
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Autonomous Sailing
with Sim-to-Real
Reinforcement
Learning
Master Thesis
Bink, K.J.A.

Thesis for the degree of MSc in Marine Technology in the specialization of Ship Hydrodynamics

Autonomous Sailing
with Sim-to-Real
Reinforcement

Learning
by

Bink, K.J.A.
Performed at

MARIN
This thesis (MT.23/24.019.M) is classified as confidential in accordance with the general conditions for

projects performed by the TU Delft.
To be defended publicly on Thursday February 28, 2024 at 10:00 AM.

Company supervisors
Responsible supervisor: Dr. Bülent Düz
E-mail: B.Duz@MARIN.nl

Thesis exam committee
Chair/Responsible Professor: Prof. Dr. Gabriel Weymouth
Staff Member: Prof. Dr. Rudy Negenborn
Staff Member: Ir. Jaap Gelling
Company Member: Dr. Bülent Düz

Author Details
Student number: 4566319
Author contact e-mail: kikibinkk@gmail.com

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

When I first came across this project proposed by MARIN, it immediately caught my attention. I had
been fascinated by the possibilities of machine learning, specifically RL, for a while. Combining this
into a project involving the interesting complexities of sailing and controls was the perfect scenario for
me.

The thing that fascinated me about RL was the idea that machines could learn in the same way that
humans and animals learn and the potential this unlocks to solve increasingly complicated problems. In
the next few decades, RL and other machine learning techniques could become crucial in addressing
the engineering, economic, medical, and climate issues facing the 21st century. Before starting my
thesis, it almost seemed as if using RL was as easy as telling the machine its goal, and without telling
it how to reach that goal it would figure out how to do it. However, I was quickly faced with the (not
entirely unexpected) reality that using RL for controls was much more complex. It became clear that an
understanding of the dynamical system is crucial to perform validations and evaluations of the methods
and resulting controls. Luckily, this is what made this thesis challenging and enjoyable.

I would like to thank my supervisor, Gabe, for his invaluable guidance and teaching me what con-
ducting good research looks like. Our weekly meetings were an immense help to stay inspired and
motivated throughout the many challenges encountered. Next, I would like to thank my company su-
pervisor, Bulent, for sharing his knowledge of Reinforcement Learning and always making the time to
answer my questions. I also want to express my gratitude to MARIN for providing me the chance to
work on this project, and especially for the unique opportunity to conduct tests in the Offshore Basin,
which was a great experience in itself. Finally, I would like to thank my family and friends for the support
and encouragement during the busy times of performing this research.

Bink, K.J.A.
Delft, February 2024

2

Abstract

Facing the critical challenge of reducing greenhouse gas (GHG) emissions in the maritime industry,
this thesis explores the potential of smart control systems using Reinforcement Learning (RL) for au-
tonomous sailing. Traditional controls for sailing fall short in navigating the complex, dynamic conditions
of maritime environments. RL has shown to be effective for continuous control applications in these
types of conditions, however, primarily in simulated environments. Therefore, this study aims to show
the potential of RL for autonomous sailing control (ASC) by means of a small scale project. A fast-time
simulation of an Optimist is used to train the sailing controls required to reach an upwind target. The
controls are then transferred to a robotized Optimist in a real-world environment to test the transferabil-
ity of the simulation trained controls. First, the reality gap, or modelling error, between the simulation
and real-world environment is quantified to be able to assess the performance of the used techniques
to bridge the existing gap. The sim-to-real techniques of Domain Randomization (DR) and the addi-
tion of observation noise (ON) are applied during the training process. To test the effectiveness of the
trained RL controls, the best performing ones in the simulation are selected and tested in the real-world
environment. The performance of the RL controlled Optimist is compared to state-of-the-art controls
in robotic sailing. Their performances are measured and compared by means of success rate and a
physics-based metric that calculates the efficiency of the sailboat to use the power of the wind to propel
itself, called the energy ratio. The results show that the RL controls are highly successful in the sailing
simulation, however, the transfer to the real-world remains a major challenge. DR does improve the
sim-to-real transfer, resulting in an agent that is able to reach a 100% success rate throughout 12 runs
in the real-world environment.

3

Contents

Preface 2

Abstract 3

1 Introduction 1
1.1 Research question . 2
1.2 Structure . 3

2 Sailing as a control problem 4
2.1 What are the relevant physics of sailing? . 4

2.1.1 Points of sail . 5
2.1.2 Running downwind . 6
2.1.3 What makes upwind sailing complex compared to downwind sailing? 6
2.1.4 How is sailing modeled? . 7

2.2 What are the relevant control features of sailing? . 14
2.2.1 What basic knowledge of control methods is necessary to describe sailing as a

control problem? . 14
2.2.2 Sailing as a control problem . 14

2.3 What is the state-of-the-art for control of autonomous sailing control (ASC)? 15

3 RL for autononomous sailing control 19
3.1 What is the learning process in RL? . 19

3.1.1 Bellman equations . 21
3.1.2 Temporal Difference RL . 22
3.1.3 What is the learning process in DRL opposed to RL? 22
3.1.4 Model-free vs. model-based RL . 23

3.2 What existing RL methods are most suitable to consider for ASC? 23
3.2.1 State and action representation . 24
3.2.2 Choice, implementation and evaluation of an RL algorithm 25
3.2.3 Reward design . 28

4 Sim-to-real transfer for control applications 30
4.1 What methods have been used in similar applications to bridge the reality gap? 30
4.2 How does the performance of an autonomously controlled sailboat change from sim-to-

real? . 33

5 Training, evaluation and testing methods 37
5.1 System overview . 37
5.2 Basin set-up . 38
5.3 XMF model . 40
5.4 RL environment & training set-up . 41
5.5 State-of-the-art control . 46
5.6 Measuring the reality gap . 47
5.7 Evaluation of agents in simulation . 50
5.8 Evaluation Metrics . 51

5.8.1 Energy Ratio . 52
5.8.2 High Risk Behavior . 55

5.9 Evaluation of agents in the basin . 56

6 Results 58
6.1 What is the extent of the reality gap? . 58
6.2 What agents were selected to be tested in the basin after the evaluation in the simulation? 62

4

Contents 5

6.3 How did the selected agents perform in the basin compared to the simulation? 63

7 Concluding Remarks 71

8 Recommendations 73

References 74

A Supplementary Content 79

List of Figures

1.1 Remotely sailing Optimist in the Offshore Basin at MARIN 2

2.1 Wind triangle showing the true and apparent wind vectors with respect to the boat speed
[14] . 5

2.2 Ship motions in 6DOF [15] . 5
2.3 (a) Points of sail [16] . 6
2.4 Airflow around sail [17] . 7
2.5 Force diagram of (a) centerboard and (b) sail [14] . 7
2.6 Force balance seesaw [19] . 8
2.7 Force diagram including the sail and hull forces with respect to the wind triangle. [23] . 9
2.8 The Optimist sail at 1/4 scale in the wind tunnel, from ’Design of a Foiling Optimist’ [24] 10
2.9 Lift and drag coefficients of the Optimist sail, from ’Design of a Foiling Optimist’ [24] . . 10
2.10 Coordinate system used in the mathematical model [25] 12
2.11 Simulated sailing tacking maneuver compared to full scale tests, from Keuning (2005) [25] 13
2.12 Two example upwind trajectories that would take equal time in steady wind [14] 15
2.13 Typical Guidance, Navigation, and Control (GNC) system used in autonomous sailboats

[33] . 16
2.14 Overview of general path following system, with rudder angle δr and sail angle δs [33] . 17
2.15 Overview of speed control methods found in sailing robots [33] 17

3.1 The agent-environment interaction in a Markov decision process [6] 20
3.2 The agent-environment interaction in a DRL framework. θ represents the parameters

that define the learned policy. [59] . 23
3.3 Comparison of the learned controller against the best existing controller, in terms of given

forward velocity commands of 0.25, 0.5, 0.75, and 1.0 m/s.[67] 27
3.4 Significance of Policy Network Structure and Activation Functions PPO (top), TRPO (bot-

tom left) and DDPG (bottom right). [74] . 27
3.5 TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over

two sets of 5 different random seeds each. The average 2-sample t-test across entire
training distribution resulted in t = −9.0916, p = 0.0016. [74] 28

4.1 Lap times and success rates of the drones completing a track by Loquercio et al. [78] . 32
4.2 Lap times of the drones tested by Kauffman et al., Swift is the RL-controlled drone and

the others are operated by professional drone pilots. [8]. 32
4.3 Sim-to-real transfer results of differently trained controls for quadruped robots by Tan et

al. [10]. 33
4.4 Bodies used in the Optimist assembly in XMF and their corresponding coordinate systems. 34
4.5 Lift and drag coefficients of the Rudder2020 model [82] 35

5.1 General overview of the set-up . 37
5.2 Robotized Optimist for autonomous sailing control, with: 1. Rudder 2. Servo motor to

control the rudder angle 3. Triangles with a LED on each corner 4. Servo motor to move
the ballast 5. Ballast/battery 6. Winch for sail control . 38

5.3 The carriage following the Optimist„ containing the Optotrak Certus HD and communica-
tion hardware. 39

5.4 Wall of wind fans . 40
5.5 Top view and size of the inner boundaries of the basin 40
5.6 Optimist sailing in XMF environment . 41

6

List of Figures 7

5.7 Total reward obtained over the timesteps during the test runs. *In order to present the
learning progress of the reinforcement learning agents more clearly, a moving average
of 50 episodes was applied to the total reward data. 43

5.8 Learning progress SAC_test_2. 43
5.9 Learning process SAC_test_4 . 44
5.10 Rudder Angles of SAC_test_2 and SAC_test_4 during episode 2000 45
5.11 Open-loop controlled trajectories in the simulation and the basin. 48
5.12 Measured rudder angle and sheet lengths in simulation and basin. 48
5.13 Shifted rudder and sheet length signals accounting for time delay in the basin. 49
5.14 Basin run compared to the time segmented runs performed in the simulation. 50
5.15 Heeling function to assess the capsize risk behavior in the evaluation of the agents. . . 56

6.1 Mean positon error over 5 runs in each 4-second time segment. The nr of runs in the
last two time segments is less since the durations of the runs were not consistent. . . . 58

6.2 Correlation matrix . 59
6.3 Partial correlation matrix, mitigating the effects of the wind speed. 59
6.4 Segmented yaw motion from the simulation and the yaw motion from the basin 60
6.5 Segmented pitch motion from the simulation and the pitch motion from the basin 61
6.6 Mean pitch errors over the time segments, compared to the average measured speed

in y-direction and the roll rate. The time segments that contain a tack maneuver (in the
simulation) are shown in green. 61

6.7 Mean position errors over the time segments, compared to the average measured speed
in x- and y-direction. The time segments that contain a tack maneuver (in the simulation)
are shown in green. 62

6.8 Success rate of the agents in the simulation and basin. 63
6.9 Completion times of the agents in the simulation and the basin over all the successful

runs. 64
6.10 SOTON’s single failed run, showing that the speed loss after the tacks is detrimental. . 65
6.11 3 basin runs of SAC_REG from D12 with 60% wind. 66
6.12 1 basin run of SAC_RI_4 from D12 with 60% wind level. 67
6.13 3 basin runs of SAC_ON_04 from D12 with 60% wind level. 68
6.14 3 basin runs of SAC_ON_10 from D12 with 60% wind level. 69
6.15 Energy ratio of all the agents in the simulation and basin. The lower the energy ratio, the

more effective agents are in utilizing the wind energy. 70

List of Tables

3.1 Proposed state and action space for ASC. 25
3.2 RL agents used in different continuous control problems 26
3.3 Previous research on benchmarking RL algorithms for continuous control problems. *Mu-

JoCo is a fast physics engine that has several environments that includes models like
bipeds, quadrupeds and robot arms [72] . 27

4.1 Previous research on sim-to-real transfer for continuous control. 31
4.2 Body mass/Inertia properties bodies w.r.t. LCS Hull. The values in the last row are

obtained by converting the seperate values to a single lumped body. 34
4.3 Main particulars of the Optimist assembly . 34
4.4 Ranges and Actuator Rates . 35

5.1 Summary of SAC validation training results. The success rate column depicts the per-
centage of times that the agent has completed the task of reaching the target during the
training. 42

5.2 Sail settings for various heading angles . 47
5.3 Average errors in the measured rudder and sheet actions. 49

6.1 Average RMSE and standard deviation over all the time segments of the 5 runs. of the
position, speed in x and y, and the roll, pitch and yaw motions. 60

6.2 Summary of training times and number of episodes of the agents 62

8

1
Introduction

The maritime industry faces a major challenge in reducing its Green House Gas (GHG) emissions. In
2018, global shipping emissions reached 1,076 million tonnes of CO2, accounting for about 3% of the
total global emissions caused by human activities [1]. In order to align with the emission reduction
goals set out in the United Nation’s 2015 Paris Agreement, the International Maritime Organization
(IMO) launched an emission reduction strategy which outlines the goal to reduce the total annual GHG
emissions by at least 50% by 2050 compared to 2008 levels. The strategy also emphasizes the impor-
tance of trying to completely eliminate these emissions in the future [2].

One possible solution that has (re)gained attention is the use of wind-assisted ships. These ships
harness the power of wind to reduce the propulsive power generated by fossil fuels. Nevertheless, the
control of wind-assisted ships is challenging due to their low control authority and the advance planning
that is required. This challenge is further compounded by the constantly changing and unpredictable
maritime environment it has to operate in, requiring precise maneuvering and the optimal utilization
of sails. Controlling these ships requires specialized skills, but due to its novelty, there are not many
people with expertise in this area [3].

To overcome these challenges, there is a need to explore innovative control systems that can ef-
ficiently and autonomously operate wind-assisted ships. Smart control systems, which leverage ad-
vanced technologies such as artificial intelligence (AI), have shown promise in various control appli-
cations, including the control of power-propelled ships [4], [5]. These systems are able to integrate
real-time data, optimize sailing strategies, and adapt to changing environmental conditions. As a re-
sult, they improve efficiency and performance, and offer a potential solution to the complex control
problem presented by emerging technologies such as autonomous wind-assisted ships.

The potential of smart control systems for wind-assisted ships is clear, but there is a significant
research gap when it comes to applying them in real-world environments. As a result, there has been
limited support and funding for exploring newer methodologies on a larger scale. One such method-
ology of interest is Reinforcement Learning (RL), a subset of machine learning. RL offers promise
in addressing complex control problems by allowing systems to learn optimal strategies through trial-
and-error in dynamic environments [6]. RL has been successfully applied to various control problems
such as flying drones [7], [8], autonomous driving [9], and quadruped robots [10], showing potential in
dealing with low control authority and operating in dynamic and stochastic environments.

Since the interest among researchers in using RL for complex control systems is relatively new,
many challenges remain that must be addressed to ensure robustness and safety in systems that
utilize RL for control. One of these challenges is the need for autonomously and safely gathering
large volumes of data necessary for the RL agents to learn robust policies. Simulations are often
used to overcome this by enabling fast data collection and iteration. However, due to simplifications
and assumptions that have to be made during the modelling process, modelling errors are inherent to
simulations. Therefore, simulations are unable to accurately capture the complexity of the real world,
often referred to as the reality gap [11], [12]. This poses difficulties for applying the RL controls trained
in simulations to real-world scenarios. Researchers are working on bridging this gap through more
realistic simulations or methods for transferring knowledge from simulation to reality, referred to as
sim-to-real transfer [11]. Sim-to-real transfer has not been considered in applications that deal with

1

1.1. Research question 2

the low control authority, and the dynamic and stochastic environment present in autonomous sailing
applications.

To address this research gap and demonstrate the viability of RL in the real-world for the control of
underactuated systems such as wind-assisted ships, it is necessary to initiate small-scale projects to
test and showcase its capabilities. For this reason, this thesis proposes a project focused on developing
a control system using RL for a small sailboat in a simulation and transferring it to the Offshore Basin at
MARIN. The choice of a small sailboat is advantageous since it can be tested and controlled within the
confines of a basin that already has sensor systems and cameras set-up, reducing the complexity and
risks associated with open water trials. The small sailboat used is an Optimist due to its robustness and
stability, which slightly simplifies the complex process of learning to sail. Moreover, there is existing
knowledge and experience in autonomous sailing control (ASC) of small sailboats, which can serve
as a foundation for developing control strategies and as a benchmark for evaluating the RL controlled
Optimist.

To verify that the Optimist is able to sail remotely in the basin, preliminary tests were done with
manual control. The necessity of using a simulation was restated during preliminary tests to verify that
the Optimist was able to sail remotely in the basin, as it was observed that setting up and completing
took about 3 to 4 minutes for each run. Looking at a prior study by Yu et al. [13] on the use of RL for
trajectory tracking control of autonomous underwater vehicles (AUV), it required about 3000 episodes
of training to learn a robust policy, which would amount to approximately 250 hours of training time
in the basin. This estimate is very conservative when considering that in the study by Yu et al. the
trajectory was already provided and only path following was considered. The maximum allotted basin
time is about 60 hours, which is unlikely to be enough for the RL-controlled Optimist to learn an effective
policy. The successful implementation of RL in controlling a sailboat in a simulation and transferring it to
a real-world environment would not only showcase the capabilities of this approach for underactuated
systems but also lay the groundwork for further research and funding in this area.

Therefore, the aim of this thesis is to demonstrate the application of RL for sailing when trained in
a simplified simulation and employed in the real world. By doing so, it seeks to unlock opportunities for
the advancement of smart control systems that can facilitate sustainable practices within the maritime
industry.

1.1. Research question
The main research question that will be addressed in this thesis is:

How robust, stable, and effective are RL strategies for sailing upwind when trained in a
simulated model and applied in real life?

To answer this question, RL agents were trained to sail to an upwind target in a fast time-domain
simulation. The resulting policies were transferred to a robotized Optimist in the Offshore Basin at
MARIN as shown in Figure 1.1, where the performance of these agents was evaluated and compared
to the state-of-the-art.

Figure 1.1: Remotely sailing Optimist in the Offshore Basin at MARIN

1.2. Structure 3

1.2. Structure
First off, the literature review is structured into four parts. In chapter 2, the theory of sailing is discussed
to set up autonomous sailing as a control problem. This chapter also provides an overview of previous
research methods to identify the state-of-the-art for autonomous sailing control (ASC), which can be
later used as a benchmark to evaluate the effectiveness of the RL-controlled sailboat. chapter 3 goes
into the fundamentals of RL theory and highlights the recent advancements in the field. Various RL
algorithms are discussed to identify which ones are the most suitable to consider for ASC. Next, chap-
ter 4 reviews the literature on sim-to-real transfer, highlighting recent research that is relevant to this
application. It sheds light on the methods and approaches used to bridge the gap between simulation
and real-world scenarios.

After the extensive literature review, the methods used to address the research question are dis-
cussed in chapter 5. The complete system to train and evaluate the RL-controlled Optimist in both the
simulation and basin are discussed, as well as the methods used to evaluate the sim-to-real transfer.

The results are presented and discussed in chapter 6. The concluding remarks, in chapter 7, exam-
ine the study’s context within the broader field, exploring implications and limitations. Finally, chapter 8
proposes potential directions for future research.

2
Sailing as a control problem

Sailing was one of the first methods created by humans for transport over the water. Wind is always
readily available which makes it a sustainable way of transportation. However, this dependence on
the wind makes that the control is not as straightforward opposed to power-driven vessels. Reaching
a target is not as simple as setting a heading in that direction, because going directly into the wind
is impossible. Besides wind, the water that the sailboat moves through also plays a major role. The
combination of the aero- and hydrodynamic forces is what makes sailing possible. Luckily, sailors do
not need to know the exact physics to get from A to B. An experienced sailor considers the chang-
ing environmental conditions, such as wind direction, wind speed, waves, and currents. Depending
on these conditions, the skipper makes routing decisions and performs certain manoeuvres to sail to
the desired destination. As a result, replacing all these tasks to be carried out autonomously is an
immensely complex task. [14]

In this chapter, section 2.1 will start off with an overview of the basics of sailing and the most used
terms to make sure the non-sailor is able to follow along smoothly. After which it will further expand
on the physics and challenges of upwind sailing. The different levels of control associated with sailing
upwind will be explained in section 2.2, with that setting up sailing as a control problem. section 2.3
offers an insight into previous work on sailing robotics and the current state-of-the-art sailing robot
control for sailing upwind.

2.1. What are the relevant physics of sailing?
Wind is the main propulsor of a sailboat. When discussing wind in sailing, it is important to make the
distinction between true and apparent wind. True wind refers to the actual direction and speed of the
wind in relation to the Earth’s surface. Apparent wind is the wind experienced by a moving sailboat,
which is influenced by the boat’s own speed and direction. This is shown in the diagram in Figure 2.1,
with true wind denoted as V⃗tw, apparent wind as V⃗A and boatspeed as V⃗S . The apparent wind speed
and direction can be calculated as follows:

V⃗A = V⃗tw − V⃗S (2.1)

To effectively adjust the sails and optimize the performance of a sailboat, the concept of apparent
wind is important to understand.

Throughout this work, the names of the ship motions in 6 degrees of freedom (DOF) and the (local)
coordinate system used are shown in Figure 2.2 below.

4

2.1. What are the relevant physics of sailing? 5

Figure 2.1: Wind triangle showing the true and apparent wind vectors with respect to the boat speed [14]

Figure 2.2: Ship motions in 6DOF [15]

2.1.1. Points of sail
The boatspeed and direction of a sailboat are mainly determined by the shape of the sails, the direction
of the wind, and the heading angle of the boat. The heading angle of the boat relative to the direction
of the wind is called the point of sail. The standard points of sail are shown in Figure 2.3.

2.1. What are the relevant physics of sailing? 6

Figure 2.3: (a) Points of sail [16]

2.1.2. Running downwind
In its most simple form, downwind sailing will happen automatically when you put a sailboat in the
water as it will be pushed ahead by the wind. However, optimizing this process to reach a downwind
target as quickly as possible poses a more challenging task. Achieving this involves utilizing the sail
as a parachute to generate a drag force and reducing the resistance of the water on the boat as much
as possible. A sailing vessel will accelerate until the forces exerted by the wind and water balance
each other. These forces can be calculated by applying Newton’s impact theory, yielding the following
equations [14]:

FD(wind) =
1

2
CD(sail) ·As · ρa · V 2

A

FD(water) =
1

2
CD(hull) ·Ah · ρw · V 2

S

(2.2)

FD(wind) is the drag force due to the wind hitting the sail and FD(water) is the resistance of the
water on the moving hull. VA and VS are the apparent wind speed (aws) and the speed of the vessel
respectively. CD is the drag coefficient, it summarizes a multitude of corrections. For the sail this
depends on the type and geometry of sail. CD(hull) is dependent on the geometry of the hull but also
includes the rudder and centerboard. A more streamlined boat will have a lower CD value. When
running downwind, at some point it will feel as if the wind completely vanishes since the boat speed
approaches the wind speed. This can be explained by Equation 2.1 for apparent wind speed VA, where
the boatspeed is subtracted from the true wind speed Vtw. As a consequence, when running downwind,
the boat speed can never exceed the wind speed.

