 7 focuses on future experiments aiming to detect and control Majorana bound
states in a superconducting InSb nanowire. Such devices can be expanded to a braiding
circuit, realizing a topological quantum computer.



SAMENVATTING

Josephson juncties vormen de bouwsteen voor vele toepassingen in de kwantum infor-
matica. Eén dimensionele nanodraden zijn gate controlleerbaar en vormen een veelzij-
dig platform door het bieden van elektrostatisch regelbare Josephson energie; het be-
studeren van zwakke links is dan ook belangrijk voor toekomstige kwantum informatica
toepassingen. De inherente spin-baan koppeling en hoge g-factor van InSb in combi-
natie met supergeleiding beloven rijke fysica, in het bijzonder wanneer een extern mag-
neet veld wordt aangeboden. Meer specifiek kan dit leiden tot topologische toestanden
van materie waarin gelokaliseerde Majorana toestanden aanwezig zijn. Fout-tolerante
kwantum informatica kan gerealiseerd worden door het ‘vlechten’ van gelokaliseerde
Majorana toestanden in een netwerk van topologische draden. Het meten van de grootte
en fase van superstroom door InSb nanodraden geeft inzicht in de mate waarin deze to-
pologische toestanden gerealiseerd kunnen worden in dergelijke draden.

De kritische stroom door een InSb nanodraad met NbTiN electrodes kan een sterkte
bereiken van ∼ 100 nA, maar valt snel af in magneetveld, en wordt daarna gevolgd door
een aperiodieke oscillatie. Numerieke simulaties van de superstroom door de nano-
draad tonen aan dat dit superstroom profiel hoogst waarschijnlijk veroorzaakt wordt
door interferentie tussen de verschillend transverse kanalen die de superstroom trans-
porteren. Dit zogenaamde orbitale effect wordt van belang boven 100 mT, terwijl de
spin-baan en Zeeman interacties substantieel worden bij magneetvelden van orde ∼ 1 T
(Chapter3).

De Josephson energie door kruisvormige nanodraden, gegroeid door het samenvoe-
gen van individuele InSb nanodraden, is onderzocht in Hoofdstuk4. Een eindige Joseph-
son koppeling is gemeten door alle takken van het nanokruis, zelfs wanneer de lengte
van de zwakke link groter is dan µm. Dit is een vereiste voor het vlechten van gelokali-
seerde Majorana toestanden aanwezig in dit soort nanodraad netwerken.

In Hoofdstuk5 construeren we een kwantum dot met twee supergeleidende en één
normaal contact door de drie armen van een nanokruis te gebruiken. De supergelei-
dende reservoirs zijn verbonden via een ring zodat supergeleidende interferentie geme-
ten kan worden wanneer een flux in de ring aanwezig is. De toestandsdichtheid als een
functie van bias voltage, dot chemische potentiaal en flux is gemeten door het kwantum
dot via het normale contact dat fungeerd als tunneling sensor. Dit maakt duidelijk dat
het proximity effect kan worden aan en uitgezet via zowel het bias als het gate voltage. De
parings amplitude op het dot blijf eindig for planaire magneetveld waardes tot 600 mT,
wat suggereerd dat het nanokruis platform geschikt is voor vlechten, aangezien een to-
pologische toestand kan worden bereikt vanaf 100-200 mT. Omdat de geleiding door het
dot afhankelijk is van de flux door de ring, kan de structuur als magnetometer worden
gebruikt die flux in stroom converteerd met een gevoeligheid van 1 nA

Φ0
.

De supergeleidende fase over een nanodraad kwantum dot als een functie van grootte
en richting van een sterk planair magneetveld is bestudeerd in Hoofdstuk6. De nano-

xiii
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draad is onderdeel van een DC-SQUID waarbij één arm bestaat uit een gate gedefini-
eerd kwantum dot in de nanodraad en de andere is een nanodraad referentie junctie
die eveneens gate controleerbaar is. Door de kritische stroom door het SQUID te meten
als een functie van de flux en de chemische potentiaal van het dot kunnen we de ver-
andering in fase meten door de grondtoestand van het dot. Bij nul veld meten we de
0-π transitie van de dot superstroom wanneer de gepaardheid van het dot veranderd.
Wanner het magneetveld 100 mT overstijgt wordt een 0-ϕ transitie gemeten, wat de aan-
wezigheid van een anomale superstroom aangeeft bij verdwijnend faseverschil over het
dot. Deze anomale superstroom wordt mogelijk gemaakt door het breken van de chirale
symmetrie door spin-baan koppeling in de nanodraad en het breken van tijdsomkeer-
baarheids symmetry door het magneetveld. De fase van de 0-ϕ transitie, of het equiva-
lent, de grootte van de anomale stroom, kan continue geregeld worden via de gate onder
het dot. Een dergelijk 0-ϕ junctie kan cruciale toepassingen hebben in supergeleidende
spintronica.

Toekomstige experimenten doelend op een topologische kwantum computer moe-
ten focussen op een verbeterde controle over de geinduceerde gap in de nanodraad en
op de opbrengst van nanodraad kruizen die als vlecht platform kunnen dienen. Een cru-
ciaal aandachtspunt is het vinden van het juiste materiaal en depositie methode om een
geschikt supergeleider-halfgeleider grensvlak te verkrijgen. De Josephson 0-ϕ -junctie
kan ook gebruikt worden als sensor van de topologische toestand van de nanodraad
(Hoofdstuk7).



1
INTRODUCTION

1.1. THE STRANGE WORLD OF QUANTUM MECHANICS
From the time of Newton until the dawn of the twentieth century, this rational reduc-
tionist view that the world is just a collection of multitude of billiard balls bouncing in
predictable manner dominated the mind of physicists. They believed the world can be
understood as the sum of its parts, and given the initial conditions of a system, one can
predict its evolution til the end of times. This view was very successful at explaining the
macroscopic world surrounding us.

At the turn of the twentieth century, however, as physicist were diving in to the mi-
croscopic world of smaller and smaller objects, classical physics was inadequate to ex-
plain some experiments, such as the energy emitted by a black body or the photoelectric
effect. New axioms and rules had to be nailed down.

From the understanding of this microscopic world emerged the laws of quantum
mechanics, with strange rules counter-intuitive to our every day lives. The law of super-
position states that a system is simultaneously existent in all its possible configurations,
until its probabilistic collapse when measured by an outside observer. Two particles
may become entangled whereby they remain connected and one influences the other,
no matter how far apart they are, implying non-locality. These rules reveal a new uni-
verse arising at the level electrons, atoms, molecules, light, and even microscopic ob-
jects cooled down to low temperatures. As this world is mindbogglingly complicated
for us humans to understand, we build computers behaving accordingly to the rules to
predict how its behavior. This is the role of the quantum computer.

1.2. BENIFITS OF QUANTUM COMPUTING
Classical computers use binary bits to perform logical operations. Each bit is in one of
the two states 0 or 1. A quantum two-level system, called qubit, can be in a superposition
of both |0〉 and |1〉 states. The state |s〉 of a qubit can be expressed as

|s〉 =α|0〉+β|1〉,

1



1

2 1. INTRODUCTION

where α and β are complex numbers which normalize to unity. If we neglect the
global complex phase of |s〉 and only care about the relative phase between the state
|0〉 and |1〉, two real numbers are necessary to encode state |s〉. A classical computer
requires 2×64 bits to encode this information assuming an accuracy up to 19 significant
figures (log2 1019 ≈ 63.1). In case of 20 qubits, there are 220 basis states, and the quantum
state of such system carries the information of 2×220−2 real numbers, requiring around
108 classical bits or encoding. This is already quite a challenge for computers and the
resource needed grows exponentially with the number of qubits. The main driving force
behind realizing a quantum computer is to simulate quantum systems, such as binding
energies of large molecules, folding of proteins of hundreds of atoms long or the ground
state of physical systems. These quantum problems necessitate resources unreachable
via classical computers, since calculating all possibilities is a too large sample space. As
Feynamnn remarked however, the quantum world can simulate itself, thus building a
controllable quantum system is the goal of quantum computing.

The major challenge is to engineer quantum two-level systems where each qubit can
interact with any given other qubit upon user request, but is isolated from the envir-
onment. Isolation is crucial, since an non-isolated qubit will entangle with the outside
world which will then influence the state of the qubit, resulting in decoherence and loss
of quantum information.

1.3. SUPERCONDUCTIVITY AND TOPOLOGICAL QUANTUM COM-
PUTING

Superconductivity is the phenomena where an electric conductor cooled below a certain
temperature looses its resistance completely. This cannot be explained under the clas-
sical Drude theory of electric conduction, which treats electrons as individual particles
accelerating towards a positive potential with a drag force due to collision with the atomic
nuclei. In fact, inside a superconductor electrons are connected and form a many body
quantum ground state, called BCS condensate (after Bardeen, Schrieffer and Cooper
who proposed the theory).

Superconductors thus, despite being of macroscopic size, are quantum objects and
are well suited to form the basis for qubits in a quantum computer. For example, a su-
perconducting loop interrupted on one end can be a quantum two-level system, where
the states |0〉 and |1〉 are defined by the direction of the supercurrent flowing clockwise
or anti-clockwise(cartoon of a flux qubit). Or two superconducting islands connected by
a thin barrier, where the two states are the even and odd parity of the total charge of one
island (charge qubit and transmon). Qubits based on superconductors are nowadays the
most prominent candidates for a functioning quantum computer as they can be easily
coupled via resonators and their dephasing time is well beyond the timescale for opera-
tions.

Superconductors also promise, however, a qubit which does not interact with the
environment and thus does not dephase. This is the topological qubit built of Major-
ana fermions[1–3]. These are particles predicted by the Italian physicist Ettore Major-
ana, with their defining property being that they are equal to their antiparticle[4]. In
superconductors, electron-like and hole-like quasiparticle excitations are equivalent.
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Thus superconductors provide a natural environment to engineer Majorana-like qua-
siparticles, called Majorana bound states.

Condense matter physicists have shown recently[5, 6] that Majorana bound states
can be engineered in a one dimensional semiconductor with finite g-factor and spin-
orbit interaction, inside which superconductivity is induced. Such a system has two
topological phases, depending on the chemical potential of the nanowire and the mag-
nitude of the external magnetic field. If the magnetic field is smaller than a critical value,
the superconducting nanowire has a single ground state lacking Majoranas. If the ex-
ternal field exceeds the critical value, the system hosts a pair of Majoranas and two de-
generate ground states. These two topological orders are distinct and cannot change
into each other unless succumbing to a phase transition. In other words, Majoranas are
robust against perturbations of the system and quantum information can be encoded
without loss.

1.4. OUTLINE OF THIS THESIS
This thesis is devoted to studying the Josephson effect, which is the flow of supercurrent
through an interrupted superconductor, in systems capable of hosting Majorana fermi-
ons. A range of experiments are described involving two superconductors interrupted
by InSb nanowire, with varying geometries.

• Chapter 2 provides the underlying theory of BCS superconductivity and the mi-
croscopic theory of Andreev bound states in 1D junctions and quantum dots.

• Chapter 3 studies the critical current through InSb Josephson junctions as a func-
tion of magnetic field strength and direction.

• Chapter 4 describes InSb nanowire networks, grown from merged individual wires
and contacted by superconductors. Supercurrent and differential conductance
measurements are performed between each terminal pair.

• A three terminal quantum dot is fabricated from a T-shaped nanowire in Chapter
5. The dot is phase biased via two superconducting lead and the third normal lead
is used to probe the quantum dot levels at zero and finite magnetic field.

• In Chapter 6 a quantum dot is created in an InSb nanowire and embedded in a dc-
SQUID geometry for phase biasing. The phase of the supercurrent flowing through
the dot is probed as a function of external mangetic field magnitude and direction.

• In Chapter 7 I summarize the conclusion of each experiment and provide an out-
look for future experiments.

• Appendix A introduces Majorana bound states in nanowires, a relevant topic to the
thesis. Appendix B summerizes the fabrication details of the devices presented in
this book.
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2
THEORY

This chapter outlines the key ideas of Andreev physics necessary to understand the over-
all behavior of the nanowire Josephson junction devices presented in this thesis. First a
brief derivation of the physics of bulk superconductors, Andreev reflection, BTK theory
and Andreev bound states are given from microscopic principles. Then the Josephson
effect in magnetic field and through quantum dots is described, in particular π and ϕ0-
junction physics. Finally we introduce SQUIDs as a method for phase biasing junctions.
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2.1. SUPERCONDUCTIVITY IN THE BULK
Superconductivity was first discovered experimentally in 1911 by Heike Kamerlingh Onnes[1].
A complete microscopic description of the phenomenon had to wait till 1957 for Bardeen,
Cooper and Schrieffer’s proposed BCS theory: their model was based on a variational
mean-field approach of the phonon-mediated attractive potential acting on the elec-
trons below the critical temperature[2].

The derivation presented here follows the work of Bagwell and Datta who trans-
formed the Hamiltonian into a quadratic form such that the excitations of the super-
conductor are analogous to that of a one-particle system[3].

The pioneering theses on Andreev physics of Pillet and Bretheau[4, 5] were used as
an inspiration for this chapter and is a recommended read for anyone wishing to grasp
the essence of Josephson weak links.

We first derive the energy spectrum and states of a bulk uniform BCS supercon-
ductor with spin-symmetry in the one-particle picture, where the solutions are classi-
fied according to their energy. We subsequently deal with the excitation and semicon-
ductor picture, which are needed if arbitrary spin-independent interactions are to be
considered.

2.1.1. THE BOGOLIUBOV-DE GENNES EQUATIONS AND THE BCS HAMILTO-
NIAN

When a superconductor is cooled below its critical temperature, attractive correlations
arise between electrons, which dominate over the Coulomb repulsion. In BCS theory,
this attraction is modeled by a mean-field approximation. The second quantization
Hamiltonian for a bulk superconductor in terms of electron creation c†

kσ and annihil-
ation operators ckσ (where k and σ denote momentum and spin respectively) takes the
form

HBdG = ∑
k,σ=↑,↓

ξkσc†
kσckσ+

∑
k
∆k c†

k↑c†
−k↓+∆?k c−k↓ck↑, (2.1)

where ξkσ = ħ2k2

2m −µ is the kinetic energy1 relative to the chemical potential µ of
an electron of mass m and momentum k and spin σ. The source of superconductivity
rises from the complex pairing term ∆k which couples electrons and holes of opposite
spin and momentum. For the scope of this thesis we assume s-wave pairing where ∆k =
|∆|e iϕ is independent of momentum.

To transform this Hamiltonian to a quadratic form which resembles a system of non-
interacting particles, a spinor fieldΨk is introduced with a spin-up electron component
of momentum k and a spin-down hole component of momentum −k:

Ψk ≡
 ck↑

c†
−k↓

 . (2.2)

1Although in the absence of magnetic field ξ is independent of spin, we keep the σ label as a reminder that in

the presence of Zeeman interaction ξkσ = ħ2k2

2m −µ+Eσ.
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Rewritten in the spinor basis and using the Fermionic anticommutation rules [ckσ,c†
k ′σ′ ] =

δkk ′,σσ′ , the Hamiltonian gains the form2

HBdG =∑
k
Ψ†

kHΨk (2.3)

H =
(
ξk↑ ∆k

∆∗
k −ξ−k↓

)
.

We look for plane wave solutions of the Schrödinger equation for HBDG of the form
(uk vk )†e i kr . The two spinor components uk and vk called “coherence factors” stand for
the electron and hole part of the wavefunction and satisfy:

H

(
uk

vk

)
= Ek

(
uk

vk

)
, (2.4)

where Ek is measured with respect to the chemical potential µ. Equation 2.4 is called
the Bogoliubov-de-Gennes equation. For a spin-degenerate system, such as a bulk s-
wave superconductor in the absence of magnetic field, the Hamiltonian H in 2.3 obeys
H † =−H . Thus if (uk vk )† is a solution to 2.4 with energy Ek , (−v∗

k u∗
k )† is also a solution

with energy −Ek .
Without loss of generality we categorize the two linearly independent solutions of

2.4 as |k+〉 wavefunctions with positive energies and |k−〉 wavefunctions with negative
energies (relative to µ): 

|k+〉 =
(
uk

vk

)
e i kr

|k−〉 =
(−v∗

k
u∗

k

)
e i kr

The condition that the solutions normalize to unity implies |uk |2 +|vk |2 = 1.
Solving for the coherence factors with the above requirements yields

Ek± =±
√
∆2 +ξ2

k (2.5)
uk = e−i ϕ2

√
1
2 (1+ ξ̃k√

∆2+ξ2
k

)

vk = e i ϕ2

√
1
2 (1− ξ̃k√

∆2+ξ2
k

)
(2.6)

It is now helpful to apply a basis transformation to 2.4, changing to the new orthonor-
mal basis we found above γk−,γk+:{

γ†
k+ = uk ck↑+ vk c†

−k↓
γ†

k− = −v∗
k ck↑+u∗

k c†
−k↓

(2.7)

2We ignore the constant of energy
∑

k ξ−k↓ resulting from the anticommutation.
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The diagonalized Schrödinger equation in this new basis now takes the form

HBdG = ∑
k∈E

Ek−γ†
k−γk−+Ek+γ†

k+γk+. (2.8)

We are now in a position to make some important remarks on the nature of one particle-
like excitations γ†

k± in a superconductor, called "Bogoliubons" since they are a linear
superposition of electrons and holes following the Bogoliubov transformation 2.7.

The energy spectrum 2.5 implies that there are no allowed energy excitations for en-
ergies less than ∆ from the fermi energy, i.e. |E | ≥∆. There is an energy gap of 2∆ in the
excitation spectrum of a bulk superconductor.

Bogoliubons are composed of a superposition of electrons and holes3. The electon-
hole ratio is apparent from 2.6: the superposition depends on the energies of the excit-
ation. The further the energy is from ∆, the more the Bogoliubons is fully electron or
hole-like.

CASE OF FINITE ZEEMAN ENERGY

Assuming a finite Zeeman energy EZ = 1
2µB gσ·B acts on the electrons and holes, the en-

ergy eigenvalues for the positive and negative energy band shift by the Zeeman energy[5]:

Ek± =±
√
∆2 +ξ2

k +EZ (2.9)

Both energy band shift in the same direction which are no longer symmetric about
the Fermi energy. In other words a finite spin-splitting introduces an asymmetry between
the positive and negative excitation energies.

2.1.2. GROUND STATE, EXCITATIONS AND DENSITY OF STATES OF A BULK

SUPERCONDUCTOR

ONE-PARTICLE PICTURE

Bogoliubons can be regarded as single particle excitations in a “superconducting va-
cuum”. The vacuum state in this respect is the state |V〉with no Bogoliubons, i.e. γk±|V〉 =
0. One can check that

|V〉 ≡∏
k

c†
−k↓|0〉 (2.10)

indeed satisfies the condition. The energy of the vacuum state is EV =∑
k ξ−k↓.

Since |V〉 is an eigenstate of HBDG , so is γk±|V〉 for any k±. We can thus construct the
ground state |GS〉 of our superconductor by adding all negative energy excitations to |V〉:

|GS〉 =∏
k
γ†

k−|V〉

=∏
k

(
uk − vk c†

k↑c†
−k↓

)
|0〉 (2.11)

3In the superconducting community a “hole” is an empty electron-state below the chemical potential, as op-
posed to the semiconducting community where holes are empty states below the bandgap.
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Figure 2.1: Quasiparticle spectrum of the BCS ground state. The figure shows the one-particle representation
of the ground state of a BCS superconductor with: a, no external magnetic field; b, a finite magnetic field
resulting in a Zeeman energy EZ . All quasiparticle states below the Fermi energy are filled, while states above
EF are left empty. There are no available quasiparticle states for energies |E −EF | <∆

with energy EGS = EV +∑
k Ek−. This is the usual BCS ground state, a condensate con-

stituted of a sea of paired electrons of opposite spin and momentum, the Cooper pairs.
Because the Hamiltonian 2.1 does not conserve particle number, the ground state does
not have a fixed number of particles. However parity is conserved and hence parity is a
good quantum number. The parity of the ground state is even.

The excited states closest in energy to the ground state are obtained by either adding
a Bogoliubon of positive energy |ES+〉 = γ†

k+|GS〉 which has energy EGS +Ek+ or by re-
moving a Bogoliubon of negative energy |ES−〉 = γk−|GS〉 which has energy EGS +|Ek−|.
Both these excited states differ by one in particle number from the ground state and
have therefore odd parity. If the system is spin-degenerate these two excitations have
the same energy but opposite spin.

It is important to emphasize here that although by mathematical tricks we produced
a one-particle like representation of the superconducting ground state and excited states,
2.11 demonstrates this is in fact a many-body state involving all electrons pairing up and
gathering into a condensate forming a macroscopic coherent quantum state. Thus a
bulk piece of superconductor, no matter the size, embodies a single quantum state. This
feature is the appeal of superconductors for quantum computational purposes.

The BCS density of states can be calculated from the normal density of states: NS(E)dE= 1
2 NN(ξ)dξ.

Assuming a constant normal density of states leads to

NS(E) = 1

2
NN(0)

{ |E |p
E 2−∆2

if |E | >∆
0 otherwise

(2.12)

or in case of a finite Zeeman energy

NS(E) = 1

2
NN(0)

{ |E−EZ |p
(E−EZ )2−∆2

if |E | >∆
0 otherwise

. (2.13)
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The BCS density of states is gapped around the Fermi energy by 2∆ and diverges at E =
±∆ (the so-called coherence peaks). The ground state is represented in Figure 2.1.

The one-particle picture presented above groups the Bogoliubon by the positive and
negative energy excitations and is the most compact representation of the BCS many-
body state. It is useful to build the ground state from the vacuum state. However, the
existing spin-dependency is hidden in this representation, which is crucial for experi-
ments involving magnetic-fields or Majorana physics.

EXCITATION PICTURE

Excitations in the one-particle picture are produced either by adding a Bogoliubon of
positive energy γ†

k+ or removing a Bogoliubon of negative energy γk−. These two excita-
tions have opposite spin. After a transformation on the Bogoliubon operators defined in
2.7 

γ†
Ek↓ ≡ γ†

k+
γ†

Ek↑ ≡ γk−
Ek↓ ≡ Ek+
Ek↑ ≡ −Ek−

(2.14)

the Hamiltonian HBdG becomes

H exc
BdG =∑

k
Ek↓γ†

Ek↓γEk↓ +Ek↑γ†
Ek↑γEk↑ +EV −∑

k
Ek↑. (2.15)

This Hamiltonian only contains excitation with positive energy (Ek↓,Ek↑ > 0), thus
the ground state in the excitation picture is empty. The ground state can be excited either
by adding a spin-down Bogoliubon |ES+〉 = γ†

Ek↓ |GS〉 or a spin-up Bogoliubon |ES−〉 =
γ†

Ek↑ |GS〉, resulting in an increase in energy of Ek↓ and Ek↑ respectively4.

Basically, the excitation picture corresponds to mirroring the full quasi-particle branch
of the one-particle picture over the Fermi level resulting in a second empty branch, as
seen in Figure 2.2. Although the architecture of the ground state is not present in this
representation, it is useful to keep track of the spin-nature of the excitations of the su-
perconductor and treat them all on the same footing, as all excitations have positive en-
ergy. This representation is used in the appendixA to derive the zero-energy Majorana
excitations inside a superconductor.

SEMICONDUCTING PICTURE

In general to diagonalize the Bogoliubov-de Gennes Hamiltonian 2.1 which includes
arbitrary spin-dependent or spin-independent interactions, such as for example spin-
orbit coupling, the spinor substitution in 2.2 is not enough and one needs to double the

4Although for the spin-degenerate system we assumed in this chapter these two excitations have equal energy,
this need not be the general case. For example in the presence of an external magnetic field Ek↓ 6= Ek↑
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degrees of freedom. The 4-dimensional Nambu spinor is then used:

Ψ̃k ≡


ck↑

c†
−k↓

c†
−k↑
ck↓

 . (2.16)

After diagonalization one finds four excitations: a spin-up(γ†
E↑) and spin-down excitation(γ†

E↓)

with positive energy, and a spin-up(γ†
−E↑) and spin-down excitation(γ†

−E↓) with negative
energy. This is a combined form of the one-particle picture and the excitation picture,
where both spin and negative energy Bogoliubons are kept track of. However, since we
have doubled the degrees of freedom there is a redundancy in the number of excited
states, since removing a particle with negative energy is equivalent to adding a particle
with the same positive energy and opposite spin:γ†

Eσ ≡ γ−E−σ.

To account for the redundancy, the Hamiltonian gains a factor 1
2 :

H semi
BdG = 1

2

(∑
k

Ek↓γ†
Ek↓γEk↓ +Ek↑γ†

Ek↑γEk↑ +
∑
k
−Ek↓γ†

−Ek↓γEk↓ −Ek↑γ†
−Ek↑γEk↑ +EV −∑

k
Ek↑

)
.

(2.17)
The ground state is obtained by filling all spin-down and spin-up states with negat-

ive energy. The first excited state with spin up (spin down) is created by adding a spin-
up(spin-down) excitation with lowest positive energy, or equivalently, removing a spin-
down(spin-up) excitation with highest negative energy.

The semiconducting picture is obtained from the excitation picture by mirroring the
two positive spin-dependent quasiparticle branches on the Fermi energy and filling the
so-obtained branches. Thus in this picture one keeps track of the spin of the quasi-
particles as well as allowing for negative energy excitations. This is important when for
example considering transport experiments, where either quasiparticles are added to
the superconductor or removed, depending on the voltage bias of the lead the super-
conductor is connected to. The semiconducting picture is also necessary to be able to
write down an arbitrary spin-dependent Hamiltonian in a quadratic form, as a four di-
mensional spin is needed to treat spin independently of momentum. Such is the case of
Majorana fermions in nanowires where spin-orbit is an essential component.

We present the ground state and excited state representation in each picture in Figure
2.2.

2.2. TRANSPORT THROUGH A NS INTERFACE: ANDREEV RE-
FLECTION

2.2.1. REWRITING THE BCS SOLUTIONS INTO ELECTRON AND HOLE-LIKE

STATES
In section 2.1.1 we have found the “one-particle-like” solutions to the excitations inside a
conductor with BCS electron-hole pairing interaction∆c†

k↑c†
−k↓ by solving the Schrödinger



2

12 2. THEORY

Figure 2.2: BCS ground state and excited states in three representations. For the excitation and semicon-
ductor picture we labeled the bands with different spin. All DOS present the case of a finite Zeeman splitting
so that the spin bands are shifted. Note that we show only one of the two representations of the excited states
for the semiconducting picture.



2.2. TRANSPORT THROUGH A NS INTERFACE: ANDREEV REFLECTION

2

13

equations for the Hamiltonian HBDG. The solutions, given in terms of the coherence
factors uk and vk in 2.6 have been expressed using a parametrization in the k-states. By
reparametrizing these solution and expressing the coherence factors and momenta in
terms of their energies Ek and renormalized kinetic energy ξ̃k we obtain:

ue,h(E ,ϕ) = e−i ϕ2
[

1
2

(
1+ηe,h

√
1− (∆E )2

)]1/2

ve,h(E ,ϕ) = e i ϕ2 sg n(E)
[

1
2

(
1−ηe,h

√
1− (∆E )2

)]1/2

ke,h(E ,ϕ) = kF

(
1+ηe,h sg n(E)

p
E 2−∆2

µ

)1/2

(2.18)

Since the energy solutions Ek of 2.5 were four fold degenerate in (±k,±ξ̃), the rela-
belled solutions are also degenerate in (±Ek ,±ξ̃). This degeneracy is included in 2.18
with the η factor which depends both on Ek and ξ̃ as η= sg n(Ek )sg n(ξ). From rearran-
ging the solutions we gain insight on the following two aspects of the excitations in a
superconductor:

• For energies |E | ≥∆, k is real and the solutions are purely propagating plane waves.
We also obtain a solution, however, for |E | < ∆, in which case the imaginary wave
vector k results in exponentially growing and decaying solutions. These kind of
solutions do not exist in a uniform superconductor and are only allowed phys-
ically if the states are bounded by domain walls, i.e. if the order parameter ∆ is
inhomogeneous in space.

