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SUMMARY

The problem of estimating the probability of vertical overlap in
possible future airway systems with a vertical separation standard of
1000 ft above Flight Level 290 is addressed. It forms part of an overall
safety assessment of such potential systems. The problem is solved by
developing a mathematical probability model of the vertical distance
between aircraft in a pair. A priori unknown model parameters are esti-
mated by means of the maximum likelihood method from presently available
data on the height keeping performance of aircraft in Europe. Special
attention is given to the effect on the modelling process of the limited
amount of data on large height keeping errors. The point estimate obtained

is 6.6x10-6, while an associated 95 per cent interval estimate is 2.3x10-6

- 14.8x107°,
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INTRODUCTION

Presently, studies are underway aimed at investigating the possibi-
lity of reducing the vertical separation standard at and above Flight
Level 290 (FL 290) from 2000 ft to 1000 ft, without exceeding a specified
risk level (Refs. 1,2,3). An important element of these studies is a
collision risk assessment, i.e. an assessment of the risk of collisions
due to the loss of vertical separation between aircraft assigned to
adjacent flight levels of the same track. The risk assessment consists of
two parts, namely a collision risk estimation process and a process of
determining a so-called Target Level of Safety against which the estimated

risk is to be compared.

The collision risk estimation process is based on the use of the
Reich collision risk model (Refs. 4,5,6). This model relates the collision
risk to various characteristics of the population of aircraft as well as
of the airway system under consideration. With regard to the latter, the
separation standard is particularly important. With regard to the former,
the probability of vertical ov;rlap for aircraft assigned to adjacent
flight levels is of prime importance. The model is characterized by its
structure and by its model parameters. Having agreed on the model struc-
ture, numerical values for each of the model parameters are needed. Oﬁ<the
assumption that the structure of the model is the same for the various
systems of interest, it offers the possibility of estimating the risk of
each of those systems, by substituting the appropriate parameter values.
As a consequence, estimates of the collision risk associated with e.g. a
vertical separation standard of 1000 ft, can be obtained beforehand
without actually having to apply such a standard in practice. This is done
by extrapolating parameter values valid for the present situation of 2000
ft vertical separation to that of 1000 ft. Of course, some assumptions
have to be made for such an extrapolation, and it may be necessary to
verify these assumptions in practice a posteriori, after a change in an

airway system has taken place (Ref. 7).

In this report, the process of estimating the probability of verti-
cal overlap Pz(IOOO) is considered. This probability can be computed from
the probability distribution of the vertical distance between two aircraft.
Several problems have to be solved during this process. Firstly, there is

the problem of the data itself. In practice, it is not feasible to measure
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this probability distribution directly. It can, however, be obtained from
data on the height keeping performance of individually observed aircraft.
In fact, it can even be obtained in two ways from those data. In the
context of the European Vertical Data Collection, these are called the
Singles Approach and the Pairing Approach (Ref. 8). In the Singles
Approach, the probability distribution of the deviations from the assigned
flight level of a typical aircraft is constructed first from the data.
This distribution then is used in a convolution process to arrive at the
probability distribution of the vertical distance between aircraft. In the
Pairing Approach, the latter distribution is formed directly by combining
the data of pairs of individually observed aircraft. Because it was
expected that the accuracy of the pairs data would be better than that of
the singles data, the Pairing Approach was adopted as the primary approach
to be used in the European Vertical Data Collection study (Ref. 9). The
aircraft pairs data are extensively described in Ref. 8 and will be

recalled in Section 2.

The second problem, which applies to both the approaches,is that
although the pertinent observed probability distributions contain many
data points in the core, i.e. within say 500 ft from their mean values,
there are virtually no data points in the tails of these distributionms,
the latter parts just being the most important for the collision risk. As
a result, it is necessary to describe the observed distributions by means
of a mathematical model and to use this model for extrapolation to the
tail regions. Because of the inherent uncertainty of the extrapolation, it

is desirable to build in some cautiousness into the modelling process.

The process of modelling the observed distribution of aircraft pairs
data consists of three steps, namely (i) selecting an appropriate family
of analytical probability distributions depending on one or more parameters,
(ii) selecting a unique member from the family by fixing the parameter
values, and (iii) evaluating the quality of the resulting fit. In practice,
one may need to proceed iteratively when it turns out that some assumptions
made earlier are not appropriate. The process will be detailed in Section
3 with emphasis on step (i). It will be argued that the family of the
so-called Double Generalized Laplace probability distributions is very
well suited to describe the aircraft pairs data of Section 2. Step (ii)
will be elaborated in Section 4 for the maximum likelihood parameter

estimation technique. As the resulting parameter estimation problem is
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fairly complicated, some a priori analysis is of great use for the
numerical solution process that will have to be used. Before considering
the results of the application to the real data of Section 2, the para-
meter estimation algorithm will be applied to simulated data based on
different Double Generalized Laplace probability distributions. In fact,
the application to simulated data serves two purposes, namely, firstly,'
validation of the estimation algorithms when the true parameter values are
known and, secondly, assessment of the achievable accuracy and properties

of the estimation problem under controlled conditions.

AIRCRAFT PAIRS DATA

A first estimate of the probability of vertical overlap due to the
loss of vertical separation in a 1000 ft enviromment can be derived from
data on the vertical distance between aircraft in the present 2000 ft
situation. The natural (but expensive) way to collect accurate data on the
height keeping performance of aircraft is by means of precision lock
follow radars. Two complicating factors play a part. The first one is that
it is practically not feasible to directly measure the vertical distance
between two aircraft because the frequency of the event that two aircraft
are at the same pre-defined (horizontal) location (i.e. the radar site) is
very low. Moreover, it would require two radars. Thus, it is necessary to
use radar measurements of individually observed aircraft. The second
problem is that the vertical distance between two aircraft consists of two
parts, viz. a part describing the aircraft height keeping errors and a
part describing the distance between the assigned flight levels (see
Figure 1). Hence, some information on the heights of the flight levels is
needed. For the European Vertical Data Collection it was decided, on the
basis of both economical, operational, and technical considerations, to
derive the required flight level height information from measurements of
the atmospheric situation by meteorological balloons. As a compromise
between costs and (temporal). resolution, a frequency of (in principle)

four balloon ascents per day was adopted.




T,

From the measurements of the atmosphere as made by the meteorolo-
gical balloons, the heights of the flight levels during the balloon
ascents can easily be computed. By means of time interpolation, the flight
level heights at arbitrary points of time can be derived. Thus, it is
possible to compute for each aircraft measured by the precision lock
follow radar its deviation from the assigned flight level, at the time of
the measurement (see Figure 2). In the European Vertical Data Collection
study, this is called the Singles Approach. The great disadvantage of this
approach is that the absolute accuracy of the flight level heights is
rather limited when using balloon derived data, due to the required
integration process. This disadvantage may be overcome by considering
height differences between flight level pairs. Similarly, height differen-
ces between aircraft can be considered. This has been called the Pairing
Approach (see Figure 3), and has resulted in a sample of aircraft pairs

data, representative of a 1000 ft environment.

Reference 8 gives a full description of the processing, analysis,
and results of the European Vertical Data Collection. Following Reference
8, the vertical distance d between two aircraft in a pair in a 1000 ft

vertical separation standard environment is defined by

d = DELTA2 -DELTAl + Sz(measured) (1)

where

- Ak '

DELTAi = Hi - CFL i , 1=1,2 (2)
with ﬁi being th:*average corrected radar measured height of aircraft i in
the pair and CFL 1 being the best estimate (based on the meteorological
balloon data) of the height of the assigned flight level of aircraft i in
the pair at the time and location of its measurement by the radar. It is
remarked that each radar measurement took place over a time interval of 59
seconds, with a frequency of 1 Hz and that the resulting 60 samples were
corrected for refractivity, elevation, and upward bending and next averaged

(see Ref. 8). The quantity Sz(measured) is defined by

Sz(measured) = best estimate of one thousand feet nominal vertical
separation under prevailing meteorological measure-

ment conditions (3)
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Figure 4 shows a histogram of the pairs data and Figure 5 shows the
logarithm of this histogram to emphasize the data in the tail area. The
sample actually consists of 4960 pairs data and is characterized by the

following statistics (see Appendix A):

sample mean :m = 997.1 ft

sample standard deviation : s =125.2 ft (4)
sample skewness : 81 = -0.00015

sample kurtosis : 32 = 4.33

Because there are no obvious physical reasons why the sample of pairs data
should be asymmetrical, and because of the small value of the sample
skewness, it will be assumed in the sequel that the observed distribution
is symmetrical about a value of 1000 ft. Tables 1 to 3 inclusive give the
corresponding histogram data for class intervals of 40, 20, and 10 ft
respectively. Notice the four isolated data points in the classes 62 and
63 of Table 3.

APPROACH TO THE ESTIMATION OF THE PROBABILITY OF VERTICAL OVERLAP

The modelling approach

The probability of vertical overlap PZ(IOOO) may be considered to be
the main parameter of the collision risk model. It is, of course, directly
related to the height-keeping performance of the aircraft as well as to
the vertical separation standard. The histograms of pairs data described
in Section two show no data points beyond class 63, i.e. beyond 630 ft
away from the separation standard of one thousand feet. From this obser-
vation, however, it is not allowable to conclude that such data points
have probability of occurrence equal to zero. What has to be done is to
extrapolate the observed histogram to the region of critical interest for
the collision risk assessment. As in previous assessments of the collision
risk due to the loss of separation, the tool to be used is a mathematical
model of the probability distribution of the vertical distance between
aircraft in a pair. For the range of data points observed, the modelled
distribution and the observed distribution are as close as possible in a

certain statistical sense. Beyond the range of data points observed, the
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modelled probability distribution is to represent the rare events that
could not be observed during the limited period of time during which the
data collection took place. Clearly, the choice of the modelled probabi-
lity distribution is critical for the collision risk assessment, and a lot
of technical/operational as'well as statistical knowledge and experience

is necessary to guide this choice.

To be somewhat more specific, the mathematical model consists of a
family of analytical probability density functions f(d) depending on one
or more parameters. In developing the model, the following three choices

have to be made (compare e.g. Ref. 10):

i) Which family of analytical probability density functions should be
considered?

ii) Which criterion should be used to uniquely select one member from
the family to represent the data?

iii) Which criterion should be used to evaluate the quality of the
resulting fit?

These questions will be discussed in the following three subsections. It
should be noticed that two criteria play a part. The criterion under ii)
is usually a mathematical criterion, with theoretically appealing
properties, leading to a reproducable objective numerical result. It
always remains, however, to verify whether these theoretically nice
properties are really important and representative for the practical
application at hand (step iii)). As a result, the process may turn out to
become an iterative process, in which some of the initial assumptions have

to be refined or changed in a later stage.

Selection of a family of probability distributions

The question of which family of probability densities to fit to the
data is not an easy one to answer. A great many choices are possible. Some
factors that may influence the choice are: ultimate use of the fitted
density, number of parameters, complexity of the parameter estimation
problem, prior knowledge about the data (i.e. the underlying physical
phenomena), the data itself. On the one hand the family should be
sufficiently rich to describe the data, whereas on the other hand it
should be avoided to overfit the data. '

]
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In Ref. 11, a total of seven analytical probability densities are
considered. They all are based on the Gaussian (G) and the Double Expo-
nential (DE) probability density. The Gaussian density is very well known,
and is for example applicable when a great number of independent error
sources ‘add up. The Double Exponential deﬂsity is known for its relatively
thick tail and is, therefore, particularly useful for getting cautious
extrapolations for collision risk assessment purposes. Some of the
densities considered in Ref. 11 are mixtures of two Double Exponential
and/or Gaussian densities, on the assumption that the overall population
consists of two sub-populations. Convoluted versions of (combinations of)
the Gaussian and Double Exponential densities are also included. It then
was concluded that the histogram of the pairs data looked like something
in between of a Gaussian and a Double Exponential density. A class of
probability densities which includes these two densities is formed by the
so-called Generalized Laplace densities. The Double Exponential density is
also known as the first Laplacian density. Some promising preliminary
results for the Generalized Laplace probability density, using some ad hoc

parameter values are already described in Ref. 11.

The family of Generalized Laplace (GL) probability densities fGL(d)
is defined by

1/b
L d
1 a
fou@ = 7mrey  © (3)
(a>0) where the Gamma function TI'(b) is defined by
re) = J et P71 ae (6)
0

This function is extensively tabulated, see e.g. Ref. 12. See also Figure
6. The b-parameter is called the shape parameter wheras the a-parameter is
called the scale parameter. The Generalized Laplace density reduces to the
Gaussian and Double Exponential densities for b=0.5 and b=1.0 respectively.
The Generalized Laplace density is also known as the power exponential .

density.
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The central moments of the Generalized Laplace density are defined
by

E{(g . u)k} = - w" £y ax %)

-0

Due to the symmetry about the mean value M, the moments of the Generalized

Laplace density are zero for odd values of k. For even values of k holds

I'(b)

k ak
E{(Q - ¥) } = T'((k+1)b) (8)

The skewness 81 is zero and the kurtosis 82 is found to be given by

_ I(5b) T(b)
52 = TGp) T =

The variance of a variable having a Generalized Laplace probability
density is given by

0%(a,b) = a? (10)

For a Gaussian density, i.e. a shape parameter of b=0.5, eqs. (9) and (10)
simplify to 82=3 and o=%a’/2. For a Double Exponential density, eqs. (9)°
and (10) yield 82=6 and o=a’2.

Although the family of Generalized Laplace densities is already
fairly flexible, it seemed useful to extend it somewhat by considering
mixtures of different Generalized Laplace densities. Mixture densities
have found wide applications in other fields as well (Ref. 13). Mixture
densities are particularly useful when different subpopulations can be
distinguished within the overall population. In the case of aircraft pairs
data, a distinction between relatively good performance in the core and
relatively bad performance in the tail would seem to be an appropriate

choice.

Thus, an appropriate model for the pairs data consists of the family
of the so-called Double Generalized Laplace probability densities, given

in formula by
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_u]1/b;

a 1

1

The family of Double Generalized Laplace probability densities is charac-
terized by five parameters, in addition to the mean value u, i.e. a
weighting factor @, two scale parameters and two shape parameters. It
includes the (single) Generalized Laplace density (a=0 or a =a, and b1=b2)
2-1.0) and the

Double Double Exponential (b1=b2-1.0) densities. Two more special cases

as well as the Gaussian Double Exponential (b1-0.5 and b

that are included are b1=b2, al#az, i.e. a mixture of two Generalized
Laplace densities with different scale parameters only and a =a,, bl#bz,
i.e. a mixture of two differently shaped densities with the same scale
parameter. In principle, either of the two component parts in eq.(ll) may
have the larger weighting factor. The descriptions core and tail density

will be used for the first and second density in eq.(ll) respectively.

The variance of a random variable having a Double Generalized

Laplace probability density is given by

2

02 = c’(a,al,bl,a ,b.) = (l—a)cf + ac? (12)

2" 2 2

where

P(3b1)
2 _ g2 = a2
0] = 9°(a)»by) = a] I(o) kol
and
F(3b2)
2 o g2 PR el
o2 =0 (az,bz) aj F(bz) (14)

The skewness of a Double Generalized Laplace distributed random variable

is easily shown to be zero, wheras its kurtosis is found to be given by

4 4
ty 2
B, (a,a, ,b. ,a,,b,) = (1-a) B,(b,) + a B.(b,)
2 1°71°72° 72 4 21 4 2°72
o (u’al’bl’az’bz) o (a)allbllazibz)

(15)

Notice that additional weighting factors (01/0)4 and (02/0)4 occur in
eq.(15). This is due to the normalization of the overall kurtosis by the

K |




3.3

-20-

With a view to a common approach to the selection of an appropriate
family of probability densities by the groups involved in the various data
collection studies to investigate the possibility of a 1000 ft vertical
separation standard, it is necessary to consider the families of probabi-
lity densities being used elsewhere, notably in the United States and in
Japan (Refs. 14-17). As is shown in Appendix B, there exists a large
commonality between the families used by the various groups. Further
studies in Europe on the basis of singles data also utilize the family of
Double Generalized Laplace densities or some particular sub families
(Ref. 18). '

It is finally remarked that it may not be necessary to estimate all
of the five parameters of the Double Generalized Laplace probability
densities simultaneously from the aircraft pairs data. The shape parameter
of the core and/or tail density, for example, might be fixed beforehand
when this is deemed useful. In that way, particular sub families of the
family of Double Generalized Laplace probability densities can be

examined.

Selection of a parameter estimation technique
Once a family of analytical probability density functions has been

adopted, the next question to be answered is (recall Section 3.1):

ii) Which criterion should be used to uniquely select one member from

the family to represent the data?

Because different members of the same family are characterized by
different parameter values, this question is essentially referring to a
useful parameter estimation technique. Various (basic) methods are
available within the statistical literature for estimating parameters of
probability densities from experimental data, for example (Refs. 19,20):

method of moments

- maximum likelihood estimation
- maximum a posteriori estimation
- minimum Chi-square estimation
- least squares estimation
Any of these methods may be extended or modified in order to obtain an

estimation method which is even mor; useful for the application at hand.
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In general, the choice of any particular estimation method depends
on two factors, namely the statistical properties of the pertinent
estimator and the computational complexity of the method. With respect to
computational complexity holds that in many cases an analytical solution
is not possible and that numerical solution techniques have to be used.
Moreover, the computational complexity will generally increase with the
number of parameters to be estimated. With respect to the statistical
properties of the estimation methods mentioned above, it is first remarked
that the least squares estimation method does not possess any general
optimum properties, although it does have certain optimum properties for
the "linear model" situation. The two most important estimation methods
then are the method of moments and the maximum likelihood method, where
the former is the older of the two. In some special cases the two methods
give the same results. In many cases the maximum likelihood method is
superior. Some advantages and disadvantages of the maximum likelihood
method are mentioned in Reference 14. The first advantage mentioned there
is that the maximum likelihood method provides probability statements
about parameter estimates and that confidence regions may be computed
(based on the asymptotic distribution of the ML estimator). As a second
advantage the use of the likelihood ratio test for comparing the fit of
different models is mentioned. According to Reference 14, the major
disadvantage of the maximum likelihood method is that it appears to be .
less sensitive to the data structure within the tail portion of the data
than to the structure of the core. In principle, however, this
disadvantage may be overcome by weighting the data in the tail more
heavily than those in the core. Moreover, the preliminary results
presented in Reference 21 show a fairly close correspondence between the

sample moments and the maximum likelihood estimates of the moments.

Taking the various observations ito account, the maximum likelihood
method will be used to fit the family of Double Generalized Laplace
probability densities to the pairs data as obtained in the European
Vertical Data Collection. It is worthwhile to remark that the (preliminary)
results of References 14 to 18 inclusive and Ref. 21 have also been

obtained by means of the maximum likelihood method.
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Evaluation criteria
As described in Section 3.1, the modelling approach to the estimation
of the probability of vertical overlap requires a third step to evaluate
the quality or fit of the resulting probability density model. This is to
verify whether the theoretically well-defined results of the previous two
steps meet the practical objectives of the study. In the case of the
European Vertical Data Collection, the objective is to obtain the "best
possible” estimate of the probability of vertical overlap, given the
limitations of the data sample. The main limitations of the data sample
described in Section two are that there are no data available in the
region of real interest (from the collision risk estimation point of
view), i.e. the region of vertical distances between aircraft in a pair of
approximately zero, and only few data points in the connecting region of
distances of the order of half the vertical separation standard. Due to
these limitations, it may be necessary to build in into the modelling

process some measures of cautiousness, in order to avoid underestimating

the probability of vertical overlap. One such measure could be the use of
a Double Exponential tail density within the mixture probability density
models. As it is very difficult to predict in advance how the combination
of the chosen family and the parameter estimation technique will perform
with regard to the limitations mentioned above, an independent evaluation

step is necessary.

The basic statistical tool for evaluating the fit of a proposed
model is the statistical test, for example the well known x2-test and the
Kolmogorov~Smirnov test. Although these may be useful for the overall
evaluation of the fit, they may not be fully satisfactory for evaluating
the fit in the extreme tail regions. Graphical means will, therefore,
extensively be used to describe and analyze the residuals. Conclusions
drawn from that may even overrule the conclusions drawn from the formal
statistical test. Some judgement will probably be necessary for this

evaluation.

Further insight into the properties of the best fitting probability
density model may be obtained by considering the likelihood function about
the estimated parameter values. For example, contour plots of the likeli-
hood ratio or the second derivatives of the likelihood function may be

used for establishing confidence bounds on the parameter estimates.
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MAXIMUM LIKELTIHOOD PARAMETER ESTIMATION OF DOUBLE GENERALIZED LAPLACE
PROBABILITY DENSITIES

Introduction

In this section, an algorifhm for the maximum likelihood method
applied to the family of Double Generalized Laplace probability densities
is derived. It consists of Newton's method for finding a maximum of the
logarithm of the likelihood function. Three aspects require particular
attention, viz. convergence qf the algorithm, existence of more than one

local maximum and computation time.

The likelihood function and its logarithm, i.e. the log likelihood
function, are introduced in subsection 4.2. The necessary conditions for
an extremum are derived, together with the sufficient conditions for a
maximum of the log likelihood function. Because of the large number of
individual data points (n=4960, recall Section 2), the number of terms
involved in these equations 1is very large, i.e. of the order of some
multiples of five thousand, where almost any term involves powers, loga-
rithms or exponentials. As a result, the amount of computation time needed
is relatively large, certainly when several initial guesses of the para-
meter values have to be investigated in order to obtain convergence and/or
all the local maxima. Therefore, a likelihood function based on grouped
data is introduced in subsection 4.3. Grouping the data into class inter-
vals of e.g. 40 to 10 ft reduces the number of terms from a multiple of
five thousand to a multiple of 15 to 60 and the amount of computation time
accordingly. Grouping of the data introduces, of course, some error into
the resulting parameter estimates. However, when the class interval is
sufficiently small, this error should be sufficiently small as well.
Moreover, the resulting estimates based on grouped data may be used as
already fairly accurate initial guesses for the maximum likelihood para-

meter estimates based on the individual, non-grouped data points.

The convergence of the Newton iteration process and the existence of
more than a single local maximum of the log likelihood function for Double
Generalized Laplace densities are difficult to analyze theoretically. A
few special cases, however, are considered in subsection 4.4. Firstly,
three single densities, all being special cases belonging to the Double
Generalized Laplace family are analyzed. These are the Gaussian, the

Double Exponential and the Generalized Laplace densities. The Gaussian and
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the Double Exponential case can be dealt with fully analytically, but
Newton's method is already required for the case of a single Generalized
Laplace density. Next, the Double Double Exponential sub family of the
Double Generalized Laplace family will be considered. As a result of the
lack of a full analysis for the general case, it may turn out that several
initial guesses for the parameter values have to be investigated, in order
to obtain convergence of the Newton process or to find all the solutions

of the maximum likelihood equations.

