
Physics-based sail reconstruction
from 3D-markers

P.J.S. Kools

June 2022



Physics-based sail reconstruction from

3D-markers

by

P.J.S. Kools

Master thesis report to obtain the degree of
Master of Science

at the Delft University of Technology,
to be defended publicly on June 16, 2022 at 14:00.

Thesis committee

University supervisor: Dr. K. Hildebrandt EEMCS TU Delft
University supervisor: Dr. R. Marroquim EEMCS TU Delft
Responsible professor: Prof. Dr. E. Eisemann EEMCS TU Delft
Committee member: Dr. N. Tömen EEMCS TU Delft
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Abstract. To design more efficient sailing boat sails and to analyze
the efficiency of a sail trim on the water, it is very helpful to have
the ability to obtain a digital copy of real-life sail configurations. As
a step towards obtaining such digital copies, the Sailing Innovation
Centre [1] in collaboration with GeoDelta [2] has created point cloud
measurements from sails by placing physical markers on them. This
paper introduces a physics-based reconstruction method that uses
a known sail rest shape combined with this point cloud data to re-
construct the sail configuration at the time that the measurement
was taken. By using a physics-based sail model and the knowledge
that the sail is subject to gravity and wind forces together with a
known sail rest shape, we can create plausible reconstructions even
for areas in the sail where fewer to no markers are placed. Using
measurements that were taken before this reconstruction method
was proposed in combination with an approximated sail rest shape
and material properties, our reconstruction method was approxi-
mated to have an average reconstruction distance below 1cm for a
2.5m by 4.5m sail. Taking new measurements following our proposed
guidelines in combination with having a more correct sail rest shape
and better knowing the sail material properties is very likely to yield
even better results.
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1 Introduction

The Sailing Innovation Centre [1] aims at accelerating innovations in sailing.
With an aim toward inventing more efficient sail shapes and evaluating real-life
sail performance, it is very useful to have the ability to obtain a digital version
of a real-life sail configuration on a sailing boat in real sailing conditions. As
part of obtaining this data, the Sailing Innovation Centre in collaboration with
GeoDelta [2] has placed special markers onto a sailing boat sail, and took images
from this sail on the water. These images were then analyzed to obtain each of
the marker positions in 3D space, which together form point cloud data as shown
in Figure 1. Converting this point cloud data into a digital sail configuration is
not trivial, however. Existing geometric approaches are generally not designed
to respect the physics of the sail, thus overstretching areas and pulling areas
with wrinkles flat as visualized in Figure 2. These effects become stronger
with fewer markers on the sail. In this thesis, we propose a physics-based sail
simulator and a point-based sail reconstruction method based on this simulator.
Using the known shape of the sail in a rest configuration in combination with
its material properties and the knowledge that measurements were taken under
conditions with wind and gravity forces, we have a lot more knowledge to base
our reconstruction on compared to geometric approaches. We will also provide
insights into where markers should be placed on the sail to get relatively good
reconstruction results.

Figure 1: A sailing boat sail measurement as captured by the Sailing Innovation
Centre in collaboration with GeoDelta, and the corresponding obtained point
cloud data.
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Figure 2: From left to right: An artificial sail configuration that was obtained
through simulation, a possible reconstruction result of a geometric approach
where many wrinkles have disappeared, and a reconstruction result using our
reconstruction method where wrinkles are mostly maintained.

2 Related work

Sails fall under the category of shells, which are thin objects that are not neces-
sarily flat and do not necessarily have a flat rest configuration. A lot of research
has been done regarding shell simulation and shell reconstruction. This section
adds a broader perspective on some of the techniques used in this paper and
subjects that are related to this paper.

2.1 Shell models

Approaching 3D elastic solids from a Mechanical Engineering point of view, the
Finite Elements Method is a very convenient 3D discretization where the ob-
ject is divided into many deformable cubes on which textbook physics formulae
can be applied directly to relate displacement, stresses, and forces based on the
material properties of the object’s material. While this method works well on
most object shapes, issues arise when modelling very thin objects. To properly
model the bending behavior of a thin object, the discretization should be such
that plenty elements are used in the direction in which the object is thin. Using
this size elements in the much larger length and width directions of the object
would however result in a very large number of elements that, when discretely
simulated, each only move a very small distance per time step. For simulations
this can become very computationally intensive, or even impossible to simulate
due to the small movements being below numerical precision. As a solution for
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this problem with shells, different alternatives to the Finite Elements Method
have been proposed [3][4][5] where shells are approached as a 2D mesh of tri-
angles. By performing this dimension reduction, the mesh triangle sizes are no
longer strongly defined by the shell thickness, allowing for larger triangles to be
used.

2.2 Mesh locking

Within shell simulators, mesh locking is a common problem. When mesh lock-
ing occurs, the configuration of the mesh triangles is such that a part of the
mesh behaves much stiffer than expected. When external forces can not over-
come this extra stiffness, it is possible that simulators get stuck in undesired
configurations. This problem originates from approaching a curved surface with
linear elements, and there have been several proposals [6][7] to overcome this
problem. Since the sail meshes used in this paper have a sufficiently large mesh
resolution with small rotations between triangles and only constraints on two
sides, applied external forces can easily overcome increased stiffness and push
the sail through potential locking configurations.

2.3 Sail simulation

There appear to not be many sailing simulators around. A sailing simulator
game [8] exists with graphics that look plausible, but being closed-source, we
don’t know what kind of simulation or animation is being used. More promising
work has been done in [9], where a finite-element shell model is coupled with a
complex fluid model for wind-sail simulation. While this would have been an
interesting basis for our reconstruction method, we chose to go with a simulator
that has a much simpler wind model. This simpler wind model will allow us to
more easily generate a desired wind force on the sail, which is essential for our
reconstruction method as will be explained later.

2.4 Sail reconstruction

Interesting work has been done in [10], where a sailing boat sail is reconstructed
based on a series of point measurements that were taken in rapid succession.
The paper states that while its result was considered satisfactory by domain
experts and experienced sailors, it was suggested that additional information
about the sail bounds would entail more useful reconstructions for simulation
and design evaluation purposes. Basing the reconstructions purely on positions
and geometry makes this a very fast method, at the cost of losing local details
about wrinkles in the sail and not necessarily respecting the original shape of
the sail (unrealistic stretching or compression can be introduced). Depending
on the desired information one would want from a sail reconstructor and the
state of the recorded sail, this can be a convenient and fast choice.
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3 Physics-based sail simulator

The core of our sail reconstruction method is a sail simulator that is purely
based on sail material properties, energy, and forces. We will first explain how
the simulator works, and then how the simulator is used in our reconstruction
method. The sail is modelled as a discrete shell, conveniently approaching the
sail as a deformable 2D shape made out of triangles.

