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SÜMMARY 

The problem of estimating the probability of vertical overlap in 

possible future airway systems with a vertical separation standard of 

1000 ft above Flight Level 290 Is addressed. It forms part of an overall 

safety assessment of such potential systems. The problem Is solved by 

developing a mathematical probability model of the vertical distance 

between aircraft in a pair. A priori unknown model parameters are esti

mated by means of the maximum likelihood method from presently available 

data on the height keeping performance of aircraft in Europe. Special 

attention Is given to the effect on the modelling process of the limited 

amount of data on large height keeping errors. The point estimate obtained 

is 6.6x10 , while an associated 95 per cent Interval estimate is 2.3x10 

- 14.8x10"^. 
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INTRODUCTION 

Presently, studies are underway aimed at investigating the possibi

lity of reducing the vertical separation standard at and above Flight 

Level 290 (FL 290) from 2000 ft to 1000 ft, without exceeding a specified 

risk level (Refs. 1,2,3). An important element of these studies is a 

collision risk assessment, i.e. an assessment of the risk of collisions 

due to the loss of vertical separation between aircraft assigned to 

adjacent flight levels of the same track. The risk assessment consists of 

two parts, namely a collision risk estimation process and a process of 

determining a so-called Target Level of Safety against which the estimated 

risk is to be compared. 

The collision risk estimation process is based on the use of the 

Reich collision risk model (Refs. 4,5,6). This model relates the collision 

risk to various characteristics of the population of aircraft as well as 

of the airway system under consideration. With regard to the latter, the 

separation standard is particularly important. With regard to the former, 

the probability of vertical overlap for aircraft assigned to adjacent 

flight levels is of prime importance. The model is characterized by its 

structure and by its model parameters. Having agreed on the model struc

ture, numerical values for each of the model parameters are needed. On the 

assumption that the structure of the model is the same for the various 

systems of interest, it offers the possibility of estimating the risk of 

each of those systems, by substituting the appropriate parameter values. 

As a consequence, estimates of the collision risk associated with e.g. a 

vertical separation standard of 1000 ft, can be obtained beforehand 

without actually having to apply such a standard in practice. This is done 

by extrapolating parameter values valid for the present situation of 2000 

ft vertical separation to that of 1000 ft. Of course, some assumptions 

have to be made for such an extrapolation, and it may be necessary to 

verify these assumptions in practice a posteriori, after a change in an 

airway system has taken place (Ref. 7). 

In this report, the process of estimating the probability of verti

cal overlap P (1000) is considered. This probability can be computed from 

the probability distribution of the vertical distance between two aircraft. 

Several problems have to be solved during this process. Firstly, there is 

the problem of the data itself. In practice, it is not feasible to measure 
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this probability distribution directly. It can, however, be obtained from 

data on the height keeping performance of individually observed aircraft. 

In fact, it can even be obtained in two ways from those data. In the 

context of the European Vertical Data Collection, these are called the 

Singles Approach and the Pairing Approach (Ref. 8). In the Singles 

Approach, the probability distribution of the deviations from the assigned 

flight level of a typical aircraft is constructed first from the data. 

This distribution then is used in a convolution process to arrive at the 

probability distribution of the vertical distance between aircraft. In the 

Pairing Approach, the latter distribution is formed directly by combining 

the data of pairs of individually observed aircraft. Because it was 

expected that the accuracy of the pairs data would be better than that of 

the singles data, the Pairing Approach was adopted as the primary approach 

to be used in the European Vertical Data Collection study (Ref. 9). The 

aircraft pairs data are extensively described in Ref. 8 and will be 

recalled in Section 2. . / 

The second problem, which applies to both the approaches,is that 

although the pertinent observed probability distributions contain many 

data points in the core, i.e. within say 500 ft from their mean values, 

there are virtually no data points in the tails of these distributions, 

the latter parts just being the most important for the collision risk. As 

a result, it is necessary to describe the observed distributions by means 

of a mathematical model and to use this model for extrapolation to the 

tail regions. Because of the inherent uncertainty of the extrapolation, it 

is desirable to build in some cautiousness into the modelling process. 

The process of modelling the observed distribution of aircraft pairs 

data consists of three steps, namely (1) selecting an appropriate family 

of analytical probability distributions depending on one or more parameters, 

(il) selecting a unique member from the family by fixing the parameter 

values, and (ill) evaluating the quality of the resulting fit. In practice, 

one may need to proceed iteratively when it turns out that some assumptions 

made earlier are not appropriate. The process will be detailed in Section 

3 with emphasis on step (1). It will be argued that the family of the 

so-called Double Generalized Laplace probability distributions is very 

well suited to describe the aircraft pairs data of Section 2. Step (11) 

will be elaborated in Section 4 for the maximum likelihood parameter 

estimation technique. As the resulting parameter estimation problem is 
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fairly complicated, some a priori analysis is of great use for the 

numerical solution process that will have to be used. Before considering 

the results of the application to the real data of Section 2, the para

meter estimation algorithm will be applied to simulated data based on 

different Double Generalized Laplace probability distributions. In fact, 

the application to simulated data serves two purposes, namely, firstly, 

validation of the estimation algorithms when the true parameter values are 

known and, secondly, assessment of the achievable accuracy and properties 

of the estimation problem under controlled conditions. 

AIRCRAFT PAIRS DATA 

A first estimate of the probability of vertical overlap due to the 

loss of vertical separation in a 1000 ft environment can be derived from 

data on the vertical distance between aircraft in the present 2000 ft 

situation. The natural (but expensive) way to collect accurate data on the 

height keeping performance of aircraft is by means of precision lock 

follow radars. Two complicating factors play a part. The first one is that 

it is practically not feasible to directly measure the vertical distance 

between two aircraft because the frequency of the event that two aircraft 

are at the same pre-defined (horizontal) location (i.e. the radar site) is 

very low. Moreover, it would require two radars. Thus, it is necessary to 

use radar measurements of individually observed aircraft. The second 

problem is that the vertical distance between two aircraft consists of two 

parts, viz. a part describing the aircraft height keeping errors and a 

part describing the distance between the assigned flight levels (see 

Figure 1). Hence, some information on the heights of the flight levels is 

needed. For the European Vertical Data Collection it was decided, on the 

basis of both economical, operational, and technical considerations, to 

derive the required flight level height information from measurements of 

the atmospheric situation by meteorological balloons. As a compromise 

between costs and (temporal), resolution, a frequency of (in principle) 

four balloon ascents per day was adopted. ; 
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From the measurements of the atmosphere as made by the meteorolo-

«r* - glcal balloons, the heights of the flight levels during the balloon *>~ -• 

ascents can easily be computed. By means of time interpolation, the flight 

level heights at arbitrary points of time can be derived. Thus, it is 

possible to compute for each aircraft measured by the precision lock 

follow radar its deviation from the assigned flight level, at the time of 

the measurement (see Figure 2). In the European Vertical Data Collection 

study, this is called the Singles Approach. The great disadvantage of this 

approach is that the absolute accuracy of the flight level heights is 

rather limited when using balloon derived data, due to the required 

integration process. This disadvantage may be overcome by considering 

height differences between flight level pairs. Similarly, height differen

ces between aircraft can be considered. This has been called the Pairing 

Approach (see Figure 3), and has resulted in a sample of aircraft pairs 

data, representative of a 1000 ft environment. 

Reference 8 gives a full description of the processing, analysis, 

and results of the European Vertical Data Collection. Following Reference 

8, the vertical distance d between two aircraft in a pair in a 1000 ft 

vertical separation standard environment is defined by 

d = DELTA- -DELTA, + S (measured) (1) 
i. 1 z 

where 

DELTA. = H. - CFL . , 1=1,2 (2) 

with H. being the average corrected radar measured height of aircraft 1 in 

the pair and CFL being the best estimate (based on the meteorological 

balloon data) of the height of the assigned flight level of aircraft 1 in 

the pair at the time and location of its measurement by the radar. It is 

remarked that each radar measurement took place over a time interval of 59 

seconds, with a frequency of 1 Hz and that the resulting 60 samples were 

corrected for refractivlty, elevation, and upward bending and next averaged 

(see Ref. 8). The quantity S (measured) is defined by 

S (measured) = best estimate of one thousand feet nominal vertical 
z 

separation under prevailing meteorological measure

ment conditions (3) 
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Figure 4 shows a histogram of the pairs data and Figure 5 shows the 

logarithm of this histogram to emphasize the data in the tail area. The 

sample actually consists of 4960 pairs data and is characterized by the 

following statistics (see Appendix A): -

sample mean 

sample standard deviation 

sample skewness 

sample kurtosis 

m = 997.1 ft 

s = 125.2 ft 

6̂  = -0.00015 

^2 = 4.33 

(4) 

Because there are no obvious physical reasons why the sample of pairs data 

should be asymmetrical, and because of the small value of the sample 

skewness, it will be assumed in the sequel that the observed distribution 

is symmetrical about a value of 1000 ft. Tables 1 to 3 inclusive give the 

corresponding histogram data for class intervals of 40, 20, and 10 ft 

respectively. Notice the four isolated data points in the classes 62 and 

63 of Table 3. 

3 APPROACH TO THE ESTIMATION OF THE PROBABILITY OF VERTICAL OVERLAP 

3.1 The modelling approach 

The probability of vertical overlap P (1000) may be considered to be 
z 

the main parameter of the collision risk model. It is, of course, directly 

related to the height-keeping performance of the aircraft as well as to 

the vertical separation standard. The histograms of pairs data described 

in Section two show no data points beyond class 63, i.e. beyond 630 ft 

away from the separation standard of one thousand feet. From this obser

vation, however, it is not allowable to conclude that such data points 

have probability of occurrence equal to zero. What has to be done is to 

extrapolate the observed histogram to the region of critical interest for 

the collision risk assessment. As in previous assessments of the collision 

risk due to the loss of separation, the tool to be used is a mathematical 

model of the probability distribution of the vertical distance between 

aircraft in a pair. For the range of data points observed, the modelled 

distribution and the observed distribution are as close as possible in a 

certain statistical sense. Beyond the range of data points observed, the 
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modelled probability distribution is to represent the rare events that 

could not be observed during the limited period of time during which the 

data collection took place. Clearly, the choice of the modelled probabi

lity distribution is critical for the collision risk assessment, and a lot 

of technical/operational as well as statistical knowledge and experience 

is necessary to guide this choice. 

To be somewhat more specific, the mathematical model consists of a 

family of analytical probability density functions f(d) depending on one 

or more parameters. In developing the model, the following three choices 

have to be made (compare e.g. Ref. 10): 

i) Which family of analytical probability density functions should be 

considered? 

ii) Which criterion should be used to uniquely select one member from 

the family to represent the data? 

ill) Which criterion should be used to evaluate the quality of the 

resulting fit? 

These questions will be discussed in the following three subsections. It 

should be noticed that two criteria play a part. The criterion under 11) 

is usually a mathematical criterion, with theoretically appealing 

properties, leading to a reproducable objective numerical result. It 

always remains, however, to verify whether these theoretically nice 

properties are really important and representative for the practical 

application at hand (step ill)). As a result, the process may turn out to 

become an iterative process, in which some of the Initial assumptions have 

to be refined or changed in a later stage. 

Selection of a family of probability distributions 

The question of which family of probability densities to fit to the 

data is not an easy one to answer. A great many choices are possible. Some 

factors that may influence the choice are: ultimate use of the fitted 

density, number of parameters, complexity of the parameter estimation 

problem, prior knowledge about the data (i.e. the underlying physical 

phenomena), the data itself. On the one hand the family should be 

sufficiently rich to describe the data, whereas on the other hand it 

should be avoided to overfit the data. 
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In Ref. 11, a total of seven analytical probability densities are 

considered. They all are based on the Gaussian (G) and the Double Expo

nential (DE) probability density. The Gaussian density is very well known, 

and is for example applicable when a great number of independent error 

sources add up. The Double Exponential density is known for its relatively 

thick tail and is, therefore, particularly useful for getting cautious 

extrapolations for collision risk assessment purposes. Some of the 

densities considered in Ref. 11 are mixtures of two Double Exponential 

and/or Gaussian densities, on the assumption that the overall population 

consists of two sub-populations. Convoluted versions of (combinations of) 

the Gaussian and Double Exponential densities are also included. It then 

was concluded that the histogram of the pairs data looked like something 

in between of a Gaussian and a Double Exponential density. A class of 

probability densities which includes these two densities is formed by the 

so-called Generalized Laplace densities. The Double Exponential density is 

also known as the first Laplacian density. Some promising preliminary 

results for the Generalized Laplace probability density, using some ad hoc 

parameter values are already described in Ref. 11. 

The family of Generalized Laplace (GL) probability densities f (d) 
uL 

is defined by 

1/b 
d-u 

^GL^'*^ = 2abr(b) 

(a>0) where the Gamma function r(b) is defined by 

(5) 

r(b) - ƒ e~^ t̂ "-̂  dt (6) 
0 

This function is extensively tabulated, see e.g. Ref. 12. See also Figure 

6. The b-parameter is called the shape parameter wheras the a-parameter is 

called the scale parameter. The Generalized Laplace density reduces to the 

Gaussian and Double Exponential densities for b=0.5 and b=1.0 respectively. 

The Generalized Laplace density is also knoiro as the power exponential 

density. 
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by 

The central moments of the Generalized Laplace density are defined 

E|(d - p)^| = ƒ (x - y)^ ^Gi^M^^ (7) 

Due to the sjnranetry about the mean value y, the moments of the Generalized 

Laplace density are zero for odd values of k. For even values of k holds 

E] (d - y)^| = r ^ r((k+l)b) (8) 

The skewness 6, is zero and the kurtosis B- is found to be given by 

S (>.\ - ^(5b) r(b) 

^2^^^ - r(3b) r(3b) (̂^ 

The variance of a variable having a Generalized Laplace probability 

density is given by 

a2(a,b) = a^ ^ ^ ^ . (10) 

For a Gaussian density, i.e. a shape parameter of b=0.5, eqs. (9) and (10) 

simplify to B„=3 and a=J5a/2. For a Double Exponential density, eqs. (9) 

and (10) yield B =6 and a=a/2. 

Although the family of Generalized Laplace densities is already 

fairly flexible, it seemed useful to extend it somewhat by considering 

mixtures of different Generalized Laplace densities. Mixture densities 

have found wide applications in other fields as well (Ref. 13). Mixture 

densities are particularly useful when different subpopulatlons can be 

distinguished within the overall population. In the case of aircraft pairs 

data, a distinction between relatively good performance in the core and 

relatively bad performance in the tail would seem to be an appropriate 

choice. 

Thus, an appropriate model for the pairs data consists of the family 

of the so-called Double Generalized Laplace probability densities, given 

in formula bv 
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d-p 

^ 

1/b^ 

-̂  ° 2a2b2 r(b2) ^ 

d-y 

^2 

l /b2 

(11 Ŵ '̂ ^ " (l-"̂  2â b/r(bp 

The family of Double Generalized Laplace probability densities is charac

terized by five parameters, in addition to the mean value y, i.e. a 

weighting factor a, two scale parameters and two shape parameters. It 

includes the (single) Generalized Laplace density (oi=0 or a -a. and b -b-) 

as well as the Gaussian Double Exponential (b -0.5 and b„=1.0) and the 

Double Double Exponential (b =b =1.0) densities. Two more special cases 

that are included are b =b-, a.̂ â̂ , i.e. a mixture of two Generalized 

Laplace densities with different scale parameters only and a =a-, b.T̂ b», 

i.e. a mixture of two differently shaped densities with the same scale 

parameter. In principle, either of the two component parts in eq.(ll) may 

have the larger weighting factor. The descriptions core and tail density 

will be used for the first and second density in eq.(ll) respectively. 

The variance of a random variable having a Double Generalized 

Laplace probability density is given by 

a2 = a2(a,a^,b^,a2,b2) = (l-a)a2 + ao^ (12) 

where 

r(3b ) 
1 = a^(a,.bp = aj - j ^ (13) 

and 
r(3b ) 

'I - ^'(^2'V = -I -r(bf) ^''^ 
The skewness of a Double Generalized Laplace distributed random variable 

is easily shown to be zero, wheras its kurtosis is found to be given by 

4 4 
°1 "̂2 

B_(a,a,,b,,a,,b-) = (1-ot) — i 8 (b ) + Qt -r B (b,) 

^ 1 1 ^ ^ o''(a,â ,b̂ ,a2,b2) a\a.aj,bj.a2,b2) ^ ^ 

(15) 

4 4 
Notice that additional weighting factors (o./a) and (o /a) occur in 
eq.(15). This is due to the normalization of the overall kurtosis by the 
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With a view to a common approach to the selection of an appropriate 

family of probability densities by the groups involved in the various data 

collection studies to investigate the possibility of a 1000 ft vertical 

separation standard, it is necessary to consider the families of probabi

lity densities being used elsewhere, notably in the United States and in 

Japan (Refs. 14-17). As is shown in Appendix B, there exists a large 

commonality between the families used by the various groups. Further 

studies in Europe on the basis of singles data also utilize the family of 

Double Generalized Laplace densities or some particular sub families 

(Ref. 18). 

It is finally remarked that it may not be necessary to estimate all 

of the five parameters of the Double Generalized Laplace probability 

densities simultaneously from the aircraft pairs data. The shape parameter 

of the core and/or tail density, for example, might be fixed beforehand 

when this is deemed useful. In that way, particular sub families of the 

family of Double Generalized Laplace probability densities can be 

examined. 

Selection of a parameter estimation technique 

Once a family of analytical probability density functions has been 

adopted, the next question to be answered is (recall Section 3.1): 

ii) Which criterion should be used to uniquely select one member from 

the family to represent the data? 

Because different members of the same family are characterized by 

different parameter values, this question is essentially referring to a 

useful parameter estimation technique. Various (basic) methods are 

available within the statistical literature for estimating parameters of 

probability densities from experimental data, for example (Refs. 19,20): 

- method of moments ' 

- maximum likelihood estimation 

- maximum a posteriori estimation 

- minimum Chi-square estimation 

least squares estimation 

Any of these methods may be extended or modified in order to obtain an 

estimation method which is even more useful for the application at hand. 
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In general, the choice of any particular estimation method depends 

on two factors, namely the statistical properties of the pertinent 

estimator and the computational complexity of the method. With respect to 

computational complexity holds that in many cases an analytical solution 

is not possible and that numerical solution techniques have to be used. 

Moreover, the computational complexity will generally increase with the 

number of parameters to be estimated. With respect to the statistical 

properties of the estimation methods mentioned above, it is first remarked 

that the least squares estimation method does not possess any general 

optimum properties, although it does have certain optimum properties for 

the "linear model" situation. The two most Important estimation methods 

then are the method of moments and the maximum likelihood method, where 

the former is the older of the two. In some special cases the two methods 

give the same results. In many cases the maximum likelihood method is 

superior. Some advantages and disadvantages of the maximum likelihood 

method are mentioned in Reference 14. The first advantage mentioned there 

is that the maximum likelihood method provides probability statements 

about parameter estimates and that confidence regions may be computed 

(based on the asymptotic distribution of the ML estimator). As a second 

advantage the use of the likelihood ratio test for comparing the fit of 

different models is mentioned. According to Reference 14, the major 

disadvantage of the maximum likelihood method is that it appears to be 

less sensitive to the data structure within the tail portion of the data 

than to the structure of the core. In principle, however, this 

disadvantage may be overcome by weighting the data in the tail more 

heavily than those in the core. Moreover, the preliminary results 

presented in Reference 21 show a fairly close correspondence between the 

sample moments and the maximum likelihood estimates of the moments. 

Taking the various observations ito account, the maximum likelihood 

method will be used to fit the family of Double Generalized Laplace 

probability densities to the pairs data as obtained in the European 

Vertical Data Collection. It is worthwhile to remark that the (preliminary) 

results of References 14 to 18 inclusive and Ref. 21 have also been 

obtained by means of the maximum likelihood method. 
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Evaluation criteria 

' As described in Section 3.1, the modelling approach to the estimation 

of the probability of vertical overlap requires a third step to evaluate 

the quality or fit of the resulting probability density model. This is to 

verify whether the theoretically well-defined results of the previous two 

steps meet the practical objectives of the study. In the case of the 

European Vertical Data Collection, the objective is to obtain the "best 

possible" estimate of the probability of vertical overlap, given the 

limitations of the data sample. The main limitations of the data sample 

described in Section two are that there are no data available in the 

region of real interest (from the collision risk estimation point of 

view), i.e. the region of vertical distances between aircraft in a pair of 

approximately zero, and only few data points in the connecting region of 

distances of the order of half the vertical separation standard. Due to 

these limitations, it may be necessary to build in into the modelling 

process some measures of cautiousness, in order to avoid underestimating 

the probability of vertical overlap. One such measure could be the use of 

a Double Exponential tall density within the mixture probability density 

models. As it is very difficult to predict in advance how the combination 

of the chosen family and the parameter estimation technique will perform 

with regard to the limitations mentioned above, an independent evaluation 

step is necessary, 

The basic statistical tool for evaluating the fit of a proposed 

model is the statistical test, for example the well known x^-test and the 

Kolmogorov-Smirnov test. Although these may be useful for the overall 

evaluation of the fit, they may not be fully satisfactory for evaluating 

the fit in the extreme tail regions. Graphical means will, therefore, 

extensively be used to describe and analyze the residuals. Conclusions 

drawn from that may even overrule the conclusions drawn from the formal 

statistical test. Some judgement will probably be necessary for this 

evaluation. 

Further insight into the properties of the best fitting probability 

density model may be obtained by considering the likelihood function about 

the estimated parameter values. For example, contour plots of the likeli

hood ratio or the second derivatives of the likelihood function may be 

used for establishing confidence bounds on the parameter estimates. 
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4 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION OF DOUBLE GENERALIZED LAPLACE 

PROBABILITY DENSITIES 

4.1 Introduction 

In this section, an algorithm for the maximum likelihood method 

applied to the family of Double Generalized Laplace probability densities 

is derived. It consists of Newton's method for finding a maximum of the 

logarithm of the likelihood function. Three aspects require particular 

attention, viz. convergence of the algorithm, existence of more than one 

local maximum and computation time. 

The likelihood function and its logarithm, i.e. the log likelihood 

function, are introduced in subsection 4.2. The necessary conditions for 

an extremum are derived, together with the sufficient conditions for a 

maximum of the log likelihood function. Because of the large number of 

individual data points (n»4960, recall Section 2), the number of terms 

involved in these equations is very large, i.e. of the order of some 

multiples of five thousand, where almost any term involves powers, loga

rithms or exponentials. As a result, the amount of computation time needed 

is relatively large, certainly when several initial guesses of the para

meter values have to be investigated in order to obtain convergence and/or 

all the local maxima. Therefore, a likelihood function based on grouped 

data is introduced in subsection 4.3. Grouping the data into class inter

vals of e.g. 40 to 10 ft reduces the number of terms from a multiple of 

five thousand to a multiple of 15 to 60 and the amount of computation time 

accordingly. Grouping of the data introduces, of course, some error into 

the resulting parameter estimates. However, when the class interval is 

sufficiently small, this error should be sufficiently small as well. 

Moreover, the resulting estimates based on grouped data may be used as 

already fairly accurate initial guesses for the maximum likelihood para

meter estimates based on the individual, non-grouped data points. 

The convergence of the Newton iteration process and the existence of 

more than a single local maximum of the log likelihood function for Double 

Generalized Laplace densities are difficult to analyze theoretically. A 

few special cases, however, are considered in subsection 4.4. Firstly, 

three single densities, all being special cases belonging to the Double 

Generalized Laplace family are analyzed. These are the Gaussian, the 

Double Exponential and the Generalized Laplace densities. The Gaussian and 
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the Double Exponential case can be dealt with fully analytically, but 

Newton's method is already required for the case of a single Generalized 

Laplace density. Next, the Double Double Exponential sub family of the 

Double Generalized Laplace family will be considered. As a result of the 

lack of a full analysis for the general case, it may turn out that several 

initial guesses for the parameter values have to be investigated, in order 

to obtain convergence of the Newton process or to find all the solutions 

of the maximum likelihood equations, 

The likelihood function 

Let a sample of pairs data of size n be given on the assumption that 

the underlying probability distribution is Double Generalized Laplace, 

The likelihood function L = L(a,a ,a ,b ,b ) is defined by 

n 
L(a,aj,a2,b^,b2) = T^ f(d^) (16) 

where d., 1=1,2,,,..,n denote the vertical distances between the aircraft 

in a pair and f(d ) is given by 

d^-y 1/b, d^-y 1/b 

'^h^ = ̂ -̂"̂^ 2â b̂  r(bp- + a 
2a2b2 r(b2) 

2 

(17) 

The log likelihood function A. - *c(a,a.,a2,b,,b2) is obtained by taking the 

(natural) logarithm of the likelihood function L = L(ot,aj ,a_,b. ,b„). 