The likelihood function
Let a sample of pairs data of size n be given on the assumption that
the underlying probability distribution is Double Generalized Laplace.

The likelihood function L = L(a,al,az,bl,bz) is defined by

n
L(a,al,az,bl,bz) = 111 f(di) (16)

where di’ i=1,2,....,n denote the vertical distances between the aircraft
in a pair and f(di) is given by

d,-u 1/b2

1 H!
a 1 a
e

1 2
f(d,) = (1-0) e + O =Ty (17)
1 Zalb1 (bl) 2a2b2 (bz)

d —ulllb1

The log likelihood function oe-f(a,al,az,bl,bz) is obtained by taking the
(natural) logarithm of the likelihood function L = L(G,al,az,bl,bz).
Hence,

n
t()-l)(a,al,az,bl,bz) = log L(a,al,az,bl,bz) = I log f(di) (18)

i=1
or
) cli-l-l‘l/b1 i di-ull/bZ
1)(‘1 a,,a,,b.,b,)= t;; lo {(1-0.) 1 o g + 1 " .
T2 12 8 Za b, T(b)) b, T |
i=1 171 1 272 2 (19)

)
I
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The main advantage of taking the logarithm of the likelihood function
based on mixture densities is that the product as in eq.(l16) is replaced
by a summation as in eq.(19). When no confusion exists about the arguments

of the (log) likelihood function, these will be suppressed.

The log likelihood function l?depends on six parameters in total,
i.e. on “,al,bl,a2 and b2 on the one hand and the parameter ¥ on the
other. The usual way to formulate the necessary conditions for an extremum
of the function £ is to take the partial derivatives with respect to the
parameters and to equate these to zero. However, the variable Idi-ul,
i=1,2,...,n as a function of ¥ is not differentiable at the point u=di.
Thus, obtaining the maximum of the log likelihood function over the
parameter M requires a different approach as can be used for the other
parameters. To avoid this complication, ¥ will be treated as a known
parameter. In fact, it will be taken to be H=1000 ft, in conformity with

the discussion of the aircraft pairs data in Section 2.

The necessary conditions for an extremum of the log likelihood

function fnow become

E, = g£ - iti Wé-i—) : £(d,) = 0 (20)
E, = .‘jzf; 151 ?(‘IIT g—azf(di) =0 (22)
E, = gé’l- 151 ?(—é; §Elf<di> =0 (23)
Eg = :?,éz; 131 Ell? -gng(di) =0 (24)

These equations are usually called the likelihood equations. The system of
equations (20)-(24) is highly non-linear in the unknown parameters
a,al,az,bl,b2 and, therefore, needs to be solved numerically. This is done
here by means of Newton iteration, i.e. by linearization of the system

(20)~(24). The linearized version of the system reads:
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[3— £(d,) + (%sz(di) f(cll 5 3 £(d, ) - £(d )) A, *

%

S £(d,) - f(;i) % £y =ep) by

£(d,) - f(‘lli) 325 £(d,) = £(d,) )

£(4,) - f(clli) 33—1 £(d,) 3= £(d,) ) Mb, +

£(d,) - f(clli) 3_% RS f(di)) Asz =0 (25)

) 32 -

aal > 1 1
1 3
f(di) f(di) a—a—l" f(di) aal f(d )) Aal +
1 3 3
-—-——-2- f(di) - -fT&i—) a—a-; f(di) -E f(di)) Aaz +
£(dy) f(cli ) % £(d)) a_:_ f(d1)> 4b, +
1 i 1 1
1 3
f(di) - -m—) TN f(di aa f(d. )) 2:' =0 (26)
2 i 2
) 32 1 )
" lﬁz £(d,) + (Baaaz £(d,) - @D 8a £(d,) 50— s £(d,)] Ao +
1
= £(d,) - f(di) aa E(d) az f(d )) da, +
1
£(d,) - 773 ) aa2 £(d,) 3 az £(d )) a, +
1
, £(d;) - cn ICI] ab £(d,) 5=— az £(d )) ab, +
e -
. £(d,) - ¥73 ) ab f(di)aaz f(di)> Abz] =0 (27)

32 1 3
[ abl f(di) + (aaabl f(d ) - f(d @ 3 f(di) f(d )) Aa +

'QJ
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1 ]
8 b f(di) - ?TEZT 52— f(di) EEI f(di)> Aal +

St
1

( 2 £(a L2 fd) == £(d ) A

¥ 92,06, (dy) - £(d)) 3a, (d;) 33; £(dy)) 8a, +
13 ‘

% (a : £(d,) - D %, £(d,) 5o f(d )) tb, +
+ ( B £(d.) - e <P £(d. ) £(d )) Ab } =0 28

56;5b2 i £(d)) 53; 4 FFI i 2] (28)

. ] { 9 < 92 19
2wy |35, @0 + (e 16 - mray B T 8b £a,) e +

32 1
* (55'53‘ £(d)) - 14 HEW) aa £(dy) 5“ £(d ))

32 1
+ (%;-gg- £(d,) - 777y 5 38 £(d,) ab £(d )) ba, +

%P9 2 2
- (_in__ Fld.) = i £(d,) 5 f(d )> Ab, +
9, 1 " F(d) 3b i i 1
+ < 3 £ L2 ) £(d ) Ab } . 29
‘a‘sg(ﬁ'f(di)’éb—z(i)sg 1)) 8by| = (29)

The various partial derivatives are given in detail in Appendix C.
Symbolically, the linearized system (25)-(29) may be written as

N, N 9 R Iy
M2 NZ 02 Q2 RZ Aal LZ
M, N, 0, Q Ry ba, |= -| L, (30)
W, N, 0, Q &R, 8b, L,
A
M, B3, 05 Q5 R 5, L
or as
Aa
Aa1
(MNO) Aaz = - L (31)
Bb,
b,
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Each of the elements of the coefficient matrix and of the right-~hand side

vector in eq.(30) is to be evaluated for the current values ui, a , a

’
i 21

b1 . b2 of the parameters of the Double Generalized Laplace
. - probability densities. The system (30) may be solved with any
routine for solving systems of linear equations, for instance with

subroutine FO4ATF from the NAG subroutine library which is based on

Crout's factorisation method. Once the system of eqs.(30) has been solved,

new parameter values are computed by adding the corrections Aa, Aal, Aaz,
Abl’ Ab2 to the current values. The solution process is stopped when
either

max {|E,|,|E,|,[E5],|E, |, [E(|} <€ (32)

, with € = 1.0x10~10

limit, usually 25.

s or the number of iterations exceeds a specified

Any solution of the likelihood equations does not necessarily define
a maximum of the log likelihood function. In order that a solution does
define a maximum, it is sufficient that the matrix of second partial
derivatives of the log likelihood function be negative definite. It turns
out that this matrix is just the coefficient matrix MNO of the system of
egs. (30). |

So far, it has been assumed that the complete set of parameters
a,al,az,bl,b2 had to be determined. In fact, any subset of parameters may
be determined, on the assumption that suitable values of the remaining
parameters are known, by taking the appropriate rows and columns from
eqs. (30). The following selection was made for the purpose of the present

investigations:

case | parameters to be estimated | parameters known

S a,al,az,bl,b2 none

S4 a,al,az,b1 b2 (33)
S3 a,al,a2 bl’bZ

S2 a,a1 az,bl.b2
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Once the maximum likelihood parameter (point) estimates have been
determined, it is of interest to have a closer look at the likelihood
function or the log likelihood function at and about the point obtained in
the parameter space. Firstly, the value of the likelihood function
obtained for the maximum likelihood estimates of the parameters is of

interest. This value may be expressed as

n
a ~ ~ - € =
L(®,d,,3,,5 ,5,) 121[ Prob {d, € [d,,d  + Adi)l Eld }=u} / Adi]
) d;-H(1/8; _ d;-¥1/8,
B - e 1 el e 2 (34)
fmi 23,5, T(5)) 23,5,T(5,)

It is a relative maximum value in the sense that it is always smaller than
the value that would be obtained for the same parameter values, but given
that the mean value of each observation 91 (i=1,2,...,n) had been exactly
the observed value di' Hence, the absolute maximum value of the likelihood
function may be expressed as

n

L,(®,a,,3,,5,,6,) = 111{ Prob {d, € [d,,d, + Adi)l Eld, }=d,} / Adi]

n
"o

1 1
[“'” 755,76 . 7,5, (5,) ] (35)

i=1 171

The standardized log likelihood value is defined by

(PZ -f) (0’51952381)52) - 108 Lz(a551’52951982) e log L(a!al’az’sl’sz)

- % 1o e zalélr(sl) i Zg‘2ézr(52)
5 B ks _ di‘“ll/sz
(1-0)— A : +ame %2
P\ 2P (By (36)
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Secondly, the likelihood function in a neighbourhood of the point in
the parameter space defined by the maximum likelihood estimates may be
considered. More specifically, the relative likelihood function
R(a,al,az,bl,bz) is defined by

L(a’aliaz’blibz)
R ’ b ’b - -~~~ ~
(0:2)232:010%)) = 1@55,,5,,5,) (373
and the likelihood ratio statistic by
A(a,al,az,bl,bz) = -2 log R(a,al,az,bl,bz) (38)

Asymptotically,the likelihood ratio statistic has a x2?-distribution with 5
degrees of freedom (Refs. 22,23). It is difficult to visualize the relative
likelihood function and the likelihood ratio in a five-dimensional space.
As a solution, contours in the planes defined by any two out of the five
parameters are usually drawn. For the remaining parameters, the maximum
likelihood point estimates are substituted. The likelihood ratio statistic
can be used for constructing confidence bounds on the parameters, because
its asymptotic distribution is x%. A joint 95% confidence region for all
of the five parameters of the Double Generalized Laplace probability
density is defined by the relation

“ix%gs (5)
R(a,al,az,bl,bz) = ‘77 (39)

where x? 95, (5) denotes the 95 percentile of a variable having a x?-distri-
. ’
bution with five degrees of freedom. Similarly, confidence regions for any

subset of two parameters, e.g. o and a, may be defined by the relation

2
=X

~ = ‘95’(2)
R(a,al,az,Bl,Bz) e (40)

where 52, 51, and 52 again denote the maximum likelihood point estimates
of the pertinent parameters and where x? 95, (2) denotes the 95 percentile
. s

of a variable having a x?-distribution with two degrees of freedom.
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Finally, the asymptotic distribution of the maximum likelihood
estimator itself should be mentioned. It is well known that, under certain
regularity conditions, the maximum likelihood estimator is jointly
Gaussian distributed with covariance matrix given by the inverse of

Fisher's information matrix. More specifically,

cov

o

o o) [ [ [
N =~
1oy o) | | |
N -
—

]

2

bl) A5l el el il
[t il ol el i) |

U o G =T = ¢

E{aag;g} E{aa::bz -} E{Téz%b;f} E{Bb::bz Q E{%;g‘g}

In this equation, the vector (8, al,az,Bl,B ) denotes the maximum
likelihood estimator of the parameter vector (¢, al,az,b ,b ) andJQ
denotes the log likelihood function defined by eq.(18) with the maximum
likelihood estimator as argument vector. Because of the occurrence of the
expectation operator E{.} in the matrix to be inverted in the right-hand
side of eq.(41), that matrix is called the matrix of expected information.
As may be seen from Appendix C, the mean values are not easily expressed

in closed analytical form. A useful approximation then is the matrix of

observed information, i.e.

T
8 8
& L) "
cov{ g, £ } = - (FOI(u.al.az.Bl,Bz)) (42)
5, || 5,
5,/ \&

N
N
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where the matrix FOI(a,al,az,bl,bz) is defined by

2 STL) QR G

daZ 3ada, 3ada, 3adb, m;

22 32 22/ 22J 32f
8a3a1 3a§' 3a13a2 3a13b1 3a13b2

a2 a2 [ 32 a2f 22 f
3ada, 3a,%a, a—a;r 3a,3b, 3a,3b,

32 a2 321’ a2f 22 [
3a3b, 3a,3b, 3a,3b, E’f 9b,3b,

32£ 22 [ azf 32 f 32(
303b,, 9a,9b, 9a,9b,  3b b, 3b2 (43)

with f=‘()(a,al,a2,bl,b2) defined by eqs.(18) and (19). It should be
noticed that the matrix FOI(a,al,az,bl,bz) is exactly equal to the
coefficient matrix MNO defined by eqs. (30) and (31) and resulting from
the linearization of the likelihood equations (20)-(24). Recall that the
matrix MNO should be negative definite for a solution of the likelihood
equations to define a maximum of the log likelihood function. Hence,
taking the minus sign in equation (42) into account, a positive definite

asymptotic covariance matrix results.

In the foregoing paragraphs, the standardized log likelihood value,
the relative likelihood function, the likelihood ratio statistic and the
asymptotic distribution all have been discussed for case S of eq.(33) i.e.
for the case of five unknown parameters. The discussion can be adapted
4° S3, and S

known parameters from eqs.(34) to (43).

straightforwardly to the cases S by deleting the pertinent

2

The likelihood function based on grouped data

i to be used in the maximum

likelihood method as described in Section 4.2 is so large, it is desirable

Because the number of data points d

to have a method with which the results of the former method can be

approximated fairly accurately, and which is much more efficient from the
point of view of computation time needed. The method to be described here
is based on grouping the individual data points into classes as a reali~

zation of a multinomial probability distribution. As a result, the
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summation over the number of individual data points reduces to a summation

over the number of classes considered.

Consider a subdivision of the vertical distance d-axis as shown in
Figure 7. The class interval is denoted as w and the number of classes is
m. Let the random variable d denote the vertical distance between the
aircraft in a pair. On the assumption that the probability density of d is
Double Generalized Laplace, it follows that

P, = Prob{d € [p+(i-1)w, p+iw) v (p=iw,p=-(i-1)w]l} =

= 2 Prob{g € [u+(i-1),w,u+iw)}

u}iw
= 2 f (x)dx 9 i=1,2,o--’m (44)
Hd=1)y Dok

Let X denote the number of vertical distances observed in class i in a
sample of size n, class i being the conjunction of the sets Myt (1-1)w,
u+iw) and (w-iw,d-(i-1)wl, for i=1,2,...,m. The variable x, then is
binomially distributed with parameters n and Py In order to keep the
variables p; as a function of the parameters a,al,az,bl,b2 of the Double
Generalized Laplace probability densities as simple as possible, it is

useful to use the following approximation:

Py ~ 2w fDGL (u+(i-3)w) (45)
or
_ ((1-&)»:) t/b) (e t/b,
P ~2w{(1-a)——1-——e g I S }
i 2a1b1r(bl) Zazbzr(bz) (46)

, 1=1,2,...,m

Thus, the probabilities Py» i=1,2,...,m are proportional with the values
of the Double Generalized Laplace probability density in the centres of

the classes.

Next, consider the joint probability distribution of the random
variables Xis Xpreees X0 It is clear that their distribution is

multinomial with parameters PysPysecesPp and n. Hence,

< X X X

n! 1 772 m
Problx;=x), x,=xp, o0y xp=x ) = x 0% leex 1 P1 P2 oo P (2
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with the probabilities Pyo i=1,2,...,m given by eq.(46) and with
I x,=n (48)
and

> P; ™ 1 (49)
i=1

The likelihood function L = L(a,al,az,bl,bz) is defined by

_ n! b *n
L = L(a,a,,a,,b,,b,) = x Lokl Pl P2t Py (50

and the log likelihood function £=£(a,al,az,bl,b2) = log L becomes

m
2.0 s
=t (%apaaybyby) = log e T T T B X 1B Py Tl
1552 m i=1
Using eq.(46) and defining
1 n!
A = o8 XI!XZ!"'xm! (52)
it is found that
¢e=f(a,a1,a2,b1,b2) = A+ n log 2w +
_((i-i)w)llbl _((i_”w>1/b2
m a a
1 1 1 2
+ I x, log (1-0) s———=7— e + 0 y————— e
=1 i 2a1b1F(b1) ZaZbZP(bZ) (53)

Eq.(53) defines the log likelihood function for grouped data, with the
probability of an outcome in any of the classes being determined by the
Double Generalized Laplace probability density.

It is useful to make a comparison between the likelihood functions
for non-grouped data, eq.(19), and for grouped data, eq.(53). In fact,
only the parameter dependent part, i.e. the last expression, of eq.(53)
needs to be considered. When the class interval w is small, the quantit&
(i-3)w is a good approximation for |dj—ul for any individual data point j

of class i. When, in addition, the factor Xy is written as a sum over all
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the individual data points j of class i, and this summation is further
summed over all the classes, effectively a summation over the individual
data points as in eq.(19) will result. Thus, it may be expected that
parameter estimates obtained by maximizing the log likelihood function
for grouped data, eq.(53), are a good approximation of the parameter
estimates obtained by maximizing the original log likelihood function,
provided that the class interval w is sufficiently small.

The necessary conditions for an extremum of the log likelihood

function for grouped data become, similar to eqs.(20)-~(24):

1? m Xy ap
%, - .o (54)
1 3o i-l pi i

BB m xi api

E.2sao—m—= [ —=— =90 (55)
2 aal Gl pi 3a1
m x, op
E, = 24 - L 1. (56)
i=1 Pi
m x, 9p
1 i=1 Pi °1

m x, op
2 i=1 Pi P2

These likelihood equations are again non-linear in the parameters
a,al,az,bl,bz, and are solved, therefore, numerically by means of Newton's

method. Their linearized versions read:

m X p 9%p 9p, p
: A 2+ ( ol YLD S S ) Aa +
a0 aa

i=1 Py TR
2 2
+ ° pi - 1 331 EEE ) Aa +< i pi l— 3Pi api > Aa,. +
3a3a, ~ p, da, oc 1 33532 Py 53; “da 2
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2
ol S Py - 1 Py Wy
: 3a 3032 o ricrall B
i=1 Py 1 g 1

9a;db;  py b, 3a; 1%%; 2 93
2
N [ 9y ( py  , 3y Wy )
2 , - iy Ak &
=1 pi aaz 8a3a2 pi oa Baz
%p; | 9Py 3y %p; | Py Oy
+< -———)A81+(a—-2— >A82+

3%p 3p, op 3%p ap, dp
+<a_._i_.._1_._1_i)Abl+< i _L-—i——i> Abz]-O(Gl)

Bazabz Py ob, 0da

m X op 3%p 3p, op
i [ " ( 1 .1 "Fx Ny ) ke &

j=1 Py abl aaabl Py Joa abl
2 2
+(”i_1_ﬁﬁ>,m (a"i-l_?_ii"_i)Aa+
3a b,  p, 3a, ab, 1 3a,0b,  p; 9a, 3 ) %2

B Ao +
i=1 Py 8b2 Baabz Py Jda 3b2
2
. api_Li’zi’z)Aa+ ‘“’Pi_l_ﬁi‘iz)l,“r
9a, ab ob 1 9a, ob Py aaz ob 2

%
e VU (-;in . %I ;;i ;;% ) Abz] =0 (63)
The partial derivatives in the eqs.(59)-(63) are very similar to those in
eqs.(25)~(29). In fact, they can immediately be obtained from the
expressions given in Appendix C by the following steps: (i) replace f(di)
by Py in the left-hand sides of eqs. (C.l) to (C.20) inclusive, (ii)
replace di-u by (i-})w, and (iii) add a factor 2w to the right-hand side
of each of the eqs.(C.1) - (C.20). The system of egs.(59)-(63) may again
symbolically be written as (compare eqs.(30) and (31)):
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Ao
Aa1

(MNO) Aa2 = -| L (64)
Ab
Ab

1
2

and be solved by means of the NAG library subroutine FO4ATF until the

desired precision is obtained.

From hereon, the same procedure as for the likelihood function based
on the original non-grouped data can be followed. The negative
definiteness of the matrix of second partial derivatives of the log
likelihood function for grouped data needs to be verified first for any
solution of the likelihood equations. Various subsets of parameters may be
estimated, keeping the remaining parameters fixed ét predetermined values.
Similar to (33), this leads to the cases G, G
following table:

4 G3 and G2 according to the

case | parameters to be estimated | parameters known

G a,al,az,bl,b2 none

G, | a»ajsa,sb, b, (65)
G3 @,a;,a, bl’b2

G2 a>a; aZ’bl’bZ

The calculation of the standardized log likelihood value based on grouped

data proceeds as follows. Firstly, compute

L(a’51’§2’51'52) = Prob {§1=x1,5 "’Em.xm,E{§1}= np, i=1,2,...,m} =

g g

X X X

n! 1 2 m
Tl =T Py = Py (66)
1 2 m

In this equation, PysPpseesP are computed by means of eq.(46) using the

maximum likelihood parameter estimates &,31,32,61,52. Next, compute
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L,(8,3a,,4,,6,,6,) = Prob{il-x1t52=x2,...,§m=xm|E{51}= x:} =

' L3 *1 Xy %o X\ m
- xl!xz?:..x ! (_n) (_H) (% (67)
m

The standardized log likelihood value is now defined by

m X
“~ooa ~ i
(lz—f)(a,al,az,ﬁl.sz) = log L2 - log L = 1£1 Xy log ;;i (68)

Finally, eqs.(37) to (43) inclusive dealing with the relative likelihood
function, the likelihood ratio statistic and the asymptotic covariance
matrix of the maximum likelihood estimator are directly applicable to the
(log) likelihood function for grouped data as defined by eqs.(50) and
(51).

Maximum likelihood estimation for some particular sub families of
probability densities

As follows from the two foregoing Sections 4.2 and 4.3, the para-
meter estimation problem resulting from the maximum likelihood method
applied to Double Generalized Laplace densities is very complex. This
applies to the non-grouped data case as well as the grouped data case. For
the latter, less computational effort is needed due to the much smaller
number of terms in the equations.. Although some subcases (SA—SZ’ GA-GZ)
have been defined for which the parameter estimation problem is somewhat
less complex, each of these subcases still involves mixture densities and
it is the mixture that highly contributes to the complexity. Hence, it is
worthwhile to consider some sub families of single densities as well. This
is useful, firstly, because the resulting system of maximum likelihood
equations is more likely to be accessible to analysis. Secondly, it offers
the possibility to investigate the improvement that can be obtained by
using mixture densities rather than single ones. The first sub family to
be considered is that of the Generalized Laplace densities, characterized
by both a scale parameter and a shape parameter. Next, the sub families of
Gaussian and Double Exponential densities, each characterized by a scale
parameter only, are investigated. Finally, a particular sub family of
mixture densities is considered as well, viz. the faﬁily of Double Double

Exponential densities.
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4.4.1 Generalized Laplace densities
The family of Generalized Laplace densities can be obtained from the
family of mixtures of Generalized Laplace densities by putting the
weighting factor o equal to zero. Both the non-grouped data and the

grouped data case are considered below.

