NONLINEAR VIBRATIONS OF IMPERFECT
THIN-WALLED CYLINDRICAL SHELLS

D.K. Liu

TR diss
1622



cen

1>} NONLINEAR VIBRATIONS OF IMPERFECT
hhets ’ THIN-WALLED CYLINDRICAL SHELLS
AU

<V Ao L2z



NONLINEAR VIBRATIONS OF IMPERFECT
THIN-WALLED CYLINDRICAL SHELLS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN
DE TECHNISCHE UNIVERSITEIT DELFT, OP GEZAG VAN
DE RECTOR MAGNIFICUS, PROF.DR. J.M. DIRKEN, IN
HET OPENBAAR TE VERDEDIGEN TEN OVERSTAAN VAN
EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE
VAN DEKANEN OP 31 MAART 1988 TE 14.00 UUR

DOOR -
DA-KANG LIU

GEBOREN TE CHINA
VLIEGTUIGBOUWKUNDIG INGENIEUR

?RdESJ
1622



DIT PROEFSCHRIFT {S GOEDGEKEURD DOOR DE PROMOTOR
PROF.DR. J. ARBOCZ



B oo 3 de B



ABSTRACT

In this thesis a theoretical investigation of the nonlinear vibrations of
imperfect thin-walled cylindrical shells is presented , which is aimed at two
objectiyves. The first one is to investigate the influence of initial geometric
imperfections on the nonlinear vibration behaviour of shells, while the second
one is to investigate the effect of different boundary conditions. Donnell
shallow shell equations are used with the appropriate damping, inertial and
initial geometric imperfection terms included. Galerkin's procedure and the
method of' averaging are employed in order to reduce the problem to the solution
of nonlinear algebraic and nonlinear ordinary differential equations, respec-
tively.

Numerical solutions indicate that the initial geometric imperfections have
strong influence on the nonlinear vibrations of shells if certain coupling
conditions are satisfied. The imperfections may not only significantly change
the natural frequencies and the degree of non-linearity, but also may change thc
vibration behaviour. Results show that the effect of boundary conditions on the
nonlinear vibrations of shells may be significant especially for shorter
shells.
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INTRODUCTION

In modern engineering design, stiffened and unstiffened shells play an important
role when it comes to weight critical applications, since these thin walled
structures exhibit very favorable strength over weight ratios. Considerable
research efforts have been devoted in the past to the strength and stability
analysis of such structures. For extensive reviews the reader should consult
[79]. The whole dilemma of the stability analysis of axially compressed
cylindrical shells is well illustrated in Fig. 1, where some of the available
experimental results for isotropic shells have been plotted as a function of the
'thinness' parameter R/h. The cause for the wide experimental scatter and for
the poor correlation between the predictions based on a linearized small
deflection theory with SS3 (Nx=v=W=Mx=O) boundary conditions and the

experimental values is attributed to three factors: the influence of nonlineari-
ity of materials, the influence of initial geometric imperfections and the
effect of boundary conditions.

P/P)
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I v
L 8 L - V301-v2) [0.606-0.546(1-9'161/—;)]

p
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o

) o
i ql°?° : 8 g
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Fig. 1. Test data for isotropie cylindrical shell under axial compression [79].

In recent years the emphasis has been shifting towards the study of the dynamic
characteristics of preloaded shell structures. Numerous investigations have been
devoted to vibration analysis of shells. An excellent survey prior to 1973 can
be found in Ref. [150].

The first paper that dealt with nonlinear vibrations of shells was the
pioneering work of Reissner [49]. As stated therein, the earlier investigations
of the vibration of thin elastic shells were all based on linearized theories.
In Reissner's paper the problems of nonlinear vibrations of a cylinder were
analyzed using Donnell's shallow-shell equations. His results indicated that
nonlinearity of shell vibration could be either of the hardening or softening
type, depending on the geometry of the single half-wave chosen to be analyzed.
Chu [67] employed the same assumed mode shape as that of Reissner's but he
proceeded somewhat differently. His results indicated that the nonlinearity was
always of the hardening type and could be strong in some cases. Cummings [18]
employed a Galerkin procedure and found that the results varied with the region
of integration. The results over a single half-wave were the same as those of
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Reissner. The results for a complete shell were similar to those of Chu. Thus,
it appeared that Reissner's results were characteristic of curved panels whereas
Chu's calculations were apparently applicable to complete cylindrical shells.
All of these analyses did not investigate the problem of traveling wave and the
boundary conditions were only partially satisfied. Also the circumferential
periodicity condition was violated by Chu.

Nowinski [91] applied Galerkin's procedure with an additional axisymmetric term
in the assumed deflection shape in order to satisfy the circumferential
periodicity condition. His results were virtually identical to those of Chu in
the isotropic case. However, his assumed deflection shape did not satisfy W = O
at both ends of the shell.

An important contribution to the theory of nonlinear shell vibration was made by
Evensen in 1964 [30], who introduced for the first time the companion mode in
the vibration analysis of rings to investigate the travelling wave. Subsequently
he extended this procedure to the nonlinear vibrations of shells. The mode shape
Evensen assumed in his Galerkin procedure satisfied the circumferential peri-
odicity condition rigorously and the simply supported boundary conditions at
the shell edges approximately. His results for the shell included the travelling
wave response and a stability analysis which indicated the stability region of
the standing wave response and travelling wave response in the case without
damping. Evensen's results indicated that nonlinearity was either softening or
hardening depending upon the aspect ratio §. :

Dowell and Ventres [51] made an analysis similar to that of Evensen with a
slightly different axisymmetric mode term in the assumed deflection shape. In
this analysis all the simply supported boundary conditions and circumferential
periodicity conditions were satisfied '‘on the average'. Although no numerical
results were given, the modal equations obtained in the limiting case of L/R » =
agreed with those of ring equations and L/R + 0O agreed with that of plate
equations.

Matsuzaki and Kobayashi [154 ~ 156] carried out an analysis on a cylindrical
shell with clamped ends. Their method was also similar to that of Evensen. The
results showed the nonlinearity being of the softening type.

It is of interest to review the analysis of the references mentioned above,
since these papers used the same Donnell's shallow shell equations and most of
them considered simply supported boundary conditions. Also these publications
contain the main results of the early investigations of the problem of nonlinear
vibrations of shells.

The conclusions emerging from these early studies clearly indicate the follow-

ing:

1. The mode shabes used had been chosen primarily on the basis of intuition and
not by any systematic procedure. They play an important role in the analysis
and the results are somewhat dictated by these assumed mode shapes.

2. In-plane inertia effects were generally neglected.

3. Specified boundary conditions are not enforced rigorously.

4. The approximation of shallow shell theory restricted the validity of the
analysis to high circumferential wave numbers.

An analysis which corrected many of the above mentioned shortcomings was
performed by Bleich and Ginsberg in 1970 [65], who studied nonlinear forced
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vibrations of infinitely long cylindrical shells using the so-called modal
expansion method.

Their solutions showed that damping has a pronounced influence on the response.
Ginsberg subsequently extended his approach to shells of finite length [89].

An alternative approach to the problem was taken by Chen [82], who applied a
systematic perturbation procedure to the set of governing partial differential
equations. By this systematic perturbation approach, for both the differential
equations and the boundary conditions, Chen generated an axisymmetric term and
the second harmonic terms similar to those encountered by Bleich and Ginsberg.
Chen's solution also showed that nonlinear edge effects from both the edge
moments and the in-plane boundary condition propagate towards the middle of the
shell from the boundaries. Accordingly, when the shells are 'sufficiently long
and thin-walled' the boundary effects become negligible.

Some of Evensen, Chen as well as Ginsberg's results are shown in Fig. 2. The
differences within them are quite obvious. For example, the 'gap' phenomena in
Evensen's solution was not predicted by either Chen or Ginsberg, the peak
response obtained by Ginsberg was not discovered by Chen.

‘Raju and Rao published a finite element solution to the large amplitude
vibrations of thin shells of revolution, obtaining a frequency-amplitude
relationship of a hardening nature for a circular cylindrical shell in 1976
[109]. This caused a controversy about the vibration behaviour of shells [36],
[61], [62]. Evensen indicated two errors in Raju and Rao's analysis. The main
one was that the mode shape selected in Raju and Rao's analysis forced the shell
to stretch. This is contradictory to the nature of the problem since thin shells
bend more readily than they stretch. Later Ueda [143] studied nonlinear
vibration of the conical shell using a finite element method. An axisymmetric
term independent of the circumferential coordinate was included in his assumed
mode for the radial displacement. His results indicated that nonlinearity was
softening.

Still noteworthy are the studies of Atluri [136], Radwan and Genin [68] and

Harari [2]. Another paper available is that of Yamaki [129]. He presented a

proper formulation of the nonlinear vibrations of shells and outlined two

promising methods of solution; however he did not obtain any actual solution.

The latest paper available is that of Nayfeh and Raouf [4], in which the modal

interactions in the response of shells were studied, which were initiated by

McIvor [71,72].

The facts one can observe from all these studies are:

1. Galerkin's method was used in most of the analyses and proved to be by far
the simplest method in the investigations of nonlinear vibrations of shells.
Galerkin's procedure provides a very powerful approximate method that reduces
a system of nonlinear partial differential equations into a system of non-
linear ordinary differential equations which becomes manageable. Also
Galerkin's method provides insight into the nonlinear coupling of various
vibration modes during the solution procedure. However, its results are
highly dependent on the assumed deflection shape. Completely different
results can be obtained by differences in the assumed deflection shape as can
be seen from the investigations mentioned above.
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Fig. 2. On the non-linear vibrations of shells.
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2. Nonlinear effects of large amplitude vibrations of cylindrical shells are
demonstrated by two phenomena; namely, the shape of the response-frequency
relationship in the vicinity of a resonant frequency (single response) and
the occurrence of travelling wave response (coupled-mode response).

3. Agreement between results predicted by different theories and procedures is
not satisfactory, expecially for the case of coupled mode response.

There exists certain correlation between buckling and vibration problems of
shell since they are both related to the stiffeness of the shell walls. The
three factors mentioned before, which could influence buckling behaviour of
shell, therefore could. also influence vibration behaviour of shell. In fact, the
influence of initial geometric imperfection on vibration behaviour of shell has
been studied by several investigators in recent years [11,15,102,116].

Rosen and Singer studied the influence of the initial axisymmetric imperfection
on the vibration of isotropic shells under axial compression in 1974 [11]. This
study was essentially an extension of the Koiter [153] analysis for buckling.
The radial inertia term was added to Koiter's formulation directly. It was found
that such imperfections have a strong influence on the frequency of the vibra-
tion, similar to that on the buckling load of cylindrical shells, not only at
high compressive loads but also at zero axial load. The study was extended to
asymmetric imperfections [15] and to stiffened shells for both axisymmetric and
asymmetric imperfections [102].

Watawala and Nash studied the influence of a single asymmetric imperfection on
the nonlinear undamped free and forced vibration problem of simply supported
isotropic shells in 1982 [116] by introducing the appropriate terms for the
imperfections, the radial inertia and the excitation into the nonlinear Donnell
equations of shallow shells. The procedure they used is similar to one by
Evensen. The solutions were obtained for the case of single mode response.

A recent study on the influence of both axisymmetric and asymmetric imperfec-
tions on the vibration of prestressed orthotropic shells was performed by Hol
[94]. In his analysis Hol used the Donnell nonlinear equations written in terms
of displacement u, v and W. Utilizing a procedure similar to the one used by
Rosen and Singer yields the governing differential equations for the fundamental
state and dynamic state respectively. Further, Hol's analysis consisted of two
parts. First an approximate solution for the fundamental state governed by the
full non-linear equations was obtained. This solution incorporates the effects
of the imperfections and the applied axial loading. The in-plane restrictions of
the classical simply supported boundary conditions and the periodicity
requirement were satisfied 'on the average'. Next a solution for the superposed
dynamic state was obtained, based on linearized governing equations in which
axial and circumferential inertia were neglected. The in-plane boundary
conditions were also satisfied 'on the average'. However, neither in the
analysis of the fundamental state nor in the solution of the dynamic state were
the out-plane boundary conditions satisfied rigorously.

Fig. 3 shows the relationships of frequencies of vibration vs amplitudes of
asymmetric initial geometric imperfections obtained by Rosen and Singer and by
Watawala and Nash in the case, where the circumferential wave number £ of
vibration mode is equal to n, the circumferential wave number of initial
geometric imperfection mode. The curve showing Hol's linearized results is also
included. As shown in Fig. 3 both Rosen and Singer, Watawala and Nash's results
indicate that initial geometric imperfection could have a significant influence
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on the vibration of shells, however they predict completely contradictory
behaviour. This considerable discrepecy was attributed to the fact that Rosen
and Singer's treatment did not satisfy the circumferential period1c1ty
requirement [116].

15¢

T [ ' ROSEN & SINGER

1.0< WATAWALA & NASH

HOL

D
......
O
..........
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Fig. 3 Natural frequencies vs asymet:fic imperfections.,

Comparing the results of Watawala and Nash with those of Hol's (see Figure 3),
reveals that the general trend in the results is the same, but the agreement
is not fully satisfactory. This is hard to explain since both analysis used the
Donnell theory and satisfied the circumferential periodicity. condition. The only
difference between them is that Watalwala and Nash's analysis satisfied all the
out-plane conditions of classical simply supported boundary except moment free
Mx s 0 but violated in-plane conditions, while Hol's analysis satisfied the in-

plane conditions 'on the average' but violated the out-plane condition W = 0 and
Mx s 0 at the ends of the shell. It is not expected that such differences could

result in the disagreement shown in Fig. 3.

Summing up the studies mentioned above one can conclude that:

1. Initial geometric _imperfections have a significant influence on the
vibrations of thin-walled cylindrical shells.

2. Agreement between the results available is by far unsatisfactory. These
results are not yet sufficient to explore fully the behaviour of imperfect
shells.

3. Previous investigations were concentrated upon the case of single mode
response. No attention has been payed to the coupled mode response.

Boundary conditions have also a considerable influence on the vibration of
shell, which have been discussed by many investigators [6]. Yu developed
in 1955 [158] the perhaps most simple and general method to obtain natural
frequencies and modes for various boundary conditions.

Forsberg carried out extensive studies using linear theory in 1966 [106],
which all sixteen sets of homogeneous' boundary conditions were examined at each
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shell end. The equations of motion developed by Fliigge for thin, circular
cylindrical shells were used. His results indicated that contrary to the rather
common assumption, the condition placed on the axial displacement in many cases
is more influential than restrictions on the slope aW/ax or moment Mx.

Nuckolls and Egle investigated the vibrations of a shell with one end on simple
supports (SS3) and the other on springs [22]. The effect of varying elastic
restraints on the natural frequencies and resonant displacement of a thin
circular cylindrical shell excited by a concentrated load with a simple harmonic
time history is studied through a Laplace transform solution of the Donnell
shell equations. Numerical results for a wide range of three boundary flexibi-
lities (axial, rotational and transverse) show that, for shells with length/
radius = 1, the transverse flexibility has the strongest and the axial flexibi-
lity the weakest influence on the resonant displacement. Their analysis is also
based on the linear theory.

El-Raheb and Babcock [120] studied the vibration of a cylindrical shell with end
rings, and found that the end rings noticeably influenced the frequencies and
modes of vibrations.

Penzes and Kraus [113] developed a solution for the free vibrations of
-orthotropic rotating cylindrical shells having arbitrary boundary conditions.
The theory includes the combined effects of torsion, normal pressure, axial
force. The emphasis of study was placed on the effect of torsion and rotation on
natural frequencies.

A study by Greiff [133], which is also based on the linear theory, investigates
the vibration characteristics of a cylindrical shell with arbitrary boundary
conditions and with several intermediate constraints between the ends. The
solution is obtained using a Rayleigh-Ritz procedure in which the axial
displacement modes are constructed from simple Fourier series expressions.
Geometric boundary conditions that are not identically satisfied are enforced
with Lagrange multipliers. Unwanted geometric boundary conditions, forced to be
zero due to the nature of the assumed series, are released through the mechanism
of Stokes' transformation. Only the effect of intermediate constraint on the
natural frequencies was studied in his study.

Harari [2] investigated the non-linear free vibration of prestressed plates and
shells in a general form. The analysis includes the effect of in-plane inertia.
The analysis is based on the non-linear equations of motion and uses a perturba-
tion procedure. No assumption is made for the form of the time or space mode.
The boundary conditions are treated in a general manner including boundary
conditions where non-linear stress resultants are specified. In his paper no
solution was given except equations.

Scedel developed a new. formula, comparable with the one from Yu, :for the natural
frequencies of circular cylindrical shells in which transverse deflections
dominate [151]. It is valid for .all boundary conditions for which the roots of
the analogous beam problem can be obtained.

Birman and Bert's study presents an exact solution of the problem of free beam-
type vibration of a long cylindrical shell subjected to uniform axial tension,
uniform internal pressure and elastic axial restraint [144]. The shell is
flexurally clamped at the ends. The analysis results in a differential equation
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with cubic nonlinearities. The effects of flattening, stretching, pressuring and
tension on the frequency of the fundamental mode of free vibrations are
considered in numerical examples. Their results indicate that when axial
restraint is present the frequencies of vibration increase.

Boundary conditions have also considerable influence on the vibrations of
stiffened cylindrical shells as demonstrated clearly by Sewall and Naumann [93].
They investigated the effect of different boundary conditions on the vibrations
of isotropic and stringer-stiffened cylindrical shells.

The vibrations of axially loaded stiffened shells were also studied theoreti-
cally and experimentally by Rosen and Singer [10,12,13,100]. They derived a
linear theory for calculation of the influence of elastic edge restraints on the
vibrations and buckling of stiffened cylindrical shells. The stiffeners are
considered 'smeared' and the edge restraints can be axial, radial,
circumferential or rotational. A method of definition of equivalent elastically
restrained boundary conditions by use of vibration tests is also discussed.
Their results show that boundary conditions have a very significant influence on
the vibrations of stringer-stiffened cylindrical shells.

For an authoritative review of the many papers dealing with the vibration
characteristics of thin cylindrical shells with different boundary conditions
the interested reader should consult Reference [150]. Most of the works
considered are based on the linear theory. It appears that the solutions
available so far are not yet sufficient to explain fully all aspects of the
experimentally observed finite amplitude vibration behaviour of thin walled
shells.

As one of most widely used shell geometry the circular cylindrical shell has
been thoroughly investigated. The various computer programs currently available
(mostly based on the finite element method), allow one to obtain the natural
frequencies and vibration modes of any reasonably thin circular shell for any
combination of boundary conditions with an accuracy sufficient for most
engineering applications. The question might therefore be asked why a further
contribution in this area? The answer to this question lies in the fact that in
science on should strive always toward a deeper, clearer and more accurate
understanding of the physical phenomena involved. One of the conclusions that
could be drawn from the solutions of previous studies is that although some
basic characteristics on the vibration behaviours of shells have been derived
analytically and verified experimentally, there are other areas where still
considerable disagreement exists between results obtained by different
procedures and between theoretical predictions and experimental evidences.
This is especially true in the area of nonlinear vibrations, where the behaviour
has not yet been fully explored. Further research therefore is necessary for
the complete understanding of all aspects of the problem.

The major purpose of the thesis is to investigate the influence of initial
geometric imperfections and the boundary conditions on the nonlinear vibration
characteristics of thin cylindrical shells. The thesis consists of two parts. In
the first part the nonlinear vibrations of imperfect thin-walled stiffened
cylindrical shells is considered with SS3 boundary conditions at both ends,
subjected to axial compression N and lateral excitation q. Both single and

combined initial geometric imperfection modes are considered One of the
objectives of this part is aimed to study the discrepencies existing in the



24

previous investigations, and to obtain a reasonable explanation for them. The
emphasis is placed on the influence of geometric imperfections on the coupled
mode response a problem for which no solution as yet is available. The Donnell
nonlinear differential equations for axially compressed stiffened shell with the
simply supported boundary conditions at two ends are used. The 'smeared' theory
is applied to treat stiffeners and rings. The Galerkin's method and the method
of averaging are employed in sequence to obtain a set of coupled nonlinear
algebraic equations, from which the frequency amplitude relationship can be
obtained for various damping ratios, amplitudes of excitations and imperfec-
tions. The stability of solutions is studied using the so-called method of
slowly varying parameters.

In the second part of the thesis the influence of various boundary conditions on
the nonlinear vibrations of imperfect cylindrical shells is investigated, which
is the first step of the effort to study the effect of elastic boundary
conditions on the nonlinear vibration of shells. The problem of determining the
'effects of elastic boundary conditions on dynamic response cannot be avoided
because in the practical applications 'perfect' boundary conditions, for example
the simply supported one, do not usually exist. In reality the boundary
conditions are elastic or intermediate between the extreme of fixed and frece.
Once again Donnell's equations are used. The solution procedure used in this
part is an extension of the one used by Arbocz for the buckling problem in Ref.
[76]. By employing the same steps as used in part one Donnell's equations are
reduced to a set of nonlinear first order ordinary differential equations with
two sets of boundary conditions at the shell edges. The problem therefore
becomes a 2-point boundary value problem. The numerical integration procedure
called 'shooting method' is used in sequence to obtain the frequency-amplitude
relationships and vibration modes for various boundary conditions.



25

PART |

Nonlinear Vibrations of Imperfect Thin-walled
Cylindrical Shells with Simply Supported

Boundary Conditions
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CHAPTER 1 BASIC THEORY AND METHOD

1.1 INTRODUCTION

This whole chapter describes the basic theory, assumptions and the methods used
in the thesis. In section 1.2 the basic assumptions are explained. The governing
equations for thin-walled stiffened cylindrical shells with initial geometric
imperfections are developed in Section 1.3, according to Donnell's theory.
The equations in terms of radial displacement W and Airy stress function & are
then separated into two sets which are, governing the fundamental and dynamical
state, respectively. In sections 1.4 and 1.5 the method of averaging and
Galerkin's procedure are introduced briefly.

Equations governing both the fundamental and dynamic state in terms of the
displacements u, v, W and the relative frequency-amplitude equatlons'are also
derived. For the sake of brevity they are not included in the thesis. Interested
reader can refer to Ref. [47].

1.2 BASIC THEORY AND ASSUMPTIONS

The Donnell shallow shell equations (which involve additional assumptions) are
used in the present analysis because of their relative simplicity. Many
investigators have discussed their accuracy as compared to the 'exact' solution,
for example, of Fligge's equations [106~108, 121,122]. It has been proven that
the Donnell assumption is a high frequency approximation. The error introduced
by the assumptions asymptotically decreases with increasing circumferential wave
numbers €. The maximum error is small for thin-walled shells with short wave
length modes. Consequently, the Donnell assumptions are valid for the dynamics
of most finite length thin-walled shells of practical interest in the case of ¢

> 3.

In order to permit the introduction of an Airy stress function, one neglects the
in-plane inertia components in the dynamic equilibrium equations. The practical
significance of this assumption was evaluated for isotropic shells in [108,121],
where it was shown that it leads to slightly higher natural frequencies and that
the magnitude of the error depends mainly on the circumferential wave number £
(the error decreases asymptotically with increasing values of £). Ref. [121]
indicates that for isotropic shells the error in the natural frequencies
introduced by the neglecting of the in-plane inertia components will remain
practically unchanged for all boundary conditions for cases where £ > 3. For
stiffened shells, where the in-plane displacements are prevented at the ends,
the natural frequencies will be significantly influenced by the in-plane inertia
components. Since, however, the objective of the first part of the paper is to
investigate the influence of initial geometric imperfections on the nonlinear
vibration behaviour of stiffened and unstiffened shells, where only the simply
supported boundary condition (SS3) is used (therefore the shell ends are free in
the in-plane direction) it is expected that neglecting the in-plane inertia
components will cause only small error.

Ref. [121] concluded that the error from all Donnell's simplifications and the
neglecting of the in-plane inertia is of order 1/2‘ for relatively large £(2>3).
In the present analysis the minimum circumferential wave number is £ = 5§, thus
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the above assumptions do not significantly influence the accuracy of the
results,

The stiffeners are treated in the model by 'smeared stiffener® theory which
involves the following assumptions [118].

a. The stiffeners are 'distributed over the whole surface of the shell’'.

b, The normal strains ex(z) and ey(z) vary linearly in the stiffener as well as

in the sheet. The normal strains in the stiffeners and in the sheet are equal
‘at their point of contact.
¢c. The shear membrane force ny is carried entirely by the sheet.

d, The torsional rigidity of the stiffener cross-section is added to that of the
sheet. ' .

In the present study the amplitudes of vibration are assumed 'finite' which
cause geometric non-linearity, but they are still small enough to preclude non-
linear material behaviour.

In the thesis the following two-term approximation for the imperfections is
used, which contains both an axisymmetric and an asymmetric component:

-

W= 61 h cos (Qix) + 62 h sin (Qkx) cos (Eny) (1-2-1)

where 61 and-d2 are the dimensionless amplitudes of axisymmetric and asymmetric
imperfection respectively, h is the thickness of the shell, Qi’ Qk and Qn are

normalized wave numbers, which are defined in Appendix 1-A.2.

It is obvious that the actual shape of imperfections present in practical shell
structures is quite arbitrary and cannot possibly be modelled by simple mathe-
matical functions. The shapes vary from one shell to another depending on the
fabrication procedure employed. Fig. 1.1 shows the practical distribution of a
shell measured by Arbocz {79]. :

Fig. 1.1 Practical distribution of imperfections
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The motivation behind the present investigation is to gain an insight into the
problem and help contribute towards an understanding of the overall behaviour of
the shell. Hence the simple trigonometric function (1-2-1) is selected in the
present analysis.

Finally, the nonlinearity of the shell studied in the paper is assumed weak in
order to be able to apply the method of averaging. The assumption comes from the
conclusions made by analytical and experimental procedures, which show that the
nonlinearity of practical thin-walled shells is indeed weak [82,119].

1.3 DEVELOPMENT OF THE BASIC EQUATIONS

The section contains the development of the basic equations that represent the
mathematical model of a stiffened thin-walled cylindrical shell with initial
geometric imperfections, which is axially compressed by the static load No and

laterally excited by the dynamic load q. The coordinates x, y, z and the
displacements u, v, W and their positive directions are shown in Fig. 1.2a.
Notice that the positive direction of W is inward.

Fig. 1.2.a Shell Geometry
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Line in Mid-plane

Fig. 1.2b Element of Cylindrical Shell

The development is based on an analytical approach similar to that used by
Singer and Prucz [102]. The stiffeners of the shell are treated in the model by
the 'smeared stiffener' theory.

Following the Donnell theory, the changes of the curvature and the twisting of
the shell considered can be written as

ke =~ W (1-3-1)
Ky = - W,yy (1-3-2)
xy = Moy ‘ (1-3-3)

The equilibrium equatlons of the forces acting on the element shown in Fig.
1.2b in direction x and y are, respectively,

eox * Nyx,y - phu - chu = 0 (1-3-4)
ny,x + Ny.y - phv - chv = 0O (1-3-5)
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where Eh denotes the mass of the shell per unit area, ( ) = Qi—l. c is the

damping factor and t is the time.
The equilibrium equations of the moments acting about the axes x and y are,
respectively,

-M_ _-Q =0 (1-3-6)

=
+
=
!

o]
i

0 (1-3-7)

The equation of equilibrium of the radial forces can be written,

M + M + M + M v =L e N (W+ W) + N (W + W) +
X, XX YX, Xy XY s XY y.wy R x 1 XX y ' YY

* N, (W W)'xy - phW - chW + q = O (1-3-8)
Substitution of Qx and Qy from (1-3-6) and (1-3-7) into (1-3-8) yields

N .
M + M + M + M + =X L N (W + W) +
X, XX yX, Xy XY Xy y.yy R X » XX

s N (W+ i@ + 2N (W+ @ - ohW - chit + q = O (1-3-
y( )'yy xy( )'xy P c q (1-3-9)
For isotropic shells, M =M .
Xy yXx

The assumption of 'finite' radial displacements used herein requires the
consideration of non-linear effects in expressing the relationships between the
components of strain and deformation. For an imperfect shell these non-linear
relations are

= 1 2 W -2
ex = u’X + 2 (wvx) + w'X w’x (l 3 10)
= - w 1 2 W -2
ey =V, R + 2 (woy) + w.y woy (1 3 11)
=y, +v, +W, W, +W W, +W_W, (1-3-12)
Xy y X Xy X Yy y 'x

The compatibility equation for the displacements of an imperfect shell therefore
becomes, from Egs. (1-3-10) ~ (1-3-12)

€ + € - Y = (W+ W2, - (W, ) -
X, Yy Y, XX XY, Xy Xy . Ry

- - - - 1 ) e
= (w + w)vxx(w + w) 'yy + woxx woyy = ﬁ w.xx (1 3 13)
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Assuming linear elastic behaviour of the shell material, the 'smeared stiffener'
model leads to the following relations between the components of stress and
strain,

=in the shell:

E

o, = - [e, + ve + z(k, + vxy)] | (1-3-14)

o= B [e. +ve_ +2z(k_ + v )] B (1-3-15)
Y g ¥ Xy X |

Txy G(Yxy - 22ny) I (1-3-16)

-and in the stiffeners:

]

o

< El(sx + 2k ) .‘ , o (1-3-17)

"

o, Ez(ey f zny) | | (1-3-18)
Substitution of expressions (1-3-10) ~ (1-3-12) into Egs. (1-3-14) ~ (1-3-18)
and integration of the resulting equations from - h/2 to h/2 yields the
relationship between the stress resultants and couples and the strain components
and gurvature changes in the median surface of the shell,

Eh

N, = - [(1+ By) €, ve  + xlnx]" o _ | (1-3-19)
’,Ny = 1?22 [1 +u,) ey +ove o+ xzxy] | R - (1;3‘20)
Ney * Ny = 30097 Tx , | | ‘ (1-3-21)
M_ = D[(i +”n01) Ky * UKy +'clex] , ' : (1-3-22)
L p[(1 + "02) Ky * VKL * czey] - (1-3-23)

M. =D[(1 -v)+n (1-3-24)

Xy tI] ny

where D = —Eh X, and X, are the

and ., H,, Nnyy §., C‘..ﬂ v Moy
12(1-v)? 1 2 02 | 1 2 tl t2 1 2
'smeared' stiffener parameters, which are defined in Appendix 1-A.
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If in Eqs. (1-3-4) and (1-3-5) one neglects the in-plane inertia and damping
terms then the in-plane equ111br1um equatlons can be identically satisfied by
introducing an Airy stress function & such that

NX = Q,yy (1-3-25)
Ny = Box (1-3-26)
N*y = - Q'ﬁy (1-3-27)

The equation of equilibrium of the radial forces (1- 3 8) and the compatibility
equation (1-3-13) then can be expressed in terms of the two unkiiowns W and & as

Ly(®) - Ly(W) = -z W, - 3 Ly, (W, We2) A (1-3-28)

LQ(Q) + LD(W) = +§ Q'xx + L L (2,W+W) - phW - chW + q (1-3-29)
where

L =H '3 H [] +H 1

HO ) = B Vosooe * Byl ) gy * By ) yyyy

L = ) .

a0 ) = %l Voo * Gyl Voo * iyl Dogyuy

. (1-3-30)

L =D ’ D ’ D ’

p ) xxl v xx xy( ) XxXyy yy( ) yyyy

LNL(S.T) = S’xxT’yy - 2S.x~yT,xy + S'ny'xx
The stiffener parameters H_, Q .... etc. are given in Appendix 1-A.

