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PREFACE.

I hope that this work not only will be a guide into the

problem of calculation of the distribution of maxima of

slightly non-linear variables, but also an introduction

to the general theory of distribution of maxima. To make

is so, I found that somegeneral statistical tteory had

to be included (not the most elementary).

It can be discussed weather this theory should have been

put into an appendix or not. In this work it is put in

the beginning, as an introduction to the field.

I want to point out that in this report the following

types have been used for vectors or matrices:

A,À' A V and so on.

Einstein's summation convention is also used.

I want to thank Mrs. Ingrid Hansen for her help in

typing the manuscript and correcting my mathematical

calculat ions

Trondheim,June 27. l97

Tor Vine
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1. INTRODUCTION

Most problems in structural design are, what we call,

linear. That means that the actual responses on a given input

is directly proportional to that input. On the other hand

one is not seldom dealing with design criteria where the

different linear responses are combined to a non-linear

variable. As an introductional example the design criterium

for buckling of rectangular plates with in plane stresses

will be discussed.

According to Bleich /1/ the buckling of this rectangular

plate takes place when the in plane stresses, shown in

Fig. (1.1), are combined in the following way:

>(B)2 + (T)2
1

o o

TC

B

-G -t

Fig. (1.1) A thin rectangular plate acted upon

by in plane stresses.

The computed value of Z has, in the purely deterministic

case, to be calculated and compared to 1/n, where n is

the safety factor. This procedure works well out for

purely static or deterministic variables.

i
I

i



When the variables (GB and T ) are given as stochastic

processes one has to do the whole calculation in a more

complicated way:

In this case Z is a stochastic process too, and one has

to examine the individual maxima of Z to find the

distribution of these maxima. From this distribution one

has to calculate the distribution of the largest maximum

of Z ( within a predicted time). From this distributional

function the probability that Z will exceed 1 (or/and

exceed 1/n) is calculated. This probability is in turn

compared to some numbers, which is said to be satisfactorial.

The main problem of this design procedure is that the

distribution of the individual maxima of non-linear

variables of the type shown in Eq. (1.2) is not known,

even not when °B
and T are Gaussian distributed

variables. The first step on the way to get this problem

solved is to calculate this distribution, which will be

done in this report.

Before leaving these introductorial notes it will be

mentioned that variables of the quadratic form will be

found in connection with other problems too. Some of

them are listed below:

Buckling of thin plates acted upon by in plane

shear stresses and constant compressive stresses,

G, ( fron Bleich /1/):

Z
(T)2 + a

T0
C

(1.3)

2

Combination of stresses according to some plasticity-

criterion( von Mises'):

Z a 2 + 3-t2
X xy



Combination of axial forces, N, and bending moments,

M, when calculating the condition that plastic hinges

will occure in beams:

z +
2

(1.5)
W' N°

C C

or the same combining shear forces, Q, and bending

moments1 M

z + 0,LL
o

M°
c

ccording to Home /2/.

o,79) ( 1.6)

One can easily verify that all the variables mentioned

will consist of one purely static part, one purely

dynamic and one part which is some combination of

static and dynamic terms in the following way:

s s s
z a x.x. + o

d d
+ E c x. X.

s i j . . sd i j . . d i j
ii i] ij

( 1.7)

where x Is due to purely static loading and x is

due to dynamic (or stochastic) loading. The static
part is in the following assumed to be deterministic,.

so that Eq. (1.7) can be rewritten:

Z z z + .. X. + a.. X. X. (1.8)
s i i ij i.:

where X1 is purely stochastic ( with zero mean)

Eq. (1.8) will be discussed in detail in the following

and the discussion will separate in four main parts:



General theory of stochastic variables.

The general theory of the distribution of maxima

of stochastic processes.

Developments of the distribution of maxima of

non-linear variables.

-.. Discussion of numerical results.

Most of the mathematical calculations are put into appendices,

together with some general theory of some special functions.



2. CHARACTERISTIC FUNCTIONS

The characteristic function , I(0) of the variable

X (t) is defined as follows:

ie.x I iOx
E (e ) j e f(x)dx

-

where f(x) is the probability dénsity fundtion of X.

(6) is here recognized as the Fourier transform of

f(x). Because

LLf(x)l dx i < & 1f(x) ( 2.2)

the integrai in Eq.(2.l) always will exist and hence

(8) be defined.

The inversion 01: Eq.(2.l) leads to:

f(x)
i

f
(0)e

-iOx

27r

-

which converge to f(x) when f(x) is continous, else

to 1/2 (f(x+) + f (x-)) when f(x) is discontinous.

Assuming in the following that f(x) is continous for

any value of x, one can write:

+
f(x) - -1

J
(0)e

-iOx
dO

2rr

( 2.1)

( 2.3)



Making use of Eq.(2.l) it is easily shown that

m
E(Xm) - E( iOx

e ).m dOmi

co (10)fl

'I'(0) -
nl n

1 d
m

i dO

6

whenever E(Xm) does exist. Assuming that E(Xm) exist

( 2.5)

The cumulant generating function ij(0). can be

expanded in a Maclaurin series in the following way:

(2 .lo)

where is called the n-th cumulant of X. Combining
n

Eq. (2.6), Eq. (2.8) and Eq.(2.lo) the following identity

is found:

for

where

as follows:

any m, (0) can be expanded in a Maclaurin

n
co (i0

(o) i
+

series

( 2.6)
J

for brevety the following is introduced:

p E (X') C 2.7)

From (0) two new functions can be defined:

a) The cumulant generating function:

and

= 1n(0)

b) the moment generating function:

( 2.8)

- sX
M(s) E(e ) (is) ( 2.9)



iri (1 + ____
(])iTl+l

n=l n: m1 m nl n

;
(.0)rn

m1 m

From Eq.(2.1l) can be found as a function of

p , nm. The following 14 are easily developed:

K z11
1

K
2 2

K li -3 I1 1 +2p3
3 3 21 1

K p - p - 3p2+12 2

1 31 2 21 1

According to Eq. (2.9), M(s) is defined as the

two-sided Laplace-transform of f(x):

IM(s) je f(x) dx (2.13)

The characteristic function for several jointly

distributed random variables is similarly defined as:

7

(2.11)

(2.12)

where p
n

- co

(see Eq.(2.7))

(_1)fl d

can be

M(s)

found as:

so (2.114)n
ds



n

,. . ,e ) E ( exp(i O X ))
i n ml mm

+03

n
f(x ,... ,x ) exp (i O X ) dx . . .dx (2.15)

n m1 mm i n

- -00

The Maclaurin series expansion of is:

m
(i )m m

m...m (2.16)

rho
n

where

E(Xm, «X) (2 . 17)

When the variables, X1, are indepentent, it is easily

shown that:

(6 ,..,O ) (O ).. (0 ) (2 . 18)
n n n

where

io xmm
(e ) E ( e )

(2.19)
m m

As for the simple case with one variable, the

cumulant generating function can be defined:

( e , 0) ln ( 8 , O

00 m K m
(io

)ffl1
(IO )

n m1, n

m1l n m1! . m

m
n

(2.20)



arid if Xi are independent:

n

(e,,O ), p (e )

n- m m
in i

where:

( ) in (e ) (2.22)
m m m m

The probability density function of a new set of

variables, Y, can be found in the following way. Assume

that the new variables are defined as follows:

Y f (X ,",X ) E f (X.)
r r m r i

r

nm
The characteristic function of is given by:

n
(O E(exp(iE e.Y.))

j1

+x +
(

i_i

H1 f(x ,',x )exp(i O.f.)dx dx
m jJ m

Inverting Eq.(2.2'4)the probability density function

of ï' fy (y1 " ''n
is found:

+ +cG

i I (e . ,e )'
i nf(1 (2)

n
sexp(-i E e y ) dO?.dO

il n

9

(2.21)

(2.23)

(2. 2)

(2.25)



Take as an example:

Y =aX+bX2 (2.26)

where Xis Gaussian distributed with zero mean and

variance equal to unity , i.e.:

f(x)
i

exp(- x2)
/ 27r

1 a202
e(o) = exp ( - )

/1 - 2ibO l-2ibO

When b o c(B) takes the value:

10

(2.27)

(2.30)

(see chapter 3)

According to Eq.(2.2) (e) then becomes:

1 Jexp(_x2+i0(axbx2)) dx (2.28)

According to Abramowitz & Stegu.fl /3/

Jexp (-ax2 -2x) exp (+ 2/a) (2.29)

-

when the real part of a is positive.

Following:



(e) zexp(a2O2) (2.31)

which coinides with the result for Gaussian

distributed variables with variance equal to a2

(see chapter 3 ) as should be expected.

When a z o (e) takes the value:

(0) z

2 I l-2ibO

OO I i - 2ibO

which shows that the F-distribution gives, a better fit

to (0) than the Gaussion distribution does when y --

which should had been expected from the fact that necessarily

bx2I»Ìaxl when y ± .

II

1 (2.32)

which shows that Y in this case will be F-distributed

(see Appendix 2). When, in addition, b = 1 Y will be

X -distributed, according to Eq.(2.32) (See Appendix 2)

From the common theory of integral-transforms, it is well

known that the behaviour of f(y) as y - will be

given from the behaviour of (0) as B - o ( See for

instance Doetsch I/).
The following two expansions of (0) can be performed:

e)-* exp(-a2O2)+c(iO) (2.33)

00

± IL + (2) ( 2.3'4)



The exact value of f(y) can be found from Eq.( 2.30)

by help of Eq. ( 2.25) and the known integral ( see

Abramowitz & Stegu.n /3/):

and

i
F(y)

f(y)
dF(y)

- dy exp(- a2 2..