Hence, 

^ =«/.(a,aj,a2,bj, b2) = log L(a,aj,a2.b^,b2) = ^ log f(d^) (18) 

or 

i (a,a^,a2,b^,b2)= ^ logi(l-a) 

d^-y 

2ajbj r(bj)' 

1/b, 

+ » 

d^-y 1/b, 

JI^pTb^)^ 
(19) 
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The main advantage of taking the logarithm of the likelihood function 

based on mixture densities is that the product as in eq.(16) is replaced 

by a summation as in eq.(19). When no confusion exists about the arguments 

of the (log) likelihood function, these will be suppressed. 

The log likelihood function JL depends on six parameters in total, 

i.e. on °',a ,b ,a and b on the one hand and the parameter V on the 

other. The usual way to formulate the necessary conditions for an extremum 

of the function JL is to take the partial derivatives with respect to the 

parameters and to equate these to zero. However, the variable Id.-Wl, 

1=1,2,...,n as a function of Vi is not differentiable at the point y=d . 

Thus, obtaining the maximum of the log likelihood function over the 

parameter ^ requires a different approach as can be used for the other 

parameters. To avoid this complication, ^ will be treated as a known 

parameter. In fact, it will be taken to be ^̂ =1000 ft, in conformity with 

the discussion of the aircraft pairs data in Section 2. 

The necessary conditions for an extremum of the log likelihood 

function JL now become 

1̂ = ̂  = " flfT ̂  ^^h'^ = ° ^20) 
1-1 ''1'̂  

8| ? 1 8 

9f ? 1 9 
^ = '. f ( 0 ^„^^^i^ = ° 

=4 = <=. ' , f (b ^/^V = ° ^''^ 
1 1=1 1 1 

8p ? 1 a 

i. l=i X i. 

These equations are usually called the likelihood equations. The system of 

equations (20)-(24) is highly non-linear in the unknown parameters 

o'.a,,a»,b.,b- and, therefore, needs to be solved numerically. This is done 

here by means of Newton iteration, i.e. by linearization of the system 

(20)-(24). The linearized version of the system reads: . 
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i' - fró lï '"'i' fj Try [ Is fWi> * (&»" 

• {l£: ^Mi) - i(fy aL f wplï f (-1)) 

lï ""i') Aa + 

(25) 

j j fTJTT [ 1;̂  ^«1' * ( 5 ^ ' " 1 ' - T(3? Is 'Ml' 3i; ^M,)) 

^ (al^ '«•,) - j ^ jf^ f (d,) 3!^ f(d,)) 4.J * 

Aa + 

l i l f (^i ' 

fc^ ' M , ) - j ( i ^ ^ tM,) jf^ f(d,)) ibj ^ 

Gi^S; 'M,) - 7( i^ ^ f(d,)5|- f(d,)) AbJ - O 

^ ' M l ' * ( a ^ ' M , ) - T ^ fe ' M i ) ^ £(d,)) A« 

fc^; 'Ml' - T(37) ^^ 'Mi' ?|^ '(^i') ' 'n * 

(al^ 'Ml' - fTÏÏTT ^, 'Ml' ai; 'M^') ^a, * 

(ai^b; 'Ml' - ï (3^ af; 'Ml' ai; 'Mi') '" , -

( s r k 'Ml' - £(3;T I Ï ; 'Mi'al; 'Ml') «"2] • o 

(26) 

(27) 

j , f i y [ Ib̂  'Ml' * {j&^ 'Ml' - fTS;) k 'Ml' al; 'Ml') Aa + 
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? ^ ^̂ V - m?) é; '^'i^ ^ ^̂ '̂ i)) '^i 

j ^ ^ '^h^ - fTïï̂  é; '^^i^ 3ÏÏ;- ^̂ '̂ iV S -̂  ; i ) ) 

= o (28) 

. k '^'i^ -̂  GÏÏIÏÏ: (̂'̂ i) - fh '-^ '^^1^ a t (̂̂ 1̂ ) '"^ 1=1 ^^V ^ - 2 

+ (lî l̂ ^ ̂ ('̂ i> - m^ é; '^h^ ^ ^^v; -̂1 + 

-̂  fê ^̂ '̂ i) - f(TT ^ ^('^i^^ '^^±^ ^̂ 2] = o ( 2 9 ) 

The various partial derivatives are given in detail in Appendix C, 

Symbolically, the linearized system (25)-(29) may be written as 

M N 

M. N, 

M, 

1 1 

M. N . 0 , 

M, N, 

N . 0 , 

i \ 

" 5 / 

/ 

Aa \ 

Ab. 

\ ' ^ 2 / 

b\ 

\ï/ 
(30) 

or as 

(MNO) 

(Aa \ 

Aa^ 

Aa2 

\ ^ ^ 2 / 

/ \ 

w 
(31) 
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Each of the elements of the coefficient matrix and of the right-hand side 

vector in eq.(30) is to be evaluated for the current values a , a. , a. , 
1 1. z, 

b , b. of the parameters of the Double Generalized Laplace 
i 1 

probability densities. The system (30) may be solved with any 

routine for solving systems of linear equations, for instance with 

subroutine F04ATF from the NAG subroutine library which is based on 

Grout's factorisation method. Once the system of eqs.(30) has been solved, 

new parameter values are computed by adding the corrections Aa, Aa, , Aa„, 

Ab., Ab2 to the current values. The solution process is stopped when 

either 

max { | E j , | E 2 l , | E 3 | , | E ^ | . l E 5 l } < t (32) 

, with e = 1.0x10 , or the number of iterations exceeds a specified 

limit, usually 25. 

Any solution of the likelihood equations does not necessarily define 

a maximum of the log likelihood function. In order that a solution does 

define a maximum, it is sufficient that the matrix of second partial 

derivatives of the log likelihood function be negative definite. It turns 

out that this matrix is just the coefficient matrix MNO of the system of 

eqs.(30), 

So far, it has been assumed that the complete set of parameters 

a,a,,a„,b. ,b. had to be determined. In fact, any subset of parameters may 

be determined, on the assumption that suitable values of the remaining 

parameters are known, by taking the appropriate rows and columns from 

eqs.(30). The following selection was made for the purpose of the present 

investigations: 

case 

S 

1'̂  
'3 

1^2 

parameters to be 

°''̂ 1'̂ 2'̂ 1*̂ 2 
a,a^,a2,b^ 

a,aj,a2 

«,a^ 

estimated parameters known 

none 

^2 

h'^2 

^2'h'^2 

(33) 
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Once the maximum likelihood parameter (point) estimates have been 

determined, it is of interest to have a closer look at the likelihood 

function or the log likelihood function at and about the point obtained in 

the parameter space. Firstly, the value of the likelihood function 

obtained for the maximum likelihood estimates of the parameters is of 

interest. This value may be expressed as 

L(a,3^,32.5^,62) = •̂  [ Prob (d^ € [d^,d^ + Ad^)| E{d^}=y} / AdJ 

n 

d̂ -U 1/B, dj-u 1/B, 

= TT (l-tt) _ 
1=1 

23^B^r(6^) + *2l^B7(V ̂  (34) 

It is 3 relstive m3ximum value in the sense thst it is alw3ys sm3ller than 

the vslue that would be obtained for the same p3r3meter V3lues, but given 

th3t the me3n value of each observation d̂. (1=1,2,...,n) had been exactly 

the observed value d,. Hence, the absolute maximum value of the likelihood 

function may be expressed as 

n r 
L2(a,3^.32,B^.B2) = TT ^ Prob (d^ £ [d^,d^ + Ad^) | E{dJ=d^} / Ad^ 

= TT [ ( 1 -
1=1 ^ 

^ 23,B,r(Bj ^ 2 0 7 T B 3 
1 1 2 2 

(35) 

The standardized log likelihood value is defined by 

(̂ 2 -^)(.^,a^,a^,'B^,^^) = log L2(ö,3^,32,6^,62) - log L(ö,a^,a2,Bj^,6, 
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Secondly, the likelihood function in a neighbourhood of the point in 

the parameter space defined by the maximum likelihood estimates may be 

considered. More specifically, the relative likelihood function 

R(a,aj.a-.b,,b_) is defined by 

L(a,aj,a2,b.,b2) 
R(a.a^,a2.b^,b2) = ̂ ^^^-^-^-^-^ (37) 

and the likelihood ratio statistic by 

A(a,aj,a2,b^,b2) = -2 log R(a,aĵ  ,32,b^ ,b2) (38) 

Asymptotically,the likelihood ratio statistic has a x^-distribution with 5 

degrees of freedom (Refs. 22,23). It is difficult to visualize the relative 

likelihood function and the likelihood ratio in a five-dimensional space. 

As a solution, contours in the planes defined by sny two out of the five 

p3rameters are usually drawn. For the remaining p3r3meters, the maximum 

likelihood point estimates are substituted. The likelihood ratio statistic 

can be used for constructing confidence bounds on the par3meters, because 

its asymptotic distribution is x^• A joint 95% confidence region for all 

of the five parameters of the Double Generalized Laplace probability 

density is defined by the relation 

R(a,a^,a2.b^,b2) = e '95.(5) (39) 

where x^ QC /CN denotes the 95 percentile of a varisble h3ving a x^-dlstri-

bution with five degrees of freedom. Similarly, confidence regions for any 

subset of two parameters, e.g. a and a, may be defined by the relation 

R(a,3^^,32.6^.62) = e -95.(2) (40) 

where a., 6,, and 6„ again denote the maximum likelihood point estimates 

of the pertinent parsmeters and where x^ nr /o-) denotes the 95 percentile 

of a variable having a x^~distribution with two degrees of freedom. 
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Fln3lly, the ssymptotic distribution of the msximum likelihood 

estim3tor itself should be mentioned. It is well known th3t, under certsin 

regulsrity conditions, the msximum likelihood estimstor is jointly 

Gsussisn distributed with covarlance matrix given by the inverse of 

Fisher's information matrix. More specifically, 

E-
32 

3a3a. -

__92 
93 332 ~ 

t] 4^1] 

^^fe^} 2 

-Jl—f 

ƒ 3323b2 

32 jf 
33j3bj -

32 Jt 
8329bj -

MSJ^ 

9bj3b2 -

^ 1 ^ ^ } 

-^J^ 
^} ^\^^-

(41) 

In this equation, the vector (̂ .a,.a-,6.,6-) denotes the msximum 

likelihood estimstor of the psrsmeter vector (a,a.,a2,b.,b2) and^L 

denotes the log likelihood function defined by eq,(18) with the maximum 

likelihood estimator as argument vector. Because of the occurrence of the 

expectation operator E{,} in the matrix to be inverted in the right-hand 

side of eq,(41), that matrix is called the matrix of expected information. 

As may be seen from Appendix C, the mean values are not essily expressed 

in closed analyticsl form. A useful spproximation then is the matrix of 

observed information, i.e. 

cov - (FOI(a,3^,32,6^,62)) -1 (42) 
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where the mstrix F0I(a,3.,a2,b.,b2) is defined by 

3=f 
3a= 

>'i 
9a9a, 

>'i 
9a932 

3«JC 
9a9b. 

8»Jt 
9a3b 

3=£ 
3a33. 

9=^ 

^ 

9 ĵe 
93^932 

a^ü 
93^9b^ 

92iJ 
93^9b2 

32i: 
3a3a2 

32X 
93^932 

9̂ /! 
93^ 

9̂ f 
V̂h 
9^JC 

9a29b2 

9^/ 
9a3b^ 

32-e 
3a^9b^ 

92je 
9a23b^ 

32Ü 

^ 

9^J^ 
9b^9b2 

9=.f 
9a9b2 

9̂ f 
93^9b2 

9^^ 
9323b2 

9 = ̂  
9b^9b2 

a^iC 
3b^ 

'(43) 

with A. = A.(a,3.,32,b.,b2) defined by eqs.(18) snd (19). It should be 

noticed thst the matrix FOI(a,a.,a„,b^,b„) is exsctly equal to the 

coefficient matrix MNO defined by eqs. (30) and (31) and resulting from 

the linearizstion of the likelihood equstions (20)-(24). Recsll that the 

matrix MNO should be negative definite for a solution of the likelihood 

equstions to define a msximum of the log likelihood function. Hence, 

taking the minus sign in equation (42) into account, a positive definite 

asymptotic covarisnce matrix results. 

In the foregoing paragrsphs, the standardized log likelihood value, 

the relative likelihood function, the likelihood ratio statistic and the 

asymptotic distribution all hsve been discussed for esse S of eq.(33) i.e. 

for the case of five unknown parameters. The discussion can be adapted 

straightforwardly to the cases S,, S_, and S„ by deleting the pertinent 

known parameters from eqs.(34) to (43). 

The likelihood function based on grouped data 

Because the number of data points d to be used in the maximum 

likelihood method as described in Section 4.2 is so large, it is desirable 

to have a method with which the results of the former method can be 

approximated fairly accurstely, snd which is much more efficient from the 

point of view of computstion time needed. The method to be described here 

is based on grouping the Individual data points into classes as a reali-

Z3tlon of a multinomial probability distribution. As a result, the 
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summatlon over the number of individual data points reduces to a summation 

over the number of classes considered. 

Consider a subdivision of the verticsl distsnce d-3xls 3s shown in 

Figure 7. The clsss intervsl is denoted as w snd the number of classes is 

m. Let the random variable d denote the vertical distance between the 

aircraft in a pair. On the assumption that the probability density of d is 

Double Generalized Laplace, it follows that 

p = Prob{d G [m-(i-l)w,p+iw) u (p-iw,y-(i-l)w]} = 

= 2 ProbCd e [y+(i-l),w,u+iw)} 

y+iw 
- 2 ƒ f_^(x)dx , 1=1,2,.,,,m (44) 

U+(i-l)w ^^^ 

Let X, denote the number of vertical distances observed in class 1 in 3 

ssmple of size n, clsss 1 being the conjunction of the sets [y+(i-l)w, 

y+iw) 3nd (y-iw,y-(l-l)w], for 1=1,2,...,m. The vsrisble x^ then is 

binomislly distributed with psrsmeters n snd p.. In order to keep the 

variables p, as a function of the psrsmeters a,3 ,a_,b.,b_ of the Double 

Generalized Lsplsce probsbility densities 3S simple 3S possible, it is 

useful to use the following spproximstion: 

or 

p^ - 2w f^^^ (y+(i-J)w) (45) 

f(l-i)wy^^ f(l-i)wy/^2 
r 1 ^ 1̂ ^ 1 ^ ^2 ' \ p. « 2w ̂  (1-a) -—• „•• . e + ex -—, r,,, . e } Pi \̂  23^b^r(bp 232b2r(b2) (^gj 

, 1=1,2,,., ,m 

Thus, the probsbilities p., 1=1,2,,,.,m sre proportionsl with the vslues 

of the Double Generalized Laplsce probsbility density in the centres of 

the classes. 

Next, consider the joint probability distribution of the random 

variables x,, x. x . It is clear that their distribution is 
—1 —z —m 

multinomisl with psrsmeters p.,p.,...,p and n. Hence, .> 
I z m 

Prob{x =x^, X =X2. .... x̂ =x̂ > - x 'xj^.x ! Pi P2 '•• Pm " "̂̂ ^̂  
1 2 m 
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with the probsbilities p., 1=1,2,...,m given by eq.(46) and with 

m 
2 X - n (48) 
1=1 

and 

m 
2 P. « I (49) 
1=1 

The likelihood function L = L(a,a ,3 ,b.,b ) is defined by 

L = L(a,3^,32,b^,b2) = , ; ; , . ^ , Pi S ^•" Pm " (̂ °> 
1 2 m 

and the log l i k e l i h o o d funct ion JC = ^ ( a , 3 . , 3 ^ , b . ,b„) = log L b ecomes 

f ! 
< = J ^ ( a , a ^ , a 2 , b p 

n! 
bo) = log „ i„ , ' — ; - T + ^ X log p (51) 

1 2 m 1=1 

Using eq.(46) and def in ing 

^ = ^°8 X ix '" X ' ^52) 
1 2 m 

it is found that 

J. =^ (a,3, ,3^,b, ,b.) = A + n log 2w + 
i'"2"'r''2 

1/b, A . IX \l/b 2 

" 1 
+ Z X, log (1-a) ,, . p., , e + a ^^^ 1 ̂ - - - 23^b^r(bp 232b2r(b2) (33) 

Eq.(53) defines the log likelihood function for grouped dsts, with the 

probability of sn outcome in sny of the clssses being determined by the 

Double Generslized Lsplsce probability density. 

It is useful to mske s compsrison between the likelihood functions 

for non-grouped data, eq.(19), and for grouped dats, eq.(53). In fsct, 

only the psrsmeter dependent psrt, i.e. the Isst expression, of eq.(53) 

needs to be considered. When the clsss intervsl w is smsll, the qusntity 

(i-i)w is 3 good spproximstion for |d.-y| for sny individusl dsts point j 

of class 1. When, in addition, the fsctor x. is written as a sum over all 
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the individusl dsts points j of clsss 1, and this summation is further 

summed over all the classes, effectively a summation over the individual 

data points as In eq.(19) will result. Thus, it may be expected that 

parameter estimates obtsined by msximizing the log likelihood function 

for grouped dsts, eq.(53), are a good spproximstion of the psrsmeter 

estimates obtained by maximizing the original log likelihood function, 

provided that the class Interval w is sufficiently small. 

The necessary conditions for an extremum of the log likelihood 

function for grouped dsts become, similsr to eqs.(20)-(24): 

1-1 Pi 
(54) 

E„ = "5— = i — -5— = 0 
2 ^^ 1=1 Pi ^^ 

(55) 

'f V ̂ i 
3 9a2 i^i Pi 932 

(56) 

3b, , , p, 3b, 
Z 

1=1 ''i 
(57) 

9b„ , , p. 9b. 
1=1 Pi ^^2 

(58) 

These likelihood equstions sre sgsin non-linesr in the psrameters 

o,a.,3.,b^,b., snd sre solved, therefore, numericslly by mesns of Newton's 

method. Their linesrized versions resd: 

m X 

1=1 Pi 

3=Pi 1 9Pi 3Pi 

9a \"3â ^ p. 3a 3a / 

A32 + f ' Pi i_Üi!!l^ . J ^^ J_ 
\ 9a9s^ • p^ 9s^ 9a / ^̂ 1 ^\1^:^ " p̂  

/ 9̂ Pi l_ S ^ \ ,, / ''Pi i. ''Pi ''Pi \ ,, 1 
\ 3a3b^ • p^ 3b^ 9a / "°1 ^ \dö^ ~ p^lb^~^ / °2\ 

Aa + 

1 'Pi 'Pi 
•517 ""50 

9p, 3i 
= 0 (59) 
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m X r 9Pi / 9=^Pi 1 3P i 9Pi \ 
Z — •;;— + l r—a— ^r- T — ) Aa + 

1-1 P i '• 1 ^ 1 P i 1 ^ '-'^ •'* 

^ \ T ^ ~ p ^ 93^ 93^ ; '^^l V 3a^9s2 " p ^ 332 ' ^ 1 ^ 
A32 + 

/ ^ Pi 1 ^Pi ^Pl \ + / _ ! _ Z i _ _ i _ ! £ i ! ! i \ 
\ 3s^3bj^ ~ p ^ 3bj^ 3Sj^ / 1 \ 33^3b2 ~ p^ ih^ 3s^ / 

Ab. O (60) 

m X , 

l — 
_ i P 1 

3"P. 

Aa + 

A3. + 

332 ^ 9a9s2 p^^ 3a 332 ' 

V 3s^3s2 p ^ 33^ 3 3 2 / ^1 \ 33^ p^ 332 ' ^ 2 ^ 

, 3^?^ ^ 3Pi 3p i N , 3 ' P i 1 3Pi 9Pi \ ] 

"̂  ^ 3 i ^ - i7 3b[ 9i^; ^h "̂  V11^^ -y^wiir^) "^if ° ^̂  

i=l Pi L 3b̂  V 9a3b̂  " p^ 3a 3b̂  / ^^ 

{ ^'Pj j _ ! ^ ! ! i N / ^'Pi i _ ! ! i ! ! i \ 
•̂  V 93^3b^ • p ^ 3s^ 3b^ y ^^1 "̂  \ 3323b^ ' p ^ 332 ^^1 ^ ^^^ ^ 

/ 3 ' P i 1 9Pi 9Pi \ , / 3 ' P i 1 ^Pi ' P i \ . 1 - . , , . 

•̂  i ^ - F ^ g b ^ I b ^ j ^^-^ ( ,3b73bJ-?;^3b- j ^̂ 2j -O (̂ 2) 

3b2 \ 3a3b2 " P^ 9a 9b2 / ^ " •*" 

m X, 
E — 

1-1 P i 

/ ^'Pi l _ Ü i Ü i K , ( ''Pi l _ Ü i Ü i \ . 
\ 9s^3b2 " p^ 33^ 3b2 / 1 \ 3a2 3b2 P̂ ^ 3a2 9b2 / ^ 

/ ^'Pi JL Üi Üi K b + (" ' '" i l . Ü i Ü i ' l 
V 3bj3b2 " p ^ 3b^ 9b2 / 1 V ^ " P^ 3b2 3b2 J 

Ab, - O (63) 

The psrtisl derivstives in the eqs.(59)-(63) sre very similar to those in 

eqs.(25)-(29). In fsct, they csn immedistely be obtsined from the 

expressions given in Appendix C by the following steps: (1) replsce f(d,) 

by p in the left-hsnd sides of eqs. (C.l) to (C.20) inclusive, (ii) 

replace d -y by (i-i)w, and (ill) add a factor 2w to the right-hand side 

of esch of the eqs.(C.l) - (C.20), The system of eqs,(59)-(63) msy sgsin 

symbolicslly be written ss (compsre eqs.(30) snd (31)): 
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/;\ i\ 
(MNO) A3, 

Ab, 

(64) 

\^^2/ \ / 

snd be solved by mesns of the NAG librsry subroutine F04ATF until the 

desired precision is obtsined. 

From hereon, the S3me procedure ss for the likelihood function bssed 

on the origin3l non-grouped dsts csn be followed. The negstive 

definiteness of the mstrix of second psrtisl derivstives of the log 

likelihood function for grouped dsts needs to be verified first for sny 

solution of the likelihood equstions. Vsrious subsets of psrsmeters msy be 

estimsted, keeping the remsining parameters fixed at predetermined values. 

Similsr to (33), this lesds to the esses G, G,, G and G. according to the 

following table: 

case 

G 

^* 

n 
\ ' 

psrsmeters 

a,Sĵ ,S2,bj 

a,3j,S2,b 

a,3.,32 

a,3. 

to 

•̂ 2 

be estimsted psrsmeters 

none 

^2 

h'^l 
a2.bj.b2 

known 

(65) 

The calculation of the standsrdized log likelihood vslue bssed on grouped 

data proceeds as follows. Firstly, compute 

L(a,3^,32,6^,62) - Prob {Xj=Xj,X2=X2.... ,Xju''x̂ |E{Xi}= np^, 1=1,2,. ..,m} = 

X. • X.•,,•X • X I z m 

m 
m 

(66) 

In this equstion, p,.P2..".P are computed by mesns of eq,(46) using the 

maximum likelihood parameter estimates a.a.,a.,6j,62. Next, compute 

http://a2.bj.b2
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L2(a,8^,32,6^,62) = Prob{xj^=Xj^,X2=X2,.,. ,2Cjjj=x |E{X }= x } 

X, X. X 
x,\ 1 / x.\ 2 / X \ m 

x,!x.!,..x ! \ n/ > n' *•• l n' (67) 
2 m 

The standardized log likelihood value is now defined by 

ƒ) p m Xj 
{4..^-*t.)(.^,a^,a^,Zy^^ = log L2 - log L - E x l o g — (68) 

1=1 Pi 

Finslly, eqs.(37) to (43) inclusive desling with the relstive likelihood 

function, the likelihood ratio statistic and the asymptotic covarisnce 

mstrix of the maximum likelihood estimator are directly sppllcsble to the 

(log) likelihood function for grouped dsta as defined by eqs.(50) and 

(51). 

Maximum likelihood estimation for some particular sub families of 

probability densities 

As follows from the two foregoing Sections 4.2 snd 4.3, the para

meter estimation problem resulting from the maximum likelihood method 

spplied to Double Generalized Laplsce densities is very complex. This 

spplies to the non-grouped dsta case as well as the grouped dats esse. For 

the Istter, less computstionsl effort is needed due to the much smsller 

number of terms in the equstions. Although some subesses (S,-S_, G,-G.) 

hsve been defined for which the psrsmeter estimstlon problem is somewhat 

less complex, each of these subcases still involves mixture densities and 

it is the mixture that highly contributes to the complexity. Hence, it is 

worthwhile to consider some sub families of single densities as well. This 

is useful, firstly, because the resulting system of maximum likelihood 

equations is more likely to be accessible to snslysls. Secondly, it offers 

the possibility to investigste the improvement thst csn be obtsined by 

using mixture densities rsther thsn single ones. The first sub fsmlly to 

be considered is thst of the Generslized Lsplsce densities, chsrscterized 

by both s scsle psrsmeter and s shspe psrsmeter. Next, the sub fsmilies of 

Gsussisn snd Double Exponentisl densities, esch chsrscterized by s scsle 

psrsmeter only, are investigated. Finally, a particulsr sub family of 

mixture densities is considered as well, viz. the family of Double Double 

Exponential densities. 
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4.4,1 Generalized Laplace densities 

The family of Generalized Laplsce densities can be obtained from the 

family of mixtures of Generalized Laplsce densities by putting the 

weighting factor a equal to zero. Both the non-grouped data and the 

grouped dats esse sre considered below. 