XXXX

One can also express the basic equatlons in terms of dlsplacements u, v, W

rather than W and &. Substituting eqs (1-3-10) ~ (1-3-12) into eqs. (1-3-19) ~
(1-3-24) and then substituting resulted equations into equations (1-3-4), (1- 3-
5) and (1-3-9) yields the following equations after regrouping

u 1+v 3?v 1-v 32u

: - 32W - %W aw
(1+ ul) ax2 2 oaxay = 2 ayr =~ 1) [ (ax’ ax2] axt ]
S o[- 1w (azw W ) . 2H aw]
‘R 3x axdy  axdy axay ady Xy ax’

Loy (2202, aW W . aW 3*W_ . aW 3*W  3%W oW | 3w 32w
2 'ax3y 3y 3x ay? 3y 8x3y  3x 3y? axay 3y 3x ay?

—] (1-3-31)
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1-v 3%y . 1+v 3%y
2 ax? 2 3x3y

v o [ (BW_ aiW AW ay

T = - +
) IX ‘9xady axdy axdy 9x

* (1+u2 ay?

>

+

- (o) [- W awW (giy , W) oW a=w] W
Ho R dy 3y ‘ay? ay? 3y 3y? 2 3y?

L-v (220 W oW, | aW (2fW_ 2%W, o'W W oW azw

) ax? ‘ay dy 3x ‘axdy  axay ax? 3y = ax axady (1-3-32)
I Ll K oo W o 3w e

According to Koiter's theory [153], the displacements u, v, W and Airy stress
function & of the shell while it is vibrating under an axially compressive load
and lateral excitation can be expressed as a linear superposition of two
independent states of displacement and stress, as shown in the following

-~

H

-

3 =8+ 8 (1-3-34)
wenea | | | (1-3-35)
v = ; + 5’ (1'3'36)
W =_& ‘i : (1-3-37)

-~

where &, W, u and v are the stress function and displacements of the so-called
fundamental, static, geometrical nonlinear state due to the imperfections of the

-

shell and the application of a static axially compressed load No’ and &, W, u

a

and v are the stress function and displacements of the so-called dynamic state
due to small but not infinitesimal vibration about the fundamental state.

Upon substitution of equations (1-3-34) and (1-3-35) into equations (1-3-28) and
(1r3-37), one gbtains two sets of differential equations in terms of stress
function and radial displacements governing the fundamental and the dynamical
state, respectively. For the fundamental state these equations are.

-~ 2 .
LH(Q) L (W) = - ﬁ Yol NL(w W + 2W) (1-3-38)
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- -~ z - -~ -~ - .
Ly(8) + Ly(W) = % %;? + Ly (8, W+ W) ~ (1-3-39)

while for the dynamic state the equations become

; A AL S N
Ly(®) = L) = - g o ~ 2 bW W) - 5 Ly, (W, W + 28) +
1o W, oW (1-3-40)
2 Iy(W
L (5) +L (;) =122, (3 éj + L (é W+ W) +
Q D R o * Mn(® AL
- - atH au
(Q W) - ph 27 atz +q-chgy (1-3-b1)

Similarly, upon substitution of the equations (1-3-34) ~ (1-3-37) into equations
(1-3-31) ~ (1-3-33) one obtains two sets of equations in terms of displacements
u, v, W and u, v, W, respectively. In such a case the governing equations of
the fundamental state are

W az(W+W) a=w aw]

3ty 1+v 3ty 1-v au - aw
(1vu)) 32 2 axay T 2 ayr - - (L) [3x o ax?
_ 1 aw a@ 3% (WeW)  82W W g:ﬁ
v[- & o * 3y oxay | axay sy T %1 el B
. . 2 24y X 0 a2 2
EEEEE aW 3% (W) | 2°W_ aW_, aW 3'W_, aW 2 w] (1-3-42)

Ixdy Ay Ix dy? ayax dy 3y Ixady IX ay?
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1-v 3%y 1+v 3%u W

+ + (1+ H ) = - V[éﬂ LA (W*W) +
2 ax? 2 93x3y 2 ay ax Axay Ix3y
L3R, W 9% (W) | atW oW W
(1fU2)[ R ay 3y ay? ay ay] 2 ay? *
[azw a(W+W) W 32 (W+W)  a2W aw aW W ]
ax? . 3x  Ixdy ax? ay 3x Ixdy

o S LT I
LD(w) + LQ(Q) R ax LNL(Q. W+W)

while the equations governing the dynamic.state are:

- -~ ~

-~

2y
2

2

ax

(1-3-43)

(1-3-44)

32u
F) 2

1+v 3%v_  1-v 32u _ _ aW 3% (WeWsi)  a2W a(W+w)
(1+u1) 2 3¥xdy tT2 Ay (1+p1) [ax ax? * e ]
Co[o L2 3 2t (W) | 2t a(Wel)y , 2,
R 3ax 3y axdy axdy ay ax?
-v [a=w 3 (W+lW+w) , ang+W+W) aw a‘(W+ﬁ) azuW a(W+W)] (1-3-45)
axay 3y ax dy? ay 3xdy| ay* ax
1-v 32y  1+v 3%u gii . 'gﬁ é‘(&+@tﬂl 3y a(Q+W)
2 a2 T2 Ixady * (1+u2 ayr v[ax Ixdy * Ixdy 3x ] ¥
) 1 aW . aW 2% (WeWsH) | 32W 3(Wei) 'y
(1+u2) [ R ay =~ a3y ay? * e 3y ]+ ay? *
[azw a(W+W+W) , 3W 22 (WeWsi) | W 22 (WeR) , 2%W a(Q+W)] (1-3-46)
ax? Ix  3xdy 3y ax? axay - 3x :
2 N 1 iié .o 2.l PN 2& _ 32&
LD(W) + LQ(Q) *R3 + LNL(Q,W) + LNL(Q,W+W) + LNL(Q,W) ch 3t ph sez * 4

(1-3-47)
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1.4 THE METHOD OF AVERAGING

The method of averaging began to come into use a long time ago in the field of
celestial mechanics, where different averaging patterns were applied. The
principal idea of these patterns being that some average value is substituted
for the perturbing function, so that simpler differential equations are
obtained. In mechanics, however, the method of averaging remained unknown until
the twenties of the present century, and only after the publication of the well
known Van der Pol paper [126] did people take notice of it.

After the appearance of Bogoliuboff's fundamental works [123 ~ 127] dealing with
its mathematical foundations, the method of averaging has been applied to a wide
variety of problems dealing with nonlinear vibrations. Further, it has been
found that using the basic ideas of the method of averaging as a point of
departure, one can develop special methods which permit the construction of
approximate solutions to any degree of accuracy desired.

In the present work the method of averaging is used in order to obtain a set of
reduced equations which can be solved more readily. First of all the method is
used to obtain simpler relations for the first and second order derivatives of a
function u(t) with slowly varying amplitude a(t) and phase B(t). Thus if

u(t) = a(t) cos [t + B(t)] (1-4-1)
then
g% = - a sin (t+p) + gE cos (t+p) - a %% sin (t+B) , . (1-4-2)

Using the assumption that a and p are slowly varying functions of time yields ‘

gE cos (t+p) - a %% sin (t+B) = 0 (1-4-3)
Hence
g% = - a sin (t+B) (1-4-4)

and the second derivative becomes

d’u

o = - a cos (t+p) - EE sin (t+p) - a g% cos (t+B) (1-4-5)

These expressions then are substituted into the governing equation. After some
regrouping, in the final state of the analysis, the equation is 'averaged' by
integrating over one period of the vibration. In this intergration a(t) and B(t)

are approximated by their average value a and B. For example

2n
J a(t) cos?t dt = a n etc. (1-4-6)
0

See Appendix C for details of the derivations.
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~ 1.5 GALERKIN'S METHOD

The Galerkin's method, sometimes known as the method of weighting functions,is
also used in the present analysis. The method has been proven to be a very
powerful and simple approximation tool in reducing a set of nonlinear partial
differential equations into a set of nonlinear ordinary differential equations
which can be solved more readily. Also Galerkin's method provides insight in the
nonlinear coupling of various vibration modes during the solution procedure.

a

Consider a function W, which is assumed to be an approximate solution of equa-
tions (1-3-40) and (1-3-41)

-
-

= £(A,B,x,y) | (1-5-1)

where A and B is the amplitude of assumed vibration modes. Theoretically, the
right-hand side L(R) of (1-3-41) should be equal to the left-hand side L(L)

after W is substituted into it, if W is its 'exact' solution.

Generally, however, this is impossible since w is only an approximate solutlon,
the 'error' caused therefore is

€ = L(R) - L(L) = 0" (1-5-2)

The conditions that the wéighted error integrated over the domain be zero,
according to the Galerkin's method are

2nR L 2

j f W axay = 0 (1-5-3)
0 0

2nR L N

I _J e %g dxdy = 0 (1-5-4)
0 0

where 3aW/3A and 3W/aB are known as the weighting functions, respectively.

The most important and also the most difficult problem in using the Galerkin's
method is to choose accurate solution modes. Completely different results could
be obtained by a small difference in the assumed solution modes. For the present
analysis, fortunately, the choice is made easier since one can rely on the
results obtained by previaus investigators.
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CHAPTER 2 UNDAMPED NONLINEAR VIBRATIONS

2.1 INTRODUCTION

The undamped nonlinear vibrations of both perfect and imperfect thin cylindrical
shells are studied in this Chapter. The initial geometric imperfection is
modelled with a combination of one axisymmetric and one asymmetric trigonometric
function. The simply supported boundary conditions (SS3) and the circumferential
periodicity condition are satisfied. Two vibration modes are assumed in order to
satisfy the requirement of the travelling wave, though only one of them is
directly excited. Galerkin's procedure is employed to obtain two coupled
nonlinear ordinary differential equations for the vibration amplitudes. The
approximate natural frequencies and frequency-amplitude relationships for
various amplitudes of initial geometric imperfection, and of excitation are
calculated from these two equations using the method of averaging. The stability
of these solutions then is studied using the method of slowly varying parameters
in Chapter 4.

2.2 BASIC ASSUMPTIONS

For the present analysis a two-term approximation for initial geometrlc
imperfection, as expressed in (1-2-1) is.used.

The displacement mode for the fundamental state is assumed in the form

PN

W= é h + Glh cos (Qix) + 62h sin (ﬂkx) cos (Qny) : (2-2-1)

0

This choice of the static response mode reflects the fact proven by several
authors [94] that the effect of initial geometric imperfections is the strongest
when the response mode resembles the initial imperfection mode.

‘Based on the same consideration mentioned above and considering the requirement
of the travelling wave, which has been measured in the experlments before, the
vibration mode shape is assumed as

-
-

W = Ah sin (Qkx) cos (Qey) + Bh sin (Qkx) sin (QQy) + Ch sin‘(me) (2-2-2)

and ¢ are the
m

where A, B and C are the time-dependent amplitude functions, 22

normalized wave numbers. .
According to the notation of Evensen's paper [31] the first term is called the
driven mode and the second term is called the companion mode. It is noted that
the above shape satisfies all the boundary conditions of a simply-supported
shell, except the moment-free condition at the ends. Therefore the mode shape
used herein has boundary conditions that lie somewhere between simply supported
and clamped ends.

Details of the solution of the fundamental state have been published. The
detailed procedure is not shown here for the sake of brevity. The interested
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reader can refer to [94]. Only the analysis for the dynamic state is presented
in the present thesis.

2.2.1 ' PERIODICITY REQUIREMENT

The circumferential periodicity requirement

2nR+y 2 _
A - - -2-
.( ay ¥ =0 (2-2-3)
y

mugst be satisfied.
In'geperél, the displaceﬁent mode of Eq. (2-2-2) together with the corresponding
stress functions do not satisfy the periodicity requirement despite the fact

that they are periodic functions. This drawback is eliminated by replacing
equation (2-2-2) with

Q s Ah sin (Qkx) cos (sz)'+ Bh sinv(Qkx) sin (sz) +

22Rh

‘t ﬁ [Az + B2+ 2(‘5n'2 A((S2 + 52)1 sin‘(ﬂmx)‘ (2-2-1)
where § , is the Kronecker delta function,
0 n=2¢
a0 © - |  (2-2-5)
n,¢ 1 n=g

The detailed derivation of equation (2-2-U4) can be found in Appendix 2-B.

?.2.2 APPLICATION OF GALERKIN'S METHOD

-

Before the Galerkin's procedure can be applied, the stress function & must be
determined. Substituting equations (1-2-1), (2-2-1) and (2-2-2) into the

compatibility equation (1-3-40) and then solving for & one obtains the following
particular solution:

&=t (A.x,y) | (2-2-6) .

The function f and the vector A are listed in Appendix 2-A.
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At this stage in the analysis, the equations (1-2-1), (2-2-1), (2-2-4) and (2-2-
6) are substituted into the equilibrium equation (1-3-41) and then Galerkin's
procedure is used. This procedure yields two coupled nonlinear differential
equations for A(t) and B(t)

Qu
~
>

C A + '3 dt, Clas (62+62)] A= + Cg(A?+B?) +

[SN
R
ct

~

J

+ 57(A‘-B‘) + EgA’ + 59(A’+B’) A+ EIO(A’+B‘) A? + Ell(A’+B‘)’ +

+ 612(A=+B=)= A = Fp(t) : (2-2-7)
- 4B - = - d:C - - -
d) gz * 4B+ dsB ggr + dyBA + dSBAz + dg(AT+B?) B +

+ 67(A=+Bz) AB + 68(A=+B=)= B = Fc(t) (2-2-8)

where the cl. 2, oy 512 and dl' d2, c ey d8 are coefficients: which are
defined in Appendix 2-A. FD and FC are the generalized dynamic ex01tatlons They
are obtained by evaluating the integrals involving the external excitation

a(x,y,t) and Galerkin's weighting functions. In the present study.q is assumed
to be fixed in space and harmonic in time

q(x,y,t) = Q(x,y) cos wt (2-2-9)

where Q(x,y) is assumed to be symmetric with respect to y and has zero average
value. In this case Fc(t) is identical to zero and FD is

Q'Rh
T Q(x, y)[cos(EQy)sin(R x) + ———— [A+6 2(62+62)]sin’(2 x)cos wt
o

.dxdy
nRL

o |
o
"
O —r

(2-2-10)

2.2.3 APPLICATION OF THE METHOD OF AVERAGING

The coupled nonlinear differential equations (2-2-7) and (2-2-8) cannot be
solved exactly. An approximate solution can be obtained by the procedure known
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as the method of averaging. The unknown functions A(t) and B(t) are taken to be
of the form

A(t) = At(t) cos (wt) _ (2-2-11)
B(t) = Bt(t) sin (wt) 4 (2-2-12)

Substituting equations (2-2-11) and (2-2-12) into equations (2~2-7) and (2-2-8)

and then applying the method of averaging yields the average amplitudes A and B
respectgvely so that (see the Appendix 2-A fqr details)

0
e 1]

At) cos (ot) | (2-2-13)

L]
(os]]

B(t) = B sin (t) | ' . (2-2-14)

{

The .average amplitudes A and B, which are time-independent functions can be
computed from the following simultaneous, nonlinear, normalized algebraic
equations ' : ' : :

-0 (A + slﬁﬂ - 51528 + 26n'2(&2+62)' gli) + szx + 5353 + suiéz +

+ 55[52\s + 2B'B? + AB'] = B | | (2-2-15)

02 {§ + 565: - B6Kz§] + 575 + bszzﬁ " 59§3l. + glo[sﬁs + 2§a‘[\z + Z\~§] =0

(2-2-16)

: 2 TR2 .
where Q* = 2u pR? , is the generalized nondimensional frequency,

E
: 2:Rh
L 2nR ¢ P
in X + —_— + + in?
_ Q(x,y) (sin(g, Jeos(2,y) + (A 8, 9(6; 6,)] sin (2,%))
F. = 4R , dxdy,
D
nLE
0O O

is the generalized average excitation, and Bl' 62. ceeny 510 are coefficients
which are given in Appendix 2-A. ' |
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Note that one possible solution to equations (2-2-15) and (2-2-16) is that B=0.
In this case, these two equations are reduced to

-2 {1 + 5132 + 26n'2(é2+62)‘ 51] A+ 52K + 53K= + 5&55’ = FD (2-2-17)

The equation governing the amplitude-frequency for various values of amplitude
of the imperfection can be obtained from equation (2-2-17)

By + B3Rt + SBoR'
1+ 51K= + 28 (6,46

QZ = (2"‘2"18)

)t B

Notice that A can be infinitesimal but cannot be zero.

2.3 CHECKING ON THE CORRECTNESS OF THE CURRENT EQUATIONS

The analytical procedure used in the current study is similar to the one used by-
Evensen [31] and by Watawala and Nash [116].

Evensen investigated a perfect isotropic smooth cylindrical shell. Watawala and
Nash also investigated a smooth isotropic shell but it was not perfect, the
asymmetric initial geometric imperfection was included. It is obvious that the
current general equations and those derived by Watawala and Nash should reduce
to Evensen's equations if the appropriate terms are eliminated.

2.3.1. REDUCING TO EVENSEN'S EQUATIONS

An unloaded perfect isotropic shell is now considered, which means W =0, (that
is 61 = 62 = 0), A = 0 and terms corresponding to stiffeners and rings vanish in

equations (2-2-15) and (2-2-16). Introducing the small parameter € = [ ]

the aspect ratio § = %%éé used by Evensen into these two equations, one obtains

-0 (A + 5e1§: - Belggz] + 5825 + B A + Beugﬁz + Be5[5gs + 2RB + AB') = F

e3 D

(2-2-19)

-0 (B + Belﬁ’ - Belizﬁ] + ﬁezﬁ + Be3§’ + Beuﬂzﬁ + BeS(SE’ + 2B*A? + A*B) = 0

(2-2-20)

where Bel' BeZ' ooy ﬁe5 are coefficients defined in Appendix 2-C.
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Comparing the present frequency parameter Q with that used by Evensen one
obtains

QZ

Q2 =ﬁ,

E e(gz +1J}] ' (2‘2’21)

2[(§2+1>' * 12(1-v)

where QE is Evensen's frequency parameter.

Substltuting this parameter into equations (2-2- 19) and (2-2-20) yields the
equations

A+ 3 (B2 -% Te - -. = 6 l
=02 - - ——— 2 = -D=
(1-02) & + 9% of A(B*-A*) - % R(3R*+B%) + A(5A% +2A2 B2 +BY) = Gy (2-2-22)
- ig - - - eYe - - - ée;z - - - - -
(I'QE) B+ 16 Qé B(A’-Bz) - B(3B2+A?) + ) B(5B* +2B2A?+A%) = 0 (2-2-23)

_ U@ere Y, 6 and G are the parameters reported by Evensen [31]. Thus equations
(2w2-22) and (2-2- 23) are indeed Evensen's equations

2,3.2. REDUCING TO WATAWALA AND NASH'S EQUATIONS

Watawala and Nash's freqdency-amplitude equations for the case of n = £ are

T N S R T
vQ‘[A+a1A’+a1AB‘] + ah ¢ ah % ayAB? + gi a A’ +.H5 a.A*B? +

15 ARY = (O . -2
+ 8 GSAB = Cmn ‘ . (2-2-24)

B3 < B B BY 3 Ag . 12, 5
B + 2a1woB] + a6B + u7B + auA B + g ¢ B® +

-Q2[B + a A’B + a >

1 1

. %5 aghtB? + %5 a.A'B = 0 (2-2-25)

where émn is the average generalized force, Wo is the asymmetric imperfection,

and Ago Gy ey a7 are coefficients defined in Appendix C of Ref. [116].
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The present frequency-amplitude equations can be written for unlbaded isotropic
shell with the asymmetric‘impepfection such that n = ¢ in the form

-Q2[A + 5n1§a - Banﬁz + zgnlééﬁ] + BnZK + 5n3§: + 5n4;§z +

+ Bg[SA® + 2RB + AB'] = F | | (2~2-26)

-¢[B + Bn6§’ - ﬁn6§’§] + Bn7§ + BnSAzﬁ + Bngﬁ’ +
+ ﬁnlo[sﬁs + 2B°A? + A'B] = 0 . (2-2-27)

where FD is the average generalized force as shown in Eq. (2-2-15), Bnl'
an..... Bnlo are coefficients defined in Appendix 2-C. They correspond in the
form to the a's used by Watawala and Nash.

Some differences between the present equations and the ones published by
Natawala and Nash have been found. The algebraic sign of the third term in the
two sets of equations is opposite. This seems to come from the different
assumptions used for the time-dependent functions A and B in the two
investigations. In Watawala and Nash's analysis A and B were assumed as

i

A(t) At(t) cos wt

and

B(t)

Bt(t) cos ot

Whereas in the current analysis the forms of A and B are

A(t)

At(t) cos wt

and

B(t)

Bt(t) sin wt

It appears that the Watawala and Nash's assumption is not appropriate to the
present problem since it does not satisfy the requirement of the travelling
wave.
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For the case of n = ¢, the present amplitude frequency relationship can be
rewritten in the form of Watawala and Nash's equations

’Qz[xz * Eniﬁ’ - Bnlgéz] * EnZR * Bn3 A +.Bn45§z *

+ Bn5[5K= +lgﬁ=§='+ AB*) = FD (2-2-28)
-*(B + BB - B gAB) + BB + B gtB + BB +
+ Bol5B* + 2B°A* + &*B) = 0 - (2-2-29)

where B nt’ E PYRERRS Bnlo are coefficients defined in Appendix 2-C.

Upon comparing the current equations with those by Watawala: and Nash a similar
problem as mentioned in the case of n=¢ was observed. We also found that
Watawala and Nash's equations cannot be reduced to those developed by Evensen.

2.4"DISCUSSION OF NUMERICAL RESULTS

‘The equations derived in the thesis are quite géneral. They can be used to
inyestigate the nonlinear vibration behaviour of orthotropic or isotropic
shells, Howewver, in this paper only numerical results for isotropic shells are

presented.
For the numerical work those shell geometrlcs were used, whlch make comparison
with publised results possible.

1, Shell ES1
An isotropic shell, used by Evensen in the free nonlinear v1brat10n analysis
[31]. Its characteristic data are

h=1.0,

225,

R

L s 150 =,

v = 0.3

2 Shell ES2
An isotropic shell, also used by Evensen in the forced nonlinear vibration
analysis, which has as its characteristic data
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= (&) - 0.1
: . nR/2 _
S im ° 0.1
v = 0.3

For purposes of comparison, €

= 0.01 cbrresponds to £ = 5 and h/R = 0.004 and
€ = 0.1 corresponds tom = 1, ¢ =

0
5 and L/R = 2m.

3. Shell WN :
The isotropic shell WN was used in the present analysis in order to be able
to compare with the results of Watawala and Nash [116]. The c¢haracteristic
data of the shell are

h/R = 1/720,
L/R = 2/3,
v =0.272

4. Shell X-1

At first the isotropic shell X-1 was studied in the stablllty ana1y31s
by Arbocz and Sechler [76]. Then it was used in the linearized vibration
analysis by Hol [94] for the case of combined imperfections and axial
compressive load. Its geometric and material parameters are

h = 0.004 in

R = 4.0 in

L =14.0 in

E = 10’ 1b/in?

v = 0.272

p = 2.60'10-~ 1b.sec? /in*

The imperfection modes and their amplitudes for shell X-1 were determined
experimentally by Arbocz and Babcock. The critical modes plus associated
amplitudes for axisymmetric and/or asymmetric imperfections, which they used,
are again used here.

A computer program has been developed and an extensive parametric study has been
carried out. The computations were aimed at the main aspect, the influence of
initial geometric imperfection on the nonlinear vibration of shells. Before
reporting the numerical results, it must be mentioned that whenever possible,
special combinations of the wave numbers for axisymmetric parts of the vibration
mode were chosen. For certain combinations of the wave numbers i, k and m, mode
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-‘coupling occurs. For the present analysis, the coupling conditions are i = 2k, i
= 2(m+k). The coupling condition i=2k has been proven to be the stronger one

[94].

2.4.1 PERFECT SHELL

The first series of computations is carried out to determine the natural
frequencies of shell ES1 and the response of shell ES2 to an excitation. This is
a necessary check on the correctness of the computer program based on the
general equations derived in the present study. The results are shown in Figures
2.1 ~ 2.5, A closer look reveals that all the results presented by Evensen are
recovered in the current study. In addition, some new and interesting results
were found.

Thus, as can be seen from Figs. 2.2 and 2.5, the softening type nonlinear
vibration characteristic of the mode m=k=3 is changed into a hardening one for
the vibration mode k=3 and m=6. Since experimentally only softening type
nonlinear vibration has been observed for moderate size vibration amplitudes
(A<2.0, say), therefore when choosing the mathematical models one must not only
satisfy the circumferential periodicity condition but als the strong coupling
condition m=k between the axisymmetric and the asymmetric vibration modes.
Qtherwise the predicted nonlinear vibration characteristics become unrealistic.

2,8,2 IMPERFECT SHELL

2,4,2.1 SINGLE MODE VIBRATIONS (A # 0, B = 0)

In this section the influence of asymetric, axisymmetric and combined imperfec-
tions as well as of axial compressive load on the nonlinear single mode vibra-
tion of a circular cylindrical shell is investigated.

A
T 50 | 0
Wl
30|
20t
T —gem
Ty
00 080 100 w0 180
— QE

Fig, 2.1 Influence of large amplitude of vibration on natural frequency for
' various €. ES1 Shell.
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Vibration Modes - (
12} 1 ksm=5(E=05)
2 k=m=3(E=03)
08 F 3 k=m=1(¥E=01)
l& k:s,m:1
04L 5 m=5k=1
0.0 - .
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QE

Fig. 2.2 Influence of lafge amplitude of vibration on natural frequency for
different vibration modes. ES1 Shell; ¢ = 1.0.

A
T 20 r
s
10} .
Bifurcation Point
5 3
Single Mode Response
0 LA e B
0.80 1.00 120
— QE

Fig. 2.3 Amplitude-frequency relationship of perfect shell; driven mode
response; ES2 Shell.

Excitation ,f‘D=, 2 x 107.1'. '
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Fig. 2.4 Amplitude-frequency relationship of perfect shell; companion mode
' response ‘ C

 ES2 Shell; Excitation i':‘D=' 2 x 10 l’.

i
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Fig. 2.5 1Influence of large amplitude of vibration on natural frequency for
different vibration modes. '
ES1 Shell; e = 1.0.
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At first the free vibrations of "shell WN are considered, whereby the
circumferential wave patterns of the dynamic response and of the initial
imperfection are identical. In order.to be able to compare the present numerical
results with that of earlier investigations by Rosen and Singer [11,15] and
Watawala and Nash [116], we will use the vibration mode with k=m=5 axial half
waves and £=25 circumferential full waves. Notice that this mode is identical to
the classical asymmetric buckling mode.

Figure 2.6 shows a comparison between 4 different analyses. The fact that Rosen
and Singer predict an increase in the frequency of free vibration Q with
increasing amplitude of the asymmetric imperfection 62 has been traced to the

fact that their assumed (infinitesimal) asymmetric vibration mode does not
satisfy the circumferential periodicity condition. The large discrepancy between
the nonlinear vibration results of Watawala and Nash and the present work are
probably due to some error in their frequency-amplitude relationships, which do
not reduce to Evensen's perfect shell equations [31] if the amplitude of the
initial imperfection is set equal to zero. Notice also that the present non-
linear vibration results show an excellent agreement with Hol's [94] linearized

results if the amplitude of vibration A and the initial imperfection 62 are

sufficiently small.

Proceeding with the comparison of the current results with the ones obtained in
‘Reference [116], Figure 2.7 shows the variation of the frequency of free
vibration with the amplitude of imperfection for increasing values of the

amplitude of vibration A obtained by Watawala and Nash.

Notice that increasing the amplitude of vibration results in a softening type
behaviour for all values of imperfections considered. This is in part
contradicted by the present results shown in Fig. 2.8, where for imperfections
greater than a certain critical value (here 62=0,8) an increase in the amplitude

of vibration results in a hardening type behaviour. Notice also that for
imperfections smaller than the critical value a softening type behaviour is
predicted if the amplitude of vibration increases.

Figures 2.9 and 2.10 display the relationship between the frequency of free
vibration Q@ and the circumferential wave number £ of the dynamic response mode
for different amplitudes of the asymmetric imperfection 62. The axial half wave

number k and the circumferential full wave number n of the imperfection are kept
constant at 5 and 25, respectively. For very small amplitude of vibration

(A=0,001) both the current nonlinear analysis and the one by Watawala and Nash
agree very well with the results of the linearized infinitesimal vibration
analysis of Rosen and Singer for all values of ¢ except for £=n=25. At this
particular value of € Ref. [15] predicts a sudden increase in the frequency
while Ref. [116] and the present study predict a significant decrease. An
explanation of these discrepancies has been given earlier.