• The charge qE = v2
k −u2

k of the excitation is

qE =−ηe,h

√
1−

(
∆

E

)2

.

Thus in the limit ∆
|E | → 0 the eigenstates tend to a pure electron-like or pure hole-

like states depending on the sign of η (η =+1 for electron-like and -1 for hole-like
states). An excitation close to the superconducting gap edge∆ is a near-equivalent
superposition of electrons and holes. Far away from the gap the wavefunction
recovers resembling that of a pure electron or pure hole.

Thus the two linearly independent solutions of the the BdG Hamiltonian then can be
written: (

ue (E ,ϕ)
ve (E ,ϕ)

)
e i ke (E)x

︸ ︷︷ ︸
η= 1 electron-like wave

;

(
uh(E ,ϕ)
vh(E ,ϕ)

)
e i kh (E)x

︸ ︷︷ ︸
η=−1 hole-like wave

(2.19)

2.2.2. ANDREEV REFLECTION ABOUT AN NS INTERFACE - BTK MODEL
To understand electron transport through a normal metal-superconductor interface, we
outline the BTK model presented by Blonder, Tinkham and Klapwijk in their 1982 paper
[6].
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Figure 2.3: Possible scenarios of an electron impinging on an NS interface in real and momentum space. a,In
real space, an electron of energy E >∆ propagating in a normal conductor towards S. After hitting the interface,
the electron can Andreev reflect as a hole (A), reflect back normally as an electron (B) or propagate onward in
S as a quasiparticle (C ,D) creating a Cooper pair as well. b, Same events represented in momentum space. The
straight lines show the linear dispersion in the normal side, while the parabolas show the quadratic dispersion
of the superconductor.
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Consider the situation presented in Figure 2.3a of an electron plane wave of energy
E propagating inside a normal conductor (∆(x)=0) in the positive x-direction towards a
superconductor (∆(x)=∆). At the interface x=0 there is a thin barrier separating N and
S with variable transparency, modeled by a delta function of strength Z.

The picture is depicted in momentum space in Figure 2.3b, with linear plane-wave

dispersion on the N side, and a quadratic superconducting dispersion Ek =±
√
∆2 + ξ̃k

2

on the S side. Depending on the energy E of the incoming electron, there can be four
possible outcomes of the electron (labeled 0 in the Figure) hitting the delta potential:

• The electron can undergo full Andreev reflection(AR), where it is reflected back
into the normal metal as a hole(label A) of opposite spin and energy −E , and sim-
ultaneously creating a Cooper pair in the superconductor.

• If Z > 0, the electron can reflect back as an electron of energy E (label B).

• If |E | ≥ ∆, there are available quasiparticle states and the electron is injected into
the superconductor as a quasiparticle of energy E , with positive (C) or negative (D)
k-momentum. This is accompanied by a partial Andreev reflection to account for
charge conservation.

Figure 2.4a shows the probability of each transmission/reflection process as a func-
tion of incoming electron energy E for different values of barrier strength Z . In Figure
2.4b the corresponding d I /dV curves are plotted.

In the case of a complete transparent barrier (Z = 0), Andreev reflection occurs with
probability 1 for energies within the gap, since there are no available quasiparticle states
to access in the superconductor. This process has a charge transfer of 2e, thus the con-
ductance is twice the value of the normal conductance inside the gap, which then tends
to R−1

N as E = eV →∞.
In the opposite limit of a strong barrier, AR probability goes to zero and the electron

is certainly reflected back as an electron, resulting in zero conductance.
The BTK model is useful to extract the transparency of a device with NS interface

of which the I-V curve is measured. For a voltage V & 2∆ the conductance reaches its
asymptotic normal state conductance R−1

N . The low voltage I-V curve however does
not fit on the I = R−1

N V line. Instead, when the high voltage I-V curve is interpolated,
it crosses the V = 0 axis as a finite current value Iexc ≡ I (V = 0) called the excess current.
The normalized excess current eIexc RN

∆ can be mapped one-to-one on the Z parameter
value which can then be extracted using Figure 2.4c.

The same model was later adapted in a subsequent paper[8] for a superconducting
SXS weak link, where the authors take into account the effects of normal scattering inside
the junction.

2.3. TRANSPORT THROUGH AN SNS JUNCTION

2.3.1. ANDREEV BOUND STATES
As described in the previous section, Andreev reflection is a process where an electron
traveling in a normal conductor reflects as a hole from a superconducting interface. As
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Figure 2.4: BTK model of charge transfer and reflection about an NS interface. a, Coefficient of Andreev
reflection (A), normal reflection (B) and quasiparticle transfer without and with branchcrossing (C ,D) as a
function of incoming electron energy E for different barrier strengths. b, Differential conductance vs. voltage
for different barrier strengths. c, Normalized excess current through the interface vs barrier strength. Figure
reprinted from [7]
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Figure 2.5: Andreev bound state formation inside a normal metal between two superconductors. The bound
state is a superposition of a right propagating electron and a left propagating hole coupled via Andreev reflec-
tions. A complete e− → h+ → e− cycle entails a charge transfer of 2e.

an analogy to optics, the SN boundary can be regarded as a mirror reflecting perfectly
electron waves as their phase-conjugate hole. Placing two mirrors opposite each other
results in a Fabry-Perot cavity where, assuming phase coherence is preserved, the con-
structively interfering forward and backward traveling waves form bound states with dis-
crete energies.

Similarly, when a normal conductor is sandwiched between two superconductors,
an electron starting in the normal conductor propagating to the right reflects from the
right SN interface as a hole, which then reflects back as an electron from the left SN
interface completing the cycle (Figure 2.5). The condition for bound state formation is
that after a full cycle of the electron-hole the phase gained is an integer multiple of 2π. If
the condition is met a bound state is formed in the system, called Andreev bound state
(ABS). Note that this cycle is accompanied by a transfer of charge 2e from the left to the
right superconductor guaranteed by the properties of AR.

Although one can calculate the energies of the ABS by matching the phase of the
incoming and outgoing electron after a full cycle, in this section we will adopt the scat-
tering matrix approach, which is equivalent and more readily adaptable for other nano-
structures.

2.3.2. CALCULATING ABS USING THE SCATTERING MATRIX APPROACH
The Landauer-Büttiker scattering approach[9] was first adopted to Josephson junctions
by Beenakker and Van Houten [10] to calculate the energies of the ABS for a general one-
dimensional SXS junction, where X is an infinitely short conductor with zero pairing



2

18 2. THEORY

Figure 2.6: Scattering model of the Josephson junction. The junction is a point scatterer X described by
matrices Se,h , which couple the incident to the reflected modes of the left and right superconducting reser-
voirs.

amplitude and a finite transmission t .
Consider the configuration presented in Figure 2.6 : let ae(h)

nL denote the electron(hole)

modes emerging from the left reservoir incident on the scatterer and be(h)
nL the modes re-

flected from the scatterer back to the left reservoir. Similarly let ae(h)
nR and be(h)

nR denote the
electron (hole) modes emerging from and reflected to the right reservoir. The scattering
matrix Se (ε) then relates the incident and reflected electron modes via the equation be

nL

be
nR

= Se (ε) ·
 ae

nL

ae
nR

 (2.20)

and similarly for holes  bh
nL

bh
nR

= Sh(ε) ·
 ah

nL

ah
n R

 (2.21)

The scattering matrices for each mode Se(h) can be written in terms of the transmis-
sion t and reflection coefficient r (′)

e(h) = 1− t (′)
e(h):

Se(h) =
(
re(h)(ε) te(h)(ε)
t ′e(h)(ε) r ′

e(h)(ε)

)
The scattering matrix must be subject to the symmetry relations warranted by the

system Hamiltonian:

• Time-reversal symmetry ensures

Se(h)(ε) = S†
e(h)(ε).

• Particle-hole symmetry and spin-degeneracy guarantees

Se (ε) = Sh(−ε).
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The equation for electrons and holes combined is:

be
nL

be
nR

bh
nL

bh
nR

= SN ·



ae
nL

ae
nR

ah
nL

ah
nR

 (2.22)

SN =
(
Se 0
0 Sh

)
We can write down the Andreev scattering matrix S A for incident electron (hole)

states be(h)
nL ,be(h)

nR and reflected electron(hole) states ae(h)
nL , ae(h)

nR using the AR probabil-
ity amplitude λ(ϕ,E) of a pure electron state reflecting as a hole from an NS interface
calculated in 2.2.25: 

ae
nL

ae
nR

ah
nL

ah
nR

= S A ·



be
nL

be
nR

bh
nL

bh
nR

 (2.23)

(2.24)

S A = a

(
E

|∆|
)

InLe−iϕL 0
0

0 InR e−iϕR

InLe iϕL 0
0 InR e iϕR

0

 (2.25)

In is the n ×n identity matrix and ϕL and ϕR are the superconducting phases of the
left and right reservoir.

For resonance to occur an incident wave ai n = (ae
nL , ae

nR , ah
nL , ah

nR ) has to satisfy the
condition ai n = S ASN ai n .

For each channel there are two spin-degenerate Andreev bound state solutions with
energies ±E A that satisfy the equation

Det[I −S ASN ] = 0 (2.26)

The result is:

±E Aσ =±∆
√

1− t sin2
(ϕ

2

)
for 0 < t < 1 (2.27)

±E Aσ =±∆cos
(ϕ

2

)
for t = 1 (2.28)

5note that we have inverted the roles of incident and reflected modes a, b since the scatterer is now the super-
conducting interface on the sides instead of the conductor in the center.
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Figure 2.7: Andreev bound state energies as a function of phase across the junction for different transmis-
sion values. At perfect transmission the ABS carrying opposite current are uncoupled and the superconducting
gap closes. For t < 1 the ABS pair are coupled via backscattering and a gap opens.

Note that we only considered here the ABS with energies inside the gap, which are
bound and spatially localized over a distance of the order of the coherence length. How-
ever the Hamiltonian also allows for a continuum of solutions with energies outside the
superconducting gap in the continuum. Contrary to the ABS these continuum states are
propagating wave solutions and are delocalized. In addition in the short junction limit
they do not depend on the phase difference[10].

In Figure 2.7 we plot the energies ±E Aσ of the pair of ABS as a function of the phase
difference for transmission values t = 1, 0.8, 0.4. Each ABS pair of fixed transmission
correspond to two spin-degenerate states carrying current in opposing directions.

For t = 1, the states +E Aσ and −E Aσ are uncoupled and equal at E = 0. The ABS
energies can take any value within the gap. For t < 1, backscattering in the normal region
creates a coupling between the ABS of opposite current flow. The coupling causes an
effective anticrossing and a finite energy gap of size 2∆

p
1− t opens in the spectrum.

The ground state of this SXS system is built in the same fashion as for the system with
spatially invariant pairing amplitude (in other words a bulk superconductor) by populat-

ing the vacuum state with Bogoliubons of negative energy |GS〉 =
(∏

E i<−∆γ
†
E i

)
γ†
−E A

|V〉.
Its parity is even and the total spin is zero. The energy of the grounds state is

EGS = 1

2

(
−E A(ϕ)+ ∑

E i<−∆
E i

)
. (2.29)

Here γ†
E i and E i are the continuum operators and continuum energies of the states
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Figure 2.8: The four basis states of the Andreev two-level system. The energy levels are represented for a fixed
phase 0 <ϕ< 2π. Figure taken from [5].

the condensation energies6 of which are larger than ∆ in absolute value. Contrary to
a uniform superconductor, the energy of the ground state is dependent on the phase
difference between the two bulk superconductors ϕ.

In the one-particle picture, the four states consituting the Andreev two-level system
are written

|GS〉,
γ†

E A
|GS〉,

γ−E A |GS〉,
γ†

E A
γ†
−E A

|GS〉,
(2.30)

with energies 0, E A , E A and 2E A respectively relative to the ground state.
However, the spin quantum number is hidden in the one-particle notation. It is pos-

sible to rewrite the four states above by using operators involving spin: γ†
E A↑ ≡ γ

†
E A

, γ†
E A↓ ≡

γ−E A . Thus in the excitation picture the four states are written:

6We have not derived the continuum states here.



2

22 2. THEORY

|GS〉 ≡ |−〉,
γ†

E A↑|GS〉 ≡ | ↑〉,
γ†

E A↓|GS〉 ≡ | ↓〉,
γ†

E A↑γ
†
E A↓|GS〉 ≡ |+〉,

(2.31)

In Figure 2.8 we show these four states using both representations along with their
energy, parity and spin. Although we also plotted the continuum states, when the weak-
link has low transmission t < 1 or the phase difference ϕ≈ π, the ABS energies |E A | ¿∆

and the continuum states can be neglected.

2.3.3. CURRENT CARRIED BY THE ABS
The current I A carried by each ABS of energy ±E A is [10] :

I A(ϕ,τ) =−2e

ħ
dE A

dϕ
= e∆

2ħ
t sin(ϕ)√

1− t sin2
(ϕ

2

) (2.32)

This result is valid for a one-dimensional short junction7 bearing a single transmis-
sion channel.

Note that in this limit the current is independent of the junction’s dimension and
characterized only by the phase difference ϕ, the transmission t and the pairing amp-
litude ∆ in the leads.

The energies of the two ABS levels E A±(= +E A , −E A) satisfy E A+(ϕ) = −E A−(ϕ) and
hence by virtue of 2.32 carry supercurrent of equal magnitude and opposite direction.
Thus the ground state(|−〉) and the even excited state(|+〉) carry finite supercurrent whereas
the two odd states (| ↑〉, | ↓〉) do not carry any (since in the odd state both or neither ABS
levels are populated).

For a weak link with multiple modes N > 1, since Andreev reflection does not mix the
different modes, each mode can be regarded as an independent junction hosting a single
pair of ABS E A±(ϕ, ti ) (where the ti are the transmission values of each mode). The total
current I (ϕ) is the sum of the contribution of each occupied mode:

I (ϕ) = e∆

2ħ
N∑

i=1

ti sin(ϕ)√
1− ti sin2

(ϕ
2

) (2.33)

2.3.4. CURRENT-PHASE RELATION AND THE DC JOSEPHSON EFFECT IN A

TUNNEL JUNCTION
One of the most important characteristic of a JJ is its current phase relation (CPR) that
relates the phase difference between the two Cooper pair condensates interrupted by
the junction and the magnitude of the supercurrent flowing across. The supercurrent is
transported by the ABS through the junction. In 2.33 we derived the current passing
through a JJ admitting N modes each with transmission ti and a phase difference ϕ

across the junction.

7the short junction limit holds when the junction length L is smaller than the coherence length ξ= hvF
∆ < L)
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Figure 2.9: Transport through JJs. a, Typical IV curve for a current biased JJ. Current sweep direction is shown
along with the retrapping current IR and switching current IS . b, Sinusoidal modulation of the critical current
of a JJ. Phase biasing is done via a DC-SQUID configuration.

The tunnel junction limit assumes many modes with low transmission, i.e. N →∞
and ti → 0. In this limit 2.33 becomes (note that by definition

∑N ti = 1)

I (ϕ) = lim
N→∞,ti→0

e∆

2ħ
N∑

i=1

ti sin(ϕ)√
1− ti sin2

(ϕ
2

)


⇒ I (ϕ) = IC sinϕ (2.34)

with IC = e∆/2ħ. Equation 2.34 is called the dc Josephson effect, or the first Josephson
equation. It is applicable to a very wide range of junctions of different geometry and
material.

The Hamiltonian of the Josephson tunnel junction can be written as:

HJ =−E J cos(ϕ) (2.35)

where E J = ħIC
2e .

From 2.34 we can deduce the behavior of a JJ when current biased: the junction can
admit supercurrent up to a maximal value IS , above which the junction becomes resist-
ive and a finite voltage drop appears. When the phase over the junction is not restricted
(such as in a simple two terminal measurement) IS = max |CPR(ϕ)| = IC at zero tem-
perature. A typical V-I curve is presented in Figure 2.9a where the JJ is made of NbTiN
superconducting leads while an InSb nanowire acts as the weak link.

When the junction is phase biased (for example by embedding it in a dc-SQUID
loop), the switching current is sinusoidally modulated by the phase as expected from
2.34 (see Figure 2.9b).

Note that the general expression for an N-mode JJs CPR 2.33 can be expanded in
terms of sinusoidal harmonics(this is true for any set of transmission values ti , the tunnel
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junction limit need not to hold) :

I (ϕ) = e∆

2ħ
N∑

i=1

ti sin(ϕ)√
1− ti sin2

(ϕ
2

) (2.36)

=
∞∑

n=1
I n

C sin(nϕ) (2.37)

While the second expression is just a mathematical expansion in terms of sinusoidal
harmonics, it is useful for JJs which show slight deviation from the ideal tunnel junction
behavior and hence can be well approximated by the first few harmonics.

2.4. JOSEPHSON JUNCTIONS IN MAGNETIC FIELD AND THROUGH

A QUANTUM DOT - π AND ϕ0 JUNCTIONS

2.4.1. ABS WITH FINITE ZEEMAN ENERGY
For Josephson junctions where the weak link is a nanowire such as InSb or InAs, the spin
degeneracy of the ABS can be lifted with the application of an external magnetic field.
The Hamiltonian of the nanowire section, neglecting spin-orbit coupling and magnetic
orbital effects, is

Hnanowi r e = p2

2m
+Vscat ter + 1

2
gµB · σ̂ (2.38)

The authors of Reference [11] calculate the energies of the ABS as a function of in-

creasing magnetic field. This is accounted for by an extra phase ±θB = |g |µB
ħvF

L = EZ
ET h

picked up by the propagating electron-hole wave 8 residing in the weak link of length L.
The ABS energies of the above Hamiltonian sandwiched between two superconduct-

ors separated by a phase ϕ are calculated for increasing magnetic field and plotted in
Figure 2.10. Working in the short junction limit in the Nambu basis, for any phase ϕ
there are always exactly four Andreev bound state solutions situated within the super-
conducting gap −∆≤ E A↑,↓± ≥∆. Each solution has a definite spin which we labelled on
the figure. The degeneracy E A↑± = E A↓± holding in the absence of magnetic field (panel
a) is broken at finite field, where E A↓± > E A↑±. Particle-hole symmetry of the BdG equa-
tions still guarantee E A↑∓ =−E A↓±.

As for any superconducting system, the ground state is obtained by populating the
states below the Fermi level (E =0 here). In Figure 2.10 the occupied levels of the ground
state are highlighted in red for each specific value of the magnetic field. The ground state
supercurrent is the phase derivative summed over each occupied level and is plotted in
Figure 2.10g for four magnetic field values presented in a-f.

One can identify three regions of θB values. For low magnetic fields (Figure 2.10a, b)
the energy levels do not intersect (region I). The ground state energy is EGS =− 1

2 (E A↑++
(E A↓+) and the minimum energy is found atϕ= 0. The current is roughly a sine function,
I (ϕ) ∼ sinϕ.

8The acquired phase is positive for a spin-up electron or spin-down hole and negative for spin-down electron
or spin-up hole
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Figure 2.10: ABS of a short nanowire SNS junction with a single channel as a function of magnetic field. a-f,
Each pannel shows E A↑±(ϕ)(solid lines) and E A↓±(ϕ) (dashed lines) vs phaseϕ. The different panels represent
increasing magnetic field θB . From top left to bottom right the values are 0,0.1π,0.27π,0.53π,0.79π,π. For
θB >π the junction ground state is found at ϕ=π and are in the π-state. The populated levels in the ground
state are marked red. g, CPR of the junction with energies plotted in (a)(full line), (c)(dashed line), (d)(dotted
line) and (f)(dashed-dotted line). Figure reused from [12]
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As the magnetic field is increased there is an energy level crossing E A↑+ = E A↓− = 0
which moves from ϕ = ±π to ϕ = 0 (region II). The crossings at zero, denoted by a star
in Figure 2.10, warrants a discontinuity in the gradient of EGS and a jump in the current-
phase relation. The global energy minimum jumps suddenly from ϕ= 0 to ϕ=π at θB ∼
π/2, which is called a 0-π transition. Thus for magnetic field θ & π/2 the new ground
state is found at ϕ = π and the junction is dubbed a “π-junction”: a junction of which
the energy minimum is found at phase ϕ=π.

As the field reaches θB ≈π the energy crossing disappears and the same energy levels
are recovered as for the zero field case, but shifted by phase π. This is reflected in the
current-phase relationship I (ϕ) ∼−sinϕ, a characteristic of the π-junction.

Why is the 0-π transition a sudden jump and not a continuous transition? This is
guaranteed by the symmetries of the Hamiltonian: H in 2.38 satisfies K HK −1 = H where
K is the complex conjugation operator, which guarantees that all Andreev levels are even
in phase E A(ϕ) = E A(−ϕ) and no ϕ (other that 0 or π) can give an absolute minimum in
energy.

Although we only considered a 1-D system with a single conduction channel, authors
of Reference[12] show that the many channel system is qualitatively similar.

2.4.2. ANDREEV BOUND STATES FOR AN S-QD-S SYSTEM
So far we have considered S-X-S junction where X was an infinitely short one dimen-
sional constriction characterized by a single parameter t per transmission channel. We
now discuss how the ABS spectrum changes if X is a quantum dot instead (QD).

GENERAL HAMILTONIAN FOR AN S-QD-S SYSTEM

A quantum dot is a confinement of charge carriers which behaves like an artificial atom:
its energy eigenstates form a discrete set of levels seperated by energy δε[13]. When δε

is large compared to other energies of the system, the quantum dot Hamiltonian HQD

can be modelled by the “Anderson impurity model”[14]: a single spin-degenerate level
of energy ε0, with charging energy U , which is the cost of double occupation and takes
into account electron-electron interactions.

HQD =∑
σ
ε0d †

0σd0σ+Un0↑n0↓ (2.39)

where d †
0σ creates an electron of spin σ on the level and n0σ = d †

0σd0σ is the number
operator. The Hamiltonian of the left and right leads Hν=L,R with superconducting phase
ϕν takes the usual BCS form with pairing ∆ν = |∆|e iϕν

Hν =
∑
kσ
ξk,νc†

kσ,νckσ,ν+
∑
k

(∆νc†
k↑,νc†

−k↓,ν+h.c.) (2.40)

where c†
kσ,ν creates an electron in lead ν at energy ξk,ν referenced from the lead chemical

potential µν. The tunneling Hamiltonian HT describes the tunneling of electrons from
the leads on the dot and vice-versa:

HT = ∑
kσ,ν

(Vkσ,νc†
kσ,νd0σ+h.c.) (2.41)
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with hopping paramters Vkσ,ν. Assuming the normal density of state around the Fermi
energy in the leads ρν(E) is constant and the hopping paramters V are independent of
momentum k, the tunneling can be described by the tunneling rate Γν =πρ2

ν|Vν|2.
The Hamiltonian of the whole system is

H = HL +HR +HT +HQD . (2.42)

STRONG, INTERMEDIATE AND WEAK COUPLING REGIMES

Electron-electron interactions make the Hamiltonian in 2.42 too complex to solve. Ap-
proximations are necessary to solve the system analytically or to compute a numerical
solution within reasonable time.

Essentially there are two competing forces in a proximitized quantum dot system:
firstly, the electrons concentrated on the dot repel and do not want to accept more elec-
trons on the dot. Secondly, superconductivity from the leads couples electrons into pairs
and these delocalized Cooper pairs are exchanged with the lead. Thus the charging en-
ergy U imposes constant electron number whereas superconductivity ∆ favors fluctuat-
ing electrons. The rate of exchange of charge is determined by the coupling Γ= ΓL +ΓR .

We can distinguish between three regimes depending on the value of U ,∆ and Γ[15]:

• Strong coupling regime: ΓÀ ∆,U . When Γ is the largest energy scale, the super-
conductor couples well to the quantum dot. Cooper pairs can resonantly tunnel
across the dot, causing a fluctuating electron population of the quantum dot. The
ABS resemble that of a one dimensional channel with perfect transition and re-
duced gap when ε0 = 0 (on resonance) and that of a channel with finite transmis-
sion off resonance.

• Weakly coupled regime: Γ¿∆,U . In this regime due to the large charging energy,
Cooper pairs cannot tunnel on the dot. Individual electrons constituting the pair
can tunnel through the dot with a characteristic time scale h/Γ, much larger than
the coherence time h/∆ of Cooper pairs. Thus the electrons tunneling one by one
cannot coherently recouple as Cooper pairs and no supercurrent is possible in this
regime.

• Intermediately coupled regime: Γ ∼ ∆ ∼U . In the intermediate regime, although
electrons tunnel one-by-one from the source to the drain lead through the dot,
they can recombine in Cooper pairs and supercurrent is still possible. This hap-
pens via a fourth order co-tunneling process, where the initial and final states have
the same energy, but electrons can occupy virtual states in between which may be
offset in energy. In addition, the charging interaction of the dot is comparable
to the superconducting order, and Cooper pairs may acquire a substantial phase
while tunneling through.

There is an additional energy scale pertaining to an isolated spin coupled to external
reservoirs, called the Kondo energy (or temperaure). The Kondo effect where a single
confined spin, such as a quantum dot with half filling of its top most orbital, interacts
with the Fermi sea of normal (non-superconducting) conduction electrons via tunnel-
coupling through the leads[16]. The lead electrons hop on and off the dot leading to
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Figure 2.11: Model of a non-interacting single level QD coupled to superconducting leads.

spin-exchange with the local moment on the dot, thus creating a many-body spin-singlet
ground state. The interplay between the Kondo-effect and superconductivity has been
analysed experimentally and theoretically extensively and is beyond the scope of this
thesis. Here it is sufficient to mention the Kondo temperature TK [17], which defines the
scale for the Kondo effect to be dominant:

TK =
√

UΓ

2
exp

(
−π|ε0(ε0 +U )|

2UΓ

)
(2.43)

In the limit U
Γ À 1 the Kondo temperature becomes infinitesimal, since the electrons

from the reservoir cannot interact with the isolated spin if tunneling is surpressed, in-
hibiting the creation of the Kondo state.

NON-INTERACTING APPROXIMATION

The simplest quantum-dot model one can introduce is when electron-electron interac-
tions are neglected (U = 0). We are then left with a quantum dot with an orbital level at
energy ε0 relative to the Fermi energy of the leads, tunnel coupled to the left and right
lead via ΓL and ΓR respectively. This simple model is presented in Figure 2.11. Although
in general QDs have several orbitals with average level spacing δε, this model works in
the limit Γ,T ¿ δε in which case transport occurs only via a single orbital.

The conductance of resonant tunneling of single electrons through a single level is
[18]:

G = 2e2

h

ΓLΓR

ε2
0 + 1

4Γ
2

(2.44)

The conductance is maximum when the dot level is completely aligned with the
Fermi level of the leads. If the superconductivity of the leads can be surpressed, this
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Figure 2.12: ABS of system consisting of a non-interacting single level QD symmetrically coupled to super-
conducting leads. The ABS are calculated for varying values of the tunnel coupling Γ/∆ =1.0(yellow line),
2.0(green), 4.0(red). a, Case of dot on resonance ε0 = 0. b, ε0 = 0.5∆. Figure from [19]

formula is useful to extract the tunnel coupling values from a device for which the differ-
ential conductance is measured as a function of gate voltage.