Consider s ssmple of non-grouped dsts points d , 1=1,2,...,n. On the 

sssumption thst the underlying probsbility distribution is Generslized 

Lsplsce, the likelihood function is given by 

L = L(3,b) 
i^j 23br(b) 

d^-y 1/b 

(69) 

and the log likelihood function by 

P ƒ* n d,-y 1/b 
*(. = i(a,r ^ "-' -"^ - ^ ,b) = - n log 23b r(b) - E 

1=1 
(70) 

Msximum likelihood estimstes of the psrsmeters a snd b sre to be obtsined 

by msximizing the log likelihood function over s snd b. The necesssry 

conditions for sn extremum sre found to be 

a 
9a a 1=1 

(71) 

d 
3b br(b) 

^ ( b ^ r ( b ) - H r ( b ) ) + l . ̂ E^ 
n d,-y 1/b ,d.-, 

log = 0 
(72) 

Eq.(71) can be used to express the maximum likelihood estimate of the 

scsle psrsmeter as a function of the maximum likelihood estimate of the 

shape parsmeter b: 

Substituting eq.(73) into the necesssry condition (72) snd using 

(73) 

,|;(b) = db ^°S r(b) r(b) db 
r(b) (74) 
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yields: 

f(b) = (b*(b)+l) (i r |d,-„|''"') - ^ l (^,-«1''" lo8|d,-«|) + 

- (b log b - b log (i Jjd,-„|''>')) (i jjd,-u|''') - O (75) 

The function i()(b) is shown in Figure 6.2 and s series expansion of it is 

given by eq.(C.22) of Appendix C. As can be seen from eqs.(73) and (75), 

the maximum likelihood parameter estimation problem for a Generalized 

Laplsce density csn not be solved fully snalytically. The msximum 

likelihood estimste of the shape parameter has to be solved numerically 

from eq,(75). This may agsln be done with Newton's method. Linesrizing 

eq,(75) yields 

Ab = - /{I} (76) 

where 

f'(b) = i , [i E |d^-yll/^log2ld^-y| + 

where 

- (~ E |d^-y|^^^ log|d^-y|) (h(b) + 1 + b) + 

+ b (i E |d̂ -y|̂ ''̂ ) (b2 r(h) + h(b) - b)] (77) 

h(b) = b [Hh) - log b + log ̂  E |d -yl^^M (78) 
\ " 1=1 ^ ^ 

The iteration proces eq,(76) may be stopped whenever If(b) | < E - 10 

A sufficient condition for a solution of eqs.(71) and (72), or ^ 

equivalently eqs. (73) and (75), to define a maximum of the log likelihood 

function is that the mstrix of second psrtisl derivstives is negstive 

definite. These psrtisl derivatives are given by 
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3* 
93 

•I n /, b+1 1 1 " I, |l/b̂  ,,„-

['-P V --b^TTbn/ 'V̂ l j (79> 
3 1-1 

b a 1=1 1-1 ,n^\ 

a^JP n 
Sb' " " F 

1 1 n 
b̂ i|i'(b) - b + ^ - E 

b " 1=1 

1 " 
+ 2 i E 

" 1=1 

|d^-y 

a 

|d^-y 

3 

1/b 
log= 

1/b 
l o g 

id - y 
> 1 1 
1 a 

d^-y| 

a 1 

J 

(81) 

The mstrix of psrtisl derivstives is negstive definite when its 

determinant is positive and d^J./^a^ is negative. Denoting any solution of 

eqs.(71) and (72) by a and 6 and using eq.(73) immediately gives 

3F (̂'̂> = - F-g (82) 

and, after some anslysis 

det(3,6) = ^ ^ l^^n^) - 6 -6= -62i|;(6) - 6ip(6) - 1 + 

1 1 " 
+ ^ - E 

^ " 1-1 

|d^-y 

3 

1/6 
l0g2 

d^-yn 

a 1 j (83) 

Eq,(82) is elesrly negstive for sny positive estimste 6, but eq.(83) is 

not Immedistely seen to be positive for a snd 6 sstisfying eqs.(71) snd 

(72). Thus, it remsins to verify by computstion whether eq.(83) is 

positive sfter the likelihood equstions hsve been solved. 

The stsndsrdized log likelihood vslue csn be derived from eq.(36) by 

tsking o-O in eq.(36). The resulting expression is 

J}.-I n 
I log 

i-1 
d^-y 1/b © 

, X1 /b n , ,, 
'^ 5: |d.-y|i/^ 

1=1 
(84) 

Using eq.(73) this msy be further simplified ss 

X. -i - n 6 (85) 



-42-

where 6 denotes the maximum likelihood estimate of the shape parsmeter b 

of the Generalized Lsplsce densities. * 

Consider now the likelihood function for data grouped into m classes 

with the underlying distribution of the dats points being Generslized 

Lsplace. It is given by 

„ , , . (IziH, , ,, 
, \l/b 

X,!x.!...X ! 'l-2----m- i!ir 2abr(b) « ' j 

whereas the log likelihood function is 

X = A + n log 2w - n log 2abr(b) - E x (ÜllÜ^i) 
i=l l\ a / 

(86) 

1/b 
(87) 

In these equations, x. denotes the number of observstions in clsss i, 

1=1,2,...,m and A is given by eq.(52). Notice the similarity between the 

two log likelihood functions given by eqs. (70) and (87). As a result, the 

necessary conditions for an extremum of this log likelihood function are 

slso very similsr to eqs.(71) snd (72), nsmely 

S 1=1 

i- - bTTbT (4̂ < '̂ ̂  <̂̂ ') ^ h , f , ' ' i ( ^ ' ' ^ - ( ^ ) = ° <-) 

elesrly, the summstion now is over the number of intervsls, snd the 

Individusl distsnees Id.-y| hsve been replsced by the distsnces of the 

centres of the clssses to the mesn vslue. The msximum likelihood estimate 

of the scale parameter a can be solved from eq.(88) as a function of the 

estimate of the shape psrsmeter b: 
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Compsre this estimste with eq,(73) for the non-grouped dsts esse, 

Substitution of eq,(90) into eq,(89) gives for the msximum likelihood 

estimste of the shspe psrsmeter b the following non-linesr equstion: 

;(b) H (btj;(b)+l)|i E x^((i-i)w) j- -i ï {x^((i-i)w) log((i-i)w)| + 

- |b log b - b log ̂  Z x^((i-i)wj j-i 2 x^^(i-i)w) 1 = 0 (91) 

Compsre eqs.(91) snd (75) for the grouped dsts snd the non-grouped dsts 

esse respectively. Like eq.(75), eq.(91) needs to be solved numericslly. 

This msy sgsin be done by Newton's method. The correction Ab sfter 

linesrizing the function g(b) sround b is given by 

Ab = - £ ( ^ 
g'(b) 

with g(b) defined in eq.(91) snd g'(b) given by 

1/b 
g'(b) = 1 

1 " 
- E X, 

" 1=1 i 
((i-i)w) log2((i-J)w) + 

" { n " Xi((i-i>w) log((i-i)w) j (k(b) + 1 + b) 

b I ̂  ï x^((i-i)w) j |b2i|<'(b) + k(b) - b| 

(92) 

(93) 

where 

k(b) = b |<l'(b) - log b + log ̂  ï x^((i-i)w) I (94) 

Eqs.(93) 3nd (94) sre strsightforwsrd generslizstions of eqs.(77) snd (78) 

for the non-grouped dsts esse. In the ssme wsy, the eqs.(79) to (83) 

generslize. The sufficient conditions for s msximum become 

|Ï(s,b) = - -2- < 0 (95) 

and 
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det(a,b) = -p^ |b^ ij)'(b) - b - b2 - b2ij,(b) - bi^b) + 

where a, b now denote any solution of the likelihood equations (88) and 

(89) for grouped data (rather than the true parameter values). 

The standsrdized log likelihood vslue can be derived from eq.(68) by 

substituting the sppropriste expression for p : 

ƒ ƒ m x^ 
J., -i - E x^ log jjg (97) 

i-1 

"^2^ 2sbr(b) ^ 
(o^y 

Evslusting this gives, with the aid of eq,(90): 

12 - JL - nb + E x^ log x^ - n log 2w + n log Ê ^ ^ ^ (98) 

where s snd b denote the msximum likelikhood estimstes, Eq.(98) msy also 

be expressed as a function of b slone by mesns of eq.(90), but this does 

not provide any further essentlsl insight. Notice the common term nb in 

the two expressions (98) snd (85) for the stsndsrdized log likelihood 

vslue for grouped snd non-grouped dsts respectively. 

4.4.2 Gsussisn densities 

The Gsussisn density is a member of the family of Generalized 

Laplsce probability densities. Its shape parsmeter is equsl to 0.5. Hence, 

it msy be expressed ss 

2 'm-
«GW' • jfhr '^'" <"' 

The scale parsmeter a is related to the standard deviation by the relation 

a = a/2. Further holds that r(0.5) - /TT. Eq.(99) may thus also be written 

in the more familisr form 
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^M ff,(d) = - 7 ^ e \"''' (100) 
Lr av ztf 

Consider the non-grouped dsts esse first. The log likelihood 

function for the Gsussisn probsbility density follows immedistely from 

eq.(70) if b = 0.5 is substituted in it. Thus, 

JL=i.(a) = - n log 3 r(0,5) - E (-7-) (101) 

where d , 1-1,2,,,.,n denote the individusl dsta points and n is the 

sample size. Taking the derivative with respect to the scale parameter a 

and equating that with zero yields, similar to eq,(71): 

1 " 
- 1 + 2 -p E (d^ - y)2 - 0 (102) 

This gives the following explicit expression for the maximum likelihood 

estimate of the scale parameter, similar to eq.(73): 

a = /2 ̂  è Z (d,-y)^i (103) 
1 ^ 1' 

Becsuse the scsle psrsmeter is equsl to a/2, eq.(103) bssicslly expresses 

thst the msximum likelihood estimste of the stsndsrd devistion of s 

Gsussisn vsrisble with known mesn vslue y is equsl to the ssmple stsndsrd 

devistion with known mean vslue y. The second derivative of the log 

likelihood function becomes (see eq.(82)): 

ê?l (») - - U ds^ 3"̂  , n 
(104) 

i 2 (d.-y)^ 
" 1=1 ^ 

snd is negstive. The stsndsrd devistion a(s) of the msximum likelihood 

estimste of the scsle psrsmeter thus becomes 

a(S) - -4- î' ": • (105) 72ÏÏ 
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For grouped dsts, distributed over m clssses, the maximum likelihood 

estimate of the scale parsmeter becomes from eq.(90) for b = 0.5: 

'̂  {5,1 •=!("-"")'}' (106) 

Clesrly, when the number of clssses m incresses over the ssme domsin, 

eq.(106) spprosches eq.(103) for the non-grouped dsts esse. The 

stsndsrdized log likelihood vslue csn be computed from eq,(98) for b * 

0,5, 

4.4,3 Double Exponentisl densities 

The Double Exponentisl density slso belongs to the fsmily of 

Generslized Lsplsce densities, viz. with shspe psrsmeter b = 1.0. Thus, it 

msy be expressed ss 

^DE(^) = -a -

d-y 

(107) 

The scsle psrsmeter a is related to the stsndsrd devistion by a=s/2. 

The log likelihood function for the Double Exponential density 

follows sgsin from eq.(70) for non-grouped dsts. Tsking b=1.0 yields 

f n 
= - n log 2s - E 

i=l 

d.-y 
1 (108) 

Tsking b=1.0 in eq.(73) yields the msximum likelihood estimate of the 

scale psrsmeter of a Double Exponentislly distributed vsriable: 

1 " - E 

" 1-1 
|d^-y| (109) 

Thus, the maximum likelihood estimate of the scale parsmeter is exactly 

the average distance between the data points d. and the mesn vslue y. The 

second derivstive of the log likelihood function with respect to the scsle 

psrsmeter is 
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'f n 
ds^ (a) = 12 - Is ^^^ ld,-y| (110) 

For 3 defined by eq.(99), this csn be expressed ss 

da an) 

Hence, the estimste given by eq.(l09) does indeed define 3 maximum of the 

log likelihood function. The asymptotic standard deviation of the msximum 

likelihood estimstor of the scale psrsmeter is found to be 

0(8) - -^ i-^Al l̂ r"l) (112) 

For grouped dsts, distributed over m classes again, eq.(90) for b=1.0 

gives as an estimate 

? - -i 2 X, ((l-J)w) (113) 

As for the non-grouped dats esse, this estimste is esslly shown to define 

3 msximum of the pertinent log likelihood function. The ssjnnptotic 

stsndsrd devistion of the msximum likelihood estimstor for grouped dsts is 

slso given by o(a) = a//n. Using the estimate eq.(113), this gives 

^^>=^ = v^(^ j^V^^-i>-)) (114) 

4.4.4 Double Double Exponential densities 

The Double Double Exponential (DDE) density is a mixture of two 

Generalized Laplace densities, where the shape parameters of these two 

densities are both given a value of 1.0 (one). The DDE density has been 

used extensively in modelling aircraft navigation and height keeping error 

dats. Msthemsticslly, it is defined by the relstion 

^DDE(^> 
(l-«) 2i^ e 

d-y 

a 

d-y 

(115) 
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The three unknown psrameters, in addition to the mean vslue y, sre the 

weighting fsctor a snd the two scsle psrsmeters ŝ  snd s.. These 

psrsmeters csn be estimsted ss for the genersl esse described in the 

sections 4.2 snd 4.3 for non-grouped data and grouped data respectively, 

by applying Newton's method to the appropriste system of likelihood 

equstions. Two psrticulsr problems will be snslyzed below. The first 

problem concerns the question whether the Double Exponentisl (DE) density 

defines s loesl msximum of the likelihood function for the DDE fsmily of 

densities. It turns out thst this is the esse indeed. The second problem 

concerns the question whst will hsppen to the itersnts of the Newton 

process when the initisl guesses s snd s. , ssy, for the two scsle 
0 0 

psrsmeters sre the ssme. This choice of initisl vslues mesns thst 

the initisl density is DE. It turns out thst the density remsins DE 

throughout the iterstion process, but thst the iterstlon process msy 

either converge or diverge, depending on the initisl vslue s =3. . Only 
0 0 

the esse of grouped dsts will be snslyzed explicitly. It will be seen 

thst the esse of non-grouped dsts msy be snslyzed in exsctly the ssme 

msnner. 

The log likelihood function for the fsmily of DDE probsbility 

densities snd grouped dsts (with clsss intervsl w) is 

P m f , 3 , 32 1 
= A + nlog2w + E X, logUl-a) ^ e W a ̂  e (116) 

i=l ^ ^ 2^1 ^^2 •" 

with A given by eq.(53), m being the number of classes and x , 1=1,2,...,m 

the number of observations in class 1. The necessary conditions for an 

extreme vslue of the log likelihood function sre: 

. ( i - j ) - ï - ( i - i ) - ï 

3a i.i Pi V 23j 2S2 ) 

-(i-i)T^ 
_3j 

9a, 
J! o M ^ V ""i J 1 ^1 /(i-i)w iNT . ,,,„. 
•^= 2w (1-a) E — • -r— e V—^l T ]\ ° ^ ^^^^^ 
1 1=1 Pi I 2^1 ^ ^ ^1 '^ 
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33o , _ , P. l 2 3 . V 3^ S. / ^=1 P 
(119) 

with p., 1=1,2,...,m defined by 

'1 - 2w {(!-«) 2^^ 
^1 1 ^2 ̂  

e + a ̂  e 
2̂ 2 

• = O (120) 

The fsctor 2w after the first equsl sign in eqs. (U7)-(119) will be 

dropped in the discussion to follow. 

The first question with regsrd to the likelihood equations 

(117)-(119) is whether a Double Exponential density satisfies this system. 

As a DE density msy be expressed ss s DDE density with srbitrsry weighting 

fsctor but identicsl scale factors, the question is whether solutions of 

the form a,a,a exist of eqs.(117)-(119). It follows that such solutions 

satisfy eq.(117) and that they satisfy eqs.(118) and (119) as well if 

(l_a) ? X. (Ii4^ - D - 0 (121) 
1=1 ^ ^ ^ 3/ 

and 

a ? x^ { ^ ^ - ̂  = 0 • (122) 

Eq.(121) gives either a solution for a: 

1 - a = 0 (123) 

or a solution for a: 

; ^ (iiz|)2f - i) = 0 (124) 

The first solution, i.e. eq.(123) gives a=1.0, which substituted into 

eq.(122) gives agsln eq,(124) or 

f = - E x,(i-J)w . " (125) 
'̂  1=1 ^ 
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Eq.(125) is exsctly equsl to eq.(113) of Section 4.4,3, defining the 

msximum likelihood estimste of the scsle psrsmeter of a Double Exponentisl 

density. The other solution of eq,(121), i,e. thst solution for s defined 

by eq.(124) yields exsctly s defined in eq,(125). Substituting thst in 

eq,(122) gives axO=0, which is sstisfied for sny vslue of a. Indeed, when 

both the densities msking up the mixture hsve the ssme scsle psrsmeter, 

the vslue of the weighting fsctor is undetermined snd of no relevsnce. The 

ssme conclusion is srrived st when eq.(122) rsther thsn eq.(121) is tsken 

as the starting point of the anslysis of the system of eqs.(121) snd 

(122). 

Thus, it hss been shown thst the DDE density with psrsmeters a,s,s, 
A 

which is effectively s DE density with psrsmeter a sstisfies the 

likelihood equstions for the fsmily of DDE densities. Considered ss s DE 

density, it defines s msximvim of the log likelihood function within the 

fsmily of DE densities. However, it remsins to see whether, for sn 

srbitrsry vslue of a, it slso defines s (loesl) msximum of the log 

likelihood function within the Isrger fsmily of DDE densities. Let 

H(a,s,,a.) denote the Hessisn mstrix of the second psrtisl derivstives of 

the log likelihood function for the fsmily of DDE densities. It follows 

that H(a,a,a) is given by 

/ » 

H(a.a,a) -

0 -a*(l-a) 

(126) 

where y = (i-i)w. This Hessisn is singulsr, indicsting thst the weighting 

fsctor a is undetermined. This is correct, becsuse the weighting fsctor 

should not plsy s psrt in s mixture of two identicsl probsbility 

densities. A Tsylor series expsnsion of the log likelihood function 

defined by eq,(116) sround the point a,s,s gives 

j(.(a,3 ,3 ) =*.(a,a,a) + (Aa^ A32) H^(a,3,s) (As^ Aa2)' (127) 
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where H^(a,s,3) denotes the non-trivisl submstrix of the Hessian (a,a,a), 

i.e. 

Hj(a,a,a) -

I-i(--r , -^j,'iic-r-«^-(--r} -o2(l-a) 

(128) 

Notice that the zeroth order term in the right-hand side of eq.(127) is, 

in fsct, independent from a ss follows from eq.(116). For s loesl msximum 

in the point a,a,'S, it is sufficient thst the mstrix Ĥ  (a,'3,'a) is negstive 

definite. This is the esse when its upper left element is negstive snd its 

determinsnt is positive. Hence 

i(l-a)= fi \ 

snd 

-d+a) (^E^x,y^%aQ^x,yj) (^?^x^}<0 (129) 

det(Hj(a,f,l)) = -a2(l-a)2^ |-2 ( E x^yj + ( E x j ( E x^yjjj > 0 (130) 

Notice thst the sign of det(H.(a,3,t)) does not depend on a. The vslidity 

of the relstions (129) snd (130) csn esslly be verified numericslly for 

the given numbers of dsts points x., 1=1,2,...,m. 

All the eonsiderstions sbove spply to the log likelihood function 

for grouped dsts, eq.(116). This, snd all the following equations can 

formally be converted into their equivalents for non-grouped data by means 

of the following set of substitutions: 

n -̂  n 

A -»• 0 

(i-i)w ^ |d^-y| 

2w ^ 1 

(131) 
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Hence, the results obtained for grouped data, spply to the esse of 

non-grouped dsts as well. ,,. .̂  . „ ,, 

Consider now the numerical solution of the likelihood equations 

(117)-(119) by means of Newton's method. The linearized versions of these 

equations can be derived from the general case discussed in Section 4.3, 

i.e. eqs. (59), (60) and (61) by ignoring the terms with Ab and Ab . This 

gives 

X . m 
E 

1-1 Pi 

1 I 'Pi 

7 L " 5 ^ + 
/ ' ' P i 1 'P i 'Pi \ . 
\~9^ " P7 "3^ ^ 

/ 3̂ Pi 1_ ̂  ^ N ^ /'"Pi ]_ ! ^ !!i\ 

\ ^ ^ ^ " p^ 9a^ 9(V ^ 1 ^ \9a9a2 ~ Pi '^2 ' ^ 
Aa2 + 

9p 
_i 
9a 

(132) 

m X. 

E — 
i=l Pi 

['Pi Pi 'Pi\ • 2l + (Hi _ i_ Üi _!i\ Aa + 
9a, \9a9a, p. 9a 9a,/ 

1 1 "̂ i 1 

\ 9a2 ~ p^ 9aj^ 93^/ ^1 \9a^9a2 p^ 932 '^r 

'P. 

^^2-^91; ' = 0 
J 
(133) 

m X. 
E — 

1=1 Pi 

9P, 

93, 

1 / '^Pi 1 'Pi 'Pi\ 
\3a3a2 p. 3a da J 

\3a.332 p^ 93 da^ 1 
+ 

'9=Pj 

p. 9s2 932^ 

9p. 

^^2-^91: = 0 

(134) 

All qusntlties other thsn Aa, As. snd A3„ in eqs.(132)-(134) depend 

explicitly on the vslues ct ,s ,s^ , ssy, 3bout which the originsl 
0' 1 

0 0 equstions hsve been linesrizedY " After determining s solution Aa, Aa. , 

snd As. of eqs.(132)-(134), new vslues of a,3 , snd s. are computed by 

means of 

a + Aa 
0 

(135) 

file:///9a9a2
file:///9a9a
file:///3a3a2
file:///3a.332
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This process is repested until either s desired sceursey criterion is 

schieved or the process bresks down. The centrsl question is, therefore, 

for which triples of initisl guesses a , s , a. the iteration process 
0 0 converges. Although a full analysis is presently not possible, 

some useful insight can be obtained from the special case that the initisl 

guesses of the two scsle psrameters are identical. Many partisl 

derivstives occurring in the linesrized equstions then reduce to 

relstively simple expressions. Thus, consider the system of 

eqs.(132)-(134) evsluated for an initial guess a,a,a with â O and Ô ot̂ i. 

Using again y.=(l-i)w the system reduces to 

Aa 

Aa 

Aa 
1 

2 i 

I 
(136) 

where the matrix X and the vector Y are given by 

/ ; 

-(l-a)ij^ic^fi -l) 

-ij-.ft-.) 1Ï «/-I -') 

"-'•i.j,".!r-D'-*^ «-<->r-i -')"} - ' - ' i> j , ' . r4 -)• 

-"'"^'ï'.lj'ift -') i.l'B-->'-i"-(-i-y] 

(137) 

/ 0 \ 

-»-°'1 l-t(-i -i) (138) 

The solution of the system (136) to (138) is dependent on the values of ot 

and a occurring in the coefficient matrix X and the right-hand side vector 

Y. Table 4 summarizes this dependence. For all the cases other than ease 

1, the matrix X is singular. Before considering the regular case, the 
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singular cases are considered. For each of the cases (̂ , (^ snd (s), the 

initisl guesses of s. and a. are the same and equal to the maximum likeli

hood estimate of the scale parameter of a (single) Double Exponential 

probability density defined by eq,(125). As a DE density with that parti

culsr psrsmeter vslue slresdy sstisfies the (non-linesr) likelihood 

equations, the Newton slgorithm does not chsnge the scsle psrameters of 

the densities involved. For exsmple, when the initial value of the weigh

ting factor is a-0, only the core density plays a part. When the initial 

guesses of both the scale parameters are equal to twice the maximum 

likelihood estimate of a DE density, as for the cases (̂ , (^ and (^^» 

the algorithm breaks down. Notice that ease (̂ , starting, from a 

weighting fsctor of a-0, trsnsfers into esse \9), with s weighting factor 

of 1, and similarly the other way around. The cases (V^ and (^ yield a 

completely undetermined solution. 

Consider now case ^^. It follows from Table 4 that, when the 

initial guesses of the scale psrsmeters of the core and tail density 

making up the Double Double Exponential mixture density are the same, 

these will remain the same for each iterstlon in the Newton process. 