Thus, with some simplifications and assumptions for the drag coefficients, it is fairly straightforward
to figure out the speed of a vessel running downwind. With any other point of sail, this gets a lot more
difficult since lift forces generated by the sail, centerboard and rudder start playing a role. Especially
the upwind courses such as close reaching and close hauling rely on lift to create forward speed.

2.1.3. What makes upwind sailing complex compared to downwind sailing?
For upwind sailing, instead of using the drag force on the sail as propulsion, the forward power is now
generated by lift forces. The sail generates lift by using the Bernoulli principle and the interaction of

2.1. What are the relevant physics of sailing? 7

the flow field of the wind around its curved shape, see Figure 2.4. As the wind flows over the sail, it
accelerates on the leeward side of the sail, creating lower pressure according to Bernoulli’s principle.
Simultaneously, the wind slows down on the windward side, resulting in higher pressure. This pressure
difference generates lift, similar to how an airplane wing generates lift during flight. Attached flow on
both sides of the sail is optimal when going upwind, as depicted in state 2 in Figure 2.4. To achieve this,
maintaining an optimal angle of attack for the apparent wind is necessary to prevent flow separation
or ”stalling”. If the angle of attack on the sail gets too small, the sailboat loses its ability to generate lift
force, resulting in a decrease in forward speed, known in sailing as being ”in irons”. This is depicted in
Figure 2.3 as the ’dead zone’. In the downwind courses, the sailboat is able to utilize a combination of
lift and drag from the wind, while the airflow may partially or completely separate on the leeward side
of the sail. Balancing these forces in the right way can potentially allow the boatspeed to exceed the
windspeed. The beam reaching course offers the best conditions for achieving this balance, as both
drag and lift contribute to propelling the boat forward [17]. Going upwind, the drag force of the wind
counteracts forward propulsion but due to careful design of the sail, the drag force going upwind is kept
to a minimum. The forces on the sail are generated at the price of heeling and/or leeway (sailing term
for sideways drift). The centerboard (or ”keel” depending on the type of boat) generates lift in the other
direction to counter this leeway and heeling moment by acting as a hydrofoil. The resulting forces on
the centerboard and sail are shown in Figure 2.5. The counteracting forces result in a forward motion
of the sailboat.

Figure 2.4: Airflow around sail [17] Figure 2.5: Force diagram of (a) centerboard and (b) sail
[14]

The aero- and hydrodynamic interactions enable the sailboat to create forward speed. Due to these
interactions, predicting the boatspeed when sailing upwind is not straightforward.

2.1.4. How is sailing modeled?
Careful balancing of the forces and moments is necessary to be able to predict speed and model
sailing. To predict the speed, models have been developed for this such as velocity prediction programs
(VPPs). VPPs exhibit varying degrees of complexity, depending on factors such as the intended use,
available data, modeling techniques, and desired accuracy. Simple VPPs may consider only 3 degrees
of freedom (DOF), relying on static or quasi-static assumptions and steady-state wind conditions. In
contrast, more complex VPPs incorporate all 6DOF, dynamic effects, and environmental factors like
time-varying winds, waves, and current. They also account for sail interactions and controls, taking
into consideration the complex aerodynamics of sails and optimizing control settings. The complexity
of VPPs is often a trade-off between accuracy and computational resources, with simpler models still
providing valuable insights for recreational sailing and performance estimation. [18]

One of the most well known VPP tools under sailors is developed and maintained by the Offshore
Racing Congress (ORC) [19]. The ORC VPP is a program mainly used to calculate racing yacht hand-
icaps based on a mathematical model of the physical processes embodied in a sailing yacht. It is
responsible for the development and maintenance of rating and classification standards that can be

2.1. What are the relevant physics of sailing? 8

used to rate nearly every kind of boat in a scientific and unbiased manner. An approach to handi-
capping was first developed in 1978 with the H. Irving Pratt Ocean Racing Handicapping project [20].
This work resulted in the Measurement Handicapping System (MHS) that was used in the United States.
The aerodynamic model was subsequently revised by George Hazen [21] and the hydrodynamic model
was refined over time as the Delft Systematic Yacht Hull Series was expanded [22]. Many researchers
such as Philpott [23], have updated the VPP in the following years, the ORC has made the effort to
maintain an up-to-date handicapping system.

The most recent ORC VPP program creates a computer simulation of the boat’s performance based
on scientific research of boat hulls in hydrodynamic basins, sails in aerodynamic tunnels and measure-
ments taken on real boats as well as computer fluid dynamics (CFD) tools currently available. The VPP
is comprised of two parts: the solution algorithm and the boat model. The solution algorithm must
find an equilibrium condition for each point of sailing, where the sail forces and hull forces shown in
Figure 2.6 are balanced.

Figure 2.6: Force balance seesaw [19]

A force diagram of the sail and hull forces with the wind triangle is shown in Figure 2.7.

2.1. What are the relevant physics of sailing? 9

Figure 2.7: Force diagram including the sail and hull forces with respect to the wind triangle. [23]

The wind triangle in Figure 2.7 uses VA and βA to denote the apparent wind speed and angle
respectively, Vtw and βtw for the true wind speed and angle, and VS for the boat speed. The remaining
variables depicted in the diagram will be introduced throughout the following.

The boat model of the general VPP determines the steady state conditions by satisfying equilibrium
equations. The level of complexity of the VPP can be altered, the following is largely based on themodel
of Philpott [23]. Two important assumptions are made in this model:

1. Vertical force balance is always satisfied. The weight of the vessel will always equal the
buoyancy. In reality, the motion of a vessel will cause a change in displacement but the buoyancy
force will change very quickly along with this change so this is reasonable to neglect.

2. Pitching moment balance is always satisfied. The force on the sails will tend to raise the stern
and depress the bow which causes an imbalance in the fore/aft buoyancy, this will in turn resist
the pitch. Just like the vertical force balance, the moment caused by the restoring buoyancy force
changes quickly so one can assume that the pitching moment is always satisfied.

Sail forces The expression for the drag, D, and lift L forces on the sail (denoted in Figure 2.5(b)
as FD and FL) are based on Newton’s impact theory, similarly to the drag forces of downwind sailing
in Equation 2.2.

L =
1

2
CLAρaV

2
A

D =
1

2
CDAρaV

2
A

(2.3)

With A as the sail area and ρa the density of the air. CL and CD encompass a multitude of correc-
tions, in Kerwin’s model, they are a function of βaw, trim, and the shape of the sail. The trim refers to the

2.1. What are the relevant physics of sailing? 10

influence of the sailing crew on the shape and angle of the sail, they can change this by sheeting in or
out for example. Exactly how the force coefficients depend on these variables is a widely researched
topic, where most reliable results are obtained by wind-tunnel experiments [18]. The lift and drag co-
efficients of an Optimist sail have been obtained this way in the study ’Design of a Foiling Optimist’ by
Andersson et al. [24]. Tests in a wind tunnel were performed with an Optimist sail at 1/4 scale, their
test set-up and the resulting coefficients are shown in Figure 2.8 and Figure 2.9 respectively.

Figure 2.8: The Optimist sail at 1/4 scale in the wind tunnel, from ’Design of a Foiling Optimist’ [24]

Figure 2.9: Lift and drag coefficients of the Optimist sail, from ’Design of a Foiling Optimist’ [24]

Looking at the force diagram shown in Figure 2.7, the drive force Fm and side force Fs can be
expressed as follows:

Fm = (FLcosβaw + FDsinβaw)cosϕsinλ+ (FLsinβaw − FDcosβaw)cosλ

Fs = (FLcosβaw + FDsinβaw)cosϕcosλ− (FLsinβaw − FDcosβaw)sinλ
(2.4)

2.1. What are the relevant physics of sailing? 11

With:

• λ = leeway angle
• ϕ = heeling angle

Hull (hydrodynamic) forces The total hydrodynamic force consists of the drag forceFD (or denoted
as resistance, R) and lift forces on the hull, rudder and centerboard, induced by the interaction of the
moving vessel through water. The drag force consists of several components:

• Viscous drag: friction of the water flowing over the surface of the hull and appendages.
• Residuary drag: due to the creation of surface waves.
• Heel drag: change in wetted surface and immersed hull shape as the ship heels.
• Induced drag: created when the hull, keel and rudder produce side force.
• Raw drag: due to the ships motion in a seaway.

Current hydrodynamic models use the results of model towing tank tests and CFD data in constant
research of these values comparing it with real boat performance. [19]

The lift forces are separated into three parts: the hull lift, the rudder lift, and the centerboard (or keel)
lift. The hull lift is largely ignored, since it is negligible at small leeway angles; the maximum leeway
angle of a typical sailboat is about 6deg [14]. The side forces produced by the rudder and centerboard
(shown as FL in Figure 2.5(a)) are perpendicular to their velocity, similarly to the lift of the sail. The
total sideforce produced by the rudder and keel, considering the heel angle ϕ, can given by:

S =
1

2
ρwV

2
S (CrAr + CkAk)cosϕ (2.5)

With Ar and Ak being the cross sectional areas of the rudder and keel and ρw the water density.
The lift coefficients, Cr for the rudder and Ck for the keel, are dependent on the respective shapes and
on the angles of attack.

Finally, the roll and yaw moment balances of a sailboat in equilibrium need to be satisfied. The
heeling moment has contributions from the sideways sailforce and the sideforces generated by the
rudder and keel. The lever arms are denoted with z0, zr and zk respectively. z0 is dependent on the
’centre of effort’ of the wind on the sail. With this, an expression for the total heeling moment can be
denoted as follows:

M1 =Ms +Mr +Mk = zo(Fm + Fs) +
1

2
ρwV

2
S (CrArzr + CkAkzk) (2.6)

The righting moment M2 is generated by the hydrostatic force on the hull and the weight of the
crew (Wc) - if the crew is on the windward side of the sailboat. The lever arm of the hull weight (Wh)
depends on the distance of the centre of gravity (CoG) of the hull and the metacenter of the sailboat
and is denoted as GZ. d is the distance from the CoG to the location of the crew. The expression for
the righting moment can be formulated as:

M2 =Mh +Mc = GZ ·Wh + d ·Wc (2.7)

Next, the yaw moment has 3 hydrodynamic contributions to the yaw moment: the total resistance R,
and the rudder and keel side forces S. R acts at the leeway angle λ. It acts on the centre of resistance,
the distance from the waterline is given as zy and the distance from the yaw axis is xy. The yawmoment
at an angle of heel ϕ is then:

M3 = R(zycosλsinϕ− xysinλcosϕ) (2.8)

The moment generated by the rudder and keel sideforces, with lever arms xr and xk, acts in the
opposite direction:

M4 =
1

2
ρwU

2(CrArxr + CkAkxk)cosϕcosλ (2.9)

The contribution of the sail force to the yaw moment is then given by:

2.1. What are the relevant physics of sailing? 12

M5 = (xsFs + z0rsinϕFm)cosλ (2.10)

With xs as the distance from the centre of effort to the yaw axis.
Finally, the VPP uses the solution algorithm with the following equilibrium equations:

R = Fm (2.11)

Fs = S (2.12)

M1 =M2 (2.13)

M3 +M5 =M4 (2.14)

The algorithm is an iterative procedure at each true wind speed and angle that estimates the sailing
conditions. The solution algorithm also seeks to find the highest speed on each point of sailing by
adjusting the sail trim parameters for optimum performance.

VPP’s are mainly optimized to predict achievable speeds and find the optimal points of sail for
certain directions. However, accurate simulation models of sailboats must also focus on modelling the
dynamic motion effects on the sailboat. Such models for sailing vessels are derived in several studies
[25]–[27]. The study by Masuyama et al. specifically concentrates on optimizing the model during
tacking maneuvers, recognizing the difficulty to simulate the highly dynamic behavior occurring during
tacks.

To gain insight in the fundamentals behind these models, the 4DOF Eulerian equations of motion
from the study by Keuning et al. are presented. The corresponding coordinate system is illustrated
in Figure 2.10. In these equations, X, Y , K, and N represent the forces and moments in their re-
spective directions. The derivation of these forces involves a series of assumptions and simplifications,
employing coefficients derived from empirical data. For instance, Nsail term in Keuning’s model is
approximated by wind tunnel test results, from which the lift and drag coefficients are obtained.

Figure 2.10: Coordinate system used in the mathematical model [25]

2.1. What are the relevant physics of sailing? 13

The Eulerian equations of motions are then written as follows:

Surge:
m(u̇− vψ̇) = XU +Xhull +Xrudder +Xsail (2.15)

Sway:
m(v̇ + uψ̇) = Yhull + Yrudder + Ysail (2.16)

Roll:
Ixxϕ̈ = Khull +Krudder +Ksail +Kstability (2.17)

Yaw:
Jzzψ̈ = Nhull +Nrudder +Nsail (2.18)

Where:
u = velocity along X axis
v = velocity along Y axis
ϕ = roll (heeling) angle
ψ = yaw angle
Ixx = (total) mass moment of inertia in roll
Jzz = (total) mass moment of inertia in yaw

For a full representation of all the coefficients, that are either expressed by existing formulations or
derivations from data and results that were obtained with the Delft Systematic Yacht Hull, the report by
Keuning et al. can be consulted.

Using such a model to simulate sailing, even though only 4DOF are considerd, yields fairly accurate
results as was shown by comparing the simulated data to full scale tests. In Figure 2.11, the trajectory
during a tackingmaneuver by a ship called ’Checkmate’ is shown, as well as the boat speed and heeling
angles.

(a) Tacking maneuver

(b) Boat speed during maneuver (c) Heel angle during maneuver

Figure 2.11: Simulated sailing tacking maneuver compared to full scale tests, from Keuning (2005) [25]

2.2. What are the relevant control features of sailing? 14

The study of dynamic models for sailboats specifically for control purposes, unlike those for motor-
propelled ships, is not extensively explored in research. Some exceptions include the models devel-
oped by Buehler et al. [28], Setiawan et al. [29], and Wolniakowski et al. [30]. An important consider-
ation in the development of these models for control purposes is ensuring computational efficiency to
facilitate fast feedback. To achieve this, both Setiawan et al. and Wolniakowski et al. simplified their
dynamic models to 4DOF, roughly following the structure of the model by Keuning et al. discussed.
Buehler et al. manages to successfully incorporate a 6DOF model, including wave effects, but reduc-
ing the number of input parameters, such as:

• Change of wind speed and angle over the height of the sail as well as the changing sail shapes
are neglected.

• The wave length is assumed to be large compared to the ship length
• Flow separation is estimated with a simple interpolation model.
• Small pitch angle.

With these assumptions, the simulation is able to simulate 120 seconds of sailing in 2 seconds
computation time on 2 GHz single CPU computation. The model was not validated on accuracy with
empirical data, it was only qualitatively examined for plausibility.

2.2. What are the relevant control features of sailing?
It is evident that modeling a sailing vessel using equations is a complex task. Fortunately, sailors do
not require an in-depth understanding of the mathematical sailing model to navigate from point A to
point B. Hence, when developing a control system for sailing robots, it is beneficial to understand the
decision-making process and actions undertaken by sailors.

2.2.1. What basic knowledge of control methods is necessary to describe sailing
as a control problem?

To make the connection between human sailors and autonomous control, a familiar distinction from
robotics control can be applied: differentiating between path planning and path following. In control
theory these are described as follows:

• Path planning refers to the process of determining a feasible and optimal path or trajectory from
a starting point to a destination. It involves considering various factors such as obstacles, con-
straints, and the environment to generate a path that avoids collisions and achieves the desired
objective. Path planning is also referred to as ’high-level control’.

• Path following, on the other hand, focuses on executing and tracking the path once it has been
planned. The path following controller guides the robot’s motion to accurately follow the planned
trajectory, adjusting its control inputs (such as velocity, or steering angles). This control process
often operates in real-time, using feedback from sensors to continuously update and adjust the
robot’s motion to stay on the desired path. Path following is also referred to as ’low-level control’.

Another aspect from control theory that is important to consider for sailing is control authority. Con-
trol authority refers to the degree of influence that control inputs have on the desired behavior or motion
of a system [31]. Sailing can be classified as a problem with very low control authority, also referred
to as underactuated, as the dynamics of the sailboat are influenced by many environmental factors, in-
cluding wind, water currents, waves, and other environmental conditions. Sailing even highly depends
on these factors for generating speed. A huge limitation that comes with this low control authority, is
the fact that a sailboat cannot reach an upwind target in a straight line, making path planning a complex
task.

2.2.2. Sailing as a control problem
In most sail races, the first part consists of rounding an upwind buoy. The path planning decisions that
need to be made by the skipper consist of determining a zigzag trajectory as shown in Figure 2.12.
The skipper needs to take multiple factors into account such as wind direction, current, wind speed,
and waves. Based on these, the sailor selects an optimal heading angle and strategically chooses

2.3. What is the state-of-the-art for control of autonomous sailing control (ASC)? 15

points along the route to perform a tacking maneuver: moving the bow of the sailboat through the
wind to change from a starboard to port tack or the other way around. The decision of when to tack is
crucial since the the sailboat needs to have sufficient speed since it must pass through the wind. The
sailboat needs to be able to maintain enough momentum to carry it through the wind without getting
stuck in irons. Gybing, another essential maneuver in sailing, involves moving the stern of the sailboat
through the wind. Unlike tacking, gybing is typically faster because the sail maintains its forward force
throughout the maneuver. The sail swiftly switches sides during the gybe, allowing for a quick transition.
The downside of gybing is that the swift transition of the sail can create a dangerous situation. Adding
to the difficulty of path planning in sailing is the fact that the factors influencing the chosen path are
dynamic and stochastic in nature. As a result, the sailor must consistently reassess and update the
chosen trajectories to accommodate the changes. This ongoing adjustment is essential to ensure the
sailboat remains on an optimal course and maximizes its progress towards the destination. [32]

Figure 2.12: Two example upwind trajectories that would take equal time in steady wind [14]

Path following in sailing is done by adjusting the rudder angle, the trim of the sail, and shifting weight.
The act of following an upwind zigzag trajectory as described is commonly referred to as beating in
sailing. Beating involves a series of maneuvers performed by the skipper to steer the sailboat effectively
to an upwind point. On the reach, which is the part of the upwind trajectory between tacks, the desired
heading angle can be maintained by utilizing the rudder. Additionally, the right trim of sail is necessary
to achieve the optimal sail shape, angle of attack, and sail tension, which collectively contribute to
propelling the sailboat forward. By managing these factors, the full potential of the sail’s lift force is
harnessed and the sailboat is propelled with efficiency and speed. When it is time for a tack maneuver,
the rudder is used to steer the boat through the wind while allowing the sail to transition from one side
(e.g., port) to the other side (e.g., starboard).

2.3. What is the state-of-the-art for control of autonomous sailing
control (ASC)?

As a result of the complicated physics and control strategies, replacing these tasks to be carried out
autonomously is not a trivial problem. In recent years, the research on ASC has been fairly popular
mainly stimulated by the launch of sailing robot competitions such as theMicrotransat Challenge and the
World Robotic Sailing Competition (WRSC) in 2008. In the Microtransat Challenge, the competitors are
tasked with designing a sailing vessel that is able to cross the Atlantic Ocean completely autonomous.
The WRSC is a smaller competition, used by many Microtransat challengers as a way to test out their
sailing robots. In theWRSC, the ’fleet race’ is one of the events. The sailing robots compete against the
other to complete a buoy course before their opponents. Competitors have developed many strategies
over the years of competition. In Figure 2.13, a diagram of a typical guidance system that is deployed
in the competing boats is shown.

2.3. What is the state-of-the-art for control of autonomous sailing control (ASC)? 16

Figure 2.13: Typical Guidance, Navigation, and Control (GNC) system used in autonomous sailboats [33]

In literature, researchers usually focus on specific aspects of this control system, mainly either on
the path planning or on the path following modules as discussed before.

The global path planning module on a sailing mission is responsible for finding the optimal trajec-
tory (or path) from the starting point to the final point.

The methods found in the literature all address the complexities of maritime navigation, including dy-
namic environmental factors and the need to balance efficiency, safety, and real-time decision-making
in the ever-changing sea conditions. Algorithms like A* [34], Dijkstra [35], and RRT* [36] are based
on graph theory and search algorithms, they work by exploring a network of possible paths to find the
most efficient route. In ’Minimum Time Sailing Boat Path Algorithm’ [37], Sidoti et al. propose a dy-
namic programming approach to also systematically explore paths, while saving and reusing subpaths
to efficiently determine the optimal route. There’s a trade-off between the accuracy and complexity of
the methods. Path planning methods like Dijkstra’s are simpler but might not always provide the most
efficient path in highly dynamic environments. More complex algorithms, such as RRT* or dynamic
programming-based methods, offer more precision but at the cost of higher computational demands.
Recently, there has been a trend towards machine learning techniques such as Q-Learning [38] and
Gaussian process-based Q-learning [39] as they offer adaptability and the ability to learn from experi-
ence, without necessarily increasing the computational load by a lot.

Local path planning, as distinguished from global path planning, focuses on adapting the deter-
mined path to immediate, dynamic changes in the environment, such as obstacles or shifts in wind
direction. This approach is particularly important for short-term sailing maneuvers like tacking and gy-
bing. Local path planning involves generating the optimal desired heading and speed in response to
these changes, which is then communicated to a control system. The main two methods found in litera-
ture that are used for local path planning are Line-of-Sight (LOS) [39]–[41] and Potential Field (PF) [40],
[42]–[44]. LOS is a technique where the path is adjusted to maintain a direct ’line of sight’ to the next
waypoint or target, navigating around obstacles while keeping this line as straight as possible. Potential
Field (PF), on the other hand, treats obstacles and targets as sources of repulsive and attractive forces,
respectively. The vessel then navigates through these fields, being ’pushed away’ from obstacles and
’pulled towards’ targets, creating a path that dynamically adjusts to environmental changes. Plumet
et al. [40] explored a combination of the two methods to optimize the local path planning by staying
focused on the target while avoiding no-go zones and obstacles using local potentials.

Finally, path following in autonomous sailing consists of the heading and speed control. While
the boat’s dynamics are complex, the rudder and sail angles are typically controlled independently for
simplicity. Utilizing the rudder angle for the heading control and the sail angle for speed control as
shown in Figure 2.14. The research on path following is the most widespread.