Computing the ABS for a non-interacting QD is straightforwardly done by calculat-
ing the normal scattering amplitude through the dot and then meeting the condition
for ABS formation, that is gaining a phase of 2πn for a quasiparticle completing a full
trajectory from one lead through the dot and relfecting back as a hole from the other
lead. Reference [19] evaluates the ABS energies E in the limit of zero temperature, and
assuming symmetric tunnelling (ΓL = ΓR ) and a dot level on resonance (ε0 = 0) :

E ±∆cos
ϕ

2
+ E

p
∆2 −E 2

Γ
= 0. (2.45)

In the limit ΓÀ∆ 2.45 reduces to

E ≈±∆̃cos
ϕ

2
, (2.46)

where ∆̃ = ∆
[

1−2∆
2

Γ2

]
is the reduced gap parameter. We plot the energies in Fig-

ure 2.12a. We can see that the ABS of a quantum dot tuned to resonance is gapless and
resembles that of a perfectly transmitting tunnel junction 2.28, except that the ABS dis-
persion are reduced and do not extend all the way to the gap ∆.

When the dot is not tuned to resonance, a gap opens and the ABS energies are similar
to a tunnel junction with finite transmission t̃ :

E ≈±
√

1− t̃ sin
ϕ

2

2
, (2.47)

with t̃ = 1
1+(ε0/Γ)2 the normal transmission at the Fermi energy. ABS for such a QD are

plotted in Figure 2.12b for particular values of Γ/∆.
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Thus in the non-interacting limit the ABS through a QD are not modified qualitatively
compared to ABS through an SIS JJ, besides reducing the critical current and providing
an expeimentally tunable transmission value via ε0 which can be changed via electro-
static gates.

CO-TUNNELING APPROXIMATION

The co-tunneling approach was first introduced by Glazman and Mateev [20]. It relies on
computing expectation values of the Hamiltonian 2.42 to the lowest order in the tunnel
coupling as a perturbation in Γ. The supercurrent is expressed as

I = e〈 d

d t
ξk,Lc†

kσ,Lckσ,L〉 (2.48)

which is the expected current through the left lead in 2.40. After adding the co-tunneling
events through the virtual levels substantially contributing to the supercurrent (i.e. those
of lowest order in Γ), the result is obtained for the current by taking the limit U →∞ 9:

I (ϕ) =λ e

ħ
ΓLΓR

∆
F

( |ε0|
∆

)
sinϕ, (2.49)

where λ= 2 for ε0 > 0 (empty dot) and λ=−1 for ε0 < 0 (singly occupied dot). Thus
the supercurrent the dot admits depends on the ground state of the dot. The polarity of
λ changes with the dot occupation, signaling a change in direction of the ground state
supercurrent, i.e. a transition between 0- and π-junction state as we have seen in the
case of a JJ in magnetic field. This phase gain of π for oddly occupied dot states is due
the reversal of the electrons making up the Cooper pair while tunneling through[21].

Note that the CPR is sinusoidal in the co-tunneling limit as for a low transmission
tunnel junction and the magnitude of the current is of order I ∼ Γ2 since transferring a
Cooper pair between the electrodes involves the phase-coherent tunneling of two elec-
trons.

SIMPLIFIED WEAKLY INTERACTING MODEL TREATING INTERACTION AS CONSTANT

So far we have viewed models of superconducting quantum dots where the interaction
term U was either neglected or treated in the limit U →∞. The next simplest step is to
transform the many-body Hamiltonian 2.42 to a single particle form.

Consider the Hamiltonian of the isolated single orbital dot 2.39. Such a dot has four
eigenstates: the empty state |0〉 with energy 0, the two single electron states | ↑〉 and | ↓〉
with energy ε0 and the double occupies state | ↑↓〉 with energy ε0+U . The alternative QD
Hamiltonian

H̃QD =∑
σ
εσd †

0σd0σ (2.50){
ε↑ = ε0 −U /2
ε↓ = ε0 +U /2

9the function F (x) is defined as F (x) = 1
π2

∫ d t1d t2
(cosh t1+cosh t2)(x+cosh t1)(x+cosh t2)
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Figure 2.13: Phase diagram of an S-QD-S junction calculated for coupling Γ/∆= 1 using a constant interac-
tion model. The dot changes between a 0 and a π state depending on the level energy and charging energy.
Simulations taken from Reference[22].

has the same eigenstates and energies but is of single-particle form. The interaction is
now treated to be a constant U , the energy difference of a filled and a half-empty dot10.

Substituting H̃QD for HQD into 2.42 we obtain a non-interacting one-particle approx-
imation of the full interacting QD Hamiltonian. This model was introduced in [22, 23]
and is equivalent to a single-level quantum dot with Zeeman exchange interaction Eex ≡
U /2: ε0σ = ε0+σEex . Thus the effect of charging is very similar to the effect of an external
magnetic field.

In Figure 2.13 we present the phase diagram obtained via this model in [23] for the
case of symmetric tunneling (ΓL = ΓR = Γ/2) in the limit ∆¿ Γ. Similarly to the mag-
netic ABS case in section 2.4.1, the superconducting quantum dot ground state changes
between the 0-junction and π-junction case with global energy minimum at phase dif-
ference ϕ = 0 and ϕ = π respectively. There are also two intermediary states 0′ and π′
where ABS energies intersect at the Fermi level: the 0′(π′) state has a global energy min-
imum at ϕ= 0(ϕ=π) as well as a metastable energy minimum at ϕ=π(ϕ= 0).

The boundaries of each phase is calculated by the authors:

• 0-0′ phase transition: U =−2ε0.

• 0′-π′ phase transition: U = 4
3 (ε0/2+

√
3Γ2 +ε2

0)

• π′-π phase transition: U = 2
√

4Γ2 +ε2
0

Note that a necessary (but not sufficient) condition for the QD JJ to be in the π-
junction state is that the bare, uncoupled dot be occupied by a single electron (U /2−ε0 >
0).

10Although the arbitrariness of choosing which spin-state is of lower energy, this does not play a role when cal-
culating physically measurable observables such as the Josephson supercurrent or tunnel density of states.
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Figure 2.14: Evolution of the ABS and CPR of a S-QD-S junction using a simplified constant interaction
Anderson model. Simulations taken from Reference[23]. The authors used parameter values ε0/Γ=−0.5 for
the level energy and increasing charging energy U =−ε0 (panel a, d), −3ε0 (panel b, e) and −6ε0 (panel c, f).In
each panel we denote the junction’s phase and mark with red the energy levels populated in the ground state.
The orange stars mark the point in phase where the ground state energy has a kink due to the change of ABS
branch, causing a jump in the CPR.
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In Figure 2.14 we show the ABS energies calculated as a function of phase as well as
the CPR when ε0 =−Γ. The emergence of these alternative ground state phases are now
explicit:

• Figure 2.14a,b show the energies and CPR of the junction in the 0-phase when
U =−ε0. The ABS do not cross the Fermi level resulting in an energy gap. The only
energy minimum is found at ϕ = 0 (“0-junction”). The CPR is continuous with
current flowing in direction of the phase bias for small phase, similar to a single
channel JJ with an infinitely small tunnel barrier with finite transmission 2.32.

• Figure 2.14c, d show the energies and CPR of the junction in the 0’-phase when
U = −3ε0. The local energy maximum turns into a minimum at ϕ = π, but the
global minimum is still found at ϕ = π. The intersecting ABS warrants a change
in the ABS branch of the junction ground state as the phase is ramped, causing a
jump in the CPR.

• Figure 2.14e, f show the energies and CPR of the junction in the π-phase when
U = −6ε0. The ABS no longer intersect and a gap in the energy spectrum opens
again. The energy has a single minimum found at ϕ = π. The CPR reflects this π
shift, but the critical current is less than for the 0-junction since the increase in U
has reduced the dispersion of the ABS.

Overall the behavior of the S-QD-S junction with charging energy U is qualitatively
similar to S-X-S juntion with Zeeman splitting Eex , visible by comparing Figure 2.10 and
2.14. Increasing U (Eex ) results in a splitting of the ABS, which first intersect at the Fermi
level and then flip, causing a π-junction.

Experimentally, however, the charging energy U is not an easily tunable parameter,
since it depends on the capacitance of the dot to the environment which is determ-
ined by the sample geometry. On the other hand the orbital energy ε0 is easily tunable
with electrostatic gating. The π-junction then arises in the middle of each odd diamond
where the ε0 <U /2 condition is met.

π-junctions in quantum dots were measured in single junction carbon nanotubes[24]
and SQUIDs[25, 26], as well as in nanowire SQUIDs [21]. A controllable 0′ andπ′-junction
in a carbon nanotube SQUID, where the 0 to π transition is induced by winding the
phase, was also recently reported [27].

2.4.3. ANOMALOUS CURRENT AND THE ϕ0-JOSEPHSON JUNCTION

ANOMALOUS CURRENT AND SYMMETRIES

Anomalous current in the context of Josephson junctions is defined as the current flow-
ing through the junction when there is no phase difference between the superconduct-
ing leads: Ianomalous ≡ I (ϕ = 0). This current is dubbed anomalous because in usual
situations it vanishes, due to symmetries respected by JJ Hamiltonian. In 1-D (or 0-D),
these are time reversal symmetry and chiral symmetry [28].

The current throught the system must respect the same symmetries as the Hamilto-
nian. If the Hamiltonian respects time reversal symmetry, the current I (ϕ) must equal to
its time reversal counterpart:
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I (ϕ) =−I (−ϕ) (2.51)

⇒I (0) = (0)

If the Hamiltonian respects chiral symmetry, i.e. equivalence between left and right
handedness, the current must satisfy

I (ϕ) = I (−ϕ) (2.52)

⇒I (0) = (0)

Thus the anomalous current vanishes in case either time reversal or chiral symmetry
holds.

Let’s assume a generalized sinusoidal current phase relationship for the junction,
where the minimum energy is shifted by an angle ϕ0, called a ϕ0-junction.

I (ϕ) = sin(ϕ+ϕ0).

The presence of either time reversal or chiral symmetry implies ϕ0 = 0,π.
This is why, as we have seen in previous sections, the presence of magnetic field or

charging energy can change the global energy minimum from ϕ= 0 to ϕ= π, but it can
take no values in between, since it would imply an anomalous current flow. Conversely,
the presence of an anomalous current directly implies a ϕ0-junction with ϕ0 6= 0,π.

COMPLEX TUNNELING AMPLITUDE IMPLIES ANOMALOUS CURRENT

Now let’s assume a generalized JJ which allows for anomalous current to flow and write
the CPR as a sum of a standard ‘0-junction’ and an anomalous current term:

I (ϕ) = I0 sin(ϕ)+ Ianomalous cos(ϕ) (2.53)

Let’s describe this junction in the simplest tunnel junction model where the barrier is
characterized by single, but not necessarily real tunneling coefficient T . Assume phase
ϕL and wavefunctionψL = |ψL |e iϕL in the left lead and phaseϕR and wavefunctionψR =
|ψR |e iϕR in the right lead, with ϕ=ϕL −ϕR .

We use Feyman’s derivation [29] to compute I0 and Ianomalous in terms of T .
Assuming weak coupling between the two superconductors, the Schrödinger equa-

tion in the left lead and right lead can be written

iħ ∂

∂t
ψL =µLψL +TψR (2.54)

iħ ∂

∂t
ψR =µRψR +TψL (2.55)

where µL,R is the chemical potential in the left and right leads. Solving these two
equations for the current I gives

I ∼ |ψL ||ψR |
(ℜ(T )sinϕ+ℑ(T )cosϕ

)
(2.56)

Thus I0 ∼ℜ(T ) and Ianomalous ∼ℑ(T ). A complex tunneling amplitude between the
leads implies an anomalous current flowing at zero phase difference.
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Figure 2.15: Electron of a Cooper pair tunneling across a quantum dot with two orbitals. a,The spin-up
electron tunnels through the dot via orbital 1. Leftward (orange arrow) and Rightward(purple arrow) tunneling
has the same amplitude giving no anomalous current. b, When SOI couples the two orbitals, the spin-up
electron can tunnel via orbital 1 and 2. Leftward and righward tunneling now acquires different phases and do
not cancel. We have omitted drawing the spin-down electron for clarity.

ANOMALOUS CURRENT IN S-QD-S SYSTEM WITH ZEEMAN AND SPIN-ORBIT INTERACTION

To obtain an anomalous current flowing through a JJ, one needs to break both time re-
versal symmetry and chiral symmetry. In order to break these symmetries in a quantum
dot connected to superconducting leads, it is necessary for the dot to have two orbit-
als taking part in transport, coupled by spin-orbit interaction(SOI) and Zeeman split by
a magnetic field[30]. The Zeeman splitting lifts the time reversal symmetry. The spin-
orbit interaction results in an intrinsic net magnetic field BSO, perpendicular to both
the electron momentum and local electric field gradient. The combination of BSO and
B pointing in a suitable direction provides a complex tunneling amplitude and lifts the
chiral symmetry of the S-QD-S system as we shall see below.

We depict the system in Figure 2.15 and label the two orbitals of the quantum dot 1
and 2. The energy splitting between the orbitals is Eor b and the hybridization amplitude
between between orbital i and lead X is labelled tX i .

To see how an anomalous current can flow in such a system, we assume the co-
tunneling limit holds where the electrons forming the Cooper pair tunnel through the
dot one by one and the total tunneling amplitude is the product of the individual elec-
tron amplitudes. We’ll see that this tunneling amplitude will be complex at phase differ-
ence ϕ= 0, guaranteeing an anomalous current (see previous section).

Without SOI the individual electrons forming the Cooper pair tunnel through the
QD via a single orbital level (although not necessarily the same orbital), since nothing
couples the orbitals together. For example, consider the spin-up electron of the Cooper
pair tunneling rightward, from the left lead to orbital 1 on the dot to the right lead(purple
arrow in Figure 2.15a). The corresponding tunneling coefficient (matrix element) for this
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process is given by (tL1tR1). Suppose the spin-down electron tunnels via orbital 2, with
amplitude (tL2tR2). The amplitude δL→R for the Cooper pair to tunnel through from left
to right is then

δL→R = (tL1tR1)(tL2tR2). (2.57)

Assuming that the hybridization amplitudes are real, the amplitude describing tun-
neling of a spin-up electron via orbital 1(orange arrow in Figure 2.15a) and spin-down
electron via orbital 2 from the right to the left lead (leftward tunneling) is exactly the
same. Thus δL→R = δR→L and the net resulting current vanishes. Therefore, the tunnel-
ing via single orbitals can not add to I (ϕ= 0).

The lowest order process which contributes to I (ϕ= 0) is the one in which one of the
two electrons forming the Cooper pair changes the orbital during the tunneling process,
while the other electron tunnels through the dot via a single orbital. Finite SOI enables
such orbital change.

We consider the case when the magnetic field is orientated along the effective spin-
orbit axis. The Hamiltonian of the dot then takes the simple form

HQD = (µτ0 +Eor bτz )σ0 +Bτ0σz +ατyσz (2.58)

Hereµ is the chemical potential, Eor b is the orbital energy,αparametrizes the strength
of the SOI and B the Zeeman splitting, τx,y,z (σx,y,z ) are Pauli matrices acting in orbital
(spin) space (τ0 (σ0) are identity matrices). Usually the terms describing the Zeeman
splitting and the SOI are smaller in comparison to the first term in the Hamiltonian and
thus the Bτ0σz +ατyσz term in 2.58 is treated as a perturbation. The amplitude of the
process represented by the purple arrow in Figure 2.15b is a second order perturbation
and is proportional to αBτyσ0. The spin-down electron takes the same path as before
and the tunnel amplitude is unchanged. The Cooper pair tunneling amplitude now be-
comes

δL→R = (tL1(−iαB)tR2)(tL2tR2) (2.59)

The reverse process however does not give the same amplitude, since the spin-up
electron flipping from orbital 2 to 1 acquires the opposite phase, as represented with the
orange arrow in Figure 2.15b. Thus

δR→L = (tL1(iαB)tR2)(tL2tR2) (2.60)

The forward and backward tunneling process do not cancel each other but contrib-
utes towards a complex tunneling amplitude of the Cooper pair. By virtue of 2.56, this
complex amplitude warrants an anomalous current.

When the magnitude field is oriented orthogonal to the SOI, the phases δL→R and
δR→L are equal and no anomalous current can flow[30]. A component of the Zeeman
field B parallel to BSO is necessary to generate anomalous current and a ϕ0-junction in
the quantum dot. The larger the parallel component, the larger the anomalous current.
This implies that by rotating the B field and measuring the anomalous current one can
infer the intrinsic BSO direction in the device.
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Figure 2.16: Schematics of an RF-SQUID. The RF-SQUID consists of a superconducting loop with circulating
current J enclosing fluxΦ interrupted by a JJ with phase difference ϕ. The externally applied flux isΦ0.

DISTINCTION BETWEEN ϕ0-JUNCTIONS, ϕ-JUNCTIONS

In literature, the nomenclature of ϕ0-junction and ϕ-junction is sometimes used inter-
changeably and inconsistently, which I will try to clarify here.

• A ϕ0-junction is a junction with energy minimum at phase ϕ = ϕ0. Its CPR is of
the form I (ϕ) = sin(ϕ+ϕ0), or equivalently, I (ϕ) = I0 sinϕ+ Ianomalous cosϕ. Thus
a ϕ0 junction necessarily allows for anomalous current to flow. The experimental
evidence of such a junction is presented in Chapter 6 of this thesis.

• Aϕ-junction, such as measured in Reference[31], is a JJ with a double energy min-
imum at phase ±ϕ. It does not admit any anomalous current. Its CPR is character-
ized by a higher harmonic, for example I (ϕ) = I0 sinϕ+ I1 sin(2ϕ) and its energy as
a function of phase has a double minima symmetric around 0 provided I1 ≥ 1

2 I0.
The higher harmonic allows the junction to have multiple critical current values.

2.5. PHASE BIASING JOSEPHSON JUNCTIONS
The CPR of a JJ defines the supercurrent magnitude the junction can admit as a function
of the phase difference: I (ϕ) = CPR(ϕ). The CPR is determined by the evolution of the
ABS with phase (see 2.32), therefore measuring the CPR of a junction can shed light on
the microscopic physics. To evaluate the CPR the phase needs to be an experimentally
adjustable parameter; this is not the case for an SNS junction contacted by a source and
drain lead, where the current I can be set by an external source but the phase adjusts
itself such that CPR(ϕ) = I .

In order to phase bias the junction, it must be embedded in a superconducting loop
so that the superconducting order parameter winds up in itself imposing a boundary
condition on the phase due to uniqueness. Such a loop is dubbed a Superconducting
Quantum Interference Device (SQUID) since the supercurrent can take two interfering
paths. Here we review the basics of SQUIDs, based on more extensive accounts such as
[32, 33].

2.5.1. RF-SQUID
An rf-SQUID is a superconducting loop interrupted by a single Josephson junction. In
Figure 2.16 we show the schematics of an RF-SQUID with phase difference δ across the
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JJ, current I circulating in the loop which encloses a reduced flux φ. The continuity of
the superconducting order parameter enforces the flux quantization condition

δ+φ= 2πn. (2.61)

The reduced flux, equivalent to the phase drop over the lead, is the sum of the externally
applied flux(i.e. an external magnetic field) minus the screening current:

φ= 2π

Φ0
Φext −φsceen

where φscr een = 2π
Φ0

(LG +LK )I is proportional to the loop inductance which is the sum of
the geometric inductance LG and the kinetic inductance LK . The phase drop δ over the
junction and the phase drop ϕSC over the lead due to kinetic inductance of the super-
conductor is related to the reduced flux by

φ= δ+ϕSC lead −
2π

Φ0
φscreen. (2.62)

Throughout this thesis we use SQUID loops made typically out of NbTiN of diameter
∼ 1µm and thickness and width ∼ 100 nm , and the critical current of our nanowire JJ is
in the nanoamper range. Such parameters yield inductances of LG ∼ 1 pH, LNbTiN

K ∼ 10
pH, negligible compared to the inductance L J of the JJ LJ ∼ 10 nH.

These inductane values mean that for nanosized SQUID loops, the phase drop due
to the screening current and the phase drop over the leads can be neglected and 2.61
simplifies to

δ=−2π

Φ0
Φext +2πn (2.63)

Thus the phase drop over the JJ can be experimentally set using an external magnetic
field perpendicular to the SQUID plane.

As the name suggests, an RF-SQUID is usually measured by probing its inductance
via microwave signals, by inductively coupling the SQUID to a standard LC-tank circuit:
the resonant frequency of the tank circuit is sensitive to the variation of the SQUID in-
ductance.

However, one can measure an rf-SQUID in a DC transport scheme by weakly coup-
ling a tunnel probe to the JJ in the loop acting as a source and connecting an electrode
to the loop serving as a drain.

In Chapter 5 a weakly coupled tunnel probe is used for voltage biased spectroscopy
of the junction, since the conductance measured through the junction is proportional
to the carrier density of states (DOS), but the inverse proximity is too weak to disrupt
superconductivity in the junction. Since the ABS in the junction are phase sensitive, the
DOS and hence the measured conductance is flux periodic with the flux quantum. Such
a setup is however unsuitable to directly measure the critical current or the CPR of the JJ.

2.5.2. DC-SQUID
A superconducting loop with two JJs in parallel is called a DC-SQUID. A DC-SQUID is
shown in Figure 2.17 with junctions 1 and 2 each bearing critical current IC 1, IC 2 and



2.5. PHASE BIASING JOSEPHSON JUNCTIONS

2

39

Figure 2.17: Schematics of a DC-SQUID. The DC-SQUID consists of a superconducting loop enclosing flux
Φ interrupted by a JJ on both sides with phase difference ϕ1,2. The total current applied through the loop is
I = I1 + I2 and the externally applied flux isΦ0.

phase difference δ1, δ2 respectively. The SQUID encloses a reduced flux φ and its own
critical current is denoted IC ,SQU I D .

The DC-SQUID set-up is extremely advantageous for nanowire junctions, as these
junctions can be completely switched off via local gating. Thus a DC-SQUID with nanowire
junctions can be operated as individual junctions as well a SQUID, allowing to easily
measure individual junction properties and quantum interference on the same sample.

As in the previous section, we can safely assume for devices presented in this thesis
that the geometric inductance of the loop and the kinetic inductance of the leads is neg-
ligible compared to the Josephson inductance, and therefore φ≈ 2π

Φ0
Φext .

Flux quantization imposes:

δ1 −δ2 =φ+2πn (2.64)

In general it is no longer possible to tune the phase over both junctions independ-
ently, except some limiting cases as we will see below.

The total current I passing through the DC-SQUID is

I = CPR1(ϕ1)+CPR2(ϕ2). (2.65)

We define the junction asymmetry parameter α as

α= IC 1 − IC 2

IC 1 + IC 2

and the average phase

χ= δ1 +δ2

2
.

We now assume that the CPR of both junctions in the SQUID can be well approx-
imated by the tunnel junction CPR I (ϕi ) = ICi sin(ϕi ). This assumption holds for the
nanowire junctions presented in this thesis.
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Figure 2.18: Critical current of a DC-SQUID for varying junction symmetries. The two junctions composing
the DC-SQUID are assumed to have sinusoidal CPR I1,2 = IC 1,2 sinϕ1,2

The total bias current through the SQUID Ib can then be written

Ib = IC 1 sin(δ1)+ IC 2 sin(δ2)

= IC 1 sin(χ+δ1/2)+ IC 2 sin(χ−δ2/2)

⇒ Ib = IC ,squi d sin(χ+δ0(φ)) (2.66)

The SQUID basically can be regarded as a JJ of which the critical current IC ,squi d can
be tuned via the flux:

IC ,squi d = (IC 1 + IC 2)

√
(1−α2)cos2

(
φ

2

)
+α2 (2.67)

and δ0(φ) satisfies

sin(δ0(φ)) =
αsin

(
φ
2

)
√

(1−α2)cos2
(
φ
2

)
+α2

cos(δ0(φ)) =
cos

(
φ
2

)
√

(1−α2)cos2
(
φ
2

)
+α2

We plot IC ,squi d for different values of α in Figure 2.18. It is minimal when the two
junctions interfere destructively at flux φ = π and maximal when they interfere con-
structively at flux φ= 0.
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CASE OF SYMMETRIC JJS

If the two JJs are identical and α= 0 in 2.67 and IC ,SQU I D becomes

IC ,SQU I D = 2IC |cos

(
π
Φext

Φ0

)
| (2.68)

i.e. the critical current of the SQUID vanishes atΦext =Φ0/2+nΦ0.
Since the two junctions are idential the phase drop must be equal δ1 = δ2 = δ.

CASE OF ASYMMETRIC JJS

If the critical current of one JJ is much higher than the other, say αÀ 1, the observed
total critical current of the SQUID will approximately be constant around IC 1 with a su-
perimposed oscillation of amplitude IC 2. Thus the phase drop over junction 1 will be
locked at ϕ1 ≈ π/2, whereas 2.64 guarantees that ϕ2 winds from 0 to 2π as the flux is
ramped. This setup is useful when the SQUID is composed of a well-behaved reference
junction and of one junction of interest of which we would like to extract the CPR of, as
the experiment presented in Chapter 6.
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3
SUPERCURRENT INTERFERENCE IN

FEW-MODE NANOWIRE JOSEPHSON

JUNCTIONS

Junctions created by coupling two superconductors via a semiconductor nanowire are
the basis for detection, fusion, and braiding of Majorana bound states. A magnetic field
parallel to the wire is used to obtain topological superconductivity in superconductor-
semiconductor systems. We therefore study Josephson effect in nanowire junctions in
the presence of large magnetic fields.

We find that critical currents in NbTiN-InSb-NbTiN Josephson junctions are strongly
suppressed by the magnetic field. Moreover, the critical current exhibits gate-tunable
nodes and kinks in the magnetic field. A numerical model that includes vector potential,
Zeeman and spin-orbit effects in a quasi-ballistic multi-mode nanowire suggests that the
field evolution of the critical current is mostly determined by the interference of super-
currents carried by different transverse modes. These findings inform the development
of Majorana-based quantum circuits.

In collaboration with K. Zuo, V. Mourik, B. Nijholt, D. J. van Woerkom, A. Geresdi, J. Chen, V. P. Ostroukh, A.
Akhmerov, S. R. Plissard, D. Car, E. P. A. M. Bakkers, D. Pikulin, L. P. Kouwenhoven. and S. M. Frolov.
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3.1. INTRODUCTION
Semiconductor nanowires coupled to superconductors are a promising platform for in-
vestigating Majorana bound states [1–8]. Josephson weak links based on nanowires may
provide additional evidence for Majorana bound states, e.g. through the fractional Joseph-
son effect [9–11]. These weak links can also become elements of Majorana-based to-
pological quantum circuits [12–15]. Previous work on semiconductor nanowire Joseph-
son junctions demonstrated supercurrent transistors [16], nanowire SQUIDs[17, 18], and
gate-tunable superconducting quantum bits[19, 20]. Recent works reported Josephson
effects at high magnetic fields sufficient to generate unpaired Majorana bound states
[18, 21–23].

In this chapter, we study mechanisms of supercurrent suppression through the sim-
ultaneous magnetic field and gate voltage evolution of critical currents in nanowire Joseph-
son junctions tuned to the few-mode regime. The junctions consist of InSb weak links
and NbTiN superconductor contacts. For magnetic fields parallel to the nanowire, we
observe a strong suppression of critical current at magnetic fields on the scale of 100
mT. When the magnetic field exceeds ∼ 100mT critical currents exhibit aperiodic local
minima (nodes). The fields that correspond to the minima are tunable with local electro-
static gates. To understand our data, we develop a numerical model of a quasi-ballistic
multimode nanowire of realistic geometry. We include spin-orbit field, orbital and Zee-
man effects produced by magnetic field. Based on the simulation, we conclude that
quantum interference between supercurrents carried by different transverse modes is
the dominant mechanism responsible for our observations. Such an interference ex-
plains the critical current suppression, as well as the occurrence of gate-sensitive nodes
in the critical current.

