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We address the problem of nonequilibrium superconductivity in the presence of microwave irradiation. Using
contemporary analytical methods, we refine the old Eliashberg theory and generalize it to arbitrary temperatures T

and frequencies ω. Microwave radiation is shown to stimulate superconductivity in a bounded region in the (ω,T )
plane. In particular, for T < 0.47Tc and for h̄ω > 3.3kBTc superconductivity is always suppressed by a weak ac
driving. We also study the supercurrent in the presence of microwave irradiation and establish the criterion for
the critical current enhancement. Our results can be qualitatively interpreted in terms of the interplay between
the kinetic (“stimulation” vs “heating”) and spectral (“depairing”) effects of the microwaves.

DOI: 10.1103/PhysRevB.97.184516

I. INTRODUCTION

The full understanding of the nonequilibrium properties
of superconductors is important for both fundamental theory
and applications. One of the basic phenomena in this field
is the microwave enhancement of superconductivity, known
for constriction-type microbridges as the Dayem-Wyatt effect
[1,2]. The basic form of this effect is generally observed in
superconducting stripes and amounts to enhancement of the
superconducting gap due to a nonequilibrium distribution of
quasiparticles created by a microwave field. It was theoretically
explained by Eliashberg [3,4] on the basis of the dynamic
Gorkov equations [5]. Since the superconducting gap � is not
easily available directly, the influence of the microwaves on the
critical pair-breaking current Ic and the critical temperature Tc

can be more preferable for experimental study. Klapwijk and
Mooij reported [6,7] the observation of the enhancement of Ic

and, most notably, also Tc of long homogeneous strips. Direct
observation of the gap enhancement followed in Ref. [8]. This
field flourished for years and the state of the art of the 1980s
was summarized in the review [9].

In developing the Eliashberg theory, more accurate models
of inelastic relaxation (realistic electron-phonon interaction)
were introduced [10], including an additional contribution to
the enhancement by the energy dependence of the recombi-
nation rate. The important issue of stability of the out-of-
equilibrium superconducting phase was studied by Schmid
and co-workers [11,12]. Interestingly, although enhancement
of the critical current was the first experimental manifestation
of the effect, its microscopic theory was lacking for a while
until the supercurrent flow in a superconductor under out-of-
equilibrium conditions was evaluated in Ref. [13]. Shortly
thereafter, the current dependence of the superconductivity
enhancement was studied in detail experimentally [14]. As one
of the fundamental features of the nonequilibrium response is
its strong sensitivity to inelastic processes, it is possible to use it
as a direct measure of the strength of these processes. A direct

proportionality between the minimum irradiation frequency
required for the enhancement of the critical current and the
inelastic scattering rate was used in Ref. [15] for such a
measurement. Similar ideas have been discussed theoretically
for superconducting weak links [13] and superconductor–
normal metal–superconductor junctions [16–18], and studied
in much detail in recent experiments [19,20].

Superconductivity enhancement in both homogeneous sys-
tems (superconducting wires and films) and hybrid structures
is associated with the fact that the quasiparticle distribution
function as a function of energy acquires structure at the
subthermal scale (the superconducting gap � in the former
case and the minigap εg in the latter case). However, while the
microwave field drives quasiparticles out of equilibrium, it is
not the only effect. It is indeed the leading one sufficiently close
to the critical temperature, when the density of states (DOS)
available for excitations is large. At lower T , a modification
of the order parameter by the microwaves becomes more and
more important. It is well known that even under equilibrium
conditions, the DOS in a current-carrying superconductor is
nontrivial [21,22]. As shown recently by Semenov et al. [23],
under driving by microwaves the spectral properties of the
superconducting wire are strongly modified by the field even
at zero temperature and coherent excited states are formed.

In the present work, we study the spectral and kinetic
response of a current-carrying superconducting wire to the
microwaves. We consider a diffusive superconductor (elastic
mean free path much shorter than the BCS coherence length
ξ0) irradiated by an ac electromagnetic wave in the presence of
a dc supercurrent described by a constant vector potential. We
assume energy relaxation to result from tunneling to a nearby
equilibrium normal reservoir with an energy-independent rate
γin = h̄/τin. Such a model is formally equivalent to the relax-
ation time approximation used by Eliashberg and co-workers
[3,4]. We assume a quasi-one-dimensional geometry, so that
both the ac and dc components of the vector potential are
collinear with the wire. We treat the ac field as a perturbation
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FIG. 1. Phase diagram of a superconductor under weak mi-
crowave driving (α → 0) at the frequency ω (the inelastic relaxation
rate γin/kBTc = 0.02). Gap enhancement is observed inside the curve
C. The region of the critical current enhancement is bounded by the
curve C ′. Inset: zoom of the gap enhancement region near Tc, showing
the minimal frequency ωmin,min ≈ 3.23 γin/h̄.

but impose no constraints on the temperature T , frequency ω,
order parameter �, dc component of the vector potential A0,
and the energy relaxation rate γin.