Consider a sample of non-grouped data points di’ i=1,2,...,n. On the
assumption that the underlying probability distribution is Generalized
Laplace, the likelihood function is given by

di—u 1/b

3 1 - a

L = L(a,b) = I m e (69)
i=1

and the log likelihood function by
1’ [ n di-u l/b
=4 (a,b) = ~ n log 2ab r(b) - g ’ (70)
i=1 | 8

Maximum likelihood estimates of the parameters a and b are to be obtained
by maximizing the log likelihood function over a and b. The necessary

conditions for an extremum are found to be

n

3;() n,1 _1 1/b _
= - T |d -u| 0 _ (71)
’a a b a1+1/b i=1 1
n d,-y 1/b d.-p
ol ( d_ ) 1 i i -

Eq.(71) can be used to express the maximum 1ikelih60d estimate of the
scale parameter as a function of the maximum likelihood estimate of the

shape parameter b:

b n b
1/b
a= @ 6z (e | (73)
b n oo i
Substituting eq.(73) into the necessary condition (72) and using

d 1 d
p(b) = & log r(b) = T db r(b) (74)
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yields:
2N Yn D 1/b
£(b) = (bw(b)+l> (— T |d,-u] ) -= I (ld -] logld,-u]} +
n - i n f ] i 1 >
: q1/6\\ 4 D 1/b
- {b log b - b log {= I [d,-u] <— z |d,-ul =0 (75)
( (,n i=1 i )) n = i )

The function y(b) is shown in Figure 6.2 and a series expansion of it is
given by eq.(C.22) of Appendix C. As can be seen from eqs.(73) and (75),
the maximum likelihood parametér estimation problem for a Generalized
Laplace density can not be solved fully analytically. The maximum
likelihood estimate of the shape parameter has to be solved numerically
from eq.(75). This may again be done with Newton's method. Linearizing
eq. (75) yields

f(b)

Ab = - f—,zg)- (76)
where
r n
f'(b) = :7 [ ;1; z !di-ulllb loszldi-ul +
- P qm]
- (i T [d-u|'® 1og|d,- l) (h(b)+1+b>+
AP | » A
n
+ b é I ldi-ulllb> (b2 V' (b) + h(b) - b).( (77)
i=1 <
where
n
h(b) = b (w(b) - log b + log Ill z Idi-ull/b> (78)

i=1

-10
The iteration proces eq.(76) may be stopped whenever [E(b)]| < e=10""".

A sufficient condition for a solution of eqs.(71) and (72), or
equivalently eqs.(73) and (75), to define a maximum of the log likelihood
function is that the matrix of second partial derivatives is negative

definite. These partial derivatives are given by
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32 b+l 1 1 0% 1/b
'3—2'32( -gzﬁ—; Z|d U|/> (79)

a2l :
. -—;—“73 { log a +b) (;‘- z |a -ull/b) +;11- L |di-u|1/blog|di-u|}

adb 31+1 =
b i=1 i=1 (80)
d.-uil/b d. -u
az.e n [ 2y 11 2% ™ e }
E A B AL WL ral L
n |d,-ul/b d,-u
+21 ¢ |4 ‘ Yoo fc (81)
ni=1 a a

The matrix of partial derivatives is negative definite when its
determinant is positive and aZIVaaz is negative. Denoting any solution of
eqs.(71) and (72) by @ and b and using eq.(73) immediately gives

32-0 n

a—-z(a 5)-‘---5'2—6 (82)

and, after some analysis .

det(3,B) = 52%3 {55¢'(8) - 6 -62 -52y(B) - By(B) - 1 +

1/% di;u '
< 3 } (83)

log

d,~u

He

n
Z

3

+ L
8 -1/ 8

Eq.(82) is clearly negative for any positive estimate B, but eq.(83) is
not immediately seen to be positive for & and b satisfying eqs.(71) and
(72). Thus, it remains to verify by computation whether eq.(83) is
positive after the likelihood equations have been solved.

The standardized log likelihood value can be derived from eq.(36) by
taking a=0 in eq.(36). The resulting expression is

,0 £= z 1 : Ql/b . - L% (84)
2 =1 °g di—u 1/b ¥

a

e

Using eq.(73) this may be further simplified as

1)2-[)-115 : : (85)
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where b denotes the maximum likelihood estimate of the shape parameter b

of the Generalized Laplace densities.

Consider now the likelihood function for data grouped into m classes
with the underlying distribution of the data points being Generalized
Laplace. It is given by

1/b
(i-i)W) =

L= ! u <2w ——-—l [ ) (86)
1x ! 1
xl.xz....x Yoyal 2abTI'(b)

whereas the log likelihood function is

m 1/b
Jf- A+ n log 2w - n log 2abl'(b) - L xi<££§ilgj (87)
i=1

In these equations, X; denotes the number of observations in class i,
i=1,2,...,m and A is given by eq.(52). Notice the similarity between the
two log likelihood functions given Ey eqs. (70) and (87). As a result, the
necessary conditions for an extremum of this log likelihood function are

also very similar to eqs.(71) and (72), namely

af n,1 1 o )”b ~
B = + 5 FWS iilxi<(i—!)w =0 (88)

m 1/b
E_E - (bd—r‘(b) + I‘(b)) B -;-, z xi<ii—"-2‘—’) 108(‘(%&> =0 (89)
=1

3  _ br(pb) \’db

Clearly, the summation now is over the number of intervals, and the
individual distances Idi—u| have been replaced by the distances of the
centres of the classes to the mean value. The maximum likelihood estimate
of the scale parameter a can be solved from eq.(88) as a function of the

estimate of the shape parameter b:

B8 Enfeo)™ )
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Compare this estimate with eq.(73) for the non-grouped data case.
Substitution of eq.(90) into eq.(89) gives for the maximum likelihood

estimate of the shape parameter b the following non-linear equation:

1 m 1/b 1 m 1/b
g(b) = (bw(b)+l){- I x <(i-!)w) }- - I {x ((i-})w) log((i—!)w)} +
n i=1 i n sl s

' , 1/b , 1/b
- {b log b - b log = pX xi<(i-!)w) }{H X xi((i-!)w> } =0 (91)
i=1 i=1

Compare eqgs.(91) and (75) for the grouped data and the non-grouped data
case respectively. Like eq.(75), eq.(91) needs to be solved numerically.
This may again be done by Newton's method. The correction Ab after
linearizing the function g(b) around b is given by

- _ g
b = - 275 (92)

with g(b) defined in eq.(91) and g'(b) given by

1 ;] 1/b
g'(b) = ¢z {; izlxi((i_”w) log?((i-1)w) +
, O 1/b
- {- Ix ((i-i)w) log((i-!)w)} (k(b) + 1 + b> +
noL 1
, 1/b
+b {— Ix ((1-§)w> } {bzw'(b) + k(b) - b} ] (93)
n 1=1 i
where , m 1/b
k(b) = b {¢(b) - log b + log o z xi((i-})w> } (94)
i=1

Eqs.(93) and (94) are straightforward generalizations of eqs.(77) and (78)
for the non-grouped data case. In the same way, the eqs.(79) to (83)

generalize. The sufficient conditions for a maximum become

‘g%£ (a,b) = - 2 < o (95)

a%b

and
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) ‘
det(a,b) = ;ggn {bs P'(b) - b -~ b2 ~ b2Y(b) - by(b) +

m » 1/b _
“teps g () e (@ 1o e

where a, b now denote any solution of the likelihood equations (88) and

(89) for grouped data (rather than the true parameter values).

The standardized log likelihood value can be derived from eq.(68) by
substituting the appropriate expression for pi:

m
fz -f = 121 x; log xi (i—i)w)wb (97)

W - a
¥ 2abr(p) ©

Evaluating this gives, with the aid of eq.(90):

m
1) -f-nb+ I x, log x, - n log 2w + n log M) (98)
5 jm] 1 L "

where a and b denote the maximum likelikhood estimates. Eq.(98) may also
be expressed as a function of b alone by means of eq.(90), but this does
not provide any further essential insight. Notice the common term nb in
the two expressions (98) and (85) for the standardized log likelihood

value for grouped and non-grouped data respectively.

4,4,2 Gaussian densities
The Gaussian density is a member of the family of Generalized
Laplace probability densities. Its shape parameter is equal to 0.5. Hence,
it may be expressed as

_(.;u)z
1 a
@ = ros ¢ 49

The scale parameter a is related to the standard deviation by the relation
a = o/2. Further holds that I(0.5) = Vm. Eq.(99) may thus also be written

in the more familiar form
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Q

&)
£(d) = 0712—" o VY2 (100)

Consider the non-grouped data case first. The log likelihood
function for the Gaussian probability density follows immediately from
eq.(70) if b = 0.5 is substituted in it. Thus,

[.0
=4 (a) = - n log a I'(0.5) ~ ¢ —;—E) (101)
i=1

where di’ i=1,2,...,n denote the individual data points and n is the

sample size. Taking the derivative with respect to the scale parameter a

and equating that with zero yields, similar to eq.(71):

n
n 1 -2 =
. + 2 Py ifl (di i) 0 (102)

This gives the following explicit expression for the maximum likelihood

estimate of the scale parameter, similar to eq.(73):

1 2 b
i=y2 {E 3 (di-u)z} (103)
i=1

Because the scale parameter is equal to ov2, eq.(l03) basically expresses
that the maximum likelihood estimate of the standard deviation of a
Gaussian variable with known mean value p is equal to the sample standard
deviation with known mean value p. The second derivative of the log

likelihood function becomes (see eq.(82)):

dﬁe " 2n n
i A) =-gxw - - (104)
- I (di-u)2
j=1

and is negative. The standard deviation o(a) of the maximum likelihood

estimate of the scale parameter thus becomes

o(ad) = 7% (105)
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For grouped data, distributed over m classes, the maximum likelihood

estimate of the scale parameter becomes from eq.(90) for b = 0.5:
~ m ' 2 !
2= {l I ox ((1-;)»:) } (106)
n 1 2 §

Clearly, when the number of classes m increases over the same domain,
eq. (106) approaches eq.(103) for the non-grouped data case. The
standardized log likelihood value can be computed from eq.(98) for b =
0.5.

Double Exponential densities
The Double Exponential density also belongs to the family of
Generalized Laplace densities, viz. with shape parameter b = 1.0. Thus, it

may be expressed as

1

f (d) ='§;

DE (107)

e

The scale parameter a is related to the standard deviation by o=av2.

The log likelihood function for the Double Exponential density
follows again from eq.(70) for non-grouped data. Taking b=1.0 yields

i) n
= -n log 2a - I
i=1

di—u

a

(108)

Taking b=1.0 in eq.(73) yields the maximum likelihood estimate of the

scale parameter of a Double Exponentially distributed variable:

L 3 4 -ul
a==1I d,-u (109)
n =1 2

Thus, the maximum likelihood estimate of the scale parameter is exactly
the average distance between the data points di and the mean value u. The
second derivative of the log likelihood.function with respect to the scale

parameter is
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2 n
i=1

For a defined by eq.(99), this can be expressed as

d2
"gd - gl (111)

a a

Hence, the estimate given by eq.(109) does indeed define a maximum of the
log likelihood function. The asymptotic standard deviation of the maximum

likelihood estimator of the scale parameter is found to be

"~ n
-~ a 1 (1
i=]
For grouped data, distributed over m classes again, eq.(90) for b=1.0
gives as an estimate
2
a

;El Xy ((i-!)w) (113)

-1

n
As for the non-grouped data case, this estimate is easily shown to define
a maximum of the pertinent log likelihood function. The asymptotic

standard deviation of the maximum likelihood estimator for grouped data is

also given by O(a) = a/’n. Using the estimate eq.(l13), this gives

2_1(1%
oy - 2= A (2 = xi«i-!)w)) (114)

4.4.4 Double Double Exponential densities
The Double Double Exponential (DDE) density is a mixture of two
Generalized Laplace densities, where the shape parameters of these two
densities are both given a value of 1.0 (one). The DDE density has been
used extensively in modelling aircraft navigation and height keeping error
data. Mathematically, it is defined by the relation

d-#

1
fDDE(d) = (1-2) E;I e B ——; e (115)
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The three unknown parameters, in addition to the mean value u, are the
weighting factor a and the two scale parameters a, and ay. These
parameters can be estimated as for the general case described in the
sections 4.2 and 4.3 for non-grouped data and grouped data respectively,
by applying Newton's method to the appropriate system of likelihood
equations. Two particular problems will be analyzed below. The first
problem concerns the question whether the Double Exponential (DE) density
defines a local maximum of the likelihood function for the DDE family of
densities. It turns out that this is the case indeed. The second problem
concerns the question what will happen to the iterants of the Newton

process when the initial guesses a, and a, » say, for the two scale

parameters are the same. This 10choice 0 of initial values means that
the initial density is DE. It turns out that the density remains DE
throughout the iteration process, but that the iteration process may
either converge or diverge, depending on the initial value alo=a20. Only
the case of grouped data will be analyzed explicitly. It will be seen
that the case of non-grouped data may be analyzed in exactly the same

manner.

The log likelihood function for the family of DDE probability
densities and grouped data (with class interval w) is

(-1 -(i-b—
Xy log{(l-a) Eé_ e 1 + a ié— e 2 } (116)
1 2

J?= A + nlog2w +
i

N ~mB

1

with A given by eq.(53), m being the number of classes and X i=1,2,...,m
the number of observations in class i. The necessary conditions for an

extreme value of the log likelihood function are:

-(1-3)-¥ ~(1-3)-=
: f B o I = 2) _ (117)
T Sadiid -Z p. \ 2a € 34, T -
i=1 i 1 2
- (i~ =
aﬂ o "1{ 1 | ((i—l)w 1)} -
— =2w (l=q) I — { s— e —_— - =0 (118)
o Y gm Pp 178 ST
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P m X -(i-!);‘z
P e E .t { Eé— e < (Liggl! o ;l >} =0 (119)
2 1=1 P31 2 2 2
with p., 1=1,2,...,m defined by
-(1-H* -(1-H"
- { ey L S 2 } -0 o
Py 2w §(1-a) 231 e + zaz e (120)

The factor 2w after the first equal sign in eqs.(117)-(119) will be
dropped in the discussion to follow.

The first question with regard to the likelihood equations
(117)-(119) is whether a Double Exponential density satisfies this system.
As a DE density may be expressed as a DDE density with arbitrary weighting
factor but identical scale factors, the question is whether solutions of
the form @,a,a exist of eqs.(117)-(119). It follows that such solutions
satisfy eq.(117) and that they satisfy eqs.(118) and (119) as well if

m
(1-a) 121 x (ii—;*# -%) =0 (121)
and
m
a I Xy (ﬁi:%lz - ﬁ) =0 (122)
i=1 u

Eq.(121) gives either a solution for a:

l1-a=0 (123)

m
3 X, (ii:%lﬂ - é) =0 (124)
1

The first solution, i.e. eq.(l123) gives o=1.0, which substituted into
eq.(122) gives again eq.(124) or ’ '

w)

m
z xi(i-i)w : (125)
i=1 ¢

(]
=R
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Eq.(125) is exactly equal to eq.(113) of Section 4.4.3, defining the
maximum likelihood estimate of the scale parameter of a Double Exponential
density. The other solution of eq.(l121), i.e. that solution for a defined
by eq.(124) ylelds exactly 2 defined in eq.(125). Substituting that in
eq.(122) gives ox0=0, which is satisfied for any value of o. Indeed, when
both the densities making up the mixture have the same scale parameter,
the value of the weighting factor is undetermined and of no relevance. The
same conclusion is arrived at when eq.(122) rather than eq.(121) is taken
as the starting point of the analysis of the system of eqgs.(121) and
(122).

Thus, it has been shown that the DDE density with parameters a,%,g,
which is effectively a DE density with parameter 2 satisfies the
likelihood equations for the family of DDE densities. Considered as a DE
density, it defines a maximum of the log likelihood function within the
family of DE densities. However, it remains to see whether, for an
arbitrary value of a, it also defines a (local) maximum of the log
likelihood function within the larger family of DDE densities. Let
H(a.al,az) denote the Hessian matrix of the second partial derivatives of
the log likelihood function for the family of DDE densities. It follows
that H(a,a,a) is given by

A/ Y2 m Y\ 2
H(a,a,a) =| © (1—a)’-§ I!I:l x {(3’_9:_ & 42 -(-a) (—1+ —:) } -a(l-a)? I x1<-1+ —:)
% i a i=1

m Yy 2 1 B 2 Y1 Y1\2
0 -a2(1-a) I "1(’“’ -71‘) a’;, xlxi{(y—a) = = #D sl —=

1=1 1
(126)

where y; < (i-})w. This Hessian is singular, indicating that the weighting
factor o is undetermined. This is correct, because the weighting factor
should not play a part in a mixture of two identical probability
densities. A Taylor series expansion of the log likelihood function
defined by eq.(116) around the point a,a,a gives

f(a,al,az) =£(a,a,a) + (b2, ba,) H,(a,a,a) (da Aaz)T (127)
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where Hl(a,a,a) denotes the non-~trivial submatrix of the Hessian (@,a,a),

i.e.

m y Yy m Yi\ 2
(l-u)z-;;illxi{(i})z— i 42-(1-0) (-1+ —:)’} —u(l-u)’iflxi(-u —:) \

. m Y\ 2 m 2 Yi yi 2
-a2(1-a) I xi(—1+ -—:) c’;}itlxi{(y—:) - = +2-a(-1+ — } }

i=]

Hl (a,a,a) =

(128)

Notice that the zeroth order term in the right-hand side of eq.(127) is, .
in fact, independent from ¢ as follows from eq.(116). For a local maximum
in the point a,ﬁ,?, it is sufficient that the matrix Hl(a,’a‘,ﬁ) is negative
definite. This is the case when its upper left element is negative and its

determinant is positive. Hence

1 1 m 2' m m
E(l-m)2 & {—(1+a) <1§1xiyi) + a (tilxiyf) (1£1xi)} <0 (129)

and

2 m 2 m m
det(Hl(a,g,ﬁ)) = —az(l-a)zsu {-2(;£1xiyi) + <;£1xi) (;ilxiyz)} >0 (130)

Notice that the sign of det(Hl(a,§,§)) does not depend on o. The validity
of the relations (129) and (130) can easily be verified numerically for

the given numbers of data points Xg» i=1,2,...,m.

All the considerations above apply to the log likelihood function
for grouped data, eq.(116). This, and all the following equations can
formally be converted into their equivalents for non-grouped data by means

of the following set of substitutions:

m *n
A +0
(i-Hw + [d;-ul
2w * 1

(131)
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Hence, the results obtained for grouped data, apply to the case of

non-grouped data as well.

Consider now the numerical solution of the likelihood equations
(117)-(119) by means of Newton's method. The linearized versions of these
equations can be derived from the general case discussed in Section 4.3,
i.e. eqs. (59), (60) and (61) by ignoring the terms with Abl and Abz. This

gives

~ 2
DI, (R Ly,
i-lpi [ oa pi o a0,
2 2
+ api_.l_apii::.)A +<_._api_.]:._ig!:api A +_aﬁ]=0
dada, p, da, 0 | d0da, p, da, o 22 3a |
1 i 1 2 i 2 (132)
2
m x1 api ] pi 1 Bpi api
sl Y " Rmn ut
i=1 P31 L %% 1 Py 1
2 32 9 P ;
N T 0 DN NI L. PN
da p, da, oda 1 da,da p. da, da 2  da, |
1 - 1 1 172 2 & 2 1 1 (133)

All quantities other than Aa, Aa1 and Aa2 in eqs.(132)-(134) depend

explicitly on the values @ »3; ,a, , say, about which the original

0
equations have been linearized. After determining a solution Ao, Aal,
and Aa2 of eqs.(132)-(134), new values of a,al, and a2 are computed by
means of

1 0

a, =a, + Aa (135)
11 10 1

a2 = az + Aa2
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This process is repeated until either a desired accuracy criterion is
achieved or the process breaks down. The central question is, therefore,

for which triples of initial guesses aO’ a a, the iteration process

:
converges. Although a full analysis is 1 . presently not possible,
some useful insight can be obtained from the special case that the initial
guesses of the two scale parameters are identical. Many partial

derivatives occurring in the linearized equations then reduce to
relatively simple expressions. Thus, consider the system of

eqs.(132)~(134) evaluated for an initial guess ®,a,a with a>0 and 0sas],

Using again yi=(i-!)w the system reduces to

Aa
X Aal =]Y (136)
Aaz

where the matrix X and the vector Y are given by

' m
N 1t
° -;151“(‘ 8 108
m m 2 Y i 2 i =
X= -(l-a)—:-itlxi(.% -1) (14)3%,121,:1{(-,—5 -4 -0 ‘1) } '“(""‘)ai’ifl‘i(ii ')

A1) ool in() ErdE e )7

(137)
Y= | -(1-a)22 z xiG’% ) (138)
-a? 2 ? "1(& "1)
a i=] a

The solution of the system (136) to (138) is dependent on the values of
and a occurring in the coefficient matrix X and the right-hand side vector
Y. Table 4 summarizes this dependence. For all the cases other than case

1, the matrix X is singular. Before considering the regular case, the
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singular cases are considered. For each of the cases @, @ and , the
initial guesses of a, and a, are the same and equal to the maximum likeli-
hood estimate of the scale parameter of a (single) Double Exponential
probability density defined by eq.(125). As a DE density with that parti-
cular parameter value already satisfies the (non-linear) likelihood
equations, the Newton algorithm does not change the scale parameters of
the densities involved. For example, when the initial value of the weigh-
ting factor is a=0, only the core density plays a part. When the initial
guesses of both the scale parameters are equal to twice the maximum
likelihood estimate of a DE density, as for the cases (:), (:) and (:),
the algorithm breaks down. Notice that case (:), starting, from a
weighting factor of o=0, transfers into case <:>, with a weighting factor
of 1, and similarly the other way around. The cases (:) and (:) yield a

completely undetermined solution.