3.2. EXPERIMENTAL SETUP
The schematic of a few-mode nanowire Josephson junction is presented in Fig. 3.1(a).
A device similar to those used in this study is shown in the inset of Fig. 3.1(b), and the
detailed fabrication process followed is described in Ref. [4]. The junction consists of an
InSb nanowire with a diameter of 80±10nm with NbTiN contacts, fabricated on top of
an array of local gates isolated from the junction by a dielectric layer. Some of the gates
are 200 nm wide, while others are 50 nm wide. We report data from 2 different devices in
the main text, data from an additional device is shown in the supplementary materials.
Device 1 has a contact spacing of ∼ 1 micron and the nanowire is oriented at an angle
25◦±5◦ with respect to B ; device 2 has a contact spacing of ∼ 625nm, with the wire at an
angle of 0◦±5◦ with respect to B . Device 3, with a shorter contact spacing of ∼ 150nm,
showed similar behavior (see supplementary materials). Measurements were performed
in a dilution refrigerator with a base temperature of ∼ 60mK. All electrical lines connect-
ing the device are equipped with standard RC and copper powder filtering at the mixing
chamber stage to ensure a low electrical noise environment. Voltage measurements are
performed in the four-terminal geometry.

We set all the gates underneath the nanowire to positive voltages in the few-mode
transparent regime in which no quantum dots are formed between the superconduct-
ing contacts and the normal state conductance exceeds 2e2/h (see the full gate trace of
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supercurrent in Section 3.9.1).

3.3. SUPERCURRENT MEASUREMENTS AS A FUNCTION OF MAG-
NETIC FIELD

Fig. 3.1(b) shows a typical example of differential resistance dV /dI as a function of the
magnitude of the magnetic field B and the current bias Ibias in this regime, with low res-
istance supercurrent regions in dark blue around zero current bias. Note that the data are
asymmetric with respect to current reversal because the junction is in the underdamped
hysteretic regime, and only one sweep direction is plotted.

A strong decrease of the switching current is observed from B = 0T to B = 100 −
200mT. Beyond the initial decrease, the critical current exhibits non-monotonic beha-
vior with multiple nodes and lobes. Despite the 1µm contact separation, the supercur-
rent can be resolved up to fields as high as B = 2T. The supercurrent at finite fields of-
ten lacks the sharp switching behavior when the critical current is exceeded. In voltage
bias measurements, this feature corresponds to a smoothly increased conductance at
zero bias. Thus, the supercurrent can be mistaken for a signature of Majorana fermi-
ons in devices with two superconducting contacts (see supplementary information for
voltage-bias data).

3.4. POSSIBLE MECHANISMS CAUSING SUPERCURRENT OSCIL-
LATIONS

We now qualitatively discuss the possible explanations for the behavior observed in Fig.
3.1(b). Zeeman splitting can induce 0−π-junction transitions which result in an oscillat-
ory Josephson energy as a function of the magnetic field [24–26]. This alternating 0−π
junction behavior is due to spin-up and spin-down channels acquiring different phases
as they travel across the junction [Fig. 3.1(a)]. However, in our junctions a strong spin-
orbit effective field, which is believed to point perpendicular to the nanowire, reduces
the relative phase shifts of spin-up and spin-down and lifts the nodes in the Josephson
energy[27]. For the spin-orbit strength previously reported in InSb nanowires [28, 29],
we estimate an effective spin-orbit field of order 1-2 T. We therefore do not expect 0−π-
transitions for in-plane fields below 1 T for any chemical potential other than in the close
proximity to a transverse mode edge (within 1-2 meV). Given the typical mode spacing
of 10-20 meV [30, 31], the Zeeman π-junction effect is an unlikely explanation for the
non-monotonic supercurrents generically observed here.

In addition to spin-related effects, supercurrents carried by different transverse modes
of the quasi-one-dimensional wire would generally acquire different phase shifts and
interfere due to mode mixing within the wire or at the superconductor contact. Such
Fraunhofer-like interference becomes relevant when a single superconducting flux quantum
is threaded through the nanowire cross-section, a regime which is reached for B ≈ 0.25T,
well within the range of the present study. Comparison of the experimental and numer-
ical data in this paper suggest that this is the effect that dominates the magnetic field
dependence of the critical current.

Transitions in and out of the topological superconducting phase were predicted to
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Figure 3.1: (a) Schematic Superconductor (SC)-nanowire-SC Josephson junction. The cross-section shows
cartoon wavefunctions of n = 3 transverse modes and flux Φ penetrating the area of the nanowire. Arrows
indicate spin-resolved modes, dotted lines are same-spin scattering events within the wire. All modes are
coupled at the contacts (blue dashed lines). Directions of B and spin-orbit effective field BSO are indicated.
(b) Differential resistance dV /dI versus B and Ibi as . Current bias sweep direction is from negative to positive.
Data from device 1. Inset: Scanning electron microscope (SEM) image of a typical device similar to those
studied here. S labels the superconducting contacts while B indicates the in-plane magnetic field for device 2.

induce fluctuations in the junction’s critical current[32]. Although we used devices sim-
ilar in this study to those used in recent Majorana experiments [4, 33, 34], here we did not
gate-tune the regions of the wire underneath the superconducting contacts into the to-
pological regime. An accidental topological regime occurring on both sides of the junc-
tion in multiple devices is an unlikely explanation to the generic observations reported
here.

3.5. SUPERCURRENT EVOLUTION WITH MAGNETIC FIELD AND

GATE POTENTIAL
Fig. 3.2 shows a sequence of magnetic field dependences of the critical current, obtained
by adjusting one of the narrow local gates. The critical current exhibits kinks, multiple
nodes [Fig. 3.2(c)], or just a single node in the same field range [Fig. 3.2(a)]. At some
nodes the critical current goes to zero, while a non-zero supercurrent is observed at
other nodes. No periodic patterns such as those characteristic of a DC-SQUID or a uni-
form junction are observed. Note that slight changes in the gate voltage are sufficient
to dramatically alter the magnetic field evolution curve; the corresponding change in
chemical potential ∆µ is small (∆µ < 1meV) compared with the typical intermode spa-
cing (∼ 15meV). Furthermore, the gate used only tunes a 100 nm segment of the 650 nm
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Figure 3.2: (a)-(d) dV /dI versus B and Ibi as for different gate voltage settings Vg indicated above each panel.
Data from device 2, see Sec3.9.1 for the SEM image where the gate used for tuning is marked.

The gate dependences of the supercurrent are presented in Fig. 3.3. The critical cur-
rent is strongly reduced at fields above 100mT irrespective of the gate voltage. At all
fields, the supercurrent is strongly modulated by the gate voltage. However, the gate
voltage at which nodes in the critical current occur differs for each magnetic field value.
Thus no straightforward connection can be made between the zero-field critical current
and node positions at finite field, see also Fig. 3.5.

3.6. THEORETICAL MODELING

In order to establish which of the mechanisms depicted in Fig. 3.1(a) is dominating over
the magnetic field evolution of the Josephson effect, we develop an effective low-energy
model of a spin-orbit and Zeeman-coupled few-mode nanowire, covered by supercon-
ductors at both ends. In this three-dimensional model, the nanowire cross section is
a regular hexagon. We define x as the direction along the wire, y perpendicular to the
wire in the plane of the substrate, and z perpendicular to both wire and substrate. The
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Figure 3.3: (a)-(e) dV /dI versus Vg at different B and Ibi as indicated on the right. Data from device 2. The gate
used for tuning is different from that used in Fig. 3.2, see Sec3.9.1 for details.

corresponding Hamiltonian reads:

H =
(

p2

2m∗ −µ
)
τz +α(kxσy −kyσx )τz

+ gµB B ·σ+∆τx . (3.1)

Here p =−iħ∇+ e Aτz is the canonical momentum, where e is the electron charge, and

A = [
By z −Bz y, 0, Bx y

]T is the vector potential chosen such that it does not depend on
x. Further, m∗ is the effective mass, µ the chemical potential controlling the number
of occupied subbands in the wire, α the strength of Rashba spin-orbit interaction, g the
Landé g -factor, µB the Bohr magneton, and ∆ the superconducting pairing potential. σi

and τi are the Pauli matrices acting in spin and electron-hole space respectively. The
electric field generated by the substrate is most likely along the z direction, such that the
Rashba spin-orbit acts in the x y-plane. Finally, we include the vector potential using the
Peierls substitution [35].

We perform numerical simulations of the Hamiltonian (3.1) on a 3D lattice in a real-
istic nanowire Josephson junction geometry and calculate the supercurrent across the
junction using the algorithm described in Ref. [36]. We perform the numerical simula-
tions using the Kwant code [37]. The source code and the specific parameter values are
available in Sec3.10.1.

3.7. DISCUSSION
Numerical results are presented in Figs. 3.4 and 3.5. First, we discuss the case of only a
single transverse mode occupied [Fig. 3.4(a),(b)]. When all field-related terms of Eq. (3.1)
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Figure 3.4: Critical currents and corresponding ground state phase for different combinations of interactions
of the model Hamiltonian. Color coding upper legend panel: A = 0 corresponds to no orbital effect and α= 0
to no spin-orbit effect, Zeeman effect is always present. The curves in panel (a) and (b) are for the single trans-
verse mode (two spin modes) regime, at low chemical potential, µ= 10meV. The disorder curve corresponds
to a mean-free path of lmfp = 300nm. Panel (c) and (d) show curves for the same Hamiltonian but in the
multi-mode (5 transverse (10 spin-full) modes) regime at higher chemical potential, µ= 50meV. Dashed light
blue lines in (a) and (c) indicate the positions of 0−π transitions in the absence of disorder and with α = 0,
A = 0. The 0−π transitions happening at non-zero disorder in (d) is due to chemical potential renormalization
closer to the band bottom, illustrating a more exotic possibility (see supplementary materials for more details),
deviations from 0 and π

are included (A 6= 0, g 6= 0,α 6= 0), we observe a monotonic decay of the critical current on
the scale of 1 Tesla, which is much more gradual than in the experiment. Indeed a single
mode cannot interfere with itself, thus the orbital effect of the magnetic field (described
by A) cannot cause nodes in the supercurrent in this regime.

The π-junction effect is suppressed up to fields of order 1 T due to the strong spin-
orbit effective field, which keeps spin-up and spin-down at the same energy so that they
acquire the same phase shifts traversing the junction. The critical current eventually
decays because the Zeeman term overtakes the spin-orbit term at fields greater than
1 Tesla. When the Zeeman term is turned on while the spin-orbit term is turned off
(g 6= 0,α= 0), we see several 0−π transitions taking place within the studied field range,
confirmed by the critical current phase switching between π/2 and −π/2 [Fig. 3.4(b)].
Disorder within the nanowire suppresses the critical current at all fields, however the
initial decay of critical current as well as the nodes at higher fields are present also in the
disordered case (see Section 3.9).

In order to reproduce a rapidly decaying and non-monotonic critical current as in
Figures 3.1 to 3.3, multiple transverse modes need to be occupied [Fig. 3.4(c)]. In this
case, models that neglect the orbital effect display either a monotonic decay of the crit-
ical current (A = 0), or critical current fluctuations due to 0−π transitions (A = 0, α= 0),
as in the single-mode case. In contrast, however, whenever A 6= 0, a strong suppression
of the critical current is observed in the simulation between B = 0 and B = 100−200mT.
At higher fields, the critical current exhibits nodes of variable depth. This behavior, ob-
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tained for realistic device parameters with all relevant effects of the magnetic field in-
cluded, is in qualitative agreement with the experiment, see Fig. 3.1 for example. We
note that 0−π transitions survive when A 6= 0 andα= 0, but they cannot be distinguished
from nodes caused by orbital interference based on two-terminal measurements; their
identification requires phase-sensitive experiments [Fig. 3.4(d)]. Finally, we note that
the critical phase can continuously change between ±π/2 due to higher harmonics in
the current-phase relationship present in realistic wires[38].
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Figure 3.5: Comparison between experimental (a) and numerical results (b). The parameters for the numerical
simulations are the same as Fig. 3.4(b) with a mean-free path of lmpf = 160nm and a gate size of 640nm. The
range of chemical potential is chosen using Ref. [39]. Experimental data from Device 2.

In Fig. 3.5 we compare side-by-side experiment and simulations via field-vs-gate
maps of the critical current. In Fig. 3.5(a), the switching current from a set of dV /dI
vs. Ibias traces similar to those in Fig. 3.3 was extracted (see Sec3.10.1 for the details of
the algorithm). Beyond the decay of critical current on the scale of 100mT, the experi-
mental data show a complex evolution of critical current maxima and minima in gate-
field space. Remarkably, this evolution as well as the initial decay are well reproduced by
the simulation that uses the nanowire parameters used in Fig. 3.4 including all effects of
magnetic field and disorder[Fig. 3.5(b)]. This shows good applicability of our model to
the experimental system.

3.8. CONCLUSION
Our results are instrumental for modeling Majorana setups. Specifically, the decrease of
Josephson energy by an order of magnitude is observed at fields at which the onset of
topological superconductivity is reported. This effect should be taken into account in
efforts to realize recent proposals for fusion and braiding of Majorana fermions [12–15],
especially those that rely on controlling the Josephson coupling [12, 13, 15]. We suggest
that in such devices narrow multimode nanowires should be used. In this case strong
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Josephson coupling due to many modes will not be strongly affected by magnetic field-
induced supercurrent interference.



3

54 3. SUPERCURRENT INTERFERENCE IN FEW-MODE NANOWIRE JOSEPHSON JUNCTIONS

3.9. ADDITIONAL DATA

3.9.1. ZERO FIELD GATE DEPENDENCE: DEVICE 1
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Figure 3.6: a) Device current as a function of gate voltage, Vbias = 10 mV. The varied gate is indicated in inset
of c), all other gates are at +3 V. b) Voltage-current characteristic for both upwards (blue) and downwards (red)
sweeping direction of current bias. The supercurrent of 8 nA is the maximum supercurrent observed in this
device and corresponds to all gates at +3V. c) Numerical derivative dV /dI of V (I ) as function of current and
gate voltage. Current bias is swept from negative to positive.

Characterization of device 2 at B=0 T is shown in Figure 3.6. Current versus local
gate voltage is measured at Vbias = 10 mV (Figure 3.6c). Taking known series resistances
into account, the device resistance of ∼6 kΩ is found, corresponding to the sum of the
conduction channels and contact resistances.

As shown in Figure 3.6b, by optimizing the gate voltages a maximal supercurrent of 8
nA was found, with a corresponding voltage of 32 µV, which developed upon switching
to the normal state. The junction is hysteretic as shown by the low retrapping current,
and has a sharp transition to the normal state, indicating that the junction is in the un-
derdamped regime. Note that self-heating may also contribute to the hysteresis [40].

3.9.2. SHAPIRO STEP MEASUREMENTS

Device 2 has been cooled down a second time with a radio frequency (RF) antenna near
the sample. This enabled the study of Shapiro steps in the junction as a function of
microwave power and frequency. Here, we focus on the power dependence of Shapiro
steps for different magnetic fields. The device is again tuned to a multimode regime,
comparable to Vgate = 0.5 V in Figure 3.6c. Due to the RF-antenna, the microwave back-
ground in the vicinity of the junction has increased, which led to an extra rounding of
the V (I )-trace near the switching bias. Figure 3.7 summarizes the main findings of these
measurements.
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Figure 3.7: Shapiro steps in magnetic field. a) B dependence of supercurrent without microwave radiation
applied. Numerical derivative dV /dI of the original V (I ) curves is shown. b) Shapiro steps at B = 0 T for
different microwave powers. At the lowest RF power of 4.6 dBm (black line) no Shapiro steps are present. A half
integer step is visible at 10.1 dBm (blue line). c) Shapiro steps at B = 100 mT for different microwave powers
in a histogram. Half and quarter integer steps are visible. d)-g) Microwave power dependence of Shapiro steps
for different B . Numerical derivative dV /dI of the original V (I ) curves is shown, in this representation the
Shapiro step plateau corresponds to low differential resistance (blue color). At B = 0 T (panel d)), the power
dependence is dominated by integer Shapiro steps and only a small contribution of half integer steps is visible.
At B = 0.1 T (panel e)) fractional steps are visible. Here not only half integer steps, but also quarter steps are
weakly present. B = 0.2T (panel f)) is closest to the minimum supercurrent at 0.25 T. Here the half integer and
integer steps are almost equal in width. Finally, beyond the minimum of supercurrent, at B = 0.3 T (panel g)),
the integer steps increase again in width relative to the half integer step. Curves in b) and c) are from the same
datasets as shown in respectively d) and e). Values given for the RF power in panels b)-g) is the ouput power
of microwave source, 60 dB attenuation, of which 20 dB at low T, is applied. Data is from device 2, second
cooldown.
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B (T) Iswitch (nA) w1/2 (nA) w1 (nA) w1/2/w1

0.0 2.41 0.12 0.87 0.14
0.1 0.63 0.12 0.34 0.35
0.2 0.34 0.15 0.23 0.65
0.3 0.35 0.16 0.30 0.53

Table 3.1: Summary of switching current and maximum plateau widths of the 1/2 and 1st Shapiro steps for
different magnetic fields. Data extracted from Figure 3.7b,d,e,f, except switching current at B = 0 T, which is
taken from a larger dataset of which part is shown in Figure 3.7d.

Figure 3.7a is a B dependence of supercurrent in the absence of microwave drive.
The supercurrent pattern as a function of magnetic field is similar to the one shown in
Figure 1 of the main text. This indicates that thermally cycling the device did not change
the qualitative behavior of the device, although the exact gate tunings are different.

We focus on the power dependence of Shapiro steps at different B strengths of 0,
100, 200 and 300 mT corresponding to Figure 3.7d,e,f,g respectively. The microwave fre-
quency is kept fixed at 2.0 GHz. Shapiro steps show up at voltages corresponding to

V = n · h f
2e , where n may be a fraction. At B = 0 mT (Figure 3.7d), half integer steps are

only weakly present. At B = 100 mT (Figure 3.7e), not only n = 1/2 steps but also weak
n = 1/4 steps are visible. This is clearly visible in Figure 3.7c where the same data are
plotted in a voltage histogram, where high voltage counts correspond to the plateaus of
the Shapiro steps.

The B = 200 mT and B = 300 mT cases (Figure 3.7e,f) correspond to low critical cur-
rent. Nevertheless, Shapiro steps can still be resolved. At B = 200 mT, which is closest
to the minimum of critical current, the width of the 1/2 step is more than half the width
of the 1st step, here the maximum step ratio is found. At 300 mT the 1/2 step is still
large compared to the 1st step, but slightly less pronounced compared to 200 mT. This
behavior is summarized in Table 3.1.

Shapiro steps at fractional frequencies, especially the half-integer steps, have been
previously observed in Josephson junctions under various conditions[41, 42]. For in-
stance, they can arise due to Josephson coupling of higher orders accompanied by a
non-sinusoidal current-phase relationship[43]. In quasiballistic few-mode Josephson
junctions the current-phase relation is expected to be non-sinusoidal, consistent with
half-integer Shapiro steps observed here even at zero magnetic field. The higher order
1/4-steps are more exotic and deserve a deeper study in the future, though they may also
originate from non-sinusoidal current-phase relationship.

In a non-sinusoidal Josephson junction tuned to the 0-π transition the first order
Josephson effect which is responsible for strong integer Shapiro steps vanishes, thus the
current phase relationship is dominated by higher harmonics. In this case, Shapiro steps
at half-integer and integer frequencies are expected to appear with the same step widths.
The results presented here show that the ratio of step widths for half integer to integer
steps indeed increases near a field-induced node in the critical current. However, the
results are not conclusive as to whether this is due to a 0-π transition.

On the other hand, Majorana zero modes coupled across a junction barrier are pre-
dicted to result in disappearing odd-integer Shapiro steps[2, 3]. Thus the behavior ob-
served here is opposite that expected due to Majorana modes: extra fractional steps in
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addition to integer steps are observed.

3.9.3. ANGLE DEPENDENCE OF FLUCTUATIONS

In this section we present results from device 3 (Figure 3.9 b) ) with contact spacing of
150 nm on which we performed current bias measurements with similar conditions as
reported in the main text.
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Figure 3.8: Differential resistance measured as a function of current bias and magnetic field strength of
Device 3. The angle indicated in each panel is the angle of the magnetic field relative to the wire axis, in the
plane of the substrate.

The device shows a monotonic decrease of the critical current for magnetic field up
to 400 mT (not shown in the figure). This extended initial decay is attributed to shorter
contact separation. Beyond 400 mT, the critical current fluctuates at a period depending
on the direction of the magnetic field. Figure 3.8 shows the differential resistance of
the device for three different field directions. The top panel shows data where the field
is pointed along the nanowire. The critical current decays until the field reaches 600
mT, beyond which it exhibits a weakly pronounced maximum and disappears at 900 mT
after which it reappears again. As the field angle is rotated in the plane of the substrate
( Figs.3.8(b),(c)), the critical current decays faster as a function of the field strength, and
the subsequent nodes of the critical current are closer spaced in field. We associate this
behavior with increased flux through the nanowire at finite angles between the field and
the wire.
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Figure 3.9: Schematics based on SEM picture of device 1, device 2 and device 3. a) Device 1, with an angle of
25◦±5◦ with the magnetic field. In all devices, not all local gates are operated independently: as indicated in
the figures, larger gates are formed by shorting some of the local gates together, e.g G1. b) Device 2, shown
with the superconducting electrode design superimposed on top of the SEM image, as this device has not
been imaged after the final fabrication step. The device has a contact spacing of ∼ 625nm, with the wire at
an angle of 0◦±5◦ with respect to magnetic field. c) Device 3, incorporating two quasi-particles traps next to
the superconducting contacts. The length of the Josephson junction is ∼ 150nm. Device 3 is cooled down in a
setup where the magnetic field could be rotated using a 3D vector magnet.

3.9.4. ZERO BIAS PEAKS DUE TO SUPERCURRENT CAN ONSET AT FINITE MAG-
NETIC FIELD

Devices used in this study were initially fabricated in order to search for Majorana zero
modes. In fact, they pre-date devices used in REF. However, effects reported in this sec-
tion illustrate why devices with two superconducting contacts, even if the contacts are
almost 1 micron apart, cannot be used for unambiguous detection of Majorana zero
modes [5, 44, 45]. Specifically, we show that in a voltage-biased measurement, supercur-
rent can appear as a zero-bias peak that onsets at finite magnetic field, thus mimicking a
key Majorana signature. If devices have two hard-gap superconducting contacts, peaks
due to Majorana appear at∆, and this can be used to distinguish between Majorana and
supercurrent. However, no hard gap has so far been demonstrated at finite fields in the
Majorana regime, and therefore a finite density of states is expected at zero bias, thus
Majorana and supercurrent peaks may coexist at the same bias. We show here the sur-
vival of small supercurrents in the quantum-dot regime and up to high magnetic fields of
2 T (Figure 1 in main text), thus supercurrents are found in the same range of parameters
as those used in Majorana experiments.

The results presented in Figure 3.10 show our main finding. By putting a negative
voltage on one of the local gates in between the superconducting contacts and varying
a gate next to it, a tunneling regime is realized with quantum dot-like features. This cor-
responds to a regime comparable to Vgate < -0.5 V shown in Figure 3.6a for device 2. The
result of a current biased measurement in this regime is shown in Figure 3.10a. A very
small (down to 1 pA) supercurrent is resolved in this gate range. Interestingly, for gate
regimes with lower resistance the supercurrent initially grows, as expected, but then the
dV/dI peak related to the switching current broadens and is no longer visible. We focus
here on the B dependent behavior as shown in Figure 3.10b,c,d. Picking a gate posi-
tion with no initially resolved supercurrent, in a current biased measurement, at around
200 mT a small supercurrent shows up in a slightly more resistive regime. Such a small
supercurrent may show up in a differential conductance measurement as a small zero
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bias peak (ZBP). Indeed, upon switching to a voltage biased differential conductance

measurement, a small ZBP with height ∼ 0.01 2e2

h is found. The ranges in which the su-
percurrent is visible in a current biased measurement and in which the ZBP is visible in
a voltage biased measurement are not identical due to a minor charge switch between
the two measurements.
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Figure 3.10: Supercurrents and zero bias peaks at finite B . a) Differential resistance vs gate. In this scan, one of
the local gates is set at -0.45 V and all other gates are at +1.5 V.b) Differential resistance vs B at the indicated gate
position in a). c) Linecut from b) at B = 0.25 T. d) Differential conductance vs B corresponding to b). Numerical
derivative of original V (I ) curves is shown in a) and b). Data from device 1.

3.10. EXTRACTING SWITCHING CURRENT FROM EXPERIMENTAL

DATA
To obtain Fig. 3.5(a) of the main text, switching currents are extracted from a large set of
voltage-current characteristics by numerically detecting the voltage step upon switching
from the superconducting to the resistive regime. First an initial low-pass filter is ap-
plied to the data reducing spurious fast fluctuations. Next, a numerical derivative of the
V (I )-curve is taken. This first derivative has a clear maximum for an V (I )-curve with
a sharp transition, allowing for straightforward identification of the switching current.
However, the finite B-field V (I )-curves typically display smooth transitions from super-
conducting to resistive state, resulting in unclear or even absent maximums in the first
derivative. A smooth transition still generates a maximum of second derivative, allowing
for identification of the switching current. We therefore introduced a threshold for a first
derivative maximum, below which a second derivative is taken of the V (I )-curve with its
maximum identified as the switching current. A second threshold is introduced for the
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maximum of second derivative, below which the switching current is considered to be
zero. Algorithm parameters are optimized to both correctly identify the sharp transitions
of large switching currents and to avoid false positives of small switching current.

3.10.1. DETAILS OF THE MODELING

The nanowire cross section has a diameter of 104nm and the superconductor on top
of the semiconductor nanowire adds two more layers of unit cells partially covering the
nanowire (135◦ of the wire’s circumference). The superconductor has the same lattice
constant and effective mass as the nanowire, justified by the long-junction limit. This
means that the wave function has most of its weight in the nanowire and that the su-
perconducting shell merely serves as an effective boundary condition that ensures that
all particles are Andreev-reflected. Further, the superconductor lacks the Zeeman effect
and spin-orbit interaction, but has a superconducting order parameter ∆ set such that
the induced inside the nanowire superconducting gap at zero field is ∆ind = 0.250meV.
We use realistic parameters of an InSb nanowire [4]: α= 20meV ·nm, m∗ = 0.015me , and
g = 50.

The geometry of the modeled system is shown in Fig. 3.11

3.10.2. DETAILED THEORETICAL ESTIMATES

In this section we estimate the strength of different possible mechanisms that can cause
supercurrent oscillations in the nanowire Josephson junction.

Interference between orbital channels. The area of the cross section of the nanowire
is ∼ π× (50nm)2. This means that the magnetic field value of B ≈ 0.26T corresponds to
one flux quantum penetrating the cross section of the nanowire. At this value of the mag-
netic field we expect the phase shifts between different bands propagating between the
two superconductors to be comparable to π. This sets the typical B scale for the interfer-
ence of different orbital modes carrying current, and its value is well within the range of
the experimentally observed distance between local minima and maxima of supercur-
rent. This simple estimate neglects the magnetic field expulsion of the superconductor,
which may create a higher flux in the nanowire near the superconducting contacts, thus
lowering the effective field scale.