Moreover, the weighting fsctor a does not chsnge during the iterstlon 

process. This is correct because the weighting does not have any real 

significance when the two scale parameters are equal. It remains to 

analyze what the correction A of the scale parameter is. It holds that for 

as well as a,f2a: 

,1-a /iv 
Aaj = â  'y 2_a''/§ ) ,j=0,l,2,... (139) 

The integer j in eq.(139) counts the Iterations of the Newton process and 

the quantities Aa. and a, are abbreviations for Aa^ =Aa. and â  =s. 
J J 1 1 1 1 

respectively. The convergence of the Iteration 
process (139) follows from the following proposition. 

Proposition 

Consider the iteration process given by 

1-x̂  
^^i " ^1 ( 2 ^ ) • i=0'l'2,... (140) 

or, equivalently 
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3-2x. 

• i f ö ) ""i+l " ""i V " 2 ^ ̂  ,1=0,1,2,.., (141) 

under the condition x.>0 for every 1. 

This iteration process converges to a finite limit iff the initial value 

satisfies the relation 0<x^<3/2. Under this condition the limit value is 

Proof 

The proof is elementary and is illustrated in Figure 8. Define 

C =(3-2x )/(2-x ). Figure 8A shows that for x >2 and x <3/2, the factor C 

is positive. C. must be positive in order to yield a sequence of positive 

numbers x , 1=0,1,2 Figure 8B shows that for l<x <2, the factor C is 

less than one, possibly negative. It follows that for every x with 2<x 

holds X <x , leading to divergence of the iteration process. 

For 3/2<x,<2 holds that x ,<0, for kSl, leading to divergence as well. 

It remains to consider 0<x.<3/2. Figure 8C shows that for every x.<2 holds 

X, <1 (possibly negative). Hence, for l<x <3/2 holds x <1. But for 

every x, with 0<x.<l holds x.<x, <1, leading to monotone convergence to 

X =1.0. 

See Figure 8D for a summary of the convergence properties. 

Application of the Proposition to the iteration process eq.(139) 

leads to the conclusion that the process will converge to a =a. =a when 
OO 00 

the initial guesses a and a are equal and satisfy the condi-

tlon 0<a -a. <3/2a. A similar convergence will occur when the 
0 0 initial vslues s snd s. sre unequsl, but not too fsr sway from 

0 0 each other. An important practical consequence is that a Double 

Double Exponential mixture density with two different scale psrsmeters 

rsther thsn s Double Exponentisl density will be produced by the Newton 

iterstlon process of eqs.(132) to (134) only, if the initisl guesses of 

the scsle psrsmeters of the core and tall density are sufficiently 

different. 
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5 SIMULATION OF RANDOM VARIABLES HAVING A DOUBLE GENERALIZED LAPLACE 

PROBABILITY DISTRIBUTION • - . . . ™,, , 
• ! • • • • • • . • * • . " .r 

Computer simulation of random variables with a Double Generalized 

Laplace probability distribution is useful for two reasons. Firstly, it 

offers the possibility to validate the parameter estimation algorithm 

under controlled conditions. When the parameter vslues used in the 

simulation are recovered with a sufficient precision, the algorithm is 

likely to have been implemented correctly. Secondly, it offers the 

possibility to investigate all kinds of properties of the parameter 

estimation algorithm, for example: accuracy of the estimated parameters as 

a function of the sample size, accuracy as a function of the number of 

estimated parameters, convergence of the Newton iteration process as a 

function of the Initial estimate of the parameters, etc. 

The usual way to generate a sample of size n of a random variable d 

with a specified probability distribution is to generate n random numbers 

u , 1=1,2,...,n, independently and homogeneously distributed on the 

interval [0,1], and to use the cumulative distribution function F(d), 

d 
F(d) = J f(x)dx (142) 

— 00 

by putting 

F(d^) = u^ , 1=1,2,...,n (143) 

The realizations d are obtained by inverting the cumulative distribution 

function. This inversion can not always be done analytically. A possible 

solution, which will in fsct be used in this report, is to solve eq.(143) 

numericslly for d . Before considering the numericsl approach, the 

cumulative distribution function of a random variable with a Double 

Generalized Laplace probability distribution is described. 

Let the variable d have the Double Generalized Laplace probability 

density f_„-(d) defined by eq.(ll) of Section 3.2. The cumulative 
DGL 

distribution function F (d) can be expressed in two ways. The first is 
DGL 
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W"' 
d < y 

(144) 

The sjnnbol r(b) denotes, as before, the Gamma function for the argument 

value b and the sjrmbol r(b,x) denotes the incomplete Gamma function 

defined by 

r(b,x) = J y''"-̂  e"^ dy , x S 0 
X 

The following relation holds 

r(b) = Y(b,x) + r(b,x) 

(145) 

, X > 0 (146) 

where 

Y(b,x) = ƒ y ~ e"'̂  dy 
0 

, X > 0 (147) 

denotes another incomplete Gamma function. Either of the two may be 

defined to be the Incomplete Gamma function while the other becomes the 

complementary incomplete Gamma function. Sometimes, the incomplete Gsmms 

functions sre scsled by r(b) snd then cslled incomplete Gsmms function 

ratios. Using the incomplete Gamma function defined by eq.(147), the 

cumulative distribution function F (d) is expressed as 
DOL 

^DGL^^) 

1- ( ->^4i-eif)"v^^(v(^)"^)} 

i + 

, d S y 

1/b, 

"-'irfbp M'^r') ^ ' ^ M'^ri] 
, d 2 y 
(148) 

Subroutines for the computation of the Gamma function r(b) are 

readily available in many subroutine libraries, like the NAG Fortran 

Library, Mark 10 (and higher). Subroutines for the computation of the 

incomplete Gamma functions are less frequently included in such libraries. 
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The NAG library for instance does not include such a subroutine. 

Fortunately, it is not necessary to develop such a subroutine from 

scratch, because various algorithms for the computation of incomplete 

Gamma functions are available from within the literature, see Refs. 24 to 

30 inclusive. Some of these provide derivatives with respect to the 

parameter as well. These algorithms are based on continued fraction 

expansions, and/or Taylor series expansions. The algorithms of Refs. 24 to 

27 inclusive all compute the incomplete Gamma function (ratio) Y(b»x) of 

eq,(147). The algorithms used in Refs. 26 and 27 for the computation of 

the incomplete Gairana function are based on one and the same Taylor series 

expansion for each pair of srguments (b,x). The slgorithms in Refs. 24 snd 

25 both use a Taylor series expansion for b^x^l, and also for x<b, and a 

continued fraction expansion otherwise. The latter two, therefore, are 

generally to be preferred above the former two algorithms. The algorithm 

of References 28 and 29 also uses Taylor series and continued fraction 

expsnsions. An extension of this slgorithm compsred with the previous four 

slgorithms is, thst it is slso applicable for negative values of the 

variable b. Table 5 summarizes some characteristics of the five 

algorithms. The algorithm of Ref. 24 has been used in the current 

simulations, 

Taking F (d) defined by eq,(148), a sample of size n of the 
DGL 

vertical distance d is constructed by numerically solving the separate 

non-linear equations 

Fjjgĵ (d̂ ) = u^ , 1-1,2,...,n (149) 

Two considerations play a part with regard to the selection of an 

appropriate numerical method for solving eq.(149) for 1=1,2,...,n. These 

are efficiency and convergence of the method. Efficiency is mainly 

determined by the number of function evaluations and the convergence rate, 

provided that convergence as such appears. As only a limited number of 

simulations was envisaged for the present study, efficiency was given a 

lower weight than guaranteed convergence, independent of the initial 

guess. Thus, both Newton's method and the secant method were discarded and 

a combination of the methods of Regula Falsi and Bisection has been 

chosen. For random numbers between 0.1 and 0.9, the method of Regula Falsi 

is used. To start the method, an interval [il,u] is needed on which the 

sign changes of the function of which a zero is to be determined. When the 
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random number u. is less than 0,5, u can be taken as the mean value y 

whereas otherwise I can be taken to be the mean y. It remains to define an 

associated lower bound £ and an upper bound u for the two cases u.S0,5 and 

U.S0.5 respectively. One possibility would be to use the mean minus or 

plus three to five times the standard deviation of the DGL mixture 

distribution. A more efficient value, although still being rather 

conservative, can be obtained as follows. Let u.iO.5 and let an upper 

bound u of the interval have to be determined. Define a Double Exponential 

probability density f_̂ p(x) with the standard deviation a equal to the 

standard deviation of the tail density within the Double Generalized 

Laplace mixture density. Thus 

|x-y 

^DE(-) = ̂  ^ ' ' 

where (compare eq.(13)) 

/2 
(150) 

/T(3bJ 
2V r(bj o = a2y ^„.\ (151) 

Because of the thick tail of the DE density as compared with the DGL 

density, the following two requirements 

Prob {xpg S Xjjj,(0.9)}= 0.9 (152) 

and 

^"^ ^^GL = ̂ GL^°-^> = °-^^ ^^"^ 

will certainly result in x^ (0.9) < x^ (0.9), see Figure 9. Note that the 

value of 0.9 is the upper bound for the application of the method of 

Regula Falsi. Hence, for each random number u, with 0.5Su,Ê0.9 will hold 

that d. as a solution of eq.(149) satisfies 

d^ < Xjjg(0.9) = -yf log(2(l-0.9)) (154) 

where a is defined by eq.(151). So, x^ (0.9) may be tsken ss the upper 

bound u of the intervsl in which the solution d. is sought. Similarly, 

2y-x^ (0.9) may be used as the lower bound I when O.lSu.SO.5. 
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For random numbers close to zero or close to one, the method of 

Regula Falsi was found to converge extremely slowly, because of the fact 

that the endpoint at the mean y stayed fixed and the function was very 

flat near the other endpoint. This phenomenon is well known, see for 

example Reference 31. As for these small and large values of the random 

numbers the corresponding realizations d are known to be much smaller or 

larger than the mean value y, a practical solution is to use a method that 

does not retain the mean value y as an endpoint. The simple Bisection 

algorithm satisfies this requirement and, therefore, has been used to 

solve eq.(149) for those values of the random numbers u sstisfying 

0<u,SO,l or 0,92u <1. 

SOME MAXIMUM LIKELIHOOD PARAMETER ESTIMATION RESULTS FOR SIMULATED DATA 

Introduction 

In this section, some msximum likelihood psrsmeter estimstlon 

results sre described bssed on the algorithms for grouped data and 

non-grouped data presented in Section 4, The algorithms are spplied to 

simulsted dsts, which hsve been genersted in the wsy described in Section 

5. Four different probsbility distributions hsve been used to generste the 

dsta: a Double Exponential, a Gaussian Double Exponential, a Double Double 

Exponential and a Double Generalized Laplace distribution. For each of 

these are successively described the associated data sample and the 

parameter estimates obtained from grouped and non-grouped dsts. The 

probsbility distributions used for psrsmeter estimstlon are not 

necessarily the same as the original distributions. For example, the two 

parameters of a Generalized Laplace distribution are estimated from data 

generated by the single parameter Double Exponential distribution. The 

resulting distribution should be close, in some sense, to the original 

one. When exactly the original distribution is estimated, the comparison 

can be made at hand of the original and the estimated parameter values. 

This leads to the validation of the parameter estimation algorithms, while 

the general case provides insight into the robustness with respect to the 

underlying probability distribution and the achievable accuracy as a 

function of the number of estimated parameters. The achievable accuracy, 



-61-

of course, depends also on the number of data points used for estimating 

the psrsmeters. Becsuse for the spplicstion to the real pairs data the 

sample size is fixed to 4960 data points and can not be increased to an 

arbitrarily large value, a fixed sample size of 5000 data points is used 

for each simulation case. 

A second property that might be studied at hand of simulations is 

the convergence of the Newton iteration process as a function of the 

initial estimate of the solution. This, however, goes beyond the scope of 

the present report. The point of view taken here is that it should be 

shown that convergence of the iteration process occurs for at least one 

set of initial estimates of the pertinent parameters. A set of initial 

estimates will, in principle, consist of the true parameter values used in 

each simulation, 

6.2 A Double Exponential probability distribution 

6.2.1 The simulated data ssmple 

The Double Exponentisl probsbility density is given by 

D̂Ê ^̂ ^ = 2i « 

d-y 

(107) 

snd the Double Exponentisl cumulstive distribution function by 

^DE^^^ = 

i e 
(d-y)/s 

1 - i e 
-(d-y)/a 

, d S y 

, d è y 

(155) 

Because of the simple form of this cumulative distribution function, the 

inversion of eq.(143) can be done fully analytically to obtain a sample of 

the variable d. A sample of size 5000 was simulated based on the following 

parameter values: 

y = 0.0 

a - 30 
(156) 



-62-

The rsndom numbers were, ss in sll the following slmulstions, genersted by 

mesns of the subroutine G05CAF from the NAG subroutine librsry. The ssmple 

ststistlcs are: 

sample mean m 

sample standard deviation s 

sample skewness 3 

sample kurtosis B 

These sample values correspond fairly well with the population values of 

0, 42.426, 0, and 6 respectively. Based on the value of the sample 

standard deviation s, the sample value of the scale parameter is 29.249. 

The data grouped into classes of 10 ft are given in Table 6. To generate 

the 5000 individual data points and to construct the associated frequency 

table together with the sample statistics, 0.7 CP seconds execution time 

were needed on the NLR Cyber 180/855 computer. 

As in the sections to follow, a comparison will be made between the 

data samples and the probability densities evaluated on the basis of the 

maximum likelihood estimates of their parameters. It is worthwhile to make 

such a comparison between the data sample and the density evaluated for 

the true parameter values first. Figures 10 and 11 show the Double 

Exponential density defined by eqs.(107) and (156) and the folded data 

sample. In general, the correspondence between the two is good. It becomes 

somewhat worse in the tail region, due to the few data points found there. 

A statistical criterion for this comparison is given by the standardized 

log likelihood value defined by eq.(68). Taking m = 27, it holds that 

twice the standardized log likelihood value is distributed according to a 

X^-distribution with m-1 = 26 degrees of freedom (d.f.). The probsbilities 

p , 1=1,2,...,m in eq.(68) sre defined by eq.(44) where, in this section, 

the density fĵ p̂ (x) reduces to the Double Exponentisl density f _(x), 

However, ss in the psrsmeter estimstlon slgorithm for grouped dsts the 

exsct probsbilities p. sre spproximsted by eq.(46), this spproximstion 

could slso be used in eq,(68), Tsble 7 shows the effect of using the 

spproximstion (46) rsther thsn the true expression (44) for the 

probsbilities p., 1=1,2,,,.,m. Notice thst s second simulsted ssmple is 

included in this tsble. With regsrd to the sum of the approximated 

probabilities it should be realized that it differs from one for two 

reasons, namely due to the approximations used and due to the fact that, 

-0.01531 

41.364 

0.0211 

5.743 

(157) 
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for the DE density, there is a non-zero probability of deviations which in 

absolute value are larger than 270 ft. The last probability is in fact 

equal to 0.000134, showing that the effect of the approximation is the 

dominant effect. The 95% critical values of a x^-test with 26 and 53 

degrees of freedom are 38.89 and 71 respectively. Applying these values to 

twice the standardized log likelihood values of Table 7, would lead to 

rejecting the true Double Exponential density for each of the cases in 

which the approximated probabilities are used in the computation of the 

test statistic. Hence, it is concluded that the exact probabilities should 

be used in the computation of the test statistic. Notice that for the 

larger sample, the correspondence between the data and the true DE 

density, as measured by the test statistic is better. 

6.2.2 Parameter estimation based on grouped data 

The parameters of three different probability density models hsve 

been estimsted from the grouped data from the true DE density given by the 

eqs.(107) and (156). These models are: a DE density, a GL density and a 

DDE density. The resulting parameter estimates obtained from eq.(113), 

eqs.(90) and (91), and eqs.(54)-(56) respectively, are: 

DE model : I = 29.580000 

GL model : a = 31.583465, B = 0.95301432 

DDE model : a^ = 29.580000, a^ = 29.580013, a = 0.13776644*10"^ 

^ (158) 

Each of these three maximum likelihood solutions gives a negative definite 

matrix of second partial derivatives of the log likelihood function and 

defines a (local) maximum of the log likelihood function over the 

pertinent parameter space. 

Parameter estimation based on the DDE model was performed for three 

sets of initial estimates of a, a and a , namely: 

1) 

11) 

i l l ) 

0.01 
0.01 

0.01 

30 

60 

60 

90 

90 

60 

The estimated values given in eq,(158) were obtained from case 1). The 

Newton iteration process was stopped after 22 iterations, when 

max{|E^ I, IE^ I, |E.^|} < 1.0 * 10"^°, with E^, E2, and E^ defined by eqs. (54) 
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to (56) inclusive. After the first iteration, the maximum of these three 

quantities was of the order of one hundred. The results show that the 

maximum likelihood estimates of the two scale parameters of the DDE 

density converge to the same value, which is, according to the analysis 

given in Section 4.4.4, the maximum likelihood estimate a of the scale 

parameter of the DE density. In this example, the maximum likelihood 

estimate 9 of the weighting factor converges to zero. As a result, the DDE 

model reduces to the DE model. Because the numerical values of a, and a. 
1 2 

are slightly different and because 8 is not exactly equal to zero, the 

matrix of second partial derivatives of the log likelihood function 

remains negative definite rather than becoming singular as in eq.(126) for 

a. = a. = a. For esse 11) holds that the initial estimates sre equsl snd 

slightly Isrger than twice the critical value a = 29.580000 (Recall Figure 

8). The parameter estimation process was found to diverge in this case, in 

agreement with the analysis of the iteration process eq.(139) given in 

Section 4.4.4. The same divergence occurred for ease lii). Although the 

initial estimates of the two scsle psrsmeters were not equsl in esse ill), 
ft 

both sre Isrger thsn twice s = 29.580000. In this esse, sppsrently, these 
vslues were sufficiently close to lesd to the ssme divergence ss for 
identicsl initisl estimates larger than twice the value of a. 

For the DE model, the maximum likelihood estimate of the scale 

psrsmeter csn be computed directly from the dsta. For the GL model, an 

initial estimate of the shape parameter is needed to start the iterative 

solution of the non-linear equation f(b) = 0 (eq.(75)). This was obtained 

from a diagram of f(b) against b. The accuracy of the parameter estimates 

for these two models may be judged at hand of their estimated standard 

deviations. These are: 

DE model : a(l) = 0.418 

GL model : a(a) = 1.13, a(6) = 0.0239 
(159) 

Notice the decrease in accuracy as measured by a(a) when the shape para

meter of the GL density is estimated in addition to the scale parameter. 

The estimation errors in the scale parameters are about one estimated 

standard deviation for these two models, whereas the estimation error of 

the shape parameter is approximately two estimated standard deviations for 

the GL model. The maximum likelihood estimates of the standard deviation 

of the DE and the GL model are 41.832 and 41.334 respectively, compared 

with the population value of 42,426 and a sample value of 41.364. 
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Figures 12 and 13 show the true DE density and the estimated DE and 

GL densities on a linear and a logarithmic scsle, with the (folded) 

grouped dsts superimposed. The true snd estimsted DE densities are seen to 

be very close over the entire domain, with the estimated GL density being 

less accurate in the tail area. Because the shape parameter of this GL 

density is less than one, the shape of the logarithm of the density is 

concave in Figure 13. Table 8 gives the corresponding x^~test statistic 

values. Notice the large discrepancy between the numbers based on the 

exact and the approximated probabilities. The degrees of freedom of each 

case are equal to the number of classes minus one (m-1), minus the number 

of estimated parameters. The 95% critical values of a x^-test with 25, 24 

and 23 degrees of freedom are 37.65, 36.42 and 35.17 respectively. When 

the exact probabilities are used for computing the test statistic, none of 

the estimated densities is rejected at the 95% level. 

6,2,3 Parameter estimation based on non-grouped data 

The DE, GL, and DDE density were also fitted to the non-grouped 

simulated data sample from the DE density given by eqs.(107) and (156) 

The parameter estimstes bssed on eq.(109), eqs.(73) snd (75), snd 

eqs.(20)-(22) are: 

DE model : a = 29.285575 

GL model : a = 28.139422, 6 = 1.027912 

DDE model : a = 29.285575, a = 29.286032, a = 0.366340*10"^ 

(160) 

The maximum likelihood solutions for the DE and the GL models give a 

negative definite matrix of second partial derivatives of the log 

likelihood function over the pertinent parameter space. For the DDE model, 

the matrix of second partial derivatives is not negative definite. 

The estimates given by eq.(160) and based on non-grouped data are to be 

compared with the estimates eq.(158) based on grouped data. For the DE 

density, the maximum likelihood estimate of the scale parameter is seen to 

be about one per cent smaller in the former case. For the GL density the 

estimates of the scale and the shape parameter ar*» now smaller and Isrger 

respectively thsn the true vslues of 30 snd 1.0. 

Parameter estimation based on the DDE model was performed only for 

the set of initial estimates of a, a. and a. for which convergence 

occurred in the grouped dsts esse, i.e. {Sj.,s. ,s„ } = {0.01,30,90}. The 
0 0 

iterstlon process wss stopped sfter 19 iterstions, when 
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max{|Ej,|E2|,|E2|} < e = 1.0 * 10~ with E^, E2 snd E^ defined by 

eqs.(20) to (22) Inclusive for the esse of non-grouped data. The results 

show again that the maximum likelihood estimates of both the scale 

parameters of the DDE density are converging to the same value a and that 

a converges to zero. Thus, the DDE density reduces to the DE density. 

Parameter estimation using a DE model does not require an initial 

estimate of the scale parameter. As before, an initial estimate of the 

shape parameter of the GL density was obtained from a diagram of f(b) 

defined by eq.(75) against b. The accuracy of the parameter estimates of 

the DE and the GL probability density models may be judged at hand of 

their estimated standard deviations. These are: 

DE model : a(l) = 0.414 

GL model : a(a) = 1.20, a(B) = 0.0280 

These values are very similar to those obtained utilizing grouped data. 

The maximum likelihood estimates of the standard deviation of the DE and 

th GL density are 41.416 and 41.713 respectively, compared with a 

population value of 42.426. Because the standard deviation of a GL density 

depends on both the scale parameter and the shape psrsmeter, its msximum 

likelihood estimste csn be closer to the true vslue, slthough its scale 

parameter is further away from the true value. 

Figures 14 and 15 show the true DE density and the estimated DE and 

GL densities utilizing non-grouped data, on a linear and a logarithmic 

scale. Just for reference purposes, the histogram has been superimposed. 

The three densities, although not being identical coincide on the linear 

scale of Figure 14. On the logarithmic scale of Figure 15, a small 

difference between the two estimsted densities snd the true DE density is 

visible. Notice thst the curve representing the estimsted GL density is 

convex (on a logsrithmic scale) and lies above the true DE density while 

the estimated DE density lies below the true DE density. Compare with 

Figure 13 based on grouped data. The standardized log likelihood values 

for the estimated DE and GL density, based on non-grouped data, are 5000 

and 5139.56 respectively (see eq.(85)). 

) 
(161) 
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6.3 A Gaussian Double Exponential probability distribution 

6.3.1 The simulated data sample 

The Gaussian Double Exponential probability density is given by 

f̂ T̂ „(d) GDE 
= (1-a) 

-{^P 
a^T(0,5) 

d-y 

+ ot 
2a, 

(162) 

A sample of size n = 5000 was simulated, based on the following parameter 

values (the GDE density being a particular DGL density): 

a = 

^1 " 

^2 = 

b„ = 

0.3 

30.0 

90.0 

0.5 

1.0 

y = 

a a 

1 

0.0 

21.2 

«̂2 = 127.3 (163) 

The sample statistics are: 

sample mean m = -0.5438 

sample standard deviation s =68.872 

sample skewness 6 = 0.207 

sample kurtosis S = 16.76 

(164) 

The corresponding population values are 0, 71.937, 0, and 17.655. The data 

grouped into classes of 10 ft are given in Table 9. To generate the 5000 

individual data points, and to form the frequency table together with the 

sample statistics, 11.4 CP seconds execution time were needed on NLR's 

Cyber 180/855 computer. 

6.3.2 Parameter estimation based on grouped data 

The maximum likelihood parameter estimation algorithm as described 

in Section 4.3 was applied to the grouped, simulated data of Table 9. To 

this end it has been assumed that the model was a Double Generalized 

Laplace probability density, of which 2, 3, 4 or 5 parameters were to be 

estimated corresponding to the cases G., G-, G, and G. During the 
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Iteration process, the parameters which were not estimated were kept at 

their true values. Table 10 shows the estimated parameter values, whereas 

Table 11 shows the estimated standard deviations. Each row of Table 10 

defines a (local) maximum of the likelihood function over the pertinent 

parameter space. It can be seen that the estimation errors are of the 

order of one estimated standsrd devistion. By compsring o(a^) snd 0(3 ), 

it is seen thst the relstive 3ccurscy of the scsle psrsmeter of the core 

density is higher thsn thst of the tsil density. Intuitively, this is to 

be expected becsuse the dsts ssmple contslns more informstion on the core 

density thsn on the tsil density. Considering Tsble 11 further, it is seen 

thst the sceursey for two or three estimsted psrsmeters is nesrly the 

same. This may be interpreted ss s. snd s. using different parts of the 

information available in the data sample. However, when the fourth 

parsmeter is sdded to be estimsted, the sceursey of the scale parameter of 

the core density decreases by about fourthy-three per cent. This is due to 

the fact that the information on the core, available in the data sample, 

is redistributed over both the scale parameter and the shape parameter of 

the core density. Similarly, the accuracies of the scale parameter and of 

the weighting fsctor of the tsil density decresse when the fifth psrsmeter 

is sdded to be estimsted, while lesving the sceuracy of the core density 

parameters unaffected. In other words, the information on the tail of the 

distribution, available in the data sample, is redistributed over three 

parameters (a, a., b ) rather than over two (a, a^). 

