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PREFACE.

I hope that this work not only will be a guide into the
problem of calculation of the distribution of maxima of
slightly non-linear variables, but also an introduction
to the general theory of distribution of maxima. To make
is so, I found that some.general statistical theory had

to be included (not the most elementary).

It can be discussed weather this theory should have been
put into an appendix or not. In this work it is put in
the beginning, as an introduction to the field.

I want to point out that in this report the following

types have been used for vectors or matrices:
A,A> A>V and so on.

Einstein's summation convention is also used.

I want to thank Mrs. Ingrid Hansen for her help in
typing the manuscript and correcting my mathematical

calculations

Trondheim,June 27. 1974

Tor Vinje
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1. INTRODUCTION

Most problems in structural design are, what we call,

linear. That means that the actual responses on a given input
is directly proportional to that input. On the other hand

one is not seldom dealing with design criteria where the
different linear responses are combined to a non-linear
variable. As an introductional example the design criterium
for buckling of rectangular plates with in plane stresses

will be discussed.

According to Bleich /1/ the buckling of this rectangular
plate takes place when the in plane stresses, shown in

Fig. (1.1), are combined in the following way:

Fig. (1.1) A thin rectangular plate acted upon
by in plane stresses.

The computed value of Z has, in the purely deterministic
case, to be calculated and compared to 1/n, where n 1is
the safety factor. This procedure works well out for

purely static or deterministic variables.




When the variables (og and T ) are given as stochastic

processes one has to do the whole calculation in a more

complicated way:

In this case Z is a stochastic process too, and one has

to examine the'individual maxima of Z to find the
distribution of these maxima. From this distribution one
has to calculate the distribution of the largest maximum
of Z ( within a predicted time). From this distributional
function the probability that Z will exceed 1 (or/and
exceed 1/n) is calculated. This prochabi Listy, T in Burn

compared to some numbers, which is said to be satisfactorial.

The main problem of this design procedure is that the
distribution of the individual maxima of non-linear
variables of the type shown in Eq. (1.2) is not known,
even not when oy and T are Gaussian distributed .
variables. The first step on the way to get this problem
solved is to calculate this distribution,'which will be

done in this report.

Before leaving these introductorial notes it will be
mentioned that variables of the quadratic form will be
found in connection with other problems too. Some of

them are listed below:

Buckling of thin plates acted upon by in plane
shear stresses and constant compressive stresses,
0, ( from Bleich i ) :

7 = (T—o>2 + 9 (1.3)
0
TC ag

Combination of stresses according to some plasticity-

criterion ( von Mises'):

.- 2 |
2 = ze * 3Txy (1l.4)




Combination of axial forces, N, and bending moments,

M, when calculating the condition that plastic hingés

will occure in beams:

- 2
z = MT u CN—O) : (1.5)
M Nc

or the same combining shear forces, Q, and bending
moments, M

7 = ﬂ? + O,hh (27)2 (Q/Qc < 0,79) ( 1.6)
M Qs

according to Horne /2/.

One can easily verify that all the variables mentioned
will consist of one purely static part, one purely
dynamic and one part which is some combination of

static and dynamic terms in the following way:

_ S _s s _d d .d

Z o=k oag Xy Xy v L Doy X3 Xyt ooy Xy Xy
ij ij ij

( 107)

where xi is due to purely static loading and x. 1is

due to dynamic (or stochastic) loading. The static
part is in the following assumed to be deterministic,.
so that Eq. (1.7) can be rewritten:

|

7 =7 +o0.X. +a..X.X. (1.8)
s iTi iy 7173

where Xi is purely stochastic ( with zero mean)

Eq. (1.8) will be discussed in detail in the following )

and the discussion will separate in four main parts:




~

~

| 1. General theory of stochastic variables.
2. The general theory of the distribution of maxima

of stochastic processes.

|
|
i 3. Developments of the distribution of maxima of
i non-linear variables.

4, Discussion of numerical results.

Most of the mathematical calculations are put into appendices,

together with some general theory of some. special functions.




2. CHARACTERISTIC FUNCTIONS

The characteristic function , @(8), of the variable

X (t) is defined as follows:

+0o0
) e { eI9% £x)dx

- 00

(=]

~

[e]

~s
t

E (e

where f(x) is the probability demsity function of
$(8) is here recognized as the

f(x). Because

- Qo

+
[ [ [f(x)] dx 3 1 < ] & {f(x) 2 0}

X.
Fourier transform of

( 2.1)

( 2.2)

the integral in Eq.(2.1) always will exist and hence

$(6) be defined.
The inversion of Eq.(2.1) leads to:

+

£(x) = —— 1 s(o)e ~18% 44
27

- 00

which converge to f(x) when f(x) is continous, else

to 1/2 (f(x+) + f (x-)) when f(x) is discontinous.

Assuming in the following that f(x) is continous for

any value of x, one can write:

40

f(x) = %—nJ 8(8)e ~1%% 4o

- 00

(

2.4)




Making use of Eq.(2.1) it is easily shown that

E(x™ ==L 4 p(1®x Sl ¢ 2.5)
i™ @ | e

=}
=)
=

whenever E(X™) does exist. Assuming that E(Xm) exist
for any m, %(6) can be expanded in a Maclaurin series

as follows:

i < n
(16) . ( 2.8)

[«
() =1 + %=l =71 %

where for brevety the following is introduced:

u, ¢ E (X™ ¢ 2mry

From ¢(8) two new functions can be defined:

a) The cumulant generating function:

w(8) = 1lne(e) ( 2.8)
and
b) the moment generating functionrs
M(s) = ECe”3%) = o(is) ( 2.9)

The cumulant generating function ¥(6) can be

expanded in a Maclaurin series in the following way¥

oo o
y(gy = 3 <38) <. (2.10)
-, ne

wherek 1s called the n-th cumulant of X. Combining
n
Eq. (2.6), Eg. (2.8) and Eq.(2.lo) the following identity

is found:




. e e e ——

oo . n oo A .
in (1 + % £18)7y . (-1)™ {; ii_)n wo ™
n=1 n! m=1 m n=1 n! n
oo . m
(i
-y (18) (2.11)
m=1 m:
From Eq.(2.11) K, can be found as a function of
M, > n<m. The following 4 are easily developed:
K = M
1 1
!
kK = u = u?
2 2 1
K = u -3 uu +2u’
3 3 2 1 1
K = u - 4 p - 3u%+12 w u? -6u’ (2.12)
4 4 31 2 2 1 .1
According to Eq. (2.9), M(s) is defined as the
two-sided Laplace-transform of f(x):
. e
M(s) = Je-sx f(x) dx (2.13)
where ﬁn (see Eq.(2.7)) can be found as:
n
W= (DR Ms)
ds s30 _ (2.14)

The characteristic function for several jointly

distributed random variables is similarly defined as:




n
E ( exp(il_, eme))

©r
~
@
—
-
LY g
(< 2]
~
|

n
= k. . EEE. . . i .
J f 2 "X ). exp (1 %zl emxm) d*l...dxn (2.85)

The Maclaurin series expansion of ¢ is:

Hm

i TR “1.° %> 0O

$(0 .. 3 ig )™ ..(ie )'n

( 1’ ’en) % =0 (161) . (len) m ! ... m ! (2.16)
\1 1 o
m_=o
n
where
H m A .
m os...smo = E(X ----xnn). (2.1

When the variables, Xi’ are indepentent, it is easily

shown that:

¢(el,..,en> = @1(92)77 @ (8 ) (2.18)

where

ieme
@m(em) = E (e ) 42199

As for the simple case with one variable, the

cumulant generating function can be defined:

w(el’...’en) = ln @(el,«...’e n)

K. e e o]
ml_, n

m f ]
(ie;)ml_.. (ie_) = (290

1]
=
.-
1

all mI! eee 1M
n

1

=
7]




and if Xi.are independent:

n
Y(81,%°+,6_ ) = L ¢ (8 )
’ n =l ®om

where:

wm(em) = 1n @m(em) (2.22)

The probability density function of a new set of
variables, Y , can be found in the following way. Assume

that the new variables are defined as follows:

Y, * -fr (Xl,---,Xm) = fr (Xi) (2.23)
= l,uoo‘,n
nSm
The characteristic function of Yr is given by:
n
o) (61,--',6n) = E(exp(1§_ erj))
1=1
400 +co
n
= J--J £(x soree,x dexp(i ?:1 ejfj)dxl--- dx_ (2.24)
-0 =00

Inverting Eq.(2.24)the probability density function
of Y > fy (yl,"°,yn) is found:

+o0 -f-oo ‘
e s o = l ! ° e Q(e ,..’e ).
fy(yl 9 ,yn) “m)n J [ 1 n
-0 —00
n
sexp(=-1i I Bjyj) def--';den (2.25)

j=1




Take as an example:

it = af = hEe
1

where Xis Gaussian distribute

variance equal to unity , 1.e

f(x) = Gl exp( -

v 27

(see chapter 3)
According to Eq.(2.24) @(8)

+

J exp(-3x%+i8

(6 )=

V2m

- 00

According to Abramowitz & Ste

+ o
3 .
exp (-ax? =-28x)dx = V

= Q0

when the real part of o is

Following:
$(8) = ——m—t——— « exp
Y1 - 2ib6

When b = © d(8) takes the v

i

d with zero mean

-
.

%)

then beccmes:

(ax+bx?)) dx

gur / 3K

=
m

positive.

2n2
. -
1-2ib@

alue:

exp (+ BZ/a)

and

10

(2.26)

N

( 2. 288

(2.29)

(2.30)
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° (8) = exp(3a®6?) (2.31)

which coinsides with the result for Gaussian
distributed variables with variance equal to a?

(see chapter 3 ) as should be expected.
When a = o & (8) takes the yalue:

o (o) = 1 (2.32)
2 Yy 1-2ib®

which shows that Y in this case will be r-distributed
(see Appendix 2). When, in addition, b = 1 Y will Dbe
X% -distributed, according to Eq.(2.32) (See Appendig 2)

From the common theory of integral-transforms, it is well
known that the behaviour of f(y) as y > = will be
given from the behaviour of ?(8) as 8 > o ( See for
instance Doetsch /4/).

The following two expansions of .¢(g) can be performed:

$(0) » exp(-3a?e2)+ o(ie) (2.33)
8+o
2(8) » = + 0(82) ( 2.31)

8+o0 ¥ 1 - 2ib®

which shows that the I'-distribution gives a better fit
to &(8) than the Gaussion distribution does when y - «,
which should had been expected from the fact that necessarily

|px?|>>|ax| when y =+ =.