Consider now case (:). It follows from Table 4 that, when the
initial guesses of the scale parameters of the core and tail density
making up the Double Double Exponential mixture density are the same,
these will remain the same for each iteration in the Newton process.
Moreover, the weighting factor a does not change during the iteration
process. This is correct because the weighting does not have any real
significance when the two scale parameters are equal. It remains to
analyze what the correction A of the scale parameter is. It holds that for

O<a<l and aj#é as well as a $28:

b

1-a,/3

= \ -
Aaj aj(ﬁiﬂ/ s J=0;1,2500 (139)

3

The integer j in eq.(139) counts the iterations of the Newton process and

the quantities Aa, and aj are abbreviations for Aa1 =Aa2 and a, =a,

: e

respectively. The convergence of the iteration

process (139) follows from the following proposition.

Proposition
Consider the iteration process given by

l-xi
Axi =Xy (-E:;—-) , 1i=0,1,2,... (140)

or, equivalently
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3-2xi
) o 180,152,544 (141)

B
i+l i 2 xi

under the condition xi>0 for every i.

This iteration process converges to a finite limit iff the initial value

satisfies the relation 0<x0<3/2. Under this condition the limit value is

x =1,
oo

Proof
The proof is elementary and is illustrated in Figure 8. Define

Ci=(3—2xi)/(2-xi). Figure 8A shows that for x,>2 and xi<3/2, the factor C

i
must be positive in order to yield a sequence of positive

numbers X s i=0,1,2,.... Figure 8B shows that for 1<xi<2, the factor Ci is

less than one, possibly negative. It follows that for every X, with 2<x

i

is positive. Ci

i

holds xi<xi+1, leading to divergence of the iteration process.

For 3/2<xi<2 holds that x <0, for k21, leading to divergence as well.

i+k
It remains to consider 0<xi<3/2. Figure 8C shows that for every xi<2 holds

+1<1 (possibly negative). Hence, for 1<x_,<3/2 holds x,,.<l. But for

.| i i+1
every Xx, with 0<xi<1 holds xi<xi+1<l, leading to monotone convergence to
x.=1.0.

See Figure 8D for a summary of the convergence properties.

Application of the Proposition to the iteration process eq.(139)

leads to the conclusion that the process will converge to a, =a, =3 when

the initial guesses a, and a, are equal and satisfy the ® % condi-
0 0

tion O<a =a, <3/2§. A similar convergence will occur when the

initial 10 v values a, and a, are unequal, but not too far away from
each other. An important:0 0 practical consequence is that a Double
Double Exponential mixture density with two different scale parameters
rather than a Double Exponential density will be produced by the Newton
iteration process of eqs.(132) to (134) only, if the initial guesses of
the scale parameters of the core and tail density are sufficiently

different.




-56-

SIMULATION OF RANDOM VARIABLES HAVING A DOUBLE GENERALIZED LAPLACE
PROBABILITY DISTRIBUTION

Computer simulation of random variables with a Double Generalized
Laplace probability distribﬁtion is useful for two reasons. Firstly, it
offers the possibility to validate the parameter estimation algorithm
under controlled conditions. When the parameter values used in the
simulation are recovered with a sufficient precision, the algorithm is
likely to have been implemented correctly. Secondly, it offers the
possibility to investigaté all kinds of properties of the parameter
estimation algorithm, for example: accuracy of the estimated parameters as
a function of the sample size, accuracy as a function of the number of
estimated parameters, convergence of the Newton iteration process as a

function of the initial estimate of the parameters, etc.

The usual way to generate a sample of size n of a random variable d
with a specified probability distribution is to generate n random numbers
us» i=1,2,...,n, independently and homogeneously distributed on the
interval [0,1], and to use the cumulative distribution function F(d),

d
F(d) = [ f£(x)dx (142)
by putting
F(di) =uy A ) [ SRR (143)

The realizations di are obtained by inverting the cumulative distribution
function. This inversion can not always be done analytically. A possible
solution, which will in fact be used in this report, is to solve eq.(143)
numerically for di' Before considering the numerical approach, the
cumulative distribution function of a random variable with a Double

Generalized Laplace probability distribution is described.

Let the variable d have the Double Generalized Laplace probability
(d) defined by eq.(11) of Section 3.2. The cumulative

(d) can be expressed in two ways. The first is

density fDGL

distribution function FDGL
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A
=

1/b 1/b
N T e\ S A L
it i r(bl’(a) ) * 3T, r<bz’<a2> ) » d

1
1/b
d-u 2
("z’(‘aﬁ )

(144)

Fper (@ =

1/b
1 B 1 1
1'(1""‘)21*(b1) r<b1’(al) ) " %IT(,)

The symbol T'(b) denotes, as before, the Gamma function for the argument
value b and the symbol I'(b,x) denotes the incomplete Gamma function
defined by

rthyx) = [ y"1e¥ay ,xz20 (145)
X
The following relation holds
r(b) = y(b,x) + r(b,x) » x 20 (146)
where
b=l =
y(b,x) = f y eV dy » x 20 (147)
0

denotes another incomplete Gamma function. Either of the two may be
defined to be the incomplete Gamma function while the other becomes the
complementary incomplete Gamma function. Sometimes, the incomplete Gamma
functions are scaled by I'(b) and then called incomplete Gamma function
ratios. Using the incomplete Gamma function defined by eq.(147), the

cumulative distribution function F (d) is expressed as

DGL

1/b 1/b
(- 1 1 -d 2
- s d Sy
DGL
» 1 1 d- 2
»d 2y
(148)

Subroutines for the computation of the Gamma function TI'(b) are
readily available in many subroutine libraries, like the NAG Fortran
Library, Mark 10 (and higher). Subroutines for the computation of the

incomplete Gamma functions are less frequently included in such libraries.
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The NAG library for instance does not include such a subroutine.
Fortunately, it is not necessary to develop such a subroutine from
scratch, because various algorithms for the computation of incomplete
Gamma functions are available from within the literature, see Refs. 24 to
30 inclusive. Some of these provide derivatives with respect to the
parameter as well, These algorithms are based on continued fraction
expansions, and/or Taylor series expansions. The algorithms of Refs. 24 to
27 inclusive all compute the incomplete Gamma function (ratio) y(b,x) of
eq.(147). The algorithms used in Refs. 26 and 27 for the computation of
the incomplete Gamma function are based on one and the same Taylor series
expansion for each pair of arguments (b,x). The algorithms in Refs. 24 and
25 both use a Taylor series expansion for bsxs<l, and also for x<b, and a
continued fraction expansion otherwise. The latter two, therefore, are
generally to be preferred above the former two algorithms. The algorithm
of References 28 and 29 also uses Taylor series and continued fraction
expansions. An extension of this algorithm compared with the previous four
algorithms is, that it is also applicable for negative values of the
variable b. Table 5 summarizes some characteristics of the five
algorithms. The algorithm of Ref. 24 has been used in the current
simulations.
Taking FDGL(d) defined by eq.(l148), a sample of size n of the
vertical distance d is constructed by numerically solving the separate

non-linear equations

(d,) = u s 31,20 000500 (149)

FDGL i

Two considerations play a part with regard to the selection of an
appropriate numerical method for solving eq.(149) for i=1,2,...,n. These
are efficiency and convergence of the method. Efficiency is mainly
determined by the number of function evaluations and the convergence rate,
provided that convergence as such appears. As only a limited number of
simulations was envisaged for the present study, efficiency was given a
lower weight than guaranteed convergence, independent of the initial
guess. Thus, both Newton's method and the secant method were discarded and
a combination of the methods of Regula Falsi and Bisection has been
chosen. For random numbers between 0.1 and 0.9, the method of Regula Falsi
is used. To start the method, an interval [2,u] is needed on which the

sign changes of the function of which a zero is to_ be determined. When the
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random number uy is less than 0.5, u can be taken as the mean value u

whereas otherwise £ can be taken to be the mean u. It remains to define an
associated lower bound £ and an upper bound u for the two cases uiSO.S and
uiZO.S respectively. One possibility would be to use the mean minus or
plus three to five times the standard deviation of the DGL mixture
distribution. A more efficient value, although still being rather

conservative, can be obtained as follows. Let u,20.5 and let an upper

i
bound u of the interval have to be determined. Define a Double Exponential
probability density fDE(x) with the standard deviation o equal to the
standard deviation of the tail density within the Double Generalized

Laplace mixture density. Thus

: -Ilﬂ V2
_ a
fDE(x) =9z ¢

(150)

where (compare eq.(13))
’ P(3b2)
o =a, -—Iﬁ'z')— (151)

Because of the thick tail of the DE density as compared with the DGL

density, the following two requirements

Prob {x; . $ x-(0.9)}= 0.9 ’ (152)
and

Prob {EDGL < xDGL(0.9) = 0.9} ' (153)

will certainly result in xDGL(0.9) < xDE(0.9), see Figure 9. Note that the
value of 0.9 is the upper bound for the application of the method of
Regula Falsi. Hence, for each random number u, with 0.5§ui$0.9 will hold
that di as a solution of eq.(l49) satisfies

(o}
c1i " xDE(0.9) ol log(2(1~0.9)) : (154)

where o is defined by eq.(151). So, xDE(O.Q) may be taken as the upper
bound u of the interval in which the solution di is sought. Similarly,
2u-xDE(0.9) may be used as the lower bound £ when O.ISuiSO.S.
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For random numbers close to zero or close to one, the method of
Regula Falsi was found to converge extremely slowly, because of the fact
that the endpoint at the mean u stayed fixed and the function was very
flat near the other endpoint. This phenomenon is well known, see for
example Reference 31. As for these small and large values of the random
numbers the corresponding realizations d are known to be much smaller or
larger than the mean value UM, a practical solution is to use a method that
does not retain the mean value U as an endpoint. The simple Bisection
algorithm satisfies this requirement and, therefore, has been used to
solve eq.(149) for those values of the random numbers u
0<u150.1 or 0.95u1<1.

1 satisfying

SOME MAXIMUM LIKELIHOOD PARAMETER ESTIMATION RESULTS FOR SIMULATED DATA

Introduction

In this section, some maximum likelihood parameter estimation
results are described based on the algorithms for grouped data and
non~-grouped data presented in Section 4. The algorithms are applied to
simulated data, which have been generated in the way described in Section
5. Four different probability distributions have been used to generate the
data: a Double Exponential, a Gaussian Double Exponential, a Double Double
Exponential and a Double Generalized Laplace distribution. For each of
these are successively described the associated data sample and the
parameter estimates obtained from grouped and non-grouped data. The
probability distributions used for parameter estimation are not
necessarily the same as the original distributions. For example, the two
parameters of a Generalized Laplace distribution are estimated from data
generated by the single parameter Double Exponential distribution. The
resulting distribution should be close, in some sense, to the original
one. When exactly the original distribution is estimated, the comparison
can be made at hand of the original and the estimated parameter values.
This leads to the validation of the parameter estimation algorithms, while
the general case provides insight into the robustness with respect to the
underlying probability distribution and the achievable accuracy as a

function of the number of estimated parameters. The achievable accuracy,




6.2

6.2.

1

-

of course, depends also on the number of data points used for estimating
the parameters. Because for the application to the real pairs data the

sample size is fixed to 4960 data points and can not be increased to an
arbitrarily large value, a fixed sample size of 5000 data points is used

for each simulation case.

A second property that might be studied at hand of simulations is
the convergence of the Newton iteration process as a function of the
initial estimate of the solution. This, however, goes beyond the scope of
the present report. The point of view taken here is that it should be
shown that convergence of the iteration process occurs for at least one
set of initial estimates of the pertinent parameters. A set of initial
estimates will, in principle, consist of the true parameter values used in‘

each simulation.

A Double Exponential probability distribution

The simulated data sample
The Double Exponential probability density is given by

_[a-u
£ =5 e ! 2 (107)
and the Double Exponential cumulative distribution function by
} L(d-1)/a L d 5N
Fpg(d) = L e e (155)

Because of the simple form of this cumulative distribution function, the
inversion of eq.(143) can be done fully analytically to obtain a sample of
the variable d. A sample of size 5000 was simulated based on the following

parameter values:

u=0.0 (156)
a = 30
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The random numbers were, as in all the following simulations, generated by
means of the subroutine GO5CAF from the NAG subroutine library. The sample

statistics are:

sample mean m = -0.01531

sample standard deviation s = 41.364 (157)
sample skewness Bl = 0.0211

sample kurtosis 82 = 5,743

These sample values correspond fairly well with the population values of
0, 42.426, 0, and 6 respectively. Based on the value of the sample
standard deviation s, the sample value of the scale parameter is 29.249.
The data grouped into classes of 10 ft are given in Table 6. To generate
the 5000 individual data points and to construct the associated frequency
table together with the sample statistics, 0.7 CP seconds execution time
were needed on the NLR Cyber 180/855 computer.

As in the sections to follow, a comparison will be made between the
data samples and the probability densities evaluated on the basis of the
maximum likelihood estimates of their parameters. It is worthwhile to make
such a comparison between the data sample and the density evaluated for
the true parameter values first. Figures 10 and 11 show the Double
Exponential density defined by eqs.(107) and (156) and the folded data
sample., In general, the correspondence between the two is good. It becomes
somewhat worse in the tail region, due to the few data points found there.
A statistical criterion for this comparison is given by the standardized
log likelihood value defined by eq.(68). Taking m = 27, it holds that
twice the standardized log likelihood value is distributed according to a
x?~distribution with m~1 = 26 degrees of freedom (d.f.). The probabilities
Pys i=1,2,...,m in eq.(68) are defined by eq.(44) where, in this section,

the density.f (x) reduces to the Double Exponential density fDE(x)'

However, as i:cihe parameter estimation algorithm for grouped data the
exact probabilities p; are approximated by eq.(46), this approximation
could also be used in eq.(68). Table 7 shows the effect of using the
approximation (46) rather than the true expression (44) for the
probabilities Py» i=1,2,...,m. Notice that a second simulated sample is
included in this table. With regard to the sum of the approximated
probabilities it should be realized that it differs from one for two

reasons, namely due to the approximations used and due to the fact that,
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for the DE density, there is a non-zero probability of deviations which in
absolute value are larger than 270 ft. The last probability is in fact
equal to 0.000134, showing that the effect of the approximation is the
dominant effect. The 95% critical values of a X?-test with 26 and 53
degrees of freedom are 38.89 and.71 respectively. Applying these values to
twice the standardized log likelihood values of Table 7, would lead to
rejecting the true Double Exponential density for each of the cases in
which the approximated probabilities are used in the computation of the
test statistic. Hence, it is concluded that the exact probabilities should
be used in the computation of the test statistic. Notice that for the
larger sample, the correspondence between the data and the true DE

density, as measured by the test statistic is better.

Parameter estimation based on grouped data

The parameters of three different probability density models have
been estimated from the grouped data from the true DE density given by the
eqs.(107) and (156). These models are: a DE density, a GL density and a
DDE density. The resulting parameter estimates obtained from eq.(113),
eqs.(90) and (91), and eqs.(54)-(56) respectively, are:

DE model : 3
GL model :
DDE model :

29.580000
31.583465, B = 0.95301432

29.580000, &, = 29.580013, 8 = 0.13776644%10

]

)
]

8

)
n

(158)
Each of these three maximum likelihood solutions gives a negative definite
matrix of second partial derivatives of the log likelihood function and
defines a (local) maximum of the log likelihood function over the

pertinent parameter space.

Parameter estimation based on the DDE model was performed for three

sets of initial estimates of o, a, and 32’ namely:

1
i) o0.01 30 90

ii) 0.01 60 90

iii) 0.01 60 60

The estimated values given in eq.(158) were obtained from case i). The

Newton iteration process was stopped after 22 iterations, when

max{[E |, |E, |, JE,|} < 1.0 % 107'%, with E|, E,, and E, defined by egs. (54)

2 3
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to (56) inclusive. After the first iteration, the maximum of these three
quantities was of the order of one hundred. The results show that the
maximum likelihood estimates of the two scale parameters of the DDE
density converge to the same value, which is, according to the analysis
given in Section 4.4.4, the maximum likelihood estimate § of the scale
parameter of the DE density. In this example, the maximum likelihood
estimate G of the weighting factor converges to zero. As a result, the DDE
model reduces to the DE model. Because the numerical values of 31 and 52
are slightly different and because & is not exactly equal to zero, the
matrix of second partial derivatives of the log likelihood function
remains negative definite rather than becoming singular as in eq.(126) for
31 = 32 = 8. For case ii) holds that the initial estimates are equal and
slightly larger than twice the critical value % = 29.580000 (Recall Figure
8). The parameter estimation process was found to diverge in this case, in
agreement with the analysis of the iteration process eq.(l139) given in
Section 4.4.4., The same divergence occurred for case iii). Although the
initial estimates of the two scale parameters were not equal in case iii),
both are larger than twice 2 = 29.580000. In this case, apparently, these
values were sufficiently close to lead to the same divergence as for

identical initial estimates larger than twice the value of 3.

For the DE model, the maximum likelihood estimate of the scale
parameter can be computed directly from the data. For the GL model, an
initial estimate of the shape parameter is needed to start the iterative
solution of the non-linear equation f(b) = 0 (eq.(75)). This was obtained
from a diagram of f(b) against b. The accuracy of the parameter estimates
for these two models may be judged at hand of their estimated standard

deviations. These are:

DE model : o(3) = 0.418
GL model : o(3a) = 1.13, o(B) = 0.0239

(159)

Notice the decrease in accuracy as measured by 0(2) when the shape para-
meter of the GL density is estimated in addition to the scale parameter.
The estimation errors in the scale parameters are about one estimated
standard deviation for these two models, whereas the estimation error of
the shape parameter is approximately two estimated standard deviations for
the GL model. The maximum likelihood estimates of the standard deviation
of the DE and the GL model are 41.832 and 41.334 respectively, compared
with the population value of 42.426 and a sample value of 41.364.
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Figures 12 and 13 show the true DE density and the estimated DE and
GL densities on a linear and a logarithmic scale, with the (folded)
grouped data superimposed. The true and estimated DE densities are seen to
be very close over the entire domain, with the estimated GL density being
less accurate in the tail area. Because the shape parameter of this GL
density is less than one, the shape of the logarithm of the density is
concave in Figure 13. Table 8 gives the corresponding y?-test statistic
values. Notice the large discrepancy between the numbers based on the
exact and the approximated probabilities. The degrees of freedom of each
case are equal to the number of classes minus one (m-1), minus the number
of estimated parameters. The 957 critical values of a x?-~test with 25, 24
and 23 degrees of freedom are 37.65, 36.42 and 35.17 respectively. When
the exact probabilities are used for computing the test statistic, none of

the estimated densities is rejected at the 957 level.

Parameter estimation based on non-grouped data

The DE, GL, and DDE density were also fitted to the non~grouped
simulated data sample from the DE density given by eqs.(107) and (156).
The parameter estimates based on eq.(109), eqs.(73) and (75), and
eqs. (20)-(22) are:

DE model : 3 = 29.285575
GL model : & = 28.139422, B = 1.027912 (160)
DDE model : &, = 29.285575, &, = 29.286032, & = 0.366340%10

The maximum likelihood solutions for the DE and the GL models give a
negative definite matrix of second partial derivatives of the log
likelihood function over the pertinent parameter space. For the DDE model,
the matrix of second partial derivatives is not negative definite.

The estimates given by eq.(160) and based on non-grouped data are to be
compared with the estimates eq.(158) based on grouped data. For the DE
density, the maximum likelihood estimate of the scale parameter is seen to
be about one per cent smaller in the former case. For the GL density the
estimates of the scale and the shape parameter are now smaller and larger

respectively than the true values of 30 and 1.0.

Parameter estimation based on the DDE model was performed only for
the set of initial estimates of a, a, and a, for which convergence
occurred in the grouped data case, i.e. {60,51 ,52 } = {0.01,30,90}. The

iteration process was stopped after 19 0 0 iterations, when
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max{]Ell,lEzl,lE3l} <eg=1.,0*% 10“8 with E;» E, and E, defined by
eqs. (20) to (22) inclusive for the case of non-grouped data. The results
show again that the maximum likelihood estimates of both the scale
parameters of the DDE density are converging to the same value % and that

a converges to zero., Thus, the DDE density reduces to the DE density.

Parameter estimation using a DE model does not require an initial
estimate of the scale parameter. As before, an initial estimate of the
shape parameter of the GL density was obtained from a diagram of f(b)
defined by eq. (75) agaihst b. The accuracy of the parameter estimates of
the DE and the GL probability density models may be judged at hand of

their estimated standard deviations. These are:

DE model : g(3) = 0.414 } D
GL model : o(3) = 1.20, o(B) = 0.0280

These values are very similar to those obtained utilizing grouped data.
The maximum likelihood estimates of the standard deviation of the DE and
th GL density are 41.416 and 41.713 respectively, compared with a
population value of 42.426. Because the standard deviation of a GL density
depends on both the scale parameter and the shape parameter, its maximum
likelihood estimate can be closer to the true value, although its scale

parameter is further away from the true value.

Figures 14 and 15 show the true DE density and the estimated DE and
GL densities utilizing non-grouped data, on a linear and a logarithmic
scale. Just for reference purposes, the histogram has been superimposed.
The three densities, although not being identical coincide on the linear
scale of Figure 14. On the logarithmic scale of Figure 15, a small
difference between the two estimated densities and the true DE density is
visible. Notice that the curve representing the estimated GL density is
convex (on a logarithmic scale) and lies above the true DE density while
the estimated DE density lies below the true DE density. Compare with
Figure 13 based on grouped data. The standardized log likelihood values
for the estimated DE and GL density, based on non-grouped data, are 5000
and 5139.56 respectively (see eq.(85)).
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6.3 A Gaussian Double Exponential probability distribution

6.3.1 The simulated data sample
The Gaussian Double Exponential probability density is given by

() Jas
_ 1 5 1 "2
fGDE(d) (1-a) m e + Q z; e (162)

A sample of size n = 5000 was simulated, based on the following parameter
values (the GDE density being a particular DGL density):

a = 0.3 = 0.0
a = 30.0 01 = 21.2
a, = 90.0 02 = 127.3 (163)
b1 = 0.5
b2 = 1.0
The sample statistics are:
sample mean m = -0.5438
sample standard deviation s = 68.872 (164)
sample skewness 81 = 0.207
sample kurtosis 32 = 16.76

The corresponding population values are 0, 71.937, 0, and 17.655. The data
grouped into classes of 10 ft are given in Table 9. To generate the 5000
individual data points, and to form the frequency table together with the
sample statistics, 11.4 CP seconds execution time were needed on NLR's

Cyber 180/855 computer.