3.1 Discrete time integration

To simulate a shell over time, we need a time integration method to solve the
equations of motion for each of its vertices:
dx
dt = v, dv

dt = a and F = m ∗ a,
where x is the vertex position, v is the vertex velocity, a is the vertex accel-
eration, F is the force applied to the vertex, and m is the mass in a lumped
mass model where the mass corresponds with a third of the sum of the mass
of triangles that the vertex is part of. Since finding an exact solution through
continuous integration for a shell with forces applied to it is a very complex
problem, we approach time steps using discrete integration.

3.1.1 Integration method

The naive and easiest approach to taking discrete time steps is by performing
explicit time integration on the vertex position:

xn+1 = xn + ∆tn ∗ vn +
1

2
∗∆t2n ∗ an,

vn+1 = vn + ∆tn ∗ an,

where xn, vn and an are the vertex position, velocity and acceleration at the
beginning of the nth time step, and ∆tn is the duration of the nth time step.
Note that only the forces on the shell vertices (and not their derivatives) are re-
quired for this method, making it the easiest approach to implement. Since the
vertex velocity and acceleration for our application are highly non-linear over
time, larger time steps will cause larger extrapolation errors up to the point
where the simulation becomes unstable. This problem is shown in Figure 3.
Choosing a very small time step will mathematically better approach the con-
tinuous integration solution, at the cost of having to perform more time steps.
Too small steps should however be avoided, as using limited precision floating
point numbers will round steps by precision. In our case, we tried decreasing
the time step duration up to a point where the extrapolation errors would no
longer prevent the simulation to converge, but as the time step duration became
sufficiently small, the simulator started taking unfeasible time to reach a solu-
tion. The main cause for this problem is that small changes in vertex positions
for very stiff materials result in very large internal shell forces. Since explicit
time integration is not suitable for our problem, we used implicit integration
instead.
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Figure 3: Explicit integration with too large time steps causing the simulation
to no longer converge. Images are in chronological order from left to right.

3.1.2 Implicit integration using the Optimization Integrator

Implicit integration uses information from the end of the time step to reach a
more robust solution for relatively large time steps compared to explicit inte-
gration. Since all forces involved in our shell simulator are very well expressible
using gradients of energies, we based our time-stepping method on [11] that
conveniently rewrites the root finding problem for force equilibrium to an en-
ergy minimization problem that is solved using the backward Euler implicit
integration scheme.

3.1.3 Minimization problem

Following [11], a backward Euler discretization can be applied to rewrite the
equations of motion to:

h(xn+1) = M ∗ xn+1 − xn −∆t ∗ vn
∆t2

− f(xn+1,
xn+1 − xn

∆t
), (1)

where f are the vertex forces, and the goal for a single time step is to find a
solution to h(xn+1) = 0. Under the assumptions that we can express lower-
bounded internal shell energies Φin, that we can integrate our external vertex
forces to some energy function following fex = −dΦex

dx , and that the sum Φ =
Φin + Φex of these energies is bounded from below, we can rewrite (1) to:

h(xn+1) = M ∗ xn+1 − xn −∆t ∗ vn
∆t2

+
δΦ

dx
.(2)

Knowing that h(xn+1) = ∇E(xn+1), we can integrate h(xn+1) to get the energy
equation:

E(xn+1) =
1

2 ∗∆t2
∗ (xn+1−xn−∆t ∗ vn)T ∗M ∗ (xn+1−xn−∆t ∗ vn) + Φ.(3)

Under the assumption that a solution exists, solving h(xn+1) = 0 is equivalent
to minimizing |h(xn+1)|. This is not very convenient though, as solving this
minimization problem using Newton’s Method would require us to compute the
Hessian of h(xn+1), involving the second derivatives of our forces. Instead, we
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minimize the energy E(xn+1), which is equivalent to approaching force equi-
librium under the assumption that energies are lower-bounded. This gives us
the advantage of only needing the energy, energy gradient, and energy Hessian,
requiring only the first derivatives of our forces.

3.1.4 Internal sail energies

Using a triangle-based shell model for our sail where internal forces are modelled
through energies, we need to define internal shell energies, their first derivatives
(the energy gradient, equivalent to the negated shell forces), and their second
derivatives (the energy Hessian) for each vertex in the mesh. A physically-
motivated internal shell energy model is conveniently proposed in [3]:

W = WM +WB ,

WM = WL +WA,

where W is the internal sail energy composed of the membrane energy WM and
the bending energy WB . The membrane energy is composed of the triangle edge
length energy WL that is mainly responsible for stretching resistance, and the
triangle area energy WA that is mainly responsible for shearing resistance. The
triangle edge bending energy WB is responsible for the bending stiffness. These
energies are defined as:

WL = kL ∗ Σe(1−
|e|
|ē|

)2 ∗ |ē|,

WA = kA ∗ ΣA(1− |A|
|Ā|

)2 ∗ |Ā|,

WB = kB ∗ Σe(θe − θ̄e)2 ∗ |ē|
he
,

where e is an edge, A is a triangle, |e| is the length of an edge, |A| is the area of
a triangle, θe is the angle between the two triangles that edge e is part of, and
he is a third of the average triangle height of the triangles A1 and A2 that edge

e is part of (i.e. he = |A1|+|A2|
3∗|e| ). A bar indicates being in undeformed state.

The kL, kA and kB constants together with the shape of the mesh define the E-
modulus, Poisson’s ratio, and moment of inertia of the sail. As these constants
combined with the mesh shape do not nicely map to the material properties,
they will in practise be chosen based on a combination of visual behavior for
more complex meshes, and computed based on expected strain or bend under
load for simple meshes.

3.1.5 Internal sail energy gradient and Hessian

To differentiate the internal sail energy twice, [3] uses an automatic differentia-
tion tool. Since this method is costly, we decided to derive most of the formulae
ourselves. For the bending energy Hessian, we followed [12]. Note that their
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computation of edge normals mi = êi × n as given in their algorithm 2 is not
applicable for all edges i. The correct edge normals are:

m0 = ê0 × n,

m1 = ê1 × n,

m2 = n× ê2,

m̃0 = ñ× ê0,

m̃1 = ñ× ˜̂e1,

m̃2 = ˜̂e2 × ñ,

The implementation of the internal sail energy, its gradient, and its Hessian can
be viewed in the ShellSimulator software [13] that was written as part of this
thesis.