The exact value of f(y) can be found from Eq.( 2.30)

by help of Eq. ( 2.25) and the known integral ( see
Abramowitz & Stegun /3/):

+ 0 .
J exp(-at?-b/t?)dt = j/—%—.exp(—ZJEE) 2 BaIser

-0

when the real part of a and b both are positive.

A much simpler way of calculating f(y) in this case
is the direct method, by which F(y) is calculated:

F(y) = P(¥<y) = P(X>a1n X<a2) ‘ (2.36)

Where L8 is the smallest and a the largest root of
2

the equation:

fu
~

s : - 2_ |
Following: |
1 Q2
e 1,2
F(y) Syor J exp (-3x°)dx (2.38)
Q.3
and
CaF(y) .1 i 2 T
ey ) = = expl{=-% a%)- ;
(y = = { pl-% o -
- ex (-i az) » 9% :
2 Ee NS dy ¢ 2.39)

according to the common rules for differentiation of
integrals ( see f.i. Hildebrand /5/)
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The solutions of Eq.(2.37) are:

2 -1- J/l + 2¥7)

Q
"

1 2b
ca e Sy
o, = =p { TSI ( 2.40)
when ( a/b > o) & ( b § o)
and according to Egq. (2.38):
2 2
£(y) = — exp (= + £ )
sy o J1+EDY 2b
a2
s cosh( :l."‘—bX )
2b? a? (2.41)
Putting a + © f(y) becomes:
1 1
f(y) » . «exp ( y/b) ( 2.42)
Y27 v by

which coinsides with Eq. ( 2.32)



3. GAUSSIAN DISTRIBUTED VARIABLES

The Gaussian distribution can be defined as the
distribution, for which all cumulants, exept for
the two lowest, vanish identically. In this case

the characteristic function can be written:

| 82k
$(8) = exp ( ik - ——5—1— ) By

From ¢(6) the probability density function, f(x),
of the variable X is calculated:

+®
f(x) = —%? { exp (iG(Kl—x) -

- Q0

82k

2
5— ) dbé (W )

According to Abramowitz & Stegun /3/ (ﬁ 302, Eq.(7.4.6))
+o0
J exp(-t? +_2ixt)df = /1 exp(-x?) ( 3.3)
-

and following:

flx) = Sam oxp( -3 LEo Kol 3w

V2TK K
2

L

Some important properties of Gaussian distributed
variables are going to be demonstrated. At first:
If X is Gaussian, then any linear transformation of
e '

¥ =m= # bX




15 i
|
|
|

is also Gaussian distributed. This is easily shown, by

calculating the characteristic function of Y, by means ‘
of Eq. (2.24) and Eq. (3.3) |
|
]

+ 00

- 1 (x-k; )3 .
o(8) = exp (-3 ~——1—= ) exp(i6(a+bx))dx
R 2WK2 K

2

4+
I . _ P .
= — exp (16(a+bK1)) I exp{- §° + 19b/2K2 £) dg

- 00

or by use of Egq. (3.3)

82b2k
o(9) = exp(i (a+bK1) e ( 3.6)
2
which shows that Y is Gaussian distributed with

mean (a + bk ) and variance (b%k ).
1 2

Secondly the moments, Moo of the variable is going to

be calculated. By introducing:

dn

de

o(0) = wn(e)@(e) ( 3.7)

and making use of Eq. ( 3.1) and the fact that
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it can be shown by successive differentiation of
Eq. ¢ 3.7) that:

0, (8) = ¥ () Y (8) -k (n=1)y _,(0) ¢ =k el

(This is practically the same equation as Eq. (Al.2))

Bringing to mind Eq. (2.5)

n
4 ace)| =y (o) = i"E(x™) . 8. sl
den | n
8=0
one finds that:
T E(x™) = < EC e I K;(n-l)E(xn'z)’ (g, i)

By means of Eq.(3.11) all Mo then can be calculated

when introducing:

Bxoy - i
(3.12)
E(X) = K
1
Specially when'K1'= o, Eq.(3.11) and Eq. (3.12) give
= n odd
M g (3.13)
. _ n/?2

Kz (n-=1) *(n=3)se¢3°1 n even




4. JOINTLY DISTRIBUTED GAUSSIAN VARIABLES.

n variables, Xi’ are said to be jointly Gaussian distributed

if the joint probability density function is written:

f(x) = = exp(-3( x—p;ls_l-(x-p)) ¢ 4.1)
(2m)™ 2 (det(8))?
where
X = {in
p= E(X)
and :
s: EC(x-p)-(x-pT) | ( 4.2)

The characteristic function, ¢(¢), is in this case

given as:
o(4) = exp(ipiye - 3¢ -S-¥) (4.3)
where
$= {06.}

In the following p= o is assumed. This is no loss of
generality, because the variable Y= X-p could have been

discussed in stead. In this case f(x) and ¢(¢) can be

written:
1 ' T -1
£(x) = exp(-} xT 8 1x) (4.4)
(Zﬂ)n/z(de’c(s)ll2 :
o(P) = exp( -3 ¢+ 8 ¢ ) (4.5)
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It is easily stated that variables, Yi’ given as
| linear combinations of Xi:
|
| Y. = e e
| i Al] 3 ‘ ( 4.6)
| .
| or
|
i Y = AsX { L)
|
also will be Gaussian distributed, because
_— o 9(x) '
v - fx : ( .
|
where | gé:;[ _ is the Jacobian determinant , (in
this case given as (det(A)) _l) which is independent
of Y. Hence: *
B n
£(Y) = —————— > exp(-3v ATS A Y) | ‘
(2m)7 T (det(s)) det(A)

(4.9)

! J

Before the distribution of Y 1is discussed, there will be
stated that S8 1is a second order tensor. § is according te
Eq. (4.2) defined as: 1

Sz E(XXD) : ( 4.1qd

In the following assume that ¥ 1is given as:

Y= A'X o waLf

where A is an orthogonal matrix, with the properties:




19

det(A) =1

T (4.12)

then the new variance-matrix is given as:

T

revy?) =s'= ECAXXTAT) = AExxT) AT

or

(4.13)

which states the tensor properties of 8 ( See for
instance Jaeger /6/). In addition, § is symmetric,

which is easily stated from Eq. ( 4 .1lo):

S.. = E(X.X,) = E(X.X,) = S.. (4.14)
ij i3 it ji

In this case it is possible to find at least one A

which diagonalizes 8':

5'. = V.6.. i (4.15)

If det(S) = o, at least one of Vi is equal to zero.
This indicates that X, are linearly dependent.

Y = A X, =0 (4.16)
An example is the case when:

« o 9%
2 at

2
w = 47X
3 e
dt




which both are Gaussian distributed (if X (t) is
1

Gaussian). If Xl(t) is given as the response of a -

t

harmonic qscillatof: -
"X+ 2 wX +w:X =o (4.17)
1 01 N
or
1 2 pw w?
— X +—4 X + —Lx =0 (4.18)
Kk 3 K. % K 4
where |
K=, 4p2w? + o
[} 0 :
1
then Eq.( 4.16) is fulfilled.
The occurence of Vi = 0 does not make any difference in the

following, so no more discussion of this case is necessary.

According to Eq. (4.12) and Eq.(4.13)

| AS (4.19)

@
>
1

or on the index-form.

! -
SijAjk -Aijsjk (4.20)

Assuming S§' to be diagonal and introducing Eq. ( 4 .15 ),
Eq.( 4.20) is rewritten:
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visijAjk = Aijsjk $i (4.21)
or b
viAik = Aijsjk $i (4.22)
Introducing:
Nos R (4.23)
where
*ik = Ak

Eq.(4.22) can be written in the more compact form:

sxi-vixi - & (4.24)

which shows that A> is the eigenvector connected to

the eigenvalue Vi of §

This shows that A contains the normalized eigenvectors of
S and that the diagonalized §' contains the eigenvalues of

8§, such that:

i, (4.25)

and
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both can be found by means of standard eigenvalue

and eigenvector routines.

If one is searching for a set of independent variables,
with given values of Vi’ the Gram-Schmidt's ortho-
normalization process can be used. The details on this
process can be found in most standard textbooks on

numerical analysis, for instance Frgdberg /7/.

The process is some sort of a recurrence process. One

starts with the first variable:

Yl ) Allxl (4.27)

and chooses A so that E(Y?) = 1. In the next step
11 1
Y is asBumed in the form:
) ‘

¥ =4 X #+#A X (4.28)
2 pISL ] 22
Aand A and A are calculated from the relations:
oW 22
EXY Y ) =0
1l 2
EC ¥4y = 1 (4.29)
2
In general Yn is assumed in the form::
n
Y 8 . (4.30)
n ; ni 1
1=1
and Ani is calculated according to:
E(%.%,) = @ Sk
R
=i (4.31)

- 2
E( Yn )
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In this way A is found, and S8’ is made equal to
the identity matrix. In this case &( ¢ ) becomes very

simple:

= -1 2 s ‘ (-1p2

Q(‘I’) eXP( 22. 9.).. I.I expt zei) (4.32)
i i i :

which also shows that the uncecrrolated variables

are independently distributed (which is the case in

general when the variables are Gaussian distributed.).




5. STATIONARY RANDOM PROCESSES.

For the general theory of stochastic processes, the
reader is referred to one of the standard textbooks
on this field, for instance Cox & Miller /8/ or
Sveshnikov /9/.

Here only the main results are going to be given.

A random process X(t) * is said to be strongly
stationary if its complete probability structure is

independent of a shift in the parameter t,i.e.:
|

f(x st ) = f(x ;t +a) : ( 5.1)
1 1 1 g
|

f(x ,x 3t ,t ) = f(x ,x 3 t +a,t +a) ( 5.2)
17 e 1 2 1772 1 2

t +a,----,tn+a) (=5 8 )

f(x1,°°',xn;-t1,°°',tn) is the joint probability
density function of the variables Xi(ti).

When Eq.( 5.1) and Eq.(5.2) are satisfied only, X(t)
is said to be weakly stationary.

1

%) ! _
In the following X(t) is assumed continuous both as

a variable and with respect to t
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The above discussion can be extended to several jointly
distributed random processes. For example take ~X(t)
and Y(u). In this case X(t) and Y(u) are said to be
weakly stationary if:

F(x ,y 3t ,u ) = f(x ,y 3t +a,u +a) ( 5.4)
171 101 1 71 ‘ 1

1

and strongly stationary if the generalization of
Eq.(5.4) is satisfied.

In the case of Gaussian random processes with zero mean
the sufficient and necessary conditions for weakly
stationarity of X(t) and Y(£) are that:

E(X(tl)' X(tz)) = ny (tl—tz) : ( 5.5)
E(X(t1)° x(tz)) = R, (tl-tz) ' ‘ ( 5.6)
E(Y(t1)° Y(tz)) = Ryy (tl_tz) ( 5.7)

1t has generally been proved that the Fourier transform

of R and R exist:
XX Xy

+

Sex ° %? J exp(-iwT) Rxx(f) dt ( 5.8)
+
sxy=—%Tr J exp (-iwT)R, (1) df ( 5.9)

-0

Sxx and Sxy are called the spectral density function

(or shortly the power spectrum or the spectrum) of X
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and the cross-spectrum of X and Y, respectively.