6.3.2 Parameter estimation based on grouped data
The maximum likelihood parameter estimation algorithm as described
in Section 4.3 was applied to the grouped, simulated data of Table 9. To
this end it has been assumed that the model was a Double Generalized
Laplace probability density, of which 2, 3, 4 or 5 parameters were to be
estimated corfesponding to the cases GZ’ G3, G4 and G. During the
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iteration process, the parameters which were not estimated were kept at
their true values. Table 10 shows the estimated parameter values, whereas
Table 11 shows the estimated standard deviations. Each row of Table 10
defines a (local) maximum of the likelihood function over the pertinent
parameter space. It can be seen that the estimation errors are of the
order of one estimated standard deviation. By comparing 0(51) and 0(52),
it is seen that the relative accuracy of the scale parameter of the core
density is higher than that of the tail density. Intuitively, this is to
be expected because the data sample contains more information on the core
density than on the tail density. Considering Table 11 further, it is seen
that the accuracy for two or three estimated parameters is nearly the
same. This may be interpreted as a, and a, using different parts of the
information available in the data sample. However, when the fourth
parameter is added to be estimated, the accuracy of the scale parameter of
the core density decreases by about fourthy-three per cent. This is due to
the fact that the information on the core, available in the data sample,
is redistributed over both the scale parameter and the shape parameter of
the core density. Similarly, the accuracies of the scale parameter and of
the weighting factor of the tail density decrease when the fifth parameter
is added to be estimated, while leaving the accuracy of the core density
parameters unaffected. In other words, the information on the tail of the
distribution, available in the data sample, is redistributed over three -

parameters (@, a,, b2) rather than over two (@, az).

When the sample size is sufficiently large, the maximum likelihood
parameter estimates should be close to the true parameter values. Hence, a
set of good initial estimates for the Newton iteration process should be
formed by the true parameter values. These were used for each of the cases
G2, G3, G4
requiring 2.0, 2.0, 2.3 and 4.5 CP seconds execution time on the NLR Cyber

and G, giving convergence in 4, 4, 5 and 11 iterations and

180/855. The iteration process was stopped whenever the maximum of the
pertinent error values lEil was smaller than e=1.0*10-10. In practice,
more iterations and computer time will be needed because the initial
estimates will usually not be so close to the final estimates. The results
show, however, that convergence can occur when the initial estimates are

sufficiently good.
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In addition to a comparison on the parameter level, a direct
comparison of the estimated probability densities with the simulated
density and the data is useful. See Figures 16 and 17. From both these
diagrams, the true and estimated probability densities are seen to be very
close. Notice the diffefence in the shape of the core and the tail densi-
ties in Figure 17. On the logarithmic scale, the core densities are
(exactly or approximately) quadratic whereas the tail densities are
(exactly or approximately) linear. Except for the five isolated data
points in the tails of the histogram, both the true and the estimated
probability densities are seen to correspond well with the data.

A statistical measure for the closeness of the analytical probabi-
lity densities and the grouped data is minus twice the standardized log
likelihood value. Table 12 provides this value for the true GDE density as
well as for the four estimated densities. These values can be used in a
x2-test with the number of degrees of freedom as given also in Table 12.
The corresponding 957 critical values vary about linearly between 90.53
and 79.08 (these being the 957 critical values of a x2~test with 70 and 60
degrees of freedom respectively). The test values are well below the
corresponding critical values and none of the analytical probability
density models would be rejected at the 957 level. Notice finally the
close correspondence between the values of the test statistic based on the
exact and the approximated probabilities P;» i=1,2,...,69. The reason for
this is that the approximation error in the probabilities is smaller for
each of the five analytical densities in this simulation, compared with
the simulation based on a DE density in Section 6.2.2 (see Table 8). For
the true GDE density, for example, the sum of the exact probabilities over
the 69 intervals equals 0.9998595 giving a total approximation error over
these intervals of only 0.0001495. For the DE simulation of Section 6.2.2.
the total approximation error over the pertinent 25 intervals was about 32

times larger.

Parameter estimation based on non-grouped data

Assuming a Double Generalized Laplace probability density model of
which 2, 3, 4 or 5 parameters were to be estimated, the maximum likelihood
parameter estimation algorithm described in Section 4.2 was applied to the

non-grouped, simulated data based on the Gaussian Double Exponential
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probability density of eqs.(162) and (163). Tables 13 and 14 show the
estimated parameter values and their estimated standard deviations res-
pectively., The parameters which were not estimated were again kept at
their true values. The results are very similar to those obtained using
grouped data. In fact, the present ones are even slightly less accurate.
Each row of Table 13 defines a (local) maximum of the likelihood function
over the pertinent parameter space. Because the present results are so
close to the previous ones, no separate diagrams of the estimated proba-
bility densities are given. The standardized log likelihood values for the
cases S, to S inclusive are 4995.7, 5004.9, 5210.6, and 5217.2 respec~

2
tively.

The initial estimates of the parameters needed to start the Newton
iteration process for each of the cases SZ’ S3, Sé and S were again equal
to the true parameter values. From these, convergence occurred in 4, 4, 5
and 11 iterations, requiring 99.0, 98.9, 120.7 and 226.8 CP seconds
execution time. These numbers are about 50 times larger than the amount of
computer time needed for the corresponding grouped data cases. This is
roughly equal to the ratio of the number of terms in the respective
likelihood equations, 5000/69 ~ 72. The comparison is not completely fair,
because the stop citerion ¢ (recall eq.(32)) was taken as 1.0*10—8 for the

non-grouped data case, whilst being 1.0"‘10_10 for the grouped data case.

In practice, a reasonably accurate initial estimate will not
generally be available and several attempts may be necessary before
convergence occurs. It is advantageous, therefore, to use grouped data
first and to use the resulting parameter estimates as initial estimates of

the parameters for a final run utilizing non~grouped data.

6.4 A Double Double Exponential probability distribution

6.4.1 The simulated data sample
' The Double Double Exponential probability density is given by

_ (d_:k) _|d=n
1 > Wy 1 )
fDDE(d) = (1-a) Ja. © + o Sa e (165)
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A sample of size n = 5000 was simulated based on the following parameter

values (the DDE density being a particular DGL density):

a = 0.3 = 0.0
a = 30.0 o = 42.4
a, = 90.0 o, = 127.3 (166)
b1 = 1.0
b2 = 1.0
The sample statistics are:
sample mean m = -0.3168
sample standard deviation s = 75.362 (167)
sample skewness B1 = 0.1243
sample kurtosis 82 = 12.09

The corresponding population values are 0, 78.230, 0 and 12.98. The data
grouped into classes of 10 ft are given in Table 15. Compare these with
those obtained for the GDE deﬁsity and given in Table 9. From the 36-th
interval onwards, i.e. from 350 ft onwards, the two tables contain exactly
the same number of data points per class. This is due to the fact that the
tail density is the same for both the mixture densities, and the tail-
density becomes dominant in the region of the larger data points. Compared
with the GDE density the number of data points per interval is nearly the
same for the classes 19 to 35 inclusive, indicating that in this region
there is a very small contribution from the core density yet. On the first
three classes, the numbers of data points per class are much higher for
the GDE probability density, because the standard deviation of the Gaussian
core density is much smaller than that of the Double Exponential core
density in the DDE mixture, 21.213 against 42,426, giving a tighter core
for the GDE. As a result, the DDE density gives more data points in the
remaining classes 4 up to 18. To generate the 5000 individual data points,
together with the frequency table and the sample statistics, 10.0 CP

seconds execution time were needed.

Parameter estimation based on grouped data

A (single) Double Exponential probability density was fitted to the
grouped data of Table 15 first, because it is known from Section 4.4.4 to
satisfy the likelihood equations of the family of Double Double
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Exponential probability densities. In addition, a (single) Generalized
Laplace density was fitted. The parameter estimation results for these two

densities are:

DE model : 3 = 46.8000
o@) = 0.662
‘ (168)
GL model : 3 = 25.7574 , B = 1,376686
o(d) = 1.41 o(B) = 0.0318

Both the solutions define a (local) maximum of the log likelihood func-
tion. It is difficult to compare these parameter estimates with the true
parameters of the DDE density, because the latter density is a mixture
density with a significant weighting factor of o=0.3 for the tail density,
whilst the DE and GL density are single densities only.

Further, 2, 3, 4 and 5 parameters of a DGL density were estimated
according to the cases G2, G3, G4 and G. The parameters not being esti-
mated were kept at their true values. Tables 16 and 17 present the
estimated values and their estimated standard deviations. The parameter
estimates are consistent in the sense that the estimation errors are of
the order of one estimated standard deviation. Comparing the cases G2 and
G3, it is seen from Table 17 that the accuracy of the weighting factor o
decreases by a factor of 2.2 when the scale parameter is additionally
estimated. At the same time, the accuracy of the scale parameter of the
core density decreases by a factor of 1.4. This may be explained from the
fact that the ratio between the core standard deviation and the tail
standard deviation is relatively high (as compared with the GDE case)
making the discrimination between the two more difficult. The transition
from 3 to 4 estimated parameters leads to smaller decreases in accuracy of
the individual parameter estimates. Apparently, the density with the three
estimated parameters discriminates already fairly well between the core
and the tail and the introduction of one more degree of freedom mainly
leads to a redistribution of the information about the core over the
pertinent parameters. Finally estimating the fifth parameter as well
mainly leads to a redistribution of the information about the tail over
the weighting factor and the shape and scale parameter of the tail den-
sity, leaving the accuracy of the core density parameters relatively

unaffected.
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It is interesting to make a comparison between the accuracy of the
parameter estimates for the GDE and the DDE density. Table 18 presents the
ratios between two corresponding estimated standard deviations. Except for
the scale and shape parameter of the tail density in case GS’ the accuracy

is, on average, about two times higher for the GDE density.

As for the GDE density, the true parameter values were used as

initial estimates for the Newton iteration process. Convergence occurred

for the cases G2 and G3 in 4 and 5 iterations respectively, based on a
stop criterion of €=1.0*10_10, wheras divergence occurred for the cases G4
and G. Convergence was obtained, by trial and error, for the latter two
cases from the following sets of initial estimates @
0.2, 30, 90, 1, 1 and 0.285, 30, 90, 0.9, 0.94. This

required 11 and 28 iterations respectively.

s 8 s, a, 5 b, , b,
0 10 20 10 20

A direct comparison between the estimated probability densities and
the simulated density and the data can be made by means of Figures 18 to
21 inclusive. Figures 18 and 19 show the simulated DDE density and the
corresponding data, together with the estimated DE and GL densities.
Except for the last isolated data points, the true DDE corresponds well
with the histogram. Figure 19 shows that the single DE probability density
is unable to represent the tail of the underlying Double Double Exponen-
tial density. The fit is better for the single GL density which is more
flexible as it has two parameters. Notice that the shape of the GL curve
on the logarithmic scale of Figure 19 is convex due to the value of the
shape parameter being larger than one. Although the GL density is closer
to the true DDE density and the data than the DE density, it is still not
a very good representation. Table 19 confirms the bad fit of the single DE
and GL densities through the very large values of the Xx?-statistic, in
particular for the DE density. Both single probability densities would
clearly be rejected at the 957 level. Notice also the large difference
between the two values of the X?-test statistic for the GL density when
based on the exact and the approximated probabilities P> 121,25 404569,
The difference of the sum of the approximated probabilities from one is
indicative for the bad approximation.

Figures 20 and 21 show the true DDE density and the four estimated
mixture densities. Three of the four estimated probability densities are
very close to the true DDE density. All the five densities describe the
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data well, except for the last isolated data ﬁoints. Notice that for each
of the five mixture densities the shape of the core and the tail density
is (exactly or approximately) linear on the logarithmic scale of Figure
21, but with a different slope due to the different values of the scale
parameters of the tail and core densities. Table 19 also provides the
x2-test statistic values for the four estimated mixture densities. Case GA
and G give the highest values. Compared with the results for the GDE
simulation, the test values are approximately 20 per cent higher. This is
consistent with the higher accuracy of the parameter estimates for the GDE
simulation. The last column of Table 19 gives approximate 957 critical
values for each case, obtained by linear interpolation of the critical
values for 60 and 70 degrees of freedom. The true DDE density as well as
the DDE densities with two and three estimated parameters are accepted on
the basis of a x?-test at the 957 level. The estimated Generalized Laplace
Double Exponential density (case G4) would also be accepted, but the
Double Generalized Laplace density (case G) would be rejected at the 957
level. Although this is not immediately clear from the Figures 20 and 21,
the large uncertainty of the parameter estimates for the case G may make
this plausible. As a final technical point, it should again be noticed
that the computation of the x?-test statistic values on the basis of the
approximated probabilities Py leads to extremely inaccurate numerical
results, It would, in fact, also lead to incorrect statistical

conclusions.

Parameter estimation based on non-grouped data

Assuming a Double Generalized Laplace probability density model of
which 2, 3, 4 or 5 parameters were to be estimated, the maximum likelihood
parameter estimation algorithm was applied to the non-grouped, simulated
data based on the Double Double Exponential probability density of
eqs. (165) and (166). The parameters not being estimated were kept at their
true values. The true values were also used as initial estimates for the
Newton iteration process. Different results were obtained for the cases §

2

and 83 on the one hand and S4 and S on the other. The estimation results

are given in Table 20 and 21.

Convergence to s:-=1.0*10-10 occurred in 4 and 7 iterations for the

cases S, and S3, requiring 98.8 and 162.0 CP seconds execution time. The

2
estimation errors for these two cases are of the order of one estimated
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standard deviation or less. The point estimates for case S, are slightly

2

more accurate than those for the corresponding case GZ’ while for case S3

they are slightly less accurate than for the grouped data case G3.
Twenty-four iterations were required to obtain the solution given in
Table 20 for case S. This solution of the likelihood equations, however,
does not define a maximum of the log likelihood function. The estimated
standard deviations could not be computed, because the matrix of second
partial derivatives was not negative definite. A number of heuristically
chosen initial parameter estimates were tried further. None of them
resulted in convergence of the iteration process. Similar divergence

problems were met for case S,. The only solution obtained for this case

4.
was a (single) Double Exponential solution (different from the "real" DE
model given by eq.(168)). Notice that the estimate of the scale parameter

a, is close to the true value of a,, but that the tail density is

1 1’
completely ignored. Some further investigations of the cases S4 and S are

necessary.

A Double Generalized Laplace probability distribution

The simulated data sample
The Double Generalized Laplace probability density is given by

R (d-u) 176y _|a=u P2
a a
1 1 1 2
£ (@) = (1-0) s———F— e o e (170)
DGL 2a,b T(b)) 2a,b,1(b,)

A sample of size n = 5000 was simulated, based on the following parameter

values:
o = 0.3 u = 0.0
a1 = 30.0 cl = 25.2
= = . 1 1
a2 90.0 02 93.0 (171)
b2 = 0.80
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The sample statistics are:

sample mean m = -0.1416

sample standard devigtion s = 52,900 (172)
sample skewness Bl = 0.0298

sample kurtosis 82 = 10.06

The corresponding population values are 0, 55.122, 0 and 11.100
respectively. The data grouped into classes of 10 ft are given in Table
22. Notice that, compared with the simulated GDE and DDE data, the range
of values is much smaller, due to the thinner tail of a GL density with a
shape parameter of 0.8. On the other hand, the range of this particular
mixture density is larger than for the single DE density considered in
Section 6.2 (see Table 6). To generate the individual data points, the
sample statistics and the frequency table, a total of 85 CP seconds

execution time was needed.

6.5.2 Parameter estimation based on grouped data

The maximum likelihood parameter estimation algorithm as described
in Section 4.3 was applied to the grouped, simulated data of Table 22. In
accordance with the cases GZ’ G3, G4 and G, 2, 3, 4 and 5 parameters were
estimated while keeping the parameters not being estimated at their true
values. Tables 23 and 24 show the estimated parameter values and their
associated standard deviations. The estimation errors are of the order of
one standard deviation or smaller. The addition of ohe more parameter to
be estimated leads in each of the cases to a considerable redistribution
of the information available in the pertinent part of the sample over the
parameters, see for example the increase in 0(8) at the transition from
case G2 to G3. The resulting accuracy for the DGL density is between that
of the GDE and DDE densities, the only exception being the accuracy of the

scale and shape parameter of the tail density in the DGL mixture.

The true parameter values were used as initial estimates for the

2? G3, G4 and G.
Convergence occurred in 4, 4, 7 and 15 iterations respectively, requiring

Newton iteration process, for each of the cases G

1.1, 1.2, 1.7 and 3.1 CP seconds execution time.
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A graphical comparison of the simulated and the four estimated
Double Generalized Laplace probability densities is given in Figures 22
and 23. The small difference between the densities are not visible on the
linear scale of Figure 22. Even on the logarithmic scale of Figure 23, the
differences between the true and the estimated DGL densities are hardly
visible in the region between -400 and +400. The correspondence between
all the densities and the data in that region is good. Outside this
region, the DGL density corresponding with case G (5 estimated parameters)
deviates considerably form the others. This is due to the large inaccuracy
of the estimates of the scale and the shape parameter of the tail density
within the mixture in this case. Notice that the logarithm of each DGL
density consists of a concave core part and a concave tail part which are

connected to each other in a transition region.

Table 25 provides the X?-test statistic values for the true and the
four estimated DGL densities. The highest and the lowest value occur for
the true DGL density, with no estimated parameters, and the estimated DGL
density of case G with five estimated parameters. The 95 per cent critical
values of a X?-test with 30 and 40 degrees of freedom are 43.77 and 55.76.
Hence, each of the five probability densities would pass a X%-test at the
95 per cent level, when the exact probabilities Py would be used. The
difference between the values of the test statistic based on the exact and
approximated probabilities varies between 16.4 and 19.2 per cent. Although
a test based on the approximated probabilities would not lead to wrong
statistical decisions, it is better not to use the approximated
probabilities due to their limited accuracy.

Parameter estimation based on non-grouped data

The results of the application of the maximum likelihood parameter
estimation algorithm for non-grouped data are given in Table 26 and 27. As
before, the parameters which were not estimated were kept at their true
values. For the cases S, and S3, the parameter estimates as well as their

2
estimated standard deviations are very similar to their G, and G3 equi-

valents. For these two cases, the estimation errors are o% the order of
one estimated standard deviation or less. For the case Sa, the results
based on non-grouped data are even less accurate than those for the
grouped data based case G4, except for the estimate of the scale parameter

of the tail density. For this case, the estimation errors in the scale
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parameter and the shape parameter of the core density are 1.5 and 2.3
times the estimated standard deviations respectively. These large ratios
are probably due to a random fluctuation. The results for case S are
rather bad, yielding estimation errors of the order of two estimated

standard deviations, except for the scale parameter of the core density.

The initial estimates of the parameters for the Newton iteration
process were again equal to the true parameter values for each of the four

cases. For the cases S_, S_ and 84, this led to convergence in 4, 4 and 6

2”73

iterations respectively, requiring 89.1, 99.2 and 142.4 CP seconds
execution time when using a stop criterion of €=1.0*10“10. By some trial
and error, convergence in 12 iterations occurred for case S starting from

’ b2 ¢ 0.24, 30, 90, 0.65

the following initial estimates s a,
0 0

’ 320’ bl
and 0.80.

0

Graphically, the estimated DGL densities based on simulated
non-grouped data look very similar to those based on grouped data and,
therefore, are not separately presented. The standardized log likelihood
values for the cases 82 to S inclusive are 4826.1, 4846.1, 5053.8, and
5158.56 respectively.

RESULTS FOR THE REAL AIRCRAFT PAIRS DATA

Introduction

The results of the application of the maximum likelihood parameter
estimation technique described in Section 4 to the aircraft pairs data
summarized in Section 2 are given in this section. Several subfamilies of
probability distributions belonging to the general family of Double
Generalized Laplace probability distributions will be considered. Three
single probability distributions will be analyzed first, namely the
Gaussian, the Double Exponential and the Generalized Laplace probability
distribution (Section 7.2). Three different mixture distributions, each
having a Double Exponential tail distribution will be discussed next in
Section 7.3. The reason for paying so much attention to mixture distri-
butions with a Double Exponential tail is that these lead to a cautious
extrapolation of the tails of the observed distribution. Finally, the
Double Generalized Laplace probability distribution will be presented
(Section 7.4). '
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The data used in this section are the grouped aircraft pairs data of
Table 3. Because the parameter estimation results based on simulated data
showed, in general, a close correspondence between the two cases of
grouped and non-grouped data, only grouped data are used. This is similar
to the data being used elsewhere (References 14 - 18). For each
probability density model to be analyzed, a mean value of 1000 ft will be’
assumed. This is slightly larger than the sample value of 997.1 ft.

The main results to be presented consist of the estimated
probability densities and the corresponding estimated probabilities of
vertical overlap in a 1000 ft environment, PZ(IOOO). The latter
probabilities are defined by

A
z

P_(1000) = [ £ (x) dx (173)
z -1 d
z

where fd(x) denotes any probability density model of the vertical distance
d between the aircraft in a pair. In practice, Pz(lOOO) may be approximated
by

PZ(IOOO) - ZAZ fg(O) (174)

The symbol Az in eqs.(173) and (174) denotes the average height of an
aircraft. Following Ref. 6, the value to be used is Az = 40,9 ft.

A brief summary of the results obtained will be given in Section
7.5. Moreover, one particular probability density model will be selected
as being the most useful with regard to the practical objectives of the

study.

Results based on some single probability distributions

Tables 28 and 29 summarize the parameter estimation results for the
Gaussian, the Double Exponential, and the Generalized Laplace probability
densities, based on the grouped data of Table 3. The shape parameter of
the Generalized Laplace density is 0.727811, that is, approximately midway
between the values characterizing the Gaussian and the Double Exponential

densities (0.5 and 1.0 respectively). The estimated standard deviation
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0(3) of the scale parameter estimate @ is about twice as large for the
Generalized Laplace density as for the Gaussian and the Double Exponential
densities. This is due to the fact that the Generalized Laplace density is
characterized by two parameters rather than one, over which the informa-
tion available in the data has to be distributed. The relative accuracy of
the parameter estimates of the Generalized Laplace density is approxima-
tely 2.5 to 3 per cent, whereas for the Gaussian and the Double Exponen-
tial density this is approximately 1 and 1.5 per cent respectively. These
accuracy figures, however, are only relevant on the assumption that the
probability distributions do represent the data. This will be evaluated in

more detail below.