Figures 2.11 thru 2.16 are included in order to investigate further the dynamic
behaviour of the shell when n=£. In these plots the axial wave numbers are kept
constant (m=k=5) and the circumferential wave numbers n and ¢ are varied from 5

to 30. As can be seen at higher aspects ratios (E)%, say) the nonlinearity is of
the hardening type and the frequencies increase continuously with increasing

imperfection amplitude &.,. However, at lower aspects ratios (E(E, say) the

2
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nonlinearity changes to being of the softening type for values of the imperfec-
tion 62 smaller that a certain critial value, For values of the imperfection 62

larger that the critical value the nonlinearity becomes once again of the
hardening type. As can be seen from Figures 2,14 ~ 2.17 the critical value of
the imperfection 6 becomes smaller as the number of circumferential waves

increases (or the aspects ratio § decreases) '

The influence of asymmetric imperfections on nonlinear vibration for the case of
n#? is shown in Fig. 2.17. The frequencies of free vibration increase with
increasing amplitude of imperfection 6 . The influence of the amplitude of

vibration is slight.

The forced response curves of the shell are shown in Figures 2.18 ~ 2.21. In the
figures the dotted lines denote the frequency-amplitude relationships for free
vibration (also. known as the backbone curve) and the solid lines represent the
foced response. As can be seen, in the case of n¥¢ the type of vibration is

governed by the aspect ratio § only. Thus for high aspect ratio's (E)E, say) one

gets a hardening type of behaviour, whereaszfdr low aspect ratio's (§<§, say)

the nonlinear vibration is of the softening ‘type. If, however, n={ then as can
be seen from Fig. 2.21 the type of the vibration behaviour depends not only on
the aspect ratio § but also on the size of the asymmetric imperfection. For
instance, an amplitude of imperfection greater than the 'critical value' (0.8,
say) alters the vibration behaviour from a softening type to a hardening type.

In 1974 Rosen and Singer [11] published a paper dealing with the effect of
axisymmetric imperfections on the vibrations of cylindrical shells under axial
compression. They have shown that geometrical imperfections of the kind which
affect buckling have also a large influence on the vibrations of these shells,
even . at zero axial load. They expressed the hope that this phenomenon will
facilitate the evaluation of the effect of the actual imperfections by measuring
the deviations in frequencies of the imperfect shell from those of the
corresponding perfect one. They assumed the following axisymmetric imperfection

= §, h cos (Qix)

1

and approximated the asymmetric vibration mode as

-

W=A b sin (Qkx) cos (Qny)

where i=2k. For the isotropic shell X=1 (— 3 1000

perfect shell buckling modes are i= 18 (the axisymmetric buckling mode) and k=9,
n=29 (one of the asymmetric buckling modes), Figure 2.22 displays the frequency-
amplitude relationships for shell X-1 at different amplitudes of initial axisym- .

metric imperfection 61. Since the amplitude of vibration is small (A=0.001)

% = 1.0) the classical

therefore, as expected, the values agree closely with Hol's (447 results.



52

Rosen and Singer [15)

_— 0

115

¥

1.05 |
Watawala and Nash{116)

pe
/

0.95 Liu(present work)

0.85 . ~
Hol [94) 7
0.75 ' 1 ) 1 1 1 . 1
0.0 . 0.2 0.4 0.6 0.8 1.0

Fig. 2.6 Frequency of free vibration vs amplitude of imperfection.
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Fig. 2.7 Frequency of free vibrafion vs amplitude of imperfection for different
values of amplitude of vibration from Ref. [116].
WN Shell; k=m=5, n=£=25
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Fig. 2.8 Frequency of free vibration vs amplitude of imperf‘ection for different
values of amplitude of vibration (present: work).
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Fig. 2.9 Frequency of free vibration vs circumferential wave number for
different imperfections (References [15] and [16]).
WN Shell; k=m=5, n=25; amplitude of vibrat:;on A=0.001
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Fig. 2.11 Frequency of free vibration vs amplitude of imperféction for different
values of amplitude of vibration.
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Fig. 2.12 Frequency of free vibration vs amplitude of imperfection for different
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Fig. 2.14 Frequency of free vibration vs amplitude of imperfection for different
' values of amplitude of vibration.
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Fig. 2.15 Frequency of free vibration vs amplitude of imperfection for different
values of amplitude of vibration
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Fig. 2.18 Amplitude of forced vibration vs frequency of excitation for different
values of amplitude of imperfection.
WN Shell; k=m=5, n=5, @=4.

Excitation §D=o.oo1.

A S 8y=00 6,=05 8=10

I

0.8
0.6
————b— Q

0.4

0.2 |

0.0
128

Fig. 2.19 Amplitude of forced vibration vs frequency of excitation for different
values of amplitude of imperfection.
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Fig. 2.21 Amplitude of forced vibration vs frequency of excitation for different
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Notice that the amplitudes of the axisymmetric imperfections were chosen
negative, which means the the axisymmetric imperfection is directed inward over
the central portion of the shell, a necessary condition for the buckling load of
the imperfect shells to occur at a value less than 1. Considering the solid
curves closer it appears that for axisymmetric imperfections greater than 61= -

0.4 there is no buckling (the solid curve labeled 4 does not cross the axis
Q=0). This apparent paradox is caused by fixing the circumferential wave numbers
of the dynamic mode at £=29. If one releases { (that is one admits other integer
values of ¢ as possible solutions) then one gets the dashed curve with buckling
occurring with £=26 full waves in the circumferential direction. Actually the
Technion Group prefers to plot their results using Q¢ along the vertical axis.
Thus for the ease of comparison Figure 2.22 is so replotted in Figure 2.23.

Figure 2.24 displays the variation of the frequency of free vibration (plotted
as Q?) with the amplitude of axisymmetric imperfection for increasing values of

the amplitude of vibration A. Notice that for imperfections smaller than a
_ certain critical value (here 61 = 0.4) an increase in the amplitude of vibration

results in a softening type behaviour, whereas for imperfections greater than
the critial value a hardening type behaviour is predicted if the amplitude of
vibration increases. Thus the effect of an axisymmetric imperfection on the
nonlinear vibrations is similar to that of an asymmetric imperfection (see also
Fig. 2.15), if the strong coupling condition i=2k is satisfied and the vibration
mode considered is affine to a classical asymmetric buckling mode.

Figure 2.25 shows the variation of the frequency of free vibration (plotted as
Q?) with the axial compressive load for increasing values of the amplitude of

vibration A. At any given axial compressive load level an increase in the
amplitude of vibration results in a softening type behaviour.

At this stage the present analysis is used to investigate the effect of combined
axisymmetric imperfections and of an applied compressive load on the nonlinear
vibration. The only known reference data are Hol's [94] linearized results.
Shell X-1 and the following combined imperfection model

5=

= -0.50 cos &;‘x + 0.05 sin%’—‘ cos Q%X

are used. Notice that both imperfection modes are c¢lassical buckling modes.
Figures 2.26 and 2.27 (both plotted as Q?) show the influence of the asymmetric
and the axisymmetric imperfections acting alone. In both cases for the specified
imperfection amplitudes the nonlinear vibration is of the hardening type. If
both imperfections act concurrently then the resulting nonlinearities seem to
cancel each other partially, because as can be seen from Fig. 2.28 (plotted as
Q?) for all amplitudes of nonlinear vibration considered the solution curves lie
relatively close to the linearized solution of Hol [94].
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Fig. 2.24 Frequency of free vibration vs amplitude of imperfection for different
values of amplitude of vibration.
X-1 Shell; i=18, k=m=9, n=2=29; A=0.
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Fig. 2.25 Frequency of free vibration of perfect shell vs axial compressive
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Flg 2.26 Frequency of free vibration of imperfect shell vs axial compressive
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Fig. 2.27 Frequency of free vibration of imperfect shell vs axial compressive
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Fig. 2.28 Frequency of free vibration of imperfect shell vs axial compressive
load for different values of amplitude of vibration.
X-1 Shell; i=18, k=m=9, n=£=29; amplitude of imperfections 61=-0.50.

62=0 .05.

2.4.2.2 VIBRATION OF COUPLED MODE (A = 0, B = 0)

There are two possible cases of the nonlinear vibration of a cylindrical shell,

the single mode vibration (A = O, B = 0) and coupled mode vibration (A = 0, B =
0). It has been demonstrated above that the initial geometric imperfections may
significantly influence the amplitude-frequency relationships of the single mode
vibration. Thus, it can be conjectured that initial geometric imperfections may
also exhibit equally significant effect on the coupled mode vibration.No
reference data for this case are available up to date.

Figure 2.29 displays the single mode and the coupled mode undamped free and
forced vibrations of the perfect shell ES2 from Evensen [31]. The stability of
the approximate solutions given by Eqs. 2-2-13 and 2-2-14 was examined by the
usual techniques of perturbation analysis (see Chapter 4 for details). The
stable branches are indicated by solid curves and the unstable parts by dashed
curves.

Considering the single mode response curve the first instability region 'a
coincides with the locus of vertical tangents.to the response curves, which
indicates the well-known jump phenomena. The second instability region 'b’
indicates the area where the single mode response is unstable because of the
nonlinear coupling with the companion mode. If adequate solutions are to be
obtained in region 'b', it is necessary to consider motions where both modes
vibrate. Notice that the 'backbone curve' represents the amplitude frequency
relation for free vibrations of a single mode.
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Since the peak responses of the driven mode and the companion mode occur at
about the same value of Q one says that the driven and the companion mode are
'symmetric’'. '

-The effect of asymmetric imperfection on the single mode and coupled mode
undamped free and forced vibrations of shell ES2 are shown in Fig. 2.30. A
direct comparison with the perfect shell results displayed in Fig. 2.29 reveals
a few minor changes in the shape of the curves. Also the bifurcation point on
the upper branch of the single mode response curve occurs for the imperfect
shell at Q=1.00145, a value slightly higher than that of the perfect shell of
Q=1.00030.

. On the other hand the effect of a small axisymmetric imperfection is, as can be
seen from Fig. 2.31, much more pronounced if the coupling condition i=2k (=2m)

~ is satisfied. Thus besides the bifurcation point on the upper branch of the

single mode response curve (which now occurs at Q=0.99733) there are now also 2
bifurcation points on the lower branch of the single mode response curve, one at
9=0.99563 and the other at Q=0.99703.

Finally, Fig. 2.32 displays the effect of both an axisymmetric and an asymmetric
imperfection. Notice that the combined imperfection model

= 31

- - 2nx nx Sy
= - 0.04 cos Tt 0.05 sin L co§ R

satisfies the strong coupling condition i=2k; also the axisymmetric imperfection
is directed inward over the central portion of the shell. However, neither the
axisymmetric nor the asymmetric mode are affine to classical buckling modes.
(For shell ES2 such modes would be i=58 and k=29, ¢=14.)

This was done on purpose, because experimental measurements [80] on thin-walled
seamless isotropic cylinders indicate that the amplitudes of the measured
imperfection harmonics decay exponentially with increasing wave numbers. The
imperfection model used is thought to be representative of the quality
attainable with carefully made laboratory scale shell specimens.
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2.4.3 CONCLUSIONS

The problem of the undamped nonlinear vibrations of the thin-walled smooth
stiffened cylindrical shell with initial geometric imperfections was treated in
this chapter. Donnell's nonlinear equations were used to formulate the problem
mathematically. The stiffeners were incorporated by the 'smeared' approach. An
idealized model consisting of one axisymmetric and one asymmetric component is
assumed for the initial geometric imperfections. Hol's solutions of the
fundamental state were directly adopted. Galerkin's method and the method of
averaging were employed in sequence to obtain a set of coupled nonlinear
algebraic equations, from which the amplitude-frequency relationships were
derived. These equations are rather general and they can be used to study the
nonlinear vibration behaviour of orthotropic or isotropic, of perfect or
imperfect, of axially loaded or unloaded circular cylindrical shells. In the
present study, only axially compressed isotropic shells with initial geometric
imperfections were studied numerically.

The principal conclusions of the present study are

1. Initial geometric imperfections may have a significant influence on the
nonlinear vibrations of .cylindrical shells. This influence depends mainly on
the enforcing of certain coupling conditions between the initial imperfection
and the vibration mode shapes.

2. The general observation concerning the single mode vibration is that if the
circumferential wave number n of the asymmetric imperfection is not identical
to ¢, the circumferential wave number of the vibration mode, then the
frequencies will increase about equally for the different amplitudes of
vibration with increasing amplitude of imperfection. The basic wvibration
behaviour is not changed.

3. In the case of n = £, which means that the shell is vibrating in the same

pattern as that of the asymmetric imperfection, the influence of the asym-
metric imperfection on the single mode vibration is quite strong and it
depends on the aspect ratio £ of the vibration and on the amplitude of the
initial imperfection.
For high values of aspect ratios (E>n/2, say) the nonlinearity is of the
hardening type and the frequencies increase continuously with increasing
imperfection amplitude. On the other hand for low values of aspect ratios
(§<n/2, say) the nonlinearity changes to being of the softening type for
values of imperfection smaller than a certain critical value. For asymmetric
imperfections larger than the critical value the nonlinearity switches once
again to being of the hardening type. :

4. The influence of the axisymmetric imperfection on the vibration is found to
be significant only if the coupling condition i = 2k is satisfied. The
'critical value' and the 'shifting' phenomena found in the case of asymmetric
imperfection, were also found for the axisymmetric imperfection. This means
that the presence of the axisymmetric imperfection can also change the degree
of nonlinearity and the vibration behaviour.

5. The influence of the combined imperfections on the vibration can become
complicated due to the nonlinear coupling between the asymmetric and the
axisymmetric imperfections. It seems that the total effect of combined
imperfections, in general, cannot be obtained by superposition of the
separate effects of the asymmetric and the axisymmetric imperfections acting
alone.

6. It was found that the presence of the axial compressive load results in a
softening type behaviour.
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CHAPTER 3 DAMPED NONLINEAR VIBRATIONS

3.1 INTRODUCTION

The damped nonlinear vibrations of imperfect thin walled cylindrical shells with
SS3 boundary conditions are studied in this chapter. The analytical procedures
and assumptions discussed in chapter 2 are used in this chapter without any
further explanation. Only the new ones are specifically mentioned.

In engineering the study of damped vibrations is of great importance since any
realistic structure has some inherent material damping. The results available so
far show that the damping has a pronounced influence on the nonlinear vibration
of shells [30,82,89].

As mentioned in chapter 2, one of the conclusions that can be drawn from the
results of previous studies is that although some basic characteristics of the
damped vibration behaviour of shells have been derived analytically and also
verified experimentally, there are certain situations where considerable dis-
agreement still exists between results obtained by different analytical proce-
dures and also between theoretical predictions and experimental evidence.

The objective of this chapter is to investigate the effect of the initial geo-
metric imperfections on the damped nonlinear vibration of shells. This objective
is the natural extension of chapter 2. The emphasis of the current work is
placed on the influence of initial geometric imperfections on the coupled mode
response for which no solution is as yet available. In addition, the author also
intends to study the discrepancies between the results of earlier studies and to
get a reasonable explanation, if it is possible.

3.2 ANALYSIS

Through the appropriate operations and the application of Galerkin's prbcedure
to the equations (1-3-40) and (1-3-41) one obtains two coupled nonllnear
differential equations for A(t), B(t) and C(t):

LSRR RN 2[A+6 (6,+6,) 140, 3o [A + 8 ,(6,46,)] +
9 ac GLa 't % “4 ,2192%92 °5 ,019279%2
-2 = 2.2 = 2 2 -3 - 22
+ a6A + a7(A +B7) + a8(A B~) + a9A + alO(A +B)A +
v a.. (A2B2)A% + &, . (8%+8%)2 + &, . (A%+B%)%A - (3-2-1)
11 a5, 13 Fp
5, 48,5 @, sB+Bd— .8 % . Boan » 5.8 + By(n252B »
1 dtz 2 4t 3 4y 2 4t 6 7 8
= 2 2 - 2 .22
+ Bo(A%+B)AB + B, (A“+B%)°B = F, (3-2-2)
where the al. 02. Cees 513 and 51, 52{ cees 510 are coefficients which are

defined in Appendix 3-A and F_ and FC are generalized dynamic forces.

D

An expression for C comes from the periodicity condition yielding
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C= iR ey [A 4B+ 25 (5,4 6,)] (3-3-3)

A(t) and B(t) are taken to be of the form

A(t) = A (t) cos(ut + ¢) (3-3-4)
and
B(t) = B (t) sin(ot + ¥) (3-3-5)

where ¢ and ¢ are the phase angles between the driven mode and the companion
mode and the excitation respectively. These angles are functions of time.
Substituting equations (3-3-4), (3-3-5) and (3-3-3) into equations (3-2-1) and
(3-2-2) and then applying the method of averaging yield the approximate
solutions for A(t) and B(t)

A(t) = A(t) cos(ut + 9) (3-3-6)

B(t) = B(t) sin(wt + %) (3-3-7)

where A, B, ¢ and { are the average value of the A(t), B(t), ¢(t) and ¥(t) over
one period respectively. They can be obtained by solving the following simul-

taneous nonlinear algebraic equations for a given average excitation FD' damping

Y and forcing frequency Q

2

2= 2 = - 22 - ==2 s
-Q°A {1 + p,[A" - B cos 24 + 2 S, 0 (6, + 6,) 1) + B,A - YOAB“B, sin 24 +

+

A3 . Zﬁuﬂﬁz (1 - % cos 24) + BSK [57\4 + 4A%E2 (% - cos ZZ) +

B3

« 28 (g - cos 24)] = FD cos ¢ (3-3-8)

(AB°[p,0° - By - 2 555(52 + B%)1) sin 23 - Qv (2R +  [A> - AB° cos 21 +

» HAS, (6, + 6,)%1) = F, sin § - (3-3-9)

- 0%B(1 + Bg(B° - A% cos 20)) + pB + QA Beg sin 2% + BB +

+ 258R2§(1 - -;— cos ZZ) + 5105[551’ + [1“-\252 + 2[\“] (% - CdS 22)] =0
(3-3-10)
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(A%B [BgQ° - Bg - 2B,,(A° + B%)1)sin 21 + Q(2B + By[B>.- A%B cos 2]} = O
| (3-3-11)
where

Y = cR l—-, is the generalized nondimensional damping, A =06 - ¢, is the

2pE

"average difference of phase angles", and Bl, BZ' are coefficients

o+ B1o
which are given in the Appendix 2-A. o

The details of derivations of equations (3-3-8) ~ (3-3-11) are given in Appendix
3-C.
The analysis is carried out for two separate cases.

3.2.1 SINGLE MODE RESPONSE (A # 0, B = 0)

As can be seen B = 0 is a possible solution of equations (3-3-8) ~ (3-3-11). In
this case they become .

%R {1+ ByE° + 28,6, , (5, + 6,)°) + BA + B0 + 5BA’ = B cos § (3-3-12)

-Qv (24 + 5153 + uglﬂan 0 (32 + 52)2] = ﬁD sin ¢ (3-3-13)

A single equation governing the amplitude-frequency relationship of the single
mode response is obtained by first squaring both equations, then adding them and
finally using the identity

sin"¢ + cos ¢ = 1
This yields

@Q + a9 +'03 =0 (3-3-14)

a = K(1 + gy [A%+ 26,2 (6, + 6,)°1)
ay = - 282 (1 + B, [A% + 26, , (5, + 6,)°1) (B, + ByR° + 5BA") +
+ R (24 p A% o “515n,a(32 v 6,)%)?

= B2 (B, + ByA0 v 5B AN - B
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It is obvious that one can obtain not only the damped response for various
damping and excitation levels but also the free vibration (or undamped response)
if one lets the damping and excitation terms vanish in equation (3-3-14).

3.2.2 COUPLED MODE RESPONSE (A # O, B # 0)

Another possible solution of equations (3-3-8) ~ (3-3-11) is A # 0 and B # O,
namely the damped coupled mode response.

For the damped couple mode response a direct simultaneous solution of equations
(3-3-8) ~ (3-3-11)) is too cumbersome. A further simplification can be carried

out as follows. Initially one solves equations (3-3-10) and (3-3-11) for sin2a
and cos2A in terms of A and B, respectively. Then one uses the identity

sinZZZ + cosZZK = 1, which results in a single.equation with the unknowns A and
B. Next one back-subtitutes for sin2A and cos2A in equations (3-3-8) and (3-3-9)
and then uses the identity sin23 + co§$ = 1, which yields a second equation with
the unknowns A and B.

The amplitude-frequency relationship of damped, coupled response then can be
obtained by solving these two nonlinear algebraic equations simultaneously for

given values of damping, imperfection and excitation. The equations can be
expressed in the form

< -0%k (1 + p,[A° - 82 cos2i + 25, 4 (6, + 6,)°1) + B,A - YQRB%B, sin 21 +
v BRS¢ 28, 85° (1 - § cos2h) + A [5A' + 4A%B% (3 - cos2i) -
+ 2§4(% - cos ZK)]>2+ <{K§2[51§2 - By -2 55 (RZ + §2)]] sin 24 +

- ov (2K + B, [A3 - BB cos 2k + U8, , (5, + 6,)21)% - F2 = 0 (3-3-15)

and

;11-312 + ;21-310 + ;31-38 + &u§6 + ch5}-3[i + ;61-32 + &7 =0 (3-3-16)
or

-~ - - - -~ - - - - - -~ _2 -

glAlz s 52A1° N §3A8 + ﬁuAG . 55Au + BA” + B = 0 (3-3-17)
where

sin2a 2

- 10(208,9% - By - By (4B + 280)] + BylB, - &% + B2(, -Bg) ¢

v 28gR% + B, (B" + A28 + 3R1)1)/ 5, (3-3-18)
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cos2h = [927256(2 + 5652) + [92(1+B6§2) - 57 - 59§2 - 25852 +

- By (5B +6R52 + 381 1[Be% - By - 28,4 (A% + B)1)/ S,  (3-3-19)

and
Sy = (Apg1@)® + R2[p@% - By - 28, (A% + B2)1(pQ° - Bg - 28, (A% + 25°)]
(3-3-20)
Hefe, &1; &2, ey ;7 are functions of A only and él’ 62, e é7 are functions

of B only and which are given in Appendix 3-B.

One can get solutions for tﬁe driven mode A by numerically solving equations (3-
3-15) and (3-3-16) for given émplitudes of the companion mode B or get solutions
for the companion mode B from equations (3-3-15) and (3-3-17) for given

amplitudes of the driven mode A.

3.3 DISCUSSION OF RESULTS

Equations (3-3-15) and (3-3-16) and equations (3-3-15) and (3-3-17) are two sets
of nonlinear algebraic equations for the two unknowns A and B. A direct solution

for A and B as functions of F., Q and Y is quite difficult. Therefore the normal

D’
procedure is to calculate B from equation (3-3-16) for given values of A, Q and
Y (or to calculate A from equation (3-3-17) for given B, Q, and Y), then calcu-
late the generalized excitation FD from equation (3-3-15) upon substituting B

(or A) for given values of A (or B), Q and Y. By cross-plotting the results, it
is possible to obtain curves for A vs. Q and B vs. Q for constant FD’
To obtain the necessary accuracy in the solutions, the Newton-Raphson procedure
.is used in the present analysis, which takes the results obtained from cross-
plotting as the starting values.

The isotropic shell used in chapter 2, called ES2 is used herein.The wave

numbers of vibration modes are chosen such that

a. They satisfy the accuracy requirements of Donnell's equations, namely the
circumferential wave number must be greater than 4;

b. They would constitute lower order modes which can be excited easily into the
nonlinear region to make experimental verification possible.

In the present analysis the mode k=1, €=5 was selected. Various values of i and
n were selected depending on the different coupling conditions.

A series of computations were performed for damped single and coupled mode
responses. In order to facilitate understanding, the discussions of these
numerical results are divided into five categories. '
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3.3.1 . INFLUENCE OF DAMPING AND EXCITATION

Figures* 3 1 to 3. 4 show the amplitude- frequency relationships of a perfect
shell for different values of damping and excitation. One can draw the
conclusion that the demping has a strong influénce on the behaViour of the
coupled mode response after comparing the present results with those of chapter
2 (see Fig. 2.29). The presence of even very small damping changés the shape of
the undamped coupled mode response completely. As cén be seen from Figures 3.2
and 3.3, increaSing the damping can quickly round-off the coupledmode response
peak. Similar results have been found by Ginsberg [87]

An interesting fact can be deduced from the results shown in figures 3.1 (or
3:2) and 3.4; namely, that increasing the amplitude of eXCitation (or decreasing
the value of damping) can disrupt the stability of thé coupled mode response
peak. This fact has been foiind by Chen [82] in his caréeful experiments of
fifteen yedrs ago, but has not beer prédicted by theoreticel analysis before.

3.3.2 INFLUENCE OF ASYMMETRIC IMPERFECTIONS

The amplitude-frequency relationships of a shell with the asymmetric imperfec-
tions are shown in Figures 3.5 to 3.8, where the damping and excitation are held
constant. It can be observed that asymmetric 1mperfections have a Significant
influence on the coupled mode response if the coupling condition n=¢ is
satisfied. Increasing the amplitude of the asymmetric 1mperfection can quickly
decrease the region where the coupled mode response occurs The asymmetric
imperfection also changes the stability characteristics of the coupled-mode
response. But, as it cédn be seen from Fig. 3.8, the infliehce of the asymmetric
1mperfections on the coupled-mode response is minimal if the coupling condition
n=¢ is not satisfied. It should bé noted that the influence of the asymmetric
1mperfections on the shape of the single mode amplitude-frequency ciurve is also
practically nil.

3.3.3 INFLUENCE OF AXISYMMETRIC IMPERFECTIONS

Figures 3.10 to 3.12 display the amplitude-frequency relationships of the ES2
shell with axisymmetric imperfections. As can be seen from figures 3.10 to 3.11,
if .the coupling condition i=2k is satisfied then the axisymmetric imperfection
has a strong influence on the nonlinear vibration behav1our OtherWise as shown
in Fig. 3.12 the influence is quite slight. Notice that in the casé of i=2k, the
left bifurcation point is now on the lower branch of the associated Single mode
response curve rather than on the upper branch as in the case of an asymmetric
imperfection. In addition increaSing axisymmetric imperfections have a
stabilizing effect on the stability characteristics of the coupled-mode response
curves if the strong coupling condition i=2k is satisfied.

* Notice that the frequencies in the present figures were normalized by dividing
the forcing frequency by the frequency of free vibration (linear theory) of
the perfect unloaded shell.



3.3.4 INFLUENCE OF COMBINED IMPERFECTIONS

Figures 3.13-3.16 show. the amplitude-frequency relationship of shell ES2 with
the combined imperfections (6 = 0, 62 = 0). Comparing the results of Fig. 3.13

with that of Flg 3.9 (or the results of Fig. 3.14 with that of Fig. 3.10), both
of which have the same axisymmetric imperfections, then one must conclude that
the addition of an asymmetric imperfection of about identical amplitude has
resulted in minor changes only. Since in these cases the characteristics of the
nonlinear responses are basically those of a shell with axisymmetric imperfec-
tion only, one can conclude that an axisymmetric imperfection has a stronger
influence on the nonlinear vibration than an asymmetric imperfection of about
the same amplitude. Further, upon comparing the results shown in Fig. 3.6
(imperfect shell with 61=0.OO, 62=0.05). in Fig. 3.10 (imperfect shell with’

6,==0.06, 6,=0.00) and in Fig. 3.14 (imperfect shell with 6,=-0.06, 6,=0.05) one

must conclude that the influence of the combined imperfections on the nonlinear
vibration is not simply the superposition of the influence of the asymmetric and
the axisymmetric imperfections acting alone. For instance, the region of the
coupled mode response in the case of combined imperfections is larger than the
corresponding region in the case of the asymmetric imperfection acting alone
(see Figures 3.6 and 3.14). On the other hand, the region of coupled mode
response in the case of combined imperfections is smaller than the corresponding
region in the case of the axisymmetric imperfection acting alone (see Figures .
3.1 and 3.14),

The same combined imperfection case as shown in Fig. 3.14 has been rerun twice
more with slightly modified wave numbers. Thus Fig. 3.15 shows the results of
the case where the asymmetric imperfection mode (with n=5) and the asymmetric
response mode (with £=10) are not affine. Notice the rather large shift in
frequencies and the change in the coupled mode response. Figure 3.16 displays
the results of the case where the axisymmetric and the asymmetric imperfections
do not satisfy the strong coupling condition i=2k. A comparison with Fig. 3.6
reveals that in this case besides a noticeable shift in frequencies, the shape
of the amplitude-frequency relationship resembles that of a single asymmetric
imperfection.

3.3.5 INFLUENCE OF AXIAL COMPRESSIVE LOAD

Investigation of the effect of an axial compressive load on the nonlinear
vibrations of a shell is of importance in engineering since many shells used in
practice carry such load. Figures 3.17 to 3.19 indicate the dynamic behaviour of
perfect shells for the cases of A = 0.1, A = 0.3 and A = 0.5 respectively. By
studying these figures one can draw the conclusion that increasing the axial
compressive load has the following effects. on the nonlinear vibration:

. It increases the amplitude of response (which is equivalent to decreasing the

damping),
. It increases the region of the coupled mode response.

It is clear that the presence of an axial compressive load does not change the
vibration behaviour.
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3.4 CONCLUSIONS

The nonlinear flexural vibration of perfect and imperfect thin-walled cylindri-
cal shells with viscous damping were analyzed by using Donnell's nonlinear shell
equations. Numerical solutions were obtained by applying Galerkin's method
together with the method of averaging. The study yields the following
conclusions:

a. A good agreement between the present perfect shell results and Ginsberg's
[89] analysis is obtained. The "gap" found in Evensen's analysis [30], which
is the major difference between Evensen and Ginsberg, is not found in the
present analysis. It is the present author's opinion that the "gap" resulted

because Evensen neglected the negative values of cos 2A in his ring analysis.

Therefore, one can now say that no qualitative difference exists between the

results of the different solution procedures which are (a) Galerkin's method

(Evensen [30,35] and the present analysis), (b) the small parameter

perturbation method (Chen [82]), and (c) the special perturbation technique

(Ginsberg [89]).

b. The general characteristics of the damped response of perfect shells found by
Ginsberg are confirmed by the present analysis, namely
1. the damping has a pronounced influence on the coupled mode response.