2.3. What is the state-of-the-art for control of autonomous sailing control (ASC)? 17

Figure 2.14: Overview of general path following system, with rudder angle δr and sail angle δs [33]

In terms of the speed control, a distinction can be made between offline, online, and AI-based
control methods as shown in Figure 2.15.

Figure 2.15: Overview of speed control methods found in sailing robots [33]

In practice, offline control methods continue to be favored for their straightforward implementation
and proven efficacy. Lookup Tables (LT) are a simple yet effective strategy used in autonomous sailboat
control for adjusting the sail angle according to the current apparent wind. These tables are created
from either calculated data, experimental results, or polar diagrams. Despite their utility, LTs have the
drawback of having to obtain this data beforehand and not being able to optimize the sail setting exactly
based on the current conditions. To address this, interpolation methods are often applied in real-time to
manage situations where the current state is not covered in the table. Several projects have used a LT
for their sail control include the FASt project [45], the Avalon project [34], and the Southampton Sailing
Team (SOTON) [46]. With the latter one winning the WRSC two times in a row in 2016 and 2017.

In terms of the heading control, various approaches have been developed and utilized as well. For
instance, [47] presents a classical PI heading controller based on a second-order linear model, without
considering sail control. To adapt to environmental changes, extensions to classic PID controllers have

2.3. What is the state-of-the-art for control of autonomous sailing control (ASC)? 18

been explored, such as gain scheduling based on the current situation [16]. More advanced solutions
employ nonlinear techniques, with fuzzy controllers [48], [49]. Fuzzy control is popular due to its ability
to incorporate qualitative knowledge from experienced sailors without the need for a formal mathemati-
cal representation. These model-free solutions demonstrate robust tracking of desired routes, however,
fuzzy control for sailing requires numerous rules so the setup process can be quite demanding. Fur-
thermore, Briere [50] concluded that fuzzy controllers lack the full range of desired adaptive capabilities
necessary for sailing.

The need for adaptive capabilities is further emphasized by the achievements of SOTON, which
were mentioned before. Their performance could be attributed to the implementation of an adaptive
probabilistic tack maneuver decision method on their sailing robot Black Python [46]. This approach
enables the Black Python to adjust its tacking strategies based on previous successes. There are 4
possible tacking strategies, so the sailing robot first needs to explore and test how much time it takes
to complete each tack. Based on the obtained data, it determines the most effective tacking strategy
and assigns it a higher probability. The success of SOTON in the competition serves as a testament to
the significance of adaptive capabilities in achieving optimal performance in sailing robotics.

While the methods outlined have proven its robustness and effectiveness, it is recognized that for an
optimal control system the different aspects in the control system have to be working closely together.
For example, only considering the sail angle for speed control works sufficiently, however, the rudder
usage and the heel angle of the boat can contribute to speed control as well. A study by He et al. has
considered controlling the heeling angle of the boat by including a weight to mimic the a sailor on the
boat [51]. The same goes for using the sail angle and heeling angle for heading control, instead of just
the rudder angle. For this, hybrid methods have been explored. For example, Sun et al. [52] studied
the effectiveness of a hybrid control scheme, in which pseudo-spectral (PS) optimal control method
is used in heading control, and a model-free framework guided by Extreme Seeking Control (ESC) is
used for the sail control. The focus was to optimize the energy consumption of an autonomous sailboat,
resulting in notable energy savings of 7% on average.

The achievements of SOTON’s Black Python and advancements in hybrid control schemes in au-
tonomous sailboats underscore the potential of Reinforcement Learning (RL) in this area. RL’s ability
to adapt and optimize strategies in response to the dynamic and unpredictable nature of sailing con-
ditions is a key factor in its effectiveness. This adaptability, coupled with RL’s capacity for optimizing
performance, makes it particularly suited for enhancing autonomous sailing, showcasing its broader ap-
plicability in dynamic and challenging environments. The capabilities and previous conducted research
in RL for control will be further discussed in the following chapter,chapter 3.

3
RL for autononomous sailing control

From the previous section, section 2.3, it can be seen that both the high and low-level control benefit
from having adaptive capabilities to effectively navigate the dynamic environment. RL offers a poten-
tially unique and essential contribution. RL methods utilize powerful algorithms to search for optimal
controllers of systems characterized by unknown or highly uncertain, nonlinear, and possibly stochastic
dynamics.

This chapter will introduce the reader to RL and highlight its key advantages and challenges in
the context of complex control systems. This knowledge will help to understand the choices made in
setting up the RL framework and methods used to develop the RL control policy. The basic concepts
and algorithms in RL are mainly based on the works of Sutton and Barto [6], who are known to be early
pioneers in the field of RL.

3.1. What is the learning process in RL?
RL is a framework for solving optimal control problems that are typically formalized as aMarkov decision
process (MDP) [53]. AnMDP is used as amathematical structure to express decision making. In MDPs,
feedback from the system is received at each time step in the form of a state signal, and an action is
taken in response. As a result, the decision rule is a state feedback control law, called a policy. The
action that is taken will change the state of the system, after which the transition will be evaluated by a
reward functionR (also negative cost ρ in control). In RL, the notation for a state and action at time-step
t are st and at respectively, while in robotics or control these are denoted as xt and ut. In this work,
the RL notation will be used.

For a problem to be defined as an MDP, it has to satisfy the Markov Property. This says that each
state is dependent only on its preceding state, the selected action taken and the reward received after
the action was executed. So it assumes that the state, denoted with s, holds all relevant information.
Transitions are generally stochastic, which means that when an action at is taken in a state s, the state
will change randomly to st+1 depending on the environment, or dynamics, of the system. As a result of
the transition, a scalar reward is received according to the reward function to evaluate the immediate
effect of action at. This process is shown below in Figure 3.1. This cycle will continue until the terminal
state has been reached, denoted as sT . The terminal state could either be reached when an agent has
completed its task or after a finite number of steps have been completed.

19

3.1. What is the learning process in RL? 20

Figure 3.1: The agent-environment interaction in a Markov decision process [6]

The objective of RL is to maximize the (expected) cumulative reward by training an agent (the
controller). The agent can explore the environment in the beginning stages to learn the probabilities
associated with each action that will lead to the highest reward in the set of states. These probabilities
are mapped in the agent’s policy πt(a|s). The probability of next state st+1 and reward r given any state
st and action at is expressed as:

p(s′, r|s, a) .= Pr{st+1 = s′, rt = r|st = s, at = a} (3.1)

It follows that the expected reward for the action a performed in state s is denoted as:

r(s, a)
.
= E[rt|st = s, at = a] =

∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (3.2)

With R being the set of all possible rewards and S the set of all states. The probability of reaching
s′ given s and a is given by:

p(s′|s, a) .= Pr{st+1 = s′|st = s, at = a} =
∑
r∈R

p(s′, r|s, a) (3.3)

Finally, the expected reward of reaching s′ when performing a in s is defined as:

r(s, a, s′)
.
= E[rt|st = s, at = a, st+1 = s′] =

∑
r∈R r · p(s′, r|s, a)

p(s′|s, a)
(3.4)

The objective of RL is reached when the rewards in each state are maximized; thus maximizing
the sum of rewards. This sum of rewards is called the return Gt. To ensure that the agent is focused
more on instant rewards than future ones, it is common to use a discounted return. This reduces each
reward by a discount factor γ (0 ≤ γ ≤ 1). Gt is then expressed as:

Gt
.
= rt + γrt+1 + γ2rt+2 + ...+ γT rT =

T∑
k=0

γkrt+k (3.5)

The value of a decision policy π is the expected cumulative reward under stochastic transitions from
a state s when following π. The value of a policy vπ(s) is estimated by the state value function vπ, which
is defined as:

vπ(s)
.
= Eπ[Gt|st = s] = Eπ

[∞∑
k=0

γkrt+k|st = s

]
(3.6)

RL often uses a state-action value function qπ(s, a) (or Q-function) instead of using value functions
directly. This is the value of the agent performing an action a in s and is defined as:

qπ(s, a)
.
= Eπ [Gt|st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k|st = s, at = a

]
= Eπ [rt + γvπ(s

′)] (3.7)

3.1. What is the learning process in RL? 21

The reason that Q-functions are useful is that when the optimal Q-function q∗ is available, the optimal
policy can be computed by selecting the action with the largest optimal Q-value at each state [54]. On
the other hand, computing π∗ from V∗ is difficult since it involves a model. Initially, an RL problem is
considered model-free, meaning it doesn’t rely on an explicit model of the environment. However, in
recent years, there has been an increasing interest in model-based RL methods. These approaches
utilize data to learn models of the environment and utilize them partially in the learning process, rather
than relying solely on a pre-existing model. This allows them to incorporate the benefits of both model-
based and model-free approaches. Model-based methods excel in situations where the dynamics of
the environment are well understood and can be accurately modeled. However, model-based RL may
struggle when the environment is complex and its dynamics are difficult to capture accurately [55].
Whether to use model-free or model-based methods for control problems serves as a foundation for
an interesting discussion, which will be briefly addressed in subsection 3.1.4.

3.1.1. Bellman equations
The Bellman equations play a fundamental role in the field of dynamic programming (DP) and RL.
It provides a recursive relationship between the value function of a state and the value functions of
the successive states [56]. The equation expresses the value function of a state as the expected
immediate reward plus the discounted value of the next state which gives an estimation of the value
function without explicitly modeling the dynamics of the environment. This allows for iterative methods
to estimate their values and by repeatedly applying the Bellman equation, the value function can be
updated with new information obtained through interactions with the environment. When reapplying
this update rule infinitely many times, vπ will converge. This is called iterative policy evaluation. The
Bellman equation for the state-value function can be written as follows:

vπ(s) = Eπ

[
r + γ

∑
s′∈S

p(s′|s, π(s))vπ(s′)

]
(3.8)

Similarly, the Bellman equation for the state-action value function can be expressed as:

qπ(s, a) = Eπ

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)qπ(s′, a′)

]
(3.9)

The Bellman optimality equations follow from the Bellman equations to define the optimal value
functions. The optimal state-value function v∗(s) is defined as:

v∗(s) = max
a∈A
{r(s, a) + γ

∑
s′∈S

p(s′|s, a)v(s′)} (3.10)

This equation states that the value of a state under the optimal policy is equal to the maximum
expected return that can be achieved by taking the the best action in that state and subsequently
following the optimal policy. Similarly, the optimal Q-function q∗(s, a) is expressed as:

q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)max
a′∈A

q(s′, a′) (3.11)

The optimal value functions provide the foundation for determining the optimal policy. The optimal
policy π∗ is a policy that, for each state, selects the action with the highest value according to the optimal
state-action value function:

π∗(a|s) ∈ argmax
a

q∗(s, a) (3.12)

Solving the Bellman optimality equations allows finding the optimal policy and value functions which
will enable the agent to make the best decisions in the given environment. Various algorithms leverage
these equations to learn the optimal policy and value functions through iterative updates, this is called
value iteration or Q-iteration. Q-iteration is almost the same classical DP, but it is applied forward in
iterations instead of backward in time [54].

Policy iteration alternates between policy evaluation and policy improvement to find an optimal
policy by maximizing the expected cumulative rewards. With policy evaluation, the current policy can

3.1. What is the learning process in RL? 22

be evaluated but it does not give whether the policy is optimal for the state s. This is what policy
improvement does. It compares the value of the current policy π and the q-function of the a potential
better policy π′ until the found policy is already optimal.

3.1.2. Temporal Difference RL
While DP is effective for policy optimization, it relies on knowing the environment’s dynamics. For
RL, temporal difference (TD) learning overcomes this limitation. These algorithms use the difference
between the estimated value of a state and the value of the next state to update the current state’s
value estimate. This difference is referred to as the temporal difference error. By reducing this error
step-by-step over time, TD algorithms converge to more accurate value estimates.

One of the most well-known tabular TD algorithms is TD(0), which updates the value estimate of
a state based on the immediate reward and the estimated value of the next state. The update is
performed using the equation:

V (st)← V (st) + α (rt+1 + γV (st+1)− V (st)) (3.13)

Where V (st) and V (st+1) are, respectively, the value estimates of the current and next state, α is
the learning rate to determine the step-size of the update and rt+1 is the reward received from going
from st to st+1

Another example of a highly popular TD learning algorithm is Q-learning [57]. It learns the optimal
Q-function q∗ by iteratively updating Q-values based on temporal differences. It is a tabular method,
whichmeans that it works with a table of Q-values where each entry represents the expected cumulative
reward for taking a specific action in a given state. It updates the Q-values with an iterative rule based
on the observed rewards and state transitions with the Q-learning update equation as follows:

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

)
(3.14)

Both Q-learning and TD(0) are only suitable for discrete problems with small state and action spaces.
They serve as the foundation for manymodern RL algorithms that have been developed to handle larger
state and action spaces, including continuous ones. In the following sections, some of these advanced
algorithms will be explored to extend beyond the limitations of discrete problems and offer solutions for
more complex scenarios such as autonomous sailing control.

3.1.3. What is the learning process in DRL opposed to RL?
As mentioned, a significant drawback of the early algorithms is their limited applicability for problems
characterized by large or continuous state and action spaces, as they are tabular methods. This causes
them to suffer from the curse of dimensionality, which was first observed in DP [56]. This refers to
the phenomenon where the complexity and sparsity of data increase exponentially as the number of
dimensions and features grows. In TD methods, this is a consequence of the tabular representation
of the Q-functions and policies to map states to optimal actions. The curse of dimensionality leads to
big challenges such as computational and sample efficiency, as these problems require exponentially
larger amounts of data to achieve reliable and meaningful results. Function approximation techniques
become essential when dealing with larger or more complex problems like most control problems, as
they deal with continuous state and/or actions spaces.

With function approximation, the agent is able to generalize from observed data to estimate values
or policies for states and/or actions that have not been visited yet. Depending on the type of algorithm,
the policy and/or the q-function is approximated so the problem is reduced to learning a parameterized
vector or function.

Some examples of widely used function approximation techniques are policy gradient and actor-
critic methods. The main idea behind policy gradient learning is the use of probabilistic policies and
learn them without needing to estimate the value functions. This can be accomplished with the REIN-
FORCE algorithm [58]. REINFORCE calculates the gradient of the expected return with respect to the
parameters of the policy and performs gradient descent to update the policy. The policy then gradu-
ally improves its performance by iteratively adjusting its parameters in the direction of higher expected
returns. Policy gradient learning can suffer from high variance of the gradient estimates which causes
very slow learning. Actor-criticmethods aim to overcome this issue by combining value functions with

3.2. What existing RL methods are most suitable to consider for ASC? 23

an explicit representation of the policy. The policy (or the ”actor”) learns by using feedback from the
value functions (the ”critic”).

However, the combination of function approximation techniques with neural networks has revolu-
tionized the field of RL and continuous control, opening doors to solving complex real-world problems.
Neural networks are able to approximate complex, nonlinear functions and with that represent complex
patterns and dependencies in high-dimensional state and/or action spaces. When neural networks are
implemented into RL problems, it is referred to as deep reinforcement learning (DRL). The framework
for DRL is shown in Figure 3.2.

Figure 3.2: The agent-environment interaction in a DRL framework. θ represents the parameters that define the learned policy.
[59]

As a result of the successes, DRL gained popularity, and the terms ”Deep Reinforcement Learning”
and ”Reinforcement Learning” have started to be used interchangeably. RL now often implies the usage
of deep neural networks, given their effectiveness and widespread adoption in the field. However, not
all RL algorithms necessarily utilize deep neural networks, as traditional function approximators are still
relevant and applicable in certain scenarios.

3.1.4. Model-free vs. model-based RL
In RL, a distinction is made between model-free and model-based RL methods. Until recently, model-
based algorithms were generally outperformed by model-free methods in terms of performance. How-
ever, in recent years, significant advancements have been made in model-based RL, leading to several
notable successes where model-based approaches have surpassed model-free algorithms in terms of
sample efficiency, as well as robustness and stability [60]. While model-based reinforcement learn-
ing (MBRL) methods offer obvious advantages, they also face challenges. The performance of MBRL
heavily depends on the quality and accuracy of the learned model. If the model is biased or inaccurate,
it can lead to suboptimal policies. Also, the learned model may overfit to the training data which can
result in poor generalization and poor performance in unseen situations. These challenges makes the
complexity of implementingMBRL very high, which has put themain focus of RL research onmodel-free
methods since this is more straightforward to new problems. This can explain why promising results in
MBRL have only been achieved recently. Opinions on the most effective method for the future of RL
are highly diverse. From a control perspective, it is believed that a combination of these approaches
will emerge as the most effective solutions for future challenges [61]. In the case of ASC, the added
complexity in MBRL is a reason to stick with model-free RL. There has not been any research on ASC
with RL methods in the real-world. To showcase the capabilities of an RL approach to problems like
this, model-free RL is a sensible starting point.

3.2. What existing RL methods are most suitable to consider for
ASC?

To determine the most suitable existing RL methods for ASC, it is essential to consider the unique char-
acteristics of sailing as a control problem, as covered in chapter 2. In brief, sailing involves operating

3.2. What existing RL methods are most suitable to consider for ASC? 24

a sailboat in a stochastic and dynamic environment with limited control authority. Additionally, real-life
control problems depend on hardware capabilities, such as computation power, actuator outputs, and
sensor information, which introduce slight state and action delays (latency) and noisy signals. All these
aspects must be taken into account when setting up the method and selecting the appropriate RL algo-
rithm. Fortunately, there has been overwhelming research on applying RL for control in recent years,
offering general findings that can guide the process. It will be beneficial to examine these general
findings and delve deeper into studies relevant to problems similar to sailing.

Researchers in RL for control tend to take different approaches. It is preferred to perform the train-
ing straight in the real environment as this gives the most robust and stable results [55], [62]. However,
training in the real world is not always feasible. For example, experiments that require human supervi-
sion and are not easily repeatable, training in real life would take way too much time, and thus money.
Training in a real environment brings along safety concerns as well. Therefore, an important topic in
RL for control methods has been to train the agent in a simulated environment and transferring it to
the real world, referred to as sim-to-real [11]. This is a crucial aspect of RL research as it is pivotal for
addressing real-world problems effectively, it will be elaborated on in chapter 4.

Another challenge in applying RL to control problems - whether the training is done in the real
environment right from the beginning or in a simulation first - is to make a careful decision on what
RL methods to use and to implement them in the right way. There are over a 100 different RL al-
gorithms due to RL being such an active area of research. Researchers constantly strive to develop
more efficient, stable, and sample-efficient RL algorithms. This leads to the evolution and refinement
of existing algorithms, as well as new algorithms that address specific limitations or improve upon pre-
vious approaches. Variants on RL algorithms may incorporate previously discussed techniques such
as experience replay or eligibility traces among many others. These modifications aim to enhance per-
formance, stability, convergence, and/or sample efficiency in specific contexts. The existence of this
vast amount of RL algorithms makes that it is imperative to select and tailor RL algorithms to match the
requirements of the application that it is going to be used for.

For ASC, there are different ways to approach the problem to determine the specifications. Impor-
tant aspects to consider are the state and action representation, the choice of RL algorithm and the
reward design which will be discussed in the following sections.

3.2.1. State and action representation
For ASC, there are different ways to approach the problem to determine the specifications. One crucial
aspect is the state representation that is chosen for the control problem and the available actions for
the agent. The state representation refers to how the system perceives and encodes the relevant
information about the environment and the vessel itself [63]. By representing the state of the sailboat
with a finite number of variables, an approximation of reality is made since in reality this would be infinite.
Therefore, it is important to capture enough information for the agent to perform effective path planning
and control without making the representation too large and slowing down training.

To determine a fitting state representation, one can leverage past research and its findings. How-
ever, the research exploring the application of RL in ASC is limited and solely focuses on the path plan-
ning aspect which lowers the number of necessary states. Da Silva Junior [38] proposed Q-learning to
generate paths based on the wind direction, while also dealing with potential obstacles. To use the Q-
learning algorithm, the state and action spaces need to be discrete, so the the environment is mapped
in blocks as an NxN matrix. Suda [64] did use a continuous state space consisting of the three state
variables of the sailboat, x, y, and θ, and the two state variables of the stochastic process of the wind,
ω and h, creating a five-dimensional continuous state space. The action space was discretized by re-
stricting the actions to only choose the tack to be on (starboard or port side) and assuming a default
point of sail for that tack. The objective of the research was aim to optimize the VMG and compare
the performance against a state-of-the-art classic control method, model predictive control (MPC). The
results obtained are promising, as the DRL was able to beat the MPC almost 90% of the time.

In contrast, in this case the RL agent should consider both the path planning and following aspects
of the Optimist, which means that the action space should consist of the low-level controllers and the
state should include information about the state of those controllers. The low-level controllers are the
standard ones, so the rudder and the sheet of the boat. Another action that is interesting to include is
a weight that can mimic the sailor. This type of control was tested by He et al. and showed that only
shifting a weight is enough to control the heading of a sailboat in light conditions [51]. This is interesting

3.2. What existing RL methods are most suitable to consider for ASC? 25

Table 3.1: Proposed state and action space for ASC.

Action space (A) State space (S) Unit
Move rudder Rudder angle (δr) rad
Let sheet out/in Sheet length (l) m
Move weight Weight position (xw) m

Boom angle (δs) rad
Distance to target (xt, yt) m
Velocity (u, v) m/s
Yaw angle (ψ) rad
Yaw rate (r) rad/s
Roll angle (ϕ) rad
Wind heading (αtw) rad
Wind speed (vtw) m/s

to include in the action space since it represents sailing more accurately. The state space will then have
to include the position and velocities of the rudder, sail and the weight. Finally, the state space should
also include information about the target of the agent, this can be included with the position information
as ’Distance to target’ in x and y direction. An overview of the proposed state and action space is shown
in Table 3.1 below.

In this way, the state and action spaces are similar to the inputs and outputs used for state-of-the-art
sailing robots. However a big difference between classic control methods and using RL for control is
the way the states are utilized. As discussed in section 2.3, in many cases the speed control is based
on the sail angle that is received and this is adjusted to control the speed. Same thing goes for the
heading control and the rudder angle. The RL agent utilizes a neural network to learn this information
from scratch, which means that it has to figure out during training what outputs can be used to change
the desired states. The advantage of this is that it there is potential for the agent to figure out how to
use a combination of controls to change states in a more effective manner. This represents real sailing
more accurately as steering for example is not done solely by moving the rudder, but can also involve
moving the weight and sheeting the sail in/out [14].