Interference between spin channels. Supercurrent oscillations can be produced by
0 −π transitions due to the Zeeman splitting of the Andreev bound states inside the
Josephson junction. The characteristic B scale of such supercurrent oscillations is de-
termined by the ratio of Zeeman energy to the Thouless energy. This sets the relative
phase θB of the Andreev bound states, θB = EZL/ħvF. Here EZ is the Zeeman energy,
L the length of the nanowire junction, and vF the Fermi velocity in the nanowire. For
θB = π/2, a 0−π transition happens, resulting in a ‘cusp’ in the curve of the supercur-
rent as function of B . Because with a small Fermi velocity θB becomes more sensitive to
changes in B , given vF ≈ √

2µ/m∗, the lowest B value at which a 0−π transition hap-
pens is for low chemical potential. Therefore, the relevant behavior is captured within
the typical µ range of the intermode spacing of ∼ 15meV. Assuming a junction length of
L = 1um, the B field for the first cusp to appear has an upper bound of B ∼ 0.5T. Gener-
ally, for smaller µ, this value is significantly lower, therefore purely Zeeman induced su-
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Figure 3.11: The modeled tight-binding system. The purple sites indicate the semi-conductor and the sites
show the superconductor. The red and light red colored cross sections indicate that the wire extends infinitely
in that direction. We defined the length of the wire L as the part that is not covered with the superconductor.
In this figure for clarity we plot a shorter wire (L = 200nm), while in the simulations we chose L = 640nm.
The other dimensions used in the simulations are as depicted. Specifically, the wire diameter is 104nm, the
thickness of the superconductor is 16−24nm, and the coverage angle of the superconductor is 135◦.

percurrent oscillations are well within the range of the experimental observations. These
points are confirmed in our numerical simulations, see α= 0 lines of Fig. 3.12

Interference between spin, Zeeman and spin-orbit.

The previous discussion on spin related interference considered the Zeeman effect
only. However, the nanowire has a strong spin-orbit interaction as well. Following Ref. [27],

the characteristic parameter for spin-orbit is θSO = αkFL
ħvF

= αm∗L
ħ2 = L/LSO. Here LSO is the

spin-orbit length, which is expected to be in the 50 − 250nm range, so much shorter
than L. Consequentially, for the Zeeman effect to cause a 0−π transition it needs to
overcome the spin-orbit interaction, i.e. one needs to consider LSO instead of L in the
expression for θB. This increases the value of B at which the first cusp in supercurrent
appears by at least a factor of ∼ 5, suggesting that only for very small µ near the bottom
of the mode cusps are expected. Experimentally, this would result in supercurrent vari-
ations at low B that are restricted in gate potential range. This interplay between Zeeman
and spin-orbit interaction is expected to be highly anisotropic in the direction of B ; the
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Figure 3.12: Critical currents in a simple one-dimensional toy model nanowire as a function of spin-orbit coup-
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ent panels, but are all separately scaled to optimally show all features in every plot. We observe how the 0−π
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Figure 3.13: Critical current as a function of the magnetic field and the gate voltage on a gate. The simulation
parameters are identical to the ones used in Fig. 5 in the main paper, except that there is no disorder.

scenario described above assumes the external B field and effective spin-orbit field to be
perpendicular, as is expected for applying B along the nanowire axis. This discussion is
illustrated in Fig. 3.12.

In summary, the above estimates suggest that orbital interference is present regard-
less of the exact value of µ, whereas spin related interference is highly restricted in µ

range. This favors an orbital interference interpretation of the experimental observa-
tions, since the supercurrent variations in the experiment are present whenever there
are large ranges in gate potential.

To illustrate this reasoning we produced Fig. 3.12, which shows supercurrent fluctu-
ations as a function of the distance to the bottom of the band in a single-band wire. With
increasing the distance to the bottom of the bands 0−π transitions happen at higher
fields. Upon ramping up spin-orbit strength the 0−π transitions disappear.

3.10.3. ADDITIONAL ESTIMATES

EFFECT OF DISORDER

Here we prove the essential effect of disorder on the supercurrent dependence on gate
voltage. For that we compare the Fig. 5b of the main text and Fig. 3.13, where we have
switched off disorder. We see that in the clean case the gate voltage almost does not
cause fluctuations of the supercurrent even at finite field. In the disordered case chan-
ging the gate voltage effectively changes the realization of disorder in the region of the
wire above the gate, thus causing the supercurrent fluctuations. In the clean case the
main effect of the gate is in gradual suppressing transmission through the wire.

ROTATING MAGNETIC FIELD

Here we model the supercurrent fluctuations for different directions of the magnetic
field, from parallel to the wire to perpendicular to it. The results of the modeling are
in Fig. 3.14. We see that for all directions of the field, besides one perpendicular to the
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B ‖

√
3x̂+ ẑ
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wire, the fluctuation pattern is basically the same. This is in accordance with the experi-
mental observations of Fig. 3.8
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4
SUPERCONDUCTING INSB

NANOCROSS

Signatures of Majorana fermions have recently been reported from measurements on
hybrid superconductor-semiconductor nanowire devices. Majorana fermions are pre-
dicted to obey special quantum statistics, known as non-Abelian statistics. To probe this
requires an exchange operation, in which two Majorana fermions are moved around one
another, which requires at least a simple network of nanowires. Here, we report on the
electrical characterization of crosses of InSb nanowires. The InSb wires grow horizont-
ally on flexible vertical stems, allowing nearby wires to meet and merge. In this way, near-
planar single-crystalline nanocrosses are created, which can be measured by four elec-
trical contacts. Our transport measurements show that the favourable properties of the
InSb nanowire devices-high conductance and the ability to induce superconductivity-
are preserved in the cross devices. Our nanocrosses thus represent a promising system
for the exchange of Majorana fermions.

In collaboration with I. van Weperen, D. Car, M. A. Verheijen, G. W. G. Immink, J. Kammhuber, L. J. Cornelissen,
A. Geresdi, S. M. Frolov, L. P. Kouwenhoven and E. P. A. M. Bakkers.
Parts of this chapter has been published in Nature Nanotechnology 8 859 (2013).
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4.1. INTRODUCTION

Majorana fermions[1] can arise as pairs of quasi-particles located at the ends of a semi-
conductor nanowire in contact with a superconductor[2–4]. Interestingly, the quantum
properties of Majorana fermions are expected to be protected by topology, becoming in-
sensitive to perturbations, which could make them robust quantum bits[5–7]. Logical
operations can be performed by exchanging the positions of two Majorana fermions,
that is, by braiding, thereby exploiting their non-Abelian exchange statistics[8]. Follow-
ing proposals in refs [9] and [10], signatures of Majorana fermions were recently detec-
ted in a one-dimensional semiconductor nanowire (with strong spin–orbit interactions)
in contact with a superconductor[2–4]. However, currently available single-nanowire
devices are not suitable for demonstrating braiding, because Majorana fermions anni-
hilate when they come into close proximity with one another. Recent theories have pro-
posed the use of nanowire junctions to make braiding possible[11–14], by temporarily
storing one Majorana fermion in an auxiliary leg of a T-junction while moving the other
particle across, or by using a flux-controlled interaction between Majorana fermions in
a double T-junction.

Braiding of Majorana fermions imposes three strong requirements on the semicon-
ductor materials. First, to generate Majoranas the material should exhibit strong spin-
orbit coupling. Second, the branched wires must form a planar structure to enable
electronic device fabrication by standard lithography. Finally, the branched structures
should be of high crystalline quality, because for Majorana particles it is important to
have nearly ballistic transport, and defects in the wires and at the interface will induce
unwanted Majoranas. Despite continuous progress in the control and understanding of
nanowire growth[15–17], there are only a few studies that focus on three-dimensional
branched nanowire networks[18–24]. Here, we study electric transport through InSb T-
and X-shaped nanostructures grown from the strong spin–orbit coupling semiconductor
InSb, using a vapour-liquid-solid (VLS) mechanism[25] and gold as the catalyst. We show
that the junctions have high conductance and supercurrents can be established through
all branches of a nanocross despite extremely long junction, thus these structures can be
considered as an ideal platform for future braiding experiments.

4.2. NANOWIRE GROWTH

The initial step to grow InSb nanocrosses are similar to growing single wires: an InAs
stem is grown on an InP substrate (Fig. 4.1a) in MOVPE chamber via the VLS mechanism[26].
The InAs stem is then partially evaporated such that the gold particle which catalyses
the growth slides from the top of the stem to one of the sides (Fig. 4.1b), thus changing
the growth direction allowing further growth of InSb parallel to the substrate instead of
perpendicular (Fig. 4.1c). The co-planar InSb stems can merge at various angles ϕ de-
pending on the relative positions of the stems, their orientation and the gold particle
position on the stem (Fig. 4.1d). For a single crystalline interface ϕ = 70.5◦. When ϕ

differs from this value a grain boundary develops at the intersection of the wires. For the
device presented here ϕ ≈ 90◦. More details on nanocross growth can be found in Ref
[27].
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Figure 4.1: Steps in nanocross growth. a, A 30◦ tilted SEM image of the InP/InAs stems. b, Au-In droplets on
side facets after the annealing step. c, InSb nanowire grown parallel to the substrate surface. d, InSb nano-
crosses resulting from the merging process between two InSb nanowires. All scale bars, 200 nm. Growth times
in (a-d) are different. Insets: InP, InAs and InSb segments are in blue, orange and red, respectively, and the
Au-In droplet is in yellow.

Figure 4.2: SEM image of the measured nanocross with labelled arms. a, nanocross on a SiO2 substrate after
deposition via the nanomanipulator (side view). b, nanocross after superconducting contact deposition (top
view).

4.3. DEVICE FABRICATION
Following growth, the nancrosses are transferred from the growth chip to a backgated
SiOx wafer using the nanomanipulator (Fig. 4.2a) and then contacts are patterned by
standard ebeam lithography over all four arms of the nanocross. Subsequently the con-
tact area is etched in an Ar-plasma environment and the contacts are sputtered both in-
situ (see Appendix B for methods). For the particular device in this chapter we sputtered
NbTiN followed by an Al capping layer with approximate thickness 50nm / 70 nm. We
thus obtain a cross device with four contacts, with three nearly equal and one longer
branch (Fig. 4.2b). After sample fabrication the device is mounted and cooled down
in a 20 mK base temeperature dilution refrigerator equipped with high frequency noise
filtering where DC and low frequency lock-in measurements are performed.

Let us label the four contacts of the device A-D as shown in 4.2. We measure elec-
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Figure 4.3: Current biased measurement through contacts B-D. a, Measured voltage as a function of current
bias and VG . The white region of zero resistance indicates the wire is superconducting. b, Measured voltage
as a function of current bias for VG = 14.4V (vertical cut from a). Arrows signal the direction of the current bias
sweep. Switching and retrapping currents Is and Ir are indicated.

tron transport through the device by applying a current/voltage bias to two arms while
the other two arms are floating. We tune the electron density of our nanocross via the
applied voltage VG over our global back gate.

4.4. SUPERCURRENT MEASUREMENTS
First we investigate whether supercurrent can flow through our cross: we apply a cur-
rent bias to two electrodes and measure the voltage difference between them. Figure 4.3
shows the voltage measured across contacts B and D as a function of the current bias
and the back gate voltage. The white region in the middle of the plot is where the voltage
drop over the device vanishes. This can be seen more clearly if we make a cut along a
fixed back gate voltage value VG = 14.4 V and plot the measured voltage vs current bias
(Fig. 4.3b). We see that the switching(retrapping) current, i.e. the current bias value at
which the device switches from superconducting(finite resistance) to finite resistance
(superconducting), and thus the critical current, is widely tunable with the back gate.

We extract this switching current and plot it in Figure 4.4 as a function of VG with
the switching current for the three other contact pairs not involving contact A. The three
curves look qualitatively the same, and even the smaller scale fluctuations in Is can be
matched for the red and the black curve (contacts B-C and B-D). For these two paths
the current flows through the joint of the nanocross whereas C-D involves a single wire
junction section. The strong similarities in Is as a function of VG suggests that the join-
ing does affect the electron transport, however the switching current values are of the
same order as for the single wire section, implying the lack of a potential barrier at the
intersection point.

We were also interested to see if any sign of superconductivity could be measured
through the longer junction A-C. To observe non-linearities in the V-I relation through
the long branch a we measure the differential resistance via a lock-in amplifier. Figure
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Figure 4.4: Switching currents for three pairs of contacts as a function of VG

Figure 4.5: Differential resistance measurement for contacts A-C. a, dV
d I as a function of current bias and

VG . The deep-blue region indicates induced superconductivity. b, dV
d I as a function of Ibi as for VG = 14.8 V

(vertical cut from a).
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Figure 4.6: Measured current as a function of backgate VG for all six contact pairs. Each gate curve is taken
at a constant voltage bias of Vbi as = 10 mV. A series resistance of 7 kΩ has been subtracted.

4.5 shows dV
d I measured as a function of VG . As the back gate voltage is increased, a region

develops where the differential resistance of the junction for low current bias is substan-
tially smaller than for high bias, although the resistance does not drop to zero (see Fig.
4.5b). This is a clear sign of phase diffusion where the junction is superconducting but its
Josephson energy is not large enough to fix the phase across the superconducting leads.
In the phase diffusive regime the switching current can be substantially lower than the
critical current [28], but this still allows us to give a lower estimate of E J . If we assume
that for Is ' 0.25 nA our Ic is not larger than 2.5 nA (i.e. an order of magnitude difference
as in Ref. [28]) we obtain E J = ħ Ic

2e ' 5µeV. This value of E J is comparable to kbTel ectr on

and thus we do expect phase diffusion in our Josephson junction due to temperature.
However it is still remarkable that a finite E J and hence phase coherence can be estab-
lished across contacts A and C making a 1.5 µm long JJ.

4.5. VOLTAGE BIAS SPECTROSCOPY
We also performed voltage bias measurements over our nanocross to extract information
about the normal state conductance of our device. First we apply a 10 mV bias over each
contact pair of our cross and measure the current passing through. We plot in Figure4.6
the conductance G = Imeasur ed

Vbi as
vs Vg for all six combination of contact pairs.

All conductance curves saturate for Vg > 25V and go to zero for Vg < 2V, hence the
nanocross can be completely pinched off. This implies that our junction is fully semi-
conducting and with no metallic links between contacts. The three conductance curves
related to the long brach a saturate at a lower conductance value (1.8 g0) than the curves
related to the shorter branches of the cross, suggesting that the resistance across the
nanowire junctions is dominated by the nanowire segment instead of the contact res-
istance of the electrodes. The maximum conductance for the other branches are com-
parable to the conductance measured in single nanowires of similar length. More im-
portantly, the maximum conductance through all branches exceeds the conductance
quantum g0, hence there is no hard constriction at the crossing point which could cre-
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Figure 4.7: Measured differential conductance for contact pair b-d as a function of backgate VG and bias
Vbi as . The bright peak at zero bias reveals that the wire segment is superconducting. A series resistance of 7
kΩ has been subtracted.

ate a quantum dot and would limit the conductance through the crossing.

We further investigate if any quantum dot features can be found in the nanocross
by measuring the differential conductance d I

dV across contacts B and D as a function

of Vbi as and Vg (Figure4.7). For Vg > 1V, d I
dV does not go to zero even for small Vbi as

and there is no indication of Coulomb diamond features, indicating that the crossing is
transparent and no barrier is present.

4.6. SUITABILITY FOR BRAIDING MAJORANA ZERO MODES
We now discuss our results on nanocrosses in the context of using them as a platform
for braiding Majorana bound states. Several schemes were suggested to achieve braid-
ing [11–14] in nanowire networks. They commonly rely on the wide-range tuning of the
Josephson energy between two neighbouring topologically non-trivial pieces of nanowire.
We rely on Ref. [14] for our discussion: the braiding operation is realized by turning the
coupling on and off between a series of bulk superconductors and Majorana islands in

the correct sequence. The coupling is ideally on if E J
EC

→∞ and ideally off if E J
EC

= 0. This
is of course only a theoretical limit and the error of the braiding operation is of the order

O (exp(−
√

8 E J
EC

). As pointed out in Ref. [14] a ratio of E J
EC

≈ 15 should already provide
suitable time frames to perform the braiding sequence.

Since we want to braid in a dilution refrigerator with an electron temperature less
than 50 mK, we would like EC ≥ 0.25 K which implies E J ∼ 4 K is necessary for braiding.

This translates to a critical current of the JJ of IC = 2eE J
ħ = 170 nA.

While in the device presented in this chapter the critical currents are 2 orders of mag-
nitude less then required, in single junction devices we have already achieved promising
IC values of 150 nA. As discussed in the following section, E J can be increased by improv-
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ing nanocross mobilities, fabricating higher transparency superconductor/nanowire con-
tacts and designing shorter JJs.

4.7. CONCLUSION
In conclusion, we have induced superconductivity in a four terminal InSb nanocross
and performed voltage biased spectroscopy. The measured finite supercurrent across all
branches of the cross, including through a wire section more than 1.5 um long, indicates
that phase coherence in our NC l ≈ 3 µm. Voltage biased spectroscopy revealed that
there is no barrier or quantum dot formed in our system.

Although we measured a sizable critical current through the NC it is not large enough
to perform braiding operations with the current technology. Future experiments should
focus on improving the yield of NC devices and increasing the critical current above 150
nA for each branch.
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5
RESONANT ANDREEV REFLECTION

THROUGH A THREE TERMINAL

QUANTUM DOT

The density of states of a proximized quantum dot confined in an InSb nanocross is
measured via low temperature transport. The nanowire geometry allows for three ter-
minal dot measurement where the superconducting leads phase bias the dot while the
third normal contact acts as a tunnel probe as well as an electron reservoir controlling
the population of the dot states. When the dot level is tuned to the electron-hole sym-
metry point, we observe phase dependent Andreev current through the wire provided
the empty and singlet states are filled via a sufficiently large bias on the normal lead. The
oscillations survive up to 600 mT field applied along the wire, demonstrating the particu-
lar material combination of NbTiN superconductor and InSb T-junctions are suitable for
Majorana braiding schemes. Our device may also be used as a flux to current converter
to measure small magnetic moments at finite in-plane field.

In collaboration with A. Geresdi, D. Car, S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven.
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5.1. INTRODUCTION
When a superconductor(S) is attached to a normal conductor(N), the superconducting
order parameter can leak inside the normal type conductor via a phenomenon known
as the proximity effect, inducing superconducting correlations and a gap in the excita-
tion spectrum in N. Current at subgap energies is transferred through Andreev reflection
process, where two electrons with opposite spin and momentum from the normal sides
tunnels into the superconducting reservoir forming a Cooper pair at the Fermi level.
Incorporating a low dimensional semiconductor between N and S reservoirs such as a
quantum dot (QD), offers the possibility to investigate the interplay between many-body
physics exerted on the electrons via the superconducting order and single electron con-
trol realized via gating the quantum dot [1–4]. More precisely, the Coulomb interactions
inside the dot impose sequential filling of the dot one by one with electrons, whereas the
superconducting order pairs electrons together and prefers the even spin singlet ground
state. Adding a second superconducting lead allows the dot to be phase biased [5, 6] and
thus provide a clear experimental signal for superconducting correlations.

Previous works on proxmized QD focused on measuring the supercurrent in the ground
state [7–10] or investigating the singlet-doublet transition in both S-QD-S [11–13] and
S-QD-N devices [14–16]. The low energy excitations have been probed by weakly coup-
ling a normal lead to a proximitized QD without [17, 18] and with phase biasing [19–21].
Phase-controlled QPT from singlet to doublet has been demonstrated [22, 23]. In prox-
imitized normal metals, effects on correlations have been reported by controlling the
junction state population via normal reservoirs [24, 25]. Phase periodic DOS oscillations
have also been measured in proximitized metals connected to a superconducting ring
and a normal lead, a device dubbed superconducting quantum interference proximity
transistor (SQUIPT)1[26–29]. Combining phase biasing with enhancement via injection
of non-equilibrium charge carriers from normal reservoir, however, has never been done
before.

Here we present results from a three terminal quantum dot formed in a T-shaped
InSb nanocross with one normal lead and two superconducting leads joined in a loop.
This configuration allows us to measure phase dependent transport between the normal
and superconducting leads through the dot. We measure non-equilibrium phase biased
Andreev current in each diamond around vanishing detuning at finite voltage, indicat-
ing a finite Josephson coupling over the dot. We can detect the oscillations up to several
hundreds of milli-Teslas, making the InSb T-junction suitable for Majorana braiding ex-
periments.

5.2. ANDREEV TUNNELING THROUGH A QD
To model the supercurrent flow through the nanowire quantum dot, we assume the QD
has a single orbital of energy ε. The relevant energy scales determining the spin of the
ground state in such a system are the dot charging energy EC , the coupling of the dot
to the leads Γ= ΓS +ΓN (where ΓS and ΓN are the coupling to the superconducting and
normal leads respectively) and the superconducting gap in the leads ∆. In the strong

1SQUIPTs are used as a flux to voltage and flux to current converters by making use of the flux periodic inter-
ference over the superconducting ring.
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Figure 5.1: Andreev tunneling from normal to superconducting lead via a quantum dot. a, Dot states with
δ = 0 and µN = µS = 0. Only the singly occupied state is full and no Andreev current flows. b, Same as a but
now µN >µS , populating the singlet |S〉 state and allowing Andreev current to flow. The |0〉 and | ↑↓〉 states are
coupled via Andreev reflection from the SC lead.

coupling limit ΓÀ EC ,∆ the singlet ground state dominates due to the Kondo effect [3].
In the opposite limit Γ¿ EC ,∆ the QD levels are well defined. Its four possible energy

levels are |0〉, |↑〉, |↓〉, |↑↓〉 corresponding to zero electron on the dot, one electron on the
dot with down spin and up spin and two electrons on the dot respectively, with energies
0, ε, ε, 2ε+EC in the absence of magnetic field. The energy of these levels with respect to
the Fermi energy of the leads and hence to dot population can be controlled via gating
the QD.

The coupling of the QD to the superconducting lead ΓS proximizes the QD by pair-
ing the zero and doubly occupied singlet states in into a Bogoliubon-like superposition
spin zero state |S〉 = u|0〉− v?| ↑↓〉 . Superconducting correlations and Andreev current
are maximized therefore when the |0〉 state and the | ↑↓〉 state are degenerate in energy,
which corresponds to the condition δ≡ 2ε+U = 0 where we defined the detuning δ [6].
We draw this scenario in Figure 5.1. When the detuning δ is too large a superposition of
the |0〉 and | ↑↓〉 states is not possible and no Andreev current flows.

A detunin value δ≈ 0 does not guarantee a non-vanishing Andreev current, however.
If the chemical potentials of the normal and the superconducting lead are equal (Figure
5.1a), the QD will be occupied by an odd number of electrons. Due to a finite EC , no
supercurrent can flow to first order in ΓN . An even number of electron occupation on
the QD is necessary for a superconducting pairing to arrise. This can be achieved by
applying a bias on the normal lead (Figure 5.1b).

In summary, for Andreev current to flow, two conditions need to be met for the QD:

• Superconducting pairing potential on the dot needs to be large, meaning the de-
tuning δ≈ 0. The detuning can be adjusted via the backgate VBG .

• The QD must be populated by an even number of electrons. This can be achieved
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Figure 5.2: SEM picture of the device and measurement schematics. a, SEM picture of the three terminal
device, with a gold N contact and topgate and NbTiN superconducting contacts. The direction of the applied
flux, field along the wire and field along Z are shown. Inset: bare T-shaped wire before contact deposition. b,
Measurement schematics of the experiment. The normal contact is DC biased superimposed on an AC lockin
signal while the superconducting loop is grounded. Topgate voltage VG and backgate voltage VBG are used to
adjust the barriers of the QD and its chemical potential. A phase drop ϕ is applied across the dot adjusted via
the fluxΦ.

by applying a finite bias VDC over the dot.

5.3. DEVICE FABRICATION AND EXPERIMENTAL SETUP
The InSb nanowire crosses were grown by merging individual nanowires grown on an
InP substrate with an InAs stem in an MOVPE chamber, as describe in Reference [30].
Cross wires are transferred from the growth chip via nanomanipulator to a SiO substrate
with Si doped backgate. We use a T-shaped wire with three legs (see inset of Figure 5.2a)
where the long section is used to contact with two superconductors and the third leg is
used as the normal tunnel probe. First superconducting contacts are defined via Ebeam
lithography in a loop shape, leaving a 150 nm sized gap at the wire intersection. The
contacts are in-situ Ar etched before sputtering NbTiN of thickness 120 nm. The normal
contact is fabricated similarly but is evaporated Ti/Au. Finally the top gate also made of
Ti/Au is evaporated (no Ar etch).

The device is measured in a dilution fridge including electric filtering, with base elec-
tron temperature 100 mK .

We apply a DC voltage bias VDC superimposed on an AC oscillation provided by a
lockin amplifier VAC on the normal lead while the superconducting leads are grounded.
This allows us to measure simultaneously the current through the dot as well as the dif-
ferential conductance d I

dV as shown in the schematics in Figure 5.2b.
A 3D vector magnet firstly allows us to impose a flux Φ through the SQUID, guaran-

teeing a phase difference ϕ= 2π
Φ0
Φ over the quantum dot. Secondly, the magnet imposes

an in-plane field Bw along the wire. Large fields beyond 1 T are applicable along the
magnet Z axis, lying in plane of the substrate at 29.5◦ to Bw .

The QD level energy ε and superconducting coupling ΓS can be tuned with the back-
gate voltage VG and the coupling to the normal side ΓN is tuned via the topgate voltage
VT .
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Figure 5.3: Current as a function of topgate vs backgate at constant voltage bias. The voltage bias is fixed
to VDC = 2 mV. The dashed line is a cut at VT = −70 mV where the topgate voltage is set for the rest of the
measurements.

5.4. COULOMB DIAMOND MEASUREMENTS
At a constant voltage bias VDC = 2 mV over the dot, we measure the current as a function
of topgate and backgate voltage, presented in Figure 5.3. The current responds to both
VT and VBG , showing both gates couple to the dot as required. For very negative topgate
voltages the device becomes unstable as it is visible from the charge jumps in the lower
right half of the plot.

For the following measurements we choose a value for VT as low as possible with the
device still stable, in order to minimize ΓN so the level broadening is not too large. The
value VT =−70 mV is suitable. Hereafter VT is unchanged to minimize noise through the
device.

By applying a large magnetic field of 9T in the Z-direction the dot can be driven nor-
mal and the differential conductance map reveals diamonds closing at periodic backgate
values (Figure 5.4a). The diamonds allow to estimate the charging energy EC ≈ 300µeV ,
as well as the coupling strengths ΓN , ΓS . Following Reference [17], the Coulomb peak at
VDC =0 is fitted to the Breit-Wigner conduction lineshape defined by the formula

G(∆VBG ) = e2

h

ΓNΓS

∆E 2 + (ΓN +ΓS )2/4
(5.1)

where ∆E = −eα(VBG −V 0
BG ), α being the leverarm. We obtain ΓS ≈ 50 µeV,ΓN ≈ 1 µeV

(Figure 5.4b). Since ∆? > Γ we do not expect any Kondo physics which is in agreement
with the lack of a zero-bias conductance peak at VDC = 0.

We plot the differential conductance d I
dV as a function of voltage bias and VBG at zero

magnetic field in Figure 5.5a. The conductance shows Coulomb diamond features typ-
ical for quantum dots. A finite induced gap of size 200 µV(Figure 5.5b) in the differential
conductance at the charge degeneracy point indicates the presence of the proximity ef-
fect on the dot.
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Breit-Wigner formula. The extracted coupling strengths ΓS,N are shown.
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Figure 5.6: Voltage bias vs flux for different backgate voltages showing oscillations periodic with the flux
quantum. Measured conductance as a function of voltage bias VDC and fluxΦ. Left panel shows flux periodic
oscillations below -200 µV bias, while the middle panel shows oscillations for positive bias above 200 µV. Right
panel is a cut from Figure 5.5a showing backgate values of the left and middle panel.