2 dy

12

(2.38)

Where a is the smallest and a the largest root of
1 2

the equation:

ax + bx2 = y , y >
a2

(2.37)

Following:

- exp (- a)
dy ( 2.39)

according to the common rules for differentiation of

integrals ( see f.i. Hildebrand /5/)

Jexp(_at2_b/t2)dt
exp(-2) (2.35)

when the real part of a and b both are positive.

A much simpler way of calculating f(y) in this case

is the direct method, by which F(y) is calculated:

F(y) P(Y<y) P(X>a n X<a ) (2.36)
1 2



The solutions of Eq.(2.37) are:

-1- + r

- ( -1+
+a

2 2b a )

when ( a/b > o> & ( b + o)

and according to Eq. (2.39):

f(y)
2

a/
a2

cosh( / + )

2b2 ¡ a2

Putting a - o f(y) becomes:

f(y) - exp ( y/b)

- v

which coinsides with Eq. ( 2.32)

a2exp (-
2b2

13

( 2.LO)

(2.41)

( 2J12)



3. GAUSSIAN DISTRIBUTED VARIABLES

r1he Gaussian distribution can be defined as the

distribution, for which all cumulants, exept for

the two lowest, vanish identically. In this case

the characteristic function can be written:

(e) exp ( 10K
02K2

)
1 2

From 0) the probability density function, f(x),

of the variable x is calculated:

02K
f(x)

J
exp (iO(K-x)

2

2) dO ( 3.2)

-

According to Abramowitz & Stegun /3/ (p 3o2, Eq.(7.4.6))

+cx

Jexp(-t2 +2ixt)dt exp(-x) ( 3.3)

and following:

i (x- -

f(x) exp( 2

K

( 3.1)

(
3.L.)

2 2

Some important properties of Gaussian distributed

variables are going to be demonstrated. At first:

If Xis Gissian, then any linear transformation of

X:

Y a + bX



is also Gaussian distributed. This is easily shown, by

calculating the characteristic function of Y, by means

of Eq. (2.2) and Eq. (3.3)

+
(0)

I

l (x-K1
)2

exp (-2 ) exp(iO(a+bx))dx

1- exp (iO(a+bK )) J exp(-
2

+ jOb ) d

-00

or by use of Eq. (3.3)

O2b2K
exp(i (a+bK) - 2)

( 3.6)
2

which shows that Y is Gaussian distributed with

mean (a + bK ) and variance (b2K ).
1 2

Secondly the moments, p, of the variable is going to

be calculated. By introducing:

d
n

dO

= p (e)(e)
n n

and making use of Eq. ( 3.1) and the fact that

-K O + iK
1 2

dO 2

dn1 n2 (3.8)

d°

/ 2TrK
2

K
2

15

( 3.7)



il can be shom by successive differentiation of

Eq. C 3.7) that:

(0) p (e) (e) - K.(n-l)1 (0) ( 3.9)
n n-1 2 n-2

(This is practically the saine equation as Eq. (A1.2))

By means of Eq.(3.11) all p then can be calculated

when introducing:

Specially when K = o, Eq.(3.11) and Eq. (3.12) give

1IL
= n odd

(3.13)

K n/2(nl) (n-3)31 n even
2

16

Bringing to mind

dn
(8)

Eq.

Oo

=

(2.5)

K E( Xn-l)
1

.n / ni EX )

+ K.(n_1EXn_2)
2

(3.10)

(3.11)

dO'

one finds that:

11
= E(Xn)

n

E(X°) i

(3.12)

E(X) = K
i



. JoINTLY DISTRIBUTED GAUSSIAN VARIABLES.

n variables, X., are said to be jointly Gaussian distributed

if the joint probability density function is written:

f(x) exp(-( ( .l)

n/2(dt(S)
)(2ir)

where

a a

i-i= E(X)

S E((x_L).(X_l)T)

The characteristic function, ('4'), is in this case

given as:

exp(itT4 - (L3)

Ihere

4 {e.}

In the following t o is assumed. This is no loss of

generality, because the variable Y= X-11 could have been

discussed in stead. In this case f(x) and (4s) can be

written:

1 exp(- T S-x
)

(2rr)

exp(
,T

.q )
(L1. 5)



It is easily stated that variables, Y., given as

linear combinations of X.:
1

Y. A. .X.
1 1] J

or

also will be Gaussian distributed, because

f (y)

y AX

wiere is the Jacobian determinant , (in
(y) -1

this case given as (det(A)) ) which is independent

ofY. Hence:

f(y)

V

18

(

( 4.7)

f(x(y)) II ( .8)(y) I

i exp(_YTATSA y)
, n/2 (det(S))l/2det(A)

(.9)

Before the distribution of Y is discussed, there will be

stated that S is a second order tensor. S is according to

Eq. (4.2) defined as:

T
S E(XX ) ( 4.lo)

In the following assume that Y is given as:

V AX (4.11)

where A is an orthogonal matrix, with the properties:



det(A) i

A

then the new variance-matrix is given as:

E(YYT) StE(AXXTAT) AE(XXT)AT

or

S' ASAT

which states the tensor properties of S ( See for

instance Jaeger /6/). In addition, S is symmetric,

which is easily stated from Eq. (

S.. E(X.X. E(X.X.) = S.. (L.l)
ii 1] Ji Ji

In this case it is possible to find at least one A

which diagonalizes S':

V.5..iij
If det(S) = o, at least one of V1 is equal to zero.

This indicates that X1 are linearly dependent.

Y = A .X. = o
i ii i

An example is the case when:

X-
2 dt

3 2

dt

19

( .16)



which both are Gaussian distributed (if X (t) is

Gaussian). If X(t) is given as the response of a

harmonic oscillator:

2 w + w X o

or

where

1
2pw

X + ° X +

K K
2

K

or on the index-form

S.A. =A. S.
ij jk ij

e o

then Eq.( .l6) is fulfilled.

Ïhe occurence of V. = O does not make any difference in the

following, so no more discussion of this case is necessary.

According to Eq. ('+.12) and Eq.(!4.13)

S'A =AS ( .19)

20

( .18)

(.2 0)

Assuming S' to be diagonal and introducing Eq. ( .15 ),

Eq.( 4.20) is rewritten:



or

and

V.5..A. A..S.i ij jK ij 1k

V.A. = A. .S.
i jj jk

Introducing:

X1 {X}

where

A

Ak - '11k

Eq.(.22) can be written in the more compact form:

sXi_V.Ai = o
i

i

i

which shows that X' is the elgenvector connected to

the eigenvalue V. of S

This shows -that A contains the normalized elgenvectors of

S and that the diagonalized S' contains the eigenvalues of

S, such that:

21

(.22)

(.23)

(. 2)

(.25)



both can be found by means of standard eigenvalue

and eigenvector routines.

If one is searching for a set of independent variables,

with given values of V., the Gram-Schmidt's ortho-

normalization process can be used. The details on this

process can be found in most standard textbooks on

numerical analysis, for instance FrØdberg /7/.

The process is some sort of a recurrence process. One

starts with the first variable:

Y A X
1 11

and chooses A so that E(Y2) 1. In the next step
11 1

Y is asumed in the form:
2

Y A X +A X
2 21 1 22

and A and A are calculated from the relations:
21 22

E(Y Y j = O12

E( y2 ) (.29)
2

In general Y is assumed in the fo"m:
n

n
Y =1 A.X.
n - nu

i=l

and A - is calculated according to:
ni

E(Y.Y ) O J <n

E( Y1 ) = 1 (. 31)

22

30)



In this way A is found, and S? is made equal to

the identity matrix. In this case ( , ) becomes very

simple:

4, ) exp(-- e2) II exp(--8)
ii i

23

which also shows that the unccrrolated variables

are independently distributed (which is the case in

general when the variables are Gaussian distributed.).

(.32)



5. STATIONARY RANDOM PROCESSES.

For the general theory of stochastic processes, the

reader is referred to one of the standard textbooks

on this field, for instance Cox & Miller /8/ or

Sveshì-iikov 19/.

Here only the main results are going to be given.

A random process X(t) is said to be strongly

stationary if its complete probability structure is

independent of a shift in the parameter t,i.e.:

f(x ; t ) f(x ; t +a)
i i i i

f(x ,x
;

t +a,t +a)
1 2 1 2

f(x ,x ; t ,t )
1 2 1 2

f(x ,x ,,x ; t ,t ,,t
1 2 1 2

=f(x ,x ,...,x;t+a,t+a,....,t+a) (5.3)
1 2

where

f(x , ,x; t," ,t) is the joint probability

density function of the variables X1(t).

When Eq.( 5.1) and Eq.(5.2) are satisfied only, X(t)

is said to be weakly stationary.

In the following X(t) is assumed continuous both as

a variable and with respect to t



The above discussion can be extended to several jointly

distributed random processes. For example take X(t)

and Y(u). In this case X(t) and Y(u) are said to be

weakly stationary if:

f(x y ; t ,u ) = f(x ,y ; t +a,u +a) ( 5. Li.)

1 1 1 1 1 1 1 1

and. strongly stationary if the generalization of

Eq.(5.) is satisfied.