These actions and state spaces both consist of continuous variables as opposed to previous studies
on RL for sailing upwind. Since the state and action spaces differ from previous studies done for RL
control in sailing upwind such as Suda and Da Silva Junior, it would be unwise to blindly adopt the RL
algorithms used in those studies. Instead, it is essential to consider the unique characteristics of the
current problem and carefully select RL algorithms for the task.

3.2.2. Choice, implementation and evaluation of an RL algorithm
The main aspects of ASC that influence the choice of RL algorithm, besides the continuous state and
action spaces, are the stochastic and dynamic environment the model operates in, the low control
authority and the latency and noise present due to the use of sensors in the real life problem. The
need for sample efficiency is high when training in a real environment or a high fidelity simulation is
desired, due to the time-consuming nature of repeating episodes. Additionally, for the development of
a stable and robust control system, generalization capabilities are essential to effectively handle the
uncertainties present in the environment. Lastly, due to the vast amount of RL algorithms that are
available all over the internet, it is important to make sure that the RL algorithm to be applied to a
complex problem is robust and reliable, and has been extensively tested on a multitude of problems.

The Stable Baselines library [65] is a collection of popular RL algorithms implemented in Python.
It provides a set of robust and reliable implementations of state-of-the-art RL algorithms. These algo-
rithms are widely used in the research community and industry for training and evaluating RL agents in
various environments so it serves as a good basis to choose from. RL Zoo [66], created by the same
developers, provides sets of tuned hyperparameters for numerous continuous control problems, facili-
tating quick and efficient agent deployment and benchmarking. In addition to these tools, RL Glue [6]
is another useful framework in this context. It acts as a standardized interface between RL algorithms
and environments, ensuring compatibility and ease of integration. RL Glue facilitates seamless ex-

3.2. What existing RL methods are most suitable to consider for ASC? 26

Table 3.2: RL agents used in different continuous control problems

Author & year of publication Title RL agent Reason given Tested in
real-world setting?

Tan et al.
(2018) [10]

Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots PPO Stable on-policy method and can be

easily parallelized Yes

Hwangbo et al.
(2019) [67]

Learning agile and dynamic motor
skills for legged robots TRPO Has already shown to learn locomotion

policies in simulation in [68] Yes

Havenstrøm et al.
(2021) [69]

Deep Reinforcement Learning Controller for
3D Path Following and Collision Avoidance
by Autonomous Underwater Vehicles

PPO - No

Reda et al.
(2022) [70]

Learning to Brachiate via
Simplified Model Imitation PPO

For its effective utilization of hardware
resources in parallelized settings which
results in reduced wall-clock learning time

No

Wang et al.
(2022) [71]

Sim-to-Real: Mapless Navigation for
USVs Using Deep Reinforcement Learning PPO - Yes

perimentation with different algorithms and environments without the need for extensive modifications.
This standardization is crucial for fair and consistent benchmarking of RL algorithms, making it a good
setup for both experimental and practical applications in RL.

The RL glue framework consists of the following components:

• The environment receives the observation from the environment and extracts the relevant infor-
mation to turn into a state to output to the agent, while also providing the reward for that state.

• The agent implements the RL algorithm, making decisions based on the information it receives
and learning from the outcomes of those decisions.

• the experiment controls the length of the training and the starting and stopping of episodes when
terminal conditions (specified in the reward function) are reached.

Even though these interfaces facilitate the setup of the RL problem, it is crucial that a careful ap-
proach is taken when setting up the RL framework with RL glue and implementing an algorithm from
Stable Baselines to a new problem such as this one. This includes decisions like selecting an appro-
priate RL algorithm for example. Looking at the choice of algorithm made by other researchers that
utilize RL for continuous control and underactuated systems might give a good idea. Especially ones
that were trained and tested in real life as well. A summary is shown in Table 3.2.

As can be seen, PPO is the most used agent. TRPO is similar to PPO as TRPO was the predeces-
sor for the PPO algorithm. PPO was designed to be simpler to implement and more computationally
efficient than TRPO. Both algorithms were designed mainly to address the problem of stability in policy
optimization. Traditional policy gradient methods such as REINFORCE can suffer from high variance
and poor convergence, especially in complex environments. TRPO and PPO use techniques that limit
the deviation between current and the updated policies, preventing large policy updates that might
cause instability. So the choice of PPO seems to be a sensible one, also considering that the resulting
policies in the shown studies seem to perform well. For example, Tan et al. states: ”While our learned
gaits are as fast as the ones carefully tuned by experts, they consume significantly less power (35%
and 23% reduction for galloping and trotting respectively).” One of the results from the quantitative eval-
uation performed by Hwangbo et al. showed that the learned policy was the most accurate in following
velocity commands, shown in Figure 3.3.

However, the choice for using PPO is not never very well substantiated and there is no comparison
to other algorithms in these papers. The only reasons (if any) that are mentioned are shown in the
Table 3.2. While PPO seems to be promising, it is worth looking into why few researchers seem to
consider other RL algorithms that are also designed for continuous control problems such as SAC for
example. One reason for this could be that TRPO was introduced in 2105 and PPO in 2017, being
early algorithms able to deal with continuous action and state spaces, thus being the first choice. Other
reasons have been looked into by some researchers who have attempted to compare several agents
in continuous control problems (in simulation). The findings are summarized in Table 3.3 below.

3.2. What existing RL methods are most suitable to consider for ASC? 27

Figure 3.3: Comparison of the learned controller against the best existing controller, in terms of given forward velocity
commands of 0.25, 0.5, 0.75, and 1.0 m/s.[67]

Table 3.3: Previous research on benchmarking RL algorithms for continuous control problems. *MuJoCo is a fast physics
engine that has several environments that includes models like bipeds, quadrupeds and robot arms [72]

Task RL agents considered Best performing agent

Duan et al. (2016) [73] several MuJoCo*
tasks

TRPO, DDPG, REINFORCE,
REPS, TNPG, CEM,
CMA-ES, and RWR

TNPG/TRPO

Henderson et al. (2019) [74] several MuJoCo*
tasks

TRPO, DDPG, PPO,
and ACKTR

-

Larsen et al. (2021) [75] USV path following &
collision avoidance

PPO, DDPG, SAC,
and TD3 PPO

While these studies are useful and highlight some differences in performances of agents on different
problems, the main conclusion from Henderson et al. is most notable: there is no clear winner among
all benchmark environments. The reason for this is that the performance of an agent is highly sensitive
of changes to its hyperparameters, reward scale, batch size, and network structure. This is shown by
testing different RL agents (PPO, TRPO, and DDPG) in benchmarked environments and only making
simple changes to the policy or value network activations. The results show that they significantly affect
performance, see Figure 3.4.

Figure 3.4: Significance of Policy Network Structure and Activation Functions PPO (top), TRPO (bottom left) and DDPG
(bottom right). [74]

3.2. What existing RL methods are most suitable to consider for ASC? 28

Consequently, comparing different algorithms is not straightforward. The recommendation given by
Henderson et al. is that first of all, attention should be given to reducing this sensitivity and making RL
algorithms less susceptible to changes. While RL algorithms are still sensitive, reproducability should
be of main concern. This means reporting all hyperparameters, implementation details, experimental
setup, and evaluation methods for novel work. Regarding evaluation methods, it was shown by Hender-
son et al. that stochastic environments makes for a high variance in evaluation results, emphasizing
the need for more samples to obtain meaningful conclusions. Particularly in complex environments
such as the HalfCheetah in MuJoCo [72]. This was tested by performing 10 experimental trials, for the
same hyperparameter configuration, only varying the random seed among 10 trials. The results were
split in two sets of 5 which were averaged together. The results are shown in Figure 3.5. It can be seen
that the variance between runs is enough to create statistically different results.

Figure 3.5: TRPO on HalfCheetah-v1 using the same hyperparameter configurations averaged over two sets of 5 different
random seeds each. The average 2-sample t-test across entire training distribution resulted in t = −9.0916, p = 0.0016. [74]

According to Henderson et al. it is not possible to recommend a specific number of trials, as it is
highly dependent on the problem that is being solved. Instead, a bootstrap power analysis can provide
insight into the number of trial runs necessary for statistical significance.

3.2.3. Reward design
An additional finding mentioned in several studies [67], [74], [75] that needs to be considered concerns
reward design in the context of this research. The most commonly employed method is manual reward
shaping [76], but a major disadvantage is that human bias is being introduced. Sparse rewards that only
present the agent with a reward at each episode’s termination induce the least amount of bias. However,
this sparsity can lead to slow or even non-converging training, particularly in complex environments with
demanding exploration requirements.

In contrast, dense rewards provide the agent a reward at each time step in the environment, improv-
ing the learning rate. To implement a dense reward function, the designer must have sufficient domain
knowledge and/or needs perform extensive testing to shape relevant information in the environment
into rewards. [75]

In practice, striking the right balance between dense and sparse rewards depends on the specific
problem and the capabilities of the agent. Techniques to overcome the disadvantages of reward sparsity
have been developed such as imitation learning, where the agent can learn from an expert policy.
Another technique employed by researchers is curriculum learning, where the tasks of the agent are
increased in difficulty to increase the probability of task completion. These techniques can also be used
to improve the generalization capabilities of the agent which is helpful for sim-to-real transfer. They will
be discussed in more detail in chapter 4.

In the case of ASC, inspiration can be gained from Suda et al., as the goal of reaching an upwind
target is the same. The reward function that was used is defined follows:

3.2. What existing RL methods are most suitable to consider for ASC? 29

For every control step during which the boat has not reached its goal state yet, it is given
a reward of −1 units, with the meaning of time cost. The goal is reached when the boat
crosses the line from the windward mark directly in windward direction. If the boat crosses
the finish line, the episode terminates. If the boat cannot reach the goal within K time steps,
for some sufficiently high value of K, the episode terminates and the cumulative reward is
set to −K. Thus, essentially, we are treating this problem as episodic RL, and the negative
cumulative reward of an episode is equal to the time it would take the boat to reach the goal
line. [64]

This reward function is quite sparse, depending on exploration to reach the goal since the agent
is not encouraged to make progress towards the goal in the form of rewards. That is feasible in the
case of Suda et al. since the action and observation space are different as described earlier. In our
case, the action space is continuous, making it much harder for the agent to reach the target by chance.
Therefore, to encourage the agent to make progress towards the target, intermediate rewards will most
likely be necessary. Intermediate rewards should not be too large though, as it has been shown that
this encourages agents to keep the episode alive to keep accumulating this intermediate reward [12].

Furthermore, safety is of high importance since the control policy should be transferable to the real
world. So to keep the boat from crashing into the sides of the basin and to prevent capsizing, termination
states should be determined and sufficient penalties should be given when these are reached. Thus,
termination should happen when the boat gets too close to the sides of the environment, when a certain
roll angle is reached, and in this case, gybing should be penalized as well. While gybing is a common
sailingmaneuver, it can be dangerous if not executed properly. During a gybe, the boom swiftly changes
sides since the wind is coming from behind so the sail is always catching wind. The sudden and large
change of boom angle can put excessive stress on the sails and other equipment while also forming a
risk of capsizing. [14]

4
Sim-to-real transfer for control

applications

One of the primary challenges of RL for control is the difficulty to safely and autonomously gather large
volumes of data. To overcome this challenge, simulations are the preferred platform for data collection.
Simulations are able to run faster than real-time and multiple runs can be initiated simultaneously,
allowing for efficient data collection without the need for constant human supervision. This makes
training in the simulation environment faster, more efficient and thus less expensive than on physical
robots [55]. Despite convincing results produced by RL research, especially in simulated environments,
applying these findings to real-world robot applications has proven to be a huge challenge. This difficulty
mainly stems from the modelling errors inherent in simulations, commonly referred to in RL research
as the reality gap [11], [12].

In subsection 2.1.4, the types of models used to simulate sailing are described. Each of these sim-
ulations make certain assumptions and simplifications, which could contribute to the modelling errors.
Furthermore, in control systems, the determination of states and the execution of actions is another
challenge that is made significantly more difficult in real life compared to simulation. In the real world,
the accuracy of determining states is dependent on the quality of the sensors that are used. Further-
more, these sensors will introduce noise to the state representation. As for action execution, it is carried
out by actuators which in combination with the sensor suite and layers of software introduce latency
into the process due to response times.

To address the challenges of sim-to-real transfer, a part of RL researchers has focused on bridging
this reality gap. The research on RL for autonomous sailing has not considered this, as the results
were exclusively produced using the simulation model [38], [64].

4.1. What methods have been used in similar applications to bridge
the reality gap?

In the field of sim-to-real RL for continuous control in complex and dynamic environments, several
attempts have been made to bridge the reality gap. One approach is to improve the fidelity of the
simulation environment to minimize mismatches between real and simulated environments. This can
be done in an analytical or data-driven way, with the latter also known as system identification [7], [72].
However, improving the simulation can be cumbersome, and usually means that the computational
efficiency is lowered which is not desirable in RL. Another approach is to accept the imperfections in
the simulation and instead aim to make the learned policy robust to variations in system properties.
Over recent years, several techniques have been developed and tested to achieve this. Broadly, the
methods can be categorized into domain randomization (DR), several types of transfer learning such
as imitation learning (IL), curriculum learning (CL) or domain adaptation (DA). Another one is Meta
RL (or lifelong learning), which is mentioned as ’the final goal’ of several RL researchers. These are
algorithms that can ’learn to learn’, which could theoretically improve the sim-to-real transfer as well.
[11]

30

4.1. What methods have been used in similar applications to bridge the reality gap? 31

While lifelong learning algorithms are an exciting concept, this research will focus on slightly more
established techniques, which have already been tested in real-world scenarios. Furthermore, in the
problem with the Optimist at hand, optimizing the simulation will be cumbersome, also considering that
the RL model has to be set up and trained from scratch. Therefore, the focus will be on methods
for transferring knowledge learned in simulation directly towards their deployment in real-world envi-
ronments. For this to be successful, a control policy needs to be robust and stable to deal with the
changes when transferred to the real world environment. To get a better idea of the current techniques
and the research that has been performed, a selection of studies on continuous and underactuated
control systems is summarized in Table 4.1.

Table 4.1: Previous research on sim-to-real transfer for continuous control.

Author Title Method(s) Reality gap quantified?
Tan et al. (2018) [10] Sim-to-Real: Learning Agile

Locomotion For Quadruped
Robots

DR No

Muratore et al. (2019) [77] Assessing Transferability
from Simulation to Reality
for Reinforcement Learning

DR No

Loquercio et al. (2020) [78] Deep Drone Racing: From
Simulation to Reality With
Domain Randomization

DR No

Wada et al. (2022) [79] Sim-to-Real Transfer for
Fixed-Wing Uncrewed
Aerial Vehicle: Pitch
Control by High-Fidelity
Modelling and Domain
Randomization

DR No

Wang et al. (2022) [71] Sim-to-Real: Mapless Navi-
gation for USVs Using Deep
Reinforcement Learning

DR, CL No

Kaufmann et al. (2023) [8] Champion-level drone rac-
ing using deep reinforce-
ment learning

DR No

Domain Randomization (DR) stands out as the most employed method in these studies. DR is
a broad term, the way in which it is implemented differs depending on the specific control problem.
Throughout the studies mentioned, there are two main types of implementation: dynamics randomiza-
tion and randomizing the initial conditions of the environment during the training.

Dynamics randomization is employed in studies by Tan et al., Muratore et al., and Wada et al.,
involves altering the physical properties within the simulation. Tan et al, focused on varying physical
parameters for quadruped robots such as friction coefficients, while also adding perturbation forces
during the training. Wada et al. adapted this technique for aerial vehicles by specifically targeting the
randomization of aerodynamic coefficients.

Muratore et al. applied DR on two tasks: a 2 DoF Ball-Balancer and the linear inverted pendulum,
called Cart-Pole. Both the dynamics and the initial conditions were varied in the system. The dynamics
randomization was done by varying the physical parameters of both systems during the trainings such
as varying the masses and friction coefficients. The initial conditions were varied by changing the
starting positions of the Ball-Balancer and the inverted pendulum

Studies like Loquercio et al., Kaufmann et al., and Wang et al. only focused on randomizing initial
conditions in the training environment. For Loquercio et al., the drones use visual perception to deter-
mine its path, therefore factors such as lighting, viewpoint, and background elements are randomized
in the training, as well as the starting positions and the locations of the targets. The latter was also
employed by Kaufmann et al. and Wang et al. Kaufmann et al. further enhances this approach by per-
turbing the states using non-parametric empirical noise models estimated from data collected on the
physical system. Meanwhile, Wang et al. combines the initial condition randomization with curriculum

4.1. What methods have been used in similar applications to bridge the reality gap? 32

learning, gradually increasing the complexity of the environment.
When looking at some of the results from the studies of Loquerico et al., Kaufmann et al. and Tan

et al. in Figure 4.1, Figure 4.2, and Figure 4.3 below. Each of the studies showed that the RL agents
were successful in bridging the reality gap, and even beating results of professional pilots in the case of
Kauffman for example. Loquerico et al. shows that their drones beat the success rate of a professional
pilot, although with slower laptimes. Tan et al. shows that their applied methods improve the sim-to-real
transfer over approaches where such methods were not applied.

Figure 4.1: Lap times and success rates of the drones completing a track by Loquercio et al. [78]

Figure 4.2: Lap times of the drones tested by Kauffman et al., Swift is the RL-controlled drone and the others are operated by
professional drone pilots. [8].

4.2. How does the performance of an autonomously controlled sailboat change from
sim-to-real? 33

Figure 4.3: Sim-to-real transfer results of differently trained controls for quadruped robots by Tan et al. [10].

Looking at the sim-to-real transfer for the ASC, using DR seems crucial to succeed, as seen in vari-
ous studies. Also, adding noise to the state, similar to Kaufmann’s method, is an interesting approach to
attempt to improve ASC’s sim-to-real transfer even further. Kaufmann’s approach, however, relied on
’system identification’—utilizing actual drone data to learn noise models for signal perturbation. Given
the limited real-world data available in this context as of now, employing established control theory
techniques for noise addition can be used instead. One commonly used method to model sensor noise
is Gaussian noise (or normal noise), which is a type of statistical noise following a normal distribution,
which is also known as a Gaussian distribution.[80]

While the results of current sim-to-real transfer are promising, there is one major limitation present
in all of the researches in Table 4.1. A critical yet often overlooked aspect is the measurement of this
’reality gap’, or modelling errors. This oversight is concerning considering the broader implications of
sim-to-real methods. Knowing the size of the reality gap would tells us how much of a gap the sim-to-
real methods need to bridge. Thus, it would help placing individual studies within the larger context
of sim-to-real transfer research. It can provide a benchmark for comparing different approaches and
techniques, allowing for a clearer assessment of their relative effectiveness. This is crucial for the
progress of the field as a whole, as it encourages the development of more targeted and effective
sim-to-real strategies. For that reason, in this work, an effort will be made to quantify the reality gap.

4.2. How does the performance of an autonomously controlled sail-
boat change from sim-to-real?

In the context of the ASC problem, the reality gap will depend on the accuracy of the model used to
simulate sailing control. To effectively evaluate the robustness of RL control in ASC and its sim-to-real
transfer capabilities, it is imperative to have a high-speed simulation environment for training RL agents.
Therefore, the used model must be able to simulate control of the Optimist with the states and actions
as described in Table 3.1 and its corresponding behavior in a way that is fast to be able to iterate quickly
and repeat this for many episodes. In the literature, as touched on in subsection 2.1.4 as well, the focus
of models used to evaluate robotic sail control systems lays in the dynamic motion effects, and not as
much in optimizing the exact prediction of forward speed, like in advanced VPPs [28]–[30]. Since this
project is done in collaboration with MARIN, utilizing their in-house fast time-domain seakeeping and
maneuvering software known as XMF (or xSimulation) [81] is a sensible choice.

The XMF framework consists of libraries, where each library adds a different capability to the solver.
In each library, several classes or nodes are found. Each node provides a specific functionality and is
defined through input properties. Possible outcomes from these nodes are listed as output properties.
The set up of an XMF model consists of the body, the environment, and the numerical integrator, which
executes the time-domain simulation.

The Optimist model within the XMF framework is a complex structure composed of three primary
bodies: the hull, boom, and ballast. These components are linked through various constraints to main-
tain structural integrity and functionality. The hull, as the largest and heaviest component since it
houses all the actuators, serves as the core of the assembly. Attached to the hull via a hinge joint is

4.2. How does the performance of an autonomously controlled sailboat change from
sim-to-real? 34

the boom, allowing for pivotal movement. The ballast is designed to move laterally, facilitated by a
prismatic joint that connects it to the hull. Each of these bodies is defined within its own right-handed
Local Coordinate System (LCS), detailed in the Figure 4.4 below.

Figure 4.4: Bodies used in the Optimist assembly in XMF and their corresponding coordinate systems.

The origin of the boom is at the intersection between the boom profile and the centerline of the
mast. The origin of the ballast is chosen at the center of the aluminum profile, which is the support of
the ballast actuator on the hull edges. Unlike the primary bodies, the board and rudder are modeled
as ’objects’, this means that they have a frame of reference, but no inertia like a body. The mass and
moments of inertia of the hull, boom, and ballast are given in Table 4.2 below.

Mass [kg] x [m] y [m] z [m] kxx kyy kzz

Hull 108.959 1.041 0.000 0.238 0.414 0.744 0.729
Ballast 42.591 0.000 0.000 0.000 0.113 0.153 0.176
Boom 1.651 -0.970 0.000 0.340 1.183 1.438 1.014
Hull-Ballast-Boom 153.201 0.912 0.000 0.321 0.381 0.650 0.637

Table 4.2: Body mass/Inertia properties bodies w.r.t. LCS Hull. The values in the last row are obtained by converting the
seperate values to a single lumped body.

The other main dimensions and characteristics of the Optimist in the XMF model are given in Ta-
ble 4.3

[m]
Length (Lpp) 2.041
Beam (B) 1.112
Aft draft (Ta) 0.141
Fwd draft (Tf) 0.075

Table 4.3: Main particulars of the Optimist assembly

Implementing the hydrostatic and hydrodynamic forces of the Optimist model were done in a fairly

4.2. How does the performance of an autonomously controlled sailboat change from
sim-to-real? 35

straightforward way, as the XMF framework already has many existing classes/nodes for this. The
hydrostatic forces in XMF were modelled based on the geometry of the hull. The hydrodynamics were
implemented in XMF by setting a damping and a maneuvering coefficient. The damping node decom-
poses the water speeds without current and waves for a number of polygons on the ship’s hull at the
location of the centroid in two directions (perpendicular & parallel). These speeds are then used to
determine the forces and moments. Furthermore, the maneuvering was implemented by setting a co-
efficient for the drift induced yaw moment. The lift and drag coefficients of the Rudder2020 [82] model
were used for the implementation of the rudder, they are shown in Figure 4.5.