In the framework of the described model, our results are
summarized in the phase diagram shown in Fig. 1. The curve
C encircles the region in the (ω,T ) plane, where relatively weak
(α → 0) electromagnetic irradiation actually enhances the
superconducting gap �(T ) with respect to its equilibrium BCS
value �0(T ) in the absence of a supercurrent. Importantly, this
region has natural bounds from the side of low temperatures
(due to vanishing of the available DOS) and from the side
of high frequencies (the field oscillating too fast is unable
to create strong enough out-of-equilibrium population and
simply heats the system). The curve C ′ in Fig. 1 encloses
the region where the critical current of the superconductor
is enhanced by microwave irradiation. The region of the
critical current enhancement is narrower than the region of the
gap enhancement, illustrating a simple fact that it is actually
harder to enhance the superconductivity when the current is
applied. This is a result of the pair-breaking effect of the
supercurrent, which smoothens the singularity in the BCS DOS
[21,22] and, hence, in the field-induced distribution function
of quasiparticles.

The paper is structured as follows. In Sec. II we discuss the
main ingredients of the Eliashberg theory of superconductivity
enhancement. In Sec. III we formulate our σ -model-based
approach, valid in the whole region of parameters of the
problem. Next, we describe the results in Sec. IV and conclude
in Sec. V.

II. ELIASHBERG THEORY (T → Tc)

The standard theory of gap enhancement pioneered by
Eliashberg [3,4], elaborated in Refs. [11,12], and extended
to treat the supercurrent [13–15] describes a diffusive super-
conductor subject to microwave irradiation in the vicinity of
the critical temperature. It assumes that the absolute value

of the order parameter is uniform over the sample. Then
gauging out the phase of the order parameter one arrives at
a zero-dimensional problem in the field of a time-dependent
vector potential

A(t) = A0 + A1 cos ωt, (1)

where the static part A0 accounts for the dc supercurrent,
and A1‖A0. To characterize the depairing effect of the vector
potential [21] it is convenient to introduce the energy scales
(depairing rates)


 = 2e2DA2
0

h̄c2
, α = 2e2DA2

1

h̄c2
, (2)

where D is the normal-state diffusion coefficient in the super-
conductor [24].

The Eliashberg theory naturally generalized to the presence
of a finite A0 provides the following Ginzburg-Landau (GL)
equation for the time-averaged order parameter �:

7ζ (3)

8π2

(
�

kBTc

)2

− Tc − T

Tc

+ π


4kBTc

= αFneq, (3)

where the left-hand side is the usual expansion in the absence
of radiation (with the last term describing depairing due to
the supercurrent), while the right-hand side perturbatively
accounts for the ac component of the vector potential. In
general, expression for Fneq is a complicated function of ω,
�, 
, and γin (see Sec. IV A). The Eliashberg theory assumes
inelastic relaxation to be the slowest process and considers the
limit

γin � (h̄ω,�) � kBT . (4)

Under these conditions the function Fneq in the right-hand side
of Eq. (3) acquires the form

Fneq = − π

8kBTc

+ h̄ω

16γinkBTc

G

(
�

h̄ω
,



�

)
, (5)

where the first term is due to the modification of the static spec-
tral functions (depairing), while the second term has a kinetic
origin. The latter arises from the nonequilibrium correction to
the Fermi distribution function f0: f (ε) = f0(ε) + f1(ε) to be
found from the kinetic equation

2γinρ(ε)

h̄
f1(ε) = Imw(ε), (6)

where ρ(ε) is the DOS in the superconductor normalized to its
normal-state value [in terms of the spectral angle introduced
in Sec. III, ρ(ε) = Re cos θR(ε)], and Imw(ε) is the collision
integral for the interaction with the electromagnetic field [9].
According to Eq. (6), the correction f1(ε) becomes singular in
the absence of inelastic relaxation. That is why the first term
in Eq. (5) contains γin in the denominator, whereas the limit
γin → 0 is taken elsewhere. The specific dependence of ρ(ε)
on � renders G in Eq. (5) to be a nonanalytic function of the
order parameter.

In the limit (4), the function G has been evaluated exactly
for 
 = 0, relevant for the evaluation of the gap and Tc

enhancement without the dc supercurrent in Ref. [12]. It has
also been estimated in the presence of the supercurrent (
 is
determined by the current density) in Ref. [15]. We discuss
both of these cases below.
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A. Gap enhancement

In the absence of a dc supercurrent (
 = 0), the dynamic
response of a superconductor is characterized by the function
G0(�/h̄ω) = G(�/h̄ω,0) given by [12]

G0(u) =
{

2πu(1 − u2)−1/2, u < 1/2

4[K + 4u2(� − K)]/(2u + 1), u > 1/2,
(7)

where K = K(k) and � = �(a,k) denote complete elliptic
integrals of the first and the third kinds [25], and

a =
(

1

2u + 1

)2

, k =
(

2u − 1

2u + 1

)2

. (8)

G0(u) is a positive-value function with a cusp at u = 1/2
(corresponding to a maximum 2π/

√
3) and the following

asymptotes:

G0(u) =
{

2πu, u → 0
2 ln(2.9u)/u, u → ∞.