5.5. PHASE-DRIVEN NON-EQUILIBRIUM AR
We now measure d I

dV as a function of voltage bias and flux ϕ for different values of the
backgate voltage VBG . In Figure 5.6 we plot these phase biased measurements for two
different VBG values.

For VBG = 0.035V we observe flux periodic oscillations below VDC = −0.2 mV. The
oscillations are visible down to a bias value of VDC = −1.5 mV. Transport is suppressed
in the bias region −0.2 mV<VDC < 0.3 mV. No oscillations are discernible for positive
voltage bias.

For VBG = 0.041 V no oscillations are visible for negative bias. On the other hand,
oscillations appear at VDC ≥0.18 mV and are visible up to VDC =1.8mV.

To ensure the oscillations are due to phase-dependent Andreev reflection, we ro-
tate the out-of plane magnetic field angle used to ramp the flux and plot the periodicity
for each angle in Figure 5.7. The period fits well the inverse cosine function Bper i od =
B0 cos−1α expected for a SQUID, where α is the angle normal to the plane. The min-
imal period B0 = 640µT corresponds to a SQUID area of 3.2µm2, in agreement with the
geometric area 1.8µm2 of the inner loop corrected by a penetration depth of 200 nm.

In order to map out the region in backgate and bias space where these Andreev os-
cillations are visible, we measure the current as a function of VDC and VBG at flux values
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Figure 5.7: Fit of the oscillation period as a function of the magnetic field angle normal to the plane. Black
squares are the measured period of the oscillations shown in Figure 5.6 as the magnetic field applying the flux
is rotated in the plane perpendicular to the sample plane. The zero angle is normal to the sample plane. The
red curve is the theoretical fit B = B0 cos−1α for a SQUID with period B0.
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Figure 5.8: Andreev current through the quantum dot. a, Change in current of voltage bias vs backgate meas-

urement for Φ = 0 and Φ = Φ0
2 . The plot is created by measuring the current through the dot as a function of

voltage bias VDC and backgate VBG for two different values of the flux, Φ = 0 and Φ = Φ0
2 . The two plots are

superimposed and the current values subtracted. The plot shows the difference in current for the same bias
and backgate values, taken at different enclosed flux. The dashed lines are guide to the eye for the maximal
current variation, i.e. where the oscillations due to Andreev current is maximum.b, Fitting the Andreev current
using 5.2 with paramters EC = 0.3meV, VDC = 0.32meV,Φ= 0 and T = 0.1K.
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Φ= 0 and Φ= Φ0
2 . We then subtract the current values measured at different phases and

plot the difference in measured current in Figure 5.8a. In regions where the current does
not oscillate with flux there should be no difference in the measured current, as opposed
to regions where we do see Andreev oscillations.

Most of the current variation in Figure 5.8a lies on a fixed line VDC =βVBG with in bias
vs backgate space with β= 0.2V /V . This indicates that most Andreev process happen at
a fixed detuning δ, or equivalently at fixed dot orbital energy. The bias also has to exceed
±250µV to enable the oscillations.

As mentioned before, the pairing amplitude on the dot is maximized when the de-
tuning δ = 2ε−EC ≈ 0. Ideally this condition corresponds to a fixed vertical line in the
Vbi as vs VBG space where αVBG = ε=−EC /2, however due to the finite capacitive coup-
ling between the bias lead and the dot the condition changes to α(VBG + Cbi as

CBG
VDC ) = ε=

−EC /2.
For |Vbi as | < 250µeV there is no change in current betweenΦ= 0 andΦ= π

2 . This can
be explained by the finite charging energy blocking transport as well as the equilibrium
dot population which does not allow for Cooper pair transport as explained in section
5.2. The phase modulation is not observed above bias voltages |VDC | > 1.3 mV, which is
a reasonable estimate of the bulk gap of NbTiN. Beyond this bias window current flows
via phase-independent quasiparticle states. This is in accordance with the requirements
for Andreev current to flow.

As derived in Reference [5], in the regime EC À kbT,Γ the Andreev current Jand can
be expressed as

Jand = eΓS

ħ
2ΓNΓS [1+cos(Φ)]

4Γ2
S cos2(Φ/2)+ (δ+ΓN B)2 +Γ2

N [1+ f (−EC /2)− f (EC /2)]2
× [1− f (−EC /2)− f (EC /2)](5.2)

where B is a real valued function of EC ,VDC and T 2. The fitting yields tunneling coef-
ficients ΓS = 12 µeV and ΓN = 2.8 µeV, in reasonable agreement with the coefficients
obtained from fitting the Coulomb blockade peak in section 5.4.

5.6. MAGNETIC FIELD DEPENDENCE OF AR OSCILLATIONS
We now turn to measurements performed with a large in-plane magnetic field Bw and
study the behavior of the Andreev oscillations.

We fix the voltage at VDC =700 µV and scan the backgate in the range 0.035 V - 0.04
V to include the maximum of the Andreev current. We perform backgate vs flux scans to
measure the current oscillations for several values of Bw . One such scan at Bw = 300 mT
is presented in Figure 5.9a, with a line cut at fixed backgate in Figure 5.9b along with the
same measurement performed at Bw = 0.

Although the oscillation amplitude is smaller at Bw = 300 mT than at Bw = 0 mT,
the current vs flux oscillations are still substantial, demonstrating that our device can
be used as a flux to current converter, or magnetic field sensor (SQUIPT) even at finite
in-plane field, with a flux sensitivity of ∂I

∂Φ ≈ 1 nA
Φ0

.
To compare the oscillation amplitude of the Andreev current for increasing Bw , we

take the Fourier transform of the current vs flux traces and plot the FFT amplitude vs

2B = 1
πℜ

[
ψ

(
1
2 + i

EC /2−VDC
2πT

)
−ψ

(
1
2 + i

−EC /2−VDC
2πT

)]
, where ψ(z) is the Digamma function.
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Figure 5.9: Current as a function of backgate voltage and flux. a,Current measurement at constant voltage
bias of 700µV as a function of VBG and flux at Bw = 300 mT. The oscillations are due to the constructive and
destructive interference of the Andreev current. Yellow dashed line shows the cut in (b). b, Measured current
as a function of flux Φ at fixed bias and backgate. The 300 mT curve is a vertical cut from (a) at VBG = 0.042V,
while the 0 mT curve is a cut from the middle panel of Figure 5.6. Although the oscillation amplitude is reduced
at finite field along the wire, it is still substantial.
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Figure 5.10: Persisting Andreev current and superconducting gap at high mangetic field. a,Amplitude of
FFT of the oscillations as a function of magnetic field along the wire. The FFT is taken from curves shown in
Figure 5.9b and similar measurements at different values of Bw . b, Closing of the induced superconducting
gap at finite in-plane magnetic field. The four panels show differential conductance measurements of VDC vs
backgate VBG in the region of the induced gap. The panels are taken at different values of Bw shown in the top
right corner. The gap closes beyond Bw = 600 mT.

Bw in Figure 5.10a. We measure oscillations up to Bw = 600 mT. This is consistent with
the field magnitude at which the minigapgap closes, which can be seen in Figure 5.10b,
where we plot the gap for several values of the in-plane field Bw . This is well beyond
the critical field necessary to drive this system into the topological regime where Major-
ana bound states arise, reported to be in the 100-200 mT range [31]. A finite Josephson
coupling at 600 mT signifies that InSb T-shaped wires combined with NbTiN leads are
suitable elements for a future Majorana braiding circuit.

5.7. CONCLUSION
In summary, we have created a three terminal quantum dot with two superconducting
leads and a normal tunnel probe from a single T-shaped InSb nanowire. The coupling to
the dot as well as the dot chemical potential was controlled via a global backgate and a
local topgate. Flux periodic conductance and current was measured across the dot and
identified as resonant Andreev tunneling. The Andreev current can be turned on or off
via the quantum dot detuning and bias, as the proximity effect requires both degenerate
energies of the two even parity states and a finite probability for even charge occupation.
Our results fit well the the theory which allows us to extract coupling strengths of ΓS ≈
10-50 µeV and ΓN ≈ 1-3 µeV. The Andreev current persists up to an in-plane magnetic
field value 600 mT. Our experiments show that T-shaped InSb nanowires are suitable
elements for the Majorana braiding circuit due to their compatibility with finite field
superconductivity. Our device also performs well as a finite field SQUIPT.
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6
JOSEPHSON ϕ0-JUNCTION IN INSB

NANOWIRE QUANTUM DOT

The Josephson effect describes supercurrent flowing through a junction connecting two
superconducting leads by a thin barrier[1]. This current is driven by a superconducting
phase difference ϕ between the leads. In the presence of chiral and time reversal sym-
metry of the Cooper pair tunneling process[2] the current is strictly zero when ϕ van-
ishes. Only if these underlying symmetries are broken the supercurrent forϕ= 0 may be
finite[3–5]. This corresponds to a ground state of the junction being offset by a phaseϕ0,
different from 0 or π. Here, we report such Josephson ϕ0-junction based on a nanowire
quantum dot. We use a quantum interferometer device in order to investigate phase off-
sets and demonstrate that ϕ0 can be controlled by electrostatic gating. Our results may
have far reaching implications for superconducting flux and phase defined quantum bits
as well as for exploring topological superconductivity in quantum dot systems.

In collaboration with S. Nadj-Perge, D. Car, S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven
This chapter has been published Nature Physycs 12 568 (2016).
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6.1. INTRODUCTION
The process of Cooper pair tunneling through a Josephson junction (JJ) is, in general,
symmetric with respect to time inversion. This has a profound consequence for the JJ
current-phase relation, I (ϕ). In particular it imposes the condition I (−ϕ) = −I (ϕ) which
in turn results in I (ϕ= 0) being strictly zero. The I (ϕ= 0) = 0 condition is a consequence
of the fact that for each process contributing to current flowing in one direction there
is an opposite time reversed process, in which spin-up and spin-down electrons are re-
versed, that exactly cancels this current. However, time inversion is not the only sym-
metry which can protect the I (ϕ = 0) = 0 condition. For example, in JJs based on single
domain ferromagnets, time inversion is broken but still the supercurrent is zero forϕ= 0
due to chiral symmetry, i.e. the symmetry between leftward and rightward tunneling.
This symmetry assures that the tunneling coefficient describing the electron tunneling
from the left lead to right lead is exactly the same as the one describing the tunneling
vice versa, from the right lead to the left. The two tunneling processes (leftward and
rightward) cancel each other which again results in I (ϕ = 0) being strictly zero. This is
even the case for so-calledπ-junctions[6] in which the current flow is reversed compared
to usual JJs but still the underlying symmetries warrant zero current forϕ= 0. In order to
create conditions for a non-zero supercurrent to flow at ϕ= 0, both symmetries need to
be broken[7]. Various ways were proposed theoretically to create ϕ0-junctions, includ-
ing ones based on non-centrosymmetric or multilayer ferromagnets[3, 8] quantum point
contacts[4], topological insulators[9, 10], diffusive systems[11, 12], nanowires[13, 14]
and quantum dots[5, 15, 16]. Alternatively, an effective built-in phase offset can be ob-
tained by combining 0- and π-junctions in parallel[17, 18]. However no experimental
demonstration of ϕ0-junction was reported until now.

6.2. BREAKING TIME-REVERSAL AND CHIRAL SYMMETRY IN QUANTUM

DOTS
In quantum dots (QDs), breaking of both symmetries can possibly be achieved by the
combination of an external magnetic field and spin-orbit interaction (SOI)[5, 15, 16].
Finite Zeeman splitting between spin-up and spin-down electrons breaks the time re-
versal symmetry. On the other hand, breaking of the chiral symmetry is more subtle.
It requires interplay between the SOI and the direction of the magnetic field and it can
only occur when multiple orbitals are accessible for electron transport, see Figure 6.1a .
When an electron goes in and out from the QD via only one orbital (Figure 6.1a, upper
panel) the tunneling coefficient is exactly the same for the forward and the backward
tunneling direction. As a result the chiral symmetry is preserved. If, however, the elec-
tron changes orbital within the quantum dot (Figure 6.1a, lower panel), an extra phase
factor is acquired in the process of orbital mixing. This phase factor, arising from the SOI
enabled orbital mixing, depends now on the tunneling direction and it is different for
the leftward and rightward tunneling process. As a consequence, the two processes can-
not cancel each other and the chiral symmetry is broken. Although we discussed here
the case of a single electron tunneling through the QD, the same argument holds for the
breaking of the chiral symmetry in the tunneling of Cooper pairs (see section 6.8.1 and
Ref[5]). Note that in this scenario both symmetries are explicitly broken by the combin-
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Figure 6.1: Schematics of the experiment. a, Schematics showing tunneling of an electron through the QD
with two orbitals labelled 1 and 2 which are mixed by the SOI. The blue (red) line describes tunneling of an
electron from the left (right) to the right (left) lead. When there is no change in orbital the two processes cancel
each other (upper panel). In contrast when the orbital is changed during the tunneling (lower panel), due to
interplay between the SOI and a magnetic field B , forward and backward tunneling processes do not cancel.
In this case an extra phase χ is obtained in the process, which depends on the strength of the SOI and on
Bi n−pl ane . Note that the phase for forward and backward tunneling is different. b, Device schematic showing
a dc-SQUID measured in a four terminal geometry. Voltages V1, V2, V3, and Vr e f are applied on underlying
gates to control the conductance of the JJs. c, Scanning electron microscopy (SEM) image of the actual device.
Gates G1, G2 and G3 are used to define a quantum dot in the long JJ while Gr e f tunes the current through the
reference JJ. Orientation of the in-plane magnetic fields BX and BZ are marked. BY is used for tuning flux Φ
through the SQUID. d, Current as a function of V2 and BX showing QD evolution of the Coulomb peak spacing
in the field which gives g-factor gx ≈ 51. From similar data taken for BZ we obtain gz ≈ 44 and spin-orbit
gap ∆SO ≈ 170 µeV. The extracted ∆SO corresponds to lSO ≈ 350 nm and ESO ≈ 20 µeV [19]. Measurements
are performed in the voltage bias regime, Vbi as = 500 µV. The dashed rectangle indicates the range of BX for
which the ϕ0-junction is observed.
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ation of magnetic field and SOI[5].

6.3. GATE DEFINED QUANTUM DOT EMBEDDED IN A SQUID
The device geometry is shown in Figure 6.1b and Figure 6.1c. A single nanowire, made
of Indium Antimonide (InSb), is contacted using Niobium Titanium Nitride (NbTiN) as
a superconductor to make two JJs forming a quantum interference device (SQUID). We
choose InSb nanowires due to their large spin-orbit coupling and g-factors both of which
are important for breaking time inversion and chiral symmetry at relatively low magnetic
fields [19],[20]. Electrostatic gates below the wire are used to create a tunable quantum
dot in the longer JJ and control the switching supercurrent of the shorter reference JJ [19]
(Figure 6.1b). ). Our coordinate system is defined such that the in-plane magnetic field
coincides with the x- and z-axis, while the flux through the SQUID is applied along the
y direction (Figure 6.1c). Standard quantum dot characterization, while the reference
junction is pinched off, is used to determine the values of the charging (EC ) and orbital
(Eor b) energies as well as g-factors. Depending on the confinement details and QD occu-
pation number we find EC = 2−3 meV, Eor b = 0.3−1.5 meV and g = 40−50 (Figure 6.1d).
We identify small peaks around zero bias as an onset of superconductivity and estimate
the induced superconducting gap in the QD to be ∆∗ = 20−50 µeV (see section 6.8.2).

First we measure the SQUID response in current bias for zero in-plane magnetic field
(Figure 6.2). Switching currents for the reference and quantum dot JJ, Icr e f and IcQD , sat-
isfy Icr e f >> IcQD , ensuring that the phase drop is mainly across the QD. The measured
voltage as a function of flux and bias current Ibi as shows oscillations with a period of
BY = 1.2 mT (Figure 6.2a) corresponding to an effective area of 1.8µm2, which is consist-
ent with the SQUID geometry and the penetration depth of NbTiN (λ ≈ 170 nm). Both
junctions are in the phase diffusive regime such that no hysteresis is observed (Figure
6.2b). This allows probing of the phase response by applying a finite Ibi as = 100−500 pA
close to Icr e f and monitoring the voltage drop across the SQUID, V , as a function of gate
voltage V2 and fluxΦ, see Figure 6.2b as well as section 6.8.2.

6.4. ZERO-FIELD π-JUNCTION
In this QD regime, the phase of the SQUID pattern depends crucially on the dot occupa-
tion number (Figure 6.2b). For example, for V2 ≈ −247 mV, the measured voltage oscil-
lates as a function ofΦwith a particular phase (purple colored line in Figure 6.2b). When
V2 is increased to around −240 mV the oscillations disappear and the overall voltage
drops as the charge degeneracy point is reached. By increasing V2 further, the oscilla-
tions recover with an extra π phase corresponding to the sign reversal of the supercur-
rent in a QD [21] (light blue line in Figure 6.2b). The change of phase by π is repeated for
several consecutive charge states.

The change in phase measured for zero in-plane field occurs due to the change in the
electron parity of the ground state. In a simple physical picture, for odd QD occupancy,
the order of electrons forming a Cooper pair is reversed in the process of co-tunneling
through a single quantum dot orbital. This results in the sign reversal of the supercurrent
and the observed π shift, as previously reported in Ref.[21]. Note, however, that even if
the phase of the ground state is changed, I (ϕ = 0) remains zero which is anticipated
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Figure 6.2: Nanowire SQUID characterization. a, Voltage across the SQUID, V , as a function of bias current
Ibi as and flux Φ through the SQUID. The right panel shows V vs Ibi as measured at Φ = 4Φ0 (cut along the
orange dashed line). The switching current IS separating low and high resistance regions is indicated. The
lower panel shows voltage vs Φ for Ibi as = 450 pA (cut across the green dashed line). b, V as a function of V2
andΦ for Ibi as = 190 pA. The phase of the SQUID oscillations is alternating between 0 and π depending on the
electron parity of the ground state of the QD. The right panel shows Coulomb peaks in the voltage bias regime.
The bottom panel shows V vs. flux cuts at Ibi as = 195 pA for V2 =−247 mV (purple) and V2 =−233 mV (light
blue).
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since time reversal symmetry is preserved.

6.5. FINITE-FIELD ϕ0-JUNCTION
Finite magnetic fields can substantially modify this simple picture in two ways. First,
the QD levels split by Zeeman energy which results in different co-tunneling rates for
spin-up and spin-down electrons and therefore breaks time reversal symmetry. Second,
the spin split levels belonging to different orbitals move closer in energy which enables
more than one orbital to contribute to the co-tunneling process. This in turn, combined
with strong SOI induced orbital mixing and asymmetry in the barriers, results in the
breaking of chiral symmetry (see section6.8.1). Under these conditions one can expect
an anomalous current and shifts in the phase by an arbitrary ϕ0 (See section 6.8.3 for
details on the relation between the anomalous current and ϕ0).

For finite in-plane magnetic fields we find regimes in which the shifts of the SQUID
pattern are different from 0 or π. Instead, the shifts take non-universal values depend-
ing on the specific QD configuration and magnetic field direction and strength (Figure
6.3). Figure 6.3a and Figure 6.3b show an example taken close to the QD charge degen-
eracy point. The shift in SQUID response between the two Coulomb blockade regions is
approximately 0.7π. This value is considerably different from the value π observed for
the same QD regime when the in-plane field is zero (compare the data in Figure 6.3a
and Figure 6.3b with the data in Figure 6.2). Note also that while effects related to finite
temperature have impact on the critical current values and in general on the values and
visibility of the SQUID response they do not contribute to any phase offset (see section
6.8.4).

The measured gate tunable phase shift directly implies a finiteϕ0, different from 0 or
π, for at least one of the Coulomb blockade regions. Importantly, this shift cannot be ex-
plained by simple higher harmonic terms in the JJ current-phase relation which can oc-
cur in various semiconductor based junctions[22–25]. Even if such terms were present,
as long as I (−ϕ) = −I (ϕ), the SQUID response would have to be symmetric around the
points corresponding to integer values of the threaded flux. Since this is clearly not the
case in the data shown in Figure 6.3 we conclude that the I (−ϕ) = −I (ϕ) condition is
violated. Note that both junctions in the SQUID are nanowire based so phase shifts can
occur in the reference junction as well. For this reason shifts in the SQUID pattern should
be interpreted as relative offsets in ϕ0 of the QD based junction.

Typically, the phase of the SQUID oscillation is constant within the Coulomb block-
ade region and changes only at the charge degeneracy points. Depending on the exact
gate settings the phase change appears either as a discrete jump or a continuous trans-
ition. In the investigated regimes, we measured jumps when the QD is strongly confined
(as in Figure 6.3a and 6.3b). For a more open QD we observe a continuous change in
the phase of the SQUID response as we tune the gate G2 across the charge degeneracy
point (Figure 6.3c and 6.3d). This behavior is not fully understood but we note that trans-
port for a strongly confined QD is dominated by the resonant tunneling process at the
Coulomb peak and therefore can be very different compared to the transport deep in
the blockaded regime. This effect is not pronounced for open QD in which higher order
tunneling processes are relevant. In the regimes where the SQUID oscillations can be
detected along the whole charge transition we observe a continuously changing phase.
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Figure 6.3: Observation of a continuous phase change in the Josephsonϕ0-junction. a and c: V as a function
of V2 (V3 in panel c) and Flux at fixed current bias (Ibi as = 470 pA, Bi n−pl ane= 120 mT and θ =−135° for panel
a; Ibi as = 240 pA, Bi n−pl ane= 75 mT and θ = −35° for panel c). Here θ is the angle between the direction of
the in-plane magnetic field and the nanowire axis. In contrast to the data taken at zero in-plane magnetic field,
the phase shift of the voltage oscillations in flux is tunable with gate voltage V2 (V3 in panel c). b and d, V vs
flux for values of V2 (V3 in panel d) marked by dashed lines on panels a and c showing phase shifts. In panel b
the black curve is taken at V2 =−285 mV and Ibi as = 460 pA and the orange at V2 =−240 mV and Ibi as = 470
pA. The relative offset from the two curves is 0.35±0.1Φ0. In panel d the curves are cuts from panel c taken at
V3 values of 213 mV; 218 mV; 225 mV; 229 mV. The corresponding offsets in phase compared to the top curve
are (0.1±0.05) Φ0, (0.3±0.05) Φ0 and (0.4±0.05) Φ0. Note that in the QD regime shown in panel c and d we
used gate G3 for tuning.
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Importantly in all regimes fields of Bi n−pl ane ≈ 50−150 mT are required to see a notice-
able shift in the SQUID response (see additional data in section6.8). These fields are still
around two to four times smaller compared to the critical fields of Bi n−pl ane = 200−300
mT at which the SQUID response vanishes.

6.6. MAGNETIC FIELD ANGLE-DEPENDENCE OF THEϕ0-JUNCTION

Finally, we examine the magnetic anisotropy dependence of the SQUID pattern, in or-
der to further study the microscopic origin of the ϕ0-junction. The data showing phase
shifts between neighboring charge states for various in-plane magnetic field angles is
presented in Figure 6.4. Consistently, for many different QD regimes, we observe that
the maximum shift of the SQUID pattern is most pronounced when an in-plane field
is applied orthogonal to the nanowire. Previous quantum dot experiments have iden-
tified this field orientation with the preferential spin-orbit direction BSO for quantum
dots. These measurements are consistent with SOI enabled orbital mixing which pre-
dicts maximal phaseϕ0 for Bi n−pl ane ||||||BSO 5,12,13. Note that other known mechanisms
which could in principle lead to additional phase shifts, such as flux penetrating the JJ
area, are not consistent with the observed data (see section6.8.5 and 6.8.6 for a more
detailed discussion).

6.7. CONCLUSION

In summary, we demonstrated a gate tunable Josephson ϕ0-junction. Results presented
here imply that the breaking of the underlying symmetries can be achieved in superconductor-
quantum dot structures while maintaining coherent transport of Cooper pairs. In this
context, our experiment is directly related to the efforts of studying triplet supercon-
ductivity and superconducting spintronics[26] as well as in achieving topological super-
conducting phase in quantum dots coupled to an s-wave superconductor[16][27–32].
Aside from that, a gate tunable phase offset may open novel possibilities for the realiza-
tion of electrically controlled flux and phase based quantum bits[33], superconducting
computer memory components[34], as well as superconducting ”phase” batteries and
rectifiers[4, 35]. Finally, we note that that other one-dimensional materials, such as car-
bon nanotubes where spin-orbit is strong due the curvature of the tube, may be explored
in the context of ϕ0-junctions[36].

6.7.1. METHODS

DEVICE FABRICATION

The Indium Antimonide (InSb) wires used in the experiments were grown using MOVPE
process[37]. The wires were transferred on a SiO chip with local electrostatic gates made
of Ti/Au of thickness 5nm/10nm predefined via electron beam lithography. The super-
conducting contacts were subsequently designed and patterned over the wires and prior
to deposition the wires were etched in Ar+ plasma for 120 seconds to remove native sur-
face oxides. NbTiN was sputtered in similar conditions as in Ref. [38].
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Figure 6.4: Anisotropy of the SQUID phase shift for various angles of Bi n−pl ane . a-e, Voltage vs. flux for
different orientations of Bi n−pl ane = 120 mT. Red and blue curves in each panel are taken at two neighbor-
ing charge occupations as in Figure 6.3a and the corresponding relative phase shift between is marked above
each panel. The maximum shift from π was obtained when the field is perpendicular to the wire as expected
from the SOI enabled orbital mixing (see also section6.8.7).f, Phase offset as a function of angle θ between the
nanowire and Bi n−pl ane .
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MEASUREMENTS

All measurements are performed in a He3/He4 dilution refrigerator equipped with ad-
equate high-frequency electronic filtering at a base temperature of T = 20 mK. The mag-
netic fields, both in-plane and for flux bias, are applied via a 3-axis vector magnetic.

To avoid hysteresis in magnetic field while performing flux biased measurements,
we first step the magnetic field in the y-direction to adjust the flux to the desired value.
We then set the gate and measure the voltage over our device for the gate values corres-
ponding to different charge states of the quantum dot. When this is done we step the
flux forward and repeat the voltage measurements for the same gate values and so on.
Hence the flux is always monotonically increased for a data set related to a particular
in-plane field value and we do not suffer from hysteresis from the vector magnet. Our
measurements were reproducible and finite offsets in the SQUID response correspond-
ing to ϕ0-junction were observed in three separate cooldowns of the device.

6.8. SUPPLEMENTARY INFORMATION

6.8.1. BREAKING OF THE CHIRAL SYMMETRY IN QUANTUM DOTS

In one-dimensional systems in which the electron momentum is well defined, the in-
terplay between the spin-orbit interaction (SOI) and the Zeeman splitting can create a
difference between the dispersion of electrons moving forward and backward. This in
turn can lead to the breaking of the chiral symmetry and, in the case of superconducting
transport, to Josephson ϕ0-junctions [4, 10, 13]. In quantum dots (QDs) there is no well-
defined momentum since the QD states are localized. Nevertheless, the combination of
the SOI and the external magnetic field still creates similar conditions for breaking of the
chiral symmetry as shown in Refereneces [5, 15, 16] and discussed below.