When the sample size is sufficiently large, the maximum likelihood 

parameter estimates should be close to the true parameter values. Hence, a 

set of good initial estimates for the Newton iteration process should be 

formed by the true parameter values. These were used for each of the cases 

G , G , G and G, giving convergence in 4, 4, 5 and 11 iterations and 

requiring 2.0, 2.0, 2.3 and 4,5 CP seconds execution time on the NLR Cyber 

180/855. The iteration process was stopped whenever the maximum of the 

pertinent error values |E I was smaller than e=1.0*10 . In practice, 

more iterations and computer time will be needed because the initial 

estimates will usually not be so close to the final estimates. The results 

show, however, that convergence can occur when the initial estimates are 

sufficiently good. 
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In addition to a comparison on the parameter level, a direct 

comparison of the estimated probability densities with the simulated 

density and the data is useful. See Figures 16 and 17. From both these 

diagrams, the true and estimated probability densities are seen to be very 

close. Notice the difference in the shape of the core and the tail densi

ties in Figure 17. On the logarithmic scsle, the core densities sre 

(exsctly or spproximstely) quadratic whereas the tail densities are 

(exactly or approximately) linear. Except for the five isolated data 

points in the tails of the histogram, both the true and the estimated 

probability densities are seen to correspond well with the data. 

A statistical measure for the closeness of the analytical probabi

lity densities and the grouped data is minus twice the standardized log 

likelihood value. Table 12 provides this value for the true GDE density as 

well as for the four estimated densities. These values can be used in a 

X^-test with the number of degrees of freedom as given also in Table 12. 

The corresponding 95% critical values vary about linearly between 90.53 

and 79.08 (these being the 95% critical values of a x^-test with 70 and 60 

degrees of freedom respectively). The test values are well below the 

corresponding critical values and none of the analytical probability 

density models would be rejected at the 95% level. Notice finally the 

close correspondence between the values of the test statistic based on the 

exact and the approximated probabilities p., 1=1,2,...,69. The reason for 

this is that the approximation error in the probabilities is smaller for 

each of the five analytical densities in this simulation, compared with 

the simulation based on a DE density in Section 6.2.2 (see Table 8). For 

the true GDE density, for example, the sum of the exact probabilities over 

the 69 intervals equals 0.9998595 giving a total approximation error over 

these intervals of only 0.0001495. For the DE simulation of Section 6.2.2. 

the total approximation error over the pertinent 25 Intervsls was about 32 

times larger, 

6,3,3 Parameter estimation based on non-grouped data 

Assuming a Double Generalized Laplace probability density model of 

which 2, 3, 4 or 5 parameters were to be estimated, the maximum likelihood 

parameter estimation algorithm described in Section 4.2 was applied to the 

non-grouped, simulated data based on the Gaussian Double Exponential 
! 4- . - . 
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probabllity density of eqs.(162) snd (163). Tsbles 13 and 14 show the 

estimated parameter values and their estimated standard deviations res

pectively, The parameters which were not estimated were again kept at 

their true values. The results are very similar to those obtained using 

grouped data. In fact, the present ones are even slightly less accurate. 

Each row of Table 13 defines a (local) maximum of the likelihood function 

over the pertinent parameter space. Because the present results are so 

close to the previous ones, no separate diagrams of the estimated proba

bility densities are given. The standardized log likelihood values for the 

cases S2 to S Inclusive are 4995.7, 5004.9, 5210.6, and 5217.2 respec

tively. 

The initial estimates of the parameters needed to start the Newton 

iteration process for each of the cases S„, S., S, and S were again equal 

to the true parameter values. From these, convergence occurred in 4, 4, 5 

and 11 iterations, requiring 99.0, 98.9, 120.7 and 226.8 CP seconds 

execution time. These numbers are about 50 times larger than the amount of 

computer time needed for the corresponding grouped data cases. This is 

roughly equal to the ratio of the number of terms in the respective 

likelihood equations, 5000/69 » 72. The comparison is not completely fair, 
—8 

because the stop citerion e (recall eq.(32)) was taken as 1.0*10 for the 

non-grouped dsts esse, whilst being 1.0*10 for the grouped dsts esse. 

In practice, a reasonably accurate initial estimate will not 

generally be available and several attempts may be necessary before 

convergence occurs. It is advantageous, therefore, to use grouped data 

first and to use the resulting parameter estimates as initial estimates of 

the parameters for a final run utilizing non-grouped data. 

4 A Double Double Exponential probability distribution 

4.1 The simulated data sample 

The Double Double Exponential probability density is given by 

Cê -izii 

^DDE(^> = (1"°> 2i7 ^ ' ' ' ' ' - ^ « 2 ^ ^ ^ '' ^'''^ 
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A ssmple of size n - 5000 wss simulsted bssed on the following parameter 

values (the DDE density being a particular DGL density): 

0.3 

1̂ 

^? 

h 
^2 

= 

-

= 

= 

30 

90 

1 

1 

.0 

0 

0 

0 

y 

1̂ 

^̂2 

-

-

= 

0 

42 

127 

0 

4 

3 (166) 

The sample statistics are: 

sample 

sample 

sample 

sample 

mean 

standsrd deviation 

skewness 

kurtosis 

m = -0.3168 

s - 75.362 

8j - 0.1243 

3, = 12.09 

(167) 

The corresponding populstion vslues sre 0, 78.230, 0 and 12.98. The data 

grouped into classes of 10 ft are given in Table 15. Compare these with 
fl 

those obtained for the GDE density and given in Table 9. From the 36-th 

interval onwards, i.e. from 350 ft onwards, the two tables contain exactly 

the same number of data points per class. This is due to the fact that the 

tall density is the same for both the mixture densities, and the tail 

density becomes dominant in the region of the larger data points. Compsred 

with the GDE density the number of dsts points per interval is nearly the 

same for the classes 19 to 35 inclusive, indicating that in this region 

there is a very small contribution from the core density yet. On the first 

three classes, the numbers of data points per class are much higher for 

the GDE probability density, because the stsndsrd deviation of the Gaussian 

core density is much smaller than that of the Double Exponential core 

density in the DDE mixture, 21.213 against 42.426, giving a tighter core 

for the GDE. As a result, the DDE density gives more data points in the 

remaining classes 4 up to 18. To generate the 5000 individual data points, 

together with the frequency table and the sample statistics, 10.0 CP 

seconds execution time were needed, 

6,4.2 Parameter estimation based on grouped data 

A (single) Double Exponential probability density was fitted to the 

grouped data of Table 15 first, because it is known from Section 4,4.4 to 

satisfy the likelihood equations of the fsmily of Double Double 
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Exponential probability densities. In addition, a (single) Generalized 

Laplace density was fitted. The parameter estimation results for these two 

densities are: 

DE model 

GL model 

a = 46.8000 

CJ(|) - 0,662 

: a = 25.7574 

a(a) = 1.41 

B = 1.376686 

0(6) = 0.0318 

(168) 

Both the solutions define a (local) maximum of the log likelihood func

tion. It is difficult to compare these parameter estimates with the true 

parameters of the DDE density, because the latter density is a mixture 

density with a significant weighting factor of otKO.3 for the tail density, 

whilst the DE and GL density are single densities only. 

Further, 2, 3, 4 and 5 parameters of a DGL density were estimated 

according to the cases G , G., G, and G. The parameters not being esti

mated were kept at their true values. Tables 16 and 17 present the 

estimated values and their estimated standard deviations. The parameter 

estimates are consistent in the sense that the estimation errors are of 

the order of one estimated standard deviation. Comparing the cases G„ and 

G , it is seen from Table 17 that the accuracy of the weighting factor a 

decreases by a factor of 2.2 when the scale parameter is additionally 

estimated. At the same time, the accuracy of the scale parameter of the 

core density decreases by a factor of 1.4. This may be explained from the 

fact that the ratio between the core standard deviation and the tail 

standard deviation is relatively high (as compared with the GDE case) 

making the discrimination between the two more difficult. The transition 

from 3 to 4 estimated parameters leads to smaller decreases in accuracy of 

the individual parameter estimates. Apparently, the density with the three 

estimated parameters discriminates already fairly well between the core 

and the tail and the introduction of one more degree of freedom mainly 

leads to a redistribution of the information about the core over the 

pertinent parameters. Finally estimating the fifth parameter as well 

mainly leads to a redistribution of the information about the tail over 

the weighting factor and the shape and scale parameter of the tail den

sity, leaving the accuracy of the core density parameters relatively 

unaffected. 
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It is interesting to make a comparison between the accuracy of the 

parameter estimates for the GDE and the DDE density. Table 18 presents the 

ratios between two corresponding estimated standard deviations. Except for 

the scale and shape parameter of the tall density in case G , the accuracy 

is, on average, about two times higher for the GDE density. 

As for the GDE density, the true parameter values were used as 

initial estimates for the Newton iteration process. Convergence occurred 

for the cases G. and G. in 4 and 5 iterations respectively, based on a 
-10 

stop criterion of e-1.0*10 , wheras divergence occurred for the cases G, 

and G. Convergence was obtained, by trial and error, for the latter two 

cases from the following sets of initial estimates ot , a. , a. , b , b : 

0.2, 30, 90, 1, 1 and 0.285, 30, 90, 0.9, 0.94. This 0 0 0 0 

required 11 and 28 iterations respectively. 

A direct comparison between the estimated probability densities and 

the simulated density and the data can be made by means of Figures 18 to 

21 inclusive. Figures 18 and 19 show the simulated DDE density and the 

corresponding data, together with the estimated DE and GL densities. 

Except for the last isolated data points, the true DDE corresponds well 

with the histogram. Figure 19 shows that the single DE probability density 

is unable to represent the tail of the underlying Double Double Exponen

tial density. The fit is better for the single GL density which is more 

flexible as it has two parameters. Notice that the shape of the GL curve 

on the logarithmic scale of Figure 19 is convex due to the value of the 

shape parameter being larger than one. Although the GL density is closer 

to the true DDE density and the data than the DE density, it is still not 

a very good representation. Table 19 confirms the bad fit of the single DE 

and GL densities through the very large values of the X^-statistic, in 

particular for the DE density. Both single probability densities would 

clearly be rejected at the 95% level. Notice also the large difference 

between the two values of the X^-test statistic for the GL density when 

based on the exact and the approximated probabilities p , 1=1,2,...,69. 

The difference of the sum of the approximated probabilities from one is 

indicative for the bad approximation. . , 

Figures 20 and 21 show the true DDE density and the four estimated 

mixture densities. Three of the four estimated probability densities are 

very close to the true DDE density. All the five densities describe the 
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data well, except for the last Isolated data points. Notice that for each 

of the five mixture densities the shape of the core and the tail density 

is (exactly or approximately) linear on the logsrithmic scale of Figure 

21, but with a different slope due to the different values of the scale 

parameters of the tall and core densities. Table 19 also provides the 

X^-test statistic values for the four estimated mixture densities. Case G, 

and G give the highest values. Compared with the results for the GDE 

simulation, the test values are approximately 20 per cent higher. This is 

consistent with the higher accuracy of the parameter estimates for the GDE 

simulation. The last column of Table 19 gives approximate 95% critical 

values for each case, obtained by linear interpolation of the critical 

values for 60 and 70 degrees of freedom. The true DDE density as well as 

the DDE densities with two and three estimated parameters are accepted on 

the basis of a x^~test at the 95% level. The estimated Generalized Laplace 

Double Exponential density (case G ) would also be accepted, but the 

Double Generalized Laplace density (case G) would be rejected at the 95% 

level. Although this is not immediately clear from the Figures 20 and 21, 

the large uncertainty of the parameter estimates for the case G may make 

this plausible. As a final technical point, it should again be noticed 

that the computation of the x^~test statistic values on the basis of the 

approximated probabilities p. leads to extremely inaccurate numerical 

results. It would, in fact, also lead to incorrect statistical 

conclusions. 

6.4.3 Parameter estimation based on non-grouped data 

Assuming a Double Generalized Laplace probability density model of 

which 2, 3, 4 or 5 parameters were to be estimated, the maximtim likelihood 

parameter estimation algorithm was applied to the non-grouped, simulated 

data based on the Double Double Exponential probability density of 

eqs.(165) and (166). The parameters not being estimated were kept at their 

true values. The true values were also used as initial estimates for the 

Newton iterstlon process. Different results were obtsined for the esses S„ 

snd S. on the one hsnd snd S, snd S on the other. The estimstlon results 
3 4 

sre given In Table 20 snd 21. 

Convergence to e=1.0*10 occurred in 4 snd 7 iterstions for the 

esses S. and S_, requiring 98.8 and 162.0 CP seconds execution time. The 

estimation errors for these two cases are of the order of one estimated 
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standard deviation or less. The point estimates for case S. are slightly 

more accurate than those for the corresponding case G„, while for case S. 

they are slightly less accurate than for the grouped data case G.. 

Twenty-four iterations were required to obtain the solution given in 

Table 20 for case S. This solution of the likelihood equations, however, 

does not define a maximum of the log likelihood function. The estimated 

standard deviations could not be computed, because the matrix of second 

partial derivatives was not negative definite. A number of heuristically 

chosen initial parameter estimates were tried further. None of them 

resulted in convergence of the iteration process. Similar divergence 

problems were met for ease S,. The only solution obtsined for this esse 

wss s (single) Double Exponentisl solution (different from the "resl" DE 

model given by eq.(168)). Notice thst the estimste of the scale parameter 

a, is close to the true value of a., but that the tail density is 

completely ignored. Some further investigations of the eases S, and S are 

necessary. 

6.5 A Double Generalized Laplace probability distribution 

6.5.1 The simulated data sample 

The Double Generalized Laplace probability density is given by 

W(^> (1-a) 

'd-y 
1/b, d-y 

1/b, 

2ajbjr(bj) + a 
^V2^^^2^ 

(170) 

A sample of size n = 5000 was simulated, based on the following parameter 

values: 

a = 

^1 = 

^2 = 

b. = 

0.3 

30.0 

90.0 

0.65 

0.80 

y = 0.0 

a = 25.2 

a. - 93.0 (171) 
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The sample statistics are: 

-•> •-*• cilmiirii-r'-

sample mean 

sample standard deviation 

sample skewness 

sample kurtosis 

• - - • - ' - - . - . • 

m = -0.1416 

s = 52.900 

gj = 0.0298 

$2 = 10.06 

'•^•.i. ti V 

(172) 

The corresponding population values are 0, 55.122, 0 and 11.100 

respectively. The data grouped into classes of 10 ft are given in Table 

22. Notice that, compared with the simulated GDE and DDE data, the range 

of values is much smaller, due to the thinner tail of a GL density with a 

shape parameter of 0.8. On the other hand, the range of this particular 

mixture density is larger than for the single DE density considered in 

Section 6.2 (see Table 6). To generate the individual data points, the 

ssmple ststistlcs snd the frequency tsble, a total of 85 CP seconds 

execution time was needed. 

6.5.2 Parameter estimation based on grouped data 

The maximum likelihood parameter estimation algorithm as described 

in Section 4.3 was applied to the grouped, simulated data of Table 22. In 

accordance with the cases G„, G-, G, and G, 2, 3, 4 and 5 parameters were 

estimated while keeping the parameters not being estimated at their true 

values. Tables 23 and 24 show the estimated psrsmeter vslues snd their 

sssocisted standard deviations. The estimation errors are of the order of 

one standard deviation or smaller. The addition of one more parameter to 

be estimated leads in each of the cases to a considerable redistribution 

of the information available in the pertinent part of the sample over the 

parameters, see for example the increase in a(S) at the transition from 

case G to G . The resulting accuracy for the DGL density is between that 

of the GDE and DDE densities, the only exception being the accuracy of the 

scale and shape parameter of the tail density in the DGL mixture. 

The true parameter values were used as initial estimates for the 

Newton iteration process, for each of the cases G., G., G, and G. 
2 3 4 

Convergence occurred in 4, 4, 7 and 15 iterations respectively, requiring 

1.1, 1.2, 1.7 and 3.1 CP seconds execution time. 
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A graphical comparison of the simulated and the four estimated 

Double Generalized Laplace probability densities is given in Figures 22 

and 23. The small difference between the densities are not visible on the 

linear scale of Figure 22. Even on the logarithmic scale of Figure 23, the 

differences between the true and the estimated DGL densities are hardly 

visible in the region between -400 and +400. The correspondence between 

all the densities and the data in that region is good. Outside this 

region, the DGL density corresponding with case G (5 estimated parameters) 

deviates considerably form the others. This is due to the large inaccuracy 

of the estimates of the scale and the shape parameter of the tall density 

within the mixture in this case. Notice that the logarithm of each DGL 

density consists of a concave core part and a concave tail part which are 

connected to each other in a transition region. 

Table 25 provides the X^-test statistic values for the true and the 

four estimated DGL densities. The highest and the lowest value occur for 

the true DGL density, with no estimated parameters, and the estimated DGL 

density of case G with five estimated parameters. The 95 per cent critical 

values of a X^-test with 30 and 40 degrees of freedom are 43.77 and 55.76. 

Hence, each of the five probability densities would pass a X^-test at the 

95 per cent level, when the exact probabilities p. would be used. The 

difference between the values of the test statistic based on the exact and 

approximated probabilities varies between 16.4 and 19.2 per cent. Although 

a test based on the approximated probabilities would not lead to wrong 

statistical decisions, it is better not to use the approximated 

probabilities due to their limited accuracy. 

6.5.3 Parameter estimation based on non-grouped data 

The results of the application of the maximum likelihood parameter 

estimation algorithm for non-grouped data are given in Table 26 and 27. As 

before, the parameters which were not estimated were kept at their true 

values. For the cases S. and S , the parameter estimates as well as their 

' estimated standard deviations are very similar to their G and G. equi

valents. For these two cases, the estimation errors are of the order of 

one estimated standard deviation or less. For the case S,, the results 
4 

'•? based on non-grouped data are even less accurate than those for the 

grouped data based case G,, except for the estimate of the scale parameter 

of the tall density. For this case, the estimation errors in the scale 
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parameter and the shape parameter of the core density are 1.5 and 2.3 

times the estimated standard deviations respectively. These large rstlos 

sre probsbly due to s rsndom fluctustion. The results for case S are 

rather bad, yielding estimation errors of the order of two estimated 

standard deviations, except for the scale parameter of the core density. 

The initial estimates of the parameters for the Newton iteration 

process were again equal to the true parameter values for each of the four 

cases. For the cases S , S and S,, this led to convergence in 4, 4 and 6 

iterations respectively, requiring 89.1, 99.2 and 142.4 CP seconds 

execution time when using a stop criterion of e=1.0*10 . By some trial 

and error, convergence in 12 iterations occurred for case S starting from 

the following initial estimates ot a, , a, , b, , b : 0.24, 30, 90, 0.65 
A n an " 0̂ 0̂ 0̂ 0̂ 

and 0.80. 

Graphically, the estimated DGL densities based on simulated 

non-grouped data look very similar to those based on grouped data and, 

therefore, are not separately presented. The standardized log likelihood 

values for the cases S to S inclusive are 4826.1, 4846.1, 5053.8, and 

5158.56 respectively. 

RESULTS FOR THE REAL AIRCRAFT PAIRS DATA 

Introduction 

The results of the application of the maximum likelihood parameter 

estimation technique described in Section 4 to the aircraft pairs data 

summarized in Section 2 are given in this section. Several subfamilies of 

probability distributions belonging to the general family of Double 

Generalized Laplace probability distributions will be considered. Three 

single probability distributions will be analyzed first, namely the 

Gaussian, the Double Exponential and the Generalized Laplace probability 

distribution (Section 7.2). Three different mixture distributions, each 

having a Double Exponential tail distribution will be discussed next in 

Section 7.3. The reason for paying so much attention to mixture distri

butions with a Double Exponential tail is that these lead to a cautious 

extrapolation of the tails of the observed distribution. Finally, the 

Double Generalized Laplace probability distribution will be presented 

(Section 7.4). 
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The data used in this section are the grouped aircraft pairs data of 

Table 3. Because the parameter estimation results based on simulated data 

showed, in general, a close correspondence between the two cases of 

grouped and non-grouped data, only grouped dats are used. This is similsr 

to the dsts being used elsewhere (References 14 - 18). For esch 

probsbility density model to be snslyzed, s mesn vslue of 1000 ft will be 

sssumed. This is slightly Isrger thsn the sample value of 997.1 ft. 

The main results to be presented consist of the estimated 

probability densities and the corresponding estimated probabilities of 

vertical overlap in a 1000 ft environment, P (1000). The latter 
z 

probabilities are defined by 

P (1000) = ƒ f ,(x) dx (173) 
z - i d 

^ A ^ 
z (••-• 

where fj(x) denotes any probability density model of the vertical distance 
d 

d between the aircraft in a pair. In practice, P (1000) may be approximated 

by 

P (1000) = 2A f .(0) (174) 
z z d 

The s5Tnbol X in eqs.(173) and (174) denotes the average height of an 

aircraft. Following Ref. 6, the value to be used is A = 40.9 ft. 

A brief summary of the results obtained will be given in Section 

7.5. Moreover, one particular probability density model will be selected 

as being the most useful with regard to the practical objectives of the 

study. - • ,., 

7.2 Results based on some single probability distributions 

Tables 28 and 29 summarize the parameter estimation results for the 

Gaussian, the Double Exponential, and the Generalized Laplace probability 

densities, based on the grouped dats of Tsble 3. The shape parameter of 

the Generalized Laplace density is 0.727811, that is, approximately midway 

between the values characterizing the Gaussian and the Double Exponential 

densities (0.5 and 1.0 respectively). The estimated standard deviation 
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a(a) of the scale parameter estimate a is about twice as large for the 

Generalized Laplace density as for the Gaussian and the Double Exponential 

densities. This is due to the fact that the Generalized Laplace density is 

characterized by two parameters rather than one, over which the informa

tion available in the data has to be distributed. The relative accuracy of 

the parameter estimates of the Generalized Laplace density is approxima

tely 2.5 to 3 per cent, whereas for the Gaussian and the Double Exponen

tial density this is approximately 1 and 1.5 per cent respectively. These 

accuracy figures, however, are only relevant on the assumption that the 

probability distributions do represent the data. This will be evaluated in 

more detail below. 

Figures 24 to 29 inclusive pertain to the Gaussian density. Figure 

24 shows the histogram of the pairs data with a class interval of 10 ft, 

with the estimated Gaussian density superimposed. Similarly, Figure 25 

shows the logarithm (base e) of the histogram and of the Gaussian density, 

in order to provide more insight into the tall region. It is seen that the 

Gaussian density does not at all fit to the data. The core of the observed 

histogram around 1000 ft is underestimated. The histogram seems to be more 

peaked than the Gaussian density. This is confirmed by the kurtosis values 

of the histogram and the Gaussian density in Table 29: 4.33 and 6. The 

maximum likelihood estimate of the standard deviation of a Gaussian 

density is by definition equal to the observed sample standard deviation 

(see eqs.(103) and (106)). The tails of the histogram are also seen to be 

underestimated and, as a result, the intermediate part of the histogram is 

overestimated. 

The quality of the fit can be studied in more detail by examination 

of the residual plots. The (linear) residuals on class ±1, i=l,2,...,63 

(counted from 1000 ft onwards to the right and the left respectively) are 

defined by 

r^ = p^ - h^ (175) 

where h denotes the height of the histogram on class 1 and p. denotes the 

value of the probability density model, evaluated at the midpoint of class 

i and at the maximum likelihood parameter estimates. The logarithmic 

residuals on class ±i are defined by 
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\ = log p^ - log h^ = log ̂  (176) 

where p, and h, are defined as above (note: log denotes the natural 

logarithm, i.e. base e). Figures 26 and 27 show the linear and the 

logarithmic residuals of the Gaussian density. The log residual values on 

the isolated classes ±62 and 63 are approximately -7. 

A somewhat different view of the fit, which is particularly useful 

for the purpose of extrapolation to the probability of vertical overlap 

P (1000), is given by the "1-cumulative" curve, i.e. the probability of 

vertical distances between aircraft in a pair larger than 1000+x or 

smaller than 1000-x ft. Figure 28 shows this curve for the Gaussian 

density. The solid line marks the curve based on the Gaussian density, 

whereas the +signs mark the corresponding quantity based on the observed 

pairs data. As might have been expected from the foregoing discussion, the 

correspondence between the two curves is not good. Figure 29 amplifies 

this for the tail region, by means of the logarithm of the "1-cumulative" 

curves. The logarithmic "1-cumulative" curve drops off quadrsticslly for 

the Gsussisn density. Notice thst the logsrithmic "1-cumulstive" curve 

bssed on the observed psirs dsts is fist on the intervals 51 to 61 

inclusive, because there are not any observations in the intervals 52 to 

61 inclusive (see Table 3). 