(9)

The value of � for given α, γin, ω, and T should be
obtained from solving Eqs. (3) and (5) with 
 = 0 and G =
G0(�/h̄ω). Superconductivity is said to be enhanced if �(T )
with irradiation exceeds its value �0(T ) in the absence of
the microwave field, which happens provided ω > ωmin(T ).
According to Eq. (5), ωmin(T ) is bounded from below by
ωmin,min = √

3γin/h̄ [corresponding to 2h̄ω = �0(T )]. Note,
however, that the resulting minimal frequency ωmin,min does
not obey the inequality (4) under which Eq. (5) was derived.
That means that the Eliashberg theory can only estimate
h̄ωmin,min ∼ γin but cannot predict the exact coefficient. A more
precise criterion for the gap enhancement will be formulated
in Sec. IV.

B. Critical current

In the presence of the supercurrent (
 
= 0), the GL equation
(3) for the order parameter should be supplemented by the
expression for the current:

js/j0 =
√




2(kBTc)3

∫
dε W (ε)[1 − 2f (ε)], (10)

where W (ε) is a weight function, which becomes W (ε) =
πεδ(|ε| − �) for small pair breaking (a more general expres-
sion is given in Sec. III C). The supercurrent density is naturally
measured in units of

j0 = eνkBTc

√
DkBTc

h̄
, (11)

where ν is the DOS at the Fermi level per one spin projection.
The critical value of the current density corresponds to


c = 4kB(Tc − T )/3π . In order to evaluate the function G

in the presence of a supercurrent, one has to consider the
pair-breaking effect of the latter on the spectral functions of
the superconductor. The pair breaking leads to the smearing of
the DOS ρ(ε) and the peak in the function W (ε) characterized
by a width w = (3/2)�(
c/�)2/3 [21,26]. As a result, in the
limit h̄ω � w � � the logarithmic integration for G is cut off

by w instead of h̄ω and the enhancement function G becomes

G

(
�

h̄ω
,

c

�

)
= 2h̄ω

�
ln (9.9�/w) (12)

[compare with the second line of Eq. (9)].
Equations (3), (5), (10), and (12) were used in Ref. [15]

to extract the inelastic scattering rate from experimental data
on the enhancement of the critical current as a function of
frequency.

III. THEORY FOR ARBITRARY TEMPERATURES

A. Keldysh sigma model

The response of a disordered superconductor to mi-
crowave irradiation can be described by the dynamic Usadel
equation for the quasiclassical Keldysh Green’s function ǧ

supplemented by the self-consistency equation for the time-
dependent order parameter [27,28]. This tedious procedure is
simplified as long as the ac component of the vector potential
A1(t) is small and can be treated as a perturbation on top of the
steady state in the presence of a static A0. However, even in
that case, calculations are quite lengthy due to a nonlinear and
nonlocal-in-time constraint imposed on ǧ. To treat the problem
we find it convenient to use the language of the nonlinear
Keldysh σ model for superconducting systems [29]. Although
we need it only at the saddle-point level equivalent to the
Usadel equation, we will benefit from the standard machinery
for expanding in terms of W modes (diffusons and cooperons).

The zero-dimensional Keldysh σ model is formulated in
terms of the order parameter �̌(t) and the matter field Qtt ′

which bares two time (or energy) arguments and acts in the
tensor product of the Nambu and Keldysh spaces, with the
Pauli matrices τi and σi , respectively. At the saddle point,
Q coincides with the quasiclassical Green’s function ǧ. In
what follows we will consider time (or energy) arguments
as usual matrix indices, with matrix multiplication implying
convolution in the time (or energy) domain. The Q matrix
satisfies the nonlinear constraint Q2 = 1. The σ -model action
(which determines the weight eiS/h̄ in the functional integral)
reads

S = iπ

δ
Tr

(
�Q − h̄D

2
ǎτ3Qǎτ3Q

)
− 4

λδ
Tr ��q, (13)

where δ = 1/νV is the mean level spacing in the sample (ν is
the DOS at the Fermi level per one spin projection, V is the
volume of the superconductor), λ is the dimensionless Cooper
coupling, and � is given by

� = iετ3 − �̌τ1 − γin

2
Qres. (14)

In Eqs. (13) and (14) we introduce the following matrices in
the Keldysh space:

�̌ = �σ0 + �qσ1, ǎ = aσ0 + aqσ1, (15)

where �(t) and a(t) = eA(t)/h̄c are classical fields (observ-
ables), while �q(t) and aq(t) are their quantum counterparts
(source fields).