Let us consider a process describing a Cooper pair tunnelling from the left to the
right lead (forward tunnelling) at zero phase difference. Without SOI electrons form-
ing the Cooper pair tunnel through the QD via a single orbital level, for example the
first electron tunnels via level 1 and the second via level 2. The corresponding tunnel-
ling coefficient (matrix element) for this process is given by (tL1tR1)(tL2tR2). Here the
tL1 and tL2 (tR1 and tR2) are the hybridization amplitudes between QD levels 1 and 2
with the left (right) lead. The terms in brackets correspond to tunnelling coefficients for
individual electrons. Assuming that the hybridization amplitudes are real, the matrix
element describing tunnelling from the right to the left (backward tunnelling) is exactly
the same. Since the backward tunnelling contributes to the current flow in the opposite
direction, the net resulting current vanishes. Therefore, the tunnelling via single orbitals
can not add to I (ϕ = 0). The lowest order process which contributes to I (ϕ = 0) is the
one in which one electron tunnels through the dot directly via a single orbital, while the
other electron changes the orbital during the tunnelling process. Finite SOI enables such
orbital change.

In the simplest case when two quantum dot levels contribute to Cooper pair trans-
port and the magnetic field is orientated along the effective spin-orbit axis the Hamilto-
nian of the dot can be written as

HQD = (µτ0 +Eor bτZ )σ0 +Bτ0σZ +ατY σZ (6.1)
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Here µ is the chemical potential, Eor b is the orbital energy, α parametrizes the strength
of the SOI and B the Zeeman splitting, τX ,Y ,Z (σX ,Y ,Z ) are Pauli matrices acting in orbital
(spin) space (τ0(σ0) are identity matrices). Usually the terms describing the Zeeman
splitting and the SOI are smaller in comparison to the first term in the Hamiltonian.
In the presence of SOI the eigenstates of the QD are mixtures of the two orbital states.
The hybridization between QD eigenstates and the left (right) lead becomes tL(R)1′ =
tL(R)1 cosε+ tL(R)2i sinε and tL(R)2′ = tL(R)2 cosε− tL(R)1i sinε for spin-up electrons (with
sinε=α/Eor b). For the spin down electrons + and - signs should be inverted.

Importantly, due to orbital mixing, the coefficients describing tunneling events be-
come complex numbers implying that electrons crossing the junction gain a finite phase.
This phase is opposite for the electrons tunneling in the other direction. Therefore the
forward and backward tunneling coefficients are not exactly the same (the imaginary
part is different) and the two tunneling processes do not cancel each other. If Cooper
pairs also acquire a finite phase during the tunneling process, I (ϕ = 0) becomes finite.
However, if the magnetic field is zero, since spin-up and spin-down electrons obtain the
opposite phases in the tunneling process, Cooper pairs do not gain phase even when
SOI is present. For finite magnetic fields the tunneling probabilities for the tunneling of
spin-up and spin-down electrons via different orbitals are no longer exactly the same.
Only in this case can Cooper pairs obtain a finite phase.

Finally we stress that the complex tunnel coupling between superconductors always
leads to finite I (ϕ = 0). Interestingly, this follows even from Feynman’s simplified de-
scription of the Josephson effect[39]. If we assume that the wave-functions describ-
ing the two superconductors are ψL = |ψL |e iϕL and ψR = |ψR |e iϕR , the time depend-
ent Hamiltonian describing the superconductors on the two side of the junction can be
written as

iħ ∂

∂t
ψL =µLψL +TψR (6.2a)

iħ ∂

∂t
ψR = T ∗ψR +µLψR (6.2b)

Here µL and µR are the chemical potentials in the two superconductors and T is the
tunnel coupling. Solving this set of equations for current directly gives

I ≈ |ψL ||ψR |
(
Re(T )sinϕL −ϕR + Im(T )cosϕL −ϕR

)
(6.3)

When T is real current is proportional to sinϕ, with ϕ=ϕL −ϕR . However if the imagin-
ary part is non -zero, the term cosϕ also contributes to the current and gives rise to the
finite I (ϕ= 0).

6.8.2. CHARACTERIZATION OF THE QUANTUM DOT JUNCTION AND THE NANOWIRE

BASED SQUID
In order to characterize the QD Josephson junction, we performed voltage and current
bias measurements while the reference junction was pinched off. Depending on the ex-
act gate configuration, the measured QD resistance varies between 40-600 kΩ and the
switching currents are in the range 40-300 pA. In all measurements the sub-gap resist-
ance is finite since the Josephson energy of the QD junction E J =Φ0IC /2π≈ 0.5−3µeV is
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Figure 6.5: Coulomb blockade diamondsGate configuration is the same as in Fig.6.1 and Fig.6.2 (V1 = 350mV;
V3 = 110mV)

comparable to kB T ≈ 5µeV. The induced gap in the QD junction is of the order of 20-50
µeV (see Figure 6.6 (b), (d)).

When the reference junction is open we observe standard SQUID oscillations. In
this regime it is even easier to resolve small supercurrents of the QD junction by simply
estimating the amplitude of the flux dependent voltage oscillations. Note that the data
presented in the main text is taken with the SQUID tuned to the overdamped regime.
However, at low magnetic fields, the SQUID is usually underdamped (Figure 6.7). Due
to hysteresis effects, in this case, phase offsets are difficult to track in the voltage vs flux
measurements when the current bias is fixed. For this reason, before each measurement
we made sure that SQUID is in the overdamped regime by tuning the switching current
of the reference junction via Gr e f .

6.8.3. ANOMALOUS CURRENT AND DIRECTION DEPENDENT CRITICAL CUR-
RENT IN ϕ0-JUNCTIONS

The subject of ϕ0-junctions has been theoretically extensively studied in the past. They
have been predicted to arise in many different systems besides quantum dots 1,5,16,
such as conventional superconductors with spin-orbit coupling 17–19, with triplet cor-
relations 20–22, superconductors in contact with topological materials 23,24 and also
hybrid systems with nonconventional superconductors 25–27.

The current-phase relation (CPR) for conventional Josephson junctions states that
the switching current varies with the sine of the phase difference across the junction:
IS (ϕ) = I0 sinϕ, where the junction’s critical current IC = I0. This CPR can be generalized
by adding a cosine term:

IS (ϕ) = I0 sinϕ+ Ianomalous cosϕ≡ IC sin(ϕ+ϕ0), (6.4)

where the critical current is now expressed as IC =
√

I 2
0 + I 2

anomalous . For conven-
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Figure 6.6: Superconducting gap in Coulomb blockade Current biased (a) and the corresponding voltage
biased (b) regime (V1 = 350 mV; V3 = 110 mV) vs V2. In this regime QD has 30 electrons more compared to
Fig. 6.5. c,d, Linecuts for current (voltage) bias for the fixed gate voltage showing resistance (conductance) of
the QD junction. The sudden increase in resistance corresponds to the suppression of the density of the states
inside of the superconducting gap ∆? ≈ 25µeV in this regime. Note that the coupling between the QD and the
leads is larger compared to ∆?.

tional 0-junctions (ϕ0 = 0) and π-junctions (ϕ0 = π,IS = −|I0|sin(ϕ) ≡ I0 sin(ϕ+π)), the
anomalous term vanishes and there is no current flowing when the phase difference
ϕ0 = 0. This can be seen in Figure 6.8a where we plot the switching current as a function
of the phase difference ϕ for a 0-junction and a π-junction.

It follows that a ϕ0 = 0 term different from 0 or π directly implies the existence of a
finite anomalous current. In Figure 6.8b we show the anomalous current for a junction
with ϕ0 = 0.15π. This is a shifted sine curve, hence IC+ ≡ maxϕ IS = IC− ≡ |minϕ IS |,
meaning that the critical current is independent of the bias direction. In order to be
able to measure a different critical current when the bias is reversed, i.e. to satisfy the
condition IC+ 6= IC−, the CPR needs to contain higher order terms, e.g. as in the exper-
iment by Sickinger et al. 15. In Figure 6.8c we plot the switching current for a junction
with IS (ϕ) = sin(ϕ+0.35π)−0.5sin2ϕ and indeed obtain two different critical currents
as shown on the plot.

6.8.4. SHIFTS OF THE SQUID PHASE SHIFT PATTERN
In order to understand the origin of the shifts in our SQUID pattern, we have performed
simulations of the critical current of a dc-SQUID consisting of two Josephson junctions
with current-phase relationships (CPR) IS1,2 =C PR1,2(ϕ1,2), where IS1 (IS2 ) is the switch-
ing current of junction 1 (junction 2) andϕ1 (ϕ2) is the superconducting phase difference
across junction 1 (junction 2).

Assuming negligible SQUID inductance, the phase difference across the junctions



6

106 6. JOSEPHSON ϕ0-JUNCTION IN INSB NANOWIRE QUANTUM DOT

Figure 6.7: SQUID in the underdamped regime at zero in-plane field. a,Voltage as a function of flux and the
current bias showing hysteresis effects in the switching and retrapping current. b, Line cut along the dashed
line in (a) showing a difference of around 200 pA between switching and retrapping currents. Gate setting are:
V1 = 100 mV; V2 = 25mV; V3 = 335 mV; Vr e f = 420 mV.

are related to each other by the equationϕ2 =ϕ1−2πΦext
Φ0

, whereΦext is the external flux
applied through the SQUID. The critical current of the SQUID is the calculated using the
equation

IC ,SQU I D = max
ϕ

|CPR1 +CPR2(ϕ−2π
Φext

Φ0
+2πn)|.

In Figure 6.9a we plot the critical current of the SQUID assuming IS1,2 ) = IC1,2 sinϕ1,2

for several values of the ratio
IC1
IC2

. We observe that although the shape of the IC ,SQU I D

vs. flux curve varies, the points in flux of the maxima and minima are fixed. In Figure
6.9b we plot the same curves but now CPR1 is a periodic sawtooth, i.e. IS1 = IC1 (ϕ/π−1).
Still the minima and the maxima of the critical current remain fixed, independent of the

ratio
IC1
IC2

.

In Figure 6.9c we assume IS1 = 0.1IC2 sin(ϕ1 −ϕ0) and vary the value of ϕ0. In con-
trast to the previous two cases, the maxima and minima of the critical current now shift
by Φext = ϕ0/2π. Considering that the maximum (minimum) of IC ,SQU I D corresponds
to a minimum (maximum) in the measured voltage V over the SQUID, such IC ,SQU I D

behaviour is qualitatively similar to the measured voltage pattern shown in Figure 6.3b,
c and Figure 6.4 of the main text as well as Figure 6.11b of this supplementary. In our
simulations the only way we could induce additional phase shifts in the SQUID pattern
is to offset one of the junctions byϕ0. Therefore these are consistent with our interpreta-
tion that the origin of the shift in our measured SQUID patterns is indeed a consequence
of the shift by ϕ0 in CPR of the nanowire Josephson junction.

To be certain that the magnitude of the critical currents does not influence the phase
of the SQUID oscillations, we repeated scans with the same gate voltages over the quantum
dot V1, V2, V3, and varied ICr e f by changing the gate voltage of the reference junction
Vr e f over a wide range and found no change of the induced shift, even when the SQUID
is underdamped regime.

This is understandable since the phase difference between the junctions in a SQUID
geometry is fixed by the external flux. So while the relative ratio between the critical
currents (which is not exactly known due to phase diffusion) have impact on the critical
current values and in general on the visibility of the SQUID response they do not change
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Figure 6.8: Switching current for junctions with various CPR normalized to I0. a,IS (ϕ) = sinϕ (continuous
line) and IS (ϕ) = sin(ϕ+π) (dashed line). b, IS (ϕ) = sin(ϕ+0.15π), Ianomalous ≡ IS (0) is shown. c, IS (ϕ) =
sin(ϕ+0.35π)−0.5sin2ϕ, anomalous current Ianomalous and direction dependent critical current are shown.

the phase offset. This fact is illustrated in the experiment of Spathis et al. 8 , where the
authors measured the nanowire SQUID response in the wide range of temperatures and
found no shifts in the pattern.

6.8.5. ESTABLISHING THE ORIGIN OF THE SHIFT IN THE SQUID PATTERN
Our main experimental observations can be summarized as follows: (1) the observed
shift in the SQUID pattern occurs for a finite in-plane magnetic field which exact value
depends on the QD configuration; (2) the shift in pattern occurs mainly for gate values at
which the QD electron occupation number changes; (3) the shift is the largest when the
field is orthogonal to the nanowire and almost non-existing when the field is oriented
along the nanowire.

These observations are qualitatively in agreement with SOI induced orbital mixing as
the origin of theϕ0-junction. Based on (1) and (2) it is evident that QD orbital levels play
a crucial role in the superconducting transport which is also in agreement with previous
experiments on quantum dots [21, 40, 41]. Also, the observed anisotropy is consistent
with reported SOI direction in QDs [42]. In the following we discuss other effects which
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Figure 6.9: Critical current simulations of a dc-SQUID. a, Simulation including two sinusoidal junctions with
varying critical current ratios. b, Simulation including a junction 1 with a sawtooth-like CPR and junction 2
with a sinusoidal CPR, with varying critical current ratios. c, Simulation including two sinusoidal junctions

where the CPR of junction 1 is shifted by a phase ϕ0. The ratio
IC1
IC2

= 0.1.

may also contribute to the observed shifts in the SQUID pattern.

a) Gate induced changes in the effective SQUID area. Gating off a part of the wire
changes the effective SQUID area which may result in additional shifts of the interfer-
ence pattern. This effect is rather small in our devices. The maximal change in the area,
and therefore the phase offset, would be at most few percent estimated by comparing
the gated nanowire area 100nm × 100nm with the total area of the SQUID. Even if as-
sumed that the magnetic field is enhanced in the vicinity of the nanowire junction, due
to complicated field profile caused by the nearby superconductor, the change in area has
to be extremely large to account for the observed shift. Also, for substantial changes in
the area, the flux periodicity of the SQUID response has to change substantially. These
changes were not observed in the experiment which shows periodicity of 1.2mT being
independent of the gate parameters. We also note that we didn’t observe any discon-
tinuous jumps in the interference pattern while sweeping the magnetic field which rules
out phase shifts due to accidental events of flux trapping in the junction.

b) Phase offsets due to flux in the quantum dot. The observed shifts in the SQUID
pattern were obtained in in-plane field values of 50-100 mT. Assuming the quantum dot
area to be 60nm × 60nm (corresponding to Eor b = 1.5 meV), the total flux through the
corresponding area would be of the order of 0.1−0.2Φ0. Based on this estimate, even if
the flux through the QD would fully add to the ϕ0 offset, the resulting shift would be too
small to explain the experimental data. Note that we verified that there is no signific-
ant modification of the field profile in the vicinity of the quantum dot by measuring the
values of the g-factors.

c) Additional orbital effects. As discussed in Ref. [5,6], when the tunneling coeffi-
cients (matrix elements) describing the hybridization between the QD levels and the left
(right) lead are complex numbers and contribute to additional phase factors, at finite
magnetic field an anomalous Josephson current may occur. Orbital effects can also con-
tribute to this complex phase instead of SOI. While this is in principle a possible scenario
it is not consistent with the experimental data as one would not expect any magnetic
field anisotropy in this case. Another possible scenario is that orbital effects alone can
result in an anomalous current. As pointed out in Refs. [13,14] orbital effects alone may
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have a significant influence on superconducting transport through the nanowire without
any QD. Although these effects may indeed contribute, they are to the large degree linear
in magnetic field strength in contrast to the experimental data. For this reason, we can
rule out these effects as the main contribution of the observed shifts.

6.8.6. ESTIMATION OF THE ANOMALOUS CURRENT

Figure 6.10: Anomalous current as a function of magnetic field. Estimates and measured phase shifts of
Ianomalous as a function of field magnitude for the regime shown in Figure 6.13 (perpendicular in-plane field).

Using the data from the regime presented in Figure 6.13a and the relation Ianomalous =
IC sinϕ0, we estimate the minimum anomalous current through our quantum dot.

The procedure we use the estimate the anomalous current goes as following. We
assume that the critical current IC is constant along charge state transitions for a fixed
Bin−plane. Within a charge transition where we measure a relative change in phase of
ϕ0, we choose the larger value of the possible magnitude of the anomalous current,
i.e. max(|IC sinϕ|, |IC sin(ϕ+ϕ0)|). However, since the phase difference ϕ across the
quantum dot is unknown, we minimize this function over all possible values of ϕ. Thus
we obtain our minimum estimate of the magnitude of the anomalous current |Imi n,anomalous |
as

|Imi n,anomalous | = min
ϕ∈[0,π]

{
max(|IC sinϕ|, |IC sin(ϕ+ϕ0)|)} .

|Imi n,anomalous | vanishes for ϕ0 = 0,π as expected for zero and π-junctions, and is
positive otherwise. Figure 6.10 shows the values extracted for particular ϕ0-shifts meas-
ured. Note that shift is non-linear function of the field. While for a small magnitude
values of Bin-plane the anomalous current is negligible, above certain critical value of
the field the shift abruptly increases.

6.8.7. ADDITIONAL DATA
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Figure 6.11: Measured voltage as a function of flux and V3 a, Bi n−pl ane = 0. b, Bi n−pl ane = 150mT, θ = 75◦.
In this regime no 0−π transition is observed suggesting that multiple quantum dot orbitals contribute to the
transport. The phase shifts are mainly constant inside the regions of gate space in which the quantum dot
occupation number is fixed. Gate settings are: V1 = 100 mV; V2 = 50 mV; Ibi as = 220 pA; Vr e f = 450 mV.

Figure 6.12: Continuously gate tuneable ϕ0-shift. a, Zoom in on Figure 6.11b. The dashed lines represent
the values of V3 at which the curves in b are taken. b, Measured voltage vs flux taken at consecutive V3 values
marked in a. The total phase shift between the blue curve and cyan curve is 0.8π.
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Figure 6.13: Evolution of the shift in the SQUID pattern with the magnetic field for two different magnetic
field orientations. a, Orthogonal to the nanowire. b, Along the nanowire. The blue and red traces correspond
to the two consecutive quantum dot occupation states. c-d Voltage as a function of flux and current bias at
Bi n−pl ane = 120 mT for the same field orientation as in a and b. The sharp transition from the low voltage
state (blue) to the high voltage state (red) indicates the value of the switching current as a function of flux. The
phase offset is independent of the current bias. The red and blue lines correspond to the current bias at which
the data in the lowest panel of a and b is taken.
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Figure 6.14: Anisotropy of the SQUID phase shift in the open QD regime a-d, Voltage as a function of V2 and
flux for different orientations of Bi n−pl ane and 30-50 more electrons compared to the regime in Figure 6.4.
Here the 0−π transition was not observed strongly suggesting that multiple orbitals are contributing to the
transport. In this very different regime compared to the data discussed in the main text the ϕ0 shifts are still
the largest when the external in-plane field (Bi n−pl ane = 100mT) is oriented orthogonal to the nanowire.
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Figure 6.15: Additional anisotropy data for Bi n−pl ane = 120mT. a-d, The left panel shows voltage vs current
bias and flux for the gate settings corresponding to two consecutive Coulomb blockade regions. The right
panel shows voltage vs V2 and flux. The angle θ between the nanowire and Bin−plane is indicated. Blue and
red dashed lines indicate cuts shown in Figure 6.4. The corresponding values of the Ibi as are: a top panel
Ibi as = 415 pA , bottom panel Ibi as = 420pA; c Ibi as = 280 pA, Ibi as = 290 pA; d Ibi as = 295 pA, Ibi as = 275 pA.
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Figure 6.16: Additional anisotropy data for Bi n−pl ane = 120mT. a-d, The left panel shows voltage vs current
bias and flux for the gate settings corresponding to two consecutive Coulomb blockade regions. The right
panel shows voltage vs V2 and flux. The angle θ between the nanowire and Bin−plane is indicated. Blue and
red dashed lines indicate cuts shown in Figure 6.4. The corresponding values of the Ibi as are: a top panel
Ibi as = 440 pA , bottom panel Ibi as = 440pA; c Ibi as = 320 pA, Ibi as = 315 pA
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7
OUTLOOK

This chapter offers improvements on the experiments described in the previous chapters
and follow up experiments, mainly having in mind the goal of measuring Majorana fer-
mions and topological state of matter in InSb nanowires and nanocrosses.

7.1. IMPROVING THE CONTACT PREPARATION - EPITAXIAL CON-
TACTS

All experiments in this thesis involve proximitizing an InSb nanowire with NbTiN su-
perconducting contacts. The interface between the nanowire and the superconductor
is therefore crucial both to induce a strong gap inside the nanowire and to avoid sub-
gap states within the induced gap. Improving the interface could significantly augment
the critical current values of InSb SNS junctions and increase the magnetic field limit at
which supercurrent can be detected. Thus the interface needs to be as close to perfect
crystallographic as possible and clean from residues and impurities that may come from
removing the surface oxide of the nanowire.

The devices presented in this thesis were prepared by etching the native oxide in
an Argon plasma environment before contact deposition. The plasma accelerates the
charged Argon ions towards the sample, resulting in an ion bombardment of the nanowire,
knocking off the oxide molecules. Although the method is effective at removing the ox-
ide, it is an invasive procedure which destroys the crystalline surface of the wire. Since
the process happens at relatively high pressures the contact area may also be contamin-
ated from impurities in the sputtering machine, such as carbon.

Sulphur passivation, being a less invasive procedure, can improve results compared
to Argon etching[1]. Ideally though, best results can be achieved if the contact is de-
posited in-situ with the nanowire growth, preventing the formation of an oxide barrier
all together. This method used on InAs nanowires with in-situ evaporated aluminium
produced an epitaxial interface and very low subgap conductance[2]. Achieving similar
results with InSb and high critical field superconductor would prove to be a significant
breakthrough for superconducting devices and Majorana experiments.
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7.2. REDUCING SUPERCONDUCTING INTERFERENCE WITHIN THE

JUNCTION

In chapter 4 we studied the critical current of InSb SNS Josephson junctions as a function
of the strength and direction of an external magnetic field. The junctions measured were
of various lengths from 100 nm to ∼ 1 µm. Our results show that the critical current de-
cays rapidly to below 1 nA irrespective of the zero field value beyond 100 mT. Following
the rapid decay, IC shows Fraunhofer-like interference as a function of magnetic field,
but aperiodic and the critical current not necessarily reaching zero where the interfer-
ence is destructive. The field values where IC is maximum or minimum varies as the
chemical potential or the field angle is changed.

This interference can be caused by either spin-dependent phase shifts due to a finite
Zeeman splitting and spin-orbit interaction or intermode phase shifts due to a finite flux
enclosed between different orbital modes. The latter effect is more likely as it explains
the rapid fall in IC and it is anticipated to occur at lower field values for junctions oc-
cupying multiple modes. In the context of using such nanowire Josephson junctions
as elements of a topological qubit braiding circuit, the interference is undesirable as it
causes abrupt variations in IC and hence E J . If the initial decay in IC is caused by the
destructive interference of orbital modes, than E J is severely reduced compared to its
achievable maximum. More importantly, the interference of orbital modes substantially
alters the topological phase diagram, possibly suppressing the topological gap protect-
ing Majorana bound states [3].

The following improvements can allow to discriminate between the cause of the in-
terference and moderate its effects:

• Assuming the enclosed flux between orbital modes is the main cause of the in-
terference, the magnetic field scale at which the effect is apparent is proportional
to the areal cross-section of the wire seen by the magnetic field. Unfortunately in
this thesis we only measured angle dependent critical current for short junctions
of length ∼ 100−200 nm where the cross-section of the wire does not substantially
vary whether the field is directed along or perpendicular to the wire. For junctions
of length of the order of ∼ 1µm, however, the oscillations should occur at a much
lower field scale when the field is perpendicular to the wire.

• The effect of interfering orbital modes can be reduced by tuning the wire to the
single mode regime. This is hard to achieve via gating, especially since the elec-
trostatic gates are ineffective on the wire sections which are covered by a metallic
contact. Reducing the wire diameter itself, however, would increase the subband
spacing inside the wire. Currently the average wire diameter of 100−120 nm results
in a subband spacing of 15 meV. A wire of diameter 50−60 nm would quadruple
the energy between subbands, making the regime of a single occupied mode ex-
perimentally reachable and thus interference avoidable.
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Figure 7.1: Lithographically patterned nanocross fabrication. a, Schematics of the trench on the sides of
which the nanowires are grown. Parameters of the growth determining the placement of the gold particles
from which the wires nucleate are shown. b, SEM image of the growth chip after nanowire growth. Individual
wires growing on the opposite sides of the trench merge together to from a nanocross. Images copied from
Reference[4].

7.3. IMPROVING THE YIELD AND QUALITY OF SEMICONDUCT-
ING NANOCROSSES

We have studied the electronic properties of InSb nanocrosses in two chapters of this
thesis.

• Superconducting nanowire networks (Chapter 4): The conductance and the su-
percurrent is measured between the four terminals of a nanowire cross. A finite
size supercurrent is measured via all terminals.

• Resonant Andreev reflection through a three terminal nanowire quantum dot
(Chapter 5): The three terminals of a nanowire T-junction are used as a normal
tunnel probe and two superconductors joined in a loop to enable flux biasing. A
quantum dot is created at the intersection. Flux periodic oscillations are measured
for finite voltage bias at specific chemical potential, identified as resonant Andreev
reflection through the dot. These oscillations persist at finite magnetic field up to
600 mT.

These experiments require the transfer of suitable nanowire crosses from the growth
chip to the silicone substrate on which the device is patterned. However the yield of
crosses on the growth chip was extremely low. This rendered the fabrication time of
devices very long, but more importantly resulted in very few devices per fabrication run
offering no alternatives for better contact resistances. Reproducing the experiment and
obtaining even a single good device is thus difficult.

Our yield was low because the nanowire pair forming the nancross grew skew for
the majority of the cross structures transferred from the growth chip. Skew nancrosses
result in non-coplanar arms and consequently not all arms could be contacted for most
devices, as one arm is lifted from the substrate. Moreover, only about 8% of the crosses
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have an optimal crossing angle ϕ = 70.5◦ required for a single crystalline intersection.
This yield was improved to 25% by Diana Car and her colleagues in Eindhoven [5] by
patterning deterministically the location of the gold catalyst, kinking the InP stem dur-
ing growth and growing InSb directly on the InP. This method can be further improved
as in [4] to give a 50% yield on single crystalline wires by growing InSb on InP trenches
inclined at the desired angle of 70.5◦. This way the wires will grow towards each other at
the correct angle with a user controlled offset defined by the lithographically patterned
displacement of the gold particles (see Figure 7.1). The 50% yield is a result of the num-
ber of rotational twins formed in the wire during growth. In order for a single crystalline
nanocross to form, the parity of twins in each wire section of the cross should be equal
(i.e. odd-odd or even-even).

7.4. FURTHER EXPERIMENTS WITH NANOWIRE NETWORKS
On obvious goal for the semiconducting nanowire networks is to implement them in the
Majorana braiding scheme as a component in the topological quantum computer. In
the proposals involving these networks, the quantum operations are implemented by
physically exchanging the Majorana states in the 2D plane, either via electrostatic gat-
ing [6] or fusing them by varying the superconducting phase [7]. Since the wire is quasi
one-dimensional, such an exchange requires a branched wire. Although these schemes
are promising, they have a disadvantage: the magnetic field necessary to drive the wire
into the topologically trivial regime cannot be aligned with all wire sections, by virtue of
the branching of the wires. A large magnetic field with a component perpendicular to
the wire may exasperate the effects of interfering orbital modes and possibly completely
kill the topological gap as mentioned earlier. Thus if the magnetic field is misaligned
compared to the wire axis, the topologically trivial regime may be impossible to reach.
This problem can be cured of the wire is tuned uniformly to the single subband occu-
pation regime, in which case there can be no interference. More recent proposals are
bridging this obstacle by measurement-based protocols, where the quantum operations
are carried out by measuring the state of the qubits instead of braiding[8, 9].