According to the theory of Fourier transforms, RXx
and ny can be found by means of Sxx and Sxy in the

following way:

4o

RXX(T) = [,exp(+iw1) Syx (w) dw (5.10)
ol

ny(T) = J exp(+iwT) Sxy (w) dow (5.11)

-0

RXX(T) and ny(T) possess the following properfies:

IR (D] & R (o) (5.12)

|ny(r)| < VR (o) Ryy(o) (5. 28)

It is proved that the sufficient and necessary condition
that the time derivative of X(t),X(t), exists is that:

2
d szx(T)‘ exists and is unique (5.14)
dt
T=0

It also follows that: .
R_.s(t) = —R x(-r) (%S ., 15

From condition ( 5.14) and Eq.(5.15) it follows that

t
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E(x(t)x(t))A= in(o) = 0 ' (5.16)
which includes statistical independence in the case of

jointly distributed Gaussian variables with zero mean.

For real random variables which are given from X(t)
by means of linear differential or integral operators,
L( ), the spectral densities can be found in the

following way:

]

Y(t) L(X(t)) , ' (5.17)

Y(w) dp(w)s X (w) ~ ’ (5.18)

1]

where X and Y stand for the Fourier transforms of X(t)

and Y(t) and ¢(w) is called the transfer function.

If Y(t) is assumed to be (weakly) stationary, its

spectral density is given as:
S = oM . '
byy(w) dlw)o*(w) Sxx(w) (5.19)

where the asterisk stands for complex'conjugation.

According to Eg.( 5.20). Ryy(T) is found as:

+

Ryy(r) = J exp(+iw1)¢(w)‘¢*(w)sxx(w)dw ' (5.20)

-0

and specially:
+o
2 = - ° L] |
E(Y*(t)) = Ryy(o)- f d(w)dp*(w) Sxx(w)dw | (5.21)

- 00
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A generalization of Eq.(5.19) is given below: Assume:
Y. (Ehs =L gk, CHCEI) (5.22)
i gl
Which implies:
Yi(w) =~-¢i(w)X(w) : (5.23)

and following:

S = ¢i(m)-¢;(m> Sy (w) (5.24%)

According to Eq. (5.11):

4o
Ryiyj(T) = J exp(iwt)¢i¢§sxx(w)dm | (5.25)
and
4 co
E(Yi(t)Yj(t)) = Ry.y.(O) = I ¢i(w)¢;(w)8xx(w)dm(5.26)

i | -




6. THRESHOLD CROSSINGS.

Let in the following X(t) be a continous random process
(also with respect to time) and I(E,tl,tz) be an associated
counting process, which counts the numbers of times X&t)
crosses the threshold, £, from below, within the time
interval <tl,t2] . In addition to X(t) the following

random process will be constructed:

Y(t) when X(t) 2 §

= o when X(t) < o ' ( 6.1)

This can be written in a more compact form:

Y(t) = HX(t) - &) ( 6.2)

where H(s) is the socalled Heaviside's step function,
defined according to Eq.( 6.1). The derivative of H(s)

is given as:

dH(s)
ds

= §8(s) : ( 6.3)
where 6(s) is Dirac's delta function, defined as:

8(s) = o s ¥ o

te
1

I ¢(s)*8(s)ds = ¢(0) (el# o & ez# o & ¢(0o) finite)

-€ - ( 6.4)
1
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According to this: -
ety = LHxe-)e B2 X sx(0)-8)  (6.5)
dX dt '

Fig. (6.1) shows a sample function of the process
X(t), together with the associated y(t) and yit).

LA A tn\ o
LA s VI,
y(t) N
DR 1 T 1 0 [ 1 y
y(£) © t2
111 1.
STT T TR
Fig.( &.1)

By introducing the process Z(t)

76" Y(t) Y(t) > o

S o ¥(t) < o I | B8

I(E;tlstz) can be -expressed as:

t+
0

’

I(E,t ,t ) = J Z(t)dt | ( 6.7)
1 2

t+
1
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Taking the mathematical expectation of Eq.(6.7) the

following is obtained:

N

' E(I(E,t ,t ) = E(Z(t))dt

+N——rt

-+

tt 4o o)
2

{ J J CX6(x-E) fx i(x,i,t)d&dxdt
%

. %=
4¥ET®
1
t+
2 0o
= J J x £ «(E,x,t)dxdt ( 6.8)
X,X‘
t+ 0 )
1

where fX i(x,&,t) is the probability density function of
2

(X(t), X(t)). To get the finale result Eq.( 6.4) is used.

If assuming X{(t) to be (weakly) stationary, then
fx i(x,i,t) is independent of t and E(I(E,tl,tz))

b
becomes:

ECICE,t ,t D) = (t -t ) J xf  J(E,x)dx ( 6.9)
1 2 2 1 XX
Q

In this case it is more convenient to deal with the

expected rate of crossings per unit time:

1
t -t
2 1

N(E) =

cE(ICE,t ,t )) =J xf. o(E,x)dx (6.10)
17 2 ‘ X,X
O

Eq.(6.lo) was first found by Rice/10/ in his celebrated
work from 1944 and 1845.
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As an example, let X(t) be (weakly) stationary and

) - . .
Gaussian with zero mean. In this case X and X are

independent (The proof is found in any textbook on

stochastic processes, for instance Sveshnikov / 9/)

and the joint probability function is found as:

£,.5 = L exp(~3(X)2 - 3(-F)2.)
, L] L ]
2noxox Oy o5

Making use of the following integral expression:

N(g) is found as:

N(E) = < . + exp(-3( £ 2

27
Tr gx

Of special interest is the expected rate of zero

N¢o)

(6.11)

(6.12)

{ 6 3ER)

crossings,

(6.14)




7.PEAK DISTRIBUTION.

A peak, or a local maximum, of a continuous random
process x(t) occurs when x(t) = o and simultaneously

%(t) < o. this suggests that the information about the
distribution of the peaks of x(t) can be obtained“from the
joint probability distribution of X(t), X(t) and X(t).

As for threshold crossing a counting process, J(E,tl,tz)
is defined, which counts the local maxima of X(t) above

a level & within the time interval <t1,t2].

By defining

Y(t) = H(X(t)) ; ¢ 7.1)
and
Z(t) = =¥(t) ¥ <o
= 0 Y20 ( 7.2)

J(g,tl,tz) is found as:

t +
2

J(E,ti,tz) = J Z(t)+ H(X(t)-g )Hdt ¢ 7.3)
t +
1
Taking the mathematical expectation of Eq.( 7.3)
E(J(E,tl,tz)) becomes: '

tz o}
EQICE,t ot )) = J f I J —%(t)8(xX)e
t —

W (X% o % ,t Ydkdxdxdt

H(x(t)-E?fx;i’x
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N+
8

o
J -X(t)f_ o i(x,o,i,t)didxdt ( el

1}
t~———t

-4

In the case, when X(t) is (weakly) stationary,
Eq. (7.4) is simplified to:

E(d(g,t 3t )} = (t -t )= M(CE) (Nep
17 72 2 1

where M(E) is the expected number of local maxima above

the level £ per unit time:

© 0
M(E) = J J -Xf . 52(x,o,i&)di&dx ( 7.6)
E o

The expected total number of local maxima per unit time

then becomes:

. r (1} .a ”
MT = M(-») = J j -xfx;i,ﬁ(x,o,x)dxdx (N D)

-00 =00

Following: The probability thét anry single local maximum
will fall above the level & becomes:

1-F(g) = 8D ¢ 7.8)

Mp

where F(E) is the probability distribution function of
the local maxima.

The probability density function of the local maxima
then can be found by differentiating M(Z) with respect

to £ , which gives:
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Fg) = - & (1-F(e))e - 4 m(E) =
dg M.. dg
I T
9 .
l O J —if » u(E,O’i)di‘( : ( 7-9)
M X ,X,X
T

-0

In the case when X(t) is (weakl&) stationary Gaussian
stochastic process with zero mean Rice /10/ has found the
solution for f(g). His results have been discussed in
details by Cartwright & Longuet-Higgins /11/, from which

the following is taken:

£(n) = —— { ecexp(-3( —2)2) + YI=eZ * neexp(=3n?)

vom
rerf( 3—.'/1-62)J (7.10)
2
where
(Var(X))?
g2 =1 = ~ oge<l
Var(X)sVar(X)
n=&/v Var(X)
and

X
erf(x) = /%—-- I exp(-3y?)dy
)

It can easily be shown that

a) f(n) » nexp(-in?) no

+ 0 n <o (7.11)
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b) £ (qde > Bl exp(-2n?)
V2T
8+ b : )
c) f(n) >/ 1-€%2 n exp(-1in?) (7.13)
n >
e 1
d) € > 0 « The effect spectrum of X, S(w)

takes the form: S(w) -+ %mo(d(w—wo9
+ 6(w+wo)) where m = Var(X)

For most observed ocean surface wave spectra, € is found

to take a values between 0.3 and 0.6, which indicates a

value between 0.8 and 0.95 for /Ij;?_ . For responses to
ocean waves the transfer function (RAO) acts as a band-pass
filter, and hence gives a lower value on € for the response |
spectrum than for the ocean wave spectrum. Point c¢) above ‘
then indicates that the Rayleigh distribution:

1

f(n)

nexp(-3n?) neo

= 0 n <o (7.14)

will ‘be a good approximation to the probability density
function of local maxima of the (weakly) stationary Gaussian
stochastic process with zero mean,X{t), when X(t) is a respon@e
to surface waves and n is somewhat larger than one. Fig . (7.0
which is taken from Cartwright & Longuet—Higginé/ll/ and

shows f(n) for different values of € , indicates the same.

|
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Fig. (7.1)

When assuming from the beginning that the effect spectrum

of X(t) to be narrow (i.e. e€?<< 1) the distribution of the
local maxima can be approximated in a some simpler way. This
approximation neglects the possibility of positive local
minima or, when restricting the results to be valied for

n > Ng> neglects the possibility of local minima for

> .
n Ny

In this case
MEE) = N(E&) (7.15)

where N(&) is given from Eq. (6.10). If, in addition Mo,
is put equal to N(0), one gets:

lex’i(g,x)dx
1-F(g) = —
jxfx,i(o,x)dx (7.16)
O .
As an example let X(t) be stationary Gaussian, like before.
N(g) is then found from Eq.{(6.13), and following:

1-F(§) = exp(-3(z% )% (7.17)
N |
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or

£(g) = - exp(-3(=2)%) = £ exp(-3e20%) | (7.18)

dg Oy Oy Ox
Which coincides with Eq.(7.14)
When the spectrum is not strictly narrow banded, MT
is overestimated when putting it equal to:
00
Mp = fok’i(o,x)dx | (7.19)

0

This, in turn, shows that Eq.(7.16) gives a conservative
result when applied to the distribution of peaks at a

hdigli leveld IoF" .