Inelastic relaxation is modeled by tunneling to a normal
reservoir described by the last term in Eq. (14), with γin pro-
portional to the tunnel conductance. The reservoir is assumed
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to be at equilibrium with the temperature T :

Qres =
(

1 2F0

0 −1

)
K

⊗ τ3, (16)

where F0 is diagonal in the energy representation, with F0(ε) =
1 − 2f0(ε) = tanh(ε/2T ) being the thermal distribution func-
tion. The collision integral in our model of inelastic relaxation
is equivalent to the one used in the Eliahberg theory [see the
left-hand side of Eq. (6)].

In the absence of irradiation, the saddle-point solution in
the superconductor is diagonal in the energy space, Qεε′ =
2πδ(ε − ε′)Q(ε), where Q(ε) can be written as

Q(ε) =
(

QR(ε) [QR(ε) − QA(ε)]F0(ε)

0 QA(ε)

)
K

, (17)

with

QR(ε) =
(

cos θR(ε) sin θR(ε)
sin θR(ε) − cos θR(ε)

)
N

, (18a)

QA(ε) = −
(

cos θA(ε) sin θA(ε)
sin θA(ε) − cos θA(ε)

)
N

. (18b)

The spectral angles obey the symmetry relations θA(ε) =
−θR(−ε) = −[θR(ε)]∗ and can be found from the saddle point
(Usadel) equation

� cos θR(ε) + iεR sin θR(ε) − 
 sin θR(ε) cos θR(ε) = 0,

(19)

where εR,A = ε ± iγin/2 and the depairing energy 
 defined
in Eq. (2) plays the role of the spin-flip rate h̄/τs for magnetic
impurities [21,26]. The equilibrium value of the order param-
eter should be obtained from the self-consistency equation
[derivative of the action (13) with respect to �q]

� = λ

2

∫
dε F0(ε) Im sin θR(ε). (20)

B. Diffusons and cooperons

A microwave field A1(t) drives the system out of equilib-
rium and induces nondiagonal in energy components of the
matrix Q. In order to take them into account perturbatively,
we parametrize small deviations from the saddle (17) in terms
of the matrix W as [29–32]

Q = U−1
F U−1σ3τ3(1 + W + W 2/2 + · · · )UUF , (21)

where the matrices U and UF are diagonal in the energy
representation:

UF =
(

1 F

0 1

)
K

, U =
(

eiτ2θ
R/2 0

0 eiτ2θ
A/2

)
K

. (22)

The parametrization (21) reduces to the stationary saddle
point (17) at W = 0 and automatically respects the nonlinear
constraint Q2 = 1 in the nonstationary case. Nondiagonal in
energy elements of Q are encoded by nondiagonal elements
of W .

In general, a 4 × 4 matrix W anticommuting with σ3τ3 has
eight nonzero elements. The ac field A1(t) excites only half of

them, which allows one to restrict W to the form

W =
(

cRiτ2 dτ0

−dτ0 cAiτ2

)
K

, (23)

where cR
εε′ and cA

εε′ are the cooperon modes responsible for
the modification of the spectral angles θR and θA, dεε′ is the
diffuson mode altering the distribution function, and dεε′ is its
quantum counterpart. The first-order correction to the spectral
function is given by the following expression:

δQR
εε′ =

(
cos

θR
ε + θR

ε′

2
τ1 − sin

θR
ε + θR

ε′

2
τ3

)
cR
εε′ . (24)

The nonequilibrium correction to the distribution function
is determined by dεε′ . Note that the upper-right block of
the matrix W has only a τ0 component. In the language
of parametrization QK = QRF − FQA, conventional in the
Usadel equation formalism, this implies F being proportional
to the identity matrix in the Nambu space. To the first order in
W , one has

δFεε′ = dεε′

2 cos
[(

θR
ε − θA

ε′
)/

2
] . (25)

Expanding the action (13) to the second order in W , we
obtain the following bare correlation functions:

〈
cR,A
ε1ε2

cR,A
ε3ε4

〉 = (δ/π )δ̂ε1ε4 δ̂ε2ε3C
R,A
ε1ε2

, (26a)

〈dε1ε2dε3ε4〉 = (δ/π )δ̂ε1ε4 δ̂ε2ε3Dε1ε2 , (26b)

where δ̂εε′ = 2πδ(ε − ε′) and the propagators of the diffusive
modes are given by

Cα
εε′ = 1

Eαα
εε′ + 


[
1 + cos

(
θα
ε − θα

ε′
)]

cos
(
θα
ε + θα

ε′
) , (27a)

Dεε′ = 1

ERA
εε′ − 


[
1 + cos

(
θR
ε − θA

ε′
)]

cos
(
θR
ε + θA

ε′
) . (27b)

Here α = R,A, and we use the notation Eαβ

εε′ = Eα
ε + Eβ

ε′
with ER,A

ε = ±(−iεR,A cos θR,A
ε + � sin θR,A

ε ).