3.1.6 External forces

To make our simulator useful for sailing boat sails, we need to include gravity
and wind forces into our simulator. To aid in convergence to a minimum energy
state and to simulate deformation energy losses in the material, we also model
a velocity-based damping force. Since the minimization problem from our sim-
ulator is energy-based, we need to integrate our forces and use the knowledge
that Fi = − δΦi

dx to obtain the corresponding energies. Because we integrate
the forces, an integration constant is introduced to indicate where the energy
would be 0. For gravitational energy, we could define the energy to be zero on a
defined floor level. For wind and damping forces, defining a zero-energy point is
not trivial. Luckily, the minimization problem from our simulator only needs to
compare the energy from one simulation step to the next. This means that we
can work with work (i.e. energy change between simulation steps), rather than
with absolute energy, and therefore that our integration constants can simply
be 0. The external forces are defined as follows:

Gravity force
Remembering that we use a lumped mass model where triangle masses are dis-
tributed over their defining vertices, the gravity force applied to each vertex
is

Fgravity,i = mi ∗ g,

where g is the gravitational acceleration vector. Following Fgravity,i = − δΦgravity,i

dx ,
we can integrate and negate the gravity force to get the gravitational energy:

Φgravity,i = −mi ∗ g ∗ xi,

where xi is the position of vertex i.
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Wind force
To model the wind, we chose a simple 3-DOF wind pressure projection model
where the wind is described using a single wind pressure vector. The wind force
is computed per triangle and then divided equally over the triangle defining ver-
tices. The wind force per triangle is equal to the projection of the wind pressure
vector onto the triangle normal. This means that a triangle area perpendicular
to the wind pressure vector will yield the highest force, and a triangle area par-
allel to the wind pressure vector will yield no force at all. A visualization of the
wind force on a sail can be seen in Figure 4. The force per triangle i is:

Fwind,i = windPressureV ec · ni ∗Ai,

where ni is the triangle normal vector and Ai is the area of triangle i. Distribut-
ing the triangle’s wind force evenly over the 3 vertices defining that triangle,
the force per vertex j caused by its surrounding triangles T is:

Fwind,j =
∑
i∈T

Fwind,i
3

.

Following Fwind,j = − δΦwind,j

dx and assuming that simulation steps generally
cause only small changes in triangle areas and triangle area normals, we can
approximate the wind energy with

Φwind,j = −Fwind,j ∗ xj ,

where xj is the position of vertex j. Note that when this assumption does not
hold, the wind might lag one time step behind. We will later discuss that we
are only interested in the steady-state result of simulations, making this lag
irrelevant as long as the simulation converges to a steady state.

Damping force
Performing a numeric simulation, rounding errors can introduce extra energy
into the system, sometimes causing oscillations that prevent it to converge to
a steady-state configuration. Adding a velocity or flexure based damping force
will remove energy from the system, highly reducing these oscillations in the
process. We chose to use velocity-based damping:

Fdamp,i(n) = −kdamp ∗ vi(n+ 1),

where kdamp is the damping constant and vi is the velocity of vertex i. Note
that the damping force is dependent on the velocity at the end of the time step,
ensuring that the damping force is in the opposite direction of the velocity, even
when the velocity switches direction within a time step. Following Fdamp,i =

− δΦdamp,i

dx , we can integrate and negate the damping force to get the damping
energy:

Φdamp,i = −Fdamp,i ∗ xi.
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Figure 4: Wind force vectors acting on the vertices of a sail mesh.

3.1.7 Minimization

Having reduced performing a time step in our simulator to minimizing an energy
equation, we will describe an algorithm for solving this minimization problem.
This algorithm is a modified version of the unconstrained minimization algo-
rithm as used in [11], where the most interesting differences are:

• We use a method from [14] to make the energy Hessian positive definite.

• We take at least χ Newton steps before accepting the solution for a time
step.

• We added a lower bound to the line search α parameter to prevent an
infinite loop in configurations where the computed step is within numeric
precision.

Minimization algorithm
The minimization algorithm for a single time step starts with an initial guess
x(0) for the vertex positions at the end of that time step. This initial guess is
then modified in an iterative process to grow towards a solution that meets our
termination criteria. While we could take the current vertex positions as an
initial guess, we found that using the result from an explicit integration step
generally gets us closer to the desired solution, decreasing time spent in the
iterative process. This makes our initial guess:

x
(0)
n+1 = xn + vn ∗∆t.

For the iterative process, we repeat the following steps:
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1. Compute energy gradient ∇E and Hessian H of E at x(i).

2. Make energy Hessian H positive definite.

3. Terminate with solution x(i) if |∇E| < τ and i >= χ.

4. Compute Newton step ∆x = −H−1 ∗ ∇E.

5. Ensure that ∆x is in downhill direction.

6. Limit the magnitude of ∆x to L.

7. Perform line search to find a suitable positive step multiplier α.

8. Take step x(i+1) = x(i) + α ∗∆x.

Positive definite energy Hessian
When computing the Newton step, the energy Hessian is used to perform larger
or smaller steps where the change in energy does not change much or changes
much respectively. This results in more suitable steps and faster convergence,
causing a large runtime improvement over computing the Newton step without
the energy Hessian, which is equal to performing gradient descent. Using the
energy Hessian as a guideline for our Newton step, the simulator may get stuck
on a bad solution at a plateau in the energy function where the energy Hes-
sian simply starts multiplying steps by numbers close to zero. To get around
this problem, we alter the result from these plateaus in the energy Hessian by
changing the energy Hessian to be positive definite, essentially pretending that
the energy function is convex without plateaus. We can do this because while
changing the energy Hessian affects how the algorithm steps towards the tar-
get, the target itself remains unchanged. Using the definition that a matrix is
positive definite if it is symmetric and all its eigenvalues are real and positive,
making the (by definition symmetric and real eigenvalued) energy Hessian pos-
itive definite requires us to increase its eigenvalues until they become positive.
The easiest and most naive approach is to add multiples of the identity matrix
I to the energy Hessian until its eigenvalues become positive. This however
has a very large effect on the entire energy Hessian and all its eigenvalues, even
when it only has a few non-positive eigenvalues. Instead, we adopt a method
from [14] where each eigenvalue of the energy Hessian is modified separately by
performing the following steps:

1. Perform an eigenvalue decomposition of the energy Hessian H to get its
eigenvalues λi and corresponding eigenvectors νi.