The same result is found when comparing Eq.(7.13) and
Eq. (7.18)




8. THE DISTRIBUTION OF ONE SLIGHTLY NON-LINEAR VARIABLE

Assume in the following that the variables Yi'are
independently Gaussian distributed with zero mean and with
variance Vi’ respectively. The non-linear variable L is in

the following assumed to be given as:

Y. + a..Y.Y. ( 8.1)
i7i ij7iT3

where

(8
]

l,ooo’N
J = 1l,°°*,N

The "slightlyness" of the non-linearity of the variable
I cannot be precisely defined according to Eq.(8.1).
When introducing the new variables:

X. =Y./ V/V. - ( 8.2)
i i i
z =3I/ N ( 8.3)
where
] = 2
i v iaivi ( 8.4)

Eq. (8.1) is transformed into

Z = ALX,

+ g..X.X
i1 ij

i%3
where

A. = a./YvV
1

1

such that A.A. = 1 . ( 8.6)
i%1 _




and

The only parameters left to be used
"slightlyness" of the non-linearity
limit Bex * Dy Z becomes Gaussian,

said to be slightly non-linear when
ij

Introducing Eq(8.4) into Eq. (8.7),

40

$ij A ( 8.7)

in defining the

are €... In the
s

and hence: Z 1is

for any pair (i,j):

§ gBsh

2E is expressed as:

a.. vV.V.
£.. = —=d e
Ve o2
ZosV
kT
In the following the parameter e, which is assumed
small, is defined as:
1 d..as:V.V. 4
€ = (I e,,6,,)% = (z —21 32 % 1y= (8.10)
s+ 13731 TR
J 1) 20 Yk
k
Hence Z can be expressed as:
Z = A.X.+eh..X.X. (8.11)
BRI i3 1]
where
(8.12)

o
A.. = — e..
3] € 1]




which is normed as follows:
|

A.LAL.., =1 (8.13)
ijTii

The distribution of Z now can be found in one of the

following three ways:

a) Introducing Eq.(8.11) into Eq.(2.24), then

expanding exp(lez(X )) into a power-series in € and then

integrating Eq.(2. 24) term by term, ¢$(8) is found in the form

|

6(0)= %empmgie>exp<—592> (8.14)

where Pm(ie) is a polynomial in (i®) of order m. Separating
Pm(ie) in powers of (if) and using Eq.(Al.9), f(z) is

found as:

f(z) = L expl-3z2)(1+Z B_ He_(z)) (8.15)
/2T m=1 m n

b) Calculating the values of Wy = E(Z™). Then

®(8) is given as:

© U
8(8) =x D(ie)™ : (8.16)
m=o m!

Separating exp(-362) from ¢ in the following way:

® ©
0(8) = exp(-362)(Z & (307)° 3z SBzig)™) (8.17)
nzo n! m=o™*

where it is taken into account that:

exp(}02) =I <%!(;eZ>n) (8.18)
n=o
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Making one series expansion out of the product of the

two series in Eq.(8.l7)éives:
= -1lg2 7
(0) = exp(-16 )(iAmHem(le)exp(—%ez))- (8.19)

The rest of the calculation follows method a), when in

stead of separating Pm(ie),separating Hem(ie)

c) Calculating the cumulants of Z, Koo and
writing $(6) in the following way:

| N
$(8) = exp(Z —7 (i6)™) (8.20)
m=1

w K
and then expanding exp(l ﬁ$ (ie)™) in a power series in

€

, which gives: mel

8(0) = ¥ eum(ie)exp(-%ez) (8.21)
m=o

The rest of the calculation follows method a).

0f these three methods, method b) is the least tractable:
There is a lot of work to calculate all Mo and there 1is
difficult to predict which terms that will cancel in
Pm(ie), this is first found when Pm(ie) is calculated.

Method a) looks to be the most direct method, and for

a problem as simple as the one indicated here, it is the
most tractable.Trying to apply this method to two jointly
distributed slightly non-linear variables it is found that

+the method becomes untractable.




e

Usually the cumulants are calculated acﬁording to the

moments (um). If this was the only way of doing is, method c)
would have been less tractable than method a). In Appendix 3
the method of finding Ko is shown more directly. This simple
calcu}ation makes method c) very tractable. In the following

the calculation of f(z) from Ko is shown in detail.

9(8) is assumed to be given as:

. @ K
6(8) = exp(Z —ﬁ$ (i6)™ (8.20)
m=o ‘

where K is (according to Appendix 3) given as:

e =k eP? 4p R mz 2 (8.22)
m m m

k = k = o
0 1

x =1

so that 0(8) can be written in the following way:

2(8) = exp(-362)-exp(E €"(k_,, (i)™ % +n (i0)™)
n=1
(8.23)
Calculating the series-expansion of
exp(E_; eMk,_,(i0)"7% + b (18)™)),8(8) is found as:
5(8) = exp(-302)[1+F e"(x (i)™ 24n_(ied™)
n+?2 n
n=1
s .n .o yDt2 . a3y 2 eeed
+%(%=ls (kn+2(1e) +hn(1e) Y)Y +
iexp(-%ez)[f sum(ie)] (8.24)

m=o0

Pm(iﬁ) up to m=4, are calculated in Appendix Uu.




4y

According to Eq.((2.3) f(z) now can be found as:

+ o
Cf(z) = %— J 8(8) exp(-i6z)de = ¥ M L,
T _ 2T
= m=o
400
-J exp(-362-i082z)« Pm(ie)de (8.25)

~Cco
®

In Appendix 3 it is shown that Pm(ie) is given
in the form: Y

. 3m .
B iR = HDW (i)™ (8.26)
m n
n=m,m+ 2
ané nence:
3m o
flzM=% ™z Hﬁo%; J exp(-362-16z)(1i06)"as
m=0 n=m,m+?2 !
("8 .27
According to Eq.( Al.10) f(z) now can be found as:
3m
£(z)= —— exp(-322)(1+% &™& H%(-1)"He (2))
vam m=1 nz=m,m+2 n
(8.28)

By means of Eq.(Al.20) the probability distribution function,

F(z), now can be found:

Z
F W B I £(z)dr = 6(z) + —— exp(-1z2)
) Y
- 3m =
(¥ Mg HA(-1) He _,(2)) (8.29)

m=1 n=m,m+?2




where

: z
G(z) = J L exp(-3z2)dg

y2n

[+

It is easily shown that when € > ©

£Cz) - L exp(-1z2)
y2m

and

F(z) = G(z)

as expected.

45

(8.30)




9. THE DISTRIBUTION OF TWO JOINTLY DISTRIBUTED,

SLIGHTLY NON-LINEAR VARIABLES.

In the following assume that the two non-linear

variables Zl, Z2 are given in the following way:

N
1t

Aixi +eAinin ( 9.1)

] Y3X; +eTs X X, ( 9.2)

N
H

where X1 are independently Gaussian distributed with zero
mean and variance equal to 1. € is assumed to be a small
parameter.

The calculation of the probability density function of
Z and Z2 is similar to the one for one single non-linear

1
variable given in chapter 8.

In the following one simplification is made:

The part of the eumulant K11’Whi0h is of order

e? is assumed equal to zero.

This will be shown to be the case for the problems to be
solved by means of the present method.

According to Appendix 3 and Appendix L4-it is shown

that the characteristic function of Z1 and Zz, @(61,62),

can be written:
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‘ = -1 g2 -1 K
¢(61,62) | exp( A 1)exp( 2V, 2)
| z m3m m_, - i .
«(1+ e'r H,as(ig )7(ie )y ( 9.3)
m=1 1] 1 2
i=m
j=m

where v is the part of k which is of order ¢’
20 2

0
and v 2is the part of k which is of order el.
0 02

According to Eq.(2.25), the probability density function

of Z and Z 1is:
1 2

o

+
]f(z yZ ) = - L JI d(8 ,0 Jexp(-i@ z -i0 z )d6 dé
‘ 172 (2m)? 17 2 11 2 2 1 2

| -0

( 9.4)

and following Eq.( 9.3) and Eq.(Al.10), f(zl,zz) is found
to be: '

2 2
BT 1 1 z z
f(z ,z ) = exp({-2 —+ -1 —% )
L. 21 VvV v v
20 02 20 02

el

3m i o 0 g ‘

e (145 e™s W,v l(zv 3/2(—l)l+JHe.(Zl/¢v )

i= 1] 20 02 1 20
J

m
m

)) ( 9.5)

2 -

zZ
-Hej( 2//\)0

'

where H?j is given in Appendix 4% for m 1less than 5 .

The calculation of H?j in Appendix 4 is based on a straight
forward series expansion. An automated procedure, well fit

for electronic computers, is given in Appendix 5.




10. THE DISTRIBUTION OF LOCAL MAXIMA OF ONE WEAKLY
STATIONARY,SLIGHTLY NON-LINEAR RANDOM PROCESS.

Assume in the following that the variable Yl(t) is

given as:

Y (6) = 63X (E) 4 AgaX (£)X(8) (10, D)

where Xi(t) is assumed to be a weakly stationary Gaussian
random process with zero mean. In addition the variance of

(sixi) is equal to unity.

The derivative of.Yl(t) with respect to time, ?I(t) = Yz(t)ﬂ

is given as:

Yz(t) = GiXi(t) + 2€Aijxi(t)° Xj(t) (10. 2)

when assuming A,. = A...
1) Jji |

ii(t) also becomes weakly stationary and Gaussian with zero

mean, coupled to the variables Xj(t) and ij(t)‘(evén though

uncoupled to Xi(t)).

By transforming the variables {Xi,ii} crthogonally to a set

i
|
of independent variables and deviding those by the square ro t of ‘
their variance, a set of new variables, Zi(t), are found,

|

which are independent Gaussian with zero mean and with variance

equal to unity. Then the variable xi(t) can be written:

. xl(t) = AiZi(t) + eAijZi(t)Zj(t) (10. 3)
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Xz(t) = ini(t) +erijzi(t)zj(t) (10. )
wher?
2 _ ’ . ‘

and following:

1

! VECS 8RRz )
i 37173
and
Y (t)
xz(t) = —2 .