Increasing damping can completely eliminate coupled mode response peaks;

2. the damped response of a perfect shell can be divided into five regions,
as shown in Fig. 3.2. In region 3 both the single mode and the coupled
mode responses are unstable. The coupled mode response peak however is
stable;

3. the single mode response between the two bifurcation points is unstable.
One of the extra results obtained by the present analysis is that the
stability of the coupled mode response in region 4 is not always stable.
It depends on the magnitude of damping (or excitation), as shown in Figs.
3.1 and 3.2.

c. Initial geometric imperfections have a significant influence on the damped
vibrations of either the single or the coupled mode responses under certain
coupling conditions. The general influence of imperfections is quite similar
to that of damping. That is, increasing the amplitude of imperfections can
quickly eliminate the coupled mode response. In addition, the presence of
initial geometric imperfections changes the stability characteristics of the
solutions. It is noted that the influence of combined imperfection modes
cannot be obtained simply by superposition of the individually determined
effects of the axisymmetric and asymmetric imperfection modes.

d. Axial compressive loads have an influence on the nonlinear vibration of
perfect shells. Such loads increase both the amplitudes of response as well
as the region of coupled mode response. However the addition of the axial
compression does not change the vibration behaviour.
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ES2 Shell; i=2, k=m=1, n=10, £=5
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Fig. 3.16 Amplitude-frequency relationship of damped vibration of imperfect
shell with 61=-0.06 and 62=O.05.

Damping Y=9x10™°, excitation FD=4.25x10’5.
ES2 Shell; i=7, k=m=1, n=0=5 '
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Fig, 3,17 Amplitude-frequency relationship of damped vibration of perfect shell,
axial compressive load A=0.1.

Damping Y=9x10-5. excitation §D=4.25x10-5.
ES2 Shell; k=m=1, n=¢=5
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Fig. 3.18 Amplitude-frequency relationship of damped vibration of perfect shell,
axial compressive load A=0.3.

Damping Y=9x10_5. excitation FD=4.25x10-5.
ES2 Shell; k=m=1, n=¢=5
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Fig. 3 19 Amplitude-frequency relationship of damped vibration of perfect shell
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Damping T=9x10 2, excitation FD=u.25x1o'5.
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CHAPTER 4 STABILITY ANALYSIS

4,1 INTRODUCTION

The previous results indicate that the frequency-amplitude relationships admit
more than one solution for some values of frequency. One solution that is always

possible is B = 0, namely, single mode response, in which case the nodal lines
of radial displacement form a stationary spatial pattern and the motion is
symmetric about the planes y = 0. We may also sometimes find real, nonzero

values of B which satisfy the frequency-amplitude relationships. Such solutions
represent the travelling wave moving around the circumference resulting in a
moving nodal pattern. In order to ascertain whether the single or coupled mode
response will actually occur, we must consider the stability of the responses
obtained by the theoretical analysis.

The first work dealing with the stability of response was done by Evensen for
rings in 1964 [30]. He used the method of slowly varying parameters [130] in his
investigation. This method was also used later by Ginsberg in the stability
analysis of the nonlinear vibration of shells [87].

The purpose of this phase of the present study is to investigate the stability
characteristics of the frequency-amplitude relationships derived for various
cases, which are presented in chapter 2 and chapter 3. The method of slowly
varying parameters is used. The stability of both the single mode as well as the
coupled mode responses are investigated. In order to ensure the necessary
accuracy the Newton-Rapson method was used. The results of the calculations are
presented and discussed in chapter 2 and chapter 3. Only the process of the
investigation and the associated equations are presented here.

4.2 ANALYSIS

To study stability of the solutions presehted in chapter 2 and 3, equations (3-
2-1) and (3-2-2) are rewritten

2 2 2
d—‘%+278%+A+%e[(d—A-)2 }\d—%+(@)2+8d—g—+
dr dxt dt drt dt dt
2
2(6 +62)d 2][A 6 n. g 6 +62)] +
3. .\ dA, _dB L) A ; 2 2
* §gElA T+ B v 5 (6,46,) IIAS ((6,48,) ]+ a AT ¢ a BT 4
dt dt dt
3 2 2 2.2
+ aS3A + asuAB + a 5(A +B )A +a 6(A +B ) +a 7(A +B7) A
= FsD cos QST (4-2-1)
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2 2 2
d"B dB dA,2 d”A

2 * ZYS * BslB * %CB[(dt) *ATS e (dB)Z +B . g
dz dt dr drt drt

2
sy dA 3 dA dB <y A
+ Gn']ﬂ(dzvréz) dTZ] + 3 YseB[A a B " +A<sn'2(52+52) dt]

+ BgpAB + By A’B + 58433 + Bog(a%+B%)AB + _c(4%48%)%8 = 0 (4-2-2)

, T and F are nondimensional frequency, damping, time and

s SD
excitation, defined as follows:

where QS. Y

Qs = w/wmn

YS = —:%——
20w
T ot
©an
Fop *® Fp/B (4-2-3)
Bﬁn = % §E§ is the linear natural frequency of free vibration of the
pR

impenfect shell, and

2

h,2
e = ()

The coefficients asl' Ugor cvvs as7 and 581, BsZ’ ooy Bs6 are defined in

Appendix 4-A, B is defined in Appendix 2-A.l.
As a test of the stability of the response, the following small perturbations
t(t) and n(t) are introduced

A(t) = I-\cOSQ1 + g(1) (4-2-4)

B(t) = ﬁcoswé + a(t) ‘ (4-2-5)
where

e s Q1+ 8 (4-2-6)

QZ = Qs'r + a . ) o (4-2-7)
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The ¢ and ¥ are the average value (over one period) of the phase angle defined
in chapter 3.

These expressions are then substituted into equations (4-2-1) and (4-2-2). The
first order terms in the perturbations are retained. This procedure results in
two coupled differential equations for §{(t) and n(t), namely,

, 2 2 .
- &t - dg . - - @n - dn, -

a +aq +a . t+a, —F+a,.—+a.n=0 (4-2-8)
sl d.':2 s2 dr s3 sl dTZ s5 dr s6

2 2 2

g 4mn = dn =z g 4% = do =z _ _.

B + B + B 0+ B + B +p L =0 (4-2-9)
sl dTZ s2 dt s3 sl dr? s5 dr s6

where the coefficients Qg @ v Qe and le"ﬂSZ’ ""'§s6 are defined in

s2’
Appendix U4-B. The details of derivation of the equations (4-2-8) can be found in
Appendix U4-C.

It is obvious that no close solutions of these equations are known. However,
approximate solutions can be obtained by using numerical integration procedures
directly or indirect numerical procedures. In the present analysis, the method
of slowly varying perturbations [130] is employed, in which, the perturbations
(<) and n(t) are assumed in the form

g(<) Cl(t)cosq>1 + Cz(t)sim’1 (4-2-10)

n(t) nl(t)sincv2 + nz(t)cosfo2 . (4-2-11)

where Cl, C2. n, and n, are assumed to be slowly varying functions of t. Then

2 2
the derivatives QS, a5 dn

> are replaced by

> dn and
dr dr dr dt

dg

& Clesin¢1 + CZQScos¢1 ‘(4-2-12)
dn _ n,Q cose, - n,Q sine (4-2-13)
dt 1%s 2 2"s 2 :

2 dag dg

Q—% = - clgzcos¢1 - czggsinwl -1 stinwl + 2 Qscos¢1 (4-2-14)
dr s dz dx

dzn dn dn 2 >

5 = T Qcose, - = stin¢2 - nlassinwz - nZQScos‘p2 (4-2-15)

dr dt dx
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together with the auxiliary conditions

dg, g,

T cose + — sintp1 =0 (4-2-16)
dt T dt

dn, dn

—_ sin¢2 + —= cose, = 0 (4-2-17)
dv dt

These expressions for the derivatives are then substituted into equations (U4-2-
8) and (4-2-9), and.the procedure described in Appendix 4-D is used. This

procedure yields four linear differential equations for §,, G,, N

1 and BT which

can be put in matrix form as follows:

M1(e) = N1(EY) w2
where
.
- |5,
M
\.nz.

and [M] and [N] are Uxli matrices resbectivély. The elements that are contained

in these matrices are functions of A, B, Q and Y, which are defined in Appendix
4-E. Equations (4-2-18) are derived for the case of the coupled mode response.
The equations for the case of single mode response can be obtained easily from

this matrix equation bylletting B = 0 in the matrix elements and replacing sin2a
and cos2i by sind and cos? respectively as shown in Appendix 4-E.

It is indicated that (¢} = [¢0] e*" is a possible solution of the matrix
equation (4-2-18), where [00] is a constant column matrix whose matrix elements
will be determined. :

Substituting (¢} = [00} e*’ into equation (4-2-18) leads to a standard
eigenvalue problem for determining the X's,

|N-xM] = 0 (4-2-19)
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It is demonstrated in Appendix 4-E that the matrices [M] and [N] are nonsym-
metric. That means the solutions of equation (4-2-19) are complex. If any of the
X's have a positive real part, then the corresponding perturbations will
increase exponentially with time. In this case, the associated response is said
to be unstable; conversely, if none of the X's have a positive real part, the
response is said to be stable.

Stability of both the single mode response as well as the coupled mode response
for various values of damping, excitation and shell geometry were investigated
by using equation (4-2-19). In order to ensure the required accuracy in the

present analysis, the Newton-Raphson method was used to refine the values of A
and B obtained by cross-plotting. These refined values are then substituted into

equation (4-19) along with the Q, Y and associated parameters sin2i and cos2i.
For each case the eigenvalues were examined to determine whether or not they had
a positive real part. In this manner, the stability of the responses plotted in
chapter 2 and chapter 3 was determined. .
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CHAPTER 5 ERROR CHARACTERIZATION

5.1 INTRODUCTION

As mentioned before, the solutions of the present analysis are obtained based on
a number of simplifications, assumptions and approximations, by which certain
errors could be introduced if they are used incorrectly. First of all is the use
of the relatively simple Donnell shallow shell equations, in which the axial and
circumferential inertia contributions are neglected. Next one is the violation
of the simply supported boundary conditions.

The most interesting one is the application of the method of averaging (or the
method of slowly varying parameters) based on the assumption that the variation
of amplitudes of vibration during one period is quite small. In this chapter,
the effect of all these factors on the accuracy of solutions will be discussed
in detail, except the violation of boundary conditions which will be discussed
in Part II of this thesis.

5.2 ERROR CHARACTERISTICS

In Donnell's shallow-shell equations the neglecting of the in-plane displace-
ments in the curvature relations and of the transverse shear force in the in-
plane equilibrium equations comes from the shallow shell approximation in which
the circumferential wave length 2nR/¢ (£ is the circumferential wave number) of
the deformation mode is always small compared to the radius R. Essentially, it
is saying that the curvature and in-plane equilibrium of the cylindrical shell
are the same as for a flat plate. The in-plane inertias 3%?u/at? and 32v/3t? are
neglected because of the assumption that the flexural motion is predominant in
the present study. Rotary inertia is neglected because the wave lengths 2nR/¢
and 2L/k are large compared to the shell thickness h.

El Raheb made a detailed comparison for the case of linear vibrations between
the results of Donnell's equations and the 'exact' equations of motion derived
by Koiter based on the Love~Kirchoff hypothesis for shell theory in which all
the quantities neglected in the Donnell's equations have been retained [121]. He
found that the errors in frequency obtained by the approximation were

.
e = _JQREIP&. -1 (5-2-1)
exact

and concluded that:

1. The maximum error due to neglecting in-plane displacements in curvature and
transverse shear in in-plane equilibrium is

31
5 sl 2
(e - | | (5-2-2)

) -
bmex T y-v) g,
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where

_ kiR
and §2 =L

h

J12 R

El %

2. The maximum error due to neglecting tangential inertia is

5= 5%; for 2> 3 (5-2-3)

o >

3. The error due to neglecting rotary inertia is

. ER(EZ+0?)
1'°1.
€3 = 2 (5-2-4)

With these estimations in errors due to the approximations in the Donnell
shallow~-shell equations,'the'present study, in general, will be limited to
shells with the following configurations same as those used by Chen [82]

t

< === (5-2-5)
ﬁi R 100
and
L
R <10 : (5-2-6)

Also, the vibration mode will be limited to

b <e<30 (5-2-7)
and

1<k<6 _ (5-2-8)
so as to keep the error within the acceptable range.
Although El Raheb's error estimation for Donnell's shallow-shell equations has
been made for the linear vibration case, it is assumed that it will also be
approximately applicable to nonlinear vibrations since the nonlinearity of
vibration in the present analysis is quite small.
It should be noted that the vibration modes with k = 9 or ¢ = 35 were used in

the present study. This may lead to larger errors, but this loss of accuracy is
not expected to alter the qualitative behaviour of the solutions.
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In the present study the analysis of the fundamental state was performed in such
a way that the in-plane conditions are rigorously satisfied, whereas the out-of-
plane boundary conditions are satisfied only approximately. Therefore the errors
introduced are not expected to be large.

It should be noted that the present theory imposes no restrains on the axial in-
plane displacement at the ends of the cylinder in the analysis of the dynamic
state. Ginsberg's results, which satisfied the in-plane boundary conditions as
well as out-of-plane boundary conditions, show that these violations did not
alter the vibration behaviour [89].

5.3 ERROR CHARACTERISTICS OF THE METHOD OF AVERAGING

The method of averaging has been widely used in the analysis of nonlinear
vibrations of thin cylindrical shells. Its basic concept is based on the
assumption that the variation of vibration amplitude during one period is so
slow that it can be replaced by its 'average value'. Besides the method of
averaging many other methods are also used in the field. For example, Chen [82]
applied a perturbation procedure to the problem, in which no such assumption
(variation of amplitude is slow during one period) as well as mode shape was
made a priori. One would expect that their solutions would be similar since they
investigated the same problem. But, unfortunately, as shown in Fig. 2 the agree-
ment between Chen's solutions and those of Evensen is not satisfactory. The
'gap' phenomena and the peak response of companion mode in the Evensen's solu-
tion are not predicted by Chen. This raises the question naturally about the
method of averaging. Is it appropriate to apply such a method to the present
- problem? . '

To be able to answer the question a direct numerical integration procedure, the
Runge—Kutta-Gill method [57], is used in this section to the integrate system of

(2-2-7) and (2-2-8). The solutions are compared with those of chapter 4, 1t
should be noticed that Figs. 5.2, 5.4, 5.5 and 5.6 are simulations of those
plotted by computer rather than the original wh1ch are too dlff‘lcult to redraw
by hand.

5.3.1 FORMULATION OF THE PROBLEM

To be able to apply the numerical integratlon procedure equations (2-2-7) and
(2-2-8) are rewritten as

A aB dA)? B, dA dB
81 32 * B2 g7 * %13 (az) * e (&) + 15 ar T %16 at ' %17

0 (5-3-1)

diA @B dA): dB)? dA dB ‘
21 dtt * %22 av * %3 lad) e (@) temar tepatay=0 (532

1
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where 811’ 812’ ’ 816 and 821, &22,

, 826 are the functions of the
amplitudes A and B, damping YS and initial geometric imperfections W, they are
defined in Appendix 5-A, and

8y, = aslAz *ag B + asuAB? + ass(A'+B?) A + d (A2+B2)2
+ as7(Az + B2)2 A+ A - FSD cos Qt (5-3-3)
8y; = BgoAB + B ATB + B BY + B _(A*+B?) AB + B_o(A*+B) B
* BgyB (5-3-4)
where xqo asZ’ ...,'as7 and le. BSZ . 556 can be found in Appendix 4-A
Solving g ? and ——7 d

from equations (5-3-1) and (5-3-2), one obtains
dza dB,? dA

ae - P [drl * By [E?) *Bizar * By (5-3-5)
&8 dAy: dB,? dB
d? = 521 (a;] + 522 (-d_'t'] + 523 E.? + 52)4 (5"3"6)
The coefficients 511, 512, . 51& and7521, 522. .
Appendix 5-A.

. 524 are defined in
Introducing the new parameters

da _
at - P1
a8 _
at - P2

(5-3-7)
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where

A ={a P, B, P}

P = {Pl.‘ﬁl. P29 Bz}
and

By = By1P1 * By3Py * Byy

By = ByPi * ByoP5 *+ BygPp + By

5.3.2. DISCUSSIONS

The numerical integration procedure developed in this chapter and the related

computer program MDEF had to be verified by comparison with the available exact

linear solutions before they can be employed with confidence. One of the

examples checked is

2 o
X +

£ + 2 x 0.19808 x 10~ x = 0.20587 x 107 x cos (0.92000 t)

The exact solution of this equation is x = 0.13399. The result obtained using

MDEF, letting At. = 5335, achieves also 0.13399 after t = 600T (T

is one period). This very good agreement leads to confidence in the program
MDEF.

, where T =

1. Single mode response (A = O,IB~= 0)

The frequency-amplitude relationship of single mode response obtained using the
method of averaging for the given damping (Y = 9x10-5) and excitation (ﬁD =

h.25x107°) is shown in Figure 5.1.

It is obvious that the curve consists of two branches, upper branch EF and lower
one EG. Additionly, the curve can be divided into two regions, the region 1,
where at each frequency there are 2 or 3 possible vibration amplitudes, and the
region 2, where each frequency is associated with a single vibration amplitude.
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Figure 5.1 Amplitude-frequency relationship of damped vibration of perfect ES2
Shell. Damping Y = 9 x 10-5, excitation l-?D = 4,25 x 10_5.

In Table 5.1 and 5.2, the frequencies obtained in present study after t = 800T
are compared with those obtained using the method of averaging for upper and

lower branches, respectively.

Table 5.1. Comparison of frequencies obtained using the numerical integration
procedure with At = %6 at t = 800T with those obtained using the

method of averaging (upper branch).

~ ~

5 B

AMPLITUDES NUMERICAL INTEGRATION | AVERAGE METHOD
1.05820 1.0080 1.0081
1.95694 1.0000 1.0000
2.95078 0.9920 0.9920
3.04144 0.9912 0.9912
3.13133 0.9904 0.9904
3.30496 0.9888 0.9888
3.39551 0.9879 0.9880
3.43462 0.9875 0.9876
3.48256 0.9870 0.9872
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Table 5.2 Comparison of frequencies obtained using the numerical integration

procedure with At = 26 at t = 800T with those obtained using the

method of averaging (lower branch).

Q 8
AMPLITUDES NUMERICAL INTEGRATION AVERAGE METHOD
1.38305 0.9904 0.9904
1.52748 0.9906 0.9906
3.06315 0.9910 | 0.9910

It is evident that the agreement is excellent. The maximum errors are less than
0.2% for the present time step At, and they would be expected to become less if

At is taken smaller ( At, say).

Figure 5.2 shows the phase plane of the response. It indicates that the shape of
the limit cycle is nearly a perfect circle, which means that the variation of
the amplitude in one period is very small indeed (less than 0.08%).

It should be noted that the converging process of the present numerical integra-
tion procedure is sinusoidally asymptotical. This makes the calculations of the
amplitude in Region 1 quite difficult, even impossible in the neighbourhood of
the peak of the curve. The initial conditions must be chosen carefully. Slight
differences in the initial conditions will result in different solutions. For
example, as shown in Table 5.3, the different initial conditions result in
- different solutions corresponding to the points L and Q at Q = O 9904 in Figure
5.1, respectively.

Table 5.3 Comparison of amplitude obtained using different initial conditions
(at Q = 0.9904, t = 800T)

o ‘ SOLUTION OF
INITIAL CONDITION NUMERICAL INTEGRATION

A = 8.95814 x 107t

. A = 3.13071
A' = 1.2531h4 x 10°

i -1

A = 8.95814 x 10 A= 1.38307
A' = 1.25314

Also, when tracing the curves in Fig. 5.1 the frequency step AQ must be kept
small enough, especially in the Region 1. For instance, if one uses the
amplitude and velocity at Q=0.9888 of the point P along the upper branch as the
initial conditions and one employs a frequency step of A8=0.0009 then the
solution converges at point Q along the upper branch. If, however, the frequency
step is chosen slightly higher, say A0=0.0011, one obtains a solution along the
lower branch, as is shown in Table 5.4.
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Table 5.4 Effect of frequency step AQ.
(at @ = 0.9888)

FREQUENCY STEP AQ | SOLUTION OF NUMERICAL INTEGRATION

8.9581314 x 1071
3.39551

g
Lo)
"

-0.0011 A

[
0
(]

-0.0009 A

2. Coupled mode response (A = 0, B = 0)

The amplitude-frequency relationship of the coupled mode response obtained using
the method of averaging is shown in Figure 5.3. A comparison of the two sets of
solutions is given in Table 5.5.

Table 5.5 Comparison of frequency obtained using the numerical integration

procedure with At = %6 with those obtained using the method of
averaging.
CASE . © NUMERICAL INTEGRATION METHOD OF AVERAGING

A B A B

a* ' 1.0010 | 1.87383 (S)**| 1.03442 (S)| 1.88965 (S)| 1.04786 (S)
b 1.0000| 2.10926 (S) 1.60653 (S)| 2.10774 (S)| 1.59821 (S)

¢ 0.9960 | 1.81733 (S) 2.19571 (S)| 1.82036 (S)| 2.20031 (S)

d 0.9920 N.S. ** N.S. N.S. N.S.

* a, b, c, d: see Figure 5.3.

** S means solution is stable, N.S. instable

As can be seen the agreement is once again very good, even for the large time
step ga. It is evident that by using a smaller time step the agreement could be

further improved.

Figure 5.4 shows the phase plane of the response at Q@ =1.00. It is quite clear
that solution of such a case is unique and stable.

It can be seen from Figure 5.3 that in Region 2 of the response curve the
vibration is unstable. The corresponding phase plane obtained using numerical
integration is shown in Figure 5.5. It indicates that for the given initial
conditions there is no stable limit circle. That means neither the coupled mode
response nor the single mode response is stable at this frequency (at Q =

0.9940) .
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It is quite difficult to get a solution for the frequencies in Region 1 using
the present numerical integration, since in this region the amplitudes of the
single mode response and the coupled mode response are so close that the
numerical integration procedure cannot identify them. Figure 5.6 shows the phase
plane at Q = 0.9760 corresponding to the point e in Figure 5.3. As can be seen
although the solution finally converged to the loweir branch, one still can
observe that there are solutions between A = 4 ~ 6.

A
6.0 |
REGION 1 REGION 2| REGION 3
30+ — —— UNSTABLE
4O+
. e
30 |- AN
\
\\
) b
2.0 o \\ c u
\‘-
d
1.0 |
0.0 —'AV* 1 A A i 1 . 1 PR NP
0.9680 0.9840 1.0000 1.0160 , ﬁ
a. Single mode and driven mode response
B
3.0+
e ’—_\\\‘d
20+ ~%c
: b
10} a
00 L.A 1 1 1 1 1 - 1 I |

"0.9680  0.9840 1.0000 10160
b. Companion mode response
Fig. 5.3 Amplitude-frequency relationship of damped vibration of perfect ES2
Shell.

Damping ¥ = 9 x 10-5, excitation Fp = 4 .25 x 1072,
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C : The region where the stable response exists.

D' : The transient response region.

Fig. 5.4 The phase plane of coupled mode response (driven mode)
Frequency Q = 1.0000. '
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C : The region where no response is stable.

Fig. 5.5 The phase plane of coupled mode response (driven mode)
Frequency Q = 0.9940
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Fig. 5.6 The phase plane of coupled mode response (driven mode)
Frequency 2 = 0.9760.
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PARTII

Nonlinear Vibrations of Imperfect Thin-walled Cylindrical

Shells with Different Boundary Conditions
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CHAPTER 6 DEVELOPMENT OF GOVERNING EQUATIONS

6.1 INTRODUCTION

It is the aim of Part II to study the effect of boundary conditions on the
nonlinear vibration behaviour of imperfect thin-walled cylindrical shells. The
governing equations of the problem are derived briefly in this chapter. The
details of derivation are given in the relevant appendix. To be able to obtain a
complete nonlinear amplitude-frequency relationship the concept known as the
'end~-shortening' is introduced in Section 6.3, which is a natural extension of
Ref. [76] to the dynamic state. Of course, other methods, such as the incremen-
tal method described in Ref. [53~55] could also be used to overcome the problem.
It was decided to use the parallel shooting method, which is presented in
Section 6.4, since it has been proven to be very succesful for solving nonlinear
problems [63]. The basic idea in the parallel shooting method is to partition
the interval into subintervals and to compute the solution over each of them
(more or less) independently. The initial guesses involved are then improved
iteratively while one satisfies the given boundary conditions and the relevant
continuity conditions, which are imposed at each subinterval interface.

It should be mentioned that unlike in Part I, only the dynamic state is con-

sidered in this part. The solution procedure for the fundamental state is a
direct extension of the present procedure.

6.2. DEVELOPMENT OF BASIC THEORY

The equations (1-3-47) and (1-3-48) can be written as

~ -~ -~ - -~ PN

‘ N U N BN RN
Ly(®) - Lo(W) = - RW -2 2 L (W) = 5 Ly (W,We2W) = 5 Ly, (W, W)
(6-2-1)
LQ(Q) + Lp(W) = RQ’;E + LNL(Q.W) + LNL(Q,W+W) + LNL(Q,W)
- ShRu;.tt + grY (6-2-2)

where x = % , Yy = % and q = Q(x,y)cosot.

If we assume that the initial imperfection surface can be represented as,

W(x,§) = hA_(%) + hA (X) cosn§ (6-2-3)
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where Ao(i) and A1(§) are known functions of x, then the solutions for the

fundamental state are [76],

@(E,&) = hﬁv + h@o(Q) + hﬁl(i) cosny (6-2-14)
£(§;§) - EBh (- % y: o+ 50(§) + al(i)cosn§ + 32(§)c032n§] (6-2-5)

¢

Assuming that the dynamic solution has the form

PN

W(X,7,t) = hA(X,t)cosly + hB(X,t)sinly + hC(X,t) (6-2-6)

and introducing equations (6-2-6) and (6-2-3)~(6-2-5) into (6-2-1) yields

-

N 5 - b -
LH(Q) =a + i;l a; cos(aiy)‘+ §=1 bj sin(ajy) (§-2-7)

-~

To allow separation of variables of equation (6-2-7) & should have the form

N - 5 - 4 -
_ ERh? ~ - s = o
P = p [00 + :=1 °i cos(uiy) + §=1 Oj 51n(ajy)] (6-2-8)

where ao and ai are the functions of the unknowns A, B, C and their derivatives,

&i and &j are the wave parameters, as shown in Appendix 6-A.1.

- -

Substituting the expressions for W, W and & into the compatibility equation (6-
2-1), using some trigonometric identities and finally equating coefficients of
like terms results in the following system of 10 nonlinear partial differential
equations, ,

- =P (6-2-9)

¢, =--- =P, (i =1,2,...,9) (6-2-10)
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where both Po and Pi are the functions of A, B, C and their derivatives, which

are defined in the Appendix 6-A.2. The equation (6-2-9) can be integrated twice
to yield

: Q :

lh "xx [ 1h ¢
¢ —-==35=2——C === —"—C+ 5 —— 02(A*+B?)
o,xx 2R i KX o 4 R fi

XX XX xX
1h _c ., -, -1 oo
+ 6n'2[2 RZ 22 (W, +A,)A ¢6’xx] (6-2-11)
XX ' :

where the constants of integration are already set to zero in order to satisfy
periodicity condition, as indicated in Appendix 6-B.

- -

Substituting in turn the expressions for W, W, ﬁ, ® and & into the equilibrium
equation (6-2-2) and applying Galerkin's method yields the following system of
nonlinear partial differential equations,

52
A--=-== 3 a,f (6-2-12)
JKXXX 4 g i ay
Ly ,
B-co== I b.f | (6-2-13)

» XKXXX j=1 J bj

37 . .
C--=—-= 3 ¢ f (6-2-14)
k=1 ~ %k

The a,, bj’ c, - are the functions of geometric parameters, while the f_ , fb and
i J
fc are the functions of the unknowns and their derivatives. All these
k
coefficients and parameters are shown in Appendix 6-A.3.

Eliminating the terms of A ---- and B ---- from Egs. (6-2-10) with the help of
» XXXX » XXXX

-

equations (6-2-12) and (6-2-13) yields the final equations of a1 xrny and
o2.xxxx’

" 51

4 s = E 4, (6-2-15)
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: bl
b, === = I ef - (6-2-16)
=1 3P

where the d, &nd e, are listed in Appendix 6-A.L.

J B .
The problem thus involves the system of 12 nonlinear partial differential

equations (6-2-10) and (6-2-12) ~ (6-2-16).

If we assume that the dynamic response A and B can be represented as
CA(x,t) = Ao(i.t) coswt (6-2-17)
B(x,t) = Bo(;,t) sinot _ | (6-2-18)
then with the help of‘equations (6-2-10) and (6-2-11) we can assume further the
form for the unknowns &i and C, |

- C{x,t) = cl(§;t) + cz(i,t)coszwt + 6 (x, t)cosot (6-2-19)

n,QC3

- - - -

- - -~

0, (x,t) = ¢11(§.t)co§wt + 0, (R, t)cos3ut + & 18, (X, t)costat  (6-2-20)
;2(;,t) = ;Zl(i,t)sinw§ + zzz(i,t)sin3mt + an’2523(§,t)sin2mt (6-2-21)
é3(§.t) =.£31(§,t) + ;32(§,t)0082mt (6-2-22)
iu(E,t) = ;ul(ﬁ.t)sinZwt , (6-2-23)
;S(Q,t) = ;51(§.t)coswt ‘ (6-2-24)
;6(§,t) = ;61(§,t)cosmt (6-2-25)
;7(§,t) = ;71(§.t)sinwt (6-2-26)
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~ -

58(§,t) 681(§,t)sinmt , (6-2-27)

~ -~ - -

69(§,t) - 691(§.t) +.$92(§,t)coszmt . éﬁ’2693(§,t)cosmt (6-2-28)

substituting all of these expressions into equations (6-2-10) and (6-2-12) ~
(6-2-16) and applying the method of averaging to the resulting equations in
sequence yields the following system of 21 nonlinear ordinary differential
equations, ’

A .
°i = fi (i = 11,12,13,21,22,23,31,32,41,51,61,71,81,91,92,93)
(6-2-29)
KIV - FZ (6-2-30)
gLV - fy  (6-2-31)
=IV - . ‘ ' -
~where £

TRPY §3 and ?uj are functions of the geometric parameters, the excita-

tions and the unknowns A, B, C Oi and their derivatives. They are listed in

j’
- -

Appendix 6-A.5. 51' A, B and éj

one period of vibration respectively.

are the average values of Oi, A, B and Cj over

For the case of single mode response, where B = 0, these equations can be
reduced into a system of 11 nonlinear ordinary differential equations,

v
¢i = fi (i = 11912013'31v51’61091v93) (6-2-33)
AV - § (6-2-34)
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=1V _ _ o
cj = f3j (j = 1,2) (6-2-35)

The Fi’ ?2 and §3j are also listed in Appendix 6-A.6. Notice in such a case we

have new assumptions,

C = 251cos‘wt + Gn'QC3coswt (6-2-34)
031 = ¢32 (6-2-37)
89 = 2$9lcos*mt + dn,ﬂ 693cosmt ' (6-2-38)

Once the boundary conditions are specified, the problem described by Eqs. (6-2-
29)~(6-2-32) is well posed. The boundary conditions used in the thesis are
summarized in Table 6.1. The derivation of these boundary conditions are given
in Appendix 6-C.