C. Perturbative analysis of a microwave field

In order to describe the full phase diagram of a supercon-
ductor at arbitrary temperatures and in the presence of a dc
supercurrent, we need to generalize the GL equation (3) for
arbitrary values of �, 
, ω, and T .

In the absence of microwaves, the equilibrium value of the
order parameter �(
,T ) should be obtained from a numerical
solution of Eqs. (19) and (20). The supercurrent js(
,T ) is then
calculated with the help of Eq. (10) with 1 − 2f (ε) = F0(ε)
and W (ε) = 2 Im sin2 θR(ε), which leads to the critical current
dependence jc(T ) shown by the dashed line in Fig. 7.

In the presence of microwaves, the Usadel equation and the
expression for the current are modified. The most effective way
to study them is to consider the induced correction to the action.
In the second order in the magnitude of the ac component of
the vector potential (1), we write it as

S[�q,aq] ≈ Seq[�q,aq] + A2
1Sneq[�q,aq], (28)

184516-4
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)d()c()b()a(

Δq

Δq

Δq

Δq Δq

FIG. 2. Contributions to the action linear in the quantum component of the order parameter �q and quadratic in A1 responsible for the
term Fneq(�,
,T ,ω,γin) in Eq. (29). Double lines stand for the diffusive modes (26), a triangle indicates �q, a wavy line denotes A1 cos ωt ,
and a black dot denotes A0. The difference between the diagrams (b) is that in the upper one each W is extracted from its own Q, whereas in
the lower one both W ’s are extracted from the same Q. The triple vertex in the diagram (d) involves the contribution from the cubic term in
Eq. (21), which vanishes since the saddle satisfies the Usadel equation (19). The diagrams (b), (c), and (d) contain an additional factor of A2

0

and therefore do not contribute to the modification of the gap in the absence of a dc supercurrent.

where Seq[�q,aq] refers to the equilibrium case without ir-
radiation. Here �q and aq are quantum sources needed to
produce the self-consistency equation for the time-averaged
order parameter � and the expression for the time-averaged
supercurrent js (in the absence of quantum sources, the action
vanishes: S[0,0] = 0).

The nonequilibrium correction to the action linear in �q and
quadratic in A1 is shown diagrammatically in Fig. 2, where we
keep only tree diagrams (no loops). The latter implies that we
neglect quantum corrections and consider the saddle perturbed
by a microwave field. This formal scheme automatically takes
into account corrections both to the spectral functions and the
distribution function, since diffusive modes denoted by double
lines in Fig. 2 can be either cooperons [Eq. (26a)] or diffusons
[Eq. (26b)]. The resulting equation for the order parameter,
δS[�q,0]/δ�q|�q=0 = 0, can be written in the form

Feq(�,
,T ,γin) + αFneq(�,
,T ,ω,γin) = 0, (29)

which can be considered as a generalization of the GL equation
(3) to the case of arbitrary temperatures. To determine the
supercurrent, one has to consider the nonequilibrium correc-
tion to the action linear in aq and quadratic in A1 shown
diagrammatically in Fig. 3. Extracting the supercurrent density
with the help of js(t) = (ie/2V )δS[0,aq]/δaq(t)|aq=0 [30], we
get for the time-averaged supercurrent

js/j0 =
√


[Ieq(�,
,T ,γin) + αIneq(�,
,T ,ω,γin)], (30)

where j0 is defined in Eq. (11).
The key outcomes of our theory are the functions

Fneq(�,
,T ,ω,γin) and Ineq(�,
,T ,ω,γin). Simultaneous so-
lution of Eqs. (29) and (30) gives the dependence of the order
parameter � and the depairing rate 
 on the temperature, dc

supercurrent, frequency and power of microwave irradiation,
and the inelastic relaxation rate.

IV. RESULTS

One of our results is presented in Fig. 4(b), where the critical
current under microwave irradiation is shown for α = 0.1,
h̄ω/kBTc = 0.1, and γin/kBTc = 0.02. It is to be compared
with the same dependence at equilibrium shown in Fig. 4(a).
Remarkably, microwave irradiation strongly influences the
phase diagram all over the parameter space. Two features
can be clearly identified: (i) stimulated superconductivity
in the vicinity of Tc with Eliashberg-like enhancement [the
lower-right corner of Fig. 4(b)] and (ii) strong sensitivity of
the supercurrent to microwave radiation at low temperatures
leading to the appearance of a pronounced minimum in js(�)
around �/kBTc ≈ 0.6 already for sufficiently weak driving
power α [see Fig. 4(c)].

A complicated structure of the function js(�) at low
temperatures with four solutions to the equation js(�) = j

in a certain range of external currents j raises the question of
stability. At equilibrium, the stable branch with djs/d� < 0 is
energetically favorable. Out of equilibrium, stability analysis
becomes more involved [11,12]. Note, however, that even if
the nonequilibrium state with � ≈ 0.6kBTc is locally stable
at low temperature, it might be very difficult to observe it
experimentally. This question deserves future studies.