Figure 4.5: Lift and drag coefficients of the Rudder2020 model [82]

XMF has mainly been used to test motor propelled ships, so modelling the aerodynamic forces and
the effect on the ships motions has not been done in XMF before. The implementation is described in
section 5.3.

When all the forces on the Optimist body are known, the numerical integrator, (2nd order Runge-
Kutta) executes the time-domain simulation by calculating the impact of the forces on the vessel’s
position and orientation over time. It breaks down the simulation into small time steps (set to∆t = 0.01),
applying the forces to predict the vessel’s next position and orientation. Over successive iterations, this
creates a time-domain simulation of the Optimist, capturing its motions in 6DOF.

To simulate control of the Optimist in the XMF model, it receives action inputs for the rudder, ballast
and sheet. The input is scaled to the specified ranges and the actuator rates in XMF are set to simulate
the realistic actuator rates from the basin. The ranges and rates that were used in the XMF environment
are:

Table 4.4: Ranges and Actuator Rates

Range Actuator Rates

Rudder [-1.222, 1.222] rad 0.200 rad/s
Ballast [-0.45, 0.45] m 0.200 m/s
Sheet [0, 1] 0.250 s−1

The XMF model receives input and records the desired output every timestep.
To measure the reality gap and to evaluate the sim-to-real transfer capabilities of the RL agents,

a real-world setting is essential for testing. The Offshore Basin at MARIN is a controlled real-world
environment that has the capabilities to set the wind level, waves, and/or current. A digital twin of this
environment already exists within the XMF framework so the Optimist model can be simulated using
this environment. Furthermore, the communication between the simulation and basin environments
is already in place, making it an ideal testing environment for this small-scale project. The complete

4.2. How does the performance of an autonomously controlled sailboat change from
sim-to-real? 36

set-up of the basin with the measurement systems and the real-life Optimist model that were used for
testing will be elaborated on in section 5.2.

5
Training, evaluation and testing

methods

The methodology section outlines the techniques employed to address the research questions. It be-
gins with a general overview of the basin, XMF, and RL environment setup in section 5.1. A more
detailed description of each element within the setup is given in the following sections, starting with
the basin set-up in section 5.2 and the XMF model in section 5.3. After that, the RL environment
is discussed in section 5.4, elaborating on the training methodologies for various RL agents and the
sim-to-real methods employed.

Furthermore, the set-up of the state-of-the-art control method that was used to compare the perfor-
mance of the RL agents is described in section 5.5. The method used to measure the reality gap is
described in section 5.6

section 5.7 discusses the methods used to evaluate the agents in the simulation and section 5.8
outlines the metrics that were used to evaluate their performance and robustness, and to select the
agents to test in the basin. Finally, section 5.9 discusses the methods used to evaluate the agents in
the basin.

5.1. System overview
An overview of the full set-up is shown in Figure 5.1.

Figure 5.1: General overview of the set-up

The set-up allows for a smooth connection between the sailing simulation (XMF model, elaborated
on in section 5.3) and the basin environments, using the XMF model as a way to communicate with the
RL environment. The XMF environment is always connected to the RL environment, the connection
to the basin can be added when desired. When the basin is in-the-loop, the measurements from the
basin are sent to the XMF model, which calculates the wind speed and heading based on the position
and heading angle of the Optimist. This is done because there are no sensors to measure the wind
heading and wind speed in real-time by the Optimist. Instead, the spatial wind data that was obtained
with steady wind field measurements in the basin is used. These measurements were carried out at

37

5.2. Basin set-up 38

wind levels of 40% and 60% at a height of z=1.5m on a grid of 56 points in the xy-plane. The resulting
wind field data is used to send the current wind speed and heading to the Optimist based on its position
and heading angle in the basin. The RL environment then translates the input from XMF to the input or
’state’ that is sent to the agent. The RL environment also calculates the rewards associated with that
state using the reward function. The states and reward function used to train the agents are elaborated
on in section 5.4. The agent outputs an action command to the RL environment consisting of the rudder
action between [-1, 1], the sheet length [0, 1] and ballast position [0, 1]. The XMF environment scales
the output and calculates the corresponding actuator outputs based on the specified actuator rates.
If the basin is in-the-loop, these outputs are sent from XMF to the basin. In that case, the rates are
already taken into consideration by the actions that XMF outputs, but the rate limits of the actuators in
the basin are still set to ensure safety.

A more detailed description of the XMF model and the systems used in the basin is given in the
following sections, starting with the basin set-up.

5.2. Basin set-up
The robotized Optimist that is employed in the basin is shown in Figure 5.2.

Figure 5.2: Robotized Optimist for autonomous sailing control, with: 1. Rudder 2. Servo motor to control the rudder angle 3.
Triangles with a LED on each corner 4. Servo motor to move the ballast 5. Ballast/battery 6. Winch for sail control

The 3 available actions are moving the rudder (1), letting the sail in/out with the sheet, and moving
the ballast (5) over the y-axis. Each of the actions have their own actuator on board, a servo motor for
the rudder (2) and servo motor for the ballast (4). The sail setting is controlled using a winch (6). The
triangles (3) contain 3 LED’s each, besides those 6 LED’s, there are 2 more positioned on the starboard
side of the Optimist. This is done because the Optimist was operated in the basin and followed by a

5.2. Basin set-up 39

carriage located on the starboard side when the Optimist is sailing upwind. The carriage features the
Optotrak Certus HD : ’a Dynamic Measuring Machine for 3D and 6DOF motion tracking and analysis
applications’ [83], which is able to track the positions and motions of infrared LED’s (markers) on the
Optimist in real-time at a high speed of approximately 495 frames per second (fr/s). Using at least 5 of
the 8 LED’s, the position and motions of the Optimist can be captured in real-time. The carriage also
carries a wireless transmitter/receiver that can send and receive the data in real-time. The carriage
following the Optimist is shown in Figure 5.3

Figure 5.3: The carriage following the Optimist„ containing the Optotrak Certus HD and communication hardware.

The basin environment is a controlled environment, meaning that the wind level, waves and current
can be set to the desired levels. In the tests that were done, the current and wave levels were set to 0.
The wind level is set to either 40% or 60%, since the data of these wind fields is available as described
in section 5.1. The wind is generated by a wall of wind fans located on the north side of the basin, see
Figure 5.4.

5.3. XMF model 40

Figure 5.4: Wall of wind fans

A top view of the basin with the size of the inner boundaries is shown in Figure 5.5. A rope is placed
at the inner boundaries to prevent the Optimist from hitting the sides of the basin.

Figure 5.5: Top view and size of the inner boundaries of the basin

5.3. XMF model
The numerical model of the Optimist is made in MARIN’s Extensible Modelling Framework (XMF) or
xSimulation, as described in section 4.2. The set up of the complete XMF model of the Optimist is as
follows:

1. Environment: A digital twin of the Offshore Basin.
2. The Optimist Body: Comprised of three separate bodies, each with its own mass and moment

of inertia.
3. Numerical Integrator: Executes the time domain simulation using a second-order Runge-Kutta

method (rk2).

5.4. RL environment & training set-up 41

Simulating the aerodynamic forces and the effect on the ships motions was not done in XMF before.
This was implemented using lift and drag coefficients from Figure 2.9. The driving and side forces
acting on the sail are then calculated using Equation 2.4. The leeway angle (λ) is assumed to be
neglectably small. The application position, or centre of effort, of the sail forces is assumed to be in
the middle of the sail area of the Optimist. The angle of attack taken as the difference between the
apparent wind direction and the measured boom angle. The calculated aerodynamic forces and their
application positions are then used in combination with the hydrostatic and hydrodynamic forces to
solve the equations of motion in 6DOF. A snapshot of the Optimist sailing in the XMF environment is
shown in Figure 5.6.

Figure 5.6: Optimist sailing in XMF environment

When XMF is running in connection with the RL environment, the necessary information is extracted
from the XMF output and used as the ’state’ to send to the agent, while the reward function calculates
the reward based on that state. This is elaborated on in the next section.

5.4. RL environment & training set-up
The RL framework is based on the standardized RL Glue set-up, implementing the Stable Baselines3
library providing access to well established RL algorithms, as covered in subsection 3.2.2. The frame-
work consists of the environment, the agent, and the experiment.

The environment is the XMF environment, an observation is made at every timestep of ∆t = 0.01s.
The environment extracts the relevant information to output as the state to the agent, while also calcu-
lating the reward for that state. The reward function used was defined as follows:

Reward Function:

• Distance Reward: 2× 1
|xship−xtarget|+1

• Distance Penalty: −2× (xtarget − xship)
• Gybe Penalty: −100
• Actuator Efficiency Penalty:

− 5× Rudder Rate
− 5× Ballast Rate
− 5× Sheet Rate

Terminal Conditions:

• Out of Time (t > 360s): −1000
• Out of Boundaries (see Figure 5.5): −3000

5.4. RL environment & training set-up 42

• Capsize Risk (ϕ > π
5): −3000

• Reaching Target (x > 10): +2000

To reduce the computational load, a ’skipped steps’ parameter was implemented and set to 49.
This means that for every 50 steps (= 0.5s) the environment takes, the agent only receives a state
and sends an action once, effectively making the agent operate at a higher time scale. The action and
state space that were used to train the agents are shown in Table 3.1. All the components in the state
space were normalized to range between [-1, 1]. The actions that the policy outputs are also all in the
range [-1, 1], which were then scaled to each individual action range that was specified in the XMF
environment (see Table 4.4).

The agent deployed across all experiments was the model-free, off-policy Soft Actor-Critic (SAC) al-
gorithm. The hyperparameters were adopted from the collection available in RL Zoo. The SAC agent’s
architecture comprises two neural networks: the policy network (π) for the actor and the Q-function net-
work (qf) for the critic. Both networks were structured with two hidden layers, each consisting of 64 units
with the Tanh activation function. The agent utilized an ’MlpPolicy’, which refers to a multi-layer percep-
tron policy. The complete setup and detailed specifications can be found on a dedicated webpage, the
link and contents of the website are elaborated on in Appendix A: https://www.marin.nl/en/research/artificial-
intelligence-applications.

The experiment controls the length of the training and the starting and stopping of episodes when
terminal conditions (specified in the reward function) are reached. The experiment part of the framework
saves the policy of the agent every 500 timesteps to be used for evaluation.

The use of this set up was validated by running four trainings of an agent with a simple environment
set up, starting from a single initial condition:

• Wind Setting: 60%
• X: -10 m
• Y: 0 m
• Yaw: 0.5236 rad
• Forward Speed: 0.3 m/s

The length of the trainings was 400,000 timesteps. The agents were trained using a single compute
node. This node featured dual Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz 10-core processors, 64
GB of RAM, and a 500 GB local disk, connected through Gigabit Ethernet and Infiniband HBA.

A summary of the results of the trainings is given in Table 5.1.

Test Name Total Runtime Episodes Avg Runtime/Episode (s) Success Rate

SAC_test_1 22h 46m 5083 ≈ 16.1 97.0%
SAC_test_2 23h 7m 5317 ≈ 15.6 97.6%
SAC_test_3 22h 53m 5166 ≈ 15.9 98.2%
SAC_test_4 20h 17m 4008 ≈ 18.1 95.8%

Table 5.1: Summary of SAC validation training results. The success rate column depicts the percentage of times that the agent
has completed the task of reaching the target during the training.

The learning curves of all 4 agents are shown in Figure 5.7 .

https://www.marin.nl/en/research/artificial-intelligence-applications
https://www.marin.nl/en/research/artificial-intelligence-applications

5.4. RL environment & training set-up 43

Figure 5.7: Total reward obtained over the timesteps during the test runs. *In order to present the learning progress of the
reinforcement learning agents more clearly, a moving average of 50 episodes was applied to the total reward data.

The agents perform quite consistently in the trainings. Out of the 4 trainings, SAC_test_4, seems
to learn a suboptimal policy with the lowest resulting rewards. To take a look at the differences in the
learned policy between the agents, an outtake of trajectories taken by the agent in 6 episodes through-
out the training of SAC_test_2 and SAC_test_4 are shown in Figure 5.8 and Figure 5.9 respectively.

Figure 5.8: Learning progress SAC_test_2.

Looking at the learning process of SAC_test_2 in Figure 5.8, the agent learns an effective policy
after about 400 episodes already. It explores different strategies like gybing to gain speed and/or using

5.4. RL environment & training set-up 44

Figure 5.9: Learning process SAC_test_4

the sides of the basin where the wind speed is lower. Finally it learns to tack to go upwind, called
’beating’ in sailing. This strategy results in the highest amount of reward at the end of the episode since
the target is obtained the fastest (since the discounted reward parameter is set to γ = 0.998). The
sub-optimal rewards of SAC_test_4 shown in Figure 5.7 can be explained by looking at the policy that
it learned in Figure 5.9. It seems to utilize the lower wind speed areas on the side of the basin to sail
upwind in a more direct manner instead of using tacks. When looking at the rudder angles throughout
episode 2000 of both agents in Figure 5.10, it can be seen that while both agents are quite erratic with
their rudder action. SAC_test_4 seems to have learned how to scull to propel itself into the wind. This
can be seen mainly in the first 20 seconds of the episode where the rudder is moved quickly from side
to side to it is basically using the rudder as a fin, which is considered ’cheating’ in sail races, while
also not being energy efficient. In section 5.8, an evaluation metric is described to catch this type of
behavior.

After these validation runs, it is clear that the RL set up allows the agents to learn a policy that
knows how to sail upwind in the XMF environment. Due to the randomness in the agent’s exploration
process, the learned policies can be quite different between agents that were trained using the same
set up. This was considered when training the different types of agents to go in the basin. Trainings
with the same set up were started at least four times to be able to evaluate and compare their learned
policies. To do this, it is necessary to look at more than just the learning curves and trajectories over
the episodes. Evaluation metrics are used to compare the agents and judge their performance and/or
robustness, these are described in section 5.8.

Starting from the described set up, different types of agents were trained:

1. SAC regular (SAC or SAC_REG)
2. SAC trained with Domain Randomization (SAC_RI)
3. SAC trained with Domain Randomization + Observation Noise (SAC_ON)

Regular - The regular SAC agent will be trained with basically the same set up as the test runs,
only the starting position (x,y) is changed to be the following:

5.4. RL environment & training set-up 45

Figure 5.10: Rudder Angles of SAC_test_2 and SAC_test_4 during episode 2000

• Wind Setting: 60%
• X: -8.37m
• Y: -6.13m
• Yaw: 0.5236 rad
• Forward Speed: 0.3 m/s

Domain Randomization - The domain randomization is achieved by randomly varying the initial
conditions of the environment during the training of the agent. The range of initial conditions that was
utilized is as follows:

• Wind Setting: [40%, 60%]
• X: [-10.0, -6.0]m
• Y: [-8.0, 12.0]m
• Yaw: [-0.8, 0.8]rad
• Forward Speed: [0, 0.6]m/s

Observation Noise - Another technique used to improve the sim-to-real transfer was to implement
basic noise models on the observed signals. Specifically, noise was introduced to the signals that the
RL environment received from the XMF environment. This modification was done before extracting
the state information to be sent to the agent. Consequently, the state is derived from these ’noisy’
measurements, thereby attempting to approximate the real-world sensor noise. This approach aims
to enhance the realism of the simulation, ensuring that the agent learns to operate effectively in the
presence of the noise encountered in real-world scenarios. Two basic models to add the noise to the
observed signals were used:

• Proportional Gaussian Noise: The first method introduces noise that is proportional to the magni-
tude of the original value. This approach is particularly useful for modeling scenarios where the
uncertainty or variability in the measurement increases with the signal’s intensity. For instance,
sensors that are more erratic at higher readings might be well-represented by this model. The
standard deviation of the noise is a fraction of the absolute value of the original signal, controlled
by the percentage of noise. This type of noise was added to the following signals:

– Forward speed
– Rudder Angle
– Ballast Position
– Sheet Length

5.5. State-of-the-art control 46

– Boom Angle

• Uniform Gaussian Noise: The second method applies a uniform level of Gaussian distributed
noise across the entire range of the signal. This is based on the range of the original signal.
It represents scenarios where the sensor noise remains consistent regardless of the signal’s
intensity. This type of noise was added to the following signals:

– X,Y position
– Roll
– Yaw
– Wind Heading
– Wind Speed

Both methods utilize a factor of 2 in the calculation of standard deviation to ensure that the noise
value falls within the 95% confidence interval, assuming a normal distribution. A range of these noise
models was incorporated when training the agents to increase the probability of modelling the reality
more closely. The range included noise levels of: 1%, 4%, 10%, and 20%. The code to add the different
levels of noise and the resulting noise signals can be found on the WEBSITE

The agents trained with the added noise were also trained with the randomized initial conditions.
The resulting agents are evaluated in the simulation and put through a selection process to select the
best performing agents to be tested in the basin. This process is described in detail in section 5.7.

5.5. State-of-the-art control
In order to assess the performance of the RL-controlled Optimist in comparison to the current state-of-
the-art, the control system developed by the Southampton Sailing Robot team (SOTON) was integrated
into the XMF-basin framework. SOTON developed a one meter long autonomous sailing robot with the
goal to win the WRSC, which consists of four events: station keeping, cooperative area scanning,
obstacle avoidance and the triangle race. This code is open-source, however, it was developed in the
ROS framework, so this had to be adapted for application in the XMF-basin setup. Not all features were
necessary to be modified to comply with the XMF-basin framework as there was one task to perform
instead of four: sailing to an upwind target. Therefore, the necessary control features of SOTON
were extracted and integrated with the XMF-basin framework. It will be referred to as ’SOTON’ in the
remaining work. The high-level control system is comprised of two key components: tack decision
and goal heading. In the context of this system, the tack decision has been modified to be based
on ’tacking zones,’ which are placed 6 meters from each side of the basin, giving the Optimist time to
execute the tacking maneuver. A tack command is triggered when the Optimist is sailing with its sail on
the portside and enters the left tacking zone, and vice versa. Unlike the original SOTON code, which
featured 4 tacking maneuvers with the optimal one determined through trial and error, the adapted
approach in this case only features a basic tack maneuver. This was done because there are no
waves in the basin, unlike in the rougher environments in which the one-meter-long sailing robot had
to perform. This eliminates the need for additional tack maneuvers, as the Optimist will not encounter
the same challenges. The goal heading calculation was taken from the original SOTON code, where
the goal heading was calculated based on the relative angle to the target that was set. When the target
is upwind, the goal heading is set to the ’beating angle’ which SOTON put at 45◦.

The low-level control control consists of the sail and rudder control, which, besides making it compat-
ible with the XMF environment, did not need any additional adaptations. The sail setting is controlled
with a look-up table of the apparent wind direction (AWD). The values used are taken from tests that
SOTON did with a Laser dinghy, which is similar in size to an Optimist. The sail settings are shown in
Table 5.2.

The rudder utilizes PID control, which takes the error in heading to goal heading as input and out-
puts the rudder setting every 0.1 seconds. The tuning of the PID controller was done in the simulation,
by running episodes with the following initial conditions:

• Wind Setting: (40%, 60%)
• X: -10 m
• Y: -8 m
• Yaw: 0.5236 rad

5.6. Measuring the reality gap 47

Table 5.2: Sail settings for various heading angles

AWD [deg] Sail setting [0,1]
0 0
36 0
40 0.0519
53 0.0889
85 0.2222
105 0.4444
160 0.7555
178 1
180 1

• Forward Speed: 0.3 m/s

So the Optimist would run for 2 episodes in both the 40 and 60% wind setting from a single starting
position. The first step of the tuning procedure was to find the optimal proportional (P) value by setting
both the integral (I) and derivative (D) values to be 0. At the start, a low P-value of 0.1 was chosen
and this was increased with increments of 0.1 until the rudder angle signal becomes unstable. This
happened at a P-value of 0.4. At a P-value of 0.35, the Optimist showcased the most optimal behavior
in both the 40% and 60% wind field. After this, small values for the I and D settings were tried to see if
it would improve the performance further, but they made the Optimist less stable. Therefore, the PID-
values employed for SOTON are P=0.35, I=0, D=0. To validate the expected functionality of SOTON,
the resulting trajectory was compared to the data available in ’Adaptive Probabilistic Tack Manoeuvre
Decision for Sailing Vessels’ by Lemaire et al. [46]. The overall behavior when sailing upwind looks to
behave in a similar way. To assess the performance and robustness further, the same evaluation pro-
cess and metrics employed for the RL agents was used, which are described in section 5.7, section 5.8,
and section 5.9.

5.6. Measuring the reality gap
To quantify the modeling error in the simulation with respect to the reality in the basin, 5 runs were per-
formed in the basin using open-loop controls, with the same deterministic rudder and sheeting actions.

The measured data of the basin runs was in turn used to replicate the runs in the simulation, using
the measured initial conditions. As a result, the trajectories of the Optimist in the basin and in the
simulation turned out as in Figure 5.11 below. The simulated run is showing the times of the tacking
maneuver.

To verify that the same control actions were performed in both runs, the deterministic rudder and
sheeting actions are shown in Figure 5.12, as well as the measured actions from 1 of the 5 runs in basin.
However, since the actions are also part of the simulation, they are subject to some amount of modelling
error as well. To gain an understanding of the extent of the differences between the measured actions
in the simulation and the basin, the latency, RMSE and NRMSE of the actions are calculated.

The latency in the basin for the rudder angle is 2 timesteps (=0.2s), and 3 timesteps (=0.3s) for
the sheet length. To compute the remaining error in the measured actions, the basin and sheet length
signals are shifted to overlay the simulation signal as shown in Figure 5.13.

To get an idea of the size of the difference between measured actions, the shifted signals are used
to calculate the Root Mean Squared Error (RMSE) and the Normalized Root Mean Squared Error
(NRMSE) for the rudder angle and sheet length with the following expressions:

RMSE =

√√√√ 1

n

n∑
i=1

(Xbasin,i −Xsimulated,i)2 (5.1)

NRMSE =
RMSE

max−min
× 100% (5.2)

The average results over the 5 runs are given in Table 5.3.

5.6. Measuring the reality gap 48

Figure 5.11: Open-loop controlled trajectories in the simulation and the basin.

Figure 5.12: Measured rudder angle and sheet lengths in simulation and basin.

The error in the rudder angle is below 1% so it would not have significant impact on the performance
in the basin. The action error of the sheet length is about 15% on average over the 5 runs.

It is clear that the trajectories deviated quite a bit, with errors accumulating over time. To get a better
idea of the main sources of the errors, the basin run was split in time increments of 4 seconds, which is

5.6. Measuring the reality gap 49

Figure 5.13: Shifted rudder and sheet length signals accounting for time delay in the basin.