Table 6.1 List of boundary conditions

Case | Symbol Boundary conditions
1 | sst W=0 M =0 N =0 N =0
X Xy X
2 |ss2 W=0 M =0 N =0 u =0
pe Xy
3 | ss3 W=0 M, =0 v=0 N =0
4 | ssh W=0 M =0 v=0 u=0
5 |c1 W=0 W, =0 iy =0 Ng=0
6 |c2 W=0 W, =0 N =0 wu=0
X xy
7 1c3 W=0 W, =0 v=0 N =0
8 |cb W=0 W, =0 =0 u=0




123

In the following study the boundary condition SS3 is used to illustrate the
solution of the problem. Notice that the derivation of the reduced boundary
conditions requires both the application of Galerkin's method to eliminate the y
dependence and the use of the method of averaging to eliminate the time depend-
ence. For the SS-3 boundary condition one obtaines for the case of single mode

response (B = 0)
(i = 11,12,13,31,51,91,93) at % = 0, &

» =0 (6-2-39)

Introducing now as a unified variable the 44-dimensional vector Y defined as

follows,

o]
1l
€
LRI |

Y. =

1% %1 Yo = ¥pr eeee iy = Cg (6-2-40)

then the system of equations (6-2-33) ~ (6-2-35) and (6-2-39) can be reduced to
the following nonlinear 2-point boundary value problem

Ly = £(x:%.9) for 0¢x <k
dx
Y, =0 (i =1,2,...,11) at x = 0
(6-2-41)
Y, =0 (j=23.24,...,33) at x = %

The solution of this nonlinear 2-point boundary value problem will then yield
the form the amplitude-frequency relationships and the vibration modes for the
case of single mode reponse. For the coupled mode response case the system of
equations (6-2-29) ~ (6-2~32) can be reduced to the solution of ancther
nonlinear 2-point boundary value problem by proceeding as described above.

6.3 _CONCEPT OF END-SHORTENING

A typical frequency-amplitude relationship of nonlinear vibration of a shell is
shown in Fig. 6.1.
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— >

0.00

Fig. 6.1 Typical frequency-amplitude relationship
of nonlinear vibration of a shell

It is quite clear that using the frequency increments in the present analysis
one cannot obtain the solutions in the segment GF since the problem is multi-
valuéd there. A closer look at the curve shown in Fig. 6.1 reveals, however,
that one would be able to extend the curve beyond the point F using increments
in deformation instead of increments in frequency. Such technique is developed
and discussed in detail in this section. For the sake of brevity, only the
equations for the case of single mode response are shown here.

The method developed following Ref. [76] uses the concept of 'end-shortening',
which is defined as

2nR L .
A - -3-
6 =~ ZuRL J J“,x dxdy (6-3-1)
0 O
where
- ) N 1 Z - i - - .
R S/ LI C I LI U (6-3-2)
and
A e : N an - =
€, = B Eh [(1+u2)Nx - vNy] - (1+u2)X1ﬂKx + 5vx2Ky (6-3-3)

-~ a

Substituting for & and W into Eq. (6-3-3) and (6-3-2), eliminating the y-
dependence by integrating over y and then making it nondimensional yields,
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S - =i (2 B(1-v?) YRR ¢ -- 8h C ~- - L 1
U RER (-~ B(1-v?) < Rh °o,xx + (1+n,)x,Bh ¢~ § h‘A‘; c=;
~hiA -C=}+6 1 (B(1-v?)(1+p)Rh L6, —- =LA -a-)
0,x ~,x n,2 Rh ‘ 2 c 6,xx 2 1,x 7,x
(6-3-4)

)

This equation can be reduced further by introducing QO o from the equation (6-
2-11). This yields

1+p
~ 11h=x v 2 1h h v
Uu-==== - + C__--.-—c ..—A c C
WX 2cRQxx [ 1+p1 v ] XX 2.R . R 0.% . 1+p1
l1h v 1h 1h v 1h
-F = A - oA -6 (5o 2?AA+>=>A A )
4310p1 4 R . n,? 2R1+|,11 1 2R 1.% %
(6-3-5)
where
u = hu

Substituting Eq. (6-3-5) into (6-3-1) and then expressing the resulting equation
in the form of a differential equation one obtains

- 1+
2-- % [% % % o Tt e __ - % % c_ - % A C _
dx L] XX VX 0,x ,x
v 1h v 1h
+ cC - Q2A2 - 7 = A2
1+u1 IR 1+p1 L R i
1h v 1n .
) 3% Top, UMA*SRA A ) (6-3-6)
1 1,x ,x
Recalling that
- - . _

A(x,t) = A(x,t)coswt (6-3-7)
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and substituting them into Eq. (6-3-6) yields

-~ - 4 -~ -
Q: é = eo(x,t)'4 I e (x, t) cosiwt
dx i=1
and
6(o,t) = 0
S(E, t) =6, (6-3-8)

where the Eo and éi are listed in Appendix 6-D.

Basing on the concept of harmonic balance the form of € could be guéssed as

nmE=

8(x,t) = eo(i; t) +

€y (x, t) cosiot (6-3-9)
i .

1

Theoretically, either €, Or any one of the €,'s could be chosen as the expres-

i
sion for 'end-shortening', for example 82(§,t). Substituting equations (6-3-9)

and (6-3-7) into (6-3-6), and then applying the method of averagidg to the
resulting equation using cos2wt as a weighting function one obtains

da - 11 = v - -t h v -t
—e,=5=Q._ [ - ] +—A C -= C, + = (C ,)?
dx 2 2c¢c xx 1+u1 v 1 RL 0,x 1 L 1+p1 1 LR 1
1n =', 1h v .z 1h ', -2
*Sheb R (G307 B T, “% "8 1R (A) (6-3-10)
and
52(0) =0
- L, _ -
x(g) = €5,
Introducing the parameter ¢ = ih and letting €., = Eg- one obtains
g cf c R 2 €

c?
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3 =1 o (6-3-11)

with the boundary conditions

Ez(o) =0
< Ly _
€2(R) = 6,
E2L
where 60 = ——, and the function f_ is of the form
€L e
1h v I, oy -t R_ v = h _ .,z
= =2 f xX _ . " 2 - = 2
fe 2L [1+u v ]Qxxcl ‘L cA C1 L 1+4n Cl *L°© (Cl)
- 1 v 0,x 1
ih 'y 1h v 2 A2 A1)2
"ol e ©lrgre [1+u1 e Bt e ()]

Hence one must find the solution for the system of Egs. (6-2-33) ~ (6-2-35) (for
the case of single mode response) under the restriction that the solution must
also satisfy the constraint condition given by Eq. (6-3-11). With Eqs. (6-2-33)
~ (6-2-35) and (6-3-11) together one obtains a new system of nonlinear ordinary
differential equations, in which the frequencies as well as amplitudes are both
unknowns.

Introducing now a new vector Y

o<y

= {Y, Y5} (6-3-12)
where
Yy5 = €2

the system then reducés to the following nonlinear 2-point boundary value
problem, '

Q: i = i (x; i. Q) for 0 < x & %

dx

Y, =0  (i=1,2,...,11) at X = 0

Y =0 (f=23,24,...,32,33) at X = (6-3-13)
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6.4. GENERAL NUMERICAL PROCEDURE

Dué to the nonlineéear nature of the problem, anything but a numerical solution is
out of the question. There are many numerical methods which are available to
solve the problem, for example, the finite difference method, the perturbation
method and the shooting method, etc. Trying to make use of the readily available
coded subroutines for solving nonlinear initial value problems it was decided to
employ the 'shooting method' [57] to solve the present problem. Though, due to
numerical instability, it becomes necessary to employ parallel shooting over 10
intervals to carry out the integration over the shell lengths used. For the
purpose of describing the method, let us consider just 'double shooting' or
'parallel shooting over 2 intervals'.

6.4.1 GENERAL PROCEDURE

Let us associate the following 2 initial value problems with the 2-point
nonlinear boundary value problem described by equation (6-2-41),

du :
— = §(§. Q;u) for 0 X < §o Forward Integration
dx
w(o) = g = {0,0,0,...,0; 5;,8,5,.0000 8115 0,0, SUFLIPLIPeS +$5,)
(6-4-1)
and
dv - - - L
— = f(x,Q;v) for x ¢(x <= Backward Integration
- = ~ o—- —R
dx
L — - 1 d ‘ : * - -
v(g) = t = {0,0,...,0; ty,t5,.000t55 0, 0,000, O tlz.t13,...,t22](6 4-2)

Under appropriate smoothness conditions on the nonlinear vector function
f(x,Q;Y) we are assured of the existence of unique solutions of these initial

value problems, here denoted by

U(x,Q;g) and V(x,Q;t) (6-4-3)

These solutions must satisfy matching conditions at X = io' Introducing the new

vector function ¢ these conditions can be written as

9(§) = g(; = ;oog;§) - Y(; = ;oog;s) =0 A (6-u-4)
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where

5= ()

et

Thus the solution of the nonlinear 2-point boundary-value problem (6-2-41) has
been transformed to the solution of the two associated initial value problems
(6-4-1) ~ (6-4-2) and to the finding of the roots S of the system of simul-

taneous equations defined by equation (6-4-4).

Using Newton's method for finding the roots of ¢(S) = O we have the following
iteration scheme,

~

sl oo gt . agP (6-4-5)

where ASY is the solution of the Ulith-order linear algebraic system

S e gt = - a(sh) (6-L4-6)

To apply Newton's method we must be able to find the Jacobian matrix J

'
st fagt 20, |
aS1 aS2 asuq
ad
Jgh = %g o(s¥) = 3§§ cee ees (6-4-7)
| %51 Syy |

In order to solve for the components of the Jacobian matrix J let us introduce
the following new vectors

du du
W, =5z — fori=1,2,...,22
i aSi 8
ay oy
W, =95 = 3¢ for i = 23,24,...,44 and j = 1-22 (6-4-8)

i J
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These vectors then are found as the solutions of the corresponding variational
equations obtained by implicit differentiation of the associated initial value

problems. Thus, for i = 1,2,...,22 we must solve
aW, of _ .
" %33 (x,Q;u) . wi for 0 { x < x Forward Integration
& o ) T |
W, (0) = I, (6-4-9)

and for i = 23,24,...,44

d!’i af - - - L | ’

;;— = 3§ (x,2;v) . Ei . for X slx < R Backward Integration

W (X -1 (6-4-10)
~i'R ~i

were li ={0, ..., 0,1, 0, ..., O} is the ith unit vector in the n-gpace.

The components of the Jacobian matrix J' can be calculated analytically

afl afl afl )
aul 3u2 auhu
af af af, ‘ ‘
;' = st (x,Q;u) = 3: (x,2;v) = EGI cer een | (6-4-11)
3y yy
L i

Since the Jacobian matrix J' is a function of u (or y), the variational equa-

tions (6-4-9) depend step-by-step on the results of the associated initial value
problem (6-4-1), and the variational equations (6-4-10) depend step-by-step on
the results of the associated initial value problem (6-4-2). Thus the varia-
tional equations depend on the initial guess S. Also, it is advantageous to

integrate the 22 variational equations simultaneously with the corresponding
associated initial value problem. This results, for double shooting, in a
1012 dimensional, 1lst-order, nonlinear differential equation.
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6.4.2 PROCEDURE INCLUDING END-SHORTENING

For the problem described by equation (6-3-13), if the end-shortening is
considered, the 2 initial value problems associated with it become

£ (x,2;u) for 0 ¢ x < x Forward Integration

s
n
Lo

g 1=

u(0) = s {0,0,...,0; 81185044813 0.0....0;,312.513....,522; 0}
(6-4-12)
and
& _a= - - L .
— = f (x,Q;v) for x5 < x < R Backward Integration
dx
ALU-‘— L4 . . .
y(R) =t = {0,0...,0; Epatpueenestyys 000,00y 05 tgitygeenee ity 0)
(6-4-13)
where
- u - v - £
u = H v = 3 g =
Gu év ' f‘e

Under appropriate smoothness conditions on the nonlinear vector function
f (Q;X,Q) we are assured of the existence of unique solutions of these initial

value problems, here denoted by
U (X,2;5) and V (%,Q;t) (6-4-14)

In this case these solutions satisfy the following matching conditions at

X = X 3
o)

U, (x = §0.Q;§) = Vi(§ = QO,Q;g) for 1 = 1,2,...,44

(6-4-15)

qu (; = ;o,Q;é) - Vqs (; = ;O'Q;i) = 60



132.

Introducing a new vector function ¢ these matching conditions can be written as:

¢ (8) = U (x,,2:8) -V (x=x,8¢t) -1=0 (6-4-16)
where
.
s
- - 0
S = t and Y =
%
| 2] \

Using Newton's method for finding the roots of ¢ (é) = 0 we have the following

iteration scheme

-

é el _ogm o, Aéu

~

where A§u is the solution of the 45th-order linear algebraic system.

20 . . T . A - , _
= (g% -« ag¥ = - o) (6-4-17)
ag

| . ag (sH

The components of the Jacobian matrix J = ———— are once again calculated from

3s

the appropriate variational equations. However, here the dimension of the system
of variational equations derived in equation (6-4-9) must be increased by one.
Thus for 1 = 1,2,...,22 one must include as the 45th equation '

4 oSpy e 3f L
- L = W for O ¢ x < x. Forward Integration
- 3S du S, du ~i -7 =70 -
dx i ~ i ~
3 =~ ) .
aSi e2u(0) =0 (6-4-18)

whereas for i = 23,24,...,44 the U45th equation is given by

d SCZV afe v afé _ _ L
— 35 = 35 35 =30 W for x0 <x< R Backward Integration
dx i ~
a ~ L, _ -
35~ €2y (§) =0 (6-4-19)
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In addition we must also solve the following inhomogeneous variational oquations

d 2 af ag) af o _
— =] == |=] + —= for 0 < x { x Forward Integration
= 3Q 3y aQ R 0
a -
ag 4(0) = I, (6-4-20)
and
a af ay af - - - L
= [35] = = [35 * 38 for Xq £x< R Backward Integration
dx 3y
3~ Ly _ -
TR S (6-4-21)
Here I = {0,0..., o).
- ai af af ,  af
In these equations the Jacobian matrix J' = — = — and the vectors 3u - e
au v ~
of
and 3g & be calculated analytically.

The solutions of these additional variational equations are then used to add one
3¢

row and column to the 44-dimensional Jacobian S derived in (6-4-11).

Schematically the resulting 45th dimensional linear algebraic system (6-4-17)
can then be represented as:

20 ) "
35 e |8
st | = -0 (sM (6-4-22)
6 36| |,
B A9 ]

Since the Jacobian J is a function of u (or y) therefore, as pointed out above,

the variational equations depend step-by-step on the results of the associated
initial value problems. It implies that the variational equations depend on the
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initial guess 8. Thus once again we must iterate at a prescribed value of 60.
as¥

the value of the end-shortening, until all components of the ratio |:u—| are
S

~

smaller than some preselected positive quantity.

It has been shown in [76] that the shooting method is slower than the standard
finite difference or finite element schemes. However, if the length of the
intervals in integration is properly chosen so that numerical instabilities are
avoided, this method gives more accurate results.

6.4.3 PROBLEM OF STARTING VALUES

One of the greatest difficulties in 'shooting' consists of obtaining a starting
estimate of the initial data which is sufficiently close to the exact initial
data so that the iteration scheme used to find the solution of the nonlinear
problem will converge. In the case of single mode response, fortunately, the
nonlinear solution approaches the linearized solution asymptotically for values
of the frequency Q sufficiently far from resonant point (Q » 0 or Q@ » ). Thus,
for sufficiently low (or high) values of the frequencies one can use the linea-
rized solution as the starting values for the nonlinear iteration scheme. The
governing equations for the linearized problem can be reduced by a procedure
similar to the one described for the nonlinear problem above, and they can also
be solved by 'parallel shooting'. It is well known that for the linear problems
the 'parallel shooting' will yield the correct solution directly, no iteration
is required [76]. ‘ , :

For the case of coupled mode response, as shown in Fig. 2.29c the problem of
obtaining a starting estimate for the initial data becomes complicated since the
left branch of companion mode response seems to approach infinity while the
frequency Q decreases towards zero. A careful look at the picture reveals,
however, that the curve tends toward the backbone curve of the relevant single
mode response if the amplitude of imperfection is small enough. This fact makes
the problem solvable since one can use the values of the backbone curve as a
starting estimate for companion mode. This works as long as one is far enough
removed from the resonant frequency. As to the right branch of the companion
mode, Fig. 2.29c shows that it approaches the values of both the driven mode and
of the single mode response. So one can use values of the single mode response
as a starting estimate for it. The problem of obtaining a starting value for the
initial data for the driven mode presents no difficulty, since the nonlinear
solution approaches the linear solution asymptotically as long as the frequency
is far from the resonant point ( » O, Q » ), which is quite similar to the
case of single mode response mentioned above.
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CHAPTER 7 CHECKING THE CORRECTNESS OF THE PROPOSED SOLUTION PROCEDURE

7.1 INTRODUCTION

The combined analytical/numerical procedure, which has been successfully
employed for the solution of buckling problems by Arbocz is now used to obtain
the dynamic response of thin cylindrical shells with different boundary
conditions. As usual, the solution procedure developed in the thesis has to be
checked out by using some examples the solutions of which have been proven to be
correct. In the present thesis two examples are used. First, one considers the
problem of nonlinear vibrations of beams with different boundary conditions,
with which the correctness and applicability of the solution procedure can be
demonstrated. Second, one looks at the problem of linearized vibrations of thin
cylindrical shells with different boundary conditions. These known solutions are
employed to check the program developed by the author for nonlinear problems
- and to supply the initial estimates for the starting data needed in the case of
nonlinear calculations. '

7.2 NONLINEAR VIBRATIONS OF A BEAM WITH DIFFERENT BOUNDARY CONDITIONS

When the longitudinal inertia term is neglected the equation of motion of a
uniform beam with immovable end supports is [32],

’ 2 2 '
gy &¥W _ N ¥, p W P(x) coswt : (7-2-1)
ax! ax? at? '

where N is the axial tension, given by

3w, 2 |
() 9 | | . (7-2-2)

W is the lateral deflection, A is the cross-section area, L. is the length and

b
P(x) is the external forcing function which is uniformly distributed along the
x-axis. The other symbols have their usual meaning.

We are seekingfa solution to Eqs. (7-2-1) and (7-2-2) which satisfies the
preselected boundary conditions, for instance, hinged-hinged one,

W==—7=0 (x = 0)
ax?
2

w=3¥_o (x = Lb) (7-2-3)
3x?

Defining the 'end-shortening' as
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: 3y,
U (x) = 3% O (7-2-4)

Oh—’ur'

then using the relationship

an N

;{-—- = ﬁ (7_2—5)

and applying in sequence the procedure described in Section 6.4 to these
equations yields the solution of the problem.

The accuracy of the procedure is verified by comparing the natural frequency
obtained using the current theory with those of exact solutions. For example,
. the exact fundamental frequency of a beam with hinged-hinged boundary condition
is @ = n? = 9.8696 [115], while the present approximate solution is Q = 9.8701
for the case of small vibration (W = g = 0.00315, Ax = 0.05, where r is the
radius of gyration of cross-section, Ax is the integration step). Here the
relative error‘is only 0.005% and it could be decreased further if one specifies

smaller integration steps AX.

Table 7.1 Natural frequencies of beam with different boundary conditions

Hinged-Hinged Hinged-Clamped Clamped-~Clamped
Amplitude (%) 0.00315 0.00126 - 0.00195
Frequency (Qp) 9.8701 15.6006 22.3712

Table 7.1 lists the fundamental frequencies for the beam with the different

boundary conditions, where the excitation is fixed of a constant value of §B=1.1

and where §B= (P/EI)(L*/r). The amplitudes are those of the middle point of the

beam. As can be seen the fundamental frequency of the hinged-hinged beam is
lower than that of the clamped-clamped beam, which indicates that the stronger
boundary conditions make a beam 'stiffer’'.

The curves shown in Fig. 7.1 are the backbone curves of the beam with different
boundary conditions. As can be seen the clamped-clamped beam exhibits the least
nonlinearity. These results are quite similar to those reported by Evensen [32],
who applied the perturbation method to the same problem. Notice that in Figures
7.1 and 7.2 the frequencies are normalized using their respective nondimensional
fundamental frequencies from Table 7.1 as the normalizing factor.



137

W
T ol Clamped-Clamped
B Hinged- Clamped
07F
Hinged-Hinged
05+
0.3+
+ |
01
i ! 1 d i L 1 i -1 1

0.9924  1.0014 10104 -1.0794 1.0284
' —

Fig. 7.1 The amplitude-frequency relationships of free vibration for
various boundary conditions.
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Fig. 7.2 The amplitude-frequency relationships of forced vibration f‘or
various boundary conditions.

Excitation FB = 1.1
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The response curves .of the clamped-clamped and the hinged-hinged beams are shown
in Fig. 7.2. As can be seen from this figure the response of the hinged-hinged
beam to a given excitation is much stronger than that of the clamped-clamped
beam. The 'resonant region' of the hinged-hinged beam is wider than that of the
clamped-clamped bean.

The modal shapes in the x direction for different cases considered are shown in

Fig. 7.3. As expected, the maximum amplitude occurs at x = 0.5 for the symmetric
boundary conditions, whereas for the unsymmetric boundary condition the position
of the maximum amplitude is shifted away from the middle point of the bean.

Clamped \ Hinged
Clamped -5\\\\\\\\\5_400mped
s o ; o
nged /-\ nged
) !
0 05 1

Fig. 7.3 Modal shapes of beams with different boundary conditions

As mentioned before the objective of the present analysis in to prove the
‘applicability' of the solution procedure developed in the thesis. Therefore the
comparison is limited to the case of the lowest order vibration. There is no
difficulty in solving problems of higher order vibration of beam using the
present procedure.

The results presented for the problem of nonlinear vibrations of beams with
different boundary conditions show that the solution procedure developed in the
thesis is reliable. Next it will be applied directly to the problem of nonlinear
vibrations of imperfect thin cylindrical shells with different boundary
conditions.

7.3 LINEARIZED VIBRATIONS OF THIN CYLINDRICAL SHELLS

The nonlinear vibrations of imperfect thin walled cylindrical shells with
different boundary conditions as treated in this thesis involve the solution of
a response problem. However, if one lets the external excitation FD approach
zero the forced vibration curves approach ever more the backbone curve
representing the case of free vibration. Thus, as can be seen fron Fig. 7.4, it
is possible to simulate the linearized vibration problems of perfect cylindrical
shells under different boundary conditions.

As. has been pointed out earlier (see p. 84) the nondimensional frequency
parameter Q is obtained by dividing the forcing frequency w by the frequency of

free vibration (linear theory) of the perfect unloaded shell JE/ZER‘. Assuming
that Evensen's solution of Ref. [30] represents the exact solution for SS3
boundary conditions, that is
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QE2= ;,z—=10
mn
where
2 2
ot = _E { E* . ¢ LE3+1) )
pR?  (E2+1)2 12(1-v?)
then

& = 2 [ §~ + € (§z+1)z
Q.2 (E2+1)2 12(1-v?)

Hence for £=0.1, €=0.01 and QE'=1.0 one obtains

2

9t = 2.06437 x 1072 (» @ = 4.54354 x 1072)

In Fig. 7.4 the response curves of the mode with one half-wave along the x-axis
and ¢=5 full waves in the circumferential direction are shown for different

values of the excitation FD‘

A
T - - ES2 SHELL
£=0.01
8x1072 - | £=0.1
! L/R=2n
1=5
6x10°2 |- I A R
| Q= -
! 4.54354x10
4x1072 | |
o //IN\\ F—o0
221072 | I D
1 N
| Q
1

Fig. 7.4 Simulation of the natural frequencies

Notice that the frequency Q along the horizontal axis has been normalized by the
natural frequency of the SS3 boundary condition (Q = 4.54354 x 10-2).

Table 7.2 lists the upper- and lower bounds of the lowest natural frequencies
(m=1, 2=5) for the usual 8 boundary conditions listed in detail on p. 122.
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Table 7.2 Natural frequencies of Shell ES2

Resonant Frequency

B.C: ~ Approximaté solution (x10-2) Exact solution (xio'z)
SS1-5S1 4.54140 ~ 4.54180 .
S$S2-SS2 | 5.26075 ~ 5.26120 -
$53-5S3 4.54353 ~ 4.54360 . 54354
SSh-SSh 5.28375 ~ 5.28381 -
c1-C1 4.55975 ~ 4.55987 -
c2-C2 5.28300 ~ 5.28400 .
c3-C3 4.56320 ~ 4.56345 -
_c44cu‘ 5.28770 ~ 5.28777 . -
ss3-C1 4.54867 ~ 4.55733 -

It is not surprlslng that the C4-Cl4 (the strongest boundary condition) has the
highest natural frequency As a matter of fact all boundary conditlons with a

strong axial constralnt (w1th u= O) have just about equally high natural
frequencies.



141
CHAPTER 8 NUMERICAL SOLUTIONS

8.1 INTRODUCTION

Two computer programs were developed based on the present approach for the two
different cases of n = ¢ and n = ¢, They provide a powerful tool for examining
the influence of both various boundary conditions and initial geometric
imperfections on the nonlinear vibration behaviour of thin-walled isoptropic or
orthotropic shells. In this chapter two problems are considered. One of them is
the influence of different boundary conditions on the nonlinear vibrations of a
-particular shell. Here the shell ES2 with a slight change in the charateristic
data is used. The second one is to study the effect of initial geometric
imperfection on the nonlinear vibration of the shell WN with dlfferent boundary
conditions. :

In studying the nonlinear vibration of a system, generally three factors, the
natural frequencies, the backbone curve and the modal shape are considered since
these factors outline its principal dynamic behaviour. Following this approach,
in this chapter we shall consider the influence of the different boundary
conditions and the inital geometric imperfections on the natural frequencies,
the backbone curves and the modal shapes.

There is no unique approach for comparing and discussing the solutions for the
different boundary conditions. Normally, one way is to compare the results
based on the fundamental frequencies which probably have different
circumferential wave numbers for different boundary conditions [106]. On the
‘other hand, one can also compare the solutions for different boundary conditions
based on a constant circumferential wave number, keeping in mind that the
frequencies under such cases may be not the fundamental ones. In the present
study the later way is followed. ‘

8.2 NUMERICAL SOLUTIONS AND DISCUSSIONS

The characteristic data of the ES2 shell are slightly changed to make the
calculations simpler. The new data are as follows,

[339]2 = 0.00 - |
=7) = 0.00999998 - 0.010

[y ]
n

kn/L

§ = Q/R = 0.10471976 = 0.105

v

0.3

The associated geometric and vibration mode data are

"R=L-=1
h=1.111 x 10'“
2 =30
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The way the nonlinear modal shapes were calculated for the different boundary

conditions is illustrated in Fig. 8.1. As starting values one uses the results

of the linearized response calculations for the desired boundary condition (say
SS3). '

- Backbone curves . )
A P Linear solution
08l . Nonlinear solution
0.4
0.0 . . . .
’ 0.9968 10000 1.0032
— -0

.Fig. 8.1 Steps involved in nonlinear response calculations

Thus when attempting to find the linearized natural frequencies of the modified

shell ES2, by inputing the values of Qa and FD one obtains the linearized modal

shapes at point 'a'. Using the same values of Qa and F‘D and the linearized modal

shapes as an initial guess one can solve the nonlinear problem iteratively and

obtain the nonlinear modal shapes and the value of the control variable EZ' also

called 'end-shortening' at point 'b'. Next one sets §D=O and uses Qa and the

nonlinear shapes at point 'b' as initial guesses to calculate the value of Q and
the nonlinear modal shapes at point 'c' while keeping the value of the control

variable 52 fixed at the value found at point 'b'. Finally by increasing or
decreasing the value of the control variable EZ one can trace out the whole

backbone curve. For very small values of l_\m x (the maximum amplitude of the

a
modal shape A) the value of Q corresponding to the backbone curve is the
(linearized) natural frequency for the specified boundary condition.

Table 8.1 lists the lowest natural frequencies of the modified ES2 shell for 8
different boundary conditions, which were all calculated by the nonlinear
procedure described above. The exact linearized natural frequency given by

Evensen's formula [30] for the SS3 boundary condition is 4.59044 x 10-2. As can
be seen from Table 8.1 this value is matched quite accurately. For a detailed
list of the different boundary conditions refer to Tabel 6.1 on p.122.
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" Table 8.1 The natural frequencies of modified shell ES2 with different boundary

conditions
CASE 1 2 "3 4 5 6 7 8
B.C. - 881 SS2. SS3 sSsi Cl c2 C3 ch

ox10~2

4.58753 | 5.41926 | 4.59041 | 5.44970 | 4.60936 | 5.44784 | 4.61304 | 5.45454

Considering the relative changes in the lowest natural frequencies introduced by
varying the different constraints one finds that varying the axial constraint

(u=0 vs. ny=0) results in a change of about 18%, varying the circunferential

- -

constraint (v=0 vs. ny=0) pboduces a change of only about 0.1%, whereas varying

-~ -

the rotational constraint (w.;=0 vS. Mx=0) gives rise to a change of about 0.5%.

Thus it is clear that the axial constraint u=0 has a very strong influence on
the value of the lowest natural frequency. In comparison, the effect of the

rotational constraint w.§=0 is small and the effect of the circumferential

-

constraint vs0 is nearly negligible.

The backbone curves for the different boundary conditions are plotted in Fig.