% .
E(GiéinXj)
and € is given such that

L A::A. =1 (10. 6)

‘11 ij™ji

In addition € is assumed to be a small parameter.

trom Eq.( 2.16) and Eq. (2.20) it 1is easily found that:

. o0 o0 . u -
B39 )M(ie K=z (= Mg )M(ie )™
n. 1 .2 ] 1 2

z
m =1 m,n}o, Om.n.

,n§{o,0
(10. 7)

|

when separating terms of (iel) and (iez), Ky will be given
as a series in'u n’ where every term is proportional to By
where v takes some value less than, or equal to m.

So: If it is proved that ﬁ -o for all v then follows that:

K_ =0
my



The proof for uv1=o goes as follows:

_ vey o 1 _d 1 4
By, = EOXX) = 457 Bl X = 971 ar kX

because Y is stationary and the operations E( ) and

df _ lim , f(t+h)-f(t))

=-— = commute.
dt n+o ° t

h -

According to the assumptions: Eq.(10.5) and E(Z;) = 1,

v is found to become equal to unity and
20

v = zy§=oz . (10.9)

According to chapter 9 the probability density function,

f(El,Ez), then is given as:

- L _1r2_1¢824v2y, ® m,
£CE 1€ )) = 35 exp(-3E -3(=2)%) (1+§=le
3m m -

According to chapter 7, the distribution of local maxima,

n, of X, is found (approximately) as:

[+

F(n) = 1- M_l ngf(ﬂgﬁz)dﬁz (10.11)
T
O

where F(n) is the probability distribution function of

n and MT is given as

My = J £,£(0,8,)dE, (10.12)

o}
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The integral

[ o
I (n) = J £ £(n,E )dE (10.13)
1 2 2 2
o

can be calculated according to Eq.(Al.12),Eq.(Al.1h)
and %q.(Al.lB) in the following way:

1 z m3m. m =]
T = — exp(-In?)(Z €I Hi.o jHei(n)
! 2m0 m=o i+j=m 3 :
' o
. J £ He.(E /o)exp(-3§ /o)dg ) - (lo.14)
2 ] 2 2 2
{ (@]
where
o -
iHoo =1 _ (10.15)
Hence

e _1lp2 m m _-j ‘
Il(n) T exp(-in®)(Z €L H;.0 Hei(n) Jj) (10.16)

I

‘ o 3m
i mso i+j=m
|

where
l o0
°df, [ gHek(g)exp(-%Ez)dE (10.17)
|
o
or following Appendix 1:
|
I
J =1
O .
J = V/n/2 ‘
' (10.18)
;= He, .,(0) = (-7 (2n-2) n21
1Yo - 277 (n-1) !
J = He (o) =0 n22
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Erom " Eq. (10, 182 jist isigiven that:

- m3m
I (o sp2-8 <%
1 . . c s
m=o i+j=m

My

H@.c'JHeico)-Jj (‘L@ ush

and hence according to Eq.(10.11)
3m

§ sm§ : Hm.o_JHei(n)-Jj
F(n) = 1 -exp(-3n2)R28 2t)em (10.20)
‘ 3m

¥ M3 H?.G-JHe.(o)°J.
m=o i+j=m & 1y

The probability density function of n,f(n), now can

be found as:

3m .
& smgf H?.cvlJa—g—(exp(-%nz)He.(n))
fr ) = dF(n) _ _ m=o 1+j=m‘.J J dn =
3m 1
& £ e™  HY.0TIHe (0)d,
m=o0 i+j=m J -3
(lo.21)
or according to Eq.(Al.18):
3m .
¥ €m¥ . H?jc JHei+l(n) Jj
f(n) = exp(-3in2)E2 2t)cm (10.22)
- m3m
2 o B H..o-j
m=o i+Jj=m 1] Hei(O) Jj
By taking e€*o in Eq.(10.22) it is found that:
f(n) » Hel(n) exp(-in?) = nexp(-in?) (10.23)

which coincides with the Rayleigh-distribution, as expected.
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When calculating the next term in Eq.(10.22) one gets:

£(n) = exp(-3n?)(n+e((H! +Z,H' )(n?-1)
10 O 12

+H;o(n“—6n2+3)

where:
H! = A..
10 11
1 = Aoy +20.T. .y
le YlAlel 2klrl]Y]
H' = x.A

= AL LA
30 1 1] ]

(10.24)

(10.25)




11. NUMERICAL RESULTS AND DISCUSSION.

No computer program for calculation of the probability

density function is jet available, but it is expected

to be the case within few months ( from may 19745. On

the other hand the autor has calculated by hand the probability

density function of one special case, namely when:

X + gXx?

<
i

. ¢ 11v.
X + g+2XX

<!
(1}

Fortunately Lin /15/ has calculated the probability
density function of maxima of Y1 in this case and the
results of the present calculations are compared to

Lin's results.

Without loss of generality EX? is in this case put equal
to 1 and EX? equal to o3

For calculation of 8(n) according to the present
approximate method the vectors A and ¥ and the
matrices A and [ have to be calculated.
According to Eq. (11.1)
A= (1,0} (11. 2)

and

_ 1o
A= {50} | (11. 3)
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Differentiating Eq. (11.1) gives:

y = X + 2eX-X (11.4 )

and following:

| - y= o{o,1} (11.5 )

and

r= o{® 11 ‘ (11. 6)

where o2= Var(X)
!

Accordlng to chapter 10 and Appendix b ek(n), which is the

approx1matlon to 8(n) up to order e* is given as:

g (n) = exp(-in?)[1 + e(SHel(n> + He (n))
3

L

2(%éHe (n)‘+ 5He (n) + 3He (n))
2 4 6

+e* (e () + 32He (n) + %He7(n) + %Heg(n)) :
315
vt (3PHe (n)+ 1g5He (n)+ 834e ()43 He (n)+——He ()
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On Fig.(11.1) 5n(n),for n £ 4, have been plotted together
with the exact solution, 8(n) for € = o.1l. The plot of
8(n) (and 5n(n))is (as easily seen) in logaritmic scale.
Even if ® for larger values of n ,the values of ﬁn given
at different probability levels of §n(n) are remarkably
close to the exact value. For instance:

at the level 10 .

On the other hand:

o 14
|
=3
=

- = . (11. 9)

=1
(]
o

at the level 10-5, which indicates that the calculation

of long term distribution of slightly non-linear variables
must be done by means of Eh(n), where n is larger or
equal to 5.
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10°
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IR

Fig.(11.1) Plot of 8(n) and 5n(n) for n < 4
and € = 0.1

o
[Orps
N
w
=

A plot of 3£(n)/6(ﬁ) for € = 0.1 and n € 4 is given in Fig.(11.2)
As shown, the En falls rapidly from a slightly correct value

down
that
too

very
that

to a low value within a narrow band of n. This indicates

one has to be careful with the choise of n, not to make it
small. On the other hand the computation work is raising

rapidly with n, approximately as n®, which indicates

one has to be careful not to choose n too large.
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Fig. (B, Z¥pRiliot of gn(n)/a(m) for n <4 and
e = 0.1 together with 6(n)-

To give an indication of how sensitive the results are
for change in e , ﬁn have been calculated for n £ 4 and
@ = lO_u (ﬁn given by: §n(ﬁn) = Q). The result is given
in Fig.(11.4), where it is shown that for € > 0,125 the
results show significant errors, and that this error is
rapidly growing with decreasing n. % in the figure

is given by 8(H) = Q




I- n =4
L n = 3
i n =2
+
n=1
0.5 n =20
0 f- I e S S — i [ T
0.05 0.1 0.15 0.2 e

Fig.(11.3) ﬁn/ﬁ as a function of € for n < 4

In Fig.(11.4) it is shown how f /f is varying with e for

- - - Y -
Q = lo 3, 1o u and 1lo 5. The results for Q =10 are

remarkably near to the correct value (ﬁk =n ), while the

result for Q = lo_5 show significant errors for larger

values of €.

0 ———

1
L]

]
Ll L}

Fig.(11l.4) ﬁu/ﬁ as a function of € for Q=1O—3,lo

[ ]
0.05 0.1 0.15 0.

2 €

~% and 107°
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These results mainly coinside with those given in the .
preceding part of this chapter: '

For larger values of € ( € > 0.125) n has to be raised
above 4 to get saticfactorial results for larger values
of n (n > 6,5) '



APPENDIX 1 - HERMITE POLYNOMIALS

The following two functions are characterized as Hermite

polynomials: Hn(x) and Hen(x). They are defined as follows:

v ? n w2
e H (x) = (.M L ()
n dx
(A1.1)
-1x? n_d® , -ix?
e 2 He (x) = (-1) ———n(e 2%y
n dx

From Eq.(Al.1) the following recurrence relations are

found:

Hn+l(X) = 2xH_(x) - 2an_l(x)
(A1.2)

He ,,(x) = xHen(x) = nHen_l(x)

I'he following values are easily calculated from Eq.(Al.1l):

H (x) =1
o
(A1.3)
He (x) = 1
o
H1(X) = 2x
(Al.4)

Hel(x) = X

From Eq.(Al.2) and Eq.(Al.3) it can be shown that
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H (x) = 2™ %He (/7 x) (A1.5)

and

He (x) = 2725 (x/v7™ ) (A1.6)

The special values for x = o are given as:

Hn(o) =0 n odd
n ' (A1.7)
= (-1)% B n even
Nyy =
(7)
Hen(o) = o n odd
(A1.8)
= (-l)n/2 . 2‘2 n even
. o1 (! |

The following integrals are useful for the présent calculations:

I) s +o0
n 1 n
Jexp(-t2+21xt) (itY'dt = = — J exp(-t?+ixt)dt
S 2 dx

-0 — o

o,

The last integral is known from the litterature ( see
Abramowitz & Stegun /3/ p 302, Eq.(7.4.6))

+00
J exp(-t2+2ixt)dt =/m exp(-x?)