Table 5.3: Average errors in the measured rudder and sheet actions.

RMSE NRMSE

Rudder Angle (θr) 0.74 ± 0.08 deg 0.89% ± 0.10%
Sheet Length (ls) 7.54 ± 0.60 mm 14.98% ± 0.75%

approximately the average time it takes to move one body length for the Optimist. The initial conditions
were obtained from the basin data and used as input for the simulation every 4 seconds for all 5 runs.
The resulting trajectory of 1 of them is shown in Figure 5.14.

By systematically evaluating the data at each timestep (dt = 0.01 seconds) within each 4-second
increment across the 5 runs, the Euclidean distance between the positions of the Optimist in the basin
(denoted as pbasin) and the simulated positions (denoted as psim) was calculated. The positions are
represented as 2-dimensional coordinates with the x and y values.

For each 4-second increment, the Euclidean distance for a single timestep between the basin po-
sition (pbasin,t = (xbasin,t, ybasin,t)) and the simulated position (psim,t = (xsim,t, ysim,t)) is calculated as
follows:

dt =
√

(xbasin,t − xsim,t)2 + (ybasin,t − ysim,t)2 (5.3)

Where:

• dt represents the Euclidean distance at a single timestep t.
• (xbasin,t, ybasin,t) are the coordinates of the Optimist in the basin at timestep t.
• (xsim,t, ysim,t) are the coordinates of the simulated position at timestep t.

After calculating the Euclidean distance for each timestep within a 4-second increment, we compute
the mean of these distances to get the mean position error for that increment, denoted as d, as follows:

d =
1

N

N∑
t=1

dt (5.4)

Where:

5.7. Evaluation of agents in simulation 50

Figure 5.14: Basin run compared to the time segmented runs performed in the simulation.

• N is the total number of timesteps within a single 4-second increment.

Mean errors of the ship motions and velocities from the simulation to the basin were calculated in a
similar manner, but calculating the RMSE as in Equation 5.1 and getting the average over the 4-second
time increment instead of the Euclidean Distance.

5.7. Evaluation of agents in simulation
Considering the limited testing time in the basin, a careful process for selecting the best agents was
set up. The training for each agent type was started at least 4 times as explained in section 5.4. The
exploration process is random, therefore, although the set-up for two agents is exactly the same, they
can still learn different policies. Thus, the first step is to select the agents to evaluate, since it is a waste
to evaluate agents that got stuck in local optima during the training process, resulting in low overall
returns. Once these agents are filtered out, the agents that are left have many policies to choose from
because the policy is saved every 500 timesteps during the 500,000-timestep training period. This
leaves a pool of 5,000 policies per agent type. To narrow down the options, a pre-selection is made
based on the learning curve again. The training period during which the agent consistently achieves
the highest rewards is determined by calculating the rolling average over a window of 100 timesteps.
To capture the variability and stability of rewards within this window, the 5th and 95th percentiles of the
rolling average are plotted. A smaller spread between the 5th and 95th percentiles indicates a more
consistent and stable performance, while a larger spread suggests greater variability in the agent’s
rewards. Generally the region with the highest and most stable rewards could be found at the end of
the training process.

Depending on the size of the stable region of the agent. Usually this range was about 50,000
timesteps. This still leaves 500 policies, to bring this down, the evaluation was done every 5000
timesteps instead of 500, leaving 50 policies to evaluate.

The evaluation process consists of combinations of the following initial conditions:

• Wind Setting: (40%, 60%)
• X-Position: -8 m
• Y-Positions: (-6, 0, 8) m

5.8. Evaluation Metrics 51

• Yaw: (-0.8, -0.2, 0.6) radians
• Forward Speed: (0.2, 0.6) m/s

These initial conditions cover several starting positions in the basin, as well as the starting speed
and wind settings. This results in an evaluation of 36 episodes for each agent.

The results of the evaluated policies are examined using specific metrics to help identify the best
performing and most robust agents, while also evaluating them for any risky behavior that should be
avoided in the basin. The evaluation metrics are described in detail in section 5.8.

5.8. Evaluation Metrics
The metrics used for the evaluation and their respective abbreviations are as follows:

• Success Rate (SR): Percentage of episodes in which the agent successfully reaches the goal.
• Time to Complete (TTC): Average time taken by the Optimist to reach the goal in an episode.
• Actuator Usage (AU): Rudder, sail, and ballast usage, expressed as the average rates per
episode.

• High-RiskBehavior (HR): Instances where the robot engages in high-risk situations (e.g., gybing,
roll > 45), the amount of the risk is assessed using a step function.

• Energy Ratio (ER): Ratio of energy put into the rudder and ballast actuators to the wind energy
utilized by the agent over the course of the completed episodes.

A weighted average of these metrics is calculated to derive an overall fitness score for the agent,
facilitating a quick way to compare multiple agents. The weights (w1, w2, w3, w4, and w5) allow cus-
tomization of the importance assigned to each metric in the overall assessment:

Fitness = w1 · SR− w2 · TTC− w3 · AU− w4 · HR− w5 · ER
The weight assigned to each evaluation metric reflects its relative importance in assessing the agent’s
performance. In this work, the highest priority is accorded to HR due to its critical role in preventing any
risk of making water and/or capsizing in the basin. Gybing, while less catastrophic, introduces highly
dynamic behavior that could potentially damage the actuators. Consequently, HR receives the highest
weight.

The second-highest weight is assigned to SR, emphasizing its significance in identifying the most
robust agents. Agents with a high SR demonstrate resilience and consistent goal attainment when
presented with the different initial conditions.

Following is the ER, where a considerable weight is placed. ER is instrumental in selecting agents
that have learned policies effectively utilizing wind energy to propel themselves in successful episodes.

AU is given the second-lowest weight, acknowledging the importance of limiting actuator rates.
While there are already constraints on actuator rates, this will give an idea on how effectively the agent
manages and utilizes the actuators within the rate constraints.

Lastly, TTC carries the lowest weight. While this can identify the fastest agents, other aspects such
as HR, SR, ER, and AU are more critical in assessing the robustness and safety, which are deemed of
higher importance than the speed in this case.

The resulting weights that were used are:

• SR: w1 = 3
• TTC: w2 = 0.5
• AU: w3 = 1
• HR: w4 = 3.5
• ER: w5 = 2

The values for the SR, TTC, and AU are fairly straightforward to calculate in the evaluation. The
success rate is the percentage of episodes that reached the target, as mentioned before. The TTC
is the average time it took to reach the target over these episodes. The AU is computed by finding
the mean of the sum of the actuator rates of the rudder, ballast and sheet across all episodes. The
calculation of the used values for ER and HR require more detailed explanations, which are provided
in the following sections.

5.8. Evaluation Metrics 52

5.8.1. Energy Ratio
The mean energy ratio (ER) of all episodes is calculated by determining the average rudder, ballast
and wind energy of the successful episodes in the evaluation. The mean rudder and ballast energy
fromEquation 5.8 and Equation 5.10 respectively, is the energy that was put into moving the rudder and
the ballast, this is divided by the wind energy that was utilized by the Optimist to propel itself forward,
see Equation 5.11:

ER =
ER + EB

EW

(5.5)

In general, the power of each component is calculated at each timestep, after which it is integrated
over short time intervals. This is done to smoothen out the effects of instantaneous power inputs, as
these should not dominate the calculated energy ratio. By keeping the time interval relatively small it
will still capture changes in the system’s dynamics over time. The time interval (∆ti) for integration is
determined by the average time it takes to move one body length. The body length of the Optimist is:
LPP = 2.041m. The average speed (obtained from a run in the 40% wind field) is about 0.5m/s, so
the integration time interval is calculated as:

∆ti =
LPP

VS
=

2.041m
0.5m/s

≈ 4 s (5.6)

Rudder Energy
The rudder energy (ER) is computed through a series of steps involving the rudder area (AR), rotational
velocity of the rudder (ωR), net torque (τ), rudder power (PR), and integration over time intervals (∆ti).
The lift and drag coefficients (CL, CD) that were used were obtained from the Rudder2020 data that
was also used in the XMF model of the Optimist, shown in Figure 4.5.

The rudder area (AR) is determined by multiplying the average chord length (c) by the rudder height
(hR):

AR = c× hR
With:

c = 0.250m

hR = 0.3m

The output data contains the rudder angle (θ) at each timestep, the rotational velocity of the rudder
(ωR) is the rate of change of the rudder angle with respect to time (t):

ωR =
∆θ

∆t

The lift (FL) and drag (FD) forces on the rudder at each time (t) are calculated using lift and drag
coefficients (CL, CD) interpolated from the Rudder2020 data as shown in Figure 4.5. The angle of
attack (α) should be the angle of the oncoming flow of the water on the rudder, however, there is no
information available of the direction of the water flow information so the rudder angle (θ) was used to
approximate the angle of attack of the flowing water:

FL =
1

2
· ρw · VS(t)2 ·AR · CL(α)

FD =
1

2
· ρw · VS(t)2 ·AR · CD(α)

With:

ρw = 1025.0kg/m3

α ≈ θ

The net torque (τ) acting on the rudder is determined by the rudder’s radial distance (|r|) and the
lift and drag forces:

5.8. Evaluation Metrics 53

τ = |r| · (|FL| cos(θ) + |FD| sin(θ))

With:

|r| = 0.299m

Rudder power (PR) is the product of the net torque and the rotational velocity:

PR = τ × ωR

Finally, the total rudder energy (ER) of 1 episode is obtained by integrating PR over the time intervals
∆ti and summing those values:

ER =

m∑
j=1

(
n∑

i=1

PR,ij∆tij

)
(5.7)

With:

n : # of time steps within each time interval ∆ti
m : # of time intervals ∆ti in 1 episode

The average rudder energy over the number of episodes N in the evaluation is then calculated as
follows:

ER =
1

N

N∑
k=1

ER (5.8)

With:

N : # of episodes in the evaluation

For each completed episode, the sum of all these values is calculated. The average of the total
rudder energy over all the episodes in the evaluation is then used to calculate the energy ratio in
Equation 5.5.

Ballast Energy
The ballast energy (EB) is computed through a series of steps involving the ballast position (xB), ballast
mass (mB), ballast velocity (VB), ballast acceleration (aB), force (FB), displacement (DB), work done
(WB), and integration over time intervals (∆ti).

The ballast velocity (VB) is calculated as the difference in ballast position over time:

VB =
∆xB
∆t

The ballast acceleration (aB) is the rate of change of velocity:

aB =
∆VB
∆t

The force acting on the ballast (FB) is determined by multiplying the mass of the ballast by the
acceleration:

FB = mB · aB
With:

mB = 10kg

The ballast displacement (DB) is the absolute difference in sequential ballast positions:

DB = |∆xB |

5.8. Evaluation Metrics 54

The work done by the ballast (WB) is the product of force and displacement:

WB = FB ×DB

Finally, the ballast energy of each time interval is obtained by integratingWB over the time intervals.
The sum of those values over the episodes gives the total ballast energy used in 1 episode:

EB,i =

m∑
j=1

(
n∑

i=1

WB,ij∆tij

)
(5.9)

With:

n : # of time steps within each time interval ∆ti
m : # of time intervals ∆ti in 1 episode

The average ballast energy over the number of episodes N in the evaluation is then calculated as
follows:

EB =
1

N

N∑
k=1

EB (5.10)

With:

N : # of episodes in the evaluation

Wind Energy
Next, the wind energy is computed through a series of steps involving the sail area (As), apparent wind
speed (VA), angle of attack (α), lift and drag coefficients (CL, CD), lift (FL) and drag (FD) forces, sail
drive force (FR), wind power (PW), and integration over time intervals (∆ti).

The lift and drag coefficients used in the calculations are obtained from the paper’Design of a Foiling
Optimist’ [24], see Figure 2.9. Andersson et al. obtained the coefficients from tests done with an
Optimist sail at 1/4 scale in a wind tunnel, their test set-up shown in Figure 2.8.

The sail area of the Optimist is the same as has been used in the XMF model:

As = 3.3m2

The output of XMF for the wind heading is given in ’going-to definition’, whichmeans that a wind heading
between 270◦ and 90◦ angles means the Optimist is going upwind, and between 270◦ and 90◦ is down-
wind. To comply with the coefficients in Figure 2.9, the apparent wind heading (βA) is transformed to a
going-from definition, in the range [−180◦, 180◦]. This means that upwind is 0◦ and downwind (−)180◦.
With that, the apparent wind speed (VA) is calculated as follows:

VA =
√
V 2
tw + V 2

S + 2 · |Vtw| · |VS | · cos(βA)

The angle of attack (α) is the taken as incoming wind on the sail by subtracting the boom angle (βB)
from the apparent wind heading. The coefficients are interpolated from Figure 2.9 and the lift and drag
force on the sail are calculated at all timesteps t:

FL =
1

2
· ρa · V 2

A ·As · CL(α)

FD =
1

2
· ρa · V 2

A ·As · CD(α)

With:

ρa = 1.225kg/m3

α ≈ βA − βB

Next, using the force diagram and equations from subsection 2.1.4, specifically Equation 2.4, the
sail drive force is calculated as follows:

Fm = FL · sin(α)− FD · cos(α)

5.8. Evaluation Metrics 55

The calculation is simplified by assuming that the leeway angle (λ) is negligibly small. Fm represents
the forward driving force generated by the wind on the sail.

The wind power (PW) is obtained by multiplying the drive force by the forward speed of the Optimist:

PW = |Fm| · VS

Finally, the total wind energy (EW) of 1 episode is obtained by integrating PW over the time intervals
and summing all the values of the episode:

EW =

m∑
j=1

(
n∑

i=1

PW,ij∆tij

)

With:

n : # of time steps within each time interval ∆ti
m : # of time intervals ∆ti in 1 episode

Similar to the ballast and rudder energy values, the resulting EW is a value of the wind energy over
the time interval ∆ti. The mean wind energy over the number of episodes N is calculated as follows:

EW =
1

N

N∑
k=1

EW (5.11)

With:

N : # of episodes in the evaluation

The average of the total wind energy over all the episodes in the evaluation is then used to calculate
the energy ratio in Equation 5.5.

5.8.2. High Risk Behavior
To assess the agents’ high-risk behaviors, the focus is on two aspects: gybing and heeling. Preventing
gybes is important within the basin environment due to the highly dynamic behavior involved in a gybe,
which could increase the risk of capsizing and damage to the actuators. The heeling angle is used to
identify and mitigate agents that take too much risk to prevent capsizing and making water in the basin.

The number of gybes are counted over all the episodes and averaged over the total time of the full
evaluation.

To assess the capsize risk, a step function is used to assign a function value to the heeling angle
output from XMF at every timestep. The step function is given in Equation 5.12. The maximum heeling
angle (θmax) is calculated based on the stability parameters of the Optimist from the XMF model in
Equation 5.13. This step function is designed to apply no penalty for heeling angles up to 20% of the
maximum heeling angle. This conservative threshold is chosen to prevent heeling angles in the basin
that could potentially lead to water intake and damage to the systems onboard the Optimist.

f(θ, θmax) =

{
0, if θ ≤ 0.2 · θmax
exp

(
θ−0.2·θmax
0.2·θmax

)
− 1, if 0.2 · θmax < θ ≤ θmax

(5.12)

With θmax as the maximum heeling angle calculated as:

θmax = arctan
(
GM

BM

)
≈ arctan

(
0.713m

0.556m

)
≈ 52◦ (5.13)

With:

BM = 0.556m
KG = 0.305m
KM = 0.943m
GM = KM −KG = 0.713m

5.9. Evaluation of agents in the basin 56

The resulting heeling value function is shown in Figure 5.15.

Figure 5.15: Heeling function to assess the capsize risk behavior in the evaluation of the agents.

5.9. Evaluation of agents in the basin
To test the agents in the basin, the set up as described in section 5.2 was used. The allotted basin time
was about 2 hours for 4 days, for a total of 8 hours. This time was used to run the open-loop control tests,
the state-of-the-art control and the different types of RL agents resulting from the selection process as
described in section 5.7. Before starting any tests, the measurement systems were calibrated. The
rudder, ballast and sheet were zeroed. The position measurement system was calibrated as well,
making sure that the carriage followed the Optimist so that at least 5 LEDs were kept in the frame and
the global position could be recorded. Once all the systems were verified to work, preliminary sanity
checks were performed using the open-loop controls. This led to the discovery that the action that
was sent for the rudder angle had to be reversed for example, due to the configuration of the basin
signal being the other way around. Apart from this adjustment, the integration of the basin with the
XMF environment and the control over the Optimist worked as desired. The fans were set at levels of
either 40% or 60% and a buffer period of about 2 minutes was allowed for the wind to stabilize before
proceeding with the tests.

Safety was of the highest importance during the testing procedure. A basin crew of at least 3 people
was always present to oversee the systems in the basin, the hardware on the Optimist and to control
the carriage. Two members of the crew were present in the basin at all times during the tests. They
could intervene at any time to make sure that the Optimist did not capsize, hit the carriage or perform
any other type of dangerous behavior. Ropes were also placed at the borders of the basin to stop the
Optimist from hitting the sides or the fans at the north side. They were also important as there was
no system in place to bring or sail the Optimist back to the desired starting position so this was done
manually.

To use the limited time in the basin effectively, it was not feasible to perform all of the same runs
as in the simulation for a single agent, described in section 5.7. Instead, 3 different starting positions
with both wind levels were used for each agent with the aim to repeat runs at least 2 times with the
same initial conditions to investigate the consistency and reliability of the results. The basin is divided
up with a coordinate system of letters and numbers. The starting positions were on the height of ’D’,
which corresponds to x ≈ −10 and at either 4, 8 or 12, corresponding to y ≈ [7.5, 0,−7.5] respectively.
The starting heading was −30◦ when starting at D4 and 30◦ at D8 or D12.

The procedure for a test in the basin was as follows:

5.9. Evaluation of agents in the basin 57

1. The Optimist was moved to its starting position by the two people in the basin.
2. Information of the test was documented, such as: the type of control/agent, the starting position

and the current wind level.
3. The controls file of the agent to test was loaded into the system, checking if the connection with

the basin was in place.
4. Another person started the recording, which in turn sounded a horn signalling to the people in the

basin to start the run.
5. The run was started by giving the Optimist a small push.
6. The run continued until the Optimist either sailed out of bounds or reached the target, which was

set at x=10.*
7. At that point, the Optimist was grabbed by the people in the basin, bringing it back to the starting

point of the next run.

* In some cases the runs had to be stopped early. For example, when the carriage was unable to
follow the Optimist. It was unable to follow either because the Optimist would sail too fast or when the
Optimist would gybe. Another case was the Optimist heeling too far, making water.

6
Results

The results section is split into two parts: the reality gap and the results of the transfer from simulation
to reality.

6.1. What is the extent of the reality gap?
In the following, the results of the open loop run in the simulation (XMF environment) and the basin are
compared.

First, the results of the calculation of the mean position error with Equation 5.4 for all the time
incremented runs are shown in Figure 6.1.

Figure 6.1: Mean positon error over 5 runs in each 4-second time segment. The nr of runs in the last two time segments is less
since the durations of the runs were not consistent.

The mean position error of the first time increment of 4 seconds is relatively high, which is due to
the start-up procedure in the basin. For this reason, the first 4 seconds of each run were excluded from
the modeling error analysis. The remaining 4 second increment runs (total N=54) were used to create
a correlation matrix using Pearson’s correlation coefficient. Besides the mean position error, the RMSE
of speed (x), speed (y), yaw, roll and pitch were calculated for each increment. They were compared to
the average values of the wind speed and heading, the pitch, roll and yaw rates, the rudder rate, speed
(x) and speed (y). The resulting correlation matrix is shown in Figure 6.2

58

6.1. What is the extent of the reality gap? 59

Figure 6.2: Correlation matrix

There are quite a few positively correlated relationships, with the pitch error showing the strongest
correlation with the pitch and roll rate, and speed (y). However, it is hard to make out what is affecting
what since most relationships seem to be somewhat correlated. Since the wind speed is positively
correlated with every single error, it can be seen as sort of an ’amplitude’ of the dynamic system, which
is logical when looking at sailing. Therefore, to make things more clear, partial correlation for each
pair is computed with the wind speed as the control variable, mitigating the effects of wind speed. The
resulting partial correlation matrix is shown in Figure 6.3.

Figure 6.3: Partial correlation matrix, mitigating the effects of the wind speed.

The examination of the partial correlation matrix reveals that the pitch error continues to exhibit the
most prominent positive correlations. This implies that pitch error could be a significant contributor to
the overall modeling error. Other correlations worth noting are the speed in x- and y-direction with

6.1. What is the extent of the reality gap? 60

the position error and between the speed in x-direction and the roll rate, which has a value of r=.46,
suggesting a moderate correlation.

The average calculated errors over all time segments for all 5 runs are shown in Table 6.1 below.

Table 6.1: Average RMSE and standard deviation over all the time segments of the 5 runs. of the position, speed in x and y,
and the roll, pitch and yaw motions.

Average error

Position 0.2 ± 0.06 m
Speed (x) 0.03 ± 0.02 m/s
Speed (y) 0.03 ± 0.01 m/s
Roll 0.75 ± 0.31 deg
Pitch 0.35 ± 0.08 deg
Yaw 8.64 ± 4.87 deg

The average RMSE of the yaw error notably high, with a high standard deviation as well, suggest-
ing large variability over the time segments. Figure 6.4 compares the yaw motion of one of the time
segmented runs to the yaw motion measured in the basin, it is clear that the simulated yaw motion
deviates from the basin quite fast, especially in between the first and second tack maneuver. This is
also where the wind speed is the strongest. To assess the apparent contribution of pitch error to the

Figure 6.4: Segmented yaw motion from the simulation and the yaw motion from the basin

overall modeling error further, the pitch signal of the time segmented run in the simulation is compared
to the corresponding basin runs. One of the results is shown in Figure 6.5. Overall, the simulation
seems to overestimate the amplitude of the pitch motion. Especially during and between the tacking
maneuvers, this can also be seen when looking at the average RMSE pitch error over all the runs in
Figure 6.6. The time segments that contain a tack maneuver (in the simulation) are shown in green.
The RMSE is higher in between the tack maneuvers. The speed in y direction and the roll rate are
plotted as well to show the moderate positive correlation. The mean position error is interesting to look
at as well, showing the correlations with speed in x and y-direction in Figure 6.7. The mean position
error is highest during the second tack maneuver. The relatively large error bars suggest that there is
considerable variability in the position errors during the time segments.