Figures 24 to 29 inclusive pertain to the Gaussian density. Figure
24 shows the histogram of the pairs data with a class interval of 10 ft,
with the estimated Gaussian density superimposed. Similarly, Figure 25
shows the logarithm (base e) of the histogram and of the Gaussian density,
in order to provide more insight into the tail region. It is seen that the
Gaussian density does not at all fit to the data. The core of the observed
histogram around 1000 ft is underestimated. The histogram seems to be more
peaked than the Gaussian density. This is confirmed by the kurtosis values
of the histogram and the Gaussian density in Table 29: 4.33 and 6. The
maximum likelihood estimate of the standard deviation of a Gaussian
density is by definition equal to the observed sample standard deviation
(see eqs.(103) and (106)). The tails of the histogram are also seen to be
underestimated and, as a result, the intermediate part of the histogram is

overestimated.

The quality of the fit can be studied in more detail by examination
of the residual plots. The (linear) residuals on class *i, i=1,2,...,63
(counted from 1000 ft onwards to the right and the left respectively) are
defined by

- h (175)

where hi denotes the height of the histogram on class i and P; denotes the
value of the probability density model, evaluated at the midpoint of class
i and at the maximum likelihood parameter estimates. The logarithmic

residuals on class *i are defined by
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P
i
Ri log Py - log hi log F; (176)

where Py and hi are defined as above (note: log denotes the natural
logarithm, i.e. base e). Figures 26 and 27 show the linear and the
logarithmic residuals of the Gaussian density. The log residual values on
the isolated classes *62 and 63 are approximately -7.

A somewhat different view of the fit, which is particularly useful
for the purpose of extrapolation to the probability of vertical overlap
PZ(IOOO), is given by the "l-cumulative" curve, i.e. the probability of
vertical distances between aircraft in a pair larger than 1000+x or
smaller than 1000-x ft. Figure 28 shows this curve for the Gaussian
density. The solid line marks the curve based on the Gaussian density,
whereas the +signs mark the corresponding quantity based on the observed
pairs data. As might have been expected from the foregoing discussion, the
correspondence between the two curves is not good. Figure 29 amplifies
this for the tail region, by means of the logarithm of the "l-cumulative"
curves., The logarithmic "l-cumulative" curve drops off quadratically for
the Gaussian density. Notice that the logarithmic "l-cumulative" curve
based on the observed pairs data is flat on the intervals 51 to 61 _
inclusive, because there are not any observations in the intervals 52 to

61 inclusive (see Table 3).

The bad fit of the Gaussian probability density to the data as
examined so far graphically, is expressed mathematically by the very high
value of minus twice the stand#rdized log likelihood value given in Table
28: 257.80. Compared with the 95 per cent critical value, the Gaussian
density is formally rejected in a x3-test.

Although the Gaussian density is not acceptable as a probability
density model for the data, it might, from a theoretical point of view,
still be used for computing an estimate of the probability of vertical
overlap. Table 28 provides a value of 3.78*10_15, which, however, has no

practical significance.

Consider now the Double Exponential density in Figures 30 to 35
inclusive. Figure 30 shows the histogram and the estimated Double
Exponential density. The value of the Double Exponential density at the
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mean is 1/ = 0.0105 and exceeds the scale of Figure 30. The Double
Exponential density is seen to be more peaked than the histogram. This is
confirmed by the corresponding kurtosis values in Table 29: 6 and 4.33.
The Double Exponential density almost shows the reverse picture of the
Gaussian density. It overestimates the very core of the histogram,
underestimates the intermediate part and overestimates the remaining part,
except for the two isolated data points in the extreme tails (see Figs. 30
and 31). The linear and logarithmic residual plots, Figure 32 and 33,
demonstrate this nicely. Notice that the magnitude of the logarithmic
residuals of the Double Exponential density is considerably smaller than
that of the Gaussian density (compare Figs. 27 and 33). Table 29 explains
why the Double Exponential density overestimates the larger part of the
observed histogram in the tail area. The reason is the relatively large
value of the maximum likelihood estimate of the standard deviation
compared to the sample value: 134.097 and 125.2. Figures 34 and 35 show
the "l-cumulative" curves and their logarithms. Notice that the logarithm
of the "l-cumulative" curve of the Double Exponential density in Figure 35
is a straight line. The correspondence between the estimated and the
observed curves is not good. The extrapolation of the tail area is too

pessimistic.

It is concluded from Figures 30 to 35 inclusive, that the Double
Exponential density is not an appropriate model of the data. Mathematically,
the X?-~test confirms this view. The computed value of 211.18 of minus
twice the standardized log likelihood, far exceeds the 95 per cent critical
value of this test, see Table 28. Table 28 also gives a value of the
probability of vertical overlap, namely Pz(1000) = 1.13*10_5. This value,

however, is deemed to be too pessimistic for the practical situation.

As a final single probability density model of the pairs data, the
Generalized Laplace density will be considered. Recall from Section 3.2 on
"Selection of a family of probability distributions", that the family of
Generalized Laplace densities includes both the Gaussian and the Double
Exponential density as a particular member. The previous analysis suggests,
in fact, two things. Firstly, the probability density model might be
sought in between the Gaussian and the Double Exponential density. Second-
ly, this density should be more flexible than a probability density
characterized by a single parameter only. The Generalized Laplace density,

therefore, would seem to be an appropriate next step.
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Figures 36 to 41 show the results for the family of Generalized
Laplace probability densities. Figure 36 of the histogram and of the
estimated Generalized Laplace density shows a considerable improvement in
the fit, compared to the Gaussian and the Double Exponential densities.
Notice in particular the representation of the core of the histogram by
the Generalized Laplace density. Table 29 demonstrates that the estimates'
of the kurtosis of the histogram and of the Generalized Laplace density
are very close: 4.33 and 4.09. In addition, the maximum likelihood
estimate of the standard deviation corresponds very well to the sample
value. Figure 37 shows that the fit of the Generalized Laplace density has
also markedly improved on a logarithmic scale. See also the residual and
"l-cumulative" plots in Figures 38 to 41 inclusive. All these observations
are confirmed mathematically by a great reduction of the value of minus
twice the standardized log likelihood in Table 28: 77.17 rather than a
value of the order of 200. The present value is seen to be below the
critical value of a X?-test at the 95 per cent level and could lead to

formally accepting the Generalized Laplace probability density model.

Before doing so, the ultimate objective of the modelling process
should be recalled. This is to provide a best (but not too optimistic)
estimate of the probability of vertical overlap Pz(1000) in a 1000 ft
environment. As should be clear from the various diagrams, this estimate
has to be based on the extrapolation of the tails of the histogram by
means of the probability density model. As the value of the shape
parameter of the Generalized Laplace density is 0.727811, the logarithm of
this density is concave (see Figure 37) and drops off relatively quickly
in Figure 37. Therefore, the corresponding estimate of the probability of
vertical overlap, being PZ(IOOO) = 4.68"'10-8 (see Table 28), might be
somewhat too optimistic. In fact, by comparing the Figures 33 and 39, the
log residuals of the Generalized Laplace density on the two extreme
intervals +62 and 63 of the histogram are seen to be twice as large as
those of the Double Exponential density. The logarithmic "l-cumulative'
curves in Figure 41 also show that the extrapolation using the estimated
Generalized Laplace density is not by definition cautious. Taking these
observations into account, it is concluded that the estimated Generalized
Laplace probability density is not completely satisfactory for the
practical objectives. Rather than using a single Generalized Laplace
density, a mixture of two Generalized Laplace densities should be applied
and analyzed. Perhaps one or more of the parameters of such a mixture

could have a priori specified values.
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Results based on some Double Generalized Laplace probability distributions
with a Double Exponential tail distribution

Three different mixture densities, each having a different core
density but with Double Exponential tail density will be analyzed in this
subsection. These probability densities are:
~ the Gaussian Double Exponential (GDE)
~ the Double Double Exponential (DDE)
~ the Generalized Laplace Double Exponential (GLDE).
The Gaussian Double Exponential density has three unknown parameters @,
1=0.5 and b2=1.0. The Double Double

Exponential density has the same unknown parameters but the fixed

al, a2 and two fixed parameters b

parameters are b1= b2= 1.0. The Generalized Laplace Double Exponential

density has four unknown parameters ¢, a ,, a,, b1 and one fixed parameter
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b2 = 1.0. The complexity of the parameter estimation process is slightly
less for the Gaussian Double Exponential and Double Double Exponential
densities because of the smaller number of parameters to be estimated.

These mixture densities, therefore, are considered first.

As an alternative to a theoretical analysis of the existence and
uniqueness of a solution of the likelihood equations based on a mixture
probability density model, a grid may be constructed in the pertinent
parameter space, and each grid point be used as an initial estimate for
the Newton iteration process. The maximum dimension and the resolution of
the grid need to be sufficiently large for this approach to be successful.
On the other hand, these two quantities should be as small as possible in
order that the approach is computationally efficient.

For the Gaussian Double Exponential density, the alternative
approach means that a grid in the (G,al,az)-parameter space has to be
constructed. Rather than utilizing a full three-dimensional grid, a grid
for the scale parameters a, and a, is constructed in the plane 0=0.1.

1 2
Although a -a, planes defined by different values of @ could also be

consideredt the results obtained from the present choice are believed to
be sufficient. The dimensions of the grid in the (al,az)-plane chosen may
be derived from the magnitude of the sample standard deviation, because
the scale parameters a, and a, are related to the standard deviation of
the core and the tail density respectively (see eqs.(12)-(14)). Based on
a sample standard deviation of s=125.2 ft, the following (al,az)-grid was

chosen in the plane a0=0.1:
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a, = 30,40,...,250 ; (0, = 21.2, 28.3, ..., 176.8) } -
a, = 30540,0045250 3 (02 = 42,2, 5646, oves, 6 353.6)
The numbers between the brackets denote the corresponding grid in the

(01,02)-plane. Notice the difference in the range of o, and o,. Using this

grid and the grouped data of Table 3, six solutions oflthe liielihood
equations pertaining to the Gaussian Double Exponential probability
density model have been obtained which meet both the stop criteria:
max{lEll,|E2|,|E3l} <e=1.0%10"10 and the number of iterations less than
or equal to 25. These solutions are given in Table 30. In addition, Figure
42 shows which grid point(s) converged to which solution. It should be
remarked that the line pieces do not indicate the path followed by the
successive iterants between the initial and the final value; they just
connect the initial and the final values. The initial value of o for each

solution is 0.1 and the final value can be read from Table 30.

The fifth solution of the likelihood equations as shown in Table 30
does not define a maximum of the log likelihood function, but a stationary
point. In addition, it does not meet the requirement 0sas<l.0. The sixth
solution does define a maximum of the log likelihood equation, but does
not either meet the requirement of the weighting factor being between zero
and one. The fourth solution is exactly the maximum likelihood solution of
5 is
not of any importance. The second and the third solution are exactly equal

a (single) Gaussian probability density. In this case, the value of &

to the maximum likelihood solution of a single Double Exponential density
based on grouped data with a class interval of 10 ft. The difference
between the two estimates of a, does not have a physical meaning, because
the weighting factor of the core density is zero for these two solutions.
So, both the (single) Gaussian and the (single) Double Exponential proba-
bility density satisfy the likelihood equations of the family of Gaussian
Double Exponential mixture densities. Both these single densities,

however, were shown not to be practically acceptable in Section 7.2.

From a numerical analysis point of view, it is interesting to remark
that the set of gridpoints for which the two stopcriteria are not met can
be subdivided into two classes. The first class consists of those points
for which M = max{lEll,lEzl,|E3|} either oscillates around a certain
finite (non-zero) value or increases at each iteration. The second class

consists of those points for which M decreases very slowly to zero at each
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iteration. After a certain number of iterations, M decreases by a factor
of approximately two per step. In some cases, all the three parameter
estimates are seen to jointly diverge to plus or minus inifinity (by a
factor of two at each iteration). In the other cases, the estimates of
only one or two of the three parameters show such divergence, with the
remaining two or one parameter(s) converging to a finite value. For each
of the grid points belonging to the second class, the stop criterion M<e
could be met when the number of iterations would be allowed to become
sufficiently large. The resulting solutions, however, do not have any

practical meaning.

The first solution in Table 30 was analyzed further. The parameter
and additional estimates are summarized in Table 31. These indicate that
the Double Exponential tail density has a relatively large weighting
factor in the overall mixture. Its standard deviation is approximately 20
feet larger than that of the Gaussian core density. Notice that the
accuracy of the scale parameter estimates as measured by 0(31) and 0(52)
is approximately the same. The maximum likelihood estimate of the overall
standard deviation of the Gaussian Double Exponential density is close to
the sample standard deviation. The maximum likelihood estimate of the
kurtosis is relatively large compared to the sample value of 4.33. This is
due to the heavy weighting of the kurtosis of the Double Exponential tail
density.

Figures 43 to 48 inclusive show the estimation results for the
Gaussian Double Exponential density graphically. Notice that, in agreement
with the estimated kurtosis value, the Gaussian Doubie Exponential density
is relatively heavily peaked about the mean value of 1000 ft. Compared
with the (single) Gaussian and the (single) Double Exponential density,
the fit has considerably improved. See the Figures 43 to 46 inclusive. For
the Gaussian Double Exponential density, the logarithmic residuals on the
four extreme classes are somewhat larger than for the Double Exponential
density. Compared with the Generalized Laplace density (see Figures 36 to
41 inclusive) these residuals are seen to be smaller. The quality of the
fit as measured by minus twice the standardized log likelihood value is
78.25, which is comparable with that for the Generalized Laplace density,
but just exceeds the 95 per cent critical value of a x?-test with 59
degrees of freedom. Compare finally the linear and logarithmic "l-cumula-
tive" curves of Figures 28, 34, 40, 47 and 29, 35, 41, 48. The correspon-




dence between the estimated and the observed curve is seen to be much
better for the Gaussian Double Exponential density than for the (single)
Gaussian and Double Exponential density. The results for the Gaussian
Double Exponential and the Generalized Laplace density are similar for
deviations from the mean up to approximately 340 feet, with the former
being at least as good and more cautious for the larger deviations without
being as pessimistic as the (single) Double Exponential. Hence, the
Gaussian Double Exponential is considered to be well suited for extrapo-
lation purposes. The corresponding estimate of the probability of vertical
overlap is P_(1000) = 6.59%107° (see also Table 31).

So far, the discussion has concentrated on the point estimates,
obtained by means of the maximum likelihood method, of the parameters of
the Gaussian Double Exponential probability density model. Further insight
is provided by interval estimates or confidence regions of the parameters.
There are various ways to obtain these using asymptotic approximations
valid for large sample sizes (Ref. 23). One possibility is to use the
Gaussian asymptotic distribution of the maximum likelihood estimator. This
involves eq.(41) or eqs.(42) and (43), adapted to the Gaussian Double
Exponential density and grouped data. The result is a Y*1007 confidence
ellipsoid in the (a,a1
likelihood point estimates. A second possibility is to use the likelihood

,az)-parameter space, centred at the maximum

ratio statistic. This involves eqs.(37) and (38) of Section 4, similarly
adapted. Its asymptotic distribution is a x?-distribution. The advantage
of the likelihood ratio statistic over the maximum likelihood estimator
for calculating confidence regions is, that the former usually approaches
its asymptotic distribution faster, and, as a result, gives tighter
confidence bounds. Because it is graphically impossible to represent the
joint confidence regions of all the three parameters in a single diagram,
confidence regions in the various co-ordinate planes of the (a,al,az)-para—

meter space will be given below.

Figures 49, 50 and 51 show the isocontours of the relative
likelihood function corresponding with the 90 and 95 per cent critical
values of a y?-distributed random variable with two degrees of freedom
(eq. 40). Notice that the contours are pretty regularly shaped and that in
particular the contours in the (al,az)-plane are close to an ellipticél
shape. Figures 52, 53 and 54 show isocontours based on the 95 per cent
critical value of the asymptotic maximum likelihood estimator. These
contours are based on the following asymptotic, observed, sub-covariance

matrices:
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0.00237 0.0676 452.772  -1.05947

covi{d,g,} = , cov-I{&.Sl} -
0.0676 28.9 ' -1.05947 0.0370987
0.00237 -0.0988 529.099 2.55372
cov{&,ﬁl} = " cov-l{&,az} =
-0.0988 205 2.55372 0.0611868
28.9 -18.9 0.0872645 0.0805227
cov{al,ﬁz} = 5 cov-l{al,az} =
-18.9 20.5 0.0805227 0.123163

The corresponding correlation coefficients are: p{&,al}=0.26, p{&,52}=
-0.45, and p{31,§2}=-0.78. The isocontours defined by the above
covariance matrices are known to be ellipses in the various co-ordinate
planes, centred at the maximum likelihood point estimates. The ellipses in
Figures 52 and 53 look somewhat deformed because of the stretching of the
vertical scale. Consequently, their axes are not perpendicular. The
difference in the orientation of the ellipses of Figures 52 and 53 is due
to the different signs of the correlation coefficients p{&,ﬁl} and '
p{&,az}. The true angles between the £-axes of the ellipses in the Figures
52 and 53 and the a, and the a, axis are 0.13° and 89.87° respectively.
The two types of isocontours are very similar for the pair of parameters
a, and a,. To a somewhat lesser extent, this also holds for the pair of
parameters a and a, with the contour based on the relative likelihood
function being somewhat smaller. Given the similarity in the.shape, this
is in agreement with the theoretically expected result. There is a similar
difference in the size and an additional difference in the orientation of

the two types of isocontours for the pair of parameters a and a,.

Approximate confidence bounds on the parameters a, as and a, of the
Gaussian Double Exponential probability density model may be defined by
the minimum and maximum parameter values along the isocontours. Similarly,
approximate confidence bounds on the probability of vertical overlap
Pz(1000) may be defined by the minimum and maximum values of Pz(IOOO),
evaluated along the various isocontours. Thus, the following appropriate

95 per cent confidence bounds (conservatively rounded) have been obtained:




approximate 95 per cent confidence bounds based on
parameter
relative likelihood function | maximum likelihood estimator
a 0.31 - 0.55 0.31 - 0.55
a, 152 - 172 151 - 171
a, 88 - 108 87 - 109
-6 -6 -6 -6

Pz(IOOO) 2.3*%10 ~ - 14.8*10 2,0%10 ~ - 16.7*%10

As was to be expected from the discussion on the diagrams of the
isocontours, the bounds on the parameters based on the two approaches are
practically the same. The bounds on the probability of vertical overlap
PZ(IOOO) derived from the relative likelihood function are about ten per
cent tighter than those based on the maximum likelihood estimator. The
major question with regard to deriving a bound on a quantity is to obtain
a bound which is as tight as possible. Because the relative likelihood
method generally gives tighter bounds and because the various isocontours
are regularly shaped, the bounds based on this method are taken to define
a 95 per cent confidence interval for the probability of vertical overlap
PZ(IOOO), namely 2.3*10_6 - 14.8*10_6. The upper bound is approximately

2.2 times larger than the point estimate of 6.59*10—6.

The second probability density model belonging to the class of
densities considered in this subsection is the Double Double Exponential
probability density. It is characterized by exactly the same parameters as
the Gaussian Double Exponential density, namely a weighting factor o and
two scale factors a, and a,. Hence, the same grid as used for the Gaussian
Double Exponential density might, in principle, be used to define initial
guesses for the Newton iteration process to solve the likelihood equations
pertaining to the family of Double Double Exponential probability densi-
ties. This was actually done for a sub-grid defined by a1-30,40,...,140.
Most of the grid points gave convergence to the (single) Double Exponen-
tial density already described in Section 7.2. Divergence occurred in a
few cases and in one case (a1 =110, a2 =220) the following solution
defining a stationary point M of the v log likelihood function was found:
a=-0.331625, a1-111.255, a2-160.813. Two different explanations might be

given for these somewhat unexpected results. Firstly, the resolution
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and/or the size of the used grid might be insufficient. Secondly, it might
just not be possible to model the data by means of a real Double Double
Exponential probability density. Because of the successful application of
the same grid to the Gaussian Double Exponential as well as to the
Generalized Laplace Double Exponential density (see below), it is believed
that the second explanation is the more likely. For the same reason, it
has not been attempted to obtain any solutions of the likelihood equations

starting from a finer grid.

The alternative approach referred to in the beginning of this
subsection means for the Generalized Laplace Double Exponential
probability density, that a grid has to be constructed in the

four-dimensional (G,al,a ,bl)—parameter space. Using ten grid points in

each dimension would resilt in 10000 different initial guesses for the
Newton iteration process to be evaluated. In order to limit this very
extensive procedure, the same grid as used for the Gaussian Double
Exponential density in the (al,az)-plane (see eq.(177)) was utilized,
together with only one pair of initial estimates of @ and bl’ namely
00-1.0 and b10=0.8. Table 32 presents the seven different solutions found
of the likelihood equations pertaining to the Generalized Laplace
Double Exponential probability density. Figure 55 shows which grid points
gave convergence to which solution. A solution is said to have converged
when both M = max{,Ell,,Ezl,fE3f,fEal} <E= 1.0*10—10 and the number of
iterations is not larger than twenty-five. In addition, many grid points
gave in a few iterations a solution with 8=0.0, 31-134.284 or 8=1,0 and
§2=94.8206 with a whole range of values of 52 and 31 respectively, without
satisfying M<e = 1.0*10-10. In those cases, the iteration process was also
stopped. These gridpoints and their corresponding solutions are not shown
in Figure 55. This phenomenon did not occur for the Gaussian Double
Exponential density discussed earlier. Apparently, the convergence rate
was higher there. The second solution is exactly the maximum likelihood
estimate of a (single) Double Exponential density. Similarly, the third
solution is exactly the maximum likelihood estimate of a (single)
Generalized Laplace density. The estimates of the parameters of the core
density of the second solution and the estimate of the scale parameter of
the tail density of the third solution do not have any practical meaning,
because the associated weighting factors are precisely zero. The fourth to
the seventh solution inclusive, although satisfying the likelihood

equations, do not define any local mq;imum of the log likelihood function.
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Each of these defines a stationary point only. The fourth solution is not
acceptable because of its negative weighting factor. Physically, these
solutions seem to be close to the third solution. The fifth to the seventh
solution inclusive may be regarded as being close to the (single) Double
Exponential solution (solution number two). The small values of the shape
parameter of the core density of these three solutions define core
densities which are close to a homogenous probability density in some
region about the mean value of 1000 ft. On the basis of the existence of
these three stationary points of the log likelihood function, the

existence of even more similar stationary points might be conjectured.