A. Gap modification without supercurrent

While the general analysis of Eqs. (29) and (30) is rather
complicated, one can derive the criterion for the gap enhance-
ment in the absence of a dc supercurrent (
 = 0). In this case,

)d()c()b()’a()a(

aq aq

aq

aq

aq aq

FIG. 3. Contributions to the action linear in the quantum component of the vector potential aq and quadratic in A1 responsible for the term
Ineq(�,
,T ,ω,γin) in Eq. (30). The source field aq is denoted by an open dot. The appearance of the diagram (a′) which does not have its
counterpart in Fig. 2 is due to quadratic coupling to the electromagnetic field in Eq. (13).

184516-5



K. S. TIKHONOV, M. A. SKVORTSOV, AND T. M. KLAPWIJK PHYSICAL REVIEW B 97, 184516 (2018)

)c()b()a(

FIG. 4. (a) Critical current as a function of temperature and order parameter at equilibrium. (b) Critical current under microwave irradiation
with the frequency h̄ω = 0.1kBTc, irradiation power α = 0.1, and inelastic scattering rate γin = 0.02kBTc. (c) Cross section of the surface (b)
at T = 0 showing an additional minimum in js(�) around �/kBTc ≈ 0.6.

only the diagram shown in Fig. 2(a) should be taken into
account. Evaluating it and taking the derivative with respect
to �q , we cast the resulting expression for the time-averaged
order parameter in the form of Eq. (29) with

Feq = 1

2�

∫
dε F0(ε) Im sin θR

ε − 1

λ
(31)

and the nonequilibrium correction

Fneq = F sp
neq + Fkin

neq (32)

being a sum of the spectral and kinetic contributions:

F sp
neq = − 1

4�

∫
dε F0(ε) Im

{
CR

εε cos θR
ε sin

[
θR
ε + θR

ε−ω

]}
(33a)

and

Fkin
neq = 1

8�

∫
dε Dεε[F0(ε) − F0(ε − ω)]

× Im
{
sin θR

ε−ω − sin
[
θR
ε−ω + θR

ε + θA
ε

]}
. (33b)

The results (33) can be naturally interpreted as induced by
the field-generated correction to the stationary (time-averaged)
component of the spectral angle and the stationary (time-
averaged) component of the distribution function, correspond-
ingly. Indeed, extracting the linear in α corrections to θR

ε and
δF (ε) from Eqs. (24) and (25), we get

δθR
ε = −α

4
CR

εε sin
(
θR
ε + θR

ε−ω

) + {ω → −ω} (34a)

and

δF (ε) = −αDεε[F (ε) − F (ε − ω)]

8 cos
[(

θR
ε − θA

ε

)/
2
] [

cos

(
θR
ε−ω + θR

ε + θA
ε

2

)

+ cos

(
θA
ε−ω + θR

ε + θA
ε

2

)]
+ {ω → −ω}. (34b)

In Fig. 5, we illustrate the influcence of microwaves on
the stationary distribution function f (E) = [1 − F (E)]/2 and
the density of states ν(ε)/ν = Re cos θR

ε . Substituting now
Eqs. (34) into the equilibrium expression (31), we recover the
nonequilibrium contributions (33).

We emphasize that spliting (33) of Fneq into a sum of the
spectral and kinetic contributions holds only in the absence
of the supercurrent (A0 = 0). Then the ac component A1(t)
enters only squared, A2

1(t), and only the diagram shown in
Fig. 2(a) contributes. This is not the case in the presence
of the supercurrent, as the diagrams (b)–(d) suggest. This

implies that in general, interpretation of the results in terms
of time-averaged corrections to the distribution function and
the spectral angle is impossible.

1. Comparison with the Eliashberg theory

Let us discuss how the Eliashberg theory is reproduced
from Eqs. (33) at T → Tc in the limit (4). At equilibrium,
equation Feq = 0 coincides with the self-consistency equation
(20). In the vicinity of the transition, −Feq gives the left-hand
side of the GL equation (3) at 
 = 0. The nonequilibrium
terms then reproduce the right-hand side of Eq. (3). Under
the conditions (4), the spectral contribution (33a) gives F sp

neq =
−π/8kBTc, reproducing the corresponding term in Eq. (5).
The kinetic contribution (33b) contains the zero-frequency
diffuson (loose diffuson [33]) Dεε , which is singular in the
absence of inelastic relaxation [compare with the kinetic
equation (6)]. Keeping the leading order in γin → 0, we find

α

FIG. 5. Microwave-induced modification of the stationary (time-
averaged) (a) quasiparticle distribution function f (ε) = [1 − F (ε)]/2
and (b) density of states. Black to red: α/kBTc = 0, 0.005, and 0.01.
The curves are plotted at T/Tc = 0.98, h̄ω = 20γin, γin/kBTc = 0.02,
corresponding to the enhancement region in Fig. 1. The values of
� marked by the vertical dashed lines are obtained from the self-
consistency equation. Dotted lines correspond to � ± h̄ω.
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FIG. 6. Temperature dependence of the order parameter for zero
dc supercurrent. Black: no microwaves (BCS case); color: microwave
power α/kBTc = 0.005 and 0.01. Microwave frequency h̄ω/kBTc =
1.5, and γin/kBTc = 0.02. Gap enhancement near Tc turns into
gap suppression at low temperatures, in accordance with the phase
diagram in Fig. 1.