2. For each eigenvalue λi below λmin, compute the amount ki that we want
to add to that eigenvalue:

ki = λmin − λi
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3. Add the desired multiple ki of the matrix product of the eigenvectors to H
to increment its corresponding eigenvalue λi with that multiple ki without
affecting other eigenvalues of H:

H = H + ki ∗ (νTi ∗ νi)

Using this method, we only change the eigenvalues that are too low, leaving
most of H unaffected and therefore keeping as much information to guide steps
with as possible. Note that when we use λmin = 0 or very close to zero, we
could still be in the exact case that we were trying to avoid, where simulation
can get stuck or very slow. So we use λmin = 0.1 to pretend that the plateaus
in the energy function are slightly tilted, causing the simulator to no longer get
stuck there.

Termination criteria
The termination criteria consist of an energy gradient magnitude threshold τ
in |∇E| < τ , and a minimum number of iterations χ. The energy gradient
magnitude threshold ensures that the algorithm keeps iterating until a sail con-
figuration is found where the energy is sufficiently close to a steady-state. In
some sail configurations, however, even very small changes to vertex positions
cause large changes in energy, introducing the possibility to require an unfeasi-
ble amount of iterations to converge or not converge at all. We can deal with
these configurations by increasing τ to a point where the algorithm accepts the
sail configuration as being close enough to steady-state to terminate. Having
such a high τ does mean that relatively bad steps would be accepted in config-
urations with a more smooth energy gradient. To prevent this from happening,
we always require the algorithm to perform χ iterations, thus reaching a better
solution in these easier cases. We found that χ = 5 is generally sufficient to
converge to an expected solution, and we used χ = 10 for our experiments to
be on the safe side with relatively good accuracy at the cost of a slightly longer
simulation time. Note that in our simulator implementation [13], we have intro-
duced a timeout as an additional termination criterion to prevent endless loops
in the case that τ is too low for the solver. This merely functions as a safeguard
and did not trigger while generating the data presented in this paper.

Newton step linear solver
Rewriting the formula for the Newton step

∆x = −H−1 ∗ ∇E

to
H ∗∆x = −∇E,

we can see that we have a linear system that needs to be solved. Any of the
widely available linear solvers can be used to solve this problem. We used the
ParDiSo [15][16][17] parallel direct solver for large sparse and symmetric linear
systems, which provides an efficient solver that uses optimizations based on the
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fact that the energy Hessian H is both sparse and symmetric.

Downhill step direction with limited magnitude
Adopting the technique from [11], we consider step ∆x to be suitable if ∆x ∗
∇E < κ ∗ |∆x| ∗ |∇E|, using κ = 0.01. If ∆x is not suitable, then we try the
same check with −∆x. If neither are suitable, then we fall back to a gradient
descent step −∇E.

Line search
Now that we have a downhill step ∆x, we can perform a line search to scale the
step up or down to reach lower energy in our energy minimization problem. For
the line search, we use the following procedure:

1. Compute energy Ei at the current configuration xi.

2. Initialize α with its final value from the previous step’s line search, or use
α = 1 if no previous step exists.

3. Compute Ei+1 at configuration xi + α ∗∆x.

4. • If Ei+1 <= Ei, set α = α ∗ 2 and enter INCREASE mode.

• Otherwise, set α = α
2 and enter DECREASE mode.

5. Recompute Ei+1 at configuration xi + α ∗∆x.

6. • If Ei+1 <= Ei and we are in INCREASE mode, set α = α ∗ 2 and
continue at step 5.

• If Ei+1 > Ei and we are in DECREASE mode, set α = α
2 and

continue at step 5.

• Otherwise, take step xi+1 = xi +αbest ∗∆x with αbest from the best
encountered (lowest valued) energy configuration Ebest and termi-
nate.

Being in a perfect steady-state configuration, step ∆x will be of magnitude zero,
and the algorithm will not terminate. This problem can simply be solved by
skipping the line search algorithm for steps of magnitude 0. Another problem
arises when α gets so small that the resulting step ∆x is too small to affect the
vertex positions x due to numerical precision. This can be prevented by defining
a threshold value αmin which, when passed, selects the best-encountered step
and terminates. We found αmin = 1e−12 to work well, with a side note that
this problem rarely occurs.

3.1.8 Static minimizer

Now that we have a fully functional sail simulator, we can perform dynamic
sail simulations. Keeping in mind that we will be using our simulator for re-
construction of a steady-state sail, we are merely interested in the steady-state
result of a simulation. When we run a simulation where wind is blowing into a
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sail, we can see that dynamic behavior (i.e. inertia) causes the sail to oscillate
for a long time before a steady state is reached. To speed up this process, we
fully removed inertia and the earlier described velocity-based damping forces
from our simulator, leaving us with a static minimizer. While this changes the
path that the simulator takes towards a steady-state solution, the solution it-
self remains valid to our energy minimization problem. Note that we still use
dynamic simulations to generate plausible artificial sail configurations for our
tests. This prevents those sail configurations from being biased into a particular
steady-state configuration when multiple steady-state configurations exist.

Removing inertia
Removing inertia can be done by removing all velocity-based terms in our mini-
mization problem, essentially assuming that each step starts with zero velocity.
Applying this to equation (2) leads to:

h(xn+1) = M ∗ xn+1 − xn
∆t2

+
δΦ

dx
,

and applying this to equation (3) leads to:

E(xn+1) =
1

2 ∗∆t2
∗ (xn+1 − xn)T ∗M ∗ (xn+1 − xn) + Φ.

Removing the damping force
Without inertia, the vertex position path and velocity towards the steady-state
solution are no longer physically correct. This removes the sense of having a
velocity-based damping force. Considering that in a steady-state sail configu-
ration the velocity and therefore the damping forces are zero, we can simply
remove the damping force from the minimization problem.

3.1.9 Vertex movement constraints

In a sail simulation with wind, it might not come as a surprise that we need
to anchor the sail such that it does not just blow away. We do this by adding
movement constraints on vertices, where for our application we only have to
either not or fully restrict the movement of each individual vertex. We chose to
implement this by storing whether a vertex is constrained or not, and simply
not applying a simulation step to a constrained vertex (in both the Newton
steps and the final time step result).

4 Reconstruction

Knowing the material properties, a rest configuration of the sail, and a point
cloud of measured positions that correspond with vertices in the sail rest con-
figuration, we define a reconstruction method that reconstructs the sail con-
figuration at the time that that measurement was taken. The reconstruction
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method consists of an initial vertex snapping phase where vertices for which
measurements exist are constrained at these measured positions, and a second
phase with an iterative procedure where wind is adjusted to minimize the forces
applied by the in the previous phase constrained vertices. Given that we are
only interested in the steady-state result of our simulator, we use its static min-
imizer for all reconstructions. As explained in the simulator section, this highly
reduces the time to converge to a steady-state solution.