6.1. What is the extent of the reality gap? 61

Figure 6.5: Segmented pitch motion from the simulation and the pitch motion from the basin

Figure 6.6: Mean pitch errors over the time segments, compared to the average measured speed in y-direction and the roll
rate. The time segments that contain a tack maneuver (in the simulation) are shown in green.

6.2. What agents were selected to be tested in the basin after the evaluation in the simulation?62

Figure 6.7: Mean position errors over the time segments, compared to the average measured speed in x- and y-direction. The
time segments that contain a tack maneuver (in the simulation) are shown in green.

6.2. What agents were selected to be tested in the basin after the
evaluation in the simulation?

As outlined in section 5.7, the agents with the highest overall fitness scores from each trained type
were selected for testing in the basin. The following sections will discuss these specific agents, they
will be referred to as follows:

• SAC : SAC regular
• SAC_RI_3 : SAC trained with Domain Randomization
• SAC_RI_4 : SAC trained with Domain Randomization (exactly the same set up as SAC_RI_3)
• SAC_ON_01 : SAC trained with Domain Randomization + Observation Noise 1%
• SAC_ON_04 : SAC trained with Domain Randomization + Observation Noise 4%
• SAC_ON_10 : SAC trained with Domain Randomization + Observation Noise 10%

SAC_RI_3 and SAC_RI_4 are both included in the analysis as they both performed comparably in
the simulation evaluation. All of the setups used to train these agents and the data on the learning
process can be found on the supplementary website, the link can be found in Appendix A. The time it
took to train each of the agents is given in Table 6.2 below.

Table 6.2: Summary of training times and number of episodes of the agents

Name Duration Nr. of Episodes
SAC_REG 21 hours 19 min 4062
SAC_RI_3 23 hours 1 min 3821
SAC_RI_4 23 hours 10 min 3795
SAC_ON_01 20 hours 39 min 4067
SAC_ON_04 18 hours 37 min 3062
SAC_ON_10 21 hours 52 min 3021

Average 21 hours 26 min 3638

6.3. How did the selected agents perform in the basin compared to the simulation? 63

The average computation time per episode is approximately 20 seconds. A run in the basin took
about 3 minutes on average, including time to bring the Optimist back to its starting position and getting
the systems ready. That means that the average training time of 3638 episodes would take≈ 180 hours
in the basin, corresponding to 22.5 work days of 8 hours, not including breaks. Such a substantial time
commitment underscores the critical role and efficiency of simulation in the training process.

6.3. How did the selected agents perform in the basin compared to
the simulation?

The average success rates and the times to complete these successful runs in the simulation and in
the basin are summarized in Figure 6.8 and Figure 6.9. The figures compare the performances of the
chosen SAC agents in the task of reaching the upwind target in both simulation and basin (real-world)
environments.

Figure 6.8: Success rate of the agents in the simulation and basin.

6.3. How did the selected agents perform in the basin compared to the simulation? 64

Figure 6.9: Completion times of the agents in the simulation and the basin over all the successful runs.

First, the SOTON agent, representing the state-of-the-art classic sailing control, performed impres-
sively in both the simulation and basin tests. In each environment it was able to complete the task all
but 1 times, resulting in success rate of 97.2% in the simulation environment over 36 trials and 93.8%
across 16 trials in the basin environment. The average completion time from simulation to the basin
is a bit slower, as observed for most agents. The only basin run that did not succeed ran out of time,
as the Optimist was not able to generate enough speed to sail upwind, the trajectory is shown in Fig-
ure 6.10. Even in the failed run, the SOTON agent showed robust behavior in the sense that it was
still sailing within the boundaries and not engaging in risky behavior. This underscores the robustness
and reliability of classic control methods when transferring from sim-to-real and in its performance in
general.

6.3. How did the selected agents perform in the basin compared to the simulation? 65

Figure 6.10: SOTON’s single failed run, showing that the speed loss after the tacks is detrimental.

The SAC regular agent, achieved a success rate of 100% in the simulated trials, but with varying
completion times. These are due to the different initial conditions it was evaluated on, which where not
encountered during training. Surprisingly, it was still able to complete the task every time. In the basin
however, it encountered more of a challenge, with its success rate falling to 56.2% over 16 trials. The
agent was able to do quite well in the 40% wind field in the basin, with most runs succeeding from the
different starting positions. The policy it had learned did seem to profit from some ’cheating’ behavior
in the basin, once it gained a bit of speed it would turn into the wind and use quick movements of the
rudder (sculling) and/or the ballast (rocking) to propel itself. This could explain why most of the failures
in the basin occurred in the 60% wind field, as the wind was too strong to succeed by trying to go
directly into the wind. The only times it was able to complete the task in the 60% wind field was from
the same starting position as which it was trained at, with 2 out of the 3 runs being successful as shown
in Figure 6.11. Overall, the regular SAC agent is not very robust to the changes in the environments.

6.3. How did the selected agents perform in the basin compared to the simulation? 66

Figure 6.11: 3 basin runs of SAC_REG from D12 with 60% wind.

A particularly intriguing aspect of the study is the comparison between SAC_RI_3 and SAC_RI_4,
both of which were subjected to the same domain randomization training. Despite identical training set-
ups and comparable performances in the simulation, their outcomes in the basin were quite different.
SAC_RI_3 maintained an impressive success rate of 100% over 12 trials, mirroring its simulation per-
formance. Conversely, SAC_RI_4, which had demonstrated a 100% success rate in simulation, saw
its basin success rate halved to 50% across 6 trials. A Fisher’s Exact Test yielded a p-value of 0.025,
indicating a statistically significant difference in performance between the two agents. This discrepancy
between SAC_RI_3 and SAC_RI_4 highlights the inherent variability in learned policies by RL agents,
even when identical training set ups are employed. It also shows that, even when using the extensive
evaluation process in the simulation, the RL agent performance in the real-world is hard to predict.

Upon examining SAC_RI_3’s performance in the basin more closely, its results were quite impres-
sive reaching a success rate of 100%. To fairly compare the success rates of SAC_RI_3 and SOTON,
Fisher’s Exact Test was applied, yielding a high p-value of 1.0. This outcome indicates that there is
no statistically significant difference in the success rates between the two models at the conventional
significance levels. Furthermore, except for two outliers, the completion times seem to be generally
comparable to the SOTON agent. This is underscored using the Mann-Whitney U test, resulting in a
p-value of 0.252, meaning that the distributions of the data are similar.

When taking a closer look at the two runs by SAC_RI_3 that took more time to complete, they were
both started with the same initial conditions (D4, 40% wind) and they both ended up taking around
250 seconds to complete the task. During these runs, the Optimist got stuck in the wind but was able
to steadily recover itself and resume sailing to the finish line. Supplementary videos of the runs are
available for reference on the website, see Appendix A.

SAC_RI_4 succeeded in half the runs in the basin, with all of the successful runs being in the wind
field of 40%. In the failed runs in the 60% wind field, it didn’t fail horribly. It was able to sail quite well,
staying within the boundaries and demonstrating that it was trying to go upwind by beating. However,
it is unable to make enough progress going upwind due to drifting after a tack maneuver in the failed
runs, thus running out of time. This can be seen in Figure 6.12 and in the supplementary videos.

6.3. How did the selected agents perform in the basin compared to the simulation? 67

Figure 6.12: 1 basin run of SAC_RI_4 from D12 with 60% wind level.

Finally, the agents trained with additional noise added during the trainings all achieved a suc-
cess rate of 100% in the simulation. However, the performances in the basin environment drastically
dropped, with SAC_ON_01 failing to succeed in any of the 6 trials, and not showing an ability to tack
in any of the runs and going out of bounds quickly, indicating a complete inability to generalize its
simulation training to the real-world conditions encountered in the basin. SAC_ON_04’s success rate
dropped to a critical 22.2% over 9 trials, and SAC_ON_10 declined to 42.9% in 9 trials.

Similar to SAC_ON_01, SAC_ON_04 also did not demonstrate the ability to tack. The only two
successful runs occurred in a 60% wind field starting from the corner position (D12) as shown in Fig-
ure 6.13. It manages to gain speed in the areas with high winds, after which it slowly turns into the wind
in the areas with a lower wind speeds to use the gained speed to progress towards the finish line. This
last part is occasionally aided by some cheating like sculling. Although this strategy was not robust —
failing to reach the target from other starting conditions and in the other attempt in Figure 6.13 — it did
result in a fast average completion time on the occasions when it was successful.

6.3. How did the selected agents perform in the basin compared to the simulation? 68

Figure 6.13: 3 basin runs of SAC_ON_04 from D12 with 60% wind level.

Finally, SAC_ON_10 was also only able to succeed in the higher wind speeds in the 60% wind
field. This agent did show the ability to tack, but did seem to avoid tacking if possible, as shown in
Figure 6.14. In one of those runs, it utilizes the same type of strategy as described for SAC_ON_04
before. In the other two, it does choose to tack and reaches the finish line on the other side. The agent
uses its ballast to get through the wind when tacking, resulting in tacks that are quite smooth and don’t
result in a major loss of speed. Therefore, this strategy does result in a fast average completion time
for this agent.

6.3. How did the selected agents perform in the basin compared to the simulation? 69

Figure 6.14: 3 basin runs of SAC_ON_10 from D12 with 60% wind level.

Overall, the basin runs of the agents trained with added noise suggest that the noise that was added
during training hinder the agent’s ability to adapt to real-world scenarios in a robust manner. The agents
seem to take more risks to try and reach the finish line as fast as possible, resulting in many failed runs.

In summary, the variance in success rates from simulation to basin highlights the complex nature of
real-world adaptability. SAC_RI_4’s unexpected drop in the basin, despite the same domain random-
ization training as SAC_RI_3, underscores the lack of a guarantee for consistent outcomes. Moreover,
the lack of robustness showed by the agents trained with different levels of noise questions the efficacy
of the observation noise approach. It emphasizes that the exact parameters of their application require
careful calibration to ensure successful real-world application. Furthermore, these findings suggest
that while DR does seem to enhance robustness to some degree, the variability in outcomes makes it
hard to predict with certainty how well an agent will perform in real-world settings. This unpredictability
in performance indicates that there is still much to explore and understand about the optimal training
methods for these agents.

In Figure 6.15, the energy ratios of all the successful runs of the agents are summarized. The lower
the energy ratio, the better, since it represents the ratio of rudder and ballast energy used compared to
the wind energy harnessed in the episode.

6.3. How did the selected agents perform in the basin compared to the simulation? 70

Figure 6.15: Energy ratio of all the agents in the simulation and basin. The lower the energy ratio, the more effective agents
are in utilizing the wind energy.

As expected, all the energy ratios are quite low, suggesting that all the agents that are success-
ful in reaching the target mainly use the wind energy to propel themselves. For SOTON, SAC, and
SAC_RI_3, the values when going from sim-to-real are quite comparable for the agents. SAC has
the highest energy ratio, indicating that it used its rudder and/or ballast to propel itself more than the
wind compared to the other agents, which lines up with the observations that were described before.
SAC_ON_10 reaches the lowest energy ratio in the basin, which can also be explained by the obser-
vations in the basin: the runs that it did succeed in, the agent was able to reach the target quite fast,
harnessing the wind power in an effective way and managing to tack without losing too much speed by
utilizing the ballast in an effective way.

7
Concluding Remarks

In conclusion, this thesis has addressed the research gap in the application of RL in domains character-
ized by low control authority and the dynamic, stochastic nature of environments like ASC, with a focus
on the challenges of robustness and stability during sim-to-real transfer. Despite the convenience and
efficiency of simulations for rapid data collection and iterative development, the transition from a simu-
lated environment to real-world application remains a major challenge. The study presented aimed to
bridge the measured modelling errors by demonstrating the viability of RL for controlling underactuated
systems, specifically ASC, through a practical, small-scale project. By developing and implementing a
control system using RL for a small sailboat first in a simulation and then transferring it to a real-world
setting, this work provides valuable insights into the process and outcomes of the sim-to-real transfer.

First off, the research gap was addressed by measuring and analyzing the modelling errors of
the used simulated environment. This way, the findings of the study increase the understanding of
the extent to which these discrepancies can impact the performance and reliability of the RL agents.
Quantifying the reality gap in this study addressed a critical yet often overlooked aspect in the field
of sim-to-real transfer. By doing this, the findings of this research can be placed in the bigger picture,
providing a benchmark for comparing different approaches and techniques.

In an attempt to bridge the reality gap, several types of RL agents were trained. For the RL frame-
work, the goal was to prevent overoptimization of the problem at hand. This was done to show the
potential of RL in complex control problems in general. Therefore, the RL framework and trainings
were set up using established and benchmarked methods such as RL Glue [6], Stable Baselines3
[65] and RL zoo [66]. Using this set up, different types of RL agents were trained applying sim-to-real
transfer techniques such as domain randomization and training with added noise.

To evaluate the performances of the RL agents, extensive evaluation metrics were used such as the
success rate, time to complete, and the energy ratio. These same metrics were used to evaluate the
performance of state-of-the-art control to compare. The metrics aid in answering the research question:

How robust, stable, and effective are RL strategies for sailing upwind when trained in a
simulated model and applied in real life?

Despite the advances in technology and methodology, this study confirms that sim-to-real trans-
fer remains a significant challenge in the deployment of robust and stable RL agents. The dynamic
and unpredictable nature of real-world environments, especially in scenarios with low control author-
ity like sailing, introduces complexities that simulations struggle to accurately replicate. This disparity
resulted in most RL agents failing to translate their good performances in the simulation to the real-
world. The performances that did succeed were mostly effective, they managed to find ways to have
runs that would match or even beat the performance of the state-of-the-art in terms of completion time.
The domain randomization strategy demonstrated its effectiveness in enhancing sim-to-real transfer,
resulting in policies trained in the simulation that exhibited greater robustness in the basin compared
to those trained without this strategy, with SAC_RI_3 reaching a 100% success rate over 12 runs in
different conditions. Yet, the stability of the trained algorithms is called into question by the perfor-
mance of SAC_RI_4, which achieved only a 50% success rate. Nevertheless, the strategy employed

71

72

by SAC_RI_4 appeared more robust compared to other trained agents. Its failures were not due to
risky behavior or going out of bounds, but rather due to running out of time, a challenge similar to
the one encountered in the single failed attempt by SOTON. The addition of noise during training did
not achieve the desired impact. The implementation of noise models was not specifically optimized
or tailored to the system, indicating that mere addition of basic noise models is insufficient for training
policies that improve the sim-to-real transfer.

However, it’s not all rough seas. The study identified and demonstrated that certain RL agents,
despite the reality gap, were able to learn robust and effective policies. This shows that with the right
strategies and adjustments, the hurdle of sim-to-real transfer can be overcome. While it is clear that the
current state of technology and methods is not perfect, this work has enhanced the understanding of
RL in ASC and complex control problems alike. By quantifying the reality gap and using benchmarked
RL methods, it lays a solid foundation for future explorations.

8
Recommendations

This chapter provides a brief overview of the recommendations to advancing the research initiated in
this study.

1. Refinement of Simulation Models: Building on the quantification of the reality gap provided by
this study, future research can focus on reducing the reality gap by improving the simulation. It
would be most interesting to use the findings from this study on the reality gap, identify the areas
where the modelling errors are largest and improve the simulation in those parts. For example,
by reducing the pitch and yaw error. It was also clear that in higher wind speeds, all of the er-
rors got larger. Therefore, it could be interesting to improve the fidelity of the simulation in areas
with higher winds, or during tacking maneuvers for example. That way, the reality gap could be
reduced where needed without having to sacrifice too much computational power and slowing
down the training process for RL.

2. Improving Sim-to-Real Transfer Techniques: Besides improving the simulation, further re-
search on the techniques applied to improve the sim-to-real transfer could help improving the
transfer. The domain randomization was kept fairly limited, only considering randomizing the
initial conditions. Further research could look into utilizing dynamics randomization for example.
This was shown in the literature review to improve sim-to-real transfer in other complex control
applications such as USV.

3. Improving Hardware: To replicate the real-world scenarios more accurately, the hardware lim-
itations observed in this study should be addressed. With a 15% error in sheet length and the
inability of simulations to account for slack, there is a clear need for direct control over the boom
angle.

4. Predictive Analysis for Real-World Performance: Another potential interesting area of future
study is the development of methods to better predict the performance of agents in the basin en-
vironment. The difference in the basin performances between agents SAC_RI_3 and SAC_RI_4
raises important questions about the underlying differences in their strategies. Investigating these
differences could yield predictive indicators that identify robust performance before actual transfer
to reality, streamlining the sim-to-real process.

5. Broader Implications for the Maritime Industry: The broader context of this research extends
to its potential impact on the maritime industry. As the industry navigates towards sustainabil-
ity goals, RL-controlled systems present a promising avenue for innovation. It is recommended
that future studies not only continue to push the boundaries of sim-to-real transfer in this specific
problem, but also consider specific use cases in the maritime domain where RL can offer bene-
fits. Such applications could play a big part in achieving more efficient and sustainable maritime
operations.

73

References

[1] E. Commission. “Reducing emissions from the shipping sector.” (2018), [Online]. Available: ht
tps://climate.ec.europa.eu/eu- action/transport- emissions/reducing- emissions-
shipping-sector_en#documentation (visited on 06/02/2023).

[2] IMO. “Un body adopts climate change strategy for shipping.” (2018), [Online]. Available: https:
/ / www . imo . org / en / MediaCentre / PressBriefings / Pages / 06GHGinitialstrategy . aspx
(visited on 06/06/2023).

[3] T. Chou, V. Kosmas, M. Acciaro, and K. Renken, “A Comeback of Wind Power in Shipping: An
Economic and Operational Review on the Wind-Assisted Ship Propulsion Technology,” Sustain-
ability 2021, Vol. 13, Page 1880, vol. 13, no. 4, p. 1880, Feb. 2021, ISSN: 2071-1050. DOI:
10.3390/SU13041880.

[4] C. Chen, F. Ma, J. Liu, R. R. Negenborn, Y. Liu, and X. Yan, “Controlling a cargo ship without
human experience using deep Q-network,” Journal of Intelligent and Fuzzy Systems, vol. 39,
no. 5, pp. 7363–7379, 2020, ISSN: 18758967. DOI: 10.3233/JIFS-200754.

[5] C. Chen, X. Q. Chen, F. Ma, X. J. Zeng, and J. Wang, “A knowledge-free path planning approach
for smart ships based on reinforcement learning,” Ocean Engineering, vol. 189, Oct. 2019, ISSN:
00298018. DOI: 10.1016/j.oceaneng.2019.106299.

[6] R. S. Sutton and A. G. Barto,Reinforcement learning: an introduction, Second edition. Cambridge,
Massachusetts: The MIT Press, Nov. 2018, ISBN: 9780262039246.

[7] B. Zhu, J. Xu, T. Du, M. Foshey, B. Li, and A. Schulz, “Learning to Fly: Computational Controller
Design for Hybrid UAVs with Reinforcement Learning,” ACM Trans. Graph, vol. 38, no. 4, p. 42,
2019. DOI: 10.1145/3306346.3322940.

[8] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-
level drone racing using deep reinforcement learning,” Nature, vol. 620, no. 7976, pp. 982–987,
Aug. 2023, ISSN: 1476-4687. DOI: 10.1038/s41586-023-06419-4.

[9] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi, “End-to-End Race Driving
with Deep Reinforcement Learning,” Proceedings - IEEE International Conference on Robotics
and Automation, pp. 2070–2075, Jul. 2018, ISSN: 10504729. DOI: 10.1109/ICRA.2018.846093
4.

[10] J. Tan, T. Zhang, E. Coumans, et al., “Sim-to-Real: Learning Agile Locomotion For Quadruped
Robots,” Robotics: Science and Systems, Apr. 2018, ISSN: 2330765X. DOI: 10.15607/RSS.
2018.XIV.010.

[11] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-Real Transfer in Deep Reinforcement Learn-
ing for Robotics: A Survey,” in IEEE SymposiumSeries on Computational Intelligence, SSCI, Insti-
tute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 737–744, ISBN: 9781728125473.
DOI: 10.1109/SSCI47803.2020.9308468.

[12] A. Irpan. “Deep reinforcement learning doesn’t work yet.” (2018), [Online]. Available: https://
www.alexirpan.com/2018/02/14/rl-hard.html (visited on 04/02/2023).

[13] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma, “Deep reinforcement learning based optimal trajec-
tory tracking control of autonomous underwater vehicle,” Chinese Control Conference, CCC,
pp. 4958–4965, Sep. 2017, ISSN: 21612927. DOI: 10.23919/CHICC.2017.8028138.

[14] J. Kimball, Physics of Sailing. CRC Press, Dec. 2009, ISBN: 9780429193361. DOI: 10.1201/
9781420073775.

[15] P. Van der Steen, “Ship Motion Prediction for the Ampelmann System,” Ph.D. dissertation, TU
Delft, 2016.

74

https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-shipping-sector_en#documentation
https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-shipping-sector_en#documentation
https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-shipping-sector_en#documentation
https://www.imo.org/en/MediaCentre/PressBriefings/Pages/06GHGinitialstrategy.aspx
https://www.imo.org/en/MediaCentre/PressBriefings/Pages/06GHGinitialstrategy.aspx
https://doi.org/10.3390/SU13041880
https://doi.org/10.3233/JIFS-200754
https://doi.org/10.1016/j.oceaneng.2019.106299
https://doi.org/10.1145/3306346.3322940
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.15607/RSS.2018.XIV.010
https://doi.org/10.15607/RSS.2018.XIV.010
https://doi.org/10.1109/SSCI47803.2020.9308468
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://doi.org/10.23919/CHICC.2017.8028138
https://doi.org/10.1201/9781420073775
https://doi.org/10.1201/9781420073775

References 75

[16] D. Santos, A. Negreiros, J. Jacobo, L. Goncalves, A. Silva Junior, and J. Silva, “Gain-scheduling
PID low-level control for robotic sailboats,” in Proceedings - 15th Latin American Robotics Sympo-
sium, 6th Brazilian Robotics Symposium and 9th Workshop on Robotics in Education, LARS/S-
BR/WRE, 2018, pp. 118–123, ISBN: 9781538677612. DOI: 10 . 1109 / LARS / SBR / WRE . 2018 .
00035.

[17] R. Steinegger, “The symmetry of wings and sails,” ZHAW Zürcher Hochschule für Angewandte
Wissenschaften, Sep. 2019. DOI: 10.21256/ZHAW-18571.

[18] F. Fossati, S. Muggiasca, and I. M. Viola, “Wind tunnel techniques for investigation and optimiza-
tion of sailing yachts aerodynamics,” English, in 2nd High Performance Yacht Design Conference,
2006, pp. 105–113.