In the case of Gaussian random processes with zero mean

the sufficient and necessary conditions for weakly

stationarity of X(t) and Y(t) are that:

it has generally been proved that the Fourier transform

of R and R exist:
xx xy

Sxx J
exp(-iwT) R (T) dT

xx
-

+
Sxy= J

exp(-iwt)R (T) dT
xy

-

S and S are called the spectral density function
xx xy
(or shortly the power spectrum or the spectrum) of X

25

( 5.8)

( 5.9)

E(X(t ) X(t )) R (t -t ) ( 5.5)
1 2 X,1 1 2

E(X(t
1
) X(t

2
)) R (t -t

xx 1 2
) ( 5.6)

E(Y(L
1
) Y(t

2
)) R (t -t

yy 1 2
) ( 5.7)



and the cross-spectrum of X and Y, respectively.

According to the theory of Fourier transforms,

and R can be found by means of S and S in thexy xx xy
following way:

R (T)
xx

-

R (T)
J

exp(+iwT) S (w) dwxy xy
-

exp(+iwT) (w) dw

R (T) and R (T) possess the following properties:
xx xy

R (T) R (o)xx xx

d2R (T),
dt2XX

rzo

It also follows that:

dR (T) zR (T)
xx xx

dT

From condition ( 5.l'4) and Eq.(5.l5) it follows that

26

(5.10)

(5.11)

(5.12)

R (T) I R (o) R (o) (5.13)
xy xx yy

It is proved that the sufficient and necessary condition

that the time derivative of X(t),(t), exists is that:

exists and is unique (5.l-.)

(5.15)



E(x(t)(t)) R (o) = o
xx

which includes statistical independence in the case of

jointly distributed Gaussian variables with zero mean.

For real random variables which are given from X(t)

by means of linear differential or integral operators,

L( ), the spectral densities can be found in the

following way:

Y(t) L(X(t))

V(w) z (w) X (w)

where X and V stand for the Fourier transforms of X(t)

and Y(t) and (w) is called the transfer function.

If Y(t) is assumed to be (weakly) stationary, its

spectral density is given as:

S (w) z (w).*(w). S (w) (5.19)
yy xx

where the asterisk stands for complex conjugation.

According to Eq.( 5.20). Ryy(t) is found as:

R (T)
yy

specially:

E(Y2(t)) z R (o)=
J

(w).*(w).S (w)dw
yy XX

-

exp( +iWT)(W).*(W)S (w)dw
xx
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(5.16)

(5.20)

(5.21)



A generalization of Eg.(5.19) is given below: Assume:

Y.(t) L.(X(t))
i i

Which implies:

and following:

and

s
yiyi

According to Eq. (5.11):

+co

R (T)
J
exp(iwt).*S (w)dwy±y. ixx

- co
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(5.22)

(5.23)

= ()(w) S (w) (5.21-f)
i J XX

(5.25)

+co

E(Y.(t)Y.(t)) R (o) I .(w)(w)S (w)dw(5.26)
i J yiyi J XX



6. THRESHOLD CROSSINGS.

Let in the following X(t) be a continous random process

(also with respect to time) and I(,t,t) be an associated

counting process, which counts the numbers of times Xt)

crosses the threshold, , from below, within the time

interval <t ,t 3 In addition to X(t) the following

random process will be constructed:

Y(t) i when X(t)

o whenX(t)<o ( 6.1)

This can be written in a more compact form:

Y(t) H(X(t) - ) ( 6.2)

where H(s) is the socailed Heaviside's step function,

defined according to Eq.( 6.1). The derivative of H(s)

is given as:

dH(s) e(s) ( 6.3)

ds

ihere cS(s) is Dirac's delta function, defined as:

cS(s) o s o

J.$)ds (o) o & c o & (o) finite)

-E ( 6.)
i



According to this:

(t) (H(X(t)-)) (X(t)-) (6.5)
dX dt

Fig. (6.1) shows a sample function of the process

X(t), together with the associated y(t) and

x(t)

30

I(,-t ,t ) can be expressed as:
1 2

t-1-

-o

I(,t ,t ) Z(t)dt ( 6.7)12 )

t+
i

y(t)

Il-inn nlt' t2

tlj t2

Fig.( 6.1)

By introducing the process Z(t)

Z(t) (t) (t) > o

o o ( 6.6)



Taking the mathematical expectation of Eq.(6.7) the

following is obtained:

t+
(2

E(I(,t ,t ))
J

E(Z(tfldt
1 2

t+

31

= I I .(,t)ddt ( 5.8)
j

.1

t+ o

where f (x,,t) is the probability density function of

(X(t), (t)). To get the finale result Eq.( 6.4) is used.

If assuming X(t) to be (weakly) stationary, then

is independent of t and E(I(,t,t))

becomes:
00

E(I(,t ,t )) (t -t ) f f ( 6.9)
1 2 2 1 j X,X

o

In this case it is more convenient to deal with the

expected rate of crossings per unit time:

00

N() 1 E(I(,t ,t )) Í (6.10)
t-t 1 2 J X,X

2 1 o

Eq.(6.lo) was first found by Rice/lO! in his celebrated

work from 1944 and 1945.

t+ +00 00

=

j2

i i (x-) f(x,,t)ddxdt

2 00



As an example, let X(t) be (weakly) stationary and

Gaussian with zero mean. In this case X and are

independent (The proof is found in any textbook on

stochastic processes, for instance Sveshnikov / 9/)

and the joint probability function is found as:

f .
- exp(_()2 l(X)2

)
x ,x

2TrG cY Gxx x X

Making use of the following integral expression:

( _i 2

jze
dz 1 (6.12)

o

N() is found as:

N() -i---
X exp(-( )2) (6.13)

2 G G
X X

Of special interest is the expected rate of zero crossings,

N(o)

i xNo) - . -
2ir o

X
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(6.11)



7.PEAIK DISTRIBUTION.

A peak, or a local maximum, of a continuous random

process x(t) occurs when (t) o and simultaneously

(t) < o. this suggests that the information about the

distribution of the peaks of x(t) can be obtained from the

joint probability distribution of X(t), (t) and x(t).

As for threshold crossing a counting process, J(,t ,t )

1 2

is defined, which counts the local maxima of X(t) above

a level within the time interval <t ,t ].
1 2

By defining

Y(t) = H((t)) 7.1)

(7.2)

( 7.3)

Z(t) -(t) < 0

o

I(,L ,t ) is found as:
1 2 t+

2

J(t ,t )

J
Z(t) h(X(t)- )dt

1 2 t+

Taking the mathematical expectation of Eq.( 7.3)

E(J(,t ,t )) becomes:
1 2

t + + +cx O

E(J(,t ,t))
J2

J
I -(t))'

t + X' X -

H(x(t)-)f s ..(x,,3,t)d3dxdxdt
X ,X ,X



t

J J
t

J x,x,x-
In the case, when X(t) is (weakly) stationary,

Eq. (7.) is simplified to:

E(J(,t ,t )) (t -t ) M() ( 7.5)
1 2 2 1

where M() is the expected number of local maxima above

the level per unit time:

3L1.

o

M() z I -kf ..(x,o,k)dkdx
J ) X,XX-

The expected total number of local maxima per unit time

then becomes:

+ O
MT M(-) z

J J
_kf(x,o,)dkdx ( 7.7)

Following: The probability that ¿n.y single local maximum

will fall above the level becomes:

1-F() M()
( 7.8)

MT

where F() is the probability distribution function of

the local maxima.

The probability density function of the local maxima

then can be found by differentiating t(.) with respect

to , which gives:

( 7)

( 7.6)



f() - (l-F())= - M()
MTd

o

I .
M i x,x,x
T -

In the case when X(t) is (weakly) stationary Gaussian

stochastic process with zero mean Rice /10/ has found the

solution for f(). His results have been discussed in

details by Cartwright & Longuet-Higgins /11/, from which

the following is taken:

f()
{

exp(-( fl)2) + /1_EL ri'exp2>
/2ir

erf( _ /l-c) (7.10)

where
(Var() )2

2 - ocl
Var(X)Var(X)

n// Var(X)

and
X

erf(x) exp(-y2 )dy

o

It can easily be shown that

a) f() exp(-2) n o
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( 7.9)

± o n < o (7.11)



1
b) f() exp(-n2)

C - i (7.12)

o) f(n) 1EZ n exp(-n2) (7.13)

n

E1
d) - o The effect spectrum of X, S(w)

takes the form: S(w) -

+ (w+w)) where m Var(X)

For most observed ocean surface wave spectra, C is found

to take a values between o.3 and 0.6, which indicates a

value between 0.8 and 0.95 for . For responses to
ocean waves the transfer function (RAG) acts as a band-pass

filter, and hence gives a lower value on for the response

spectrum than for the ocean wave spectrum. Point c) above

then indicates that the Rayleigh distribution:

f(n) nexp(-n2) n o

n < o (7.lL)

will be a good approximation to the probability density

function of local maxima of the (weakly) stationary Gaussian

stochastic process with zero mean,X(t), when X(t) is a response

to surface waves and is somewhat larger than one. Fig.(7.l)

which is taken from Cartwright & Longuet-I-figgins/ll/ and

shows f(n) for different values of , indicates the same.
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Fig. (7.1)

When assuming from the beginning that the effect spectrum

of X(t) to be narrow (i.e. 2« 1) the distribution of the

local maxima can be approximated in a some simpler way. This

approximation neglects the possibility of positive local

minima or, when restricting the results to be veiled for

> no' neglects the possibility of local minima for

n >

In this case

MQ) N() (7.15)

where NOE) is given from Eq. (6.10). If, in addition M1,

is put equal to N(0), one gets:

f(o,)d (7 . 16)

o

As an example let X(t) be stationary Gaussian, like before.

N() is then found from Eq.(6.13), and following:

l-F() exp(-( )2)
(7.17)



or

1()2) exp(-)2) (7.18)f() = -- exp( 2

ox ax2 a
X

Which coincides with Eq.(7.l14)

When the spectrum is not strictly narrow banded, M1

is overestimated when putting it equal to:

MT (7.19)

o

This, in turn, shows that Eq.(7.l6) gives a conservative

result when applied to the distribution of peaks at a

high level of .