4.1 Snap vertices to measurement positions

In this first reconstruction phase, we place each vertex for which a measurement
exists onto its corresponding measurement position. Doing this instantaneous
introduces unrealistically large membrane forces in the sail, which can cause
a simulation step to result in a sail configuration where the sail goes through
itself. In such a configuration, the bending forces are often not sufficiently large
to be able to recover from this faulty configuration. To solve this problem, we
alternate between moving the vertices towards their measurement positions with
a constant distance and running a simulation step where these moved vertices
are movement-constrained, where we found a move distance of 0.05m to work
well. This works because each movement step causes a relatively small force on
the sail, which is then decreased by a simulation step that moves surrounding
vertices with the vertices that we are artificially moving. Once all vertices have
reached their corresponding measurement positions, we continue with the next
reconstruction phase; Wind adjustment.

4.2 Wind adjustment

Maintaining the movement constraints on the vertices that were moved to their
corresponding measured positions in the last reconstruction step, we are left
with a configuration where these constrained vertices are pulling other vertices
in the mesh with artificially generated constraint forces. To create a realistic
sail configuration from this, we need to reduce these artificial constraint forces
as much as possible. We do this by changing the wind pressure vector from our
earlier described wind model while simulating the sail so that the wind forces
on average compensate for these artificial constraint forces. Since adjusting the
wind will cause the mesh and therefore both the effect of the wind and the
constraint forces to change when performing simulation steps, we re-adjust the
wind at the start of each simulation step. The sail configuration to which this
process converges is our reconstruction result. More details on these steps are
described below.

Measurement constraint forces
Since constrained vertices by definition cannot move (i.e. xn+1 = xn and
vn = 0), we can rewrite (2) for constrained vertices to

h(xn+1) =
δΦ

dx
.
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Combining this with F = −dΦ
dx and filling in the forces results in

h(xn+1) = −F = −(Finternal + Fgravity + Fwind + Fconstraints).

Filling in our simulator’s target h(xn+1) = 0, we get the force equilibrium
equation

Finternal + Fgravity + Fwind + Fconstraints = 0,

from which we can get our constraint forces

Fconstraints = −Finternal − Fgravity − Fwind.

Wind pressure vector computation
Seeing that our goal is to fully replace the artificial constraint forces with wind
forces for vertices i with measurement positions, we can fill in Fconstraints = 0
in the force equilibrium equation to find the desired wind force

Fwind,i = −Finternal,i − Fgravity,i.

Having the desired wind force, we need to adjust the wind pressure vector to
create this wind force. Since our wind model only comes with three parameters
(the wind pressure vector) and we are trying to create a specific wind force
vector at each constrained vertex, this will rarely be a perfect fit. What we can
do however, is to apply the on average desired amount of force in the on average
desired direction. We do this by first computing the wind force sum direction
vector

F̂wind = unit(
∑
i

Fwind,i),

followed by computing the effect of applying a unit wind pressure vector P̂ in
this direction

P̂ = F̂wind,

Fwind,unit =
(P̂ · triangleNormal) ∗ triangleArea

3
∗ triangleNormal,

and finally scaling the wind pressure vector such that on average the desired
wind force is generated on the vertices for which measurement positions are
available

Fwind,unit,avg =
Fwind,unit

numV ertices
,

Fwind,desired,avg =

∑
i Fwind,i
i

,

P = P̂ ∗ Fwind,desired,avg
Fwind,unit,avg

.

These forces are visualized in Figure 5, where we can see that the wind force
caused by this wind pressure vector reasonably well compensates for the desired
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wind forces. We now have a wind pressure vector to perform our next simula-
tion step with, which will blow wind in a direction in which the earlier discussed
constraint forces will decrease.

Figure 5: The desired wind forces to compensate for measurement vertex con-
straint forces in red, and the resulting wind force on each vertex from our wind
model where the wind pressure vector was computed based on these desired
wind forces in yellow.

Delta wind pressure vector
Applying the explained method, we find the reconstructor nicely converging to-
wards a solution and then oscillating around that solution. These oscillations
are mainly caused by the wind forces being updated before each simulation
step and then remaining constant for that entire step. The two obvious can-
didates for this problem are performing smaller steps and adding damping to
the system. Since performing smaller steps highly influences the runtime of our
reconstructions, we chose to add damping by limiting the magnitude change in
the wind pressure vector per iteration instead. Making this delta wind pressure
magnitude limit very large causes the sail to move quickly towards the recon-
struction result and then oscillate around that solution, and making this limit
very small decreases the oscillations to an acceptable minimum at the cost of
converging only very slowly towards the reconstruction result. To get the best
of both cases, we used a threshold of 50 and linearly decreased it over a duration
of 100 simulation steps towards a threshold of 1, after which we continue with a
threshold of 1. This at first allows large wind changes, slowly decreasing when

16



approaching the simulation. Note that suitable values are dependent on the
mesh size, which in our case was 561 vertices.

Termination criterion
Finding a termination criterion was tough. For example setting a step magni-
tude threshold either triggered too early when it was too large, or never when
it was too small. Using the magnitude sum of the constraint forces that we
are trying to minimize sometimes triggered too early when the sail would go
through the measurement positions in an oscillation, having vertices without a
measurement position still not be close to force equilibrium. Taking a step back
after similar attempts, we decided to go with a fixed amount of simulation steps
for the wind adjustment reconstruction phase. Using 100 steps to decrease the
delta wind pressure magnitude threshold from 50 to 1, we found the sail to be
sufficiently steady after at most another 80 simulation steps, so we did 200 steps
in total to be on the safe side. Note that suitable values are dependent on the
mesh size, which in our case was 561 vertices. The sail configuration at the end
of this process is our reconstruction result.

5 Evaluation of the reconstruction method

To evaluate the reconstruction method, we performed reconstructions on both
artificial and real-world data. To create reconstruction problems in a controlled
environment, we used an artificially generated sail together with our simulator
to generate plausible sail configurations from which we then took measurements.
Simulating this sail sufficiently long without external forces applied to it results
in a rest configuration of the artificial sail, which is passed to the reconstruc-
tor together with the taken measurements to obtain reconstructions. These
reconstructions can then be compared to the artificial sail configuration that
we know the measurements were taken from to evaluate the performance of the
reconstruction method. To evaluate whether the reconstruction method is also
suitable outside of the controlled artificial environment, we performed several
reconstructions based on measurements that were taken from a real-world sail-
ing boat. We will start with the artificial reconstructions, and end with a section
about the real world reconstructions.