The bad fit of the Gaussian probability density to the data as 

examined so far graphically, is expressed mathematically by the very high 

value of minus twice the standardized log likelihood value given in Table 

28: 257.80. Compared with the 95 per cent critical vslue, the Gsussisn 

density is formally rejected in a x*-test. 

Although the Gaussian density is not acceptable as a probability 

density model for the data, it might, from a theoretical point of view, 

still be used for computing an estimate of the probability of vertical 

overlap. Table 28 provides a value of 3,78*10 , which, however, has no 

practical significance, 

Consider now the Double Exponential density in Figures 30 to 35 

inclusive. Figure 30 shows the histogram and the estimated Double 

Exponential density. The value of the Double Exponential density at the 

• • • J 
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mean is l/a = 0.0105 snd exceeds the scsle of Figure 30. The Double 

Exponentisl density is seen to be more pesked thsn the hlstogrsm. This is 

confirmed by the corresponding kurtosis vslues in Table 29: 6 snd 4.33. 

The Double Exponentisl density slmost shows the reverse picture of the 

Gsussisn density. It overestimstes the very core of the hlstogrsm, 

underestimstes the intermediste psrt snd overestimates the remaining part, 

except for the two isolated data points in the extreme tails (see Figs. 30 

and 31). The linear and logarithmic residual plots. Figure 32 and 33, 

demonstrate this nicely. Notice that the magnitude of the logarithmic 

residuals of the Double Exponential density is considerably smaller than 

that of the Gaussian density (compare Figs. 27 and 33). Table 29 explains 

why the Double Exponential density overestimates the larger part of the 

observed histogram in the tsil sres. The resson is the relstively large 

value of the maximum likelihood estimate of the standard deviation 

compared to the sample value: 134.097 and 125.2. Figures 34 and 35 show 

the "1-cumulative" curves and their logarithms. Notice that the logarithm 

of the "1-cumulative" curve of the Double Exponential density in Figure 35 

is a straight line. The correspondence between the estimated and the 

observed curves is not good. The extrapolation of the tail area is too 

pessimistic. 

It is concluded from Figures 30 to 35 inclusive, that the Double 

Exponential density is not an appropriate model of the data. Mathemsticslly, 

the X^-test confirms this view. The computed vslue of 211.18 of minus 

twice the standardized log likelihood, far exceeds the 95 per cent critical 

value of this test, see Table 28. Table 28 also gives a value of the 

probability of vertical overlap, namely P (1000) = 1.13*10~ . This value, 

however, is deemed to be too pessimistic for the practical situation. 

As a final single probability density model of the pairs data, the 

Generalized Laplace density will be considered. Recall from Section 3.2 on 

"Selection of a family of probability distributions", that the family of 

Generalized Laplace densities includes both the Gaussian and the Double 

Exponential density as a particular member. The previous anslysis suggests, 

in fsct, two things. Firstly, the probsbility density model might be 

sought in between the Gsussisn snd the Double Exponentisl density. Second

ly, this density should be more flexible thsn a probability density 

characterized by a single parameter only. The Generalized Laplace density, 

therefore, would seem to be an appropriate next step. 
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Figures 36 to 41 show the results for the family of Generalized 

Laplace probability densities. Figure 36 of the histogram and of the 

estimated Generalized Laplace density shows a considerable improvement in 

the fit, compared to the Gaussian and the Double Exponential densities. 

Notice in particular the representation of the core of the histogram by 

the Generalized Laplace density. Table 29 demonstrates that the estimates 

of the kurtosis of the histogram and of the Generalized Laplace density 

are very close: 4,33 and 4,09, In addition, the maximum likelihood 

estimate of the standard deviation corresponds very well to the sample 

value. Figure 37 shows that the fit of the Generalized Laplace density hss 

also markedly improved on a logarithmic scale. See also the residual and 

"1-cumulative" plots in Figures 38 to 41 inclusive. All these observations 

are confirmed mathematically by a great reduction of the value of minus 

twice the standardized log likelihood in Table 28: 77.17 rather than a 

value of the order of 200. The present value is seen to be below the 

critical value of a X^-test at the 95 per cent level and could lead to 

formally accepting the Generalized Laplace probability density model. 

Before doing so, the ultimate objective of the modelling process 

should be recalled. This is to provide a best (but not too optimistic) 

estimate of the probability of vertical overlap P (1000) in a 1000 ft 

environment. As should be clear from the various disgrsms, this estimste 

has to be based on the extrspolstion of the tslls of the hlstogrsm by 

mesns of the probsbility density model. As the value of the shape 

parameter of the Generalized Laplace density is 0.727811, the logarithm of 

this density is concave (see Figure 37) and drops off relatively quickly 

in Figure 37. Therefore, the corresponding estimate of the probability of 
—8 

vertical overlap, being P (1000) - 4.68*10 (see Table 28), might be 

somewhat too optimistic. In fact, by comparing the Figures 33 and 39, the 

log residuals of the Generalized Laplace density on the two extreme 

intervals ±62 and 63 of the histogram are seen to be twice as large as 

those of the Double Exponential density. The logarithmic "1-cumulative" 

curves in Figure 41 also show that the extrapolation using the estimated 

Generalized Laplace density is not by definition cautious. Taking these 

observations into account, it is concluded that the estimated Generalized 

Laplace probability density is not completely satisfactory for the 

practical objectives. Rather than using a single Generalized Laplace 

density, a mixture of two Generalized Laplace densities should be applied 

and analyzed. Perhaps one or more of the parameters of such a mixture 

could have a priori specified values. 
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Results based on some Double Generalized Laplace probability distributions 

with a Double Exponential tail distribution • • 

Three different mixture densities, each having a different core 

density but with Double Exponential tail density will be analyzed in this 

subsection. These probability densities are: 

- the Gaussian Double Exponential (GDE) 

- the Double Double Exponentisl (DDE) 

- the Generslized Lsplsce Double Exponentisl (GLDE). 

The Gsussisn Double Exponentisl density hss three unknown psrameters ot, 

a., a and two fixed parameters b =0.5 and b =1.0. The Double Double 

Exponential density has the same unknown parameters but the fixed 

parameters are b = b = 1.0. The Generalized Laplace Double Exponential 

density has four unknown parameters ot, a , a , b and one fixed parameter 

b = 1.0. The complexity of the parameter estimation process is slightly 

less for the Gaussian Double Exponential and Double Double Exponential 

densities because of the smaller number of parameters to be estimated. 

These mixture densities, therefore, are considered first. 

As an alternative to a theoretical analysis of the existence snd 

uniqueness of a solution of the likelihood equations based on a mixture 

probability density model, a grid may be constructed in the pertinent 

parameter space, and each grid point be used as an initial estimate for 

the Newton iteration process. The maximum dimension and the resolution of 

the grid need to be sufficiently large for this approach to be successful. 

On the other hand, these two quantities should be as small as possible in 

order that the approach is computationally efficient. 

For the Gaussian Double Exponential density, the alternative 

approach means that a grid in the (01,3 ,a.)-parameter space has to be 

constructed. Rather than utilizing a full three-dimensional grid, a grid 

for the scale parameters a. and a is constructed in the plane 01=0.1. 

Although a.-a. planes defined by different values of a could also be 

considered, the results obtained from the present choice are believed to 

be sufficient. The dimensions of the grid in the (a.,a2)-plane chosen may 

be derived from the magnitude of the sample standard deviation, because 

the scale parameters a. and a. are related to the standard deviation of 

the core and the tail density respectively (see eqs.(12)-(14)). Based on 

a sample standard deviation of s=125.2 ft, the following (a.,82)-grid was 

chosen in the plane ot =0.1: 
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a^ = 30,40 250 ; 

a^ - 3 0 , 4 0 , . . . , 2 5 0 ; 

(a^ = 21 .2 , 2 8 . 3 , . . . , 176.8) 

(02 = 4 2 . 2 . 5 6 . 6 , . . . . 353,6) ) 
(177) 

The numbers between the brsckets denote the corresponding grid in the 

(o.,a2)-plane. Notice the difference in the rsnge of a. snd a„. Using this 

grid and the grouped data of Table 3, six solutions of the likelihood 

equations pertaining to the Gaussian Double Exponential probability 

density model have been obtained which meet both the stop criteria: 

max{|E. I, |E2I,|E-1} < e = 1.0*10 and the number of iterations less than 

or equal to 25. These solutions are given in Table 30. In addition. Figure 

42 shows which grid point(s) converged to which solution. It should be 

remarked that the line pieces do not indicate the path followed by the 

successive iterants between the initial and the final value; they just 

connect the initial and the final values. The initial value of a for each 

solution is 0.1 and the final value can be read from Table 30. 

The fifth solution of the likelihood equations as shown in Table 30 

does not define a msximum of the log likelihood function, but s ststlonsry 

point. In sddition, it does not meet the requirement OSaSl.O. The sixth 

solution does define s msximum of the log likelihood equstion, but does 

not either meet the requirement of the weighting fsctor being between zero 

snd one. The fourth solution is exsctly the maximum likelihood solution of 

a (single) Gaussian probability density. In this case, the value of a_ is 

not of any importance. The second snd the third solution sre exsctly equal 

to the msximum likelihood solution of s single Double Exponentisl density 

bssed on grouped dsta with a class interval of 10 ft. The difference 

between the two estimstes of s does not hsve s physicsl mesning, becsuse 

the weighting fsctor of the core density is zero for these two solutions. 

So, both the (single) Gsussisn snd the (single) Double Exponentisl probs

bility density sstisfy the likelihood equstions of the fsmily of Gaussisn 

Double Exponentisl mixture densities. Both these single densities, 

however, were shown not to be prsctieslly scceptsble in Section 7.2. 

From 3 numerlc3l snslysls point of view, it is interesting to remsrk 

thst the set of gridpoints for which the two stopcriteris sre not met csn 

be subdivided into two clssses. The first clsss consists of those points 

for which M = max{|E |,|E |,|E,I} either oscillstes sround s certsin 

finite (non-zero) vslue or incresses st esch iterstlon. The second clsss 

consists of those points for which M decresses very slowly to zero at each 
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iterstion. After a certain number of iterations, M decreases by a factor 

of spproximstely two per step. In some cases, all the three psrsmeter 

estimstes sre seen to jointly diverge to plus or minus inifinity (by a 

fsctor of two st each iteration). In the other cases, the estimates of 

only one or two of the three parameters show such divergence, with the 

remaining two or one parameter(s) converging to a finite value. For each 

of the grid points belonging to the second class, the stop criterion M<e 

could be met when the number of iterations would be allowed to become 

sufficiently large. The resulting solutions, however, do not have sny 

prsctlcsl meaning. 

The first solution in Table 30 was analyzed further. The parameter 

and additional estimates are summarized in Table 31. These indicate that 

the Double Exponential tail density has a relatively large weighting 

factor in the overall mixture. Its standard deviation is approximately 20 

feet larger than that of the Gaussian core density. Notice thst the 

sceursey of the scale parameter estimates as measured by a(a.) and a(a.) 

is approximately the same. The maximum likelihood estimate of the overall 

standard deviation of the Gaussian Double Exponential density is close to 

the sample standard deviation. The maximum likelihood estimate of the 

kurtosis is relatively large compared to the sample value of 4.33. This is 

due to the heavy weighting of the kurtosis of the Double Exponential tail 

density. 

Figures 43 to 48 inclusive show the estimation results for the 

Gaussian Double Exponential density graphically. Notice thst, in sgreement 

with the estimsted kurtosis vslue, the Gaussian Double Exponential density 

is relatively heavily peaked sbout the mesn vslue of 1000 ft. Compsred 

with the (single) Gsussisn snd the (single) Double Exponentisl density, 

the fit hss considerably improved. See the Figures 43 to 46 inclusive. For 

the Gaussian Double Exponential density, the logarithmic residuals on the 

four extreme classes are somewhat larger than for the Double Exponential 

density. Compared with the Generalized Laplace density (see Figures 36 to 

41 inclusive) these residuals are seen to be smaller. The quality of the 

fit ss messured by minus twice the standardized log likelihood value is 

78.25, which is comparable with that for the Generalized Laplace density, 

but just exceeds the 95 per cent critical value of a x^-test with 59 

degrees of freedom. Compare finally the linear snd logarithmic "1-eumuls-

tive" curves of Figures 28, 34, 40, 47 snd 29, 35, 41, 48. The correspon-
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dence between the estimated and the observed curve is seen to be much 

better for the Gaussian Double Exponential density than for the (single) 

Gaussian and Double Exponential density. The results for the Gaussian 

Double Exponential and the Generalized Laplace density are similar for 

deviations from the mean up to approximately 340 feet, with the former 

being at least as good and more cautious for the larger deviations without 

being as pessimistic as the (single) Double Exponential, Hence, the 

Gaussian Double Exponential is considered to be well suited for extrapo

lation purposes. The corresponding estimate of the probability of vertical 

overlap is P (1000) = 6,59*10"^ (see also Table 31). z 

So far, the discussion has concentrated on the point estimates, 

obtained by means of the maximum likelihood method, of the parameters of 

the Gaussian Double Exponential probability density model. Further Insight 

is provided by interval estimates or confidence regions of the parameters. 

There are various ways to obtain these using as3nnptotic approximations 

valid for large sample sizes (Ref. 23). One possibility is to use the 

Gaussian as}rmptotle distribution of the maximum likelihood estimator. This 

involves eq.(41) or eqs.(42) and (43), adapted to the Gaussian Double 

Exponential density and grouped data. The result is a Y*100% confidence 

ellipsoid in the (a,a ,a.)-parameter space, centred at the maximum 

likelihood point estimates. A second possibility is to use the likelihood 

ratio statistic. This involves eqs.(37) and (38) of Section 4, similarly 

adapted. Its asymptotic distribution is a x^-distrlbution. The advantage 

of the likelihood ratio statistic over the maximum likelihood estimator 

for calculating confidence regions is, that the former usually approaches 

its asymptotic distribution faster, and, as a result, gives tighter 

confidence bounds. Because it is graphically impossible to represent the 

joint confidence regions of all the three parameters in a single diagram, 

confidence regions in the various co-ordinate planes of the (a,a.,a„)-para-

meter space will be given below. 

Figures 49, 50 and 51 show the isocontours of the relative 

likelihood function corresponding with the 90 and 95 per cent critical 

values of a x^-distributed random variable with two degrees of freedom 

(eq. 40). Notice that the contours are pretty regularly shaped and that in 

particular the contours in the (a.,a )-plane are close to an elliptical 

shape. Figures 52, 53 and 54 show isocontours based on the 95 per cent 

critical value of the asymptotic maximum likelihood estimator. These 

contours are based on the following asymptotic, observed, sub-covariance 

matrices: n-
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cov{a,aj} 

0,00237 0,0676 

0,0676 28,9 

, cov {a,a.} 

/ 452.772 -1.05947 

-1.05947 0.0370987 

cov{a,aj} 

' 0.00237 -0.0988\ 

\-0.0988 20.5 / 

, cov {0,32} = 

/ 529.099 2.55372 \ 

2.55372 0.0611868/ 

cov{aj,a2} 

28.9 -18.9 \ 

-18.9 20.5 

, cov {a^,a2} = 

0.0872645 0.080522 7\ 

0.0805227 0.123163 

The corresponding correlation coefficients are: p{a,a }=0.26, p{a,s„}= 

-0.45, snd p{3.,3 }=-0.78. The isocontours defined by the sbove 

covarisnce mstrices sre known to be ellipses in the vsrious co-ordinste 

plsnes, centred at the maximum likelihood point estimates. The ellipses in 

Figures 52 and 53 look somewhat Seformed because of the stretching of the 

vertical scale. Consequently, their axes are not perpendicular. The 

difference in the orientstion of the ellipses of Figures 52 snd 53 is due 

to the different signs of the correlstion coefficients p{a,3^} snd 

p{a,s_}. The true sngles between the ^-sxes of the ellipses in the Figures 

52 snd 53 snd the s. snd the s„ sxis sre 0.13° snd 89.87° respectively. 

The two types of Isocontours sre very similsr for the psir of parameters 

a. and a.. To a somewhat lesser extent, this also holds for the pair of 

parsmeters a and a., with the contour bssed on the relstive likelihood 

function being somewhst smsller. Given the similsrity in the shape, this 

is in agreement with the theoretically expected result. There is s similsr 

difference in the size snd sn sdditionsl difference in the orientstion of 

the two types of Isocontours for the psir of psrsmeters a and a . 

Approximate confidence bounds on the parameters a, s., snd s of the 

Gsussisn Double Exponentisl probsbility density model may be defined by 

the minimum and maximum parsmeter values along the isocontours. Similarly, 

approximate confidence bounds on the probability of vertical overlap 

P (1000) may be defined by the minimum and maximum values of P (1000), 
z z 

evaluated along the various isocontours. Thus, the following appropriste 

95 per cent confidence bounds (conservatively rounded) have been obtained: 
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psrsmeter 

a 

^1 

^2 
P (1000) z 

spproximste 95 per cent confidence bounds based on 

relative likelihood function 

0.31 - 0.55 

152 - 172 

88 - 108 

2.3*10"^ - 14.8*10"^ 

maximum likelihood estimator 1 

0.31 - 0.55 

151 - 171 

87 - 109 

2.0*10"^ - 16.7*10"^ 

As was to be expected from the discussion on the diagrams of the 

isocontours, the bounds on the parameters based on the two approaches are 

practically the same. The bounds on the probability of vertical overlap 

P (1000) derived from the relative likelihood function are about ten per 
z 

cent tighter than those based on the maximum likelihood estimator. The 

major question with regard to deriving a bound on a quantity is to obtain 

a bound which is as tight as possible. Because the relative likelihood 

method generally gives tighter bounds and because the various isocontours 

are regularly shaped, the bounds based on this method are tsken to define 

s 95 per cent confidence intervsl for the probsbility of verticsl overlsp 

P (1000), nsmely 2.3*10" - 14.8*10" . The upper bound is spproximstely 
z _g 
2.2 times larger than the point estimate of 6.59*10 

The second probability density model belonging to the class of 

densities considered in this subsection is the Double Double Exponential 

probability density. It is characterized by exactly the same parameters as 

the Gaussian Double Exponential density, namely a weighting factor a and 

two scale factors a. and a.. Hence, the same grid as used for the Gaussian 

Double Exponential density might, in principle, be used to define initial 

guesses for the Newton iteration process to solve the likelihood equations 

pertaining to the family of Double Double Exponential probability densi

ties. This was actually done for a sub-grid defined by a =30,40,...,140. 

Most of the grid points gave convergence to the (single) Double Exponen

tial density already described in Section 7.2. Divergence occurred in a 

few cases and in one case (a -110, a =220) the following solution 
0 0 

defining a stationary point of the log likelihood function was found: 

a—0.331625, a -111.255, a =160.813. Two different explanations might be 

given for these somewhat unexpected results. Firstly, the resolution 
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and/or the size of the used grid might be insufficient. Secondly, it might 

just not be possible to model the data by means of a real Double Double 

Exponential probability density. Because of the successful application of 

the same grid to the Gaussian Double Exponential as well as to the 

Generalized Laplace Double Exponential density (see below), it is believed 

that the second explanation is the more likely. For the same reason, it 

has not been attempted to obtain any solutions of the likelihood equations 

starting from a finer grid. 

The alternative approach referred to in the beginning of this 

subsection means for the Generalized Laplace Double Exponential 

probability density, that a grid has to be constructed in the 

four-dimensional (ot,a^,a_,b.)-parameter space. Using ten grid points in 

each dimension would result in 10000 different initial guesses for the 

Newton Iteration process to be evaluated. In order to limit this very 

extensive procedure, the same grid as used for the Gaussisn Double 

Exponential density in the (a ,a)-plane (see eq.(177)) was utilized, 

together with only one pair of initial estimates of ot and b , namely 

01 -1.0 and b. =0.8. Table 32 presents the seven different solutions found 
0 

of the likelihood equations pertaining to the Generalized Laplace 

Double Exponential probability density. Figure 55 shows which grid points 

gave convergence to which solution. A solution is said to have converged 

when both M = max{1E |,|E |,|EJ,IE^I} < e - 1.0*10" and the number of 

iterations is not larger than twenty-five. In addition, many grid points 

gave in a few iterations a solution with (i»0.0, a -134.284 or Q-1.0 and 

a =94.8206 with a whole range of values of a. and a. respectively, without 
-10 

satisfying M^e = 1.0*10 . In those cases, the iteration process was also 

stopped. These gridpoints and their corresponding solutions are not shown 

in Figure 55. This phenomenon did not occur for the Gaussian Double 

Exponential density discussed earlier. Apparently, the convergence rate 

was higher there. The second solution is exactly the maximum likelihood 

estimate of a (single) Double Exponential density. Similarly, the third 

solution is exactly the maximum likelihood estimate of a (single) 

Generalized Laplace density. The estimates of the parameters of the core 

density of the second solution and the estimate of the scsle psrsmeter of 

the tsil density of the third solution do not hsve any practical meaning, 

because the associated weighting factors are precisely zero. The fourth to 

the seventh solution inclusive, although satisfying the likelihood 

equations, do not define any local maximum of the log likelihood function. 
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Each of these defines a stationary point only. The fourth solution is not 

acceptable because of its negative weighting factor. Physically, these 

solutions seem to be close to the third solution. The fifth to the seventh 

solution Inclusive may be regarded as being close to the (single) Double 

Exponential solution (solution number two). The small values of the shape 

parameter of the core density of these three solutions define core 

densities which are close to a homogenous probability density in some 

region about the mean value of 1000 ft. On the basis of the existence of 

these three stationary points of the log likelihood function, the 

existence of even more similar stationary points might be conjectured. 

The first solution in Table 32 was analyzed further. The parameter 

and additional estimates are summarized In Table 31, together with those 

of the Gaussian Double Exponential density and the Generalized Laplace 

density discussed before. The core density of the Generalized Laplace 

Double Exponential density is seen to be very similar to the single 

Generalized Laplace density. Its tail density has, compared with the 

Gaussian Double Exponential density, a very small weighting factor, and a 

relatively large standard deviation. The Generalized Laplace Double 

Exponential density may thus be considered to be a Generalized Laplace 

density, which in the core region is slightly perturbed by the Double 

Exponential tail density, and which in the tall area is dominated by the 

Double Exponential tail density (see the discussion of the pertinent 

diagrams below). Compared with the Gaussian Double Exponentisl density, 

the msximum likelihood estimstes of the oversll standard deviation and of 

the kurtosis are closer to the sample values (compare e.g. Table 29). 

Figures 56 to 61 inclusive show the estimation results for the 

Generalized Laplace Double Exponential density graphically. Compare these 

figures with Figures 36 to 41 inclusive and Figures 43 to 48 inclusive of 

the Generalized Laplace and the Gaussian Double Exponential density 

respectively. On a linear scale, the three densities look very similar. 

Consequently, this also holds for the linear residual plots (Figures 38, 

45 and 58). Logarithmically, they look (very) different in the tail 

regions below 500 and above 1500 ft. By comparing Figures 37 and 57, the 

effect of adding a Double Exponential tail density is seen to be very 

significant. In Figure 57, the concave shape of the logarithm of the core 

density ranges from about 400 to 1400 ft. The linear shape of the 

logarithm of the tall density extends below and above approximately 200 
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and 1800 ft. In the Intermediate regions, the shape is convex. Notice 

that, compared with the Gaussian Double Exponential density of Figure 44, 

the core and the Intermediate region extend over a much larger range. This 

is due to the small value of the weighting factor of the Double Exponen

tial tail density in the present case. The main difference between the 

logsrithmic residusl plots (Figures 39, 46 snd 59) appears on the two 

extreme classes on the left and on the right. The Generalized Laplace 

density gives the worst fit on these classes, the Gaussian Double Exponen

tial density giving the best fit there, whilst the Generalized Laplace 

Double Exponential density is in between the two. The overall quality of 

the fit as measured by minus twice the standardized log likelihood value 

is the best for the Generalized Laplace Double Exponential density (see 

Table 31). In fact, it is below the 95 per cent critical vslue of s 

X2-test with 58 degrees of freedom and would lead to a formal acceptstion 

of this probsbility density model. For the practical objectives of this 

study, the "1-cumulative" curves are again of prime interest. On a linear 

scale, these are very similar (Figures 40, 47 and 60). The so-called 

logarithmic "1-cumulatlve" curves (Figures 41, 48 and 61) show some 

important differences in the range of deviations from the mean of 340 feet 

snd grester. Compsred with the Generslized Lsplsce density, the Geners

lized Lsplsce Double Exponentisl probsbility density lesds to more 

csutious estimstes of the probsbility of Isrge devlstlons from the mesn 

vslue. On the other hsnd, it is less cautious than the Gaussian Double 

Exponential density. Notice that the logarithmic "1-cumulative" curve of 

the Generslized Lsplsce Double Exponentisl density mstches the Isst dsts 

point of the experimentsl logsrithmic "1-cumulstlve" curve. The corres

ponding estimste of the probsbility of verticsl overlsp would be P (1000) 

- 4.73*10"^ (see slso Tsble 31). 