- 00
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and following:

+ o0
- 2
J exp(-t2+21xt)(it)ndx Y (_l>n lﬁ Hn(x)e x% (Al1.9)
' 2
and
4+

=142
J exp(-3t2+ixt)(it)7at = V2% (-1)"He (x)e 2X° (A1.10)

- Q0

I11)
i _+2 N n _+2
ItH (t)e T at = (-1" Jt—é- (e”t Hat
n n
dt
o o
_ n-1 2 _q ® .n=2 42
= (-1)°7t Jd (" at = (-1 | S (™)
dt o at -
o
= H (o) (A1.11)
n-2
¢ -t%/2
J tHe (t)e dt = He (o) (A1.12)
n n-2
O

Both valied for n 2 2

For n = 1 and n = o the integrals have to be calculated separatly:

(A1.13)

S

o0 [+ ] o0
-tz _ { - -X _
tHl(t)e dt = [2t%e dt = |[V/X e “dx =
O (@] O

and

JtHel(t)e t9 24y - jtze t 2423 J/E s xdx=v/%— (A1.14)
QO (0]



1:Ho(‘c)e-t

o0

o)
and
tHeo(t)e

|

From Eq.(Al.1)

found:
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. | .
dt = Jte &GE EN S (A1.15)
t2 2

2 =7

dt = |te dt = 1 (A1.18)

the following rules of differensiation are

n+l

d -x%, _ ,_.yn d -x _ -x
d—x(Hn(x)e ) = (-1) dx—n+l (e ) = Hn+1(x)e
(A1.17)
s 2 _.2
Al e (e B 0y = ~He  (x). ST (A1.18)
dx n n+l

According to th
deduced:

e
an(x)e X

fHen(x)e-x

ose two equations, the following are

-x2
dx = - Hn_l(x)e (A1.19)

(Al1.20)




APPENDIX 2 = THE GAMMA-DISTRIBUTION

A variable, X, is said to be I'-distributed if it's

probability density function is written:

B & e — x%e X/ X 2 0
+
I'(oa+1)R (A2.1)
- o X < 0O
Where o > -1 and B > o.
and T(£) is the T'-function, defined as:
00 . .
reey = | x57te ax (A2.2)
)\
o)
The characteristic function is written:
9(0) = (1-ige) (o+1l) (A2.3)
When B = 2 and o = % - 1, where n is an integer, x is

said to be x* distributed with n degrees of freedom, with

characteristic function:

8(8) = (1 - i29) 1/2 (A2.14)

It is easily shown that if Xland X2 are independently
l-distributed with the same parameter 8 and with parameters

o and @ s Z = X1+X2 is I'-distributed with parameters

BZ = B and az=al+a2+l. In the case when X1 and'X2 are
independently y%-distributed with n and n degrees of freedom,

Z = X1+X2 is x?distributed with (n1+n2) degrees of freedom.
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From Eq.(2.24) it is found that when X is Gaussian-
distributed with zero mean and variance o2, Z = X2 is
-distributed with a = -} and.f =20%2. For ¢ = 1, Z
then becomes x?distributed with 1 degree of freedom.
The proof follows:

+oo ix2 ’
E— . 2
6(6) = —L J 5 Ok
v2m o 7

hof=s

dx = (1-i20%8) (A2.5)

according to Eq.(2.30).




APPENDIX 3 - CALCULATION OF THE CUMULANTS.

The following formulation is taken from Longuet-
Higgins /12/,/13/, while the method of calculation is
developed by the autor.

Assume that the two variables Z1 and Z2 can be formally

written in the following way:

Z = A +A (A3

Z = B +B (A3.

1
where A and B contain only linear terms in the

1 1
variables Xi and A2 and B2 the quadratic terms.

A = A.X. ' (A3.
1 1 1
B1 = v X (A3.
A = e..X.X. (A3.
2 1 1 3
B = 8..X.X. .
2 Gl] 1] (A3
where
1j= eAij (A3.
.= €el.,. _ (A3.

5oL

2)

3)

4)

5)

)

7)

8)



&8

For the following calculation the terms: Reducable forms

and irreducable. forms are introduced. These terms are

used in connection with the expected values of products

of Z1 and Z,, in the way that (i.e) E(AfB ) contains both
2

reducable . and irreducable terms.

A straight-forward calculation shows that

E(AfB ) = I A

E(X.X.X. X A3.8
, St X, 3o 1) ( )

3851

which in turn only takes values when:

-k , Bt {5
@ = B > k + %
or
2 29 YWIE 4 & £(x2x2
E(A1Bz) E ixixiéii E(Xi) + i Aixiékk E(Xle)
k
: 2v2y _ 5§ _ 2y (Y2 ’ :
Jfi

In this case I X.A.8.  E(X2X2) is said #o be reducable,
o A KK ik
1k

because it can be reduced into two separat groups:

22y = 239, 2y
ikkikiékkE(XiXk) —(?liAiE(Xi)) (idkkE(Xk)) (A3.11)
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On the other hand,the rest of E(AfBZ) can be shown to

form an irreducable group, because:

b - 2 2 = 2 2 .
E(Xi) E(Xi) E(Xi)- 2E(Xi) E(Xi) (A3.12)
due to Eq.(3.13). Hence:
2 £ A.A.6.. E(X2X2Z) + IA.A.6..E(XY)
5 13 1] 1] ;11 11 1
j#i

" oTALALS.. E(X2)E(X2)
illll 1 1

(18

2% A.A.6.. E(X2)E(X2) (A3.13)
i3 1 3 1] 1 ]

which cannot be separated as with Eq.(A3.11), and is

therefor said to be irreducable.

|

According to Longuet - Higgins /12/ it can be shown

that the cumulants,Kmn, of Z1 and Z can be written:
2

Ko - z (AplApz-- Ameqqu2-~- Bqn) . (A3.1u4)
Pl..pm

qlttqn

where P and q; are integers and

(AplApz---Ameqquz---Bqn) stands for the irreducable
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t of E(Ap *Ap *+ +Ap +Bq *Bg **+ B
BEDCNos Erip o#p Pp*Bq *Bq, q,’

It is clear that some of the terms in the series
expansion of Kon will coincide and it is not
neccesary to calculate all the braquets separatly.

For instance
A% B )'=(A & B ) (A3.15)
w2 2 1 1
and so orn.

It is more complicated to calculate the value of the remainding
braquets. The autor has developed a method for calculation,
which simplifies the calculations and makes it less time-

consuming.

In the following A ’B1’Az and B2 are given by the symbols:
1

A, = D
By = X%
A, = I}
B = O

Remark that A, and % only have one "arm" and that A2 and
B both have two "arms". Those "arms" will be used as
2

"Junctions" to other "bodies". For instance

(A A B ) is formally given as:
1 1 2

A B = |>4 F<| = 2% XN XS (A3.18)
(Allz) ijljl]

when

E(x§> =yl (A3.17)

is assumed.




e
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Remark the nuhber mo"  which indicates the number of
ordered regrouping of AJ and B2 : the special "j-arm" of
B can be "joint" to two different "arms" of the two A
bédies. When this is selected, the other "Junction" is1

automatically given.

From the definition of irreducable groups the following

is clear:

An irreducable group can only consist of zero or
two "one-armed bodies". The reason for this is that
the "bodies" either have to form an open chain with
a "one-armed body" at each end or a closed chain

without any "one-armed bodies”.

From this it is simple to show that « will be given

in the following way:

e = x emMnT2 g N (A3.18)
mn mn mn

according to Eq.(A3.7) & Eq.(A3.8)

Before calculating the irreducable groups, there will
be stated that a lot of them can be calculated from
others by changing "bodies".

As an example take:

(a8 B) = DO ' (A3.19)

this is calculated from

(A BB = X0 (A3.20)

by changing B by A1 (or M- by [~ ).
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Hence the following irreducable groups are calculated

to be:

(AIBI) = M =>\1yl
= - 2

(A,B) = [DO = 2eA;4ls;

A = =

( IBIAZ) 14 2€A1Aljyj ‘
- 3

(AZAZBZ) =. ?} =8¢ Alejk Ki

?
;-

(A BAB)
w1 2 2

3 _ : ‘ L 4
(AZBZ) = (1%%%) =48e™ A Jr T2l s
w- 88 B8 -
2 2
L I
i6e A:LJ JkAklI‘ll+32€ Alejk kl 11

(A,BAZB) = DIHIOX * N |
i T2 B2 DO D>-O{H -«

= 3 3
16€° A Ay shgy Tyo vyt 16€ A A 5T Aoy, + 16e AT5shs MYy
L I~ - 5
(A2B2) = = 384e”A. ]ij klrlmrml
(A2B3) =
2 2

5
=192¢° A A k kl 1mimi * 192¢ Alj ik klrlmrml
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(4,848 = DOOOOX* POHOOX
11 2 2 -
>-OOOX * DOOOLX

= 96g" AlAl]F]kalFle + 96¢” AlFlJAJkalrle

+ 96 A Ty alay ly Ty, * 96 A;T5 s Tay Tyqhy vy
(A B A2BZ) = DOHFOOX + DOOHOXK
1 2 2 ) .

¢+ pOTOOX + >OOTTX

Bue™ X, A1 A]k lelem + ke’ AlAlj ]kAklrlem

4+

[N
6lde AlA JF]kalAlmy + bBue" AlTl]A]kAlele

+

eue® NiTishs Tpg by # Ble® AiTssT5 M A Yy

(A B A’BY) = DIOOOOX + DOOOOX
1 1 2 2 .

>-OOOO0OX + DOOOOX"

+ D>-OO-O00OX

768¢€° A A r vy + 768e°A.T..A..T T_ vy

ij jk kl lm mn'n iti373k kl Ilm mn'n

768e5\. T, A, T, T Yn + 768e5A.T..T. T A, T ¥y

i ij ]k k1 1m mn i"ij3°jk’k1"lm mn'n

768e5A.T,.T. F _T_ A ¥y

i"ij"jk k1l ' 1lm mn'n



(A By BREE Y=
11 2 2
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+ DOOOOOX *+ DHOOOOX

+ DOOTOOX * DOOOTHIX

= 384¢5), A L
ij
+ 38u4e5). A

+ 384e5A.T..A. A
3113

JkTkl lmrmn

5
+ 38ue AlT JAjkrklrlmAmn

S
+ 384ePA T T ATy A

jk klrlmrmnYn
jk kl Im mnYn
i

Y

Y

384eSA A, i . Ty
i

ij ]k k1"'lm mn'n

38U WM R TP K o

iTij 3k k1 im mn'n

388 SN PN SRl T o

1iij ik k1 '1lm mn'n

38UeS Ao F o alier I Soll ol - G
i i)

jk "kl '1lm mn'n

5
384 A T o Ty Tg Ay phn vy

which contain information about all irreducable groups

up to order g°

Now the cumulants have to be calculated. From Eq.(A3.14)

it is easy to compute them. They are as given below:

K =20
00
K = L (A_) = (A
10 D1 P1 2
‘ S B B = B
! ( q ) ( !

q1

)

)

el. .

o

el .