5.1 Artificial sail properties

The artificial sail that is used to evaluate our reconstruction method is a trian-
gle that is 3.5 meters wide and 7 meters high, being in the range of common
medium-sized sailing boats such as the Polyvalk. This triangle is subdivided 5
times using the four-to-one-split method, resulting in a mesh with 561 vertices,
1584 edges, and 1024 triangles. The vertices along the mast and the boom are
then movement-constrained as shown in Figure 6, and the inner edge lengths
are multiplied by 1.01 to obtain the slight bulge that most sails have. The
sail is set to have a flat rest configuration, meaning that the internal bending
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forces always push towards a flat configuration. For the sail thickness and ma-
terial density, we picked a rough median of the materials tested in [18], leading
to a thickness of 0.25mm, a weight of 0.23kg/m2, and therefore a density of

1m
0.00025m ∗ 0.23kg/m2 = 920kg/m3 (note that the units seem wrong, but that
the weight per area actually represents a weight per volume instead, where the
height is the sail thickness). To select the length and area energy constants for
our material, we first obtained the rough median E-modulus of E = 130GPa
and the corresponding maximum strain of ε = 6% from this same paper [18].
Using Hooke’s Law σ = E ∗ ε, we can obtain the expected stress at the maxi-
mum strain. Creating a subdivided square mesh and constraining its top and
bottom vertices 106% of the original square height apart gives us a configuration
where the maximum strain is applied. When we run simulation steps until the
mesh reaches a steady-state, the constraint forces acting on the top and bottom
vertices will be close to equal due to force equilibrium, and the sum of forces
on the top divided by the top area should correspond with the known stress
at this strain. We modified the length and area constants to klength = 15621
and karea = 8125 to match this desired stress. Lastly, we chose our bending
constant by simulating a flat subdivided rectangle with gravity where two rows
of vertices on a short side were constrained to artificially clamp it in place, as
shown in Figure 7. We found that a bending constant of kbend = 10 was visually
realistic for sail material.

Figure 6: Artificial sail rest configuration with constraints put on the mast and
boom vertices.
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Figure 7: Example of a testing setup where pieces of sailcloth with different
bending energy constants are simulated with gravity to be able to visually select
a suitable bending constant.

5.2 Shared test setup

Since most tests share a part of their setup, we use this section to explain the
basic setup. This applies to all tests unless specified otherwise.

5.2.1 Sail rest configuration

Each reconstruction starts with a rest configuration of a sail. For our tests, this
configuration is obtained by simulating the artificial sail without external forces
until a steady-state configuration is reached. This is our rest configuration, as
shown in Figure 6. Note that with the perfectly flat artificial sail, we do need
to introduce a slight disturbance to pop it out of its plane. This can be done by
either moving any of its non-constrained vertices out of the plane or by applying
a wind force to the sail for as little as one simulation step.

5.2.2 Marker configurations

In the real world, markers placed onto the sail define which points on the sail
will be measured. On the artificial sail, markers are added using farthest-first
vertex traversal, starting at an arbitrary vertex (which in our case is the vertex
in the middle of the diagonal edge of the sail) as shown in Figure 8. Since
constrained vertices at the mast and boom contribute no extra measurement
information, these vertices are not considered in the vertex traversal. Using this
method, we ensure that configurations with less markers are always a subset of
configurations with more markers. This is a valuable property when comparing
reconstructions where only the amount of markers is varied, as configurations
with less markers can never have more information available than configurations
with more markers (e.g. placing 100 markers around the constrained edges
would likely perform worse than placing 10 markers evenly distributed over the
sail).
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Figure 8: Farthest-first marker placement on the artificial sail rest shape for 30,
50 and 110 markers.

5.2.3 Wind configurations

Using a wind pressure vector P as input for our wind model, we can vary the
wind magnitude and direction. To compute the wind pressure magnitude |P |,
we use the drag coefficient formula

cdrag =
2 ∗ Fdrag
ρ ∗ u2 ∗A

,

where cdrag is the drag coefficient, Fdrag is the drag force, u is the flow speed,
ρ is the medium’s density, and A is the surface area on which the the flow is
applied. Since we want the wind pressure, we can fill in |P | = F

A and rewrite to

|P | = Fdrag
A

=
cdrag ∗ ρ ∗ u2

2
.

We can now fill in cdrag = 1.17 for blowing against a flat surface, and ρ =
1.2kg/m3 for air at sea level to obtain

|P | = 1.17 ∗ 1.2 ∗ u2

2
= 0.7020 ∗ u2.

For our tests, we use a wind velocity within 3Bft and 5Bft, being u = 9.6m/s
and u = 38.4m/s respectively. This corresponds with a calm average day, and
a more exciting day for sailing. Filling in these velocities in our equation leads
to |P3Bft| = 64.6963N/m2 and |P5Bft| = 1035.1N/m2.
For the wind direction, we chose to use an angle of 30, 45 and 60 degrees from
the boom. These angles cover the desired sail positions in most courses for
average sailing boats.
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5.2.4 Reconstruction distance definition

Many tests results will contain an average and maximum reconstruction dis-
tance. The total reconstruction distance is defined as the sum of distances
between all vertices and their corresponding positions in the mesh from which
we sampled the measurements. The average reconstruction distance is this total
distance divided by the amount of vertices, and the maximum reconstruction
distance is the vertex-wise largest distance.

5.3 Sail simulator settings

Throughout the explanation of our simulator, well-performing settings were
mentioned. These settings are used for all tests unless specified otherwise.

5.4 Test 1: Basic reconstruction

To get an indication of how accurate our reconstructor can be for different
amounts of markers under ideal synthetic conditions, we use our simulator with
the sail rest configuration to generate steady-state sail configurations for differ-
ent wind configurations. We then sample measurements from these sail config-
urations. Using the sail rest configuration in combination with these measure-
ments, we reconstruct each sail and compare this to the sail configuration from
which we took the measurement. Since we use the same simulator parameters,
sail material properties, wind model, and sail model for both the generation of
the measurement data and the reconstruction, we can expect relatively good
results compared to the real world. The results from this test will give us a
baseline to compare other test results to where we introduce parameter and
model errors that we could expect in the real world.

5.4.1 Results

The results are shown in Figure 9 and Figure 10.

5.4.2 Discussion

Looking at both figures, we can see that the reconstruction result heavily im-
proves up to around 50 markers. Between 50 and 130 markers, the reconstructor
performs very well with average reconstruction distance of approximately 0.1mm
to 0.5mm and a max reconstruction distance of approximately 0.9mm to 4mm.
On a 3.5m by 7m sail, these ranges are very good. When choosing over 130
markers however, we see that some results are getting worse. This seems to
be caused by vertices that are close to completely surrounded by markers get-
ting locked into a bulge in the wrong direction. The marker vertices cannot
move, and the wind in these situations does not blow hard enough to overcome
the membrane forces and snap the locked vertex into place. The solution to
this problem would be to increase the mesh size, introducing extra flexibility to
change into the other bulge in these areas. We did however stick to testing with
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Figure 9: The average reconstruction distance against the number of measure-
ments for 6 different wind configurations.