The first solution in Table 32 was analyzed further. The parameter
and additional estimates are summarized in Table 31, together with those
of the Gaussian Double Exponential density and the Generalized Laplace
density discussed before. The core density of the Generalized Laplace
Double Exponential density is seen to be very similar to the single
Generalized Laplace density. Its tail density has, compared with the
Gaussian Double Exponential density, a very small weighting factor, and a
relatively large standard deviation. The Generalized Laplace Double
Exponential density may thus be considered to be a Generalized Laplace
density, which in the core region is slightly perturbed by the Double
Exponential tail density, and which in the tail area is dominated byAthe
Double Exponential tail density (see the discussion of the pertinent
diagrams below). Compared with the Gaussian Double Exponential density,
the maximum likelihood estimates of the overall standard deviation and of

the kurtosis are closer to the sample values (compare e.g. Table 29).

Figures 56 to 61 inclusive show the estimation results for the
Generalized Laplace Double Exponential density graphically. Compare these
figures with Figures 36 to 41 inclusive and Figures 43 to 48 inclusive of
the Generalized Laplace and the Gaussian Double Exponential density
respectively. On a linear scale, the three densities look very similar.
Consequently, this also holds for the linear residual plots (Figures 38,
45 and 58). Logarithmically, they look (very) different in the tail
regions below 500 and above 1500 ft. By comparing Figures 37 and 57, the
effect of adding a Double Exponential tail density is seen to be very
significant. In Figure 57, the concave shape of the logarithm of the core
density ranges from about 400 to 1400 ft. The linear shape of the
logarithm of the tail density extends below and above approximately 200
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and 1800 ft, In the intermediate regions, the shape is convex. Notice
that, compared with the Gaussian Double Exponential density of Figure 44,
the core and the intermediate region extend over a much larger range. This
is due to the small value of the weighting factor of the Double Exponen-—
tial tail density in the present case. The main difference between the
logarithmic residual plots (Figures 39, 46 and 59) appears on the two
extreme classes on the left and on the right. The Generalized Laplace
density gives the worst fit on these classes, the Gaussian Double Exponen-
tial density giving the best fit there, whilst the Generalized Laplace
Double Exponential density is in between the two. The overall quality of
the fit as measured by minus twice the standardized log likelihood value
is the best for the Generalized Laplace Double Exponential density (see
Table 31). In fact, it is below the 95 per cent critical value of a
X%2-test with 58 degrees of freedom and would lead to a formal acceptation
of this probability density model. For the practical objectives of this
study, the "l-cumulative" curves are again of prime interest. On a linear
scale, these are very similar (Figures 40, 47 and 60). The so-called
logarithmic "l-cumulative" curves (Figures 41, 48 and 61) show some
important differences in the range of deviations from the mean of 340 feet
and greater. Compared with the Generalized Laplace density, the Genera-
lized Laplace Double Exponential probability density leads to more
cautious estimates of the probability of large deviations from the mean
value. On the other hand, it is less cautious than the Gaussian Double
Exponential density. Notice that the logarithmic "l-cumulative" curve of
the Generalized Laplace Double Exponential density matches the last data
point of the experimental logarithmic "l-cumulative" curve. The corres-
ponding estimate of the probability of vertical overlap would be Pz(1000)
= 4.73%107° (see also Table 31).

Figures 62 to 67 inclusive show the isocontours of the relative
likelihood function derived from the 90 and 95 per cent critical values of
the corresponding likelihood ratio. Small irregularities in the shape of
the contours are due to the limited resolution used in the underlying
computation process and do not have any statistical significance. Five out
of the six diagrams show isocontours which are approximately of an ellip-
tical shape, the exception being the isocontours pertaining to the pair of

parameters ® and a,. Recall that these two parameters are the weighting

2
factor and the scale factor of the tail density, which have to be esti-~

mated from a relatively little part of the total information available in
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the data. The large uncertainty on @ and a, is reflected by the estimated

standard deviations 0(®) and 0(52) in Tablz 31. From a statistical point
of view, negative values of the weighting factor @ are possible, given the
fact that o(8) is about twice as large as Q. Practically, however, the
weighting factor should be greéter than or equal to zero, and the contours
in Figures 62 to 64 inclusive, have been cut at a lower value of a of
zero. Consider now Figure 63, showing isocontours in an (az,u)-plane.
Notice that the 90 per cent isocontour is closed, whereas the 95 per cent
isocontour is not. This is due to the following. When a=0.0, the tail
density does no longer pléy a part in the mixture density. As a result,

the relative likelihood function does not depend on the scale factor a

2’
along the az-axis, and is determined completely by the parameters a, and
b, of the core density. Thus the a_ -axis in Figure 63 is itself an isocon-

1 2
tour. Its value turns out to be 0.052, corresponding with a confidence

value of slightly less than 95 per cent of the associated x?-distributed
likelihood ratio. Because two isocontours can not intersect each other,

the 95 per cent contour bends away along the az-axis. Figures 68 to 73
inclusive show the 95 per cent isocontours based directly on the asymp-

totic maximum likelihood estimator. A lower bound of zero was taken again for
a, The shape of the two types of contours is very similar for the pairs of

a, and a . With regard to the dimensions,

) | 2’ 1
the contours based on the relative likelihood function are tighter, as

parameters @ and b b1 and a
they are expected to be. The contours of the relative likelihood function
of the two pairs of parameters @ and a, b1 and a, are approximately
elliptical in shape, but they are differently oriented and tighter than
their counterparts of Figures 68 and 73 derived directly from the asymp-
totic maximum likelihood estimator. The main difference between the two
types of contours occurs for the pair of parameters o and a,.

Confidence bounds on the parameters of the Generalized Laplace
Double Exponential density model and on the probability of vertical
overlap PZ(IOOO) can, in principle, be defined in the same manner as for
the Gaussian Double Exponential probability density. Two points, however,
require particular attention. The first one is the observation that the 95
per cent isocontour of the relative likelihood function is not closed. It
turns out that its right-hand side is given by >0 and az*“. The probabi-
lity of vertical overlap given by eq.(l74) may be further approximated by
considering only the tail density, i.e.
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Clearly, the probability of vertical overlap decreases with decreasing «
2<1000. Whether or not

PZ(IOOO) increases with a, along the 95 per cent isocontour for values of

and increases with increasing values of a,, for a

a, larger than 300, say, depends on the corresponding rate of decay of a
along that part of the contour. It turns out that the maximum of PZ(IOOO)
along the 95 per cent isocontour of Figure 63 occurs for approximately
a=0,135 and 32-252. The second point to be kept in mind when considering
confidence bounds for the parameters is that the parameter @ is limited to
non-negative values. The associated confidence level, therefore, will

effectively be lower than 95 per cent.

The values summarized below were obtained by taking again the

minimum and maximum values along the contours.

approximate 95 per cent confidence bounds based on
parameter
relative likelihood function | maximum likelihood estimator

a 0.0 - 0.22 0.0 - 0.26
a, 128 - 148 124 - 149
a, 85 - 245 (907%) 27 - 212
b1 0.63 - 0.74 0.6 - 0.79
P, (1000) 1.6%10°8 - 42#%107° 1.6%10" 1% - ogx107°

Notice that the interval given for a, in the middle column is a 90 per

cent confidence value rather than a 95 per cent value. The 95 per cent
isocontour of Figure 63 would give an infinite interval for the parameter

a,s because the contour is not closed. There is a fairly good agreement
between the intervals based on the two approaches for the parameters a, a,

and bl' The difference in the case of the scale parameter a, of the tail

density is obvious from the foregoing discussion. The range for a, based

on the maximum likelihood estimator is, in fact, also responsible for the

difference in the size of the confidence regions of the probability of
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vertical overlap, based on the two approaches. The lower bound of
1.6*‘10-11 corresponds with the lower bound of 27 of a, whereas the upper
bound of 98*10-6 corresponds with the upper bound of 212 of ays combined
with a relatively high value of the weighting factor o. Taking the theo-
retical aspects of the derivation of confidence intervals based on the two
approaches into account, as well as the particular observations in the
case of the Generalized Laplace Double Exponential probability density
discussed here, the confidence interval for the probability of vertical
overlap Pz(IOOO) chosen here is thesone baseiﬁon the relative likelihood
- 42%10 ~, The upper bound is
approximately nine times larger than the maximum likelihood point

function, i.e. the interval 1.6%10

estimate.

Results based on the Double Generalized Laplace probability distribution
The Double Generalized Laplace probability density is characterized

by five parameters @, a, a,, b, and b2’ in addition to its mean value

(assumed to be 1000 ft here). Rither than using a full grid in the five-
dimensional parameter space, the two-dimensional grid in the (al,az)—plane
defined by eq.(177) has been utilized together with one triple of initial
estimates of the remaining parameters, namely a0=0.1, b1 =0.8 and b2 =1.0.
Table 32 presents the six solutions of the likelihood " equations .
pertaining to the family of Double Generalized Laplace probability
densities, found by this approach. Some of these solutions had not yet
fully converged to the two stop criteria maxf,Elf,,Ezf,fE3l,,E4f,E5} < €=
1.0*10—lo and the number of iterations less than or equal to 25. For this
reason, a diagram showing the convergence of the grid points to each
solution is omitted. The second solution in Table 33 defines again the
maximum likelihood estimate of a (single) Double Exponential density,
whereas the third defines the estimate of a (single) Generalized Laplace
density (compare Table 28). The fourth solution defines a stationary point
of the log likelihood function rather than a maximum. Physically, the
fourth solution may be interpreted as a slightly perturbed version of the
third solution, that is, the (single) Generalized Laplace. The value of

the shape parameter b, indicates that, what is called the tail demnsity, is

in fact a more or lesg homogenous density (with standard deviation 0=278.7
ft) on the interval of 500 to 1500 ft. The fifth and sixth solution in
Table 33 also define stationary points rather than maxima of the log
likelihood function. Notice that these two solutions.are more or less

complementary.
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The first solution in Table 33 was analyzed further. The parameter
and additional estimates are summarized in Table 31, together with those
of some of the densities discussed before. It is seen that what is called
the tail density, i.e. the density weighted by the factor a, is close to
the (single) Generalized Léplace density with regard to its parameter
estimates §2=13S.873 and 52=0.755964. Taking the value of o into account,
the tail density appears in fact to be the main component of the Double
Generalized Laplace mixture density. The core density has a shape para-
meter of approximately 0.3, which means that the core density is rela-
tively flat over the range of 850 to 1150 ft. Taking the estimated values
of the core and tail standard deviations into account, the population may
be said to be composed of a small proportion (17%) of relative accurate
objects and a major proportion (83 per cent) of average objects. Notice
finally that the maximum likelihood estimates of the overall standard

deviation and of the kurtosis are close to the sample values (see Table
29).

Figures 74 to 79 inclusive show the estimation results for the
Double Generalized Laplace density graphically. The main difference
between the Double Generalized Laplace density on the one hand, and the
Generalized Laplace, the Gaussian Double Exponential, and the Generalized
Laplace Double Exponential on the other, appears in the tail area and,
therefore, is most clearly visible in the diagrams showing the logarithms
of the densities, the residuals and the "l-cumulative". Compared with a
(single) Generalized Laplace density, the tail of the logarithm of the
Double Generalized Laplace density has slightly shifted upwards. The
differences with respect to the Gaussian Double Exponential and the
Generalized Laplace Double Exponential are similar to those between the
latter two densities and a (single) Generalized Laplace. Consider the log
"l-cumulative" curves of Figures 41, 48, 61 and 79. For deviations from
the mean up to 470 feet, the curve based on the Double Generalized Laplace
density most closely follows the experimental curve. This is, of course,
the result of the flexibility inherent to the five parameter Double
Generalized Laplace probability density model. Due to this same flexibi-
lity, the former curve follows the experimental curve between 470 and 620
feet more closely than the curve based on the (single) Generalized Laplace
density. Compared with the Generalized Laplace Double Exponential density,
the Double Generalized Laplace density is more cautious in the range of

deviations from the mean between 300 and approximately 500 feet. In the
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extreme tail region, however, the Double Exponential tail density of the
Generalized Laplace Double Exponential density becomes more cautious. For
deviations from the mean up to 400 feet, the log "l-cumulative" curves
based on the Gaussian Double Exponential and the Double Generalized
Laplace densities nearly coincide. For thé,larger deviations, the heavily
weighted tail density of the Gaussian Double Exponential density is more
cautious. Based on the Double Generalized Laplace probability density
model, the estimate of the probability of vertical overlap would be
P,_(1000) = 2.21%107",

Summary

A total of six different probability density models has been fitted
to the real aircraft pairs data by means of the maximum likelihood method
in the subsections 7.2 to 7.4 inclusive. Three of these six densities are
single densities, namely a Gaussian, a Double Exponential and a Generali-
zed Laplace density. The Gaussian and the Double Exponential density are
shown not be able to describe the data in an appropriate manner. Although
the Generalized Laplace density gives a satisfactory description of the
data, it is considered to be unsuitable for the extrapolation required to

estimate the probability of vertical overlap.

The remaining three densities are mixture densities, namely the
Gaussian Double Exponential, the Generalized Laplace Double Exponential
and the Double Generalized Laplace density. Each of the three gives a
satisfactory description of the data. As the differences between the fits
of these densities to the core of the data sample are very small, the
choice of a unique probability density mdoel from these three alternatives
depends on how well these densities extrapolate the tails of the data
sample. Because of the inherent uncertainty of the extrapolation process,
a cautious approach has to be taken. The best model then is the Gaussian
Double Exponential probability density, giving a point estimate of the

probability of vertical overlap of PZ(IOOO) = 6.59*10_6 and a 95 per cent

6 6

interval estimate of 2.3*10 ° - 14.8%10 .
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CONCLUSIONS

The assessment of the risk of collision between aircraft due to the
loss of vertical separation in a possible 1000 ft environment makes use of
a particular collision risk model. The main parameter of this model is the
probability of vertical overlap. It may be estimated from data on the

vertical distance between aircraft in a pair.

Due to the limited amount of data that can be obtained in practice,
a mathematical probability distribution model of the data is required. A
methodology to arrive at such a model has been defined and elaborated. It
consists of three elements. The first two elements are the selection of a
suitable family of probability distributions and of a method to estimate
the unknown parameters from the available data. The family of the Double
Generalized Laplace distributions and the maximum likelihood parameter
estimation technique have been selected. The third element consists of a
careful appraisal of the numerical results obtained, given the uncertain-
ties inherent to the overall process.

The methodology has been implemented in a computer package called
Double Generalized Laplace Distribution Fitting, DGLDiF. The package has
been written in FORTRAN77, which safeguards portability. The package may .
be applied in various fields, because of the generality of the family of
Double Generalized Laplace probability distributions. It is further
strengthened by the possibility of selecting any subset of the five
parameters to be estimated, using either grouped data or non-grouped data.
Various additional statistical quantities of interest are part of the
standard output of the package. The package is presently being extended to
mixtures of more than two Generalized Laplace distributions and to other

parameter estimation techniques.

The package has been used on the Cyber 180-855 computer of the
National Aerospace Laboratory NLR. It has been validated, to the extent
possible, by means of simulated data. Some of the technical questions
associated with the underlying methodology have been investigated through
digital simulation, while some others have been investigated analytically.
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Applied to the so-called grouped aircraft pairs data, the

methodology has resulted in the Gaussian Double Exponential probability

density as the best model with regard to the objectives posed. The

associated point estimate of the probability of vertical overlap amounts

6.6*10-6 with a 95 per cent confidence interval of 2.3*10
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APPENDIX A

DEFINITION OF SOME SAMPLE STATISTICS

The sample mean m and the sample moments s?, (m3)3, (mA)“ centred

around the sample mean are defined as follows:

i=1
n
s __1 3
(m3) = a1t (di_m)
i=1
n
1 4
b o= "

The sample skewness By is defined as

{(my)?}
Bl = T (D)7

The sample kurtosis By is defined as

(ma)“
By = (D)2
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APPENDIX B

REVIEW OF PROBABILITY DENSITY MODELS BEING USED
IN THE US AND JAPANESE VERTICAL DATA COLLECTION STUDIES

A total of nine different families of probability densities is
described in Ref. 14 for the United States data collection study. The most
general family considered is the "Mixture of Two Power-Exponential
Probability Density Functions'". It can easily be verified that the
Power-Exponential density fE(d;¢,B) of Ref. 14 is identical to the
Generalized Laplace density forming the elements of the Double Generalized
Laplace density as defined in this paper. The relation between the

parameters a and b on the one hand and ¢,B on the other, is:

(B.1)

a=9%2 (1 +8)/2

(B.2)
The "Mixture of Two Power-Exponential Probability Density Functions" is
then identical to the Double Generalized Laplace density. The other eight
families of Ref. 14 are special cases of the most general family, obtained
by fixing the values of one or more of the five parameters. It should
finally be noted that in the U.S. case the probability densities are used
to model single aircraft data (versus paired aircraft data in the European

case).

In the Japanese data collection, the so-called "relative vertical
distance" constitutes the data (Refs. 15 - 17). For two aircraft assigned
to the same flight level, the relative vertical distance is defined as the
difference of their heights as measured by the radar. This is similar to
the paired aircraft data used in the European case, but no correction
needs to be made for the difference in the height of the assigned flight
levels (provided that their temporal and spatial height variations are
negligible). Each data point zj is modelled by

(B.3)
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where e i is the height keeping error of aircraft i (i = 1,2) in pair j
’

and e i is its measurement error (due to radar as well as changes in
’
atmospheric conditions). Each term in the right-hand side of eq.(B.3)

above, is assumed to be statistically independent of all the other terms.

Two approaches are distinguished viz. i) postulating separate
probability distributions for the height keeping and measurement errors,
followed by convolution to obtain the probability distribution of the
relative vertical data, and ii) postulating directly a probability
distribution for the relative vertical data. For the latter approach,
three families of probability distributions are considered in Ref. 15,
namely Gaussian, Double Exponential and Gaussian Double Exponential. Only
the last family, however, is elaborated in Ref. 16 and 17. For the former
approach, two cases are considered. Firstly, the case of Gaussian
measurement errors and Double Exponential height keeping errors is given
(Refs. 15 - 17). Secondly, the case of Double Double Exponential height
keeping errors with identically zero measurement errors is described
(Refs. 16 and 17). This corresponds with the Convoluted Double Double
Exponential case discussed for the European data collection in Ref. 11.
The combination of Gaussian measurement errors and Double Exponential
height keeping errors is not included in either the European or the United

States' approach.
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APPENDIX C

SUMMARY OF FIRST AND SECOND PARTIAL DERIVATIVES OF
THE DGL PROBABILITY DENSITY TO THE PARAMETERS

) d =M 1/b ) di-u‘llbz
3 1 *1 1 4
C.1) 3g f(dp) = TZapTep © g Za,0,T(5,) ©
) di-u'l/b1
d.-ui1/b a
3 { 1 |% 1} 1 1
C.2) -a-;: f(di) (1-0) ‘- 1 +b—1 2 7a b (b ) e
) di-ulllb
d,-uil/b a
3 { 1 |% 2 1 2
d.-u|1l/b d.,-u
d { 1 1 |9 ' 1 17
C.4) 35— £(dy) = (1=0) {-F > = Vb ¥ log || [ *
1 1 1 1 1
) di-U{I/b1
1 . =
2a b I'(b )
d,-u;1/b
d 1 1 % 2 l
a1 _v¥
C.5) Wf(di) “{ 5 (bz) +37 |2 ‘ log J‘
2 2 z ' %
i di-u'l/b2
1 . "o
2a b I(b )
32
C.6) 35z £(d;) =0
) di-u‘l/b1
di-u l/b1 1 a,

32 ( 1
C.7) W f(di) = ‘1 = al

I ®
] 2a1b1 (bl)
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C.8) Baaaz f(di) - L% b2 a, Za!b F(b ) .
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3% (._; 1 51 1 1 )
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1A
2a;b 1T (b )
1 P 1/b
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aaab b, 2° "7 |a, 2
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1'%
2a,b r(b )
) di-u 1/b1
92 %1 *
Cc.11) a—a'f_ f(di) = (1-a) _S_I'—(b—) e
=% 5, b, |2 ‘ &y I %y
12) ==2— £(d,) = 0
€. e v -
Salaaz ; o
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92 ! *
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) di-u‘l/b
C.15) 2o £(d,) = @ i %2 &
-15) 3,2 i asb,I(b,) ©
2 272 2
] di-u 1/b2 1 di-u 1/1)2 1 di—u l/b2 )
T 22 a + -1 +b_ a = Li% 2b a I
2 2 2 2 2 2
32
C.16) PN f(d ) =0
2 l
: d:l-‘»-l'l/b2
32 1 %2
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) di-u l/b2
C.20) = £(d) =0 ——L _ & %2 &
8b2 i 2a2b2T(b2)
» d,-uj1/b, ; - d,-u d,-p
3 1% 2 1 i\ i
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k=1

C.23) C = 0.57721566490... , Euler's constant

1. o1
C.24) ¥'(b) = =g + I ———w
2 * o O

See for C.21 to C.24 inclusive: I.S. Gradshteyn and I.M. Ryzhik, Table of

integrals, series, and products, Academic Press, 1980.
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interval # data points
1 1447
2 1174
3 891
4 565
5 368
6 203
7 134
8 78
9 40
10 25
11 14
12 12
13 5
14 0
15 0
16 4

Table 1 Number of data points per class interval of 40 ft

(Note: intervals counted from 1000 ft onwards, on the assumption

of symmetry)
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interval $ data points interval 3 data points

1 766 16 37
2 681 17 25
3 611 18 15
4 563 19 15
5 479 20 10
6 412 21 12
7 340 22 2
8 225 23 7
9 209 24 5
10 159 25 4
11 120 26 1
12 83 27 0
13 75 28 0
14 59 29 0
15 41 30 0

31 2

32 2

Table 2 Number of data points per class interval of 20 ft
(Note: intervals counted from 1000 ft onwards, on the assumption

of symmetry of the distribution)
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interval | # data points interval | # data points interval |# data points

1 404 27 25 53 0
2 362 28 34 54 0
3 358 29 18 55 0
4 323 30 23 56 0
5 328 31 21 57 0
6 283 32 16 58 0
7 299 33 11 59 0
8 264 34 14 60 0
9 238 35 8 61 0
10 241 36 7 62 2
11 226 37 8 63 2
12 186 38 7 64 0
13 192 39 5

14 148 40 5

15 124 41 3

16 101 42 9

17 111 43 2

18 98 44 0

19 90 45 3

20 69 46 4

21 58 47 2

22 62 48 3

23 44 49 3

24 39 50 1

25 33 51 1

26 42 52 0

Table 3 Number of data points per class interval of 10 ft

(Note: intervals counted from 1000 ft onwards, on the assumption

of symmetry of the distribution)
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mY)

$2,+ 8

a=0

Aal - Aaz =0

Ao =0 Ao undetermined

Aal = Aaz undetermined Aal =0
Ao undetermined|Aq undetermined

Aaz undetermined

@
{ Aal = Aaz undetermined Aal undetermined

Aa undetermined |Aq undetermined

(Aaz =0

i

@

©

Aa

Aal
Ao

Aa1
Aa

®

Aa2 undetermined

contradictory

©

Aaz undetermined

1

®

Aa2 undetermined
-1

Table 4 The solution of eqs.(136) to (138) as a function of the values of

the weighting factor o and the scale parameter a.