The same result is found when comparing Eq.(7.13) and

Eq. (7.18)
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8. THE DISTRIBUTION OF ONE SLIGHTLY NON-LINEAR VARIABLE

Assume in the following that the variables Y. are

independently Gaussian distributed with zero mean and with

variance V1, respectively. The non-linear variable E is in

the following assumed to be given as:

E a.Y. + a. .Y.Y. ( 8.1)11 1J 1J

where

il,,N

The "slightlyness" of the non-linearity of the variable

E cannot be precisely defined according to Eq.(8.l).

When introducing the new variables:

X = Y.! )Íy ( 8.2)
i i

Z = E / ¡T ( 8.3)

where

= .11i

Eq. (8.1) is transformed into

Z = A.X. + E..X.X.ii i] iJ

where

À. =
i

( BJi)

( 8.5)

such that X.A. ( 8.6)ii



and

a.. /V.V.
E.. :i-] i

'
ct Vk

Hence Z can be expressed as:

Z ZX.X.+EA..X.X. (8.11)li 1] 1]

where

1A.. i-E..
E

4: 'J

In the following the parameter E, which is assumed

small, is defined as:

a. .a V.V.
E (E E. .E. .) (E

' '
i..JJJ1 21J 1]

LO

The only parameters left to be used in defining the

"slightlyness" of the non-linearity are E... In the

limit E.. o, Z becomes Gaussian, and hence: Z is
'J

said to be slightly non-linear when for any pair (i,j):

( 8.7)

Introducing Eq(8»-f) into Eq. (8.7), E. is expressed as:

a.. /V.V.
'J i J

( 8.9)

(8.10)

(8.12)

E.. « i ( 8.8)'J



which is normed as follows:

A. .1.. =1 (8.13)1] Ji

The distribution of Z now can be found in one of the

following three ways:

a) Introducing Eq.(8.11) into Eq.(2.2), then

expanding ex(iOZ(X)) into a power-series in c and then

integrating Eq.(2.2'4) term by term, (0) is found in the form

(i0)exp(-02)
rn m

where Pm(IO) is a polynomial in (10) of order m. Separating

P(iO) in powers of (iO) and using Eq.(Al.9), f(z) is

found as:

f(z) L exp(-z2)(l+E B He (z))
ml m n

b) Calculating the values of p = E(Zm). Then

(0) is given as:

p

(0) =E (8.16)
mo m!

Separating exp(-02) from in the following way:

(0) exp(-02)( (02)n)(; m
iO) ) (8.17)

no n: m=om

where it is taken into account that:

exp(02) (8.18)
n=o

Ll

(8.15)



Making one series expansion out of the product of the

two series in Eq.(8.l7)gives:

(0) =exp(_.02)(AHe(j0)exp(_O2))m m
m

(0) EP (i@)exp(-O2)mm o

The rest of the calculation follows method a).

Of these three methods, method b) is the least tractable:

There is a lot of work to calculate all p and there is
m

difficult to predict which terms that will cancel in

P (iO), this is first found when P (iO) is calculated.
m m

Method a) looks to be the most direct method, and for

a problem as simple as the one indicated here, it is the

most tractable.Trying to apply this method to two jointly

distributed slightly non-linear variables it is found that

the method becomes untractable.

42

The rest of the calculation follows method a), when in

stead of separating P(i@),separating He(iO)

o) Calculating the cumulants of Z, K, and

writing (0) in the following way:

K

exp(
(jQ)ffl)

(8.20)

mzl

K
. m .

and then expanding exp(E -- (iO) ) in a power series in
m1

which gives:

(8.19)

(8.21)



Usually the cumulants are calculated acording to the

moments (u). If this was the only way of doing is, method o)

would have been less tractable than method a). In Appendix 3

the method of finding Km is shown more directly. This simple

calculation makes method c) very tractable. In the following

the calculation of f(z) from K is shown in detail.
m

e(0) is assumed to be given as:

Km,. m
z expO -i-,- iO) )

m.z

where K is (according to Appendix 3) given as:

m-2 m
K =kE
m m m

K zk z o
a i

k zl
2

m 2 (8.22)

so that (0) can be written in the following way:

n+2
(B) z exp(-O2)exp( n(k (io) +h

n+2 n
n i (8.23)

Calculating the series-expansion of
n-2 h

(j0)fl)),(0) is found as:Cn(k (iO) +exp(1 n-2 n

n+2
(0) z exp(_O2)[l+ (k2(iO) +h (ie))

n
n 1

n+2 (.0)fl)2) +io) +h
nzl n

exp(O2)[!
m

)]P (iOmmzo

up to mzL., are calculated in Appendix -.

L3

(8.20)

(8.2L1.)



According to Eq.((2.3) f(z) now can be found as:

+00

mlf(z) I exp(-i6z)dO = Z c .
2iî

J 2Trmo00
+00

IJexp(_Q2_iOz). P(i8)dO (8.25)

In Appendix 3 it is shown that P (10) is given
m

d11L hence:

+00
3mm mlf(z) = E c E H

Jn 2rr

in the form:

3m
P (10) = E .Hm.(IO)n
m -

nzm,m2 n

I4L

(8.26)

mzo nm,m+2 00
(8.27)

According to Eq.( Al.lO) f(z) now can be found as:

3mm mexp(-z2)(l+E
e E H .( l)He (z))

ml nzm,m+2 n - n

(8.28)

By means of Eq.(Al.20) the probability distribution function,

now can be found:

F(z) J f()dç G(z) + exp(-z2)
00

Tn
, m' m n-1E e E H.(-l) He (z))
mzl nzm,m+2

n n-1 (8.29)



where

and

F(z) - G(z)

as expected.

It is easily shown that when c o

i
f(z) - - exp(-z2)

z

G(z)
J

(8.30)



9. THE DI3TIBUTION OF TWO JOINTLY DISTRIBUTED,

SLIGHTLY NON-LINEAR VARIABLES.

In the following assume that the two non-linear

variables Z , Z are given in the following way:
1 2

Z X.X. +cA. .X.X. ( 9.1)11 JJ J.J

Z z y.X. cr .X.X. ( 9.2)
2 11 J_J J_J

where X are independently Gaussian distributed with zero

mean and variance equal to 1. c is assumed to be a small

parameter.

The calculation of the probability density function of

Z and Z is similar to the one for one single non-linear

variable given in chapter 8.

In the following one simplification is made:

The part of the Cumulant K ,which is of order

c0 is assumed equal to zero.

This will be shown to be the case for the problems to be

solved by means of the present method.

According to Appendix 3 and Appendix it is shown

that the characteristic function of Z and Z , (û ,e ),
1 2 1 2

can be written:



(O 0 ) exp(-v 02)exp(- e2)
1 2 201 022

3m

(l+
m H.s(iU )'(O ))

ml 1] 1 2

i
jm

where is the part of K which is of order
20 2.0

and y is the part of K which is of order
02 02

According to Eq.(2.25), the probability density function

ofZ andZ is:
1 2

1 11 , )exp(-ie z -I® d0 dOf(z ,z )

1 2 (2Tr)2 JJ 1 2 1 1 2 2 1 2

-
( 9L.)

and following Eq.( 9.3) and Eq.(A1.lO), f(z ,z) is found

to be:

o

L7

( 9.3)

z2 z2
1 1

f.z ,z ) - exp(-' _L __Z
)2 2

1 2 2rr A) y y y
20 02 20 02

3m
m m -i12 _i12(1)i+iH (Z1/)

H. .vij 20 02 1 20
nial im

j rri

He.(
Z1

02

where H'' is given in Appendix for m less than 5

The calculation of H'. in Appendix is based on a straight

forward series expansion. An automated procedure, well fit

for electronic computers, is given in Appendix 5.



10. THE DISTRIBUTION OF LOCAL MAXIMA OF ONE WEAKLY

STATIONARY,SLIGHTLY NON-LINEAR RANDOM PROCESS.

Assume in the following that the variable Y(t) is

given as:

Y (t) 5.X.(t) + . .X.(-t)X.(t)
i 1JÌ J

where X1(t) is assumed to be a weakly stationary Gaussian

random process with zero mean. In addition the variance of

(6X1) is equal to unity.

The derivative of Y(t) with respect to time, (t) Y2(t),

is given as:

Y (t) = 6..(t) + 2. .X.(t). .(t) (10. 2)
2 11 iJi J

when assuming L.1J Ji

also becomes weakly stationary and Gaussian with zero

mean, coupled to the variables X.(t) and .(t) (even though

uncoupled to X.(t)).

By transforming the variables orthogonally to a set

of independent variables and deviding those by the square root of

their variance, a set of new variables, Z1(t), are found,

which are independent Gaussian with zero mean and with variance

equal to unity. Then the variable X1(t) can be written:

x1(t) À.Z.(t) + .Z.(t)Z.(t) (10. 3)ii 1J1 J

(10. 1)



where

and following:

Y1(t)
x (t) - 'Ji]

and

x(t) y.Z.(t) +r..z.(t)z.(t)
2 11 i: i J

Y (t)
x2(t) - 2

X X.)iii:

and E is given such that

A. .A. . 1 (lO. 5)

ii 'J Ji

in addition c is assumed to be a small parameter.

From Eq.( 2.15) and Eq. (2.20) it is easily found that:

K mn . m . n)]mn
.