Figure 10: The maximum reconstruction distance against the number of mea-
surements for 6 different wind configurations.
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561 vertices, as runtime of reconstructions can get very large for larger meshes.
Looking at the different wind configuration results, there does not seem to be
a significant difference in the reconstruction error. We do have to keep in mind
that these results were obtained under ideal conditions, thus being relatively
good compared to real-world data reconstructions, but this does show that the
reconstructor is functioning as intended, and it sets a baseline for following tests
to compare results with.

5.5 Test 2: Mismatching membrane stiffness

In a real-world application, the material properties of the material used might
not always be known. Sail thickness and density are easy to measure pre-
cisely, but selecting the membrane energy constants based on an approximated
E-modulus is much less precise. In this test, we introduce an error in these
membrane energy constants by multiplying them with the same varied factor
before starting the reconstruction. This allows us to get an indication of how
mismatching membrane energy constants will affect the reconstruction result,
which can be used to select a range in which these material properties have to
be approximated in order to still yield acceptable reconstruction results. We
run these reconstructions for the wind configuration where |P | = 1035.1N/m2

at an angle of 45 degrees from the boom.

5.5.1 Results

The results are shown in Figure 11 and Figure 12.

5.5.2 Discussion

Looking at the results, we can see that results around a stiffness factor of 1
(i.e. 100%) clearly perform best. This means that getting the membrane energy
constants right does lead to better reconstruction results. We can also see that
reconstructions with more markers performed better, and are influenced less by
the stiffness factor compared to reconstructions with fewer markers. Looking
specifically at Figure 11, we can see that the average reconstruction error for
n = 110 is even slightly decreasing below a stiffness factor of 1. This is likely
being caused by a combination of the standard deviation, the stiffness to have a
relatively low effect on the reconstruction result when having a lot of markers,
and this marker configuration covering relatively many vertices, thus defining
the bulge in the sail pretty well already. Overall we can see that with the 50
marker configuration, choosing a membrane stiffness that is within 30% of the
actual stiffness yields results that are very similar to choosing it exactly right.
For the 110 marker configuration, we can even go from half to twice the stiffness
for similar results. In cases where the expected error is larger, it is advised to
add more markers in order to decrease the effect of this error.
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Figure 11: The average reconstruction distance against the stiffness factor for
reconstructions with 30, 50, and 110 markers.

Figure 12: The maximum reconstruction distance against the stiffness factor for
reconstructions with 30, 50, and 110 markers.
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5.6 Test 3: Mismatching wind model #1

Our wind model is very simplistic, projecting a wind pressure vector on triangle
normals to obtain the pressure magnitude that it applies to the triangle surface
in the triangle normal direction. In the real world, the air that is blown into
the sail builds up and partially forms a static pressure, rather than this directed
pressure that our model is using. In this test, we run our usual reconstructions
on measurements that were generated using an alternative wind model. In this
alternative wind model, we set a fraction of the wind pressure vector that will
be applied as direct pressure in the triangle normal direction, rather than being
projected onto triangle normals. This results in

Fwind,proj =
(P · triangleNormal) ∗ triangleArea

3
∗ triangleNormal,

Fwind,pres =
|P | ∗ triangleArea

3
∗ triangleNormal,

Fwind = a ∗ Fwind,pres + (1− a) ∗ Fwind,proj ,

where Fwind,proj is our usual projected wind force, Fwind,pres is the directly
applied wind pressure, and a ∈ (0, 1) is the wind pressure factor. Reconstructing
a sail configuration that was generated with a different wind model allows us
to get an indication of how a mismatch between these wind models affects
reconstruction results. We run these reconstructions for the wind configuration
where |P | = 1035.1N/m2 at an angle of 45 degrees from the boom.

5.6.1 Results

The results are shown in Figure 13 and Figure 14.

5.6.2 Discussion

Looking at the results, we interestingly do not see a clear trend in how the wind
model mismatch affects the reconstruction result. We can see that the n = 30
case has some peaks, but these fall within the standard deviation for the case
with only 30 markers. It seems that our wind pressure vector can quite well
mimic the direct wind pressure model, which makes sense if we consider that
small wind force errors are being compensated with marker vertex constraint
forces everywhere where markers are added, thus not allowing these forces to
build up and cause the bulge in the sail to change significantly. Overall this
means that our simple wind model is flexible enough to handle this case of
mismatching wind without noticeable effect, which is the most ideal result that
we could get.

5.7 Test 4: Mismatching wind model #2

Just like the previous test, we generate measurements from sail configurations
that were obtained using an alternative wind model that mimics an extra aspect
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Figure 13: The average reconstruction distance against the wind pressure factor
for reconstructions with 30, 50, and 110 markers.

Figure 14: The maximum reconstruction distance against the wind pressure
factor for reconstructions with 30, 50, and 110 markers.
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that we know exists in real-world wind behavior. In this case, we mimic the
wind pressure in the back of the sail being higher near the mast and lower at
the end of the boom. This is caused by air being blown into the back of the
sail due to the speed of the boat. We approximate this effect by applying the
following linear wind force factor to the wind force for each vertex based on its
coordinate along the boom

forceFactor = 1 + a ∗ (
x

c
− 1),

where x is the position along the boom with its origin at the mast-boom inter-
section, c is half the sail width (i.e. half the boom length), and a ∈ (0, 1) defines
the force slope. We vary this force slope from 0 to 1 to go linearly from our
usual wind model to the case where the front of the sail receives no wind force
anymore, and the back of the sail (at the end of the boom) receives double the
wind force. This allows us to get an indication of how a mismatch between these
wind models affects the reconstruction results. We run these reconstructions for
the wind configuration where |P | = 1035.1N/m2 at an angle of 45 degrees from
the boom.

5.7.1 Results

The results are shown in Figure 15 and Figure 16.

Figure 15: The average reconstruction distance against the force slope for re-
constructions with 30, 50, and 110 markers.
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Figure 16: The maximum reconstruction distance against the force slope for
reconstructions with 30, 50, and 110 markers.