LA




20

11

02

30

21

12

03

40

31

22
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z (A A )= (A%) + (A%)
D1 sP2 P1 P2 1 2

$ (A B )= (AB)+ (AB)
P1’q1 P1 Q 101 2 2

(B%) + (B?)"
1 2

pX (A A_A_ ) = 3(A%A ) + (A®)
D1,P2D3 P:1 P2 Ps3 1 2 2

T (A A B ) = (A2B )+2(A B A ) + (A%B)
D1D2 .pl P2 ql 1 2 1 1 2 2 2

g1

(B2A ) + 2(A B B ) + (A B?)
1 2 1 1 2 2 2

3(B2B ) + (B?)
1 2 2

T (A A A A_) = 6(A%2A%) + (A%)
PP 1 2 2

P1DP2 1 2 3 8
P3Du
b (A A_ A B_)=3(A%2A B )+3(A B A?)
P1D2P3 Pl P2 P3 q1 1 2 2 1 1 2
d1
(A%B )
2 2

X (A A B B )=(A2B2)+4(A B A B )
P1P2 p1 Pz q1 q2 12 112z
d:192

+(B2A2) + (A2B2?)

1 2 2 2
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ou

S0

b1

32

23

14

05

60

51

42

33

24

= 4(A B B®)+6(B2A B2)+(A B"*)
1 W % 1 2 2 2 2

76

= 3(B%A B )+ 3(A B B?) + W _a B?)
1 2 2 1 1 2 2 2

= 6(B2B2%2) + (B"*)
1 2 2

= '3 ‘ (A A_ A A A )=10(A2A3)+(AS%)
P 1 2 2

P1P2P3P4P5 Pl P2 Pa pu 5

= 4(A B A%) + B5(A%A%B ) + (A"*B )
11 2 1 2 2 2 2

= 3(A%A B2)+ 6(A B A%B )+(B2%A%)+(A%B2)
1 2 2 1 1 2 2 1 2 2 2

= 3(B2B A2)+6(A B B2%A )+(A2%B3)+(B3A?)
1 2 2 1 1 2 2 1 2 2 2

= 10(B2%B3) + (B%)
1 2 2

= 15(A:A:) + o(e®)

= 10(A2A%B )+5(A B A*)+o(e®)
1 2 2 1 1 2

= 6(A2A2B2)+ 8(A B A%B ) + (B2A") + o(e®)
1 2 2 1 1 2 2 1 2

= 3(A2A B3)+9(A B A2ZB2)+3(B2A%B )+ o(e®)
1 2 2 1 1 2 2 1 2 2

= 6(B2A2B2)+8(A B A B3®)+(A2B")+ o(e®)
1 2 2 1 1 2 2 1 2 .
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06 -

70

61

52

43

Ik

25

16

07

i

77

10¢(B2A B3)+5(A B B*) + o(e®)
1 2 2 1 12
15(B2B*) + o(e®)
1 2
21(A2A5) +o(e”)
1 2
15(A2A%B ) + 6(A B AS) + o(e”)
1 2 2 1 1 2
10(A2A%B2) .+ 10(A B A*B )+(B2AS) + o(e”)
1 2 2 1 1 2 2 1 2
6(A2A2B%)+12(A B A3B2)+ 3(B2A"B ) + o(e”)
1 2 2 1 1 2 2 1 2 2
6(B2A2B3)+12(A B A2B®)+3(A%A B*) + o(e”)
1 2 2 1 1 2 2 1 2 2
10(B2A2B3)+10(A B A B*)+(A2B%) + o(e”)
1 2 2 1 1 2 2 1 2
15¢(B2A B*)+ 6(A B B3) + o(e”)
1 2 2 1 1 2

21(8582) + o(e?)

Remark that the cumulants for the case of one variable

can be found as:

K (A3.16)




APPENDIX 4 - CALCULATION OF THE Pm- FUNCTIONS

A

a

The functions Pm(iel,iez) are defined as follows:

9(8 ,8 ) = -3v_ 62 -3v_ 82)(1+X €Pp (ip ,i
L 2) exp( zvzoel)exp( zvozez)(l+2 € Pm(lel,lez);

m=1
(Ay, 1)
where ¢ is given as:
e Fk1 k i
¢(91,62)=exp(2 —ETIT(ie1) (iel) ) (A4, 2)
k:o . .
1l=0

10

According to chapter 9, Koo = o and the parts of « and
Ko, which are of order €° are equal to zero. vzo'is the

part of k_ which is of order €° and v, , the part of «
which is of order € . In addition, the part of K
which is of order €%, is assumed equal to zero

Comparing Eq.(A4. 1) and Eq.(A4. 2), one finds that

K

5 eum(s,t) = %T % K$%' skt - v s?-1v t)°
m=1 n=1"" k=o' "° ¢ e
1l=0
(A4. 3)
Writing for Kiy®
i k+1-2 k+1
Ky = kkls + hkle ‘ (A4, 4)

the paranthes is at the right hand side of EQ.(A4.3) can

be rewritten:
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e Tkl k.1 ® m
L st -3s?-3t? = ¥ e K (s»t) (A4. 5)
. k=0 "7 m=1
I 1=0
where Km is given as follows:
| 1 1
'K =h s+h t+ =k s®+ 3k s?t +ik st?+ =k t°
1 10 01 B 30 21 12 6 03
_ 1 2 1 2 l L l 3
K =3h s?* +h st +zh t° + 57k s + =k s°t
2 20 11 02 247y 6 31
1 2.2 1 3 1 4
+ =k s?t® + =k st® + — k t
422 6 13 24 Ton
_ 1 3 1 2 1 2 1 3 1 5
K ==h s® + }ih s“t + 3h st® + =h t ——k s
3 B 30 20 22 6 03 120" 59
1 y 1 3,2 1 2,3 1 4 1 5
= = + = = + —
+ 2L+k“s t + 12kazs t 12k23s t 7+ 2l+kust lZOkost
I
- 1 4 1 3 L 2.2 1 3 1l 4
Ku ol huos + 6h3 s’t + l+h ,5 te o+ Bhlast + 2L+hMt
1 6 1 5 1 b, 2 1l 3.3
+ 77ﬁkeos + T76ksls t + L+8k st + 36k338 t
1 2.4 1 5 1 6
+ 48k24 7 0+ l20k1sSt + 720kost
1 5 1 Py 1 3.2 1 242
= — + = dn e + =
K5 120 s, 24hu1s t 12hns t 12hzas t
| 1 w o, _1 5 1 7 1 6
+ 5Eh St 1o, Bt To0n0%,0°5 720561 S ¢
1 5.2 1 .. b3 1 3.4 1 2.5
—_— + —_— —
+ ok 8°tP + qapk, 8T ¢ gk, 87T Y gpp K, 57T
_1l . 6 1 7
* 720klsst * 50u0k07t
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The values of Pm(s.t) can now be calculated in terms of
K according to Eq.(Au4. 3):

P = K ' (A4, 6)
1 1 !
P = K + 1k (A4, 7)
2 2 1
_ 1.3
Bl o=k B K e =K (Al g &)
3 3 2 1 6 1
- .
P =K + K *K + 3K? + 31K K?+ =— K* A4, 9
Y b 3 1 2%, 2 2 1 24 ( )
P =K + K*K + KK + 3K K2 + }K3K
5 -] L 1 3 2 3 1 2 1
Ly pou 1 s
3 6K2K1 ol S Kl (A4.10)

Using the expressions of Km,Pm can be found in the following

way:

3m -
P.ifisn®) = (I H?.sltj (A4.11)
i+j=m ]

m . 2
where Hij’ which are not equal to zero, are given as:

H? = h -
10 10
H! E n
01 01
H = Ik
30 6 30
Hl = %k
21 21
H! = 1k
12 o 12

H! = lk
03 5




k
21 12

72k03




30

21

H3
12

HS
32

23

05

82

05 12703 02 24 94 01 12703 01

13




43

34

25

H3
81

83

1 1 2
— + =
luukuokao 72 kaohlo
1 1l ., 1
—k k + k k + =—k + —k k
36" 31 30 48 21 wo 72730 01 12721 30 10
1 1 1 1 2
e s+l x +Ex k +3h X
247722 30 127317 21 L8 'ho 12 810 21
1 1
=—h k + — h k k
1210 12 30 2 01 21 130
1 1 1 1
=K +E1x xk +3k k o+ ==k k
144793 so 127317 12 821 22 36 30 13
1 1 1 1
h k + =h k k + =—h k + =h k
36 1ok03 4510 21 12 12 901 3ok12 8 01
1 1 1 1
— + — + = + ==
luukaokou 12k13 21 8 klzkzz 35k03k31
1 1 a1 1 2
+ =h 4+ <o + =
36h01k03 30 491712 21 l2h1o oak 8h10k12
1 1 1 1 2
— k k + —k k + — k k + =h k
24 22 03 127713 12 48 “Tou 21 8 01 12

1 2
=k k + k k + =—k*“ h + k k
3613 03 48 12 ou 72703 10 12712 03 01
1 1l ..
k k + =k“ h
144 o4 o3 72703 01
l__k3
1296 3°
L2
THE%,,5,,




Hlb
3FL

H'-lv
22

1

84

—k% k + =k k?

144 30 12 U8 30 21

1l .. [ 1 1l .3
—k* k + —k k k + —k

432730 03 2439 21 12 48721
ik 2 1 1L
—k k + —=k k k + —
b8 30 12 72703 21 30 16k21k12
als 2 il 1 2
= a4 = T ===
48koak21 72k30k12k03 6 k12k21

i 2 l il 3
= + = ==

432k03k30 2”koak1zk21 i 48k12

1l .2 il 2
—k* k + —k
144763772 L8753 21

1

k3

144753 12

ill 3

1296k03

1 1 1., 1 2 Dgs
=h +=h h +=h? + =h h2 + =1
247y 6 30 10 8 20 U290 20 24719
e Bufn b # 2h h o+ ie gk cge O
6 31 6 30 01 21 10 20 11 20 10 11
1 2 T + _];ha h

zh oh11 6710 01

il 1 1 132 d
P + 1 + h?2 + =h
l+hzz 2h21ho1 2210 20 420 02
h h? +h h h + ih h? + ih? n?

11 01 1 02 4




85

4 1 1 1 ] 1
= = e + + ) + 1
H13 6h13 6h03h1o 220 2hozhn 02 01
|
+1n2 b+ 2n’ h
01 11 601 10
4 1 1 1., 1 2 1 "
= —h . + = + . L=
| Hou 24hou Ghoahol Sho 4 ozh01 24h01
1 1 1
H* = =—=k S h + ==k h + =h k
Y 720760 35k30 30 120" s0 10 48 20 wo
| ‘ .
1 1 2 1l .3
+ ==h h o+ = + ==h® k
12710 30 20 U8 wo 10 3610 30
|
Y 1 1 1
= —k + k h + —k h + =k h
H51 120" s1 24741 10 120 'sg 01 24 4o 11
1 1 1 1
‘ + —k + —h h k + =h h k +=h h k
12 31hzo 12 20 01 30 B 20 10 21 611 10 3
1 1 2 1 2 1
+%2k h h + =k h =k v o=
24kuo 10 o1 127331 10 127730 10 01 16" 21
w2 ik 4+ in f+1n ok o+ En x
L T2 48ku2 24 OIkkl 12710 32 12730 12
1 1 1 1
+ = R + —h + =
L+hzl 21 12h12 30 48 ozkuo 6h11k31
1 1 1
+ = + = + =
! thokzz 4hzok21 01 4 2ok12 10
| ) )
+ =h + 3 + ==h
6 11ksoh01 2 11k21h10 12 o1kaohmo
1 2 1 1 2 1 2
+ —k h + =k h h + =k h° + =k h h
48 40 01 6 31 10 01 8 2210 12730 10 01
\ + 3 n?n o+ =2k n?