-114-

method | algorithm number of accuracy
terms
Bhattacharjee | variable absolute, first neglected term < 10-8
Moore variable relative, first neglected term < 10-6
Taylor :
Lau variable relative, first neglected term < 10-6
series
Lindstrom 200 nine or more significant digits
expansion
Gautschi variable any prescribed number of significant
digits
Bhattacharjee | variable relative difference of two successive
Continued iterations 5 1075
fraction |Moore variable relative difference of two successive
iterations = 1076
expansion A
Gautschi variable any prescribed number of significant
digits

Table 5 Summary of the characteristics of five algorithms for the

computation of the incomplete Gamma function.
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interval # data points
1 1492
2 963
3 735
4 504
5 408
6 253
7 183
8 139
9 84
10 68
11 48
12 48
13 17
14 16
15 17
16 9
17 6
18 1
19 2
20 2
21 1
22 1
23 1
24 0
25 1
26 0
27 1

Table 6 Number of data points per class interval of 10 ft.
Simulation based on DE probability distribution of Section 6.2.
(Note: intervals counted from the mean onwards, on the

assumption of symmetry of the distribution.)
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sample | class | degrees | 2* standardized log likelihood

size |[interval] of based on I pi(approximated)

n w freedom .

d.f. pi(exact) pi(approximated)
eq. (44) eq. (46)

5000 5 33 63.03 74.60 0.99872

5000 10 26 33.54 79.80 0.99526
10000 5 53 68.58 91.72 0.99872
10000 10 26 29.07 121.6 0.99526

Table 7 X?~test statistic values based on exact and approximated probabilities,

for various combinations of sample size and class interval.

type of degrees | 2* standardized log likelihood
probability of based on
density freedom z pi(approximated)
d.£. pi(exact) pi(approximated) %
eq. (44) eq. (46)

DE 25 31.23 78.81 0.99515

GL 24 35.21 72.84 0.99615

DDE 23 31.23 78.81 0.99515

Table 8 x2-test statistic values based on exact and approximated

probabilities, for the three probability density models fitted

to the simulated data.
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interval | # data points interval| # data points interval| # data points
1 1499 26 5 51 0
2 1111 27 6 52 0
3 791 28 6 53 0
4 453 29 d 54 1
5 270 30 4 55 0
6 129 31 6 56 0
7 90 32 9 57 1
8 72 33 3 58 0
9 61 34 D 59 0
10 49 35 2 60 0
11 60 36 3 61 0
12 46 37 4 62 1
13 39 38 4 63 0
14 37 39 1 64 0
15 29 40 2 65 0
16 22 41 0 66 0
17 27 42 1 67 0
18 23 43 0 68 0
19 15 44 0 69 1
20 16 45 0 70
21 21 46 1 71
22 16 47 3 72
23 17 48 0 73
24 14 49 0 74
25 16 50 1 75

Table 9 Number of data points per class interval of 10 ft.
Simulation based on GDE probability distribution of Section 6.3.
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number of
case parameters a 31 32 Bl B2
estimated
G, 2 0.284507 30.4652
G3 3 0.288882 30.3581 88.1285
G4 4 0.283686 29,7019 89.0488 | 0.532338
G 5 0.269350 29.748910 | 103.458 0.539197 |0.918949

Table 10 Maximum likelihood parameter estimation results for various cases,
based on grouped simulated data. Simulated probability density is
GDE with parameter values:
a = 0.3 p = 0.0
a = 30 b, = 0.5

1
a, = 90 b, = 1.0

2 2
number of
case parameters a(@) o(ﬁl) c(az) 0(81) 0(52)
estimated
G2 2 0.0101 0.529
G3 3 0.0129 0.564 3.34
G4 4 0.0137 0.804 3.50 0.0282
G 5 0.0234 0.802 211 0.0298 0.109
n|

Table 11 Estimated standard deviations of maximum likelihood parameter
estimates, based on grouped simulated data. Simulated probability
density is GDE.
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degrees | 2* standardized log likelihood
case of based on

freedom z pi(approximated)

pi(exact) pi(approximated) .
eq. (44) eq. (46)

true GDE 68 67.66 69.24 0.99971
G2 66 65.65 66.80 0.99979
G3 65 65.26 66.49 0.99979
G4 64 63.53 65.73 0.99968
G 63 62.49 64.26 0.99974

Table 12 X2-test statistic values based on exact and approximated

probabilities, for the true and estimated nrobability density models.
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number of

case parameters a a, a, Bl 52
estimated

S2 2 0.284518 30.2682

S3 3 0.289635 30.1420 87.8291

S4 4 0.279873 28.8746 89.5754 0.561488

S 5 0.265341 28.8822 103.905 0.570186 |0.920811

Table 13 Maximum likelihood parameter estimation results for various cases,
based on non-grouped simulated data. The simulated probability density
is the GDE density with parameter values:

0.3

30 b1 = 0.5

9 90 b2 = 1.0

[
n

[
L}

number of
case parameters o(a) 0(51) 0(52) 0(81) 0(52)
estimated
S2 2 0.0101 0.527
83 3 0.0130 0.565 3.34
S4 4 0.0139 0.878 3.59 0.0326
S 5 0.0284 0.877 26.7 0.0362 0.137

Table 14 Estimated standard deviations of maximum likelihood parameter
estimates, based on non-grouped simulated data. Simulated

probability density is GDE.
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interval| # data points interval| # data points interval | # data points
1 1200 26 6 p- 1 4 0
2 849 27 6 52 0
3 603 28 6 53 0
4 497 29 7 54 1
5 358 30 4 55 0
6 263 31 5 56 0
7 231 32 10 57 1
8 194 33 3 58 0
9 122 34 4 39 0
10 98 35 3 60 0
11 81 36 3 61 0
12 62 37 4 62 1
13 71 38 4 63 0
14 48 39 1 64 0
15 33 40 2 65 0
16 38 41 0 66 0
17 18 42 1 67 0
18 35 43 0 68 0
19 18 44 0 69 1
20 15 45 0
21 24 46 1
22 17 47 3
23 14 48 0
24 18 49 0
25 15 50 1

Table 15 Number of data points per class interval of 10 ft.
Simulation based on DDE probability distribution of Section 6.4.
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number of

case parameters a a, a, Bl BZ
estimated

G2 2 0.273494 30.6685

G3 3 0.286538 30.3169 87.8419

G4 4 0.351737 32.3065 82.2403 0.883416

G 5 0.423585 32.0985 60.6733 0.867734 1.13398

Table 16 Maximum likelihood parameter estimation results for various cases,
based on grouped simulated data. Simulated probability density is
DDE with parameter values:
a =0.3 p =0.0

a; = 30 b1 =1.0

82 = 90 b2 = 1.0
number of
case parameters o(@) 0(31) 0(52) 0(51) o(B,)
estimated
G2 2 0.0189 0.983
G3 3 0.0415 1.40 5.85
G4 4 0.0507 1.70 5:33 0.0548
G 5 0.101 1.81 19.8 0.0628 0.137

Table 17 Estimated standard deviations of maximum likelihood parameter
estimates, based on grouped simulated data. Simulated probability
density is DDE.
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estimated parameter
number of
case parameters a a, a, Bl 62
estimated
G2 2 1.9 1.9
G3 3 3.2 249 1.8
G4 4 3.7 2.1 1.5 1.9
G 5 4.7 2.3 0.94 2.1 . 0.7

Table 18 Ratio between o(parameter) and o(parameter)

DDE GDE
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degrees 2* standardized log likelihood

case of based on
2
freedom i pi(approx.) X* 95, (d.£.)
d.f. pi(exact) pi(approximated)
eq. (44) eq. (46)

DE 67 353.76 372.78 0.99810 87.1
GL 66 104.08 185.79 0.99190 86.9
true DDE| 68 80.65 114.75 0.99648 88.2
G2 66 79.07 112.65 0.99652 86.9
G3 65 78.64 112.52 0.99651 84.8
G, 64 83.18 104.50 0.99775 83.7
G 63 83.09 105.88 0.99757 82.5

Table 19 x2?-test statistic values based on exact and approximated

probabilities, for the true and estimated probability density models.




-125-

number of
case parameters o] a, a, Bl 52
estimated
S2 2 0.283337 29,7288
53 3 0.320231 28.7000 84.4456
S4 4 0.0 28.1394 32.8299 1.02791
S 5 0.139939 24.6116 110.678 1.26653 |0.963159

Table 20 Maximum likelihood parameter estimation results for various cases,
based on non-grouped simulated data. Simulated probability density
is DDE with parameter values:

a = 0.3 u = 0.0

a = 30.0 b1 = 1.0
a, = 90.0 b2 = 1.0
number of
case parameters o(8&) 0(51) 0(52) o(Bl) 0(52)
estimated
82 2 0.0189 0.982
S3 3 0.0455 1.48 5.43
S4 4 - - - -
S 5 - - - - -

Table 21 Estimated standard deviations of maximum likelihood parameter
estimates, based on non-grouped simulated data. Simulated

probability density is DDE.
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interval | # data points interval # data points

1 1449 26 8
2 1037 27 2
3 755 28 1 .
4 494 29 0
5 351 30 0
6 206 31 2
7 131 32 2
8 97 33 1
9 84 34 0
10 58 35 1
11 49 36 0
12 44 37 1

13 33 38 0
14 32 39 0

15 25 ' 40 1
16 29

17 26

18 22

19 9

20 12

21 7

22 11

23 9

24

25 4

Table 22 Number of data points per class interval of 10 ft.
Simulation based on DGL probability distribution of Section 6.5
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number of

case parameters a a a, Bl 52
estimated

G2 2 0.279731 30.5115

G3 3 0.290766 30.2155 87.3888

G4 4 0.292612 30. 3301 87.1795 0.643835

G 5 0.244176 30.7618 113.568 0.661067 0.660112

Table 23 Maximum likelihood parameter estimation results for various cases,

based on grouped simulated data. Simulated probability density is

DGL with parameter values:

a = 0.3 u = 0.0
a, = 30.0 b1 = 0.65
a, = 90.0 b2 = 0.80
number of
case parameters o(8) 0(31) 0(32) U(Bl) G(Bz)
estimated
G2 2 0.0129 0.678
G3 3 0.0205 0.797 3.54
G4 4 0.0230 1.02 3.72 0.0348
G 5 0.0523 1.11 30.5 0.0401 0.169

Table 24 Estimated standard deviations of the maximum likelihood parameter

estimates, based on grouped simulated data. Simulated probability
density is DGL.
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degrees | 2* standardized log likelihood
case of based on

freedom z pi(approximated)

d, £, pi(exact) pi(approximated) X
eq. (44) eq. (46)

true DGL 39 45.00 52.38 0.99892
G2 37 42.78 49,97 0.99896
G, 36 42,08 49.45 0.99899
G4 35 42.41 49,28 0.99904
G 34 39.84 47 .47 0.99906

Table 25 x2?-test statistic values based on exact and approximated

probabilities, for the true and estimated probability density models.
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number of

case parameters a 51 52 Bl 52
estimated

82 2 0.282860 30.0398

S3 3 0.297780 29.6362 86.5270

S4 4 0.276779 28.1992 88.8963 0.724012

S 5 0.191361 28.7524 143.199 0.768766 | 0.542318

Table 26 Maximum likelihood parameter estimation results for various cases,

based on non-grouped simulated data. Simulated probability density

is DGL with parameter values:

a =0.3 u = 0.0
a = 30.0 b1 = 0.65
a, = 90.0 b2 = 0.80
number of
case parameters o(d) 0(51) 0(52) o(Bl) 0(62)
estimated
82 2 0.0129 0.674
S3 3 0.0206 0.798 3.46
84 4 0.0247 1.18 4,05 0.0454
S 5 0.0395 1.17 28.9 0.0530 0.114

Table 27 Estimated standard deviations of maximum likelihood parameter

estimates. Simulated probability density is DGL.
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parameters quality of fit
density
a o(3) B o(B) 2 % 1)
2
d.f.| standard. x.95,d.f.

log like-

1lihood
Gaussian 177.152 | 1.78| - - 61 257.80 80.2
Double Exponential 94,.8206) 1,35| - - 61 | 211.18 80.2
Generalized Laplace | 134.284 (3.72(0.727811(0.0203( 60 77.17 79.08

Table 28 Maximum likelihood parameter estimation results for Gaussian, Double

Exponential and Generalized Laplace probability distribution and
grouped pairs data of Table 3
(Note 1: based on exact probabilities pi)

density T G) Bl Bz PZ(IOOO)
observed 997.1 125.2 -0.00015|  4.33 -
Gaussian 1000 125.265 0 3 3.78%107 10
Double Exponential | 1000 134.097 0 6 1.13%107°
Generalized Laplace | 1000 125.205 0 4.09 l;.68*10—8

Table 29 Estimates of the characteristics of the observed and of the three
estimated probability distributions
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solution
number a a a,
1 0.429494 163.990 97.9211
2 1.00000 97.9558 94.8206
3 1.00000 283.918 94.8206
4 0.00000 177.152 4.,08656
5 1.02566 7.86915 92.5808
6 1.29950 50.4167 79.5968
Table 30 Some solutions of the likelihood equations

of the Gaussian Double Exponential probability
density model, using the grouped data of
Table 3 with a class interval of 10 ft.
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robability Gaussian Generalized Generalized Double
density Double Laplace Double| Laplace Generalized
model Exponential Exponential Laplace
(GDE) (GLDE) (GL) (DGL)
estimatio
result
a 0.429494 0.0495614 - 0.827724
a 163.990 136.717 134.284 151.358
a, 97.9211 122.526 - 135.873
bl - 0.697953 0.727811 0.271231
b2 - -~ - 0.755964
o(a) 0.0487 0.0844 - 0.0815
o(al) 5.37 4.90 3.72 14.6
a(a,) 4.52 35.2 - 7:53
c(bl) - 0.0391 0.0203 0.130
o(bz) .= - = 0.00362
d.fs 59 58 60 57
z*(c{’z-{)l 78.25 74.99 77.17 66.95
X?95,(d.f.) 77.9 . 76.8 » 79.08 " 75.7 ~
PZ(IOOO) 6.59*%10 4.73*10 4.68*%10 2.21*10
u 1000 1000 1000 1000
a 126.126 125,428 125.205 125.423
o 115.958 122,421 - 88.9614
oy 138.481 173.278 - 131.749
81 0.0 0.0 0.0 0.0
82 4.97 4,47 4.09 4.39
Table 31 Summary of maximum likelihood parameter estimation results for four

different probability density models and the grouped data of Table 3

(Note 1: based on exact probabilities Py» i=1,2,...,63)
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solution

number a 31 52 Bl
1 0.0495614 | 136.717 122.526 0.697953
2 1.00000 102.541 94.8206 0.0409075
3 0.00000 134.284 95.9099 0.727811
4 ~0.0228234 | 126.426 134.970 0.763878
5 0.833567 146.304 99.0175 0.0418090
6 0.846096 | 139.130 99.1601 0.0332417
7 0.872184 130.430' 98.8452 0.0276456

Table 32 Some solutions of the likelihood equations of the

Generalized Laplace Double Exponential probability
density model, using the grouped data of Table 3 with a
class interval of 10 ft.
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solution
number a a, a, Bl 52
1 0.827724 151.358 135.873 0.271231 0.755964
*
2 1.00000 92,1233 134,284 0.654584 0.727811
*
3 0 134.284 162.952 0.727811 0.625939
4 0.00662023 134.836 496.629 0.715010 0.131680
5 * 0.449525 143.601 137.723 0.764259 0.554998
6 * 0.549530 137.693 143.642 0.555473 0.764234

Table 33 Some solutions of the likelihood equations of the

Double Generalized Laplace probability density model,

using the grouped data of Table 3 with a class interval

of 10 ft.
*
(Note:

not fully converged solution)
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FLk ) S FLK'

Figure 1 Transforming aircraft height keeping errors from present
situation (2000 ft nominal separation) to possible
future situation (1000 ft nominal separation)

WITH h = DELTA:

sZ
DELTA
: - - - — "“(f (DELTA)
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- 7 v s * o
> 4 P, {sz}=/ f(h) [/ f(t—s,) dt] dh
- h—A
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P {s.}x24, /f(h)f (h —s,) dh
-

Figure 2 Single Aircraft Approach: determination of the probability
of vertical overlap P {S } from single aircraft measurements
for a nominal separation Sz
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Figure 3 Pairing Approach: determination of the probability of vertical
overlap P {S } from paired aircraft measurements for a nominal
separation Sz i
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Figure 5 Logarithm (base e) of folded histogram of pairs data
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Figure 8 Analysis (8A - 8C) and summary (8D) of the convergence properties
of the iteration process given by eq.(140)
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Figure 9 Using the thick tail of a Double Exponential probability distribution
to determine an upperbound for the initial interval needed by the
method of Regula Falsi
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histogram superimposed
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Figure 12 The simulated Double Exponential density, with the estimated
Double Exponential and Generalized Laplace densities as well

as the folded histogram superimposed
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Figure 13 Logarithm (base e) of the simulated and estimated probability
densities, and of the folded histogram
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Figure 14 The simulated density, with the estimated Double Exponential
and Generalized Laplace densities (based on non-grouped data)
and the folded histogram superimposed
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Figure 15 Logarithm (base e) of the simulated and estimated probability
densities (based on non-grouped data), and of the folded
histogram
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Figure 16 The simulated Gaussian Double Exponential density, with the
four estimated Double Generalized Laplace densities and the
folded histogram superimposed
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Figure 17 Logarithm (base e) of the simulated and estimated probability
densities, and of the folded histogram
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Figure 19 Logarithm (base e) of the simulated and two estimated
probability densities, and of the folded histogram




=144~

0.020

1 1 1 1

8.815

0.010

0.005

0.000 T T g ) T T S R M % T T T T T T T T
-1000 -500 (%) 500 d 1000

Figure 20 The simulated Double Double Exponential density, with the four
estimated Double Generalized Laplace densities and the folded

histogram superimposed
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Figure 21 Logarithm (base e) of the simulated and estimated probability

densities, and of the folded histogram
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Figure 22 The simulated and the estimated Double Generalized Laplace
densities with the folded histogram superimposed (estimated
densities based on grouped data)
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Figure 23 Logarithm (base e) of the simulated and estimated probability
densities (based on grouped data), and of the folded histogram
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Figure 24 The estimated Gaussian density with the folded histogram
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Figure 27 Logarithmic residual plot of Gaussian density
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Figure 29 Logarithmic "l-cumulative" curve of Gaussian density
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Figure 30 The estimated Double Exponential density with the folded
histogram superimposed
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Figure 34 "l-cumulative" curve of the Double Exponential density
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36 The estimated Generalized Laplace density with the folded
histogram superimposed
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Figure 38 Linear residual plot of the Generalized Laplace density
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Figure 42 Diagram showing in an (al,a )-plane which gridpoint (as an
initial estimate for the Newton iteration process) converges
to which solution of the likelihood equations based on the

Gaussian Double Exponential probability density model
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49 Two isocontours of the relative likelihood function of the
Gaussian Double Exponential probability density model
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Figure 52 A 95 per cent isocontour based on the asymptotic distribution
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Figure 53 A 95 per cent isocontour based on the asymptotic distribution

of the maximum likelihood parameter estimator for the Gaussian
Double Exponential probability density model
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Figure 55 Diagram showing in an (a_,a_)-plane which gridpoint (as an

initial estimate for the Newton iteration process) converges
to which solution of the likelihood equations based on the
Generalized Laplace Double Exponential probability density

model
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56 The estimated Generalized Laplace Double Exponential density
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57 Logarithm (base e) of the estimated Generalized Laplace Double

Exponential density and of the folded histogram
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Figure 58 Linear residual plot of the Generalized Laplace Double
Exponential density
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Figure 59 Logarithmic residual plot of the Generalized Laplace Double
Exponential density
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Figure 62 Two isocontours of the relative likelihood function of the

Generalized Laplace Double Exponential probability density model
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Figure 63 Two isocontours of the relative likelihood function of the

Generalized Laplace Double Exponential probability density model
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Figure 64 Two isocontours of the relative likelihood function of the

Generalized Laplace Double Exponential probability density model
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Figure 65 Two isocontours of the relative likelihood function of the
Generalized Laplace Double Exponential probability density model
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Figure 66 Two isocontours of the relative likelihood function of the
Generalized Laplace Double Exponential probability density model
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Figure 67 Two isocontours of the relative likelihood function of the
Generalized Laplace Double Exponential probability density model
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Figure 68 A 95 per cent isocontour based on the asymptotic distribution
of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model
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Figure 69 A 95 per cent isocontour based on the asymptotic distribution
of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model
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Figure 70 A 95 per cent isocontour based on the asymptotic distribution
of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model
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Figure 71 A 95 per cent isocontour based on the asymptotic distribution
of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model




0.80

8.75

0.70

0.65

0.60

Figure 72

0.80

8.75

0.70

0.65

0.60

Figure 73

~176-

L~

? N N

LA B B | | B T L8 ¥ §y ¢ ¥ Ok ¥ L% v 3 L

120 125 130 135 140 145 a9 150

A 95 per cent isocontour based on the asymptotic distribution »
of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model

y } /}"“\
/
/ U]

ki

1

Ca o Lo

; e
1 7

\

L S L T 9 L I AN N | U S B (R e T T I LI A A RS ;

25 50 75 100 125 150 175 200 3 225
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of the maximum likelihood parameter estimator for the Generalized
Laplace Double Exponential probability density model
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Figure 74 The estimated Double Generalized Laplace density with the folded
histogram superimposed
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Figure 75 Logarithm (base e) of the estimated Double Generalized Laplace
density and of the histogram
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Figure 78 "l-cumulative" curve of the Double Generalized Laplace density
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Figure 79 Logarithmic "l-cumulative” curve of the Double Generalized
Laplace density