8.2. Notice that the frequencies Q for all curves have been normalized by their
respective natural frequencies listed in Tabel 8.1.

A
08F 552,554 51,553
€2,Cb 1,03
0.6 F
0.4 F
0.2 f
A
| Q
00 Il 1 L
N 0.9968 1.0000 10032

Fig. 8.2 Backbone curves of the modified ES2 shell for different boundary
conditions

Clearly all curves show a softening type behaviour, which agrees with the
previously obtained solutions where the SS3 boundary condition was satisfied
approximately. This means that the different boundary conditions do not change
the basic nonlinear vibration characteristics of the modified ES2 shell. A
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closer look at these curves reveals the fact that the backbone curves for the
boundary conditions SS2, SS4, C2, Ch and for the boundary conditions SS1, SS3,
Cl, C3 are practically identical. This clearly means that the circumferential
constraint v=0 and the rotational constraint w.§=0 have less influence on the

nonlinearity of vibration of the modified ES2 shell then the axial constraint

u=0, but this influence becomes significant only for the cases of large
amplitude vibrations (Kmax> 0.3, say).

A study of the modal shapes for single mode response of the perfect shall ES2
reveal the changes in the modal shapes produced by the different boundary
conditions. Since in these comparisons one is especially interested in the
differences of the modal shapes, therefore Figures 8.3 ~ 8.6 are drawn about the
same sizes and there are no scales indicated along the vertical axes. To help in

understanding the differences besides the modal shapes A and C also their first
derivatives are plotted.

As can be seen from Fig. 8.3b, for the SS3 boundary condition the modal shape of
the driven mode A is a perfect half wave sine, whereas the modal shape of the

axisymmetric term C, needed to satisfy the circumferential periodicity
condition, is a perfect cosine term plus a constant value. These results agree
with the assumptions made in Part I of this thesis (see Eq, 2-2-4, p. 39).
Changing the circumferential constraint condition from v=0 to ny=0 (from SS3 to

SS1 boundary condition) one gets the results shown in Fig. 8.3a. As expected,
the modal shapes are practically identical except within a very narrow region
next to the edge of the shell.

Looking now at Fig. 8.4 one sees immediately the strong influence of the axial
constraint condition u=0. The modal shape of the driven mode A no longer

resembles a half wave sine but is more like a full wave cosine. This statement

is confirmed by the shape of the first derivative of A, which looks like a sine
wave except in a narrow region close to the edge of the shell. Notice also that

the modal shapes of the axisymmetric terms C are no longer pure trigonometric
shapes.

Considering now the clamped boundary conditions, as can be seen from Fig. 8.5
the modal shape of the driven mode A resembles once again closely a half wave
sine shape, except in a very narrow region close to the edge of the shell. If,

however, one changes from Nx=0 to the axial constraint condition u=0, then as

can be seen from Fig. 8.6 both modal shapes A and C deviate considerably from a
simple trigonometric function, especially in a narrow region close to the edge
of the shell.
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Fig. 8.3 Modal shapes for single mode response using simply supported boundary
conditions Modified ES2 Shell; 2=30.
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Fig. 8.4 Modal shapes for single mode response using simply supported boundary
conditions. Modified ES2 Shell; ¢£=30.
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Fig. 8.5 Modal shapes for single mode response using clamped boundary condi-
tions. Modified ES2 Shell; 2=30. ,
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Fig. 8.6 Modal shapes for single mode response using clamped boundary condi-
tions. Modified ES2 Shell; £=30.
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The second shell investigated in this chapter is the WN shell. Its geometric
data, as 1ntroduced before are

g = 720
L_2
R 3

and
v = 0.272

Since the asymmetric imperfection used in this study is

= 0.4 sin 5%5 cos 25 %

TIE

therefore one expects the dominant single mode vibration to have similar
characteristics. As a matter of fact, for SS3 boundary condition the
corresponding perfect shell vibration mode is expected to closely approximate
the folloying form

= A sin 5%* cos 25 % + C sin? 5%5

TIE

With this yibration characteristics

= (g2 %)1 = 0.09425

[y
i

_ kn/L
§ = gym’ = 0.07535

and the exact linearized natural frequency for SS3 boundary condition is given
by Evensen's formula [30] yielding

Q = 0.96236

553

Table 8,2 lists the natural frequencies of the perfect WN shell which correspond
to the vibration mode k=m=5, ¢=25 for the 8 different boundary conditions
listed. As can be seen the SS3 value matches closely the exact result. For a
detailed 1ist of the different boundary conditions refer to Table 6.1 on p. 122.

Table 8.2 The natural frequencies of shell WN with different boundary

conditions.
CASE 1 2 3 4 5 6 7 8
B.C.‘ Ss1 SS2 SS3 SSY Ci C2 C3 ch

Q 0.9&88 0.9288 | 0.9624 | 0.9689 | 0.9918 | 0.9932 | 1.0017 | 1.0082
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To understand the relative changes in these higher order hatural frequencies
introduced by varying the different constraints it is helpful to present the
data of Table 8.2 regrouped so as to better visualizeé the results. Thus Table
8.3 shows the relative changes in higher order natural frequencies produced by

varying the rotational constraints (w,;=0 vs Mx=0). whereds Table 8.4 displays

the relative changes caused by varying the axial constraint (uz0 vs Nx=0), and
finally Table 8.5 lists relative changes produced by varying the circumferential

constraint (v=0 vs N_ =0).
Xy

Table 8.3 Relative change in the higher order natural frequencies (k=m=1, £=25)

(w.;=0 vs Mx=0)

SLS8L . .71 - N, =0
2552 . 6.u31 S =0
ﬁ§?=un& a0
BSSH - u.o62 _oe0

Table 8.4 Relative changes in the higher order natural frequencies (k=m=1, ¢=25)

(u=0 vs Nx=0)

$S2-SS1 _ X

ss1 -0 “ Ny =0
Qgigl - 0.14 - éxy =0
§§§§§§3 = 0.68 . 5 =0
Ci-C3  _ 5.65 e .0

C3
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Table 8 5 Relat;ve changes in the higher order natural frequencies (k=m=1, £=25)

(v-O vs ﬁ =O)

$S3-SS1 _ s
42 3.62% N =0

§§g§§§g = 4,.32% - ; =0
2 1.00% N =0

.9%593 - 1.51% —u=0

From these results it is obvious that sofar as the influence on the higher order
natural frequencies is concerned, variations in the rotational constraint have
the largest effect (about 4 ~ 7%). The effect appears to be the strongest if the
shell is unrestrained in the circumferential direction. On the other hand the
effect of the axial constraint on the higher order natural frequencies appears
to be negligible (only about 0.1%) if the shell is unrestrained in the

circumferential direction. Even if v=0 the effect is less than 1%.

This result is gomewhat surprising in view of the earlier results obtained for
the lowest natural frequencies of the very thin modified ES2 shell (% ~ 9000).
Finally, the circumferential constraint has a noticeable effect on the higher
order natural frequencies, which is stronger for the simply supported boundary
conditions (about 4%) than for the clamped ones (about 1.5%).

The backbone curves for the different boundary condltlons are plotted in Fig.

8.7. Notice that the frequencies Q for all curves have been normalized by their
respective natural frequencies listed in Table 8.2.

0.8 4
ss3 c3

0.6-

0.4+

0.2-
A
1)

0.0 4 1 1 1 ,

0.8237 0.9119 1.0000 1.0881

Fig. 8.7 Backbone curves of the WN shell for different boundary conditions
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Comparing the results of the backbone curve for the higher order modes (Fig.
8.7) with those of the lower order modes (Fig. 8.2) it becomes evident that the
higher order modes exhibit a much stronger softening type nonlinearity than the
loweg order modes. (Notice the difference between the scales used in Figures 8.7
and 8.2.) .

A study of the higher order modal shapes for single mode response of the perfect
and imperfect WN shell reveal the changes in the higher order modal shapes
produced by the different boundary conditions and by the inclusion of moderate
size initial imperfections.

As can be seen from Figures 8.8 and 8.9, for the 4 different simply supported
boundary conditions the changes in the higher order modal shapes are slight.
Notice also that the inclusion of a moderate size asymmetric imperfection
(62=0.4) results only in small changes. There is now, however, also the response

term C present, which accounts for the circumferential periodicity correction

3

necessary because of the inclusion of the asymmetric imperfection.

Considering the modal shapes for single mode response using clamped boundary
conditions, as can be seen from Figures 8.10 and 8.11 the effect of the
rotational restraint is restricted to a narrow region next to the shell edges.
Otherwise the higher order clamped modal shapes ressemble closely the simply
supported ones. Also the inclusion of a mdderate size asymmetric imperfection
produces once again only small changes. However, the presence of a initial
asymmetric imperfection will result in noticeable distortion of the higher order
modal shaped as can be seen in Fig. 8.12. _

On the other hand, as can be seen from Fig. 8.13, the size of the maximum

amplitude of the nonlinear vibration response Kmax has only a negligible

influence on the shape of the higher order modal shapes. Notice that the
amplitudes of the different modal components have been normalized so that
identical amplitudes at x=L/2 resulted.

Finally Fig. 8.14 displays the frequency-asymmetric imperfection relationships
for various boundary conditions. Notice that in this figure the frequencies of
the different curves are normalized using respective nondimensional natural
frequencies listed in Table 8.2 as normalizing factors. Proceeding this way the
4 curves for simply supported boundary conditions and the 4 curves for clamped
boundary conditions practically collapse into a single curve each for moderate
size asymmetric imperfections (for 62 < 0.5, say). However, the effects of the

different boundary conditions become more and more pronounced for larger
imperfections. Initially the general tendency is that the natural frequency
decreases with increasing values of the asymmetric imperfection. It appears that
for very large imperfections (62 > 2.0, say) this trend is reversed, the

frequency begins to increase with increasing asymmetric imperfections.
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Fig. 8.14 The frequency-asymmetric imperfection relationships for various
boundary conditions.

WN Shell; k=5, n=2=25; amplitude of vibration A=0.001
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8.3 CONCLUSIONS

The present approach demonstrates a technique for the examination of the in-
fluence of different boundary conditions on the nonlinear vibration behaviour of
thin-walled perfect and imperfect cylindrical shells. In principle, there is no
difficulty in extending this method to the investigation of the nonlinear vibra-
tions of cylindrical shells with elastic edge restraints.

Numerical results for two isotropic shells are presented. From these initial
results it appears that the effect of boundary conditions on the nonlinear
vibration behaviour of cylindrical shells varies wether one is dealing with the
lower order or the higher order modes. Further it appears that the presence of
not all too large asymmetric imperfections (62 < 1.5, say) always results in a

lowering of the natural frequencies if n=¢.
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APPENDIX 1-A

DEFINITION OF CONSTANTS AND PARAMETERS

1-A.1 Smeared stiffener definitions

. The smeared stiffener approach is often used to account for the effect of ec-
centric stringers and rings [102]. If the basic stiffener data, such as material
properties and geometric dimensions and constants are known, a number of para-

meters can be defined.

(a) Parameters to represent the increase of the effective cross-sectional area
of the shell due to stringers and rings respectively

| EA_
p= (- V) g3
. S
ErA r
= - 2
My = (1= v) Ehd_

(b) Parameters to represent the change of the extensional stiffness of the shell
due to eccentricity of stringers and rings respectively

o EA
= - 2 =
Xg = (1 -v) End_ ®s = 1%
. EA .
= - y? —_ =
Y= (1= V') ghg_ op = W%

(c) Parameters to represent the increase in flexural stiffness of the shell due
to stringers and rings respectively

E

- S 2
"o1 = @D (Ig + efAg)
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(d) Parameters to represent the increase of torsional stiffness of the shell due
to stringers and rings respectively

GSIt
n,, = S
tl dsD
GrIt
- r
"2 73D
r
where
Es
G -
s 2(1+vS)
and
Er
G = o557
r 2(1+vr)

are the shear moduli of stringers and rings respectively.

(e) parameters to represent the change of flexural stiffness of the shell due to
“the eccentricity of stringers and rings respectively

E A
g, = ss
1 dD s
s
E A
. = rr
2 dD r
r

In these parameters the bending stiffness is used. This is defined as

Eh!

D = 153(1)
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(f) The specific mass of the combination of shell wall, stringers and rings is
represented as follows

>
>

- _Ss_ r_
P=P*Ps3n"Prdn
7 s r

-

1-A.2 Normalized wave numbers

The normalized wave pumbers are defined as

_ 42 Rh (m?2 Rh -
af =12 50 (f) = 0§ 3¢ (=1, k, m)
Rh (2 Rh '
G — = = g2 — =
of =2 50 (7l =9 o (¢ =2, _“)

Using the normalized wave numbers the following extended stiffener parameters,

which also account for the wave numbers and hence the deformation patterns, can
be defined: ' :

-
2
F
©

n
o
K
o]
+
5 o
:p
~
&Q'“
+
o
<
NQ'

1-A.3 Load paraﬁeter
The load parameter (axial compression only) is defined as

_Re

A= Ent Yo
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APPENDIX 2-A

COEFFICIENTS OF CHAPTER 2

2-A.1 The weighting functions for Galerkin's method

The weighting functions which were used in Galerkin's method are as follows

h g2 R -
. W 2 2
G =34 ° h{cos g,y sin ¢,x + 5 [A + én,Q(GZ + 6,) sin me]]
- 2
oo, h 22 R
2 @B

. g 2
h{sin QQy sin Qkx + > B sin me)]

2-A.2 Coefficients of equation (2-2-6)

f(A,x,y) =

Alcos(QZQy) + Azsin(ﬂzgy

) + A3cos(2n*2y) + Ausin(ﬂn*zy) + A5cos(22kx) +

A6cos(22kx)cos(2n_2y) + A7cos(22kx)sin(2n_2y) + A8°°S(2n-QY) +
A9

sin(l2 kx)cos(QQy) + Alosin(22m+kx)cos(2ny) + Allsin(!l2m kx)cos(QQy) +

Alzsin(il2 kx)cos(Qny) + A13sin(22m*kx)sin(22y) + Alusin(sz_kx)sin(QQy) +

+ A1

5cos(Qka)cos(!ZmQy) + A16cos(22kx)sin(2n+2y) + A17Sin(2n-2y) +

Alesin(zkx)cos(ﬂey) + Algsin(zkx)sin(ﬁgy) + Azocos(Qme) +

A21sin(2k 1x)cos(22y) + Azzsin(ﬂk_ix)cos(ﬁey) + A23sin(2k+.x)sin(22y) +

AZQSin(Qk-lx)Sin(QQy)
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where the Al; A2' .o A24 are functions of the time-dependent amplitudes A and
B, the imperfection terms 61 and 62, and the fundamental response 61 and 62.

These functions are given as follows.

(A2-B2) h* ¢

A, = - = k
- o2
1 32 Hyy QQ
W L L AB h* 0
2 2 H 2
3 yy 22
(02 + 02)? -~
1 n [4
A = - 5 ————— h?02(§, + 6,) A
3 by Hyy Q;+Q k'2 2 |
Q2 -
My = -G h(6, ¢+ 6,) B
yy "n+g
h? Q2
1 k
A, = 35 o7 (A? + B?)
5 32 Hxx Qi
hl 22 QZ
1 k ' n+g o
A = 7 (6, + 6,) A
6 [ M(YH.Zk,n 2) 2 2
h2 g2 g2
1 k' n+g -
A = - 3 (6, + 6,) B
7 4 M(YH'Zk’n Q) 2 2
0 n=2¢
Ag = , b A
“EH (6, + S,) A - n=Q
yy n-¢
hz 22 Ql
A, = fm A

9 MOy omek,o)
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12

13

Ay

15

Ae

17

Arg

19

i
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h? g2 g2
nm

(6, + 3 ) C
MYy opsk,n) 2 2

2p2 g2
h QQQm

4, 2m-k, 0

" M( AC

h? g2 g2
nm

"H,2n-k,n

"M y (6, +8,5) ¢

2292
h QQQm

T4, 2m+k, 0]

MY BC

h2 @2 g2
_ 2 "m BC

MYy on-k, g

hZ Ql Q!
k ' n-¢ p
2) (62 + 62) A

T
=

o~
=<

o
=
——

-~
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hlg +8q e

By = - %3 H_ot c

. XX m :
le --3 ﬁ?giéié%TZT (6 +6)) A
A22=--§m—,h;—f%—)(al+él) A
Ay = - %‘ﬁfgiéié%TET (6 + &15 B
e

where, the parameter Y is defined in appendix 1-A.2 and the parameter M is
defined as '

(2cy% 1
M- ()

2~A.3 Coefficients of equations (2-2-7) and (2-2-8) °

g = oh?
2 2 .
-  _ Eh? (ak+YQ.k,Q) 2 2 2 b 5 V2
S TR | Tys i * oo - A [20fr2ctatay(6,46,)% 6 ] ¢
H,k,¢
. 1-6
1 G - - i,k 1 -
+ 5 ct — (62+426.6,) + c?[ = 4 ] atal (5, +6,)?
- 2%¢029; Takie THietg 172971

XX
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1,2m< ikt e THpet e 101"

1 -
[8c? -—— alafa2(6,+6,)] +
) TH ook g i2%m o101

+

Gi,Z(k-m

1
H,2m-k, 2

s alata? (61+61)]

i m

+

i,2(m-k) (8 5

atat
Yot m

H

Yy

5 Nl e

k,2m [

2

+

s [8c? atata? (6 8 )]
1,2(m+k) T 2urk g 1 e %1%
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By =%[53 "1 Sat <16°‘ G 7] o608, +

"H,2m+k, 2 'H,2w-k,Q

1-6 - 2az | o
+ 8c* [Y 1 ok k,20 ] afal (6,+6,)% + et ?k 1 ak(62+62)‘>> +
H,2m+k, 2 H,2m-k, ¢ Hyy

+

& Ak

3 %% o

% %0, 0%, 2m [ 2 ‘62*52)'i]
vy

™
&)

i
ool

1-6
= 1 20‘ [Y 1 + Y k.Zm ] a.Qa:n +
H,2m+k, 2 H,2m-k, 2

ah

&

1 1 £ m

ber [ + —] a%a* - 6 (4t —]
TH,2mek,2  'H,2m-k,g, L% K.2m i

+

' vy
Be = By
1
1-=6 "
2 n,R
20z — QL(Gz*Gz)z
H n=¢
vy
(alz‘...y 2 .
Q,k,¢ Chaa
57 2[ T + YD'k’Q] 4Aak +
&
% N
ct — (6,46,)F
H 22 n={
yy
A 1-6 -
c % - - 1 i,k
+ 5= — (6,+26,6,) + 2c*] + 1=-1 atal (5,+46,)% +
2w, 2 22 "H,kei,e THk-1,0 ¢ 11
& z+7
Q_.GL 52 P %" Q,k,¢ 2 o2 P
- 6,4 [3 = (65+26,6,)] + 6, 5 [he A ajaj (6,+6,) +

yy
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2 aﬁ &
et e X et 2] ataa
Hyy H,2m+k,n H,2m-k,n
(1+Q__ a2 )?
2 -
-g-—- [-—}_—:—‘xﬁl— + D ay ] af - Hctraiay ¢
XX
1 1 -
é 8C‘[ + ] ata* (6,+5,)% +
n,0 < "H,2u+k,¢  'H,2m-k,g % 2 2
1 1 -
16¢c* [ + ] atat (6.+6 )'> +
H,2uek,0  'H,2mk,g % 2 2
af{ ) (1+Q o) .
65,8, 2a L' z 2*6,0°] - Okl T o *
NA' XX
G0k, 0 )
_mx
8c* Yo kg ooyl - & oplhet = (6,+6,)7] +
’ ’ yy

1 1 -
6 2¢ | + ] atat (6,46 )> +
i,2m< it THiig 1020171

1 . .
s 8c? —— alata? (5, +6 )> +
i.2(m+k)< YH,2m+k,2 i¢m' 1 "1
> '

1 .
S _ 8c? T/ atata? (6,+6,)
i,2(m-k) < YH.Zm-k,Q i¢m'"1 71

1 -
8, _ 8c? -/ d?a$a? (6,+6 )>}
i,2(k-m) < YH.Zm-k.Q iT¢m'"1 1

(6,+6,)*
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-8y om ] a

S | . 1
59=3 ‘58-5611,2 <8c[

TH,2m+k,2  'H,2m-k,Q

1 1

o+ 16ct 3 — + 3
H,2m+k, ¢ H,2m-k, %

2 b
1 'S
'y Gn.Qék.Zm[@ -

yy

] a

L

[ P §
Qam

p H
al‘n(62+62) > +

L (6,46,)]
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APPENDIX 2-B

PERIODICITY REQUIREMENT FOR THE CIRCUMFERENTIAL DISPLACEMENT

Since the cylindrical shell is assumed to be complete and circular, the
displacements, slope, moments, shears, and stress must satisfy continuity
requirements. In particular, the continuity requirement on the circumferential

displacement v results in conditions which the functions w and & must satisfy.
The condition for continuity of v in the circumferential direction is:

2nR
I dy = 0 (2-B-1)
o
Substituting w = w into equation (A-3) yields:
N - & 1 n ‘ =L
= -2 AW+ W W 2-B-2
v Yy R*2"y A ( )
Hence:
o B e e o) & ] - B e (o) By W e
Y yy 17 7 xx 1 7 ,xx 1 2 7,yy
1 - 1 - -
= = - 2-B-
tpW-sw 'y w (W+W) ( 3)

Substituting for i, &, ﬁ and W yields:
(1) Case 1 (n= 2)

°

»

»

[y
1

2 2
vy Ay b - Agly, cost, X - AZOQchosﬂsz] +

: 1 1
- 2 - 2 - = 2 2 2p2
ZCthvalcosQ X + R Chsin me 8 (A?+B%) h 22 +

2m
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+
|

1 H 2 - 1 p H
3 (A? +B?) h’QEcosQZkX n (62+62) Ah QE +

- I
(62+62) h QQACOSQZRX

+
i

(2) Case 2 (n = @)

4 e ' _a o2 - 2 ‘
by - B “En (1+u1) [ ASQchOSQZkX AZOQZmCOSQZmX] +
- 1 1
- 2 L 2 - % (A2 4+R2
2Ch2mvBX100322mX *R Chsin QmX 8 (A? +B?) h’ﬂz +

'% (A% +B?) h‘QEcosQZkX

+

-
a

y

Substitufing for v and carrying out the integration results in:

(1) Case 1 (n = g)

. f%Rh -
C= [(A2+3=) + 2A‘62+62)]

(2) Case 2 (n = 2)

‘QZRh
Ty ' (A2+B?)

«Q
L}

The Eq. (2-B-6) and (2-8-7) then can be rewritten.

22 Rh .
C=—— [(A24B?) + Zén'gA(62+62)]

where

S = is the Kronecker Delta function.

(2-B-4)

(2-B-5)

(2-B-6)

" (2-B-7)

(2-B-8)
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APPENDIX 2-C

COEFFICIENTS OF AMPLITUDE-FREQUENCY EQUATIONS

2-C.1 Coefficients of equations (2-2-26) and (2-2-27)

-3 (hy? .,
By =16 (R ¢

[(mznz

+

Bn2

+

__l 3 &Y +
e << o T ] :> 2

t_1 (b 2 1 _m'n' 2
e ) g RO Ty R B s
mnR

2'm'nt 20’ ¢’ l
+ 3(1 V) [ ] [ [2 R]z]z ( ] 4 ( )
o Bt @ R0 O ey
g'm*nt  (hyt 28
+ 2 [—) L [ ]
6(1-v?) 'L [ (mnR) ] J

Boy = % [é3 = % [(9 R 1Qsz ]z * (1 Qsz ] 7] e ( ) J

m? n2 R? m‘n’Rz

=3 o (b 1
Fos = a1 ¢ { 5 T e () J
Bn6 = ﬁn1

)

z] 53 +


file:///l9Mfe1]1

199

mn? 2 z' 1 h -]; m"“. h,?
[<L/R)= sel gy /) ¢! ( Ly TR RS W
‘ mn
- 1 1 ‘ot | hy* 1 1‘ 2
Bh8 = [8 (2/{{); [ ) (ﬁ] [( g2 ] (1 R 0ZL? ]z] 62 +
mZ“le m? n2R?

St ot Che ‘ 2g¢
+ g(l-vl)V(E] - [1 {gLR]z]: (5 )]

Bn9=3[68-%[[ 1221.-2 ] [1‘ Qsz ]'] g [)J

¥ m?niR? . n? n?R?

nl0

2-C.2 Coefficients of equations (2-2-28) and (2-2-29)

-1 m'n*

" hlz " a2
- [(L/R)‘ + ] {R) 6(1 =v?) ' 2 (L/R)" (&) 65 + 1 [ ] ]
" maR’
SRR g (gen)t (o)t :>
L R 4 R s n 2 me 2
[e-mr « q7R5e] [leem)t + ]
- ¢ (hy? g
5n3 =3 [ (E/g)” ( ] tyon [R] < [n ] z *
‘ mnR

. 1 ., Cotnt 200 |
1+ ﬂ-‘_]z z> 6 6(1 -vi) ( ] [ [m“R)I]z [ ] ]

mnR
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Boy = % Bn3

Bos = e (B <[9 i (L/R),], T E%:?; (L/R)‘]’>
Bag = Pn1

By =‘Bn2

Bug = 313' B3

Bn9 = f-5n3

Bnm N Bn5

2-C.3 Coefficients of equation (2-2-19) and (2-2-20)

3
16 ©

Be1

€ 2.1)2 4 ' .
Bez = 2 [izicery €741 + o)y

3 . -3 g ,3_¢g¢
32 8¢ T2 € Ea)T 2 12(1-v)

Be3

3
es = 25 = [oEen)T * eny)
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APPENDIX 3-A
COEFFICIENTS OF CHApTﬁh 3
ap = ' By =9
&2 = ch? 52 = ch?
&3 = ¢, 53 = d,
a = 53 By = &3
&5 = %ch’ﬂ R BS = jch?e, 'R
ag = <y Bg = dy
a =G B, = d;
ag = Cg Bg = dg
a9 =& By = &
90 = °g Bio = dg
a4 89
%5 = Sy
513 = cy
where El' 52. ey 611 and (-11. 32, ooy 58 are the coefficients defined in 2-A.3
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APPENDIX 3-B
COEFFICIENTS OF CHAPTER 3

a, = 100 ﬂgo

s b =2 .03 2 . 3 2.

ay = 440p, A - 0BT, (B,a"-By) - 100B;(BR"-Bg)

ay

]

UB3o(BgR™-Bg)® + 25 B3 (Ba%-Bg)? + U0BZ,(B,0%-Bg) (B@%-Bg) +

%0%8ghly + A°180BgB3 12883 (BGR™-Bg) +

40520(92-57) .21 7

34083 (B2>-Bg) 1 + 780B1 A"

40B3(9%-B,) (BQ°-Bg) + 8870(0°-B,) (BB™-Bg) - 4B, (Be0®-By)(Bea®-By)+

- 108, (B0°-Bg) 2(Bg@>-Bg)+ 21°0°B B, (128, (-5B, (BQ”-Bg) - 2B¢(BGa7-By)+

+

+

+

+

- 888, (BgR™-Bg) + 28 (Bea ~Bg) (Ba%-B,)11°0% + (avBg)" + B2, (4%-B,

B (By-Bg) ] + AZ[8B5,(B@%-Bg)” + 6082 (Ba”-pg)” - 12883 (0%-p.) +

8887 (B0”-Bg) (BQ%-Bg) - 16BgB1o (B -Bg) - BOBgB7, (BQ*-Bg) +

521°0%62p2 1 + A'[256BgB3, - 16083 (8a°-8,) - 40883 (8c0*-Bg)] +

7205?036

(6483 +B (By-Bg)” + 6BEB;(B;-8%) - 16BB,((B@%-Bg) - 168cB, o (By-Bg)+

)2

+
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(B68”-Bg) 2 (Bg2>-Bg)® - 88,4 (9°-8,) (BGa®-Bg) (Bga-Bg) +

1084 (9%-8,) (Bga%-g)” +

R2(1pg, o120% (368, + 28-(Bg-Bg) + 4By -Be(Ba®-Bo) = 38 (Bga%Bg)] »
8esfotnz-s7>(5692-sg> . 16§fo<92-s7><5692459) - 16 BgsTo(a%-p,) +
4510(8692-69)2k5692h58),+ 16 Bgb,o(Bga>~Bg) (Bga*-By) +
12510(5692-58)2(5692-59) . 2058515(3692-58)2) +

Kq[“éﬁgﬁio’zné  U0(Bga" ) + 168381, *»1“5f0(5692'58)2 )

16083 (2-8,) + T283,(Bga"-8g) (Bga"-8) - 32?8550‘5592'59) .