)m(.0 )nE
( ,-- ) (iO )

1 2 j1 m,no,om.n. 1 2
m,no ,o

(10. 7)

when separating terms of (IO) and (iO), Km will be given

as a series In where every term is proportional to

where y takes some value less than, or equal to m.

So: If it is proved that po for all y then follows that:

K O
m1

(10. L4)

(10. 5)



The proof for uzo goes as follows:

1 d n+l 1 d n+1
p E(x X) -- E(T x ) --r (E) ) = 0 (10.8)

because Y is stationary and the operations E( ) and

df 11m
,

f(t+h)-f(t))
commute.

aE.
h

According to the assumptions: Eq.(l0.5) and E(Z) 1,

y is found to become equal to unity and
20

V (10.9)
02

According to chapter 9 the probability density function,

f( , ), then is given as:
1 2

f( , )
i 2_1(2 2).(1+ m

1 2 -
exp(- )

1 a m1

3m
He.( )Me.( la)) (10.10)

ij=m 1 1 J 2

According to chapter 7, the distribution of local maxima,

r, of x1 is found (approximately) as:

F(n) 1- J2f(n2)d2 (10.11)
o

where F() is the probability distribution function of

n and MT ÍS given as

MT J
2f(o,2)d2 (10.12)

50



The integral

I (n) I )d (10.13)
i J 2 2 2

o

can be calculated according to Eq.(Al.12),Eq.(A1.114)

and Eq.(A1.16) in the following way:

3m

I

2Trc mo i+jm
exp(-n2)(E c E H. . He.()m m -

'J

2j2)22)2) (lo. 1L+)

o

where

H° 1 (10.15)
00

H ence:

3m

( n2)( m m -
I (n) - exp -- I E H..o He() J.) (10.16)

2ir ij Jmo i+jm

where

= L

Hek()exp(_2)d (10.17)

or following Appendix 1:

J =1
o

J /rr/2
(10.18)

J
He22(o) (1)n-1 (2n-2)! n? 1

2n

He23(o) O n2

51



From Eq.(10.12)it is given that:

3m
o m m -

Mr z I (o) - H. .a He.(o)J.
F 2rr . . i jmzo i+jzm

and hence according to Eq.(10.11)
3m

m m -
E c E H a 0He.()J.

i J
F() z _exp(_2)m i+jm

3m
m- -

E E H. .a 3He.(o)J.
'J i Jmzo i+jm

The probability density function of rj,f(ri), now can

be found as:
3m

m H.a.3J.(exp(_fl2)He.(fl))

f(
dF(n) m=o ì+jm dr-i

n
3m

dr H.He.(o)J.
mo i+jm J

(lo. 21)

or according to Eq.(Al.18):

3m
Hm aHe.1() J.

J

f() exp(_fl2)mzo i+j=m

3mm m
E cE H
mo i+jzm ij°He.(o) J.

i J

By taking c-o in Eq.(l0.22) it is found that:

f(n) -* He (n) exp(-ri2) z nexp(-n2)
i

52

(10.19)

(10.20)

(lo .22)

(10.23)

which coincides with the Rayleigh-distribution, as expected.



where:

H' iA..
10 11

H'
12 11] 1 11J J

H' A.A..A.
30 1 1J J

53

When calculating the next term in Eq.(lO.22) one gets:

f(n) exp(-n2)(n+((H1 +2H' )(21)
10 12

+H' (-62+3) (10. 2L
30

(10.25)



11. NUMERICAL RESULTS AND DISCUSSION.

No computer program for calculation of the probability

density function is jet available, but it is expected

to be the case within few months ( from may l97L). On

the other hand the autor has calculated by hand the probability

density function of one special case, namely when:

Y X + Ex2

y +
2

Fortunately Lin /15/ has calculated the probability

density function of maxima of Y in this case and the
i

results of the present calculations are compared to

Lin's results.

Without loss of generality EX2 is in this case put equal

to 1 and E2 equal to a

For calculation of O(e) according to the present

approximate method the vectors À and Y and the

matrices A and I have to be calculated.

According to Eq. (11.1)

À {l,o} (11. 2)

and

A {1 O}
00 (11. 3)



Differentiating Eq. (11.1) gives:

y + 2X.k
(1l.L

2

and following: s

y yo,1}
(11.5 )

and

1
ol (11. 6)

where c2 Var()

According to chapter 10 and Appendix O (n), which is the
4

approximation to e(n) up to order is given as:

(n) exp(-n2)[1 + (3He (n) + He (n))
1 3

5He(n)+ He(n))

+E(He(fl) +He() +He() +He())
(11. 7)
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10

at the level l0, which indicates that th calculation

of long term distribution of slìghtly non-linear variables

must be done by means of ë(n), where n is larger or

equal to 5.

56

On Fig.(ll.1) (),for n , have been plotted together

with the exact solution, 0(n) for o.1. The plot of

0(e) (and (as easily seen) in logaritmic scale.

Even if for larger values of n ,the values of given

at different probability levels of (n) are remarkably

close to the exact value. For instance:

n -n
3.3.10 - (11. 8)

n

at the level l0.

Ori the other hand:

n-n
k 1



100

10

10

io

lO

I
I I

8(e)

0.1

Fig.(l1.1) Plot of 0(n) and (n) for n

andz0.l n

A plot of n(n)/0() for o.1 and n is given in Fig.(ll.2)

As shown, the falls rapidly from a slightly correct value

down to a low value within a narrow band of n. This indicates

that one has to be careful with the choise of n, not to make

too small. On the other hand the computation work is raising

very rapidly with n, approximately as n6, which indicates

that one has to be careful not to choose n too large.

57
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1.0

0.5

0.1

O

Fig.(ll.2) Plot of for n L and

E o.l together with 8().

To give an indication of how sensitive the results are

for change in E
, n

have been calculated for n and

Q ( given by: () Q). The result is given

in Fig.(ll.'4), where it is shown that for > o,125 the

results show significant errors, and that this error is

rapidly growing with decreasing n. in the figure

is given by O() Q
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1.0

0.8
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0.5 -

O

0.05 0.1

Q iO

Q

Q z

Fig.(11.4) as a function of e for Qz1O3,l0 and

1.0

0.5 -

fl
n=3

fl j

O I I Iii i

0.05 0.1
III

0.15liii 0.2 E

Fig.(1l.3) as a function of e for n

In Fig.(li.) it is shown how Iîn is varying with e for
-3 -L -5 -3

Q = lo , io and lo . The results for Q zio are

remarkably near to the correct value ( ), while the
5

result for Q z lo show significant errors for larger

values of e.

0. ib 0.2 e
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These results mainly coinside with those given in the

preceding part of this chapter:

For larger values of e ( e > o.125) n has to be raised

above 4 to get saticfactorial results for larger values

of n (n > 6,5)



APPENDIX i - HERMITE POLYNOMIALS

The following two functions are characterized as Hermite

polynomials: H(x) and He(x). They are defined as follows:

n _2e2 H (x)
(1)n

(e )

n n
dx

(Al.l)

e2 He (x)
(_1)fl_ (e2)

n n
dx

From Eq.(Al.l) the following recurrence relations are

found:

H (x) 2x1-i (x) - 2nH (x)
n+l n n-1

He (x) xHe (x) - nEe (x)
n+i n n-1

The following values are easily calculated from Eq.(Al.l):

From Eq.(Al.2) and Eq.(Al.3) it can be shown that

(Al.2)

H (x) 1
o

(Al.3)

He (x) = i
o

H (x) 2x
i

(Ai.LI.)

He (x) x



H(o) o

n
'D

= (-1Y
(n\

- co

n odd

n even

The last integral is known from the litterature ( see

Abramowitz & Stegun /3/ p 302, Eq.(7..6))

+co

Jexp(-t2+2ixt)dt =

62

H(x) 22He( x) (Al.5)

and

He (x) 22H (x/ ) (Al . 6)
n n

The special values for x = o are given as:

(Al.7)

(Al.8)

I) +co

exp(-t2+2ixt) (it')dt

-co

= ç +
exp(-t2+ixt)dt

-co2 dx j

He (o) = o n odd
n

n/2 n even

The following integrals are useful for the present calculations:



and

II)

vI .1 oj_i_,',ii rig:

J
exp(_t2+2ixt)(it)n (1)fl

H (x)e_X
n

-

Jexp(_t2+ixt)(it)ndt
()nHe(x)e

co co

ItH (t)et2dt (1)n (et2)dt
jdtr

o o

co

(

1)fll (dn _t2
(

1)fll co d2 -t2
(e )

- Jdtfl_1
)dt

- o dt2
o

H (o)
n-2

co

r
tHe (t)e ILdt He (o)

j n n-2
o

Both valied for n 2

For n = 1 and n = o the integrals have to be calculated separatly:

co co co

JtH(t)e_tdt = J2t2e_tdt
J

edx z (Al.13)

co co co

JtHe(t)e_t/2dt
= Jt2e_t 2dtz

J
edx/ (Al.l)

o o

(Al.11)

(Al.12)



and

1tH (t)e dt te dt --
-t2

j'

-t2Jo
o

ÍtHe(t)e2 dt = Jte dt z

From Eq.(Al.l) the following rules of differensiation are

found:

d
(H (x)

X -x2
=

-x2- e ) (l)' (e ) H (x)en+l
dx n

dx

(Al .17)

d
(He (

-x2/2 -x2/2
x)e ) z -He (x) e

n n+l

According to those two equations, the following are

deduced:

_2 _2
¡H (x)e

X
dx - H (x)e

X
n n-1

-x2/2 -x2/2
¡He (x)e dx = - He (x)e

n n-1

6'

(Al .15)

(Al. 16)

(Al.18)



Where a > -1 and > o.

and r() is the F-function, defined as:

F() Í
-1 -x

X e dx
)
o

The characteristic function is written:

(o) (Ï-i@)

(A2 .2)

(A2 .3)

When 2 and a - 1, where n is an integer, x is
said to be x2 distributed with n degrees of freedom, with

characteristic function:

(0) = (1 - i20) (A2.L)

It is easily shown that if Xand X are independently

F-distributed with the same parameter and with parameters
a and a , Z X +X is r-aistributed with parameters

1 2 1 2

and a za +a +1. In the case when X and X areZ Z 1 2 1 2
independently X2-distributed with n and n degrees of freedom,
Z = X +X is X2distributed with (n +n ) degrees of freedom.