Figures 62 to 67 inclusive show the isocontours of the relstive 

likelihood function derived from the 90 snd 95 per cent criticsl vslues of 

the corresponding likelihood rstio. Smsll irregularities in the shape of 

the contours are due to the limited resolution used in the underlying 

computation process snd do not hsve sny statistical significance. Five out 

of the six diagrams show isocontours which are approximately of an ellip

tical shape, the exception being the Isocontours pertaining to the psir of 

psrsmeters ot and s.. Recsll that these two psrameters are the weighting 

factor and the scale factor of the tail density, which have to be esti

mated from a relatively little part of the total information available in 



-93-

the data. The large uncertainty on a and a„ is reflected by the estimated 

standard deviations o((l) and cr(a.) in Table 31. From a statistical point 

of view, negative values of the weighting factor a are possible, given the 

fact that a((S) is about twice as large as 1. Practically, however, the 

weighting factor should be greater than or equal to zero, and the contours 

in Figures 62 to 64 inclusive, have been cut at a lower value of a of 

zero. Consider now Figure 63, showing isocontours in an (a.,a)-plane. 

Notice that the 90 per cent isocontour is closed, whereas the 95 per cent 

isocontour is not. This is due to the following. When a=0.0, the tsil 

density does no longer plsy s part in the mixture density. As a result, 

the relative likelihood function does not depend on the scale fsctor a , 

along the a -axis, and is determined completely by the parameters a and 

b of the core density. Thus the a -axis in Figure 63 is itself an isocon

tour. Its value turns out to be 0.052, corresponding with a confidence 

value of slightly less than 95 per cent of the associated x^-distributed 

likelihood ratio. Because two isocontours can not intersect each other, 

the 95 per cent contour bends away along the a.-axis. Figures 68 to 73 

inclusive show the 95 per cent isocontours based directly on the asymp

totic maximum likelihood estimator. A lower bound of zero wss tsken sgsin for 

a. The shspe of the two types of contours is very similsr for the psirs of 

psrsmeters a snd b., s. snd s„, b̂  snd a.. With regard to the dimensions, 

the contours based on the relative likelihood function are tighter, as 

they are expected to be. The contours of the relative likelihood function 

of the two pairs of parameters a and a., b. and a sre spproximstely 

ellipticsl in shape, but they are differently oriented and tighter than 

their counterparts of Figures 68 and 73 derived directly from the asjrmp-

totic maximum likelihood estimator. The main difference between the two 

types of contours occurs for the pair of parameters a and a„. 

Confidence bounds on the parameters of the Generalized Laplace 

Double Exponential density model and on the probability of vertical 

overlap P (1000) can, in principle, be defined in the same manner as for 
z 

the Gaussian Double Exponentisl probsbility density. Two points, however, 

require psrticulsr sttention. The first one is the observstion thst the 95 

per cent isocontour of the relstive likelihood function is not closed. It 

turns out thst its right-hsnd side is given by a-K) snd s.-»-". The probsbi

lity of verticsl overlsp given by eq.(174) may be further approximated by 

considering only the tail density, i.e. 
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Clearly, the probability of vertical overlap decreases with decreasing a 

and increases with increasing values of a„, for a.<1000. Whether or not 

P (1000) Increases with a_ along the 95 per cent isocontour for values of 
z ^ 
a. larger than 300, say, depends on the corresponding rate of decay of a 
along that part of the contour. It turns out that the maximum of P (1000) 

z 

along the 95 per cent Isocontour of Figure 63 occurs for approximately 

a-0,135 and a.-252. The second point to be kept in mind when considering 

confidence bounds for the parameters is that the parameter a is limited to 

non-negative values. The associated confidence level, therefore, will 

effectively be lower than 95 per cent. 

The values summarized below were obtained by taking again the 

minimum and maximum values along the contours. 

parameter 

a 

*1 

2̂ 

, \ 

P (1000) 
z 

approximate 95 per cent confidence bounds based on 

relative likelihood function 

0.0 - 0.22 

128 - 148 

85 - 245 (90%) 

0.63 - 0.74 

1.6*10~® - 42*10'"̂  

maximum likelihood estimator 

0.0 - 0.26 

124 - 149 

27 - 212 

0.6 - 0.79 

1.6*10"̂ ^̂  - 98*10"^ 

Notice that the interval given for a. in the middle column is a 90 per 

cent confidence value rather than a 95 per cent value. The 95 per cent 

Isocontour of Figure 63 would give an infinite interval for the parameter 

a , because the contour is not closed. There is a fairly good agreement 

between the intervsls bssed on the two spprosches for the parameters a, a 

and b.. The difference in the case of the scale parameter a of the tail 

density is obvious from the foregoing discussion. The range for a based 

on the maximum likelihood estimator is, in fact, also responsible for the 

difference in the size of the confidence regions of the probability of 

1 
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vertical overlap, based on the two approaches. The lower bound of 

1.6*10 corresponds with the lower bound of 27 of a. whereas the upper 
—6 

bound of 98*10 corresponds with the upper bound of 212 of a_, combined 

with a relatively high value of the weighting factor a. Taking the theo

retical aspects of the derivation of confidence intervals based on the two 

approaches into account, as well as the particular observations in the 

case of the Generalized Laplace Double Exponential probability density 

discussed here, the confidence interval for the probability of vertical 

overlap P (1000) chosen here is the one based on the relative likelihood 
z -8 -6 

function, i.e. the interval 1.6*10 - 42*10 . The upper bound is 

approximately nine times larger than the maximum likelihood point 

estimate. 

Results based on the Double Generalized Laplace probability distribution 

The Double Generalized Laplace probability density is characterized 

by five parameters a, a., a„, b. and b., in addition to its mean value 

(assumed to be 1000 ft here). Rather than using a full grid in the five-

dimensional parameter space, the two-dimensional grid in the (a.,a.)-plane 

defined by eq.(177) has been utilized together with one triple of initial 

estimates of the remaining parameters, namely a =0.1, b. =0.8 and b. =1.0. 
0 0 

Table 32 presents the six solutions of the likelihood equations 

pertaining to the family of Double Generalized Laplace probability 

densities, found by this approach. Some of these solutions had not yet 

fully converged to the two stop criteria max{|E.I,|E | , [ E J , | E J , E } < E = 
-10 I z Ó H b 

1.0*10 and the number of iterations less than or equal to 25. For this 

reason, a diagram showing the convergence of the grid points to each 

solution is omitted. The second solution in Table 33 defines again the 

maximum likelihood estimate of a (single) Double Exponential density, 

whereas the third defines the estimate of a (single) Generalized Laplace 

density (compare Table 28). The fourth solution defines a stationary point 

of the log likelihood function rather than a maximum. Physically, the 

fourth solution may be Interpreted as a slightly perturbed version of the 

third solution, that is, the (single) Generalized Laplace. The value of 

the shape parameter b„ indicates that, what is called the tail density, is 

in fact a more or less homogenous density (with standard deviation a=278.7 

ft) on the interval of 500 to 1500 ft. The fifth and sixth solution in 

Table 33 also define stationary points rather than maxima of the log 

likelihood function. Notice that these two solutions are more or less 
complementary. 
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The first solution in Table 33 was analyzed further. The parameter 

and additional estimates are summarized in Table 31, together with those 

of some of the densities discussed before. It is seen that what is called 

the tail density, i.e. the density weighted by the factor a, is close to 

the (single) Generalized Laplace density with regard to its parameter 

estimates a =135.873 and 6.-0.755964. Taking the value of a into account, 

the tail density appears in fact to be the main component of the Double 

Generalized Laplace mixture density. The core density has a shape para

meter of approximately 0.3, which means that the core density is rela

tively flat over the range of 850 to 1150 ft. Taking the estimated values 

of the core and tail standard deviations into account, the population may 

be said to be composed of a small proportion (17%) of relative accurate 

objects and a major proportion (83 per cent) of average objects. Notice 

finally that the maximum likelihood estimates of the overall standard 

deviation and of the kurtosis are close to the sample values (see Table 

29). ^ 

Figures 74 to 79 inclusive show the estimation results for the 

Double Generalized Laplace density graphically. The main difference 

between the Double Generalized Laplace density on the one hand, and the 

Generalized Laplace, the Gaussian Double Exponential, and the Generalized 

Laplace Double Exponential on the other, appears in the tail area snd, 

therefore, is most clesrly visible in the disgrsms showing the logarithms 

of the densities, the residusls and the "1-cumulative". Compared with a 

(single) Generalized Laplace density, the tail of the logarithm of the 

Double Generslized Lsplsce density hss slightly shifted upwsrds. The 

differences with respect to the Gaussian Double Exponential and the 

Generalized Laplace Double Exponential are similar to those between the 

latter two densities and a (single) Generalized Laplace. Consider the log 

"1-cumulative" curves of Figures 41, 48, 61 and 79. For deviations from 

the mean up to 470 feet, the curve based on the Double Generalized Laplace 

density most closely follows the experimental curve. This is, of course, 

the result of the flexibility inherent to the five parameter Double 

Generalized Laplace probability density model. Due to this same flexibi

lity, the former curve follows the experimental curve between 470 and 620 

feet more closely than the curve based on the (single) Generalized Laplace 

density. Compared with the Generalized Laplace Double Exponential density, 

the Double Generalized Laplace density is more cautious in the range of 

deviations from the mean between 300 and approximately 500 feet. In the 
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extreme tall region, however, the Double Exponential tall density of the 

Generalized Laplace Double Exponential density becomes more cautious. For 

deviations from the mean up to 400 feet, the log "1-cumulative" curves 

based on the Gaussian Double Exponential and the Double Generalized 

Laplace densities nearly coincide. For the larger deviations, the heavily 

weighted tail density of the Gaussian Double Exponential density is more 

cautious. Based on the Double Generalized Laplace probability density 

model, the estimate of the probability of vertical overlap would be 

P (1000) = 2.21*10"^, 

Summary 

A total of six different probability density models has been fitted 

to the real aircraft pairs data by means of the maximum likelihood method 

in the subsections 7.2 to 7.4 inclusive. Three of these six densities are 

single densities, namely a Gaussian, a Double Exponential and a Generali

zed Laplace density. The Gaussian and the Double Exponential density are 

shown not be able to describe the data in an appropriate manner. Although 

the Generalized Laplace density gives a satisfactory description of the 

data, it is considered to be unsuitable for the extrapolation required to 

estimate the probability of vertical overlap. 

The remaining three densities are mixture densities, namely the 

Gaussian Double Exponential, the Generalized Laplace Double Exponential 

and the Double Generalized Laplace density. Each of the three gives a 

satisfactory description of the data. As the differences between the fits 

of these densities to the core of the data sample are very small, the 

choice of a unique probability density mdoel from these three alternatives 

depends on how well these densities extrapolate the tails of the data 

sample. Because of the inherent uncertainty of the extrapolation process, 

a cautious approach has to be taken. The best model then is the Gaussian 

Double Exponential probability density, giving a point estimate of the 

probability of vertical overlap of P (1000) = 6.59*10" and a 95 per cent 
6 ^ —6 

interval estimate of 2.3*10" - 14.8*10 . 
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CONCLUSIONS 

The assessment of the risk of collision between aircraft due to the 

loss of vertical separation in a possible 1000 ft environment makes use of 

a particular collision risk model. The main parameter of this model is the 

probability of vertical overlap. It may be estimated from data on the 

vertical distance between aircraft in a pair. 

Due to the limited amount of data that can be obtained in practice, 

a mathematical probability distribution model of the data is required. A 

methodology to arrive at such a model has been defined and elaborated. It 

consists of three elements. The first two elements are the selection of a 

suitable family of probability distributions and of a method to estimste 

the unknown parameters from the available data. The family of the Double 

Generalized Laplace distributions and the maximum likelihood parameter 

estimation technique have been selected. The third element consists of a 

careful appraisal of the numerical results obtained, given the uncertain

ties Inherent to the overall process. 

The methodology has been implemented in a computer package called 

Double Generalized Laplace Distribution Fitting, DGLDiF. The package has 

been written in FORTRAN77, which safeguards portability. The package may 

be applied in various fields, because of the generality of the family of 

Double Generalized Laplace probability distributions. It is further 

strengthened by the possibility of selecting any subset of the five 

parameters to be estimated, using either grouped data or non-grouped data. 

Various additional statistical quantities of interest are part of the 

standard output of the package. The package is presently being extended to 

mixtures of more than two Generalized Laplace distributions and to other 

parameter estimation techniques. 

The package has been used on the Cyber 180-855 computer of the 

National Aerospace Laboratory NLR. It has been validated, to the extent 

possible, by means of simulated data. Some of the technical questions 

associated with the underlying methodology have been investigated through 

digital simulation, while some others have been investigated analytically. 
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Applied to the so-called grouped aircraft pairs data, the 

methodology has resulted in the Gaussian Double Exponential probability 

density as the best model with regard to the objectives posed. The 

associated point estimate of the probability of vertical overlap amounts 
—6 —fi —ft 

6.6*10 with a 95 per cent confidence interval of 2.3*10" - 14.8*10" . 
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APPENDIX A 

DEFINITION OF SOME SAMPLE STATISTICS 

The sample mean m and the sample moments s2, (m.)^, (m,)** centred 

around the sample mean are defined as follows: 

1 " ,, m = - E d 
" 1=1 i 

s2 = — ^ z (d -m)' 
"-1 i=i i 

1 " 3 (m,)^ = —-j- E (d.-m) 
J n-l . , 1 

1=1 

1 " 4 
K)** = rrr 2 (d.-m)^ 
4 n-l 1 

The sample skewness g, is defined as 

3-.2 {(^3)^} 

h =—(i^ 

The sample kurtosis g„ is defined as 
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APPENDIX B 

REVIEW OF PROBABILITY DENSITY MODELS BEING USED 

IN THE US AND JAPANESE VERTICAL DATA COLLECTION STUDIES 

A total of nine different families of probability densities is 

described in Ref. 14 for the United States data collection study. The most 

general family considered is the "Mixture of Two Power-Exponential 

Probability Density Functions". It can easily be verified that the 

Power-Exponential density f_(d;<l»,3) of Ref. 14 is identical to the 

Generalized Laplace density forming the elements of the Double Generalized 

Laplace density as defined in this paper. The relation between the 

parameters a and b on the one hand and «I»,3 on the other, is: 

b - - ^ - ^ (B.l) 

= * 2 (1 ̂  ^>/2 (3_2) 

The "Mixture of Two Power-Exponential Probability Density Functions" is 

then identical to the Double Generalized Laplace density. The other eight 

families of Ref. 14 are special cases of the most general family, obtained 

by fixing the values of one or more of the five parameters. It should 

finally be noted that in the U.S. case the probability densities are used 

to model single aircraft data (versus paired aircraft data in the Europesn 

esse). 

In the Jspsnese dsts collection, the so-cslled "relative vertical 

distance" constitutes the data (Refs. 15 - 17). For two aircraft assigned 

to the same flight level, the relative vertical distance is defined as the 

difference of their heights as measured by the radar. This is similar to 

the paired aircraft data used in the European case, but no correction 

needs to be made for the difference in the height of the assigned flight 

levels (provided that their temporal and spatial height variations are 

negligible). Each data point z is modelled by 

z. = e, . - e, , + e . - e , (B.3) 
J h,2 h,l m,2 m,l 
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where e, . is the height keeping error of aircraft i (1 = 1,2) in pair j 
h, 1 

and e . is lts measurement error (due to radar as well as changes in 
m,l 

atmospheric conditions). Each term in the right-hand side of eq.(B.3) 

above, is assumed to be statistically independent of all the other terms. 

Two approaches are distinguished viz. 1) postulating separate 

probability distributions for the height keeping and measurement errors, 

followed by convolution to obtain the probability distribution of the 

relative vertical data, and 11) postulating directly a probability 

distribution for the relative vertical data. For the latter approach, 

three families of probability distributions are considered in Ref. 15, 

namely Gaussian, Double Exponential and Gaussian Double Exponential. Only 

the last family, however, is elaborated in Ref. 16 and 17. For the former 

approach, two cases are considered. Firstly, the case of Gaussian 

measurement errors and Double Exponential height keeping errors is given 

(Refs. 15 - 17). Secondly, the case of Double Double Exponential height 

keeping errors with identically zero measurement errors is described 

(Refs. 16 and 17). This corresponds with the Convoluted Double Double 

Exponential case discussed for the European dsta collection in Ref. 11. 

The combination of Gsussisn messurement errors snd Double Exponentisl 

height keeping errors is not included in either the European or the United 

States' approach. 
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-.'.•%. 

APPENDIX C 

SUMMARY OF FIRST AND SECOND PARTIAL DERIVATIVES OF 

THE DGL PROBABILITY DENSITY TO THE PARAMETERS 

C.l) ^ f ( d ^ ) = - 2s^b^r(bp 

d^-y 1/b, d^-y 1/b, 

•*• '2l^Tl[h^ ^ 

c.2) ^ f ( d ^ ) L-a) {-(1-a) - 1 + 
d^-y 1/b, 

d^-y 

1 ° l 

2iJbp7b~T ^ 

1/b, 

C.3) ^ f ( d ^ ) a { - l . - i 
d^-y 1/b 

2l 1 
J 2aifb r ( b j ^ 

d^-y 1/b, 

2 2 ' 2 ' 

C.4) ^ ^ f ( d ^ ) (1-a) {-J. - ^ ( b p + 4 
d^-y 1/b, 

l o g 
d^-y 

d^-y 1/b, 

2a^b^r(b^) ^ 

C.5) ^ ^ f ( d j ) "{"b^ "^^V^bf 
d^-y 1/b, 

l o g 
d^-y 

d^-y 1/b, 

2i^b7(v ' 

32 
C.6) ^ - r f (d^) = 0 

32 
C.7) 7 ï ï^ f (d^) = U (̂ i> = il - b^ — ) 2a;b^r(bp 

d^-y 1/b, 
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|d^-y 1/b, 

C.8) T^^^V 
d,-y 1/b, Z' 1 -.JL ! l 2 ' ' ' 2 > | 1 

V b , a, I 2aJ5b,r(b,) 2"r^"r 

•̂̂ > dïï:^(V = (b:^*(V-bT 
d,-y 1/b, 

l o g 
d,-y 

d,-y 1/b, 

2a^bjr(b^) 

^•io)3iïï:^(V = ( b : ^ ^ ( V " 
d,-y 

d,-y 

"2 

1/b 

1/b, 
l o g 

d, -y | 

2a2b2r(b2) 

d , - y | l / b ^ 

C . i l ) ^ f ( d ^ ) (1-a) T? ajbj^r(bp 

1/b 
|-^|!|2|-i.(_,.^|!£^p^^)(. 

d,-y 1/b 
I V 1 ^ _1 

^ ^ 2b 

|d^.y 

1 
/ ƒ 

C - 1 2 ) 9 ^ f ( d , ) 

d , - y , l / b ^ 

C-13)3^f(V ( l - « ) 0^7 2a5b^r(bp 

b | I a^ 

1/b d,-y 

bT a, \ b, ° a, ' 

. d^-y 1/b^w 1 ^,, s ^ 1 
bj a^ /V b^ 1 b^ 

d̂ py l^b 
l o g -Dl ^11^-^. 

C.14) 
3aj3b2 ^'"1 

f ( d , ) = O 
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d^-y l /b2 

C . i 5 ) ^ f ( d ^ ) 
1 °2 

" I^bjf(b^ ^ 

I- 1 
2b; 

d^-y 1/b, 

( - - ^ 
d^-y 1/b 

^ ï ï - - ^ 
d,-y l /b2 \ ] 

•̂16> ï l^b^^^V = O 

dj-y l /b2 

C-l^^Ii^^^V = " ^ 5 ^ 2a2b2r(b2) 

J 1 l/b2 1 

i d ^ - y , 

1 a2 1 

d - y (-é-s¥) 
1/b 

H-^. -^< 2W 1 . , b 2 ) . ^ 
d^-y 1/b, 

l o g 

C.18) - ^ p - f(d^) ^^""^ 2a^b^r(b^) 

d. -y 
1 

1/b, 

ij"'^'<V-^]"bf 
d^-y 1/b, 

(2 + - 1 lof — I ) j l°g 
d^-y 

W-b^-'^^v-^bf 
d^-y 1/b, 

l og 
d^-y, 

* * 2 

•̂̂ ^̂  3b;;3bj^^V = ° 
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d^-y 1/b, 

C.20) 3 ^ f(d^) = a 
2a2b2r(b2) 

^ _ . . ( b p ^ | - _ | 
d - y 1/b, 

f - log 
d^-yiN-j d , - y 

W log 

+ f - > r - "̂ (̂ "̂  + 2' • b= 

d^-y 1/b, 
log 

d. -y |\ T 

a, I' J 

c . 2 „ , a , . 1 i ^ 

C . 2 2 ) » ( b ) . - C - i + b ^ E ^ 5 ^ 

C.23) C = 0.57721566490... , Euler's constant 

C.24) 'J"(b) = T4- + ï ^ b^ ' j^^^ (b+k)-

See for C.21 to C.24 inclusive: I.S. Gradshteyn and I.M. Ryzhlk, Table of 

integrals, series, and products. Academic Press, 1980. 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

,11 

12 

13 

14 

15 

16 

# data points 

1447 

1174 

891 

565 

368 

203 

134 

78 

40 

25 

14 

12 

5 

0 

0 

4 

Table 1 Number of data points per class Interval of 40 ft 

(Note: intervals counted from 1000 ft onwards, on the assumption 

of symmetry) 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

i dsts points 

766 

681 

611 

563 

479 

412 

340 

225 

209 

159 

120 

83 

75 

59 

41 

interval 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

J data points 

37 

25 

15 

15 

10 

12 

2 

7 

5 

4 

1 

0 

0 

0 

0 

2 

2 

Table 2 Number of data points per class interval of 20 ft 

(Note: intervals counted from 1000 ft onwards, on the sssumption 

of sjmmietry of the distribution) 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

# data points 

404 

362 

358 

323 

328 

283 

299 

264 

238 

241 

226 

186 

192 

148 

124 

101 

111 

98 

90 

69 

58 

62 

44 

39 

33 

42 

interval 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

# data points 

25 

34 

18 

23 

21 

16 

11 

14 

8 

7 

8 

7 

5 

5 

3 

9 

2 

0 

3 

4 

2 

3 

3 

1 

1 

0 

interval 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

# dats points 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

0 

Table 3 Number of dsts points per clsss interval of 10 ft 

(Note: Intervals counted from 1000 ft onwards, on the assumption 

of symmetry of the distribution) 
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r\ s 

a >. 

0<a<l 

1 
a=0 \ 

a=l 1 

l" ? A il 2I 

ASj = Aa2 = A 

Aa = 0 

A3. = Aa. undetermined 

Aa undetermined 

Aa^ = Aa. undetermined 

Aa undetermined 

i 

s 

0 
ASj = Aa2 = 0 

Aa undetermined 

Aa^ = 0 

Aa undetermined 

La„ undetermined 

Aa. undetermined 

Aa undetermined 

Aa2 = 0 

2I 

As^ 

Aa 

Aa, 

Aa 

Aa, 

Aa 

®| 
= Aa2 undetermined 

contradictory 

d 
= Aa. undetermined 

= 1 

= Aa. undetermined 

= -1 

Table 4 The solution of eqs.(136) to (138) as a function of the values of 

the weighting factor a and the scale parameter a. 
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method 

Taylor 

series 

expansion 

Continued 

fraction 

expansion 

algorithm 

Bhattschsrjee 

Moore 

Lsu 

Lindstrom 

Gsutschi 

Bhsttscharjee 

Moore 

Gautschi 

number of 

terms 

variable 

variable 

variable 

200 

variable 

variable 

variable 

variable 

accuracy 

—8 
absolute, first neglected term ^ 10 

relative, first neglected term < lO" 

relative, first neglected term '̂  10 

nine or more significant digits 

any prescribed number of significant 

digits 

relative difference of two successive 

8 1 
Iterations - 10 

relative difference of two successive 

iterations - lO" 

any prescribed number of significant 

digits 

Table 5 Summary of the characteristics of five algorithms for the 

computation of the incomplete Gamma function. 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

# data points 

1492 

963 

735 

504 

408 

253 

183 

139 

84 

68 

48 

48 

17 

16 

17 

9 

6 

1 

2 

2 

1 

1 

I 

0 

1 

0 

I 

Table 6 Number of data points per class interval of 10 ft. 

Simulation based on DE probability distribution of Section 6.2. 

(Note: intervals counted from the mean onwards, on the 

assumption of sjmmietry of the distribution.) 
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sample 

size 

n 

5000 

5000 

10000 

10000 

class 

Interval 

w 

5 

10 

5 

10 

degrees 

of 

freedom 

d.f. 