421710 012 12712 10
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g e Bl WY 1 B 1
33 - 36k33 +‘36h:«xokoa * 4h21k12 TR 12 21 * 36h03k30
AL 1 1 1
i = ¥ e
l2k32h01 l2k23h10 thzo 13 4h11kzz
1 il 1
* l2hozka1 12k h01hoz K 4k hlo 02
+ JEMMALE. 4+ 3k 4 hEARCE
21 11 01 12 11 10 H 12 01 20
+ 2 x h? +#3 h h? +3ix h n?
3 31 01 4721710 01 4712 01 10
1 3
+ =k
3603 10

H* ,LH* and H* can be calculated from H* , H* and H"
24 15 06 42 51 60
by changing the indices of kij and hij (kij is replaced

by kji and so on).

1 b 2 1

H:Q Tt 50 * TIE2 e © DR e,

i T%thokzo i I%Ekzoh:o
ng - T%Hku1kan ¥ 7%ﬁksok21+ I%Ekuok31+ %Eﬂkuokaohol

¥ i_ek‘iokZlth*’ -:;_s-k3lk3ﬂhlo+ %'Ik30k21h:0+ -%_zkiohloh@l
H:z 3 5%6k50k12 ¥ %§k41k21+ %7k32kao+ %Ekuokzz

L %Ek§1 i %gkuokzlhol * %gkuok12h1o i %§k31k21h10

' %€k31kaohox ' %Ekzzkaohlo+ %Ehzoksokxz

¥ %Ehzokix * %Ehlxksokzl i T%Ehozk:o

L 1i4k:oh:1+ I%.kukanl'lolhuﬁ %Ekaok12hfo

o a2y E2

16721 19




H* 2
53
|
|
+
+
+
+
+
] .
H* =
Ly
+

87

7§6ksokos+ 48 ulkxz 2 3zk21+ 72k23k30
T%Ekuok13+ %Ekal 22 I%Ekuo oah10+ %gkuok12h01
12 31 12 vo %fk k h 01 %k22k21h10+ %Ek11k30h01
%7hzokaokoa+ éh ok k12+I§h k k 2" %hllkil
%5 02 ag 21 %h 21 12 %7h2 30 03
—%hlo 01k§1 ¥ %7h e Y %Eh21kao 21
iéﬁkulkos ¥ %Ekaz 12 " %Ekzsku+ T%Eklhk30
1 1 1

| ¥ :3LGk31h1okoa+ I7k31h01h12 * %k22h10k12+ §k22h01k21
| * %§k13h10k21+.%§k13ho1k30 v T%Ekouh1o 30
i ' %E‘zo 03 21+ %Ehozkso 12 * %§h11kosk3
i * %h11k12k21 ¥ %Ehoz 21 H 16 20 :2
% ' %Ehz K 3kza * %Eh:okiz+ lh1oho1k1zk21
i + %gh hok ko4 %Ehzlk K+ %ghz k2
|
Hgs ,LH:S R H:7 and H“ can be calculated from H“ R H:z R H:1
and H80 by changing the indices of k., 45 and hl:J
|
H:o:o i%igkwkzo ¥ 1%95h10k:o
H:1 E%gkuoksok21 ¥ E%Ek kz ¥ 1235h01k:o

1 2
— k k
144 30 21 30




Hk
82

Hb
73

64

Hu
S 15

88

+ 535Kk k k + sk k k

l92kuo 21 288 Ty ¢

288k22k30 14y

1 2 1

1975, . 5,, ' 788

= +
24731 127 21

S0k ok ¢ 1h & KOs
30 12

7? 13 30 21 4

& h k k k
21

72 10 30 03

|H

h k k k
24791 30 12 21

= ok k¢

288 40 12 03

1
—k ¥k k +
144" 55 30 03

o, , L
48k13k21+ 288k0

o

1y kexk +in x k2 +in x k2

4810 21 03 16 10 21 12

30 120 WZSGNE= S g

k2 h k + =k
30 10 12 149k30h01 21

1
k k k + —k k k
%0 21 03 21677317 30 03

s

k k2 S jeko-k

32 22 21 U822 30 12

1 2

810 l728koukao

il 2 1 3
+ =—=h k“ k + +=h k
16710 21 12 48 01( 21)

1 2
——h
432 01 30 03

1 1

—k k2 + =—=k k k
48 31 12 727731 21 03
Lk kx § e bk

16722 12 21 72713 12 30

x k + 2ENEER i K

v 21 30 72710 30 12 03
il

16 5y 12 21

BN e + Rk kw

48 01 12 30

72 01 03 21 30
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H* ,H* , H* , H* and H“ can be calculated from

e 37 28 19 210 ] o
H* , H* , H* , H* and H“ by changing the indices of
64 73 82 91 10450 - ,
k..and hij'
B - 1 4
12,0 31104 30 |
HY S S
11,1 2592 " 30 21
b 1 3 1.2 .2
- =—k® k + o=
HIO,Z 2592 30 12 576730 21
4 - 1 3 + L 32 + = 3
Hea 7776k30k03 . 288k3 k12k21‘ 288k ok
4 l .2 1l .2 .2 1 2
= — ‘ + == + k k ‘k
Hau 864k30k21koa 575k30k12 96 12
1l .y
* 3n5,,
4 1.2 1 2 1. 2
z — = + k k + =
H75 - 854k30k12k03 288 k 03 95330k21k12
1.3
f‘96k21k 2
A l 2 2 l : l 3
= & = Kk o+ ===k? k
Hss 5184kaok03 144k30k21k12 03 288 21 o3
1 3 1l .2 .2
+ = + =
288k30k1z 54k21k12
H* , H* , H* , H*  ,H*% and H* can be calculated from
57 ue 39 2 10 1 11 0,12
H* LH" ,H" JHY JHY and HY by changing the indices
7.5 8 b 9,3 10,27 11,1 12 0 .

of k.. and h...
1] 13

Here only the terms ut to order e* have been calculated.
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It is clear that the Pm-functions for one variable easily

can be found as:

3m
Pm(s) Siles | - g i
i=m io

m
where Hio can be found above.

(A4, 7)

Remark that during this

calculation only k o and h shall be taken into account.




APPENDIX 5 - AN AUTOMATED PROCEDURE FOR CALCULATION

OF HY..
1] |

in the following we will assume that some function,
f™(t,s), is known to be a polynomial of order m in t anad
s:

m 0 q
fM(t,s) = I g, tts? (A5 1)
i

When f™ is known to be a polynomial, it can formally

be written:

m
£7(t,s) .jPi(t)° Pj(s) (A5. 2)

"
e e 8

@]
o

where P, (t) is the Legendre polynomial of order i (See

f.1./3/) Due to.the.orthogonality relations of P, (t)

+1
J P.(t)e P _(t)dt = o i$n
i n .

-1 ‘ (A5.3)

- 2 i=n
21 +1
aij is given as follows:
@.. = (i+ 35 + 3> IT. (A5. W)

1] 1]




e

iz

where

+
| ™, = f
ij

fm(t,s) is assumed to be given in one or another way
(f.i. by means of Eq.(A4.6) - Eq.(A4.10)); but when

knowing of its polynomial nature, I?. can be calculated

fM(t,s)P.(t)+P.(s)-dtds - (AS
i 3

b ——

exactly by means of Gauss=-quadrature.(see f.i: /3/ or /7/).

The result of such an integration is given as:

Iij 2
D q Pq

where p and q are summed over

(p,q) & (% + 1,%‘ + 1) ~ (AS.

1on .P, Mex (A5.
W W l(xp) ](xq) (xp Xq) . (A5

5)

6)

7)

According to Abramowitz & Stegun /3/ the Legendre polynomials

are given as:

gl .
Pi(t) = e @R, ot (AS.
n .

1l . .
where a can be found by a simple recurrence relation.

Hence fm(t,s) can be found according to Eq.(A5 2) and
Eq.(A5.8) as:

fm(t,s) = i o
=0 k=0

(S S =]

O
o

i . Gl . :
in e i
aij(i ant Ye(Z a’s™) (AS.

8)

Ep)




Rewriting Eq.(A5.9) now gives:
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(A5.10)

(A5.11)



/1/

/27

/3/

4/

o/

/6/

/17

/8/

| APPENDIX 6 - REFERENCES

Bleich:
Buckling Strength of Metal Structures.
Mc Graw - Hill, 19852

Horne:

The Plastic Theory of Bending of Hild Steel Beams

with Particular References to the Effect of Shear Forces,
Proc. Roy.Soc. A.Vol.207, No 216, 1951

Abramowitz & Stegun:
Handbook of Mathematical Functions.

Dover.

Doetsch:
Guide to the Applications of the Laplace and £-transforms.
Van Nordstrand Reinhold

Hildebrand:
Applied Mathematics for Calculations.

Prentice-Hall.

Jaeger:
Cartesian Tensors in Engineering Science.

Pergamon Press.

Frgdberg:
Introduction to Numerical Analysis.

Addison-Wesley.

Cox & Miller:
The Theory of Stochastic Processes.
Methuens & Co




95

/39/ Sveshnikov:
Applied Methods of the Theory of Random Functions.

Pergamon Press.

/10/ Rice:
Mathematical Analysis of Random Noise.
Bell System Techn.J, Vols 23 and 24.

/11/ Cartwright & Longuet-Higgins:
The Statistical Distribution of the Maxima of a
Random Function. '
Proc. Roy.Soc. Vol 237.A, 1957.

/12/ Longuet-Higgins:
The Effect of Non-Linearities on Statistical
Distributions in the Theory of Sea Waves.
J. Fluid Mechanics Vol 17, 1963.

/13/ Longuet-Higgins:
Modified Gaussian Distributions for Sllghtly

Non-Linear Variables.
RADIO SCIENCE J. og Res. NBS/USNG-URSI Vol.68 D,No 9,186u

/14/ Whitaker & Watson:
A Course of Modern Analysis.

Camb. Univ.Press.

/15/ Y.K.Lin:
Probability Distributions of Stress Peaks in
Linear and Non-linear Structures.
AIAAJ., 1(5): pp 1133 - 1138 ( 1963).