Fkin
neq = (h̄ω/16γinkBTc)G0(�/h̄ω), where G0(u) is given by

Eq. (7). Hence we completely reproduce the main Eq. (5) of
the Eliashberg theory in the limit (4).

Our approach can be used to establish a refined criterion
for the minimum frequency ωmin,min needed for the gap en-
hancement at some temperatures. As explained in Sec. II A,
the simplified Eliashberg theory estimates h̄ωmin,min ∼ γin but
fails to obtain the exact coefficient due to violation of the
inequalities (4). On the other hand, our general equations (33)
do not require those conditions to be fulfilled and can be
applied for arbitrary ω/γin. In terms of the function G0(u),
a finite value of ω/γin leads to the rounding of the cusp at
u = 1/2 and the overall suppression of the function. As a result,
the enhancement effect becomes less pronounced and hence
requires a larger frequency to be observable. We find

h̄ωmin,min = 3.23 γin, (35)

corresponding to h̄ωmin,min/� ≈ 1.38. This minimal frequency
can be seen in the inset in Fig. 1. Equation (35) is to be
compared with the prediction of the simplified theory where
the spectral smearing by γin is neglected [see Eq. (5)], which
gives the factor 1.73 instead of 3.23 and the corresponding ratio
h̄ωmin,min/� = 2 [9].

2. Phase diagram at weak driving

The order parameter �(T ) at given ω, α, and γin should be
obtained from a numerical solution of Eqs. (29) and (31)–(33).
To visualize the effect we compare the obtained �(T ) with
the equilibrium BCS value �0(T ) and identify the regions
where the gap is enhanced [�(T ) > �0(T )] or suppressed
[�(T ) < �0(T )]. A typical temperature dependence of the
order parameter is shown in Fig. 6. At some value of α > 0,
the function �(T ) becomes two-valued, with the upper (lower)
branch being the stable (unstable) solution [11,12].

The analysis simplifies in the limit of weak electromagnetic
irradiation (α → 0), where the boundary between the two
regions is determined from the condition

Fneq(�0(T ),0,T ,ω,γin) = 0 (36)

[the order of arguments as in Eq. (29)]. For a given inelastic
relaxation rate γin, the solution of this equation defines the
curveC in the (ω,T ) plane shown in Fig. 1 for γin/kBTc = 0.02.
For small γin this curve almost does not depend on γin, except
for the vicinity of the critical temperature, where it marks the
lower bound ωmin,min for the gap enhancement [see the inset to
Fig. 1 and Eq. (35)]. Starting with ωmin,min near Tc, the lower
part of the curve C describes the evolution of ωmin(T ) with the
temperature decrease.

Remarkably, our results indicate that there exists also a
maximal frequency ωmax(T ) for gap enhancement. Thus the
region of stimulated superconductivity encompassed by the
curve C in Fig. 1 is bounded both at low temperatures (no
states available) and at high frequencies (heating-dominated
regime). A weak microwave signal cannot enhance � if the
temperature is smaller than Tmin ≈ 0.47Tc or the frequency
is larger than ωmax ≈ 3.3kBTc/h̄, despite the fact that the
distribution function continues to have a nonthermal structure.

At small temperatures, T � �, redistribution of quasiparti-
cles (kinetic contribution) is not effective due to the suppressed
DOS at low energies. Instead, the spectral contribution given
by Eq. (33a) dominates. In the quasistationary limit, ω � �, it
turns to F sp

neq = −π/8�. At the same time, Eq. (29) becomes
Feq = ln(�/�0), and we get for the gap suppression, � =
�0 − πα/8. This is consistent with the Abrikosov-Gorkov
result [26,34] with the depairing rate α/2 (the factor 1/2 is
due to time averaging).

Finally, we would like to emphasize that the phase diagram
shown in Fig. 1 is plotted at vanishing microwave power,
α → 0. The main effect of small α is to shift the right boundary
of the gap enhancement region to temperatures above Tc.
Modification of the whole phase diagram as a function of α

will be studied elsewhere [35].