53 

26 

53 

26 

2* standardized log likelihood 

based on 

p^(exact) 

eq.(44) 

63.03 

33.54 

68.58 

29.07 

p. (approximated) 

eq.(46) 

74.60 

79,80 

91.72 

121.6 

E p (approximated) 
1 

0.99872 

0.99526 

0.99872 

0.99526 

Table 7 X^-test statistic values based on exact and approximated probabilities, 

for various combinations of sample size and class interval. 

type of 

probability 

density 

DE 

GL 

DDE 

degrees 

of 

freedom 

d.f. 

25 

24 

23 

2* standardized log likelihood 

based on 

p^(exact) 

eq.(44) 

31.23 

35.21 

31.23 

p.(approximated) 

eq.(46) 

78.81 

72.84 

78.81 

E p (approximated) 
1 ^ . 

0.99515 

0.99615 

0.99515 

Table 8 X^-test statistic values based on exact and approximated 

probabilities, for the three probability density models fitted 

to the simulated data. 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

# data points 

1499 

Uil 

791 

453 

270 

129 

90 

72 

61 

49 

60 

46 

39 

37 

29 

22 

27 

23 

15 

16 

21 

16 

17 

14 

16 

Interval 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

# data points 

5 

6 

6 

7 

4 

6 

9 

3 

5 

2 

3 

4 

4 

1 

2 

0 

1 

0 

0 

0 

1 

3 

0 

0 

1 

interval 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

# data points 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

Table 9 Number of data points per class interval of 10 ft. 

Simulation based on GDE probability distribution of Section 6.3. 
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case 

S 

s 
4̂ 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

a 

0.284507 

0.288882 

0.283686 

0.269350 

h 

30.4652 

30.3581 

29.7019 

29.748910 

h 

88.1285 

89.0488 

103.458 

1̂ 

0.532338 

0.539197 

«2 

0.918949 

Table 10 Maximum likelihood parameter estimation results for various cases, 

based on grouped simulated data. Simulated probability density is 

GDE with parameter values: 

a - 0.3 y = 0.0 

a^ =30 bj = 0.5 

a^ - 90 b2 = 1.0 

case 

s 
s 
«4 

^ 

number of 

parameters 

estimated 

2 

3 

4 

5 

a(S) 

0.0101 

0.0129 

0.0137 

0.0234 

a(Sp 

0.529 

0.564 

0.804 

0.802 

a(a2) 

3.34 

3.50 

21.1 

a(6p 

0.0282 

0.0298 

0(62) 

0.109 

Table 11 Estimated standard deviations of maximum likelihood parameter 

estimates, based on grouped simulated data. Simulated probability 

density is GDE. 
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case 

true GDE 

G 

degrees 

of 

freedom 

68 

66 

65 

64 

63 

2* standardized log likelihood 

based on 

p^(exact) 

eq.(44) 

67.66 

65.65 

65.26 

63.53 

62.49 

p.(spproximsted) 

eq.(46) 

69.24 

66.80 

66.49 

65.73 

64.26 

^ p. (spproximsted) 
1 

0.99971 

0.99979 

0.99979 

0.99968 

0.99974 

Tsble 12 X^-test ststistic values based on exact and approximated 

probabilities, for the true and estimated irobability density models. 



-120-

case 

2̂ 

S 

4̂ 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

a 

0.284518 

0.289635 

0.279873 

0.265341 

h 

30.2682 

30.1420 

28.8746 

28.8822 

'2 

87.8291 

89.5754 

103.905 

^ 

0.561488 

0.570186 

^2 

0.920811 

Table 13 Maximum likelihood parameter estimation results for various cases, 

based on non-grouped simulated data. The simulated probability density 

is the GDE density with parameter values: 

a = 0.3 

a, =30 b, = 0.5 

^2 " ^° ^2 " ^'^ 

case 

2̂ 

1 '' 
4̂ 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

oia) 

0.0101 

0.0130 

0.0139 

0.0284 

a(Si) 

0.527 

0.565 

0.878 

0.877 

a(S2) 

3.34 

3.59 

26.7 

a(6p 

0.0326 

0.0362 

0(^2) 

0.137 

Table 14 Estimated standard deviations of maximum likelihood parameter 

estimates, based on non-grouped simulated data. Simulated 

probability density is GDE. 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

# data points 

1200 

849 

603 

497 

358 

263 

231 

194 

122 

98 

81 

62 

71 

48 

33 

38 

18 

35 

18 

15 

24 

17 

14 

18 

15 

interval 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

# data points 

6 

6 

6 

7 

4 

5 

10 

3 

4 

3 

3 

4 

4 

1 

2 

0 

1 

0 

0 

0 

1 

3 

0 

0 

1 

interval 

31 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

# data points 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

' ^ 
0 

0 

0 

0 

0 

0 

1 

Table 15 Number of data points per class interval of 10 ft. 

Simulation based on DDE probability distribution of Section 6.4. 
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case 

S 

s 
4̂ 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

a 

0.273494 

0.286538 

0.351737 

0.423585 

h 

30.6685 

30.3169 

32.3065 

32.0985 

h 

87.8419 

82.2403 

60.6733 

^ 

0.883416 

0.867734 

«2 

1.13398 

Table 16 Maximum likelihood parameter estimation results for various cases, 

based on grouped simulated data. Simulated probability density is 

DDE with parameter values: 

a = 0.3 y = 0.0 

a^ =30 b^ = 1.0 

a2 =90 b2 = 1.0 

case 

s 
s 
^4 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

a(a) 

0.0189 

0.0415 

0.0507 

0.101 

oCa,) 

0.983 

1.40 

1.70 

1.81 

a(S2) 

5.85 

5.33 

19.8 

a(6p 

0.0548 

0.0628 

0(62) 

0.137 

Table 17 Estimated standard deviations of maximum likelihood parameter 

estimates, based on grouped simulated data. Simulated probability 

density is DDE. 
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case 

1 

s 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

estimsted psrsmeter 

a 

1.9 

3.2 

3.7 

4.7 

\ 

1.9 

2.5 

2.1 

2.3 

\ 

1.8 

1.5 

0.94 

\ 

1.9 

2.1 

^2 1 

, 0.7 

Tsble 18 Rstio between a(psrsmeter)_̂ _̂ p, snd a (psrsmeter) 
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case 

DE 

GL 

true DDE 

s 
s 
^ 

G 

degrees 

of 

freedom 

d.f. 

67 

66 

68 

66 

65 

64 

63 

2* standardized log likelihood 

p^(exact) 

eq.(44) 

353.76 

104.08 

80.65 

79.07 

78.64 

83.18 

83.09 

based on 

p, (approximated) 

eq.(46) 

372.78 

185.79 

114.75 

112.65 

112.52 

104.50 

105.88 

E p (approx.) 
1 

0.99810 

0.99190 

0.99648 

0.99652 

0.99651 

0.99775 

0.99757 

^ .95,(d.f.) 

87.1 

86.9 

88.2 

86.9 

84.8 

83.7 

82.5 

Table 19 X^-test statistic values based on exact and approximated 

probabilities, for the true and estimated probability density models. 
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case 

2̂ 

3̂ 

4̂ 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

a 

0.283337 

0.320231 

0.0 

0.139939 

>i 

29.7288 

28.7000 

28.1394 

24.6116 

h 

84.4456 

32.8299 

110.678 

^ 

1.02791 

1.26653 

^2 

0.963159 

Table 20 Maximum likelihood parameter estimation results for various cases, 

based on non-grouped simulated data. Simulated probability density 

is DDE with parameter values: 

a = 0.3 y = 0.0 

a = 30.0 b, = 1.0 

a = 90.0 b2 = 1,0 

case 

2̂ 

h 

h 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

0(8) 

0.0189 

0.0455 

-

-

o(a^) 

0.982 

1.48 

-

-

tJ(t2) 

5.43 

-

1 

a(5^) 

-

-

^(62) 

-

Table 21 Estimated standard deviations of maximum likelihood parameter 

estimates, based on non-grouped simulated data. Simulated 

probability density is DDE. ^ 
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interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

# data points 

1449 

1037 

755 

494 

351 

206 

131 

97 

84 

58 

49 

44 

33 

32 

25 

29 

26 

22 

9 

12 

7 

11 

9 

7 

* 

interval 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

# data points 

8 

2 

1 . 

0 

0 

2 

2 

1 

0 

1 

0 

1 

0 

0 

1 

Table 22 Number of data points per class interval of 10 ft. 

Simulation based on DGL probability distribution of Section 6 
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case 

2̂ 

s 
4̂ 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

S 

0.279731 

0.290766 

0.292612 

0.244176 

1̂ 

30.5115 

30.2155 

30.3301 

30.7618 

§2 

87.3888 

87.1795 

113.568 

^ 

0.643835 

0.661067 

h 

0.660112 

Table 23 Maximum likelihood parameter estimation results for vsrious cases, 

based on grouped simulated data. Simulated probability density is 

DGL with parameter values: 

a = 0.3 y = 0.0 

a, = 30.0 b = 0.65 

32 = 90.0 b2 = 0.80 

case 

S 

s 
4̂ 

G 

number of 

parameters 

estimated 

2 

3 

4 

5 

0(6) 

0.0129 

0.0205 

0.0230 

0.0523 

CT(ap 

0.678 

0.797 

1.02 

1.11 

o(a2) 

3.54 

3.72 

30.5 

a(6p 

0.0348 

0.0401 

0(62) 

0.169 

Table 24 Estimated standard deviations of the maximum likelihood parameter 

estimates, based on grouped simulated data. Simulated probsbility 

density is DGL. 
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case 

true DGL 

^2 

s 

1 ̂  
G 

degrees 

of 

freedom 

d.f. 

39 

37 

36 

35 

34 

2* stsndsrdized log likelihood 

bssed on 

p^(exsct) 

eq.(44) 

45.00 

42.78 

42.08 

42.41 

39.84 

p (spproximsted) 

eq.(46) 

52.38 

49.97 

49.45 

49.28 

47.47 

E p (spproximsted) 
1 

0.99892 

0.99896 

0.99899 

0.99904 

0.99906 

Tsble 25 x^-test ststistic vslues bssed on exsct snd spproximsted 

probsbilities, for the true snd estimsted probsbility density models. 
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case 

2̂ 

h 

h 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

S 

0.282860 

0.297780 

0.276779 

0.191361 

1̂ 

30.0398 

29.6362 

28.1992 

28.7524 

h 

86.5270 

88.8963 

143.199 

«I 

0.724012 

0.768766 

^2 

0.542318 

Table 26 Maximum likelihood parameter estimation results for various cases, 

based on non-grouped simulated data. Simulated probability density 

is DGL with parameter values: 

a = 0.3 y = 0.0 

a. = 30.0 b = 0.65 

a, = 90.0 b2 = 0.80 

case 

2̂ 

S 

4̂ 

S 

number of 

parameters 

estimated 

2 

3 

4 

5 

0(5) 

0.0129 

0.0206 

0.0247 

0.0395 

o(a^) 

0.674 

0.798 

1.18 

1.17 

oia^) 

3.46 

4.05 

28.9 

o(6p 

0.0454 

0.0530 

0(62) 

0.114 

Table 27 Estimated standard deviations of maximum likelihood parameter 

estimates. Simulated probability density is DGL. 
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density 

Gaussian 

Double Exponential 

Generalized Laplace 

parameters 

a 

177.152 

94.8206 

134.284 

a(S) 

1.78 

1.35 

3.72 

6 

0.727811 

0(6) 

0.0203 

quality of fit 

d.f. 

61 

61 

60 

2 * 1) 

standard. 

log like

lihood 

257.80 

211.18 

77.17 

^.95,d.f. 

80.2 

80,2 

79,08 

Table 28 Maximum likelihood psrsmeter estimstlon results for Gsussisn, Double 

Exponential and Generalized Laplace probability distribution and 

grouped pairs data of Table 3 

(Note 1: based on exact probabilities p.) 

density 

observed 

Gaussian 

Double Exponential 

Generalized Laplace 

y 

997,1 

1000 

1000 

1000 

a 

125,2 

125,265 

134,097 

125,205 

h 

-0.00015 

0 

0 

0 

^2 

4.33 

3 

6 

4.09 

P (1000) 
z 

-

3.78*10"^^ 

1.13*10"^ 

4.68*10"^ 

Table 29 Estimates of the characteristics of the observed and of the three 

estimated probability distributions 
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solution 

number 

1 

2 

3 

4 

5 

6 

S 

0.429494 

1.00000 

1.00000 

0.00000 

1.02566 

1.29950 

h 

163.990 

97.9558 

283.918 

177.152 

7.86915 

50.4167 

h 

97.9211 

94.8206 

94.8206 

4.08656 

92.5808 

79.5968 

Tsble 30 Some solutions of the likelihood equstions 

of the Gsussisn Double Exponentisl probsbility 

density model, using the grouped dsts of 

Table 3 with s clsss Intervsl of 10 ft. 
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\probability 

\ density 

\ model 

\ 

estimatioti 

result \ 

a 

ri 
*2 

h 
^ 2 
a(a) 

a(sp 

a(s2) 

a(b^) 

a(b2) 

d.f. 

^.95,(d.f.) 
P (1000) 
z 
y 

cr 

°^ 
^2 
1̂ 

h' 

Gsussisn 

Double 

Exponential 

(GDE) 

0.429494 

163.990 

97.9211 

-

-

0.0487 

5.37 

4.52 

-

-

59 

78.25 

77.9 

6.59*10"^ 

1000 

126.126 

115.958 

138.481 

0.0 

4.97 

Generalized 

Laplace Double 

Exponential 

(GLDE) 

0.0495614 

136.717 

122.526 

0.697953 

-

0.0844 

4.90 

35.2 

0.0391 

-

58 

74.99 

76.8 

4.73*10"^ 

1000 

125.428 

122.421 

173.278 

0.0 

4.47 

Generalized 

Laplace 

(GL) 

134.284 

-

0.727811 

-

-

3.72 

0.0203 

-

60 

77.17 

79.08 

4.68*10"^ 

1000 

125.205 

-

-

0.0 

4.09 

Double 

Generalized 

Laplace 

(DGL) 

0.827724 

151.358 

135.873 

0.271231 

0.755964 

0.0815 

14.6 

7.53 

0.130 

0.00362 

57 

66.95 

75.7 

2.21*10"'' 

1000 

125.423 

88.9614 

131.749 

0.0 

4.39 

Table 31 Summary of maximum likelihood parameter estimation results for four 

different probability density models and the grouped data of Table 3 

(Note 1: based on exact probabilities p., 1=1,2,... ,63) 

file:///probability
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solution 

number 

1 

2 

3 

4 

5 

6 

1 7 

a 

0.0495614 

1.00000 

0.00000 

-0.0228234 

0.833567 

0.846096 

0.872184 

1 

' i 

136.717 

102.541 

134.284 

126.426 

146.304 

139.130 

130.430 
1 

h 

122.526 

94.8206 

95.9099 

134.970 

99.0175 

99.1601 

98.8452 

h 

0.697953 

0.0409075 

0.727811 

0.763878 

0.0418090 

0.0332417 

0.0276456 

Table 32 Some solutions of the likelihood equations of the 

Generalized Laplace Double Exponential probability 

density model, using the grouped data of Table 3 with a 

class interval of 10 ft. 
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solution 

number 

1 

* 
2 

* 
3 

4 

* 
5 

* 
6 

a 

0.827724 

1.00000 

0 

0.00662023 

0.449525 

0.549530 

h 

151.358 

92.1233 

134.284 

134.836 

143.601 

137.693 

*2 

135.873 

134.284 

162.952 

496.629 

137.723 

143.642 

h 

0.271231 

0.654584 

0.727811 

0.715010 

0.764259 

0.555473 

«2 

0.755964 

0.727811 

0.625939 

0.131680 

0.554998 

0.764234 

Table 33 Some solutions of the likelihood equations of the 

Double Generalized Laplace probability density model, 

using the grouped data of Table 3 with a class interval 

of 10 ft. 

(Note: not fully converged solution) 
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- ^ ^ 

FLk 

^ ^ 

FLk' 

1000 ft 

FLi' 

:^>> 

Figure 1 Transforming aircraft height keeping errors from present 
situation (2000 ft nominal separation) to possible 
future situation (1000 ft nominal separation) 
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CFL 

\ ^f(DELTA) 

msl 

WITH h = DELTA: 
S_ 

+ 00 h + A , 

^zK}=f '<''>[ƒ f(t-S,)dt] dh 

- 0 0 h - A 

+ 00 

{s^}*2A^|f(h 
- 0 0 

f(h)f {h - S >dh 

Figure 2 Single Aircraft Approach: determination of the probabili ty 
of ver t ical overlap P {S } from single a i rcraf t measurements 
for a nominal separation S 

; ^ / ^ / / / / / / / / / / / / / / \ > / / / ^ ? ^ / 

NOMSEP (Ŝ ) = DELTA (2) - DELTA (1) + S^ = 

|H (2) - H (1)} - {cFL (2) - CFL (DJ + S^ 

g (NOMSEP) 

-A 0+A s *-
z z z NOMSEP 

WITH t = NOMSEP: 

-A, 

Figure 3 Pairing Approach: determination of the probability of vertical 
overlap P (S } from paired aircraft measurements for a nominal 
separation S 



-136-

0.005-

0.004 

0.003-

0.002-

0.000 —I 1 1 1—1—p^f—I 1 1 1 ! 1 1—T""] r — r — I — r 

0 500 1000 1500 d 2000 

Figure 4 Folded histogram of pairs data 

Figure 5 Logarithm (base e) of folded histogram of pairs data 
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Figure 7 Subdivision of the vertical distance d axis into m classes 
on the right and m on the left of the mean value y. 
Class interval w 
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Figure 8 Analysis (8A - 8C) and summary (8D) of the convergence properties 
of the iteration process given by eq.(140) 
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Figure 9 Using the thick tail of a Double Exponential probability distribution 
to determine an upperbound for the initial interval needed by the 
method of Regula Falsi 



-139-

d.eae 

e.eis 

e.eie 

e.ees 

e.eee 
-460 d 400 

Figure 10 The simulated Double Exponential density with the folded 
histogram superimposed 
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Figure 11 Logarithm (base e) of the simulated Double Exponential 
density and of the folded histogram 
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Figure 12 The simulated Double Exponential density, with the estimated 
Double Exponential and Generalized Laplace densities as well 
as the folded histogram superimposed 
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Figure 13 Logarithm (base e) of the simulated and estimated probability 
densities, and of the folded histogram 
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Figure 14 The simulated density, with the estimated Double Exponential 
and Generalized Laplace densities (based on non-grouped data) 
and the folded histogram superimposed 
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Figure 15 Logarithm (base e) of the simulated and estimated probability 
densities (based on non-grouped data), and of the folded 
histogram 
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Figure 16 The simulated Gaussian Double Exponential density, with the 
four estimated Double Generalized Laplace densities and the 
folded histogram superimposed 

true GDE 
G2 

Figure 17 Logarithm (base e) of the simulated and estimated probability 
densities, and of the folded histogram 
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Figure 18 The simulated Double Double Exponential density, with the 
estimated Double Exponential and Generalized Laplace densities 
as well as the folded histogram superimposed 
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Figure 19 Logarithm (base e) of the simulated and two estimated 
probability densities, and of the folded histogram 
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Figure 20 The simulated Double Double Exponential density, with the four 
estimated Double Generalized Laplace densities and the folded 
histogram superimposed 
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Figure 21 Logarithm (base e) of the simulated and estimated probability 
densities, and of the folded histogram 
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Figure 22 The simulated and the estimated Double Generalized Laplace 
densities with the folded histogram superimposed (estimated 
densities based on grouped data) 
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Figure 23 Logarithm (base e) of the simulated and estimated probability 
densities (based on grouped data), and of the folded histogram 
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Figure 24 The estimated Gaussian density with the folded histogram 
superimposed 
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Figure 25 Logarithm (base e) of the estimated Gaussian density and 
of the folded histogram 
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Figure 26 Linear residual plot of Gaussian density 
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Figure 27 Logarithmic residual plot of Gaussian density 
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Figure 28 "l-cumulatlve" curve of Gaussian density 
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Figure 29 Logarithmic "l-cumulative" curve of Gaussian density 
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Figure 30 The estimated Double Exponential density with the folded 
histogram superimposed 

-5.0 

-7.5 

-10.0 

-12.5 

•15.0 

-17.5 

500 1000 1500 d 2000 

Figure 31 Logarithm (base e) of the estimated Double Exponential 
density and of the folded histogram 
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Flgure 32 Linear residual plot of the Double Exponential density 
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Figure 33 Logarithmic residual plot of the Double Exponential density 
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Figure 34 "l-cumulatlve" curve of the Double Exponential density 
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Figure 35 Logarithmic "l-cumulative" curve of the Double Exponential 
density 
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Figure 36 The estimated Generalized Laplace density with the folded 
histogram superimposed 
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Figure 37 Logarithm (base e) of the estimated Generalized Laplace 
density and of the histogram 



-153-

X10 ̂  

1.0-

0.5-

0.0-

-0.5-

"Y ̂M[ 

• 0 — I 1 — I 1 1 — I 1 1 1 1 1 1 — 1 1 1 1 1 — 1 1 r 

0 500 1000 1500 d 2000 

fft^ t^ 

Figure 38 Linear residual plot of the Generalized Laplace density 
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Figure 39 Logarithmic residual plot of the Generalized Laplace density 
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Figure 40 "l-cumulative" curve of the Generalized Laplace density 
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Figure 41 Logarithmic 1-cumulative curve of the Generalized Laplace 
density 
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Figure 42 Diagram showing in an (a ,a )-plane which grldpolnt (as an 
initial estimate for the Newton iteration process) converges 
to which solution of the likelihood equations based on the 
Gaussian Double Exponential probability density model 
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Figure 43 The estimated Gaussian Double Exponential density with the 
folded histogram superimposed 
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Figure 44 Logarithm (base e) of the estimated Gaussian Double 
Exponential density and of the folded histogram 
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Figure 45 Linear residual plot of the Gaussian Double Exponential density 
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Figure 46 Logarithmic residual plot of the Gaussian Double Exponential 
density 
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Figure 47 "l-cumulatlve" curve of the Gaussian Double Exponential 
density 
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Figure 48 Logarithmic 1-cumulative curve of the Gaussian Double 
Exponential density 
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Figure 49 Two Isocontours of the relative likelihood function of the 
Gaussian Double Exponential probability density model 
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Figure 50 Two Isocontours of the relative likelihood function of the 
Gaussian Double Exponential probability density model 
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Figure 51 Two isocontours of the relative likelihood function of the 
Gaussian Double Exponential probability density model 
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Flgure 52 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Gaussian 
Double Exponential probability density model 
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Figure 53 A 95 per cent Isocontour based on the asjnnptotic distribution 
of the maximum likelihood parameter estimator for the Gaussian 
Double Exponential probability density model 
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Figure 54 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Gaussian 
Double Exponential probability density model 
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Figure 55 Diagram showing in an (a ,a )-plane which grldpolnt (as an 
initial estimate for the Newton iteration process) converges 
to which solution of the likelihood equations based on the 
Generalized Laplace Double Exponential probability density 
model 
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Figure 56 The estimated Generalized Laplace Double Exponential density 
with the folded histogram superimposed 
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Figure 57 Logarithm (base e) of the estimated Generalized Laplace Double 
Exponential density and of the folded histogram 
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Figure 58 Linear residual plot of the Generalized Laplace Double 
Exponential density 
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Figure 59 Logarithmic residual plot of the Generalized Laplace Double 
Exponential density 
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Figure 60 "l-cumulative" curve of the Generalized Laplace Double Exponential 
density 

M — 

_ ' y 

A 

c 

Q 
Ö 

1 a 
1 1 1 

X. 
s X. 

N 

1 1 T 

^ , 

V 
\ 

1 1 1 

N ̂ 4 
N-

^ . 
+ 

^ 

- ^ 

0 100 200 300 400 500 600 700 
I d-/u I 

Figure 61 Logarithmic "l-cumulative" curve of the Generalized Laplace Double 
Exponential density 
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Figure 62 Two isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 63 Two isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 64 Two isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 65 Two Isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 66 Two isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 67 Two isocontours of the relative likelihood function of the 
Generalized Laplace Double Exponential probability density model 
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Figure 68 A 95 per cent Isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 69 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 70 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 71 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 72 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 73 A 95 per cent isocontour based on the asymptotic distribution 
of the maximum likelihood parameter estimator for the Generalized 
Laplace Double Exponential probability density model 
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Figure 74 The estimated Double Generalized Laplace density with the folded 
histogram superimposed 
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Figure 75 Logarithm (base e) of the estimated Double Generalized Laplace 
density and of the histogram 
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Figure 76 Linear residual plot of the Double Generalized Laplace density 
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Figure 77 Logarithmic residual plot of the Double Generalized 
Laplace density 
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Figure 78 1-cumulative curve of the Double Generalized Laplace density 
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Figure 79 Logarithmic "l-cumulative" curve of the Double Generalized 
Laplace density 