1 2
1 2

APPENDIX 2 - THE GAMMA-DISTRIBUTION

A variable, X, is said to be F-distributed if it's

probability density function is written:

F(x) 1 xe xo
(A2 .1)

X<O



From Eq.(2.2L) it is found that when X is Gaussian-

distributed with zero mean and variance a2, Z X2 is

F-distributed with = - and =202. For a i, z

then becomes X2distributed with 1 degree of freedom.
The proof follows:

+ ix2
e e dx = (i_12020)

J iGx2
a -

according to Eq.(2.30).

66
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APPENDIX 3 - CALCULATION OF THE CUMULJANTS.

The following formulation is taken from Longuet-

Higgins /12/,/13/, while the method of calculation is

developed by the autor.

Assume that the two variables Z and Z can be formally
1 2

written in the following way:

where A and B contain only linear terms in the
1 1

variables X. and A and B the quadratic terms.
1 2 2

A A.X. (A3.3)
1

11

B = y.X. (A3.4)
1

A = c. .X.X. (A3.5)
2 1J1J

B = ô. .X.X. (A3.6)
2 121J

where

E. . EA.. (A3 .7)
12 1J

cF.. (A3.8)
11 1]

Z =A+A
1 1 2

Z =B+B
2 1 2



For the following calculation the terms: Reducable forms

and irreducable. forms are introduced. These terms are

used in connection with the expected values of products

of Z and Z , in the way that (i.e) E(A28 ) contains bothj 2 12
reducable and irreducable terms.

A straight-forward calculation shows that

E(A2B ) XIAjkl E(X.X.X X ) (A3.9)
1 2 ijkl k i

which in turn only takes values when:

izj=k=l
ij ,kli
ik,j lti
i=l,jki

or

E(A2B ) A.À.6.. E(X) + X.À. E(XX2)12 .1111 1 . iikk ik1 1
k

+2 X.A.6..E(XX) - A.A.ó..E(X)E(X)
1 J 1J i J i i 11 i i

j j

In this case I X.X.cS E(XX2) is said to be reducabie,iikk ik
ik

because it can be reduced into two separat groups:

I X.À. kX) z(IX.A.E(X)).(Ió E(X2))uk ik .11 1 kk kuk i k

68

(A3 .10)

(A3 .11)



K E (Ap Ap Ap Eq Bq Eq )

mn 1 2 m 1 2 n

q1

69

)r the other hand,the rest of E(A2B ) can be shown to
12

form an irreducable group, because:

E(X) - E(X) E(X) = 2E(X) E(X)
1 1 1 1

due to Eq.(3.13). Hence:

2 E A.X.Ò. . E(XX) + EX.A.. .E(X)
1 J 1] 1 J 1 1 11 1

i"

-EA.À... E(X)E(X)1111
i

2E A.X... E(X)E(X) (A3 .13)
1J1J i J

which cannot be separated as with Eq.(A3.11), and is

therefor said to be irreducable.

According to Longuet - Higgins /12/ it can be shown

that the cumuiants,K , of Z and Z can be written:
mn 1 2

(A3 .12)

(A3 . 1L)

where p. and q. are integers and

(Ap Ap.. sApBqBq*Eq) stands for the irreducable



part of E(Ap 'Ap ' Ap Bq Bq Bq )
1 2 1 2 n

It is clear that some of the terms in the series

expansion of K will coincide and it is not
mn

neccesary to calculate all the braquets separatly.

For instance

(A A B ) (A A B ) (A3.15)121 211

and so on.

It is more complicated to calculate the value of the remainding

braquets. The autor has developed a method for calculation,

which simplifies the calculations and makes it less time-

consuming.

In Lhe following A ,B ,A and B are given by the symbols:
1 i 2 2

A1 =

B1

A2

E2

Remark that A1 and B1 only have one "arm" and that A2 and

B both have two "arms". Those "arms" will be used as
2

"junctions" to other "bodies". For instance

(A A B ) is formally given as:112

when

(A A B )112

E(x) 1 (A3.17)

is assumed.

= 2E A.X..
ii i J 'J

70

(A3 .16)



Remark the number "2", which indicates the number of

ordered regrouping of A and. B ;
the special "j-arm" of

1 2

B can be "joint" to two different "arms" of the two A
2

bodies. When this is selected, the other "junction" is

automatically given.

From the definition of irreducable groups the following

is clear:

An irreducable group can only consist of zero or

two "one-armed bodies". The reason for this is that

the "bodies" either have to form an open chain with

a "one-armed body" at each end. or a closed chain

without any "one-armed bodies".

From this it is simple to show that K will be given
mn

in the following way:

m+n-2 m+n
K ZsK E. +h E.

mn mn mn

according to Eq.(A3.7) & Eq.(A3.8)

Before calculating the irreducable groups, there will

be stated that a lot of them can be calculated from

others by changing "bodies".

As an example take:

(AAB ) (A3.19)
112

this is calculated from

(ABB) >ED- (A3.20)

by changing B by A (or * by >- ).
1 1

71

(A3 .18)



Hence the following irreducable groups are calculated

to be:

(A B ) -< A.y.11 11

(AB) DQ 22A..r..

(A B A ) >(-LJ--'1 2EA.A. ..
1 1 2 1 1] J

(A A B )222

(ABAB)
+

c3y.A. .F. A + 2y.F. .A. Ai ij jk k i iJ jk k

(A B3) z
22

(A2B2)22

l6A. .F. A r .+32A. .A. r rij jk ki li iJ jk kl li

(A B A2 B ) +1122

l63AIA±.A.krklyl l6c3A.A. .F.kAklyl + 16EIXiFi.A.kAklyli 1J J

(A B4) z
22

(A2B3) =22

+

z83A. .A. r
'j jk ki

+

=8c4A. .r F F
ij jk kl1i

= 384E5A. .r. r r r
ij jk ki 1m mi

5A F A F r=l92E5AijAjkFklFlmFmi + l92c ij jk kl 1m mi

72

+



(ABAB3) 1-U-O-O-O-X +

+ -Q-O-D-O-)< +

96cX.A. .F.. Fklrlmy + 96X.r. .A.krklrlïiijk m iijj

+ iim + 96A.F. .r.krklAly1 1] jk k m i JJ J

(A B A2B2) DD-O-O-X +1122
+

+ +

.A.krklrly + 6EÀ.A. .r.
i ij j m i ij jk

+ 6À .A. .r.krklAly + 6cÀ .F. kAklFlm1m1 1J j m

+ 6EA.F. .A. F A y + .F.
ij jk ki 1m m i ij jk

(A B A2B)1122

7685A.A. .F. r F r y + 768c5A.F..A. .r r r1 1] jk ki 1m mn n 1 ij jk ki 1m mn n

= 7685A F. r.A1r1r y + 768E5A .F. F.krklAlFy
i J_j j 1 1j j

768E5A.F. .r. r r A1m mnni ij jk ki

73

h-D-O- -O-O-X +

+ &D-O-< + >O-O-O-D-O-x

+



7L

(ABA2B3) tlJ-D--o-o--x +

+ -D-O-Ofl-O-< +

+ +

+ F-OGO-O-L->< +

+ -O-O-L-OIi-x + >OO-O-D-D-<

= 385A.A. .A. r r r y + 38e5A.A. .r. A F r yi ij jk kl 1m mn n i ij jk ki 1m mn n

+ 384c5A.A. .rr1A1r y + 38L5A .A. .F.kFklFlAy
i i] J i 1] J

+ 38L5A.F. .A. A F F
n
+ 385A.F. .A.kFklAlFy

i ij jk ki 1m mn i 1J J

+ 38Lfc5X.r. .A. r r A y + 385A.r. .r.kAklAlmryi ij jk kl 1m mn n i ij j

+ 38L5À.r. .r. A 1A1 + 38L5A.F.
i ij jk ki n i ij j

which contain information about all irreducable groups

up to order e.

Now the cumulants have to be calculated. From Eq.(A3.l'i)

it is easy to compute them. They are as given below:

K =0
00

K (A ) z (A ) = cA.