1768482, (B0%-Bg) ) ;

53208483, 955‘1’6‘5692’59’ - 200530‘.5692'?8’1 + 38084g &
[éYZQg[éé(pg'ﬂg)(ﬂ7'gz).' 168, (Bg2°-Bg) *+ 2s6(s9-58)(s692-58) .
451066(57-92) + 28(Bg@’-Bg) (BER%-Bg) + 52(02-57)<§692-58)] + ety

4B, o(0%-B,) 2 (Bg@%-Bg) + 2(0%-B,) (Bga>-Bg)*(Ba-Bg)) +

A2(uv%0%[1687) + 38, BE(B,-0%) + BZBg(By-Bg) - 2B¢,(B0-Bg) +
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- 28¢B1(By-Bg) - UBeBaByg - 2BgByo(Bea>-By) - BeBg(B@-Bg)1 +

+ 883(0%-8,)% - 88, (0%-B.) (B(2>-Bg) (BQ™-By) - 1688, (B,-07) (B,Q-Bg)+

- 128,(0%-B.) (Bg0”-Bg) - UBg(Ba"-Bg) *(Be2°By)) +
+ B¥(2848,,1%0%[128¢Bg + 385(By=Bg) - 4B, + 385(BE -Bg)] +
6P10 6Pg * 3Bg(BgBg) - HByq *+ 38¢(Bl -Bg
+ 7283 (0%-B,) (B@%-Bg) + 887((0°-8,) (B0%-Bg) - 328487,(0%-B,) +
+ 16Bg8, (B@”-Bg) (BQ7-Bg) - 681(B0>-Bg) > (B@”-Bg) - 16838, (B,2°-Bg)+
+ 24pgB, (B -Bg)® + 128, (B0°-Bg) ) +
+ B%(1282p2, 1207 + 328382 - 3683 (B0P-Bg)? - 9683, (0%-B) +
o 2487 (BgR7-Bg) (B°-By) - 144BgBT (B,°-Bg) - 168gB7, (Ba”-Bg)) +

A8(1928483 ) - 2483 (B&%-By) - 3683, (Ba>-Bg) ) + 120B; A

- (FPel[(pge -8y + BE(8,-09)%1 + tpdr'a* o (0%-p) (B 0787 +
A2(ur%0%[87Bg (B,-0%) - B, (B -Bg)] - 4B, (0%-B,) % (BGa™-Bg) +
- Upg(Bg>-Bg)*(a%-p,)) +

v B 2r%%1802 ) + 26285 - B2(Ba-Bg) + 383B,(B,-0%)] +
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+

430 (2%-p)% + UpG(Bga>-Bg)® + 168gB, (a%-B.) (Ba”-Bg) +

- 68,0(0%-6;) (80>-8)° - (Bg1)"! - (Be&-pp)") +

+

AO(ggs, 0T [38¢By *+ 2B¢(BERP-Bg)] + 24B2 (a°-.) (B,a°-Bg) *
- 168gB7,(0%-B,)- 16858, (Bea>-Bg) + 12848, (Ba"-Bg)? + 88, (Be-Bg) )+
K8[52 2 2.2

ghioT 0 + 168587 - 155?0(5692'58)2 - 48BgB3, (Bea%-Bg) +

- 243 (0%-p,))

2

+

R10(4883 8 - 483 (Bga-Bg)) + 208y A"

E‘1 = 20520

B, = (488gB3, - 483, (ga%-Bg) + 1208, (57

By = (BEBTTS0° + 168367, - 1587, (Bc0°-Bg)” - UBBGBT (BGa”-Bg) +

-2up3(0%-p)) + B2(1928g83 - 3683 (Ba7-Bg) - 2483, (Bga%-Bg)) +

4 4
108

+

3808

By = (UBEB; 0T 0 [38g02(BGa"-Bg)] + 24B2,(9°-B,) (B0-Bg) - 168gBT (0%-B,) +

16858, o (BgR°-Bg) *+ 128gB, (B2°~Bg)” + 8B, (Ba7-Bg)3) +
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B2(12(8g, g10)° + 326382, - 3682, (BgRP-8g)% - 9683, (0%-B.) +
283 (B@™-Bg) (B@™-By) - 14UBgB2  (Ba”-Bg) - 168g87 (B0>-By)) +

B*(3208g83, - 20083, (Ba-Bg) - 9683, (Ba-By)) + 7208B°

= (V0?1682 + 48285 + 6828, (B,-07) - 28%(8e0%-8g)%] - (Bgra)” +

43 (0%-p,)° + U5(Bea%-Bg)® + 168, Bg(0%-B.) (Bea>-Bg) +

68,0(2%-B.) (B2°-Bg) = (Bg@-Bg) ') +

B2(1%0%[2BZpgB, ) + 6B2By((ByBg) - BBCBT, + 652510(5692-58)] '
7283(0%-B,) (B@°-Bg) + 887,(0%-B.) (B@™-Bg) - 328g87((0°-B,) +

16880 (BeR°-Bg) (B7-By) - 68, (Bs2°~Bg)(B(a°-Bg)-16 s§510(5692-58) .
24Bgh, o (B-Bg)° + 128, (Ba"-Bg)>) +

ﬁ"[uzsgs‘forzoz . 4550(5602-59)2 . 165§5fo . 14550(5692-38)2 .

160 B3,(0%-8,) + 7283(Bea"~Bg) (B@%-Bg) - 32887 (Bea”-Bg) +

1768g85  (B2°-Bg) ) +

B9(1968g83, - 40883 (Bga>-Bg) - 16083 (Bea>-8,)) + 7608/ B°
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Bg = (47°0°[BgRg(B,-0%) - 4B, (Bg>-Bg)] - 4B, (a%-p.) 2 (Bga*-Bg) +

4pg(Bga”-Bg) % (a%-p,)) +

» B2(urP0P[1682 ) + 3828,(B,-07) + BEBg(By-Bg) - 2B¢h,(Bea’-Bg) +

- 268, (8g8°-Bg) = 2By (ByBy) - UBBg8; o Behy o (BGa*Bg)] *

+ 882,(0%-8)% - 88, (0%-B.) (B07-Bg) (Bg-By) + 168gB, (9°-B,) (Ba”-Bg)+
- 128,(8%-B.) (Bg@”-Bg) - UBg(B0°-Bg) (B -Bg)) +

+ BY(47%0%[362BgB, o+ ésﬁslo(sg-sg)‘+ UBgBS o -B2Bo (B8 -Bg) +

- 3858, (B@%-Bg)] + 68550(02-57)(5602-58) + 16870(0°-B,) (Bga*-B) +

- 168gB70(a%-By) - 4B (B87-Bg) % (Bea>-Bg) + 1658510‘5692‘53"5692'59) .
- 128, (Bea%-Bg) * (BR%-By) + 2058510(5662-58)2} .

+ B8(52828 720 + 882 (Bg0%-By)°

+ 6083 (B0°-Bg)® - 12883 (a%-p,) +
+ 8882, (BGR -Bg) (BgQ*-By) - 16BgBT (B -Bg) - 80BGBT (BsR™-Bg)) +
+ B®(80pg83, - 34083 (Bea®-Bg) - 12883 (B,a%-Bg)) + huop] B

by = (r*eT4(pga"Bg)” + BG(8;-0%)%1 + 4p2(1a) '+ (0-.) 2 (B0 %-)?) +
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B%(21%0% (85 (8,-0%) (By-Bg) + 28¢(BG@°-Bg) (By-Bg) - UBgh; o (B,-07) +
16610 (Bga"-Bg) * 28 (B3 ~8g) (Ba"By) * BE(°-8,) (8a”-Bg) 1+ Ued(ra)'s
4B, (0%-B,) % (Bga%-Bg) + 2(0%-B,) (Bsa>-Bg)%(B0%-By)) +

B'(v%0L6483, + BZ(ByBg)? + 68EB(B,0%) - 168B, (B0%-Bg) +
1688, 0 (Bg-Bg) = 8BgByo(Ba -Bo) + 282(8ca°-Bg) (Bea%-8y)] + BL1@)" «
483007807 ¢ (BgP-Bg)*(Bga>-Bg)® - 108, (0°-5.) (B0°-Bg) +
88,10(9%-B,) (82" -Bg) (Bea°-By)) +

BO(v%0%126%p, (By-Bg) - 24Bgh) - 10BgB;((Ba -Bg) - UBZH, ((Ba>-Bo)] *
- 4082 (2% ) (Bga-Bg)+ 882, (0%-B.) (BgR2-By) - 4B, (Be8-Bg) (Ba-By)%s
108, (B0°-Bg) *(Bg@*-Bg) ) +

85218283 %07 + 4 (8@%-8y) + 2582 (B,0°-Bg)° - HOB3,(0%-B.) +
40BT, (B¢R”-Bg) (B@°-By)) +

510(4083, (Bea?-8) + 10083 (8ga>-8y)) + 1008) B'2
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APPENDIX 3-C DERIVATION OF EQUATIONS (3-3-8) TO (3-3-11)

The equations are derived from equations (3-241) and (3-3-2) using the method of
averaging.
To apply the method of averaging to equations (3-2-1) and (3-2-2), let

A

Ao(t)cos[wt + Oo(t)] A, cosX (C1-1)

0 1

B Bo(t)sin[wtv+ ¢o(t)] = By sinX (C1-2)

2

where AO’ BO' 00 and wo are assumed to be slowly varying functions of time t,
and '

>
]

ot + ¢0(t)

X, = ot + ¢0(t)

Taking the derivative of A and B respectively gives

dA dA0 : dOo

3t = 3 cos X1 - Aowbsin Xl - Ao T sin xl (C2-1)
dB dB0 d¢0 ’

it @ sin Xz + Bom cos X2 + Bo T cos X2 _ (C2-2)

Using the assumptions that AO; BO,OO and ¢0 are slowly varying functions of time

gives
dA, . de '
qo Cos Xy =~ Ay g sinX; =0 | (C3-1)
dB, dv, |
3t sin X, + By g cos X, =0 (C3-2)
and
dA _ .
T Aomsin Xl (C’-& 1)
dB _
at - Bowcos x2 : (Cl-2)
d2A dZB

The second derivatives — and —— are then computed from equations (Ch)
dt dt ‘
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2 da dé
Q_% =--0 wsin X, - Aomzcos X, = Ay — wcos Xy (C5-1)
dt dt dt
2 dB dy
dt dt dt

Substituting the equations (C5), (C4) and (Cl) into equations (3-2-1) and (3-2-
2) yields

dA deé

- %o 2 . % - -
al[ gt wsinX, - Ajw“cosX, - Ay 3¢ wcosxl] + 02[ Aomsinxl] + u3[A0cosX1] +
2
_ QQRh dAO 2 _ 2 daé >
M _E—_[(AOwSinxl) AO az—wsinxlcosxl - (Aowcosxl) O 3¢ vcos X1+
dB das
2 0 2 20 2
+ (Bowcosxz) + B0 Ty msinxzcosx -(Bowsinxz) B0 az—msin X, +
dAo 2 d¢0
én.ﬁ(_ go osinX, - Aju“cosx, - A, F—wcosX )(62+62)] (A COSK, +
6y gl6y5) ¢
2
- % 2 2 -
+a - (- AqusinX cosX, + ByucosX,sinX, - AjuwS, 2(62+62)sinx1]
[Aocosx1 + 6, 4 (¢ (6 +62)] +

- 2 2 - 2 2 - 2
+ ag AjcosX, + a, [(Aocosxl) + (Bysinx,) )} + ag [(Aocosxl) +

) 2y . - 3. - 2 2
(BysinX,,) )} + ag (Aocosxl) + a0 [(Aocosxl) + ‘Bosinxz) ) AgcosX, +

- 2 2 2 - 2
*ag, [(Aocosxl) + (Bosinxz) ] (Aocosxl) v a5, [(Aocosxl) +
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242 - 2 242
+ (Bosinxz) J o+ a13_[(Aocosx1) + (Bosinxz) ) Agcosx; = F cos(x1 0)

1 D
(c6-1)
and :
dBO > . dvy’ _ _
51{+ — wcosx2 - By sinX, - By 3= wsinX,] + BZ[Bowcosxz] + 53[Bosinx2] +
gRh Ay 2
+ 54 5 [(A wsinX ) Ay 3o wsinX,cosX, - (Ajucosx,)” +
de,. dB
2 2 nl 2 2 0 2
- AO 3t wcos xl + Bo ® cos x2 + Bo at wsinxzcosx2 - (Bowsinxz) +
dy dA as -
2% 2 ) __o ) 2 0
- Bo ac wsin x2 + ( wsinx1 (Aom cosx1 AO a;—wcosxl)(62+62)]
Bosinx2 +
- 22Rh 2 e '
+ 55 —5——[-A © sinxlcosx1 + Bowsinxzcosxz - Aowén'2(62+62)sinx1] Bosinx2+

+

‘ i e 22 g ey 22
B6 A B sinx cosx + A B sinxzcosx + 58 [(Aocosxl) + (8031nx2) ]

2 B, Ao

Bosinx2

- 2 o2 - 2
+ 59 [(Aocosxl) + (BysinX,) ) ‘AgBgsinX,cosX, + B, ((Aocosxl) +
2

, |
+ (BysinX,) ) BysinX, = 0 (C6-2)

Both sides of equation (C6-1) are multiplied by cosx,, and the results are added
to equation (C3-1) after the latter has been multiplied by wsinXx
This procedure yields '

1’

- 2 2 _, % ~ - - 2,
a (- AguTcos Xy - Ay g w) + uz[- Aowsinxlcosxll + a3[Aocos xll +
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2.
2 Rh : : dA ~ dae
- 2 32 .2 2 - A2 _0 3; _ a3.2.. 4 _ 3 _0
@ 5 [Aow sin“Xjcos™X; - Aj gy wsinX cos X, - AjuScos X, - Ag 5
wcosuxi +
B2A wzcoszx-coszx + AB Ef— wsinX X 2x - A B2 2 i 2X 2x +
0”0 1 2 * %0°0 dt nipcoskycos Xy = AgBgw sin Xjcos Xy
dy dA
2, 0 2 2 . _4 0 2, _ 22 3
BOAO T wsin X ,cos xl + Gn,Q( AO at msinxlcos xl Aom cos x1 +
2 d% 3 - 22,2 dA 2
AO dc veos Xl](62+62) + Gn,Q[AOm sin xlcosx1 - Ao T wsinxlcos X, +
: de dB
22. 3, ,2 3 22 2 A
Aow cos xl AO 3t wCcos x1 + Bom cos xzcosx1 + B0 a;—msinxzcosxzcosxl+
dy dA
22,2 270 2 0 2 2
Bom sin xzcosx1 - BO az—msin xzcosx1 < 3t msinxlcosx1 - Aom cos X1+
ds
0 2 . a2 2
Ay gp wcos X1] (6,+6,) ]+
a E&__ {- A3w inxvcos3x + A Bzwsinx cosX coszx -6 \ Azmsinx 0052X
% 4 Q¥siny 1 * %" 2°98%, 1~ “n,e 0 1 2
(62+62) +

2 2 p R
cos“X, + BLwsinX,cosX cosX, - Aow(62+62)31nx

1* B 2cosX, cosX, |

1

42
Gn'a[-Aowsinx 1

(6,46,)) +

- 2 3. - 2 2,2 - 2 3
ag Agcos Xy + a [Aocoéx1 + Bysin xzcosxl] + ag [Aocos X, +
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2 2 - y 3 4 .2 2 2
Bosin X cosxl] a9 cos X, ¢ a O[A cos X, + AoBosin X,cos xl} +
- 4 5 2.2 ., 2 2, 2
+ all(AOCOS 1 + AoBosin X cos 1] + ulz[A cos x1 + Bosin x2] A cosx1 +
- 2 2 2 .2, 12,2 2. _ _
+ a13[Aocos X, + Bgsin x2] Agcos“x, = Fpcos(X,-0,)cosx, (c7)

At this state of the analysis, this equation is "averaged" by integrating over
one period on X, or X,. In the integration, Ao. BO' 00 and by are approximated

by their average values A, B, ¢ and 9. For example:

2n 2 . gon = 2 _ =
IO Ao(t)cos xldx1 = ,0 Acos xldx1 = An
ds dé
3 ___ 3 2n 23 7 3 =
A (t) cos”X dx = IO A 3¢ cos X dx1 =0
/2" F_cosé dx. = 2nF ,cosb
0O D 0""1 d
2n 2 PR -
IO AOBoc032(¢0-¢o)dx1 = 2nAB"cos2A

where db/dt and A are the average values of d¢0/dt and Oo-wo, respectively.
When equation (C7) is averaged in this fashion, it becomes

22Rh
d@ - 2 2 2_ deé
[ -2nA = at © - nAw“) + az (0} + a3 {nA] + au > [- 5 ﬂA3 % A3 ac e’
% nAB w2(1+ % cos23) -%—nﬁﬁ gB wsinZA - E nAB w (1-—cosZA) +

1 _==2 dy 1 ‘ x 12 (7.2 . oz 48
* 5 nAB gt © (1- 5 cos2b) + Gn.2(62+62) {-nAv nA ac @) ¢
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_ORRh - - - (3 =3
+ ag —— (- § AB®wsin2i) + a¢ {0} +a7[0] + ag (0} + ag (7 A} +
v ayq (f nA3 + 3 AB%(1- L cos2D)) + &y, (0) + Gy, (0) +
+ 513 [g nA? + % nﬁaﬁz(% - cos2h) + % nﬂﬁu(g - cos2h)) = anc055 . (c8)

It should be noted that the steady-state vibrations are studied in the present
analysis, which means the average values A and & remain steady (i.e., constant)

with time. In this case, the average derivatives dA/dt, dB/dt, d®/dt and dy/dt
are identically zero, and equation (C8) can be reduced to

¢2Rh
- =2 - - LB 132 1:220 1 o 122
a, Au” + ag A+ a5 { 5 A% + 5 AB%w (1+ 5 cos2h) > AB%w

2
. ¢5Rh
(1- 3 cos2h) - 6 M (6,46,)%) + & —— (- § AB%wsin2i) + Gy § &3 +
+ &y(¢ B + 1 AB%(1- 5 cos2i)) + 513{% R+ 18823 - cos2l) + § as*

(% - cos2k)) = F_.cos® | (c9)

d
In nondimensional form. equation (C9) is

2

2= -2 = - 2.2 - ==2 -
QA1 + Bl[A - BScos2a + 26n'2(62+62) )} + B,A - YOAB“B sin2i +

+

B3K3+ZBQK§2(1- % cos2h) + §5[5§5 + 453§2(% - cos2b) + Zﬁﬁu(% - cos23)]

= F_cosé (C10)

where
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2_2-9R2w2

" ==

. 2R°F

Foe—49

D En2

and

Y =C/ 2_E_E

R2

In a similar fashion, equation (3-3-9) is obtained by
(1) Multiplying both sides of equation (C6-1) by sin Xy

(2) Addiné this result to equation (C3-1) after multiplying the latter by

- X
wcosX, .

(3) Averaging the final equation by the method of averaging.
These manipulations give equation (3-3-9).

Similarly, the equations (3-3-10) and (3-3-11) can be obtained by multiplying
both sides of equation (C6-2) by sinx2 and cosxzrespectively cosxz, and then

using the procedure mentioned above.
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APPENDIX l}-A COEFFICIENTS OF EQUATIONS 44-2-1) AND (1}-2-2)

Qa

M
93 = 3 B3/By
Ay = 4By/B,
a5 = By10/B2

a6 = B111/B;

ag; = 865/52
Bgy = B7/B,
Bs2 = E’;25/’3’2
Bs3 = 4Pg/P;
Bgy = % By/B,
Bss = Bg/B>

Bsg = 8B10/B>

where B, 53. eevs By are def}ged in Appendix 2-A.4, whereas 515' Big 517.

525. 528' 5110 and 5111 are Qefined as follows:

b = B :

15 " g2 %

b = 2

16 Eh2 6
2

2R” =

517 ='——2—c7
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) =2_RZ.E
110~Eh2: 10
) =§:£E
111 Eh2 11
B =ﬁa
25 Eh2 Y
B =gﬂ_za
28 Eh2 T

where c5. ¢6' c7, °10' qli, dz‘ and d7 are defined in Appendix 2-~A.3.
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APPENDIX 4-B  COEFFICIENTS OF EQUATIONS (4-2-8) AND (4-2-9)

R
"

3 2 2 2= =2
<1 1+ 3 e[A%cos @ + 26n’2(62+62) A cose, + dn’2(62+62) ]

- _ 3, s2.,
a 278 I erA suwl[cos'v1

- 3 - - 2
+ GD,Q(62+62)] + i YSCA[ACOS Ql +

+

- 22
26n'2(62+62)cos¢1 + 6n’2(62+62) ]

3 027252, o 2 22, 2 .2
3 e[QSA (sin e, 2cos ¢1) + QSB (cos“e.,-sin“e.) +

R
I
[y
+

s3 2 2)

2- - 3 =2 1z
ZQSAGn.2(62+62)cos¢1] -3 Yser[A sin(Zwl) > B

2

sin(2¢2) +

A : i 2 2 2 2
2A6n’2(62+62)sinwl] + 20 Acose, + 3as3A cos“e, + a B sin%e, +

=3 3 =2 . 2 =2 2
+ aSS[QA cos”e, + B“sin“e, + 2AB"sin"e,cose,] +

2 2

+

2u86[253cos3¢ + ﬁzsin @, + 2§§zsin

1 wzcos¢1] +

=4 4 =2=2 2 2 =4 4
087[5A cos’'e, + 6A“B“sin ®,cos @, + B'sin QZ]

+

ay = % eB[Acose

1sin¢2 + Gn’2(62+62)sin¢2]

i +
1811’1‘? cos® 2

2

- 3 - -
+ Gn‘2(62+62)sj-n¢2] + u CQSB[ACOS‘Pl

- -3 - -
ass =1 YseB[Acoso
+ Gn’2(62+62)cos¢2]

é +62)] + 3 chQsBcos¢2[Acos¢1 +

* Gn,Q( 2

- .3 2= -
Qe = - 3 eQS Bsinwz[Acos¢1



B

™I

5

sl

s2

s3

+

+

+

1+

2y
s

57/52 + %e[QiKZ(sin ®
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- - , - =22 2
6n.2(62+62)] + ZGSZBsinQ2‘+ ZasuABcoswlsinwz + ZaSSA Bcos @ sine,+

=3 .3 2= 2 3 '
4086[3 sin’e, + A"Bcos"e e, sine, +

1sinj»z] + uasi[ﬁsﬁcos

=3 . 3
AB”sin ¢2gos01]

3=2 .2
8eB.sin x2

2

+

(o] SN

- 3, =2
erB sin(?@z) +'u?seB‘sinQ2

2 2

2. 2=2 2
q - cos wl) + QSB (cos e, - sin wz) +

o -
- QsAén.2(62+62)cos¢l] +

-3

I
T+ SSS,KZCOSZQl + 3584’§?sin2¢2 + BSS[§3cos

+‘586[§4cos

1 -2 o =2 - - .
YSeQS[Z A sin(ZQl) -B sin(ZQZ) + Adn.2(62+62)s;n01] + BgoAcose, +

3. . a2 .2
e+ 3AB coswlsip QZ] +

‘2
§ 2 15in wz]

UQI % 5§usih4¢ + 6§2§2c032§
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APPENDIX 4-C DERIVATION OF EQUATIONS (4-2-8) and (4-2-9)

The details of the derivation are demonstrated here by deriving equation (4-2-8)
from equation (4-2-1).

Substituting equations (4-2-4) and (4-2-5) into equation(4-2-1) and keeping only
the first order terms of the perturbations in the resulting equation one obtains

fl(QS'YS'A.B’FSD) + fZ(QS.YS'cl’cz.nl'nZ’A’B) = 0 : (B-l)
where

- - a2% P - 3 2 - 2=2 2
fl = QsAcosw1 + 278( QsAsin¢1) + Acosw1 + c[Q A sin e, QSA cos @, +

+ QiﬁZCOSZQZ - Qzﬁzsinzez + 6 (6 +6 Y (- Q Acos@ )][Acos@ +

n,R 1

+ 6, (8 ’52)] +

3y or-q &% 52 -0 As:
+ uvse[ Q_A"sine cose, + Q B”sine,cose, + § '2(62+62)( QSAsinol)]

1 1

- 2 2 =2 . 2 3.3
[Acos¢1 + 6 2(62+62)] + aslA cos"e, + quB sin“e, + aS3A cos~e, +
=2 .2 <4 4 22=2 2 2 =4 4
+ aSuAB sin ®,c08@, *+ as5[A cos @, + A2B cos lein 02] + asG[A cos @, +
=4 4 =2=2 2 2 4 4 =4 4
+ B'sin @, + 2A"B"cos”e, sin 02] + as7[A cos'e, + B'sin’e, +
+ ZKZBZCOSZQ sin ) ]BsinQ - F__cosQt
2 2 sD
(B-2)
and
2 2
- &t - d . - - 4 LN dn -
f,=a, —2+a +a.C+a, —+ — +a,n (B-3)
2 sl dTZ s2 dr s3 sl dT %5 dt s6

It is evident that the function fl
(4-2-4) and (4-2-5) are its solution. Only f2 remains. Equation (4-2-9) can be

is identically equal to zero since equations

obtained using a similar procedure.
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APPENDIX 4-D DERIVATION OF EQUATION (4-2-18)

The purpose of this appendix is to give the details of the derivation of
equation (4-2-18).

Substituting expressions for the derivatives (4-2-12) to (4-2-15) into equations
(4-2-8) and (4-2-9) yields two coupled equations:

dg dg

2 2 1 2
asl{ ClQScos¢1 - CZstian - 3t stinwl + 3t Q cos@l] +

+

asz[- g 0 sine, + CZQScoswl] + as3[clcoso1 + Czsinwl] +

. dng dn, 2 2
asu[a;— gscos¢2 v stin¢2 - nlﬂssino2 - nZQScos¢2] +

+

+

ass(lescos¢2 - n,Q sine,} + as6[nlsin¢2 + mycose,} = 0 (D-1)

_ dn1 dn2 2 2
_le[a;— Q_cose, - === 0 sine, - n Q7sine, - nZQscosQZ] +

+ Bo(n @ cose, - n,Q sine,} + ﬁs3[nlsin¢2 + n,cose,) +

- 2 ' 2 dcl ch
+ Bsﬂ[-clg S£0S@, - TQ sine, - === @ sine, + == Qscoswl] +

85[ g, @ sine, + CZQSCOSQl] + 586[C1cos¢1 + czsinwl] =0 (D-2)
Equation (D-1) is multiplied by sine

1 and is added to the auxiliary condition

(4-2-16) after the latter has been multiplied by (- aslgscosol). This procedure
yields the following equation: ‘

dg, . dn

1 2
asl at QS + 54 a< Q sin@1c05Q - 54 Q s1n¢1sin¢2

= (Lo o2 - 2, _1-
= [2 ag 9gsin2e; + a .0 sin‘e; - 5 a, sinZQl] Gy



222

2

- 2 1 - - 2
+ [aslnssin @) - 5 a,0.sin2e, + a gsin e ) g, +

- 2 -
+ [asugssinqzsin¢ Q_sine cose, - a_csine,sine } n, +

1~ %5
- 2 - -
+ [asuﬂgsin¢1cos¢2 + aSSstin¢1sin¢2 - asGSinxlcos¢2] n, _ (D=3)

At this stage of the analysis, the coefficients asl. a .o 536 are sub-

s2'
stituted into equation (D-3) and then the resulting equation is "averaged" by
integrating t from O to 2n. This procedure yields

g dg dn dn
By, —E 4@, 2 em, —L+m, —==n €, +n,, G, +n,, N, +n,, n
11 d« 12 dx 13 d- 14 dx 11 "1 12 "2 13 1 14 "2
(D-4)
Similarly, if both sides of equation (D-1) are multiplied by cose, and the

1
resulting equation is added to the auxiliary condition (4-2-16) after the latter

has been multiplied by (- a sian), and then the average procedure mentioned

sl
above is used again, one can obtain a second equation as

dg, dc,, dng dn, . - - _
U1 3t " P22 a3t Y U237 T Uygr - P21 By tPp Gty thy M
(D-5)

Applying the same procedure to equation (D-2) yields another two equations.

acl acz ~ dng 5“2 . _ - -

M1 dr * U323t *U33ar T Uwar - M1 %y PGy thPyzNy tigy M,
(D-6)

and

dag dg dn dn :

m, —L +m. 2 em, —L+m, —2 =n T, +n,, G, +n,, N, +n,, n
41 at B2 dt 43 at By ar 41 St Py S2 Y Myz My Ty Mo
' (D-7)

where ElJ EZ' 51 and 52 are average values of Cl' c2. nland n, respectively and

m,, are coefficients defined in Appendix UY-E.

ij

These four linear differential equations can be put in matrix form as follows:

[](e) = [N]() (D-8)
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APPENDIX 4-E COMPONENTS OF MATRIX [M] AND [N]

11

12
13
D1y
22
23
Doy
31
32

33

Tyq

o P)

Ty

11

12

= - Qs[l + :1% A% + g eén’ﬂ(dzﬂgz)z]

=my =0 |

= 2r e0_ABcos2i

= nyg

=T

- - %E e@_ABsin2i

- - %E er§§(1- 3 cos2i)

-y

- nyg

= (1 + 3 8%

= mu3 =0

= - m23‘

= 7 My

= -mg3

=07 (1+ % e[ - % A% . % B2cos2i + Gn'2(62+&2)2]] - % ﬁz{% eQi vag +
+ ag [3%% - B%]) sin2k

= 3 B(ay - § 0?) - 35 €02 cos2l + 35 e1.0 BPsin2i +

v § agyB(1s 3 cos2l) + Iz o {5A" + 64282 + BY(3 + 2c0s21) +



13 ©
Ny =

21

22

23

oy =

317

32 °

337

2¢1
23+

=

32

3

224

2.1 2= 3 - 2
€A”(1-5cosk) + 3¢ cén.2(62+62) } +

1
2

1 .= 2 :21 3 2y o 3 -
m AB[ash + as7[A + 2B°] - ¢ er]sinZA + 1g €7 0 ABcos2s

AB[a54

Gsuﬁz(l-%COSZZ) + %3 aS7[25§q + 123252(% -cos24) ] + 254(% -cos2h) +

1
L
92[.1. + 9_

- 3e282.13
9878[1 + 3 e[uvA ;B

ool

st2 64

+

=2
- %E A {as3 * % cgi} i

as7[§2 + §2] - % eQi]cosZK +

32 s 32

32

3 512) 4 1
€A” + 16 6n,0(62%0))7) + 3

1 =2

52[% eQi - ay - us7[3§2 + ﬁz]]sinZA

% Kﬁ[asu(l-%COSZZ) + as7[K2 + EZ](% -cos2h) + % eQicosZZ] +

3_ - .
16 eYstABsinZA

=l

=l

(o 1)

+

+

+

+

a [2R2 + 8] - 3 c0%)sin2i
s7 4 s

'556[252 + B°] - % eQi]sinZZ

3 e0®B%cos2l - =

3

1

-3

.3

6

16

16

- 2 12
cos2A + 6n,2(62+62) ]} +

€ Y Q ABsin2a
s's

€eQ Y ﬁzsinZK +
sS's

€Y Q ABcos24
s s

€Y Q ABcos2A
s's

1, :2.821 .3 o2y oc.3 -
m Bs6[A + B9] T er]COSZA + 1g €7 9 ABsin2a

B [A%+38°] - # ea’)sin2i +

3
32

€Y Q A
s's

2

cos2A +
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- %5 eYstﬁz - YSQS
n34 = % 92[1 + %3 e[B% + KgposZZ]) + %5 eYstﬂzsinZA - % Bssﬁz(l+%c0523) +
- % BSG[KQ(g + cos2d) *vg B 35252] - % Bgy1 - %‘55452

e = - 3 EB(0%cosDt 1 - 1o 25(1-leos2i
n, = - 1g eAB[QSCOSZA + YSQSsinZA] - 5 583AB(1 5C0824) +

$s6§§[§2 + §2](% - cos23)

S
N

3 zac 2o Ll og= oo 1. z=r=2 | _=2 -
n,, = - g €AB(Q]sin2i YSQSCOSZA] + ] BgyABsin2k + B.gAB[A” + 2B ] sin2a

1.2 : -2 - - =2 - 1. =2, 1 =
ny3 = 3 Qs[1‘+ %3 c[3B° - AZCOSZA]] - gﬁ €Y Q@ A"sin2h - j 5S3A (1-§cosgA)‘+
- % ﬁSG[KQ(% - cos2b) + gﬁ §4 + 6§2§2(% - cosZK)] -'% By - % Bsuﬁz
1,2 | =2 =27 - -2 - =2
ny, = g(A [Bs3 + B g[A” + 382]‘f E eQi]sinZA +(§5 €Y @ Acos2h - %E €Y Q@ B+
+ Y Q
‘s"s

Notice that in the case of A # 0 and B # 0, namely, the case of coupled mode

response sin24 and cos2A assume the values defined in Chapter 2, which are
repeated here for convenience:

sin2k = - vo(2[p0” - Bg - 2B,o(28° + i) BglB7 - 0® + ﬁz(sg - Bg) +
v 286K + Byo(B* + 4R%B? 4 3K ])/s,
cos2d = (%1%pg(2 + BE%) + [0°(1 + BEP) - B, - BB® - 28gh°
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- Byo(5B" + 68782 + 38 ][8,0° - By - 28,0(R% + B)])/s,
54 = B2((Bgr0)? + [BeR® - Bg - 28,,(A% + F9))?