B. Critical current enhancement

Determination of the critical current jc(T ) is a more
complicated procedure, which requires maximization of the
function js(�). In Fig. 7 we plot the resulting jc(T ) for a set
of frequencies at a fixed irradiation power in the full range
of temperatures. The dashed line is the critical current at
equilibrium [36,37]. One clearly observes that the frequency,

FIG. 7. Critical current as a function of temperature at fixed radia-
tion intensity α = 0.1kBTc and varying frequency. Black dashed line:
without irradiation; color lines: frequency 0.1kBTc/h̄ to 0.4kBTc/h̄

from blue to red; γin/kBTc = 0.02.
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needed to enhance the supercurrent via irradiation at T ∼ Tc,
grows with the temperature decrease, consistent with previous
studies. However, at a certain T of the order of 0.5Tc, the
sequence of the curves corresponding to various frequencies
reverses. This happens when the effects of irradiation on
the spectral properties of a superconductor (superconductivity
suppression via pair breaking) become more important than
the kinetic effects (quasiparticle redistribution).

The region on the phase diagram where the critical current
is enhanced by a weak microwave field is shown by the curve
C ′ in Fig. 1. It is immersed into the region of gap enhancement
enclosed by the curve C, reflecting the fact that it is harder to
stimulate superconductivity in the presence of depairing due
to the supercurrent.

V. SUMMARY

Using the formalism of the Keldysh nonlinear σ model,
we have studied the full phase diagram of a superconducting
wire subject to the microwave irradiation in the presence of
a dc supercurrent. The only assumption is the small value of
the amplitude of the ac electromagnetic field, whereas all the
other parameters of the theory can be arbitrary. Our approach
essentially generalizes the Eliashberg theory and the results for
the critical current enhancement in the vicinity of Tc [11,12] to
the case of arbitrary temperatures. The developed theory treats
the effect of quasiparticle redistribution on an equal footing
with the modification of the spectral properties.

One of our main findings is establishing the criteria for the
microwave-stimulated enhancement (a) of the gap and (b) of
the critical current, summarized in the phase diagram shown
in Fig. 1. We reveal that the gap enhancement is observed
in a finite region of the (ω,T ) plane, roughly limited by
the conditions T > 0.5Tc and h̄ω < 3kBTc. Such a behavior
results from the interplay between several competing effects
of the microwaves: (i) nonequilibrium distribution of quasipar-
ticles with subthermal features responsible for stimulation of
superconductivity, (ii) Joule heating, and (iii) modification of
the spectral functions due to depairing. The absence of the gap
enhancement at low T should be attributed to the suppression
of available quasiparticle DOS switching off the mechanism
(i), whereas at large frequencies, the dominant effect is the
Joule heating (ii). In the presence of a supercurrent, the role
of mechanism (iii) is increased that makes the region of the
critical current enhancement narrower than the region of the
gap enhancement.

In our analysis we assumed the simplest model of inelastic
relaxation by tunnel coupling to a normal reservoir. While its
effect on the smearing of the BCS coherence peak is similar
to that of electron-electron or electron-phonon interaction,

it produces a notable DOS in the subgap region, ρ(ε) =
Re[εR/

√
(εR)2 − �2], with an energy-independent Dynes-like

parameter γin/2 [38]. As a result, the DOS is finite even
at the Fermi level: ρ(0) = γin/2� � 1. This suppresses the
above-mentioned mechanism (i) but does not turn it off since
the left-hand side of the kinetic Eq. (6) remains finite in
the limit γin → 0. Therefore we expect that for a realistic
energy-dependent γin(ε) the left boundary of the region of
superconductivity enhancement in Fig. 1 may shift to higher
temperatures.

Following the Eliashberg theory, our approach relies on the
assumption of spatial homogeneity, when both the absolute
value and the phase gradient of the order parameter are
the same at every point in the wire. Then gauging out the
phase one arrives at a zero-dimensional problem to be solved.
Spontaneous breakdown of the translational symmetry leading
to inhomogeneous nonequilibrium states was investigated in
the framework of the Eliashberg theory in Ref. [12]. It remains
an open problem to study this effect for arbitrary temperatures.

The microwave response of superconductors at low temper-
atures has come into research focus recently [39–42], largely
driven by applications of superconducting microresonators.
For example, so-called microwave kinetic inductance detectors
(MKID) have been shown to be promising for astronomical
studies [43–45]. In order to achieve a sufficiently high signal-
to-noise ratio, given the existing low noise amplifiers, the
microwave readout signal is increased to a regime where a
significant effect on the superconducting properties is ob-
served. Our theoretical predictions can be used to analyze
measurements on MKID [39,40], as well as in the experiment
designed by Semenov et al. [34] (for application to a real
experiment the nonlinear electrodynamics issues should be
taken into account [46]). Apart from that, there are many
controllable ways to drive superconducting systems out of
equilibrium: disturbing them by a supercritical current pulse
[47,48], imposing to pulsed microwave phonons [49], or
directly injecting nonequilibrium quasiparticles [50,51]. It
would be interesting to study these problems microscopically
in a similar framework.
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