Nevertheless, these semiconducting wire networks are a remarkable platform to ex-
plore low-dimensional superconducting physics. The shape of the nanocross offers the
possibility to probe the local density of states of a proximitized nanowire. This offers
a new possibility to descriminate Majorana boud state induced zero-bias conductance
peaks from other mechanisms such as disorder[10]. The device geometry depicted in
Figure 7.2a allows to probe the density of states from both sides of the topogogical su-
perconductor as well as tunneling from the middle of the proximitzed region. If the area
of the proximitized region forms a single continuous topogogically non-trivial supercon-
ductor, the MBS wavefunction is amplitude is substantial on the edge and is exponen-
tially small in the center of the region. Thus probing from the side contacts would result
in measuring a zero-bias conductance peak, as opposed to tunneling from the middle
probe. A conductance peak formed by disorder, however, would give a uniform con-
ductance from all sides.

The nanowire networks are also suitable to fabricate multiterminal Josephson junc-
tions as shown in Figure 7.2b. A JJ with n terminals gives a parameter space of n−1 phase
differences ϕ1, ..,ϕn−1. For n > 2, the phases can be used to break time reversal sym-
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Figure 7.2: Suggested experiments using nanowire networks. a, Measurement of the local density of states.
The middle of the wire is covered with a superconductor, and local gates (dashed lines) are mounted on the
three wire sections adjacent to the superconductor. The wire may be probed both along the contact and
through the middle of the contact. b, Multiterminal Josephson junction scheme.

metry and thus break Kramer’s degeneracy of half-integer spin levels. In other words,
spin-manipulation is possible by tuning the phases and a large magnetic field is not ne-
cessary. Majorana bound states or other exotic topologically protected quasiparticles,
such as Weyl fermions, may be engineered in multiterminal junctions without the ap-
plication of any magnetic field beyond the microtesla regime[11, 12]. Such phase bias-
ing may be achieved by connecting three terminals with two superconducting loops and
apply local flux bias to each loop, as shown in Figure 7.2b. The fourth terminal is used
as a tunnel probe to measure the zero-bias conductance features. To break the spin de-
generacy with the superconducting phase, it is necessary that the junctions fall in the
short junction limit: L ¿ ξ0 = ħvF

π∆ , with ξ0 the coeherence lenght of electrons. This is
feasible with semiconducting nanowires (ξ0 ∼ 100nm) but experimentally unreachable
with conventional metallic junctions (ξ0 ∼ 1nm) .

7.5. JOSEPHSON ϕ0-JUNCTION
In Chapter 6 we present an InSb nanowire embedded into a dc-SQUID for phase biasing.
The supercurrent as a function of phase and magnetic field is measured through a gate
defined quantum dot inside the nanowire. At zero in-plane magnetic field a π-transition
of the supercurrent phase is measured as the ground state parity of the dot changes. At
finite field, as long as the field has a component pointing parallel to the intrinsic SOI
of the QD, the ground state supercurrent acquires a phase ϕ0 different from zero or π,
implying an anomalous supercurrent flow at zero phase difference across the dot.

Because the control junction constituting the other arm of the dc-SQUID is also
nanowire based, the absolute phase change in the ground state ϕ0 or the magnitude
of the anomalous current Ia could not be measured. In order to measure the absolute
phase shift, the reference junction of the SQUID needs to be a standard SIS junction, in
the sense that its CPR is known exactly both at zero and finite field. If this is the case, the
exact phase drop over the reference junction is known and the phase over the quantum
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Figure 7.3: Experimental schematics for detecting the topological phase by measuring ϕ0 through a
nanowire quantum dot. a, Nanowire quantum dot connected to s-wave superconducting leads. ΩW and
ΩQD show the direction of the effective SOI in the wire and dot sections respectively. Inset: Possible values of
ϕ0 depending on the angle betweenΩQD and the external magnetic field B. b, Same as a with the s-wave wire
section replaced by topological superconductors with parity Γ1,Γ2.

dot and thus the CPR can be deduced. If ϕ0 and Ia are extracted, an estimate of the
SOI strength can be made, independent from the estimates established via singlet-triplet
splitting[13] and weak anti-localization measurements[14].

7.5.1. DEMONSTRATING TOPOLOGICAL PHASE IN A JOSEPHSONϕ0-JUNCTION
The ingredients necessary for an anomalous current to flow in a nanowire quantum dot
are the same as for driving the wire into the topological regime, namely SOI and a finite
Zeeman splitting inside a one dimensional semiconductor. Schrade et al. [15] show an
intimate relationship between measuring an anomalous current and the topologically
non-trivial phase bearing Majorana bound states. Measuring the phase shiftϕ0 can be a
qualitative sign of the topological phase of the nanowire sections adjacent to the dot. A
brief description of the experiment is given below.

Schrade et al. calculate the effective tunneling Hamiltonian and thus the dissipa-
tionless supercurrent (which is the phase derivative of the tunneling Hamiltonian) of
a quantum dot with two orbitals, connected to either standard s-wave superconduct-
ing leads(s-wave system) or topological superconducting leads with MBS(TS system), as
shown in Figure 7.3. The chemical potential on the dot is such that the dot it is doubly
occupied. The external magnetic field strength B is set close to the singlet-triplet anti-
crossing of the dot levels, as level-mixing is necessary to induce an anomalous current.
Where the metallic leads cover the wire, the effective SOI ΩW points in the plane of the
substrate perpendicular to the wire. At the uncovered section of the wire where the QD
is defined, the SOI vectorΩQD points perpendicular to the wire and the substrate. When
the external magnetic field B is rotated in the plane of the wire perpendicular to the
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substrate, such that when B > Bc (where Bc is the critical field needed to drive the wire
topological) the wire is always in the topologically non-trivial state.

For B < Bc , the leads are s-wave superconductors (Figure 7.3a). When the external
magnetic field vector B is not orthogonal to the spin-orbit field ΩQD, the ground state
phase of the junction shifts by an angleϕ0 6= 0,π. Both chiral and time reversal symmetry
is broken and an anomalous current flows at zero phase difference across the dot. The
chiral symmetry is broken by the SOI, which mixes the two orbitals of the dot, and allows
electrons to tunnel through both orbitals without flipping spin. When B is orthogonal to
ΩQD, this process of electrons changing orbital without flipping spin is prohibited, and
chiral symmetry is restored. The ground state phase is restricted to 0 and π.

For B > Bc , the leads are topological and electrons tunnel to the dot via non-local
Majorana bound states. This system does not preserve chiral symmetry even when B ⊥
ΩQD. This is because the topologically non-trivial leads do not transform into each other
after mirroring. The anomalous current flowing depends on the parity of the leads Γ1Γ2

and is non-zero, and thus ϕ0 6= 0,π. To detect the phase shift, however, one has to meas-
ure faster than the parity lifetime of the MBS, otherwise the anomalous current signal is
washed out.

During the experiment, the external field B is first oriented along the wire axis. The
phase ϕ0 is monitored at a rate faster than the parity lifetime of MBS. As the field is
increased beyond Bc , the phase ϕ0 is expected to jump from 0 or π to a different value
indicating the transition to the topologically non-trivial regime. To double-check if this
si the case, B can be rotated in the plane containing the wire and ΩQD for the cae B < Bc

and B > Bc . The phase shiftϕ0 would in the case of B > Bc remain constant and different
from 0 orπ, whereas in the case of B < Bc the phase goes to zero orπ as the field direction
is aligned with the wire.
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A
MAJORANA PHYSICS IN

SEMICONDUCTING NANOWIRES

The idea of Majorana particles came from the Italian physicist Ettore Majorana [1] who
found a real solution to Dirac’s equation for spin 1/2 paricles of mass m. A real solution
implies that Majoranas are their own antiparticles, that is a Majorana creation operator
γ† satisfies

γ= γ†. (A.1)

Although Majorana was thinking in the context of particle physics, nearly 70 years
later condensed matter physicists [2–4] found similarly behaving quasiparticle exitations
in condensed matter systems.

Condensed matter Majoranas form a system of non-Abelian anyons with a highly
degenerate ground state: upon the exchange of two Majoranas the overall wavefunction
gains a phase which depends on the exchange order.

The ground state of this system is gapped in energy from its excited states, consitut-
ing a platform for fault tolerant topological quantum computing [5]. Computation is
done by exchanging pairs of Majoranas, while remaining in the degenerate ground state,
a process called braiding [3]. The excitation gap guarantees the system doesn’t couple to
the environment and thus there is no source for decoherence.

In this section we review how Majoranas arise in semiconducting nanowires with
induced superconductivity, and experimental methods on how to detect them.

A.1. FORMATION OF MAJORANA BOUND STATES IN SUPERCON-
DUCTING NANOWIRES WITH SPIN-ORBIT COUPLING

We work in the semiconductor representation of the solutions to a 1D superconducting
Hamiltonian HBdG derived in section??. The space of excitations is spanned by the four
dimensional basis: γ†

E↑, γ†
E↓, γ†

−E↓, γ†
−E↑.
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Figure A.1: One dimensional Kitaev chain of Fermions in non-topological vs. topological regime.

There are two excitations with opposite spin and positive energy (γ†
E↑,γ†

E↓) and two

with negative energy (γ†
−E↑,γ†

−E↓). However the solutions are redundant since adding a
particle of energy E ans spinσ is equivalent to removing a particle of energy −E and with
spin −σ:

γ†
Eσ = γ−E−σ

If spin could be ignored, the above equation for E = 0 would satisfy the Majorana
condition A.1 and the zero energy quasiparticle excitations would behave as real solu-
tions to Dirac’s equation.

The pairing potential in an s-wave BCS superconductor pairs electrons of oppos-
ite spin. However, one can consider p-wave paired superconductors, where the pairing
potential pairs electrons of the same spin. Thus excitations in a superconductor with
p-wave paring take the form

γ†
Eσ ≡ u?c†

σ− v?cσ (A.2)

γ†
−Eσ ≡ ucσ− vc†

σ (A.3)

Which implies
γ†

0σ = γ0σ. (A.4)

How do these Majorana excitations arise in a one-dimensional p-wave supercon-
ductor? In Kitaev’s toy model the Hamiltonian of a 1D p-wave superconductor com-
posed of a chain of N fermions c†

i can be written

HK i t aev =−µ
N∑
1

c†
i ci −

N−1∑
1

(tc†
i ci+1 +∆ci ci+1 +h.c.) (A.5)
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where µ is the chemical potential, t a hopping paramter standing for kinetic energy and
∆ is the p-wave pairing 1.

Each fermion can be decomposed into two half fermions in the following way:

ci = 1
2 (γi ,1 + iγi ,2)

c†
i = 1

2 (γi ,1 − iγi ,2)
(A.6)

One can check that the γ operators defined as such indeed obey the Majorana equa-
tion A.1. This decomposition is depicted in the top of FigureA.1. Rewriting A.5 in terms
of the newly defined γ and subsituting the particular values µ= 0 and t =∆ one gets:

HK i t aev =−i t
N−1∑

1
γi ,2γi+1,1 (A.7)

Now introduce new fermion operators such that the pairing of the Majoranas is re-
defined:

c̃i = 1

2
(γi+1,1 + iγi ,2) (A.8)

The new pairing is shown on the bottom of FigureA.1. The Hamiltonian in terms of
the c̃i now writes

HK i t aev = 2t
N−1∑

1
c̃i

†c̃i (A.9)

This Hamiltonian counts the number of fermions c̃i
† in the chain and its ground state is

when the chain is empty. However there is a degeneracy, since one fermion operator is
missing:

c̃M = 1

2
(γN ,2 + iγ1,1) (A.10)

Thus the ground state of HK i t aev is degenerate, with the same energy whether the
highly delocalized fermion state c̃M , composed of two Majoranas, is full or empty. Al-
though we presented the case µ= 0 and t =∆, it is true if the chemical potential is within
the gap |µ| < 2t .

That is, a one-dimensional p-wave superconductor has two topological phases: the
‘trivial regime’ where the DOS is gapped as for a normal s-wave superconductor, and the
non-trivial regime which allows degenerate zero-energy excitations which demonstrate
Majorana statistics. These zero-energy excitations are called Majorana bound states, al-
ways come in pairs and are spatially delocalized: the individal Majoranas forming the
fermionic pair be found at the two ends of a one dimensional chain.

Although spinless p-wave paired superconductors readily host MBS when driven to
the topological regime, the few materials predicted to owe such a pairing are very diffi-
cult to process and are sensitive to disorder[6].

Luckily, a p-wave superconductor can be engineered from a 1-D semiconductor with
induced s-wave pairing, Zeeman interaction EZ and strong spin-orbit interaction αSO ,
such as an InSb nanowire[7]. The Hamiltonian of such a system can be written as:

1The pairing is p-wave since the spin of each fermion is not defined
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HBdG =
[

H0 ∆

∆? −T H0T
−1

]
(A.11)

With

∆=
[

0 e iϕ∆

−e iϕ∆ 0

]
, H0 =

[ ħ2k2
x

2m −µ EZ + iαSOkx

EZ − iαSOkx
ħ2k2

x
2m −µ

]
, −T H0T

−1 =
[

−ħ2k2
x

2m +µ −EZ − iαSOkx

−EZ + iαSOkx −ħ2k2
x

2m +µ

]

As shown in references [7, 8], the relevant parameter describing the topology of the
system is Eg ap,k=0, the size of the gap in the system at zero momentum. It is equal to

Eg ap,k=0 =
√
∆2 +µ2 −EZ . (A.12)

When Eg ap,k=0>0 the system is in the topologically trivial regime with a finite sized
gap. When Eg ap,k=0<0 the system is driven to the non-trivial regime and two degenerate
zero-energy solutions appear, corresponding to a pair of MBS.

ZERO BIAS PEAK IN TUNNELLING CONDUCTANCE

An ideal nanowire in proximity of an s-wave superconductor with gap∆ has no available
electronic states inside the gap due to the induced pairing in the topologically trivial re-
gime. In the non-trivial regime where such a nanowire hosts a pair of Majorana fermions,
the conduction channel containing the MBS admits a zero energy state with conduct-
ance of 2e2/h [9, 10].

This zero-energy delocalized bound state can most readily be detected via a voltage
biased tunnel spectroscopy measurement. In such a setup, conductance through the
nanowire is suppressed (to zero, ideally) within the gap in the trivial regime, and show a
peak at zero bias (of ideal height 2e2/h) in the non-trivial regime.

The earliest experiment on nanowires contacted by a superconductor and a normal
metal exhibiting zero-bias peaks (ZBP) at finite magnetic field, was reported in Delft [11].
The device was an InSb nanowire with one superconducting contact made from NbTiN
and a normal gold contact, with local gates to tune the chemical potential and to create
a tunnel barrier.

As the magnetic field is increased, Eg ap,k=0 decreases and becomes negative above

a critical field value BC (such that EZ (BC ) =
√
∆2 +µ2) where the wire becomes topo-

logical. Indeed a ZBP at finite field is observed which is non-existent at zero magnetic
field.

Although Reference [11] is the first experimental milestone in condensed matter Ma-
jorana research, it also revealed experimental difficulties and theoretical discrepancies,
such as:

• The ZBP height is considerable less than the expected value 2e2/h.

• The conductance inside the gap does not vanish, as one would expect in an ideally
gapped material. This implies electronic states inside the nanowire within the gap,
so-called quasiparticle states. These quasiparticle states can poison the Majorana
signal, as we shall see later.
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Figure A.2: ABS dispersion for an SNS junction in the trivial regime and for a junction hosting MBS. a, The
ABS of different parity of a junction in the trivial regime are coupled and are 2π periodic in phase. Landau-
Zener transitions can keep the parity constant. b, As the junction becomes topologically non-trivial, the ABS
periodicity doubles from 2πperiod to 4πperiod. Landau-Zener transitions to the continuum and quasiparticle
poisining can restore the 2π periodic signature.

Moreover, a number of microscopic phenomena result in a zero bias conductance
peak beside Majorana fermions, such as Kondo state or disorder[10]. Below we discuss
other methods related to supercurrent flow through Majorana states, offering diverse
experimental signatures of the topological regime.

A.2. SIGNITURES OF MBS IN SUPERCONDUCTING NANOWIRES

EXPERIMENTS CARRYING SIGNATURES OF 4π PERIODICITY

The most important signature of a Josephson junction hosting Majorana bound states
is the doubling of the ABS period as a function of the phase, called the 4π effect. In
Reference[8] the authors derive the CPR of a single mode 1-d channel JJ, with a geometry
such that the inner Majoranas are allowed to hybridize through the junction of length
L ¿ ξ but the outer Majoranas are exponentially far away so that they do not couple to
the junction.

A single channel JJ with transmission t in the trivial phase hosts a spin-degenerate
pair of ABS of opposite parity . For realistic values of t <1, where for example spin-orbit
coupling is responsible for coupling the ABS with opposite parities, a gap opens in the
ABS spectrum around zero energy as shown in FigureA.2a.

In the non-trivial regime (FigA.2b), the zero energy crossing of the ABS is topolo-
gically protected, meaning the zero energy solution is practically2 robust with respect
to perturbations of local parameters. The ABS are thus 4π periodic instead of 2π, im-
plying a range of observable effects accompanying this period doubling sensitive to the

2Although there is a small gap around the Fermi level due to the overlap of the outer Majoranas of the junction,
the size of this gap drops exponentially with the distance between the Majoranas[12], and thus can be made
arbitrarily small in an experiment.
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junction’s energy dispersion in phase. It is worth noting however, that it is possible to
generate a 4π phase periodic signal from a trivial junction if the gap around the Fermi
level is small enough for Landau-Zener transitions to take place as shown in FigureA.2a.

In References [13, 14] the authors calculate the behavior of the MAR and Ic signatures
which differ whether in the trivial or the non-topological phase. However the observa-
tion of these effects require large supercurrents which are difficult to achieve at high
magnetic fields where the transition is expected.

DOUBLING OF THE CPR PERIOD

The period doubling of the ABS energies E A(ϕ) from 2π (E A(ϕ)=E A(ϕ+2π)) to 4π (E A(ϕ)=
−E A(ϕ+2π)=E A(ϕ+4π)) while transitioning from the trivial to the topologically non-
trivial regime directly implies the period doubling of the CPR of the JJ hosting the Major-
anas via 2.32. Thus measuring the period doubling of the CPR in a junction is a signature
of Majorana fermions. The CPR of a junction can be measured with various methods:

• The junction can be embedded in a DC-SQUID in parallel with a junction of much
higher critical current with known CPR (see section 2.5.2).

• The junction can be embedded in a RF-SQUID which in turn is inductively coupled
to a tank circuit. The junction inductance and thus the CPR can be inferred from
the tank circuit’s resonant frequency shift as a function of flux through the RF-
SQUID.

• Measuring E A(ϕ) directly is also a way to deduce the CPR. Bretheau et. al. used this
method in [15] for an aluminum break junction, which they embedded in a DC-
SQUID in order to phase bias the junction and subsequently measure the radiation
emitted by the SQUID via a spectrometer JJ.

JOSEPHSON RADIATION

The AC Josephson effect warrants an emitted Josephson radiation of frequency νJ = qV
h

from a junction biased by voltage V with phase coherent transfer of charge q . For a junc-
tion in the non-topological regime, q = 2e the charge of a Cooper pair. For a junction
in the topological regime, quasiparticles of charge q = e can be coherently transferred
through the zero energy MBS, consequently such a junction emits radiation at half the
Josephson frequency ν= eV

h . Thus detecting the Josephson radiation can provide evid-
ence for MBS in the junction.

MISSING ODD SHAPIRO-STEPS

A JJ with Josephson frequency qV
h exposed to external radiation ν0 exhibits Shapiro steps

in the I-V curve at exact multiples of the voltage V = nhν0
q for integers n. Thus as the junc-

tion is pushed to the topological phase, q changes from 2e to e and every odd frequency
Shapiro step V = (2k−1)hν0

q ,k∈Z vanishes, as of another signature for Majoranas.

The disappearance of some odd steps was observed in nanowire devices in reference
[16], however this can also be caused by high microwave power known to influence Sha-
piro step visibility.
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QUASIPARTICLE POISONING PROBLEM

A Josephson junction in the topological regime hosts a pair of ABS both 4π periodic in
phase and of opposite quasiparticle parity. In realistic junctions however, the MBS life-
time is finite and the junction switches parity, allowing relaxation to the ground state
and restoring the 2π periodic CPR signature.

In reference [17] the authors take into account the effects contributing to a finite MBS
lifetime, which could result from

• Quasiparticles hopping from the electrodes on the junction or vice-versa switch-
ing the parity of the MBS. This is represented by the continuous arrow in Fig-
ureA.2b showing the phase particle switching branches.

• A dynamically evolving junction phase coupled to the continuum states, repres-
ented by a dashed-dotted arrow in FigureA.2b.

Thus measuring the CPR too slow results in 2π periodicity since the junction will
relax to its ground state corresponding to the parity of lower energy for a fixed phase. If
the CPR is measured too fast, transitions to the continuum states via LZ tunneling will
reset the parity and also results in 2π periodicity. Hence there exists an optimum phase
evolution rate window within which 4π signatures are observable.

Increasing the poisoning lifetime of the junction by building quasiparticle traps can
increase the detection efficiency by expanding the time window within which the CPR
has to be measured. In reference [18] on-chip quasiparticle traps allowed for quasi-
particle lifetime above 1 minute in islands of NbTiN. Adapting such techniques to JJs
including nanowires can substantially facilitate measurements of MBS signatures.
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B
METHODS

In this chapter we give details of the sample fabrication process as well as the meas-
urement conditions and measurement electronics used for experiments detailed in the
thesis.

B.1. NANOFABRICATION
All samples were processed in the Kavlo Nanolab in Delft. The patterns were generated
via electron beam lithography using a Raith EBPG-5000+ system. Each processing step
involves spinning resist on the chip, Ebpg lithography, pattern development, deposition
or etching and resist liftoff. Between each processing step, the sample is imaged un-
der a scanning electron microscope (SEM) for quality checking and to align subsequent
fabrication patterns. The details of each processing step are presented in table 1. The
substrate used for the samples is p-doped silicon covered with a 285 nm thick thermally
annealed SiO2; the doped Si is optionally used as a global backgate. The substrate is
thoroughly cleaned with HNO3 prior to processing.

B.2. NANOWIRE GROWTH, DEPOSITION AND CONTACTING
The nanowires used in the thesis are all InSb grown in Eindhoven in an MOVPE(metal
organic vapor phase epitaxy) chamber. The wires are grown on InP (111) substrate via
a gold cathalyst distributed on the substrate via a colloid. Growth results in an average
wire diameter of 100 nm and wire length 2-4 µm. Details of the growth can be found in
Reference [1].

The nanowires are transferred individually from the growth chip to the sample sub-
strate via a nanowire manipulator [2, 3]. The wires are transferred on the dielectric of
the sample chip, i.e. on to the SiO2 prior to processing in case of only global backgated
chip, or on the Si3N4 if local fine gates are used. The individual wire transfer allows firstly
to select nanowires of suitable length: in case of SQUID devices, the wires need to be at
least 2.5µm long such that there is space for three contacts. Secondly, once a nanowire is
deposited, it is possible to realign the nanowire such that its axis is perpendicular to the
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Process
Resist type

and spin
speed

Deposition
system

Material
deposited

and thickness
Lift off

Ebeam
markers

PMMA 495k
a4 @5000

rpm; PMMA
950k a3

@6000 rpm

AJA ebeam
evaporator

5 nm Ti/ 80
nm Au

Acetone in
ultrasonic

bath

Local gates
PMMA 950k

a2 @5000 rpm
AJA ebeam
evaporator

5 nm Ti/ 10
nm Au

Acetone in
ultrasonic

bath

Dielectric
PMMA 950K

A4 @4000 rpm

Alliance
Concept RF
magnetron

sputter
deposition

25 nm Si3N4

Acetone in
ultrasonic

bath

Super-
conducting

contacts

PMMA 950K
A4 @4000 rpm

AJA
magnetron

sputter
system

Rf plasma
etch; NbTiN

120 nm
Hot acetone

Normal
contacts

PMMA 495k
a4 @5000

rpm; PMMA
950k a3

@6000 rpm

AJA ebeam
evaporator

Sulfur
passivation;

10nm Ti/ 150
nm Au

Hot acetone

Top gates

PMMA 495k
a4 @5000

rpm; PMMA
950k a3

@6000 rpm

AJA ebeam
evaporator

10nm Ti/ 150
nm Au

Hot acetone

Table B.1: List of the processing steps used during sample fabrication and their details.
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local gates and aligned with the magnet axis defined by the setup in which the sample
is measured. For these reasons, individual wire transfer is preferred to random mass
transfer.

As soon as the nanowires are exposed to air, the surface oxidizes through a thickness
of 2-4 nm. This surface oxide layer acts as a dielectric and is electrically insulating. Thus,
while allowing electrical leads to act as topgates without requiring the deposition of ad-
ditional dielectric material, it is critical that the oxide layer is removed prior to contacting
the wire. For superconducting contacts, this is achieved by an in-situ Argon rf-plasma
etch in the sputtering machine just before contact deposition. For gold contacts, the
sample is passivated in a Sulphur solution as described in reference [4].

B.3. ROOM TEMPERATURE CHARACTERIZATION AND BONDING
When all the fabrication steps are complete, the sample chip is diced with a diamond
cutter to appropriate size. The device resistances are then probed at room temperature
by pressing needles to the metallic bond pads in which the electrical leads terminate. As
there are usually 5-6 devices per sample chip but only 2 or 3 can be electrically connec-
ted inside the dilution refrigerator, this step serves to select the devices with lowest res-
istance. For a nanowire device with channel length up to 200 nm, a 10-20kΩ resistance
is considered good. Devices around 50kΩ can still perform well at low temperatures.
Devices of resistance 100kΩ and beyond are rejected.

The sample chip is glued via conducting silver paint on copper bracket which is dir-
ectly in contact with the mixing chamber of the dilution unit (DU), or on a gold chip
carrier1. The appropriate devices on the sample chip are then bonded on a PCB (printed
circuit board) or chip carrier with aluminum wires using an ultrasonic ball bonder. The
PCB is mounted on the bracket and is electrically connected to DC lines running through
the fridge.

B.4. COLD TEMPERATURE AND MEASUREMENT ELECTRONICS

SETUP
In order to proximitize the nanowire and measure dissipationless supercurrent through
it, the sample needs to be cooled to the millikelvin range. The DC electric lines are
thermally anchored at several stages of the DR to minimize the electron temperature.
All the samples in the thesis have been measured in a dilution refrigerator (DR) with
electron temperature 20-50 mK, with the exception of Chapter 4 where a smaller dilu-
tion unit of electron temperature 100 mK was used. The colder DRs used were so-called
‘dry fridges’ where a pulse tubed is used to cool the 4K stage. The warmer DR is a ‘wet
fridge’ where the DU is dunked into a He4 bath at 4K. To measure supercurrent of the
order of pico Amperes, it is necessary to use electronic filters covering the full high fre-
quency range. Copper powder filers (covering the rangeω> 0.5GHz) and RC-filters (cov-
ering the range 1kH z <ω< 0.5GHz) are mounted on the mixing chamber plate or on the
PCB. The filters and the sample are enclosed inside a copper shield to protect from the

1In case a global backgate is used, an insulating layer such as sapphire is inserted between the sample chip
and copper bracket or chip carrier
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Figure B.1: Measurement setup and electronic filters.The sample is shielded from 50 Hz and high frequency
noise.

outside radiation. Additional room temperature Pi filters are built in the measurement
electronics. Measuring and applying current/voltage is performed by the IVVI rack built
and maintained by Raymond Schouten at TU Delft. The IVVI rack is battery powered
so to electronically isolate the sample and measurement apparatus from 50 Hz noise.
Communication between the computer governing the measurement and the IVVI rack
is maintained via optical fiber. The diagram of the measurement setup is shown if Fig-
ureB.1.
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