[19] Velocity Prediction Program (VPP) - ORC. [Online]. Available: https://orc.org/organization/
velocity-prediction-program-vpp.

[20] J. Kerwin and H. Irving Pratt, “A Velocity Prediction Program for Ocean Racing Yachts Revised
to June, 1978,” The Society of Naval Architects and Marine Engineers, SNAME, Report 78-11
Massachusetts Institute of Technology, MIT, Department of Ocean Engineering, Ocean Race
Handicapping Project, 1976.

[21] G. S. Hazen, “A model of sail aerodynamics for diverse rig types,” The Society of Naval Architects
and Marine Engineers, SNAME, March 22, 1980. George S. Hazen Yacht Design & Consulting,
1980. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3Af8f5
c069-9337-4124-aa56-8524f03b47fc.

[22] J. Gerritsma, R. Onnink, and A. Versluis, “Geometry, resistance and stability of the Delft System-
atic Yacht hull series,” in International Shipbuilding Progress, ISP, vol. 28, Delft: TU Delft, Faculty
of Marine Technology, Dec. 1981.

[23] A. B. Philpott, R. M. Sullivan, and P. S. Jackson, “Theory and Methodology Yacht velocity pre-
diction using mathematical programming,” European Journal of Operational Research, vol. 67,
pp. 13–24, 1993.

[24] A. Andersson, A. Barreng, E. Bohnsack, et al., “Design of a Foiling Optimist,” Journal of Sailing
Technology, vol. 3, no. 01, pp. 1–24, Sep. 2018, ISSN: 2475-370X. DOI: 10.5957.jst.2018.06.

[25] J. Keuning, K. Vermeulen, and E. J. Ridder, “A Generic Mathematical Model for the Maneuvering
and Tacking of a Sailing Yacht,” in SNAME 17th Chesapeake Sailing Yacht Symposium, Jun.
2005. DOI: 10.5957/CSYS-2005-012.

[26] H. Saoud, M. D. Hua, F. Plumet, and F. Ben Amar, “Modeling and Control Design of a Robotic
Sailboat,” in Robotic Sailing 2013, Springer, Cham, 2014, pp. 95–110. DOI: 10.1007/978-3-319-
02276-5{_}8.

[27] Y. Masuyama and T. Fukasawa, “Tacking Simulation of Sailing Yachts With New Model of Aero-
dynamic Force Variation During Tacking Maneuver,” Journal of Sailing Technology, vol. 2, no. 10,
pp. 1–34, Oct. 2011, ISSN: 2475-370X.

[28] M. Buehler, C. Heinz, and S. Kohaut, “Dynamic Simulation Model for an Autonomous Sailboat,”
in International Robotic Sailing Conference 2018, Southampton, 2019.

[29] J. D. Setiawan, D. Chrismianto, M. Ariyanto, C. W. Sportyawan, R. D. Widyantara, and S. Alimi,
“Development of Dynamic Model of Autonomous Sailboat for Simulation and Control,” 7th Interna-
tional Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE
2020 - Proceedings, pp. 52–57, Sep. 2020. DOI: 10.1109/ICITACEE50144.2020.9239150.

[30] A. Wolniakowski and M. Czarna, “A Framework for Model Sailing Simulation in Gazebo,” 2022
26th International Conference on Methods and Models in Automation and Robotics, MMAR 2022
- Proceedings, pp. 81–86, 2022. DOI: 10.1109/MMAR55195.2022.9874293.

[31] R. Tedrake, Underactuated Robotics. 2023. [Online]. Available: https://underactuated.csail.
mit.edu.

[32] R. Stelzer and T. Pröll, “Autonomous sailboat navigation for short course racing,” Robotics and
Autonomous Systems, vol. 56, no. 7, pp. 604–614, Jul. 2008, ISSN: 0921-8890. DOI: 10.1016/
J.ROBOT.2007.10.004.

https://doi.org/10.1109/LARS/SBR/WRE.2018.00035
https://doi.org/10.1109/LARS/SBR/WRE.2018.00035
https://doi.org/10.21256/ZHAW-18571
https://orc.org/organization/velocity-prediction-program-vpp
https://orc.org/organization/velocity-prediction-program-vpp
https://repository.tudelft.nl/islandora/object/uuid%3Af8f5c069-9337-4124-aa56-8524f03b47fc
https://repository.tudelft.nl/islandora/object/uuid%3Af8f5c069-9337-4124-aa56-8524f03b47fc
https://doi.org/10.5957.jst.2018.06
https://doi.org/10.5957/CSYS-2005-012
https://doi.org/10.1007/978-3-319-02276-5{_}8
https://doi.org/10.1007/978-3-319-02276-5{_}8
https://doi.org/10.1109/ICITACEE50144.2020.9239150
https://doi.org/10.1109/MMAR55195.2022.9874293
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://doi.org/10.1016/J.ROBOT.2007.10.004
https://doi.org/10.1016/J.ROBOT.2007.10.004

References 76

[33] Y. Tipsuwan, P. Sanposh, and N. Techajaroonjit, “Overview and control strategies of autonomous
sailboats—A survey,” Ocean Engineering, vol. 281, p. 114 879, Aug. 2023, ISSN: 0029-8018.
DOI: 10.1016/J.OCEANENG.2023.114879.

[34] H. Erckens, G. A. Büsser, C. Pradalier, and R. Y. Siegwart, “Avalon: Navigation strategy and
trajectory following controller for an autonomous sailing vessel,” IEEE Robotics and Automation
Magazine, vol. 17, no. 1, pp. 45–54, Mar. 2010, ISSN: 10709932. DOI: 10.1109/MRA.2010.
935792.

[35] M. Zyczkowski and R. Szlapczynski, “Collision risk-informed weather routing for sailboats,” Re-
liability Engineering & System Safety, vol. 232, p. 109 015, Apr. 2023, ISSN: 0951-8320. DOI:
10.1016/J.RESS.2022.109015.

[36] H. Saoud, M. Hua, F. Plumet, and F. Ben Amar, “Routing and course control of an autonomous
sailboat,” in European Conference on Mobile Robots, ECMR 2015 - Proceedings, 2015, ISBN:
9781467391634. DOI: 10.1109/ECMR.2015.7324218.

[37] D. Sidoti, K. R. Pattipati, and Y. Bar-Shalom, “Minimum Time Sailing Boat Path Algorithm,” IEEE
Journal of Oceanic Engineering, vol. 48, no. 2, pp. 307–322, Apr. 2023, ISSN: 15581691. DOI:
10.1109/JOE.2022.3227985.

[38] A. da Silva Junior, D. Dos Santos, A. de Negreiros, J. Silva, and L. Gonçalves, “High-level path
planning for an autonomous sailboat robot using Q-learning,” Sensors (Switzerland), vol. 20,
no. 6, 2020. DOI: 10.3390/s20061550.

[39] L. Liu, C. Wang, H. Gao, D. Shen, and Y. Liao, “High-Level Path Planning of Unmanned Sailboat
for Sailing Championship and Innovative Education,” Proceedings of 2022 IEEE International
Conference on Unmanned Systems, ICUS 2022, pp. 1557–1562, 2022. DOI: 10.1109/ICUS555
13.2022.9986804.

[40] F. Plumet, H. Saoud, and M. D. Hua, “Line following for an autonomous sailboat using potential
fields method,” OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension,
2013. DOI: 10.1109/OCEANS-BERGEN.2013.6607961.

[41] Y. Deng, X. Zhang, and G. Zhang, “Line-of-Sight-Based Guidance and Adaptive Neural Path-
Following Control for Sailboats,” IEEE Journal of Oceanic Engineering, vol. 45, no. 4, pp. 1177–
1189, Oct. 2020, ISSN: 15581691. DOI: 10.1109/JOE.2019.2923502.

[42] C. Pêtrès, M. Romero-Ramirez, and F. Plumet, “Navigation with obstacle avoidance of an au-
tonomous sailboat,” in Field Robotics - Proceedings of the 14th International Conference on
Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR
2011, 2012, pp. 86–93, ISBN: 9789814374279.

[43] F. Plumet, C. Pêtrès, M.-A. Romero-Ramirez, B. Gas, and S.-H. Ieng, “Toward an Autonomous
Sailing Boat,” IEEE Journal of Oceanic Engineering, vol. 40, no. 2, pp. 397–407, 2015. DOI:
10.1109/JOE.2014.2321714.

[44] D. Ulysse, R. Niklas, and K. Jakob, “Energy Efficient Self-SteeringMechanism for an Autonomous
Sailing Vessel,” in OCEANS 2019 - Marseille, Marseille, 2019, pp. 1–6, ISBN: 9781728114507.
DOI: 10.1109/OCEANSE.2019.8867310.

[45] N. A. Cruz and J. C. Alves, “Navigation performance of an autonomous sailing robot,” 2014
Oceans - St. John’s, OCEANS 2014, Jan. 2015. DOI: 10.1109/OCEANS.2014.7003227.

[46] S. Lemaire, Y. Cao, T. Kluyver, et al., “Adaptive Probabilistic Tack Manoeuvre Decision for Sailing
Vessels,” Proceedings of the International Robotic Sailing Conference, pp. 31–39, 2018.

[47] N. A. Cruz and J. C. Alves, “Auto-heading controller for an autonomous sailboat,” OCEANS’10
IEEE Sydney, OCEANSSYD 2010, 2010. DOI: 10.1109/OCEANSSYD.2010.5603882.

[48] R. Stelzer, T. Pröll, and R. I. John, “Fuzzy logic control system for autonomous sailboats,” IEEE
International Conference on Fuzzy Systems, 2007, ISSN: 10987584. DOI: 10.1109/FUZZY.2007.
4295347.

[49] G. Zhang, J. Li, C. Liu, and W. Zhang, “A robust fuzzy speed regulator for unmanned sailboat
robot via the composite ILOS guidance,” Nonlinear Dynamics, vol. 110, no. 3, pp. 2465–2480,
Nov. 2022, ISSN: 1573269X. DOI: 10.1007/S11071-022-07763-2/FIGURES/16.

https://doi.org/10.1016/J.OCEANENG.2023.114879
https://doi.org/10.1109/MRA.2010.935792
https://doi.org/10.1109/MRA.2010.935792
https://doi.org/10.1016/J.RESS.2022.109015
https://doi.org/10.1109/ECMR.2015.7324218
https://doi.org/10.1109/JOE.2022.3227985
https://doi.org/10.3390/s20061550
https://doi.org/10.1109/ICUS55513.2022.9986804
https://doi.org/10.1109/ICUS55513.2022.9986804
https://doi.org/10.1109/OCEANS-BERGEN.2013.6607961
https://doi.org/10.1109/JOE.2019.2923502
https://doi.org/10.1109/JOE.2014.2321714
https://doi.org/10.1109/OCEANSE.2019.8867310
https://doi.org/10.1109/OCEANS.2014.7003227
https://doi.org/10.1109/OCEANSSYD.2010.5603882
https://doi.org/10.1109/FUZZY.2007.4295347
https://doi.org/10.1109/FUZZY.2007.4295347
https://doi.org/10.1007/S11071-022-07763-2/FIGURES/16

References 77

[50] Y. Briere, F. L. Cardoso Ribeiro, and M. A. Vieira Rosa, “Design methodologies for the control of
an unmanned sailing robot,” IFAC Proceedings Volumes, vol. 42, no. 18, pp. 58–65, Jan. 2009,
ISSN: 1474-6670. DOI: 10.3182/20090916-3-BR-3001.0026.

[51] J. He, L. Xiao, and J. Jouffroy, “Towards heading control of an autonomous sailing platform
through weight balancing,” in IFAC Proceedings Volumes, vol. 9, 2012, pp. 392–397, ISBN:
9783902823601. DOI: 10.3182/20120919-3-IT-2046.00067.

[52] Q. Sun, W. Qi, H. Liu, Z. Sun, T. L. Lam, and H. Qian, “OceanVoy: A hybrid energy planning sys-
tem for autonomous sailboat,” IEEE International Conference on Intelligent Robots and Systems,
pp. 2481–2487, Oct. 2020, ISSN: 21530866. DOI: 10.1109/IROS45743.2020.9341591.

[53] M. L. Puterman, Markov Decision Processes. Wiley, Apr. 1994, ISBN: 9780471619772. DOI:
10.1002/9780470316887.

[54] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement Learning for Control:
Performance, Stability, and Deep Approximators,” Annual Reviews in Control, vol. 46, pp. 8–28,
Jan. 2018, ISSN: 1367-5788. DOI: 10.1016/J.ARCONTROL.2018.09.005.

[55] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your robot
with deep reinforcement learning: lessons we have learned,” International Journal of Robotics
Research, vol. 40, no. 4-5, pp. 698–721, Apr. 2021, ISSN: 17413176. DOI: 10.1177/027836492
0987859.

[56] R. Bellman, Dynamic Programming. Dover Publications, 1957, ISBN: 9780486428093.
[57] C. J. C. H. Watkins and P. Dayan, “Q-learning,”Machine Learning 1992 8:3, vol. 8, no. 3, pp. 279–

292, May 1992, ISSN: 1573-0565. DOI: 10.1007/BF00992698.
[58] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement

learning,” Machine Learning 1992 8:3, vol. 8, no. 3, pp. 229–256, May 1992, ISSN: 1573-0565.
DOI: 10.1007/BF00992696.

[59] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with deep reinforce-
ment learning,” HotNets 2016 - Proceedings of the 15th ACM Workshop on Hot Topics in Net-
works, pp. 50–56, Nov. 2016. DOI: 10.1145/3005745.3005750.

[60] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani, “Data Efficient Reinforce-
ment Learning for Legged Robots,” inProceedings of the Conference on Robot Learning, ser. Pro-
ceedings of Machine Learning Research, vol. 100, PMLR, Jun. 2020, pp. 1–10.

[61] B. Recht, “A Tour of Reinforcement Learning: The View from Continuous Control,” Annual Review
of Control, Robotics, and Autonomous Systems, vol. 2, pp. 253–279, May 2019, ISSN: 25735144.
DOI: 10.1146/ANNUREV-CONTROL-053018-023825.

[62] L. Smith, I. Kostrikov, and S. Levine, “Demonstrating a Walk in the Park: Learning to Walk in 20
Minutes With Model-Free Reinforcement Learning,” Robotics: Science and Systems, 2023.

[63] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State Representation Learning for
Control: An Overview,” Neural Networks, vol. 108, pp. 379–392, Dec. 2018. DOI: 10.1016/j.
neunet.2018.07.006.

[64] T. Suda and D. Nikovski, “Deep Reinforcement Learning for Optimal Sailing Upwind,” in 2022 In-
ternational Joint Conference on Neural Networks (IJCNN), vol. 2022-July, IEEE, Jul. 2022, pp. 1–
8, ISBN: 978-1-7281-8671-9. DOI: 10.1109/IJCNN55064.2022.9892369.

[65] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-Baselines3: Re-
liable Reinforcement Learning Implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021.

[66] A. Raffin, RL Baselines3 Zoo, https://github.com/DLR-RM/rl-baselines3-zoo, 2020.
[67] J. Hwangbo, J. Lee, A. Dosovitskiy, et al., “Learning agile and dynamic motor skills for legged

robots,” Science Robotics, vol. 4, no. 26, Jan. 2019, ISSN: 24709476. DOI: 10.1126/sciroboti
cs.aau5872.

[68] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation,” 4th International Conference on Learning
Representations, ICLR 2016 - Conference Track Proceedings, Jun. 2015.

https://doi.org/10.3182/20090916-3-BR-3001.0026
https://doi.org/10.3182/20120919-3-IT-2046.00067
https://doi.org/10.1109/IROS45743.2020.9341591
https://doi.org/10.1002/9780470316887
https://doi.org/10.1016/J.ARCONTROL.2018.09.005
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1177/0278364920987859
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1146/ANNUREV-CONTROL-053018-023825
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1109/IJCNN55064.2022.9892369
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872

References 78

[69] S. T. Havenstrøm, A. Rasheed, andO. San, “Deep Reinforcement Learning Controller for 3D Path
Following and Collision Avoidance by Autonomous Underwater Vehicles,” Frontiers in Robotics
and AI, vol. 7, p. 566 037, Jan. 2021, ISSN: 22969144. DOI: 10.3389/FROBT.2020.566037/
BIBTEX.

[70] D. Reda and H. Y. Ling, “Learning to Brachiate via Simplified Model Imitation,” SIGGRAPH Con-
ference Proceedings, vol. 1, 2022. DOI: 10.1145/3528233.3530728.

[71] N. Wang, Y. Wang, Y. Zhao, Y. Wang, and Z. Li, “Sim-to-Real: Mapless Navigation for USVs Using
Deep Reinforcement Learning,” Journal of Marine Science and Engineering, vol. 10, no. 7, 2022.
DOI: 10.3390/jmse10070895.

[72] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,” IEEE In-
ternational Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012, ISSN: 21530858.
DOI: 10.1109/IROS.2012.6386109.

[73] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking DeepReinforcement
Learning for Continuous Control,” 33rd International Conference on Machine Learning, ICML
2016, vol. 3, pp. 2001–2014, Apr. 2016. DOI: 10.5555/3045390.3045531.

[74] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep reinforcement
learning that matters,” 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 3207–
3214, Sep. 2018, ISSN: 2159-5399. DOI: 10.1609/AAAI.V32I1.11694.

[75] T. N. Larsen, H. Ø. Teigen, T. Laache, D. Varagnolo, and A. Rasheed, “Comparing Deep Re-
inforcement Learning Algorithms’ Ability to Safely Navigate Challenging Waters,” Frontiers in
Robotics and AI, vol. 8, p. 738 113, Sep. 2021, ISSN: 22969144. DOI: 10.3389/FROBT.2021.
738113.

[76] A. Laud and G. DeJong, “The influence of reward on the speed of reinforcement learning: An
analysis of shaping,” in Proceedings of the 20th International Conference on Machine Learning
(ICML-03), Washington DC, 2003.

[77] F. Muratore, M. Gienger, and J. Peters, “Assessing Transferability from Simulation to Reality
for Reinforcement Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 4, pp. 1172–1183, Apr. 2019, ISSN: 19393539. DOI: 10.1109/TPAMI.2019.2952353.

[78] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza, “Deep Drone
Racing: From Simulation to Reality with Domain Randomization,” IEEE Transactions on Robotics,
vol. 36, no. 1, pp. 1–14, Feb. 2020, ISSN: 19410468. DOI: 10.1109/TRO.2019.2942989.

[79] D. Wada, S. Araujo-Estrada, and S. Windsor, “Sim-to-Real Transfer for Fixed-Wing Uncrewed
Aerial Vehicle: Pitch Control by High-Fidelity Modelling andDomain Randomization,” IEEERobotics
and Automation Letters, vol. 7, no. 4, pp. 11 735–11742, Oct. 2022, ISSN: 23773766. DOI: 10.
1109/LRA.2022.3205442.

[80] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press, 2005, ISBN: 0262201623.

[81] F. H. H. A. Quadvlieg and S. Rapuc, “A pragmatic method to simulate maneuvering in waves,” in
SNAME Maritime Convention, Oct. 2019.

[82] V. Ferrari, R. Tonelli, A. Kisjes, and R. Hallmann, “Manoeuvring experiments, mathematical model
and sensitivity analysis for test-case ferry,” Trends in Maritime Technology and Engineering Vol-
ume 1, pp. 327–335, Jun. 2022. DOI: 10.1201/9781003320272-36.

[83] Legacy Products: NDI’s 40-Year History and Transition. [Online]. Available: https://www.ndigi
tal.com/products/legacy-products/.

https://doi.org/10.3389/FROBT.2020.566037/BIBTEX
https://doi.org/10.3389/FROBT.2020.566037/BIBTEX
https://doi.org/10.1145/3528233.3530728
https://doi.org/10.3390/jmse10070895
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.5555/3045390.3045531
https://doi.org/10.1609/AAAI.V32I1.11694
https://doi.org/10.3389/FROBT.2021.738113
https://doi.org/10.3389/FROBT.2021.738113
https://doi.org/10.1109/TPAMI.2019.2952353
https://doi.org/10.1109/TRO.2019.2942989
https://doi.org/10.1109/LRA.2022.3205442
https://doi.org/10.1109/LRA.2022.3205442
https://doi.org/10.1201/9781003320272-36
https://www.ndigital.com/products/legacy-products/
https://www.ndigital.com/products/legacy-products/

A
Supplementary Content

In the spirit of promoting transparency, reproducibility, and collaborative innovation, this project is open
source. MARIN has a dedicated webpage which contains a comprehensive repository of data and
resources related to this thesis:

https://www.marin.nl/en/research/artificial-intelligence-applications

Below is an overview of the contents available on this webpage:

• data/: Contains datasets from simulations and basin tests.
• videos/: Video files of all of the basin tests.
• scripts/: Post-processing and analysis scripts.
• agents/: Trained agents and their configuration files.

To support users in navigating these resources effectively, the webpage also provides instructions on
the following:

• How to access and download the datasets, videos, scripts, and trained agents.
• Guidelines for using the post-processing and analysis scripts, including prerequisites for their
execution and tips for troubleshooting common issues.

• Contact information for MARIN’s research team for inquiries and questions.

79

https://www.marin.nl/en/research/artificial-intelligence-applications

	Preface
	Abstract
	Introduction
	Research question
	Structure

	Sailing as a control problem
	What are the relevant physics of sailing?
	Points of sail
	Running downwind
	What makes upwind sailing complex compared to downwind sailing?
	How is sailing modeled?

	What are the relevant control features of sailing?
	What basic knowledge of control methods is necessary to describe sailing as a control problem?
	Sailing as a control problem

	What is the state-of-the-art for control of autonomous sailing control (ASC)?

	RL for autononomous sailing control
	What is the learning process in RL?
	Bellman equations
	Temporal Difference RL
	What is the learning process in DRL opposed to RL?
	Model-free vs. model-based RL

	What existing RL methods are most suitable to consider for ASC?
	State and action representation
	Choice, implementation and evaluation of an RL algorithm
	Reward design

	Sim-to-real transfer for control applications
	What methods have been used in similar applications to bridge the reality gap?
	How does the performance of an autonomously controlled sailboat change from sim-to-real?

	Training, evaluation and testing methods
	System overview
	Basin set-up
	XMF model
	RL environment & training set-up
	State-of-the-art control
	Measuring the reality gap
	Evaluation of agents in simulation
	Evaluation Metrics
	Energy Ratio
	High Risk Behavior

	Evaluation of agents in the basin

	Results
	What is the extent of the reality gap?
	What agents were selected to be tested in the basin after the evaluation in the simulation?
	How did the selected agents perform in the basin compared to the simulation?

	Concluding Remarks
	Recommendations
	References
	Supplementary Content