- 28, A°B°[Bg0” - By - 28,(A° + B)])

But for the case of A # O and B =o0, namely the case of single mode response the

quantities sipZK and cos23 must be replaced by sind and coss. respectively;
where

sind

(-0%R[1 + B,R% + 28,6, ,(6,+6,)%] ¢ B A + B,A° + 58 A7)/,

cosh = ~gv[2k + B,A3 + U As_ (6,+6,)°]/F)
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'APPENDIX 5-A COEFFICIENTS OF CHAPTER 5
5-A.1

1+ %‘e [a+ Gﬁ.ﬂ(éé*éZ)]f

[+
[y
-

n

o
1

3 5
12°8B (A~ cn.g(62+52)]

8137 gelas 5n;é(62’52’]

844 = 843

85 = 273-+ % LA A+ <Sn.,z(<52+¢§2.)]z
alé = % Y eB[A+ on'2(62+32)]

821 7 %12

8y, S 1. dem

323 -3en

8o = 83

825 = 8

8¢ = 2y + % YS e B?

where Ys is defined by Eq.2-3) on p. 99.



where

= (a

228

27 {1+ % e [A+ on,e(ézaeéz)]z + % € B?}/n
17%22 ~ 8x7212)/"

% € B/n

Ba1

513

(ays8y) — 81785 )/n

(1 +_% € B + % c [A+ an'2(52+32)]2]



229

APPENDIX 6-A COEFFICIENTS AND FUNCTIONS OF CHAPTER 6

6-A.1 COEFFICIENTS OF EQUATION (6-2-7)

a 1., 2 h? = -
o m h2g? (A2+B ),;; + e Qxxc’ Rh C,

o
1]

XX

- h? = - -
= h2 02 = - 2 ) -
a; = h?@2[A(W +A ). __ + ac,__] +5; [Q A ____-Q A, _+Q 0'A] - RhA,__
: XX XX XXXX

XX

b, = h2g? [B(Q+A) + BC ]+£[EB
- o o'’== ‘== 2c Uxx '===-
XX . XX XXXX

!
Lo

a, =5 h*g*(AA,__ - BB, _ - A*,_ +B, )
XX - XX X X
b, = % h?¢? (AB, _ + BA,__ - 2A, B, _
: XX XX X X
= =1 .0y 122w - h ”
a3 =3 h?¢ (w1+A1),__A + 3 htn (w1+A1)A,__ h n2(W1+A1),_A,_
XX , XX X X

+

22. 22- 2 ”
h? Q2 (W +A;),__A + 5 hin® (W +A )A,__ + h?ng(W,+A,), A,
XX XX X

&£

|
=
N

X

[o ]

it
NI=
N

]

22A y 2 ”
h? g (W1+A1),§§B + 5 h?n? (W,+A,)B,__ - h nQ(W1+A1),§B,

X

+

N

h?en(W,+A,), B, _
X X

o
+=

[
N

‘22‘ 22.
h?¢? (W +A ), B + 5 hin? (W +A,)B,__
XX XX

a = h’n‘(w1+A1)C.__
XX
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-&2 = 2¢
53 = n+f
214-2"1'1
&5=n

6-A.2 FUNCTIONS OF EQUATIONS (6-2-9) AND (6-2-10)

p =13
o fi Rh "o
XX
:zx PR gxx pe ‘i c 1 - ;
Py = 2 (aj) & __ -7 (o) &, + = g8, (i=1,2,...,5)
. i,xx H H
XX XX XX
}-i’-‘i(”fi I_{—"¥<”>‘3 c L (3=1,2,....4)
P, = a. R =z a. . + T o j=1,2,...,
*5 g 3750 37 73*5 5 Bh Y
XX . XX

6-A.3 COEFFICIENTS AND FUNCTIONS OF EQUATIONS (6-2-12) AND (6-2-1l4)
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f91 = f91
fg3 = fg3

APPENDIX 6-B  DERIVATION OF THE PERIODICITYlCONDITION

To satisfy the periodicity condition for the dynamic state we must have

2nR a;

/ 3y dy =0 (6-B-1)

(o]
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Substituting the expressions for ¢, W, W and W into Eq. (6-B-1), carrying out

the y-integration and introducing the nondimensional quantities defined in
Appendix 1-A.1 reduces Eq. (6-B-1) to:

- 1 h Yx c 1 ¢ h
0, __ =55 ——C, -——C+ §F—— % (A2+B?)
0.xx 2RHV XX 3 uH R
XX XX XX
_: 1 c h o 2 -B-
+ én,ﬂ[ 06,-— * 5T R (w1 + Al) n?A) (6-B-3)
XX Hxx

Eq{ (6-B-3) is the periodicity condition which should be satisfied in the
analysig.
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APPENDIX 6-C  DERIVATION OF THE REDUCED BOUNDARY CONDITIONS

It is necessary to express the different boundary conditions of the dynamic

-
-

state in terms of the average values 6f A, B, C and 01.~The individual boundary

conditions can be transformed as follows.

" SS1 Boundary andition

e N =H=N =0 at oo L
Xy X X v R
W = O becomes upon substituting for W
W (x,y.t) = A(x,t)h cos (2y) + B(x,t)h sin (Qy) + C(x,t)h = 0 (6-C-1)

This must be true for all values ¥, therefore

A(x,t) = B(x,t) = C(i.t)A; 0 atx-=0, % | (6-C-2)

Applying fhe method of averaging to (6-C-2) yields

R = BR) = () = 5,0 = &6 = 0 o )

ay = 0 becomes, upon substitution

2 - - o _ - ' -
ERh (- o _ 2 sin (Qy) + ¢, _ 2 cos (Qy) -‘03 _ (22) sin (22y)

1, 2,
X X X

-

+ 8, _ (20) cos (207) - 65 _(n+2) sin (n+g)y = 0
. ’ X

'x
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-0 _ {(2-n)sin (2-n)y + ¢ (n+2)cos (n+2)y
6’x 79;

-

9,- P sin (ny)) (6-C-14)

+ 88 _ (2-n)cos (£-n)y - o
'x _ X

This must also be true for all values §, therefore -

6, =0 (1=1,2,...,9) (6-C-5)
'x

Substituting Eqs. (6-2-20) to (6-2-28) into Eq. (6-C-5) and then applying the
averaging technique to the resulting equations yields

© )l

3 =0 (j=11v12'13021'22v23’31v32t41951o61071181v91|92993) (6-C-6)

-

Mx= 0 becomes upon substituting and intriduction of the usual nondimensional

parameters
- 5 . 5 . y
a + § a;cos (miy)+ E Bjsin(njy) =0 (i=1,2,...,5, j=1,2,..,4)
i=1 i=1
(6-C-7)
where
2 1+p -
=D R = R 2 2
9 = DxxA'--- * 2 O ¢1.-- +2 h v Qxx ¢ ¢1
XX
.2 1l+p -
~ __o-Rg - - R 2 2
a, = 2 h Qxx ¢3’__ 2 b Q  (2¢) 03
XX
- 1+p -
~ _ _.»-Rp3 -->R 2= 2
ag = 2 h Qxx ¢5'__ 2 h Y Qxx (n+2) ¢5



20

n+¢

2-n

o}

5

N
o1

N
=

[ »]]

XX

A

(22)2 84

2 (neg)t

(n-i)‘

)

)
oo

(6-C-8)
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n2 = m2
n3 = m3
nu = mu

Notice that in Egs. (6-C-8) the conditions A=B=C=0 have been used.
The §-dependence is eliminated by using the following Galerkin integrals

- 2n
I { Jay=o0
0
2n
J { )cosgydy=0 (6-C-9)
0
21
S [ Jsingydy=0
0
which lead to the following expressions
Q - Q. 1+ -
A, =-2Bxx, R _xx_ 2., (6-C-10)
— h = 1,-~ h = v 1
XX D XX D
XX XX
Q. - Q1+ 2
B, =-2BX, _Rxx” 2,4 (6-C-11)
== h = 2,=- h = v 2
XX D XX D
XX XX
c, =-2Bx,s 1 ), (6-C-12)
— h = n,4{ = 6,--
XX D Q XX
XX XX
1+ —=
H D
XX XX

- - -

Recalling the assumptions for A,B,C and 61, 02 and °6 described in equations (6-
2-17) to (6-2-28) and applying the method of averaging yields:



: 1+u :
"o .o R XX, _ ,R_xx 2 52 (-
At = -2 =00 -2 5 o0 ey, (6-C-13)
D D
XX XX
= R _xx R R -xx 1*"12 :
L LI, 3 - a 28 2 —C-
B 2 h = ¢51 2 h = v [ 012 (6 c‘1u)
XX XX
~n o - Bxx 1 :" e .
c3-<sn’2[ 2h5 5* ]°61 (6-C-15)
XX XX :
n 1+- —
H D
XX XX
a; =C"' =0 ‘ : ) (6-C'16)
Nx = 0 becomes upon sybstitution and application of method of average
sj =0 (J=1l.12.13.21.22.23.31;32.41.51.61.71.81.91.92.93) (6-C-17)

SS2 Bpundary”Condition

-~ - -

Here we must express the condition u = O in terms of W and &. By definition

- 1 : _ _Eh _ _En 1 - : 1 - : - -
xy © TR &, __ = 2(1+v) ny— 2(i+v) R (u,_ +v,_+ R (W, (W,_+W,_+W,_)

‘ xy y X X y y y

+ % W,_ (W,_+W,)]}=0 , (6-C-18)

Recalling the procedure described in Ref. [76] when specializing Eq. (6-C-18) to
the shell edges results in the following simplifications:
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e[ o

0 Sinceu=0 at x = 0,

c
"

- a

W, =0 Since &

[}
o

at x = 0,

x|

Thus Eq. (6-C-18) reduces to

Eh 1.°
Y - = 2(1+V) ﬁ [V, - ’_] (6'C°19)
Xy X X y

1
wra
~

(= I
+
T
)
x!

This equation is valid at any point of the shell, thus the relation obtained by

taking its derivatives with respect to § must also be valid at any point of the
shell.

v'__ == % [2 él:v Q’___ = WO_ w’__ = w’_ wv__] (6"0"20)
Xy xyy y Xy X yy

Considering further

»

. :
bW e 2W,_ W, ) e W W, | (6-C-21)

[1]

oo
< v
]
)
+

N

!
=t

This equation is also valid at any point of the shell, thus the relation ob-

tained by taking derivatives with respect to x must also be valid at any point
of the shell.

Do g - g g : 2
Vo _ 7 w0_ - R wt__ wc_ + B Eh R [(1+u1) Qv___ v Qv___]
Xy b 4 Xy y XXX YyX
- 1 - a -
+ B (1+u1)x2 ﬁ w’___ = ﬁ val [
yyx XXX
~L W W W W, W, W] (6-C-22)
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-

Specializing it to the shell edges ﬁ;__= 0. Thus at x = O, %
y
- ) 2 1 - _ - gyt 1 - ) :
V,__ - wo_ R w’__ wo_ + B Eh R [(1*U1) Qo___ v Qn___]
Xy X Xy y Xxx YYX
o B (1o)X, W o G | (6-C-23)

1’*2 R M-== TR "PT Mroae
' Yyx- XXX

- -

Eliminating v,__ between Egs. (6-C-23) and (6-C-20) and substituting for W and
Xy

-

®, and then equating the coefficients of like terms yields:

- N 1+ Q
2(1+v) v c 1h g 1= 1 h “xx
0 = T - . 2 o - - 1 ~ a5 ~ . P’ S5 P’
1, ___ .[ - 1+p1] 2 1,_ i [ 2Rc v ny]- % *2R i Xxx
XXX XX X XX XX
(if i=1, p=A; if i=2, p=B) o - v (6-C-21)
- 2(1+v) v - ~ '
¢ = - 2p)2 ¢ = .u 6-C-2
T 1*"1] (20)% ¢ (3=3.4) (6-c-25)
XXX XX
- 2(1+v) v - 1h ¢
o, . = - Ja2 6+ 5= ——n? A, P,
“oxxx o H Ty P ki 2Ry 1'%
XX
(if k=5, ap=(n+2). p=A; if k=6, ap=(2-n). p=A)
(if k=7, o =(n+2), p=B; if k=8,xap=(2-n), p=B) ' (6-C-26)
: 2(1+v) _ v : ¢ h | |
o ___ =[5 - In2 + =2 n?A C, (6-C-27)
9'xxx 1*“1 9,; Hxx R 1 ;

Applying the method of averaging to equations (6-C-2U4) -'(6-C-27) yields:



z R 14n Q
ne o 2(1+v)_ v 2 ¢t . C_ _1h g 1 P 1h xx 5.,
opt = [ 5 1+p1]Q b l-38c yy]P' *2Rz F
H
XX XX XX
(if i=1, P=A; if 1=2, P=B) (6-C-28)
- 2(1+v) v -
6" = - 2 o' (if j=12,13,22,23, a =0; if j=31,32,41, a =
[ - 1*“1]uq j (£ 3 3, a =t §=31,32,41, a =2¢)
XX
(6-C-29)
:n' 2(1+\)) - v : lg__g_ '
¢ [ i 1+p1]azp 01:[+ ZRﬁ n? A1P
XX XX
(if k=51, a =(n+2), P=A; if k=61, ap=(2-n), P=A) .
(if k=71, ap=(n+2). P=B; if k=81, ap=(2-n). P=B) (6-C-30)
- 2(1+v) v - c h =
on = - z ¢! — 2 n* A, C =1,2, 6-C-31
og [}_{ 1*“1]n gtz R™ MG (g=1,2,3) (6-C-31)
XX XX

The other conditions are the same as for the SS1 boundary condition.

SS3 Boundary Condition

- - P

Here we must express the condition v = 0 in terms of W and &. Applying the same
procedure as the one used with Eq. (6-C-21) yields

: : o, L 0. L (6-c-
Vag = B(1-v?) [(1+u1) &,_-vd, |- wpx, 2 W, at x=0, ¢ (6-C-32)

XX yy XX

o=

- -

Substituting for W and & and eliminate the ;-dependence by using the Galerkin
integrals defined previously (see Eqs. 6-C-9) yields
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. 1 f1hz"’ . - '
o, = 3R, P__- X 1, P=A; if i=2, P=B
i.._ § [2 R Yex = Hyy 1+p2 2 ] (if i= )
XX XX .
(6-C-33)
01'-_ = af = Tom o, (if 1=3,4, a;=20; if 1=5,7, a;=(n+e); if i=6,8,
XX XX i
ai=(2-n); if 1=9, q9=n) , (6-C-34)

- -

Substituting the time expressions for W and & and applying the method of averag-
ing to the resulting equations yields:

en -1 rlhg YR gt 6.1 (ie1. PeA: ic2, Pe o
o : (5 R Q. P" - T, Ho, 2 ¢,,] (1=1, P=A; i=2, P=B) (6-C-35)
z H R
o) = o :xx . - 6, (4F §=12,13,22,23, a;=0; 1f §=31,32,41, a;=20; if §=51.71,
i
XX

a,=n) (6-C-36)

aj=(n+d); if 3=61,81, a,=(¢-n), if §91,92,93, q,

The other conditions have been reduced previously.

SS4 Boundary Condition

- L
" 0 at x=0, R

=)
L]
(=SR]
"
< o
H
=
"

These have been reduced previously.

Cl1l Boundary Condition

W,_ = O becomes upon substituting for W
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-~
-

W,_ =h(A,_cos ¢y +B,_singy +C,_) =0 ' (6-C-40)
X X X X

This must be true for all values of y, therefore

A, =B, =¢C, =0 (6-C-41)

A' =B' =0
(6-C-42)

éi =0 (i=1,2,3)

All the other conditions have been reduced previously.
, - L

Symmetry Condition at x = O, R .

W, =N, =u=H=0

x ¥

The condition H = 0 can be transformed as follows:

H= MX,X+ ( Xy + yx)’ + NX (w’x+ w'x) + Xy (W,; + wo&) (6—C—u3)
where

- -~

M=D [(1+n01) K+ vny + Clex]

- -

D[ (1-v) + n

t1] ny

- -

D[(1-v) + n

t2] kxy
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Substituting for Mx and Myx and applying the symmetric conditions to the
resulted equation, and then employing the procedureAused previously yields:

- R= - .
=D P =250, ¢ (if 1=1, P=A; if i=2, P=B) (4-c-ukb)
XXX - ’
‘ XXX
33.' =0 (§=1,2,...,9) (4-C-45)
xxx
C..._=0 | (4-C-146)
XXX

Pt = - B " | - A - - oo

Pr= - 2hs % (if i=1, P=A; if i=2, P=B) (4-C-47)
XX

it (3=1,2,3) | . (4-C-48)

o' =0 (k=12,13,22,23,31,32,41,51,61,71,81,91,92,93) | (4-C-49)

SUMMARY OF THE REDUCED BOUNDARY CONDITIONS

SS1
W=0 A=B-= Ci =0
Nx =0 ¢j =0
N =0 o' = 0

£
-
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Q. °:
AN - o B_xx "
A= -2 7 Foen
‘D
XX
" - - R %X 4u
B 2R3 2
D
XX
c" =0
1
A=B=Ci=0
t=0
Jj
Q z 1+p :
AN o~ R “xx " 1:
AM=-2h3 [of,, *+ == ¢ ¢l
XX XX
Q : 1+p R
w oo oo B XX ey 1,
B" = Zhﬁ [021+ vl 021]
XX
on AN
Cl-CZ—O
AN - B_Lx. 1 :n
3="2h3 Sng | 5. ) og
XX XX
1+ —
H D
XX XX
=z 1 b Y = c 1her W - Lo
onr = = 23 22 pnr [1____ ]P'
k1l ZRE i 2Rec v XX
XX XX

80" =0
g



269

$g' = % % < n Aj B'  (if k=51,71, P=A; if k=61,81, P=B)
- ‘
- _.c h _, C!
g1 = 5 R n* Ay Cj
XX
sSs3
W=0 A=B=C =0
N =0 °3 =0
v=0 o" = 0
M =0 A" =B"=Cy=0
Ss4
W=20 A=B=Ci"0
- Q R 1+4p R
~ K 3 C R R xx " 1.,
M =0 A" =-20 : [011 + 0 011]
XX
Q R 1+p z
R "xx 1
* - - —_ 2
B" = - 25 - [°§1 v 021]
- XX
¢, =C,=0
= _ _ . R xx 1 -
R N Tk
XX XX
1+__
A D



<G >

e >

z H =
" o v 2 . . .
0] = ay ﬁﬂ Tem, o, (if J=12,13,22,23, a,=¢; if §j=31,32,41,
aj=22; if j=51,71, aj=n+2; if j=61,81, uj=!l-n; if j=91,92,93, aj=n)
- 1 1hax = v = -
» " - —_—— = = " 2
°11 i [2 R Qxx A 1+p2 Hyy 2 °11]
XX
- 1 (1h v _ = -
» " - — — — " o 2
31 = [3R QB Tom, Tyy * 051
XX
R R ., 1+
2(1+v) v 1 h g 1 -
¢nn_[ - ]Qz 0! ____[1_..._.__ ]A'
11 = 1+n 11 = 2Rc v Yy
H 1 H
1 h %x =,
*2rz °
H
XX
: R 1+p
o [2(1+v) _ v o€ rqg-1h 2" 715 95
°§]'. = [ = 1+p1] g 021 ii [1 2Rc v ny]B
XX XX
1 h xx =
+ = = — B"'
2R ﬁxx
- 2(1+v) v -
"' = - 2 ¢
[ i 1"“1] (aq) g
XX . .
(if g=12,13,22,23, aq=2; if g=31,32,41, aq=22)
:vn - 2(1+v) _ 2 :o _]_- h _C .2 Dt
o' =[5 1+p1]ap htZrRz M AP
XX XX

H
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(if h=51, ap=n+2. P=A; if h=61, ap=n-2. P=A,

11

if h=71, ap=n+2. P=B; if h=81,, ap=2-n. P=B)
411+V) - c h n? ot
=[5 1+p Jne %91 * i R™ A G
Q 1l+p R Q
R "xx 2 XX
-2p 2 [ Jo,,/(1+——)
D D
XX XX XX
- 1s
R "xx 2 _ xx
XX XX XX
Q 1+p z :
R xf vvz 1:u e 11/(1* )
H 1 D
XX XX ’ XX XX
-!A 1+u ‘ E 2
L xf v ° 1:11 ] et 21/[1+ = ]
H D 1 D_
XX XX XX XX
B=C, =0
B'=C; =0
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xy
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(=Y
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=
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f= o]} 1
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=0
=0
0
=0
B = Ci = 0
= R' = 0! =
=B'=C; =0
= ._.1_. l h = ain oo T 2 &
= 3RO, A T Hy 2t ¢y]
XX
1 (lhz ae. Y gz
- - [5R QB T Ho, ¢ ¢, ]
XX
By v :
= - a ¢ if g=12,13,22,23, a_=£;
Oq ﬁ 1+u2 g ( g 3 3 q
xX
if g=31,32,41, aq=22)
Ay v
- = = . - —0-
% = Tom, ¢, (if h=51,71, a, n+0; if h=61,81, a, 2-n)
XX
By v ;
- Q2 ¢
i 1+u2 91
XX
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:n' - 2(1+V) . 2 :0 l Q _XX Tu
0 011 = [ 1+u1] ¢ %1 * 3R = h

XX XX

:"v - 2(1+V) . 2 :v i E XX e

031 = | 5 1+u1] ¢ % * 3R = °
XX XX

- 2(1+v) v - .

o"t = - 2 f g=12,13,22,23, a =2,

g [ ﬁ 1*“1] aq g (1 g 3 3 uq [/
XX

if g=31,32,41, aq=22)

»

[=3 3]

- 2(1+v) v
or' = 2 ¢ if h= =n+Q;
[ - + 1+u1] o o (if h=51,71, o =n+g;
XX
if h=61.81,,ap=2-n)
- 2(1+v) v -
"e — 2 t
091 [ 2 + 1+p1] n 091
: XX
CONDITION
=0 A' =B'=C! =0
1
-0 o' =0
J
- 1h %« -
0 *0"0 _____.A"'
11 2R i
- XX
* 6no = 1h Qxxiﬁno
21 2R 3
H
XX



* The solutions of these

Kvn = EI!' = 0" =

0

an' =0
P

091 =0

" Knv = -2
»* ﬁnv = -2
=0

»

"

11~ 21

i

where 1=1,2,3

=0

=gl
(=1

-
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5

K

275

ARl

Rl
[ \S
= -

equations are

-

j=11,12,13,21,22,23,31,32,41,51,61,71,81,91,92,93

g=12,13,22,23,31,32,41

h=51,61,71,81

APPENDIX 6-D  COEFFICIENTS OF EQUATION (6-3-8)

¢

¢

o

2

R L 1 C!
- ¢ (@8 - 50, [(C)) +

1

2

& .1 A2 -
+ Qucl 2 GSA

_R cr - C' C' -
L 6n,2 [a103 a201 C3

- B_ one l
p (0,05~ 5 a8, 4

(C

3

)l-

OOk

Ni=

1

GZ(K')’]

(C3)* + 56, , (C3)] - a3 T}
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M~ A
én.g a, C c3]

[}
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N =

[l le)
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a, (€3)?)

£l

coefficients a; (i=1,2,...,7) are

1 h [ilfé ; L
2cR ' v 1+u1 XX
h
R
h ,,
R Ao
\
1+u1
% a, oy Q2
- i ngaA
2 92 % 1
i1h,,
“2RrM
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SUMMARY

The main purpose of this thesis is to investigate the influence of the initial
geometric imperfections and of the boundary conditions on the nonlinear vibra-
tion characteristics of thin c¢ylindrical shells. The thesis consists of two
parts. '

In the first part the nonlinear vibrations of imperfect thin-walled stiffened
cylindrical shells with SS3 boundary conditions at both ends is considered,
subjected to axial compression No and lateral excitation q. Both single and two

modes initial geometric imperfection models are considered. One of the objec-
tives of this part is aimed at the study of the discrepancies existing in the
previous investigations and to obtain a reasonable explanation for them. Next
the influence of geometric imperfections on the coupled mode response is studied
where up to now ng solutions are available., The Donnell type nonlinear differen- -
tial equations for axially compressed stiffened shells with simply supported
boundary conditions at the two ends are used. The 'smeared' theory is applied to
treat stiffeners and rings. Galerkin's method and the method of averaging are
employed in sequence to obtain a set of coupled nonlinear algebraic equations,
from which the frequency-amplitude relationship can be obtained for various
dampings, amplitudes of excitations and imperfections. The stability of solu-
tions is studied using the so-called method of slowly varying parameters.

The second part of the thesis deals with the investigation of the influence of
various boundary conditions on the nonlinear vibrations of imperfect cylindrical
shells, which is the first step of the effort to study the effect of elastic
boundary conditions on the nonlinear vibration of shells. The problem of deter-
mining the effects of elastic boundary conditions on the dynamic response cannot
be avoided because in practical applications 'perfect' boundary conditions, for
example the simply supported one, do not usually exist. In reality the boundary
" conditions are elastic or intermediate between the extreme of fixed and free.
Once again the Donnell type nonlinear partial differential equations are
employed. The procedure used in this part is an extension of the one used by
-Arbocz for the buckling problems in Ref. [76]. Proceeding as in part one the
Donnell type equations are reduced to a set of nonlinear first order ordinary
differential equations with two sets of boundary conditions. The resulting 2-
point nonlinear boundary value problem is solved by the numerical integration
procedure called 'shooting method' yielding the frequency-amplitude relation-
ships and vibration modes for various boundary conditions.
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SAMENVATTING

Het hoofddoel van dit proefschrift is de invloed van initiele geometrische
imperfecties en de randvoorwaarden op de niet-lineaire trillings-karakteris-
tieken van dunwandige cylindrische schalen te onderzoeken.Het proefschrift
bestaat uit 2 delen.

In het eerste deel worden de niet-lineaire trillingen beschouwd van imperfecte
dunwandige verstijfde cylindrische schalen met SS3 randvoorwaarden op beide
uiteinden, die aan een axiale drukbelasting No onderworpen zijn en lateraal

geexiteerd worden door een belasting q. Zowel enkele als gecombineerde initiele
geometrische imperfectie vormen zijn beschouwd. Een van de doelstellingen van
dit gedeelte is gericht op het onderzoek naar de verschillen die er bestaan in
voorgaande onderzoeken en hiervoor een verklaring te vinden. Hierna wordt de
invloed van geometrische imperfecties en de gekoppelde vorm responsie onder-
zocht. Hiervoor waren nog geen oplossingen gevonden. De niet-lineaire Donnell
differentiaal vergelijkingen voor axiaal belaste verstijfde schalen met schar-
nierend opgelegde randen bij beide uiteinden zijn gebruikt. De "uitgesmeerde"
theorie is toegepast om de verstijvers en ringen te behandelen. De Galerkin
methode en de middelwaarde (averaging) methode worden na elkaar gebruikt om een
stel gekoppelde niet-lineaire algebraische vergelijkingen te krijgen, waaruit de
frequency-amplitude relatie voor verschillende dempingen, excitatie amplitudes
en imperfecties zijn te verkrijgen. De stabiliteit van de oplossing is bestu-
deerd door gebruik te maken van de zogenoemde methode van langzaam varieerende
~ parameters.

Het tweede deel van dit proefschrift is het onderzoek naar de invloed van ver- -
schillende randvoorwaarden op de niet-lineaire trillingen van imperfecte
cylindrische schalen, hetgeen de eerste stap is van een poging om het effect van
elastische randvoorwaarden op niet-lineare trillingen van schalen te onder-
zoeken. Het probleem van het bepalen van de effekten van elastische randvoor-
waarden op dynamische responsie kan niet voorkomen worden omdat in praktische
toepassingen perfecte randvoorwaarden, b.v. scharnierende opleggingen, normaal
niet voorkomen. In de praktijk zijn de randvoorwaarden elastisch of zitten ze
tussen het uiterste van ingeklemd en vrij in. Opnieuw worden Donnell's niet-
lineaire parti8le differentiaal vergelijkingen gebruikt. De oplossingprocedure
welke gebruikt wordt is een uitbreiding van die welke Arbocz gebruikt voor de
knikproblemen in Ref.(76). Op dezelfde wijze als in deel 1 zijn de Donnell ver-
gelijkingen te vereenvoudigen tot een set niet-lineaire eerste orde differen-
tiaal vergelijkingen met twee stelsels randvoorwaarden. Het resulterende niet-
lineaire 2-punt randwaarde probleem is opgelost door gebruik te maken van de
numerieke integratie methode genaamd "shooting methode', waardoor de frequency-
amplitude relaties en de trillings vormen voor verschillende randcondities
verkregen worden.
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