Pi
p1 2 II

K E (Bq ) z (ß ) z er..
oi

i
i 2 ii



K = E (A A )= (A2) + (A2)
20 Pi P2 1 2

Pi ,P2

K = E (A B ) (A B ) + (A B )ii Pi g i 1 2 2
p ,q

1 1

K = (B2) + (B2)
02 i 2

K E (A A A ) 3(A2A ) + (A3)
30 pi P2 P3 1 2 2

Pi ,P2P3

K E (A A B ) = (A2B )+2(A B A ) + (A2B )

21
P1P2 p1 p2 q, i 2 1 1 2 2 2

K =(B2A)+2(ABB)(AB2)
12 1 2 1 1 2 2 2

K 3(B2B ) + (B3)
03 1 2 2

K (A A A A ) 6(A2A2) + (A'+)
'+0

P11)2
P P2 P p 1 2 2

K E (A A A B )=3(A2A B )+3(A B A2)
31

P1P2P3
P P2 P q 1 2 2 1 1 2

+ (A3B )22

K = E (A A B B )=(A2B2)L(A B A B )
22 P q q 12 1122

PIP2 1 2 1 2

q1 q2

+(B2A2) + (A2B2)
12 22
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K 3(B2A B )+ 3(A B B2) + ( A B3)
13 1 2 2 1 1 2 2 2

K 6(B2B2) + (Bu)
1 2 2

K (A A A A A )1O(A2A3)+(A5)
50

P1P2P3PPs Pl P P3 P 1 2 2

K L(A B A3) + 6(A2A2B ) + (AB )
+1 1 1 2 1 2 2 2 2

K 3(A2A B2)+ 6(A B A2B )(B2A3)-i-(A3B2)
32 1 2 2 1 1 2 2 1 2 2 2

K 3(B2B A2)+6(A B B2A )+(A233)-1-(B3A2)
23 1 2 2 1 1 2 2 1 2 2 2

K 4(A B B3)+6(B2A B2)+(A B)
1 1 2 1 2 2 2 2

K 1O(B2B3) + (B5)
05 1 2 2

K 1b(A2A') + o(6)
60 1 2

K 1o(A2A3B )+5(A B A4)+o(E6)
51 1 2 2 1 1 2

K 6(A2A2B2)+ 8(A B A3B ) + (B2A) + O(E6)
1 2 2 1 1 2 2 1 2

K 3(A2A B3)+9(A B A2B2)+3(B2A3B )+ o(e6)
33 1 2 2 1 1 2 2 1 2 2

K 6(B2A2B2)+8(A B A B3)+(A2B)+ o(e6)
2L+ 1 2 2 1 1 2 2 1 2

76



K 1O(B2A B3)+5(A B B4) + o(6)
15 1 2 2 1 1 2

K 15(B2B) +

06 1 2

K 21(A2A5)
(7)

70 1 2

K 15(A2A4B ) + 6(A B A5) + o(c7)
61 1 2 2 1 1 2

K = 1O(A2A3B2) + 1O(A B A4B )(B2A5) + O(E7)
52 1 2 2 1 1 2 2 1 2

K 6(A2A2B3)+12(A B A3B2)+ 3(B2A3 ) + o(7)
143 1 2 2 1 1 2 2 1 2 2

K 6(B2A2B3)+12(A B A2 B3 )+3(A2A B4) + O(E7)
34 1 2 2 1 1 2 2 1 2 2

K 1O(B2A2B3)+1O(A B A B4)+(A2B5) + o(e7)
25 1 2 2 1 1 2 2 1 2

K 15(B2A B4)+ 6(A B B5) + O(E7)
16 1 2 2 1 1 2

K = 21(B2B2) + o(e7)
07 1 2

Remark that the cumulants for the case of one variable

can be found as:

K K (A3 .16)
m
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APPENDIX - CALCULATION OF THE P - FUNCTIONSm

The functions P (iO ,iO ) are defined as follows:m 1 2

m(e ,e ) = exp(- O2)exp(- O2)(1+ E P (iO ,iO ))
1 2 201 022 m1 m 1 2

where is given as:

Kkl
(o ,O )exp( k!l10i0 )l)

i1 2 k=o
10

According to chapter 9, K o and the parts of K and
00 10

K which are of order e° are equal to zero. y is the
Dl 20

part of K which is of order c0 and the part of K

which is of order °
. In addition, the part of K, 02

which is of order °, is assumed equal to zero

Comparing Eq.(AL. 1) and Eq.(AL.. 2), one finds that

Kkl kim
(s,t) ( s t - y 2-y 2)nm 20 02m1 n1 ko

1=o

(ALi.. 3)

Writing for

k+l-2 k+l
+

the paranthes is at the right hand side of Eq.(A4.3) can

be rewritten:

(A-. 2)

(ALi. L)



Kkl k 100 rps t -s2-t2 K (s,t)
mko ml

10

where K is given as follows:
m

79

(ALt. 5)

K = hs + ht + k30s + ks2t +k st2+ kt

K = hs2 + hst +ht2 + ks + kst

+ k s2t2 + k st3 + k t
22 6 13 2' o+

1K .!:h + h s2t + h st2 + h t3 + -i-k s5
6 30 21 12 6 03 120 50

+ -k st + -k s3t2 + i-k s2t3+ Lk st + -1--k t5
12 32 12 23 24 i 120 05

1K h s + !h s3t + 1h s2t2 + h st3 + Lh t
6 31 22 13 24

+ .----k 6 + 14a-k s5t + -k st2 + -k s3t3
51 L.8 L+2 36 320 60

+ -k s2t + -i--k st5 +

14.8 2 120 15

1K 1--h s5 + L-h st + Lh s3t2 + L-_h s2t2
2- i 12 32 12 23

+ .L-h st + -i-h t5 k 7
+ s6t

214. 120 05 50140 70 720 61

+ s5t2 + 1-kst + 1-kst + --- k s2t5
25

+ st6 +720 16 50



The values of P (s,t) can now be calculated in terms of

K according toEq.(A. 3):

P =K
1

p z K + K2
2 2 1

P = K + K K +
3 3 21 6,

P = K + K K + K2 + K K2+ K
k 3 i 2 21 24 i

K + K 1K + K K + }( K + K2K
5 5 L 1 32 31 21

+ 'K + 1
K5

6 2 1 120 i

Using the expressions of KmPm can be found in the following

way:

3m
P (s.t) E (ALb .11)m 1+] fl

where H., which are not equal to zero, are given as:

H' zh
10 10

80

(ALl.. 6)

(ALl. 7)

(ALl. 8)

(ALl.. 9)

(A'+ . 10)

H' - i

12 12

H'
03

6
03

H'
01 01

H'
30

6
30

H'
21 21



H2 h + h2
20 20 10

H2 -1h +h h
11 11 lo oi

H2 h +
02 02 01

H2 -k+h k
6 10 30¿+0

H2 =k +h k h k
31 6 31 10 21 6 01 30

H2 +h k +h k
22 14 22 10 12 01 21

H2 +h k +h k
13 6 13 01 12 6 10 03

Ii2 =4jk +h k
o+ 6 01 03QL4

- k2- 72

H2 z-.k k
51 30 21

=--k k +!k2
30 12 8 21'+2

H2 =1-k k +k k36 30 03 21 12

H2 --k k +Lk2
2'+ 03 21 8 12

H2 =-k k
15 03 12

H2
06 72 03

81

H2
60



H3 h + h h + !h3
30 6 30 20 10 6 o

H3 + h h + h h + h2 h21 21 20 0.1 11 10 10 0].

H3 = h h + h h + h2 h12 12 01 10 11 lo 01 10

H3 h + h h +
03 6 o 02 01 6 01

k h +k h +Lk h2H3 =thk 12 20 24 '+010 12301050

H3 = k + k h k h + ik h4 21 20 6 30 11 24 '+0 01'+1

h +h2k +h h k6 31 10 10 21 6 10 01 30

H3 =k +!h k +k h +h k12 32 10 22 12 30 02 6 01 3132

+ h k + !h k + k h2 + h h k
11 21 20 12 iL 30 01 10 01 21

+ .h2 k
4 10 12

H3 =k +h k +k h +h k +h k
23 1223 O122 120320 61013 1112

+h k +}c h2 +h h k +h2k
4 02 21 12 03 10 10 01 12 01 21

H3 z 44.k + k h + k h + -k h + !h k4 12 02 6 03 11 O+ 10 6 01 13

+h2k +h h k
01 12 6 o 01 03

_1 i
H3 k +k h +k h +k h2

05 12O 120302 24o,+ 120301
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H3 -Lk k + L k2 h
144 '+0 30 72 30 1070

k + -.k2 h + Lk k h12 21 30 10H3 k k L82i + 30 016 31 3061

Lk k +-k k +h k2
'#0 12 8 io, 21H3 4k k4 22 3052

k k +Lh k k
12 10 12 30 12 01 21 30

Lk k +!k k +-k k
6 o 13H3 .1-ik

k +
12 31 12 8 21 224 03 1+01+3

k k +h k k +h k k +h k2
12 01 30 12 8 oi 216 10 03 30 4 10 21 12

1k k k k k +Lk k36 03 3112 13 2.1 12 22q. 30 0'#314

k k h k k + h k k +h k2
36010330 4 oi iz ai 12100321 S 1012

k k +Lk k Lk k +h k2H3 2203 121312+48 o'# 21 8011225

k k +Lh k k
12 01 21 03 12 10 12 03

H3 Lk k +k k Lk2h +Lk k h
16 361303 4812014 720310 12120301

k +Lkah72 03 0144 014 03H3
07

H3
90

H3
81

1296 30

- k
- 1l44 30 21
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H3 +1-k k2
72 144 30 12 48 30 21

i
H3 = k + -k k k +

63 f432 30 03 24 30 21 12 48 21

ii3 =-k k2 +Lk k k +Lk2k
30 12 72 03 2.1 30 16 21 12

H3 = -k k2 + i-k k k + i- k2 k
3 21 72 30 12 03 16 12 21l5

H3 = k + i-k k k +
36 432 03 30 24 03 12 21 48 12

H3 = k + -k k2
27 144 03 21 48 3 21

H3 = ---k k
18 144 03 12

H3
09 1296 03

= + h + h2 + h h2 +24 '+0 63010 820 2010 2410

+ hh + hh + hh+ hhh
+ h2h + hh

= h + h h + h h + h2 + h h22 22 21 01 12 10 11 20 02

+h h2 +h h h +h h2 +h2h22oo1 110110 0210 41001
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13

0'4

60

51

1 3 ti- 6 01 1001 11

-- 720 so

- 120 51

+ h ti +6 03 10

1k h+
i:-: 31 20

h6 03 01

k h+
12 o 20

k h+
36 30 30

1 h2 12 01

+ k h248 40 10

k+
24 01 '41

ik h2+ -k h h + 12 31 1040 10 01

+

h24 02 01

h+
120 o 10

+ L-ti k36 10 30

h kh k +4
102112 20 01 30

+ k ti2 h
30 10 0

48 22

k k k48 02 1+012 12 304 21 2

+

85

+ h h02 01 10

+ 4 01

.-ti k+ 48 20 1+0

h+ 2'4 '+0 1'+ k ti + 120 0124 1+1 10

h k6 ii 10 3

+ h10k32 +

+ k6 11 31

+k h316 21 10

( hk 42o21 01B o 22

+L-h k hk 12 30 10k h 21105 i 30 01

7±.k h h2k h2 + 12 30 10 01
k h2 +k h h 822106 si 10 01t.#8 o 01

k h3±K h2h 12iz1°4 zi 1 01

0
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H1+ + k + k + k + h k
33 30 03 14 21 12 14 12 21 36 03 30

h +k h +h k +h k
12 32 01 12 23 10 12 20 13 14 11 22

+Lh k +-k h h +k h h
12 02 31 12 30 01 02 14 21 10 02

+ khh + khh+ khh

+1-k h2 +!k h h2 +k h h2
36 31 01 21 10 01 12 01 10

+ ik h3
36 03 10

H ,Hk and H1+ can be calculated from H1+ , H1+ and H1+
21+ 15 06 1+2 51 60

by changing the indices of k.. and h.. (k.. is replaced
13 1] 1]

by k.. and so on).
:I:1

k +
80 720 30 50

152k2 + h k k
10 30 1+0

+ ih k2 + h2
1'414 20 30 11414 30 10

H1+ ----k k
71 1414 30 2140

k + k k +
0 21 11414 I 31 1144

k h
0 30 01

k h +k k h +L.k k h2 +-k2 Ìì h
1481+02110 36313010 214302110 7230 iO 01

H1+ -----k k +k k +Lk k +Lk k
62 21405012 1481+121 723230 961+022

+ k2 + k k h + k k h + Lk k h
7231 1481+02101 1481+01210 12312110

k h +Lk k h +h k k
36 31 30 01 214 22 30 10 214 20 30 12

+ h k2 + h k k + i--h k2
16 20 21 12 ii 30 21 11414 02 30

h2 +k k h h +k k h2
30 01 12 21 30 01 10 214 30 12 10

+ .k2 h2
16 21 10
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k +k k +k k +k k
720 50 03 48 '+1 12 24 32 21 72 23 30

+ ik k + Lk k + ------k k h + k k h
144 '.013 243122 1'44 '40 0310 48 '+0 1201

+k k h +k k h k k h +k k h
12 31 12 10 12 31 21 01 8 22 21 10 24 11 30 01

+Lh k k +1h k k +h k k +h k272203003 820211212113012 81121
+Lh k k +h2k k +Lh2k k

L18 02 30 21 8 10 21 12 72 10 30 03

h k2 +Lh h k k +h2k k
8100121 1210013012 24013021

= ik k + Lk k + ik k + i--k k
144 '+103 243212 242321 14411+30

+ ik k + .k k + _k2 + i--k h k
576 '+0 0L+ 36 31 13 32 22 144 1+0 01 03

h k +Lk h h +!k h k +k h k
36 31 10 03 12 31 01 12 8 22 10 12 8 22 01 21

k +Lk h k +----k h k12131021 36130130 14401+1030

+Lh k k +Lh k k +Lh k k
24 20 03 21 24 02 30 12 36 11 03 30

+h k k +Lh k2 +Lh k2
4 11 12 21 16 02 ai 16 20 12

+Lh2k k Lh2k2+h h k k
24 10 03 21 16 10 12 4 10 01 12 21

+ h h k k + _h2 k k + _h2 k23610013003 24013012 160121

H'. , H'+ H'+ and H' can be calculated from H'. , H'.

and H'.by changing t indices of k1 and h1
62

i
H'. = 1728k k2 + 196h k3

0 30100 '+0 30

H'. --k k k + .4-k k2 + 1--6h k3
1 30i 30'.0 30 2191

+ -L-h k k2
144 io 21 30

H'.
71
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+--k k k +k k k

kO 30 12 72 31 30 210 21

+kk2 h k +1k2 h k
30 01 2114 o 10 122 30

L-k k2 h+
143 30 21 10

Uk ----k k k +L-k k k +Lk k2
8614 kO 30 03 96 kO 21 12 148 31 21

+ k k k + L-k k k + h k372 31 30 12 148 22 30 21 148 10 21

k k k + k2 k
214 10 30 21 12 114.14 01 30 12

+ -h k k2
01 30 21

i
+ k k kk k2 + k k k

216 31 30 03
Uk

192 1.0 12 288 tiO 21 036k

+ 4h k2 k +
0 30 03

+ k k k
31 12 21

+ L-k k2 +32 22 21
L-k k k
148 22 30 12

+ L-k k k + L-h k k2 + 1---k k2
1 3072 13 30 21 148 10 30 12

k k k +Lh k2k +L-h (k )3
10 30 21 03 16 10 21 12 148 01 21

k k k
1

214 01 30 12 21
hk2 k

30 03

k k kk2 +L-k k k
1 12 72 33 21 03288 ¿+0 12 03

k k +k k k k k k
11414 22 30 03 16 22 12 21 72 13 12 30

+L-k k k +L-h k k k
72 10 30 12 031 30148 13 21 288 0k 2

+ -h k2 k + h k k2 + L-h k k2
0 21 03 1 10 21 12 16 01 12 21

k2k L-h k k k
01 12 30 72 01 03 21 30
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H ,Ht' ,
Ht' ,

Ht' and Ht' can be calculated from
¿+6 37 28 19 010

Ht' , Ht' , Ht' , Ht' and Ht' by changing the indices of
6'+ 73 82 91 10,0

k. .and h..ii 1j

Ht' - - kt'- 311014 3012,0

k3 k- 2592 30 21

Ht' 292k k + __k2 k2
10,2 30 12 576 30 21

Ht' 776k k
1 k2 k k + 4k k3

30 03 288 30 12 21 2 30 2193

Ht' k k + k2 + k k2 k
30 12 96 30 21 1230 21 03

i it'

+ 381421

Ht'
_._k2k k +thk k2k +k k k2

30 21 1230 21 038614 30 12 03

+ k k96 21 12

Ht'
1 k2 k2 + 1-i--k k k k + --k k

14 30 21 12 03 288 21 0366 51814 30 03

+ .--k k3 + k2
288 30 12 614 21 12

Ejt' Ht' Ht' , Ht' ,Hk and Ht' can be calculated from
57 .8 39 2 10 1 11 0 12

Ht' ,Ht' ,Ht' ,Ht' ,Ht' and Ht' by changing the indices
7 5 8 t' 9 3 10 2 11 1 12 0

, , , , ,

of k.. and h...
'J 'J

Here only the terms ut to order t' have been calculated.
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it 13 clear that the P -íunctions for one variable easily
m

cari be found aG:

3m
mP (s) =

H sm im io
m

m -where H. can be found above. Remark that during this
io

calculation only k and h shall be taken into account.mo mo

(Au. 7)



APPENDIX 5 - AN AUTOMATED PROCEDURE FOR CALCULATION

OF He..
13

In the following we will assume that some function,

fm(S) is known to be a polynomial of order m in t and

s:

m m
fm(S) E Z H.t1s31]1=0 J0

When
fm is known to be a polynomial, it can formally

be written:

m
fm(S) = Z . .P.(t) P.(s)

'J i J1=0
j =0

where P.(t) is the Legendre polynomial of order i (See

f.i./31). Due to the orthogonality relations of P1(t):

I P.(t). P (t)dt o
j 1 n
-1

2

a... is given as follows:
'J

= (i + )(j + )
Irs.

21 +1

in

i=ri

(AS 1)

(A5. 2)

(A5 .3)

(AS. L4)



where

+1

H fm(S)P().P(S).ddS
1J )J i J

-1

fm(S) is assumed to be given in one or another way

(f.i. by means of Eq.(A.6) - Eq.(A1-.lOfl; but when

knowing of its polynomial nature, I. can be calculated

exactly by means of Gauss-quadrature.(see f.i. /3/ or /7/).

The result of such an integration is given as:

I.. E w w P.(x )P.(x )fm(X ,x )

pq pqi p j q p q

where p and q are summed over

(p,q) + l, + 1) (A5. 7)

According to Abramowitz & Stegun /3/ the Legendre polynomials

are given as:

3-

P.(t) E a1 n (A5. 8)i nn=o

where a1 can be found by a simple recurrence relation.

Hence fm(,S) can be found according to Eq.(A5 2) and

Eq.(A5.8) as:

fm(S) E (E a1t)'(E 4sk)
io nzo k=o
i =0

92

(A5 5)

(A5. 6)

(A5. 9)



Rewriting Eq.(A5.9) now gives:

m m m
m nk
f (t,$) = E E t s (E a.. .a a )

ij n k
n=o k=o i=n

j =k

and hence according to Eq.(A5. 1)

m
m nk

H.. E a. a.a.
nk i j

k= j

93

(A5.1O)

(A5. 11)
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