5.7.2 Discussion

Looking at both the average and the maximum reconstruction distance in the
results, we can see that in the n = 30 case the reconstruction error is greatly
influenced by the mismatch with the alternative wind model. We see a factor of
3.5 in average reconstruction distance and a factor of 4 in maximum reconstruc-
tion distance for this marker configuration. We can also see this rate decreasing
at a high force slope rate. The standard deviation can account for approxi-
mately a 1mm difference in the average reconstruction error, but this does not
account for the range from 3.5mm to 2mm that we see in the results. A possible
explanation could be that with a higher force factor, wind forces in the front of
the sail are close to zero, allowing the vertices close to the mast to be relatively
free and get locked into the wrong direction bulge in the sail. This bulge will
not be reconstructed in this direction unless a marker exists within this bulge,
pulling it in a direction that is not logical from our wind model’s perspective.
This effect will be larger for reconstructions with fewer markers, hence why it
could explain a jump in our 30 marker reconstruction results. Looking at the
cases with 50 and 110 markers, we can see a slight but clear upward trend in
the average reconstruction error which’s slope seems to depend on the number
of markers. For 50 markers, the average reconstruction error increases from
approximately 0.4mm to 0.9mm. For 110 markers, this is approximately 0.2mm
to 0.3mm. This does mean that we can expect this effect to have quite an
impact on the reconstruction result if too few markers are used. While this is
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unfortunate, we do see that the 110 marker case still performs very well in the
worst case at approximately 0.3mm average reconstruction distance and 3mm
maximum reconstruction distance. When looking at the maximum reconstruc-
tion distance, we don’t see much change for 50 and 110 markers. There does
not seem to be a trend here.

5.8 Test 5: Missing markers

Taking measurements of a sail in the water can be challenging. Especially on
small boats, the measuring equipment is likely to be on another boat. This
means that the sailor or a part of the boat can get between the camera and
the sail, thus causing certain markers not to be measured. To get an indication
of how this affects the reconstruction result, we run reconstructions using mea-
surements from which we remove sections of markers. Instead of just doing this
for sections where the sailor is likely to be in front of, we also remove markers
in certain other sections. This allows us to get an indication of which sections
are more important for the reconstructor, and which sections might not matter
much at all. When interpreting the results from this, we should keep in mind
that these reconstructions are still happening in the ideal synthetic world. This
means that even when certain sections do not contribute much in this test, they
might contribute more in the real world. If removing a section significantly wors-
ens the reconstruction result though, we can expect this to also happen in the
real world. To remove markers from measurements, we define spheres in which
all measurements are removed. These spheres are defined by their position and
radius. Ignore sphere configurations were chosen based on where we think might
be interesting zones in the sail. The used ignore sphere configurations are shown
in Figure 17. We run these reconstructions for the wind configuration where
|P | = 1035.1N/m2 at an angle of 45 degrees from the boom.

5.8.1 Results

The results are shown in Figure 18 and Figure 19.

5.8.2 Discussion

Looking at the results, ignoring markers in the bottom corners (cases 1 and 2)
does not seem to have a significant impact on the reconstruction result, given
that enough markers are present. Case 3 where all markers from the top of the
sail are removed does however have a very large impact on the reconstruction
result. In this case, the reconstructor gets nearly no feedback about the top
of the bulge in the sail, adjusting the wind to a direction that comes much
more from above than the direction used to generate configuration that is being
reconstructed. From this we can conclude that having markers in multiple places
around the bulge highly benefits the reconstruction result. Looking further,
we can see that removing many markers from the middle of the sail (cases 4
and 5) also has a relatively large negative impact on the reconstruction result.
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Figure 17: Ignore sphere configurations 1 to 8 for all missing markers test cases
visualized on the sail, counted from left to right and top to bottom. The ignore
sphere origin coordinates have their origin at the mast-boom intersection, their
x-axis in the direction of the boom, and their y-axis in the direction of the mast.

Figure 18: The average reconstruction distance for configurations where markers
within spheres have been removed for reconstructions with 30, 50, and 110
markers.

This is an expected result from which we can conclude that having markers
in the middle of the sail is more important than having markers at the edges
(keeping in mind that markers should be spread around the bulge). Going from
case 5 to case 6, more markers are added in the bulge and the reconstruction
result improves slightly. Looking at cases 6 and 8, we can see that with this
ignore sphere radius the reconstruction results are on average about half as
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Figure 19: The maximum reconstruction distance for configurations where
markers within spheres have been removed for reconstructions with 30, 50, and
110 markers.

good. Lastly, we can see that removing the few markers on the sail edge middle
(case 7) barely affects the reconstruction result. It should be noted that only
a few markers are removed in this case. Overall, we can see that removing
markers from different areas does barely to highly affect the reconstruction result
depending on the area. We see the average reconstruction distance increase with
a factor of approximately 3 to 10 if we do not have markers spread out around the
bulge, and we see an increase with a factor of approximately 1 to 2 for removing
markers in less important zones in the sail. It should be noted that regardless
of these high factors, the maximum reconstruction distance still generally stays
under 2cm on a 12.25m2 sail.

5.9 Test 6: Standard deviation

To get an indication of the spread in reconstruction results that we can expect
for the commonly used marker configurations, we run 20 reconstructions per
marker configuration and compute the standard deviation. We run these recon-
structions for the wind configuration where |P | = 1035.1N/m2 at an angle of
45 degrees from the boom.

5.9.1 Results

The results are shown in Figure 20 and Figure 21.

5.9.2 Discussion

Looking at both average and maximum reconstruction distances in the results,
we can clearly see that having more markers improves the reconstruction results.
In the cases with 50 and 110 markers, we can see that the average reconstruction
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Figure 20: The average reconstruction distance boxplot for reconstructions with
30, 50, and 110 markers.

Figure 21: The maximum reconstruction distance boxplot for reconstructions
with 30, 50, and 110 markers.
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distance has an interquartile range where the minimum and the maximum are
about a factor 2 apart. While this could be considered a quite large range, it
must be noted that we are looking at ranges within 0.5mm average distance.
In the reconstruction case with 30 markers, it seems that the result did not
depend much on the starting position, resulting in very steady results. We
believe this to be very problem-dependent, and likely not representative for
other reconstruction setups. In general, this gives us an insight into what order
of magnitude deviation we can expect from results, but we would have to repeat
this experiment for all other test setups to get their deviation.

5.10 Test 7: Real world data

The Sailing Innovation Centre [1] has in collaboration with GeoDelta [2] taken
point measurements from a sailing boat sail under wind conditions by placing
marker stickers onto the sail, and then taking and processing images from that
sail. One of these images can be seen in Figure 22. Using these real-world

Figure 22: An image from which a sail measurement was generated by the
Sailing Innovation Centre in collaboration with GeoDelta.

measurements, we perform several reconstructions to validate that our recon-
struction method also works outside of the controlled artificial environment, as
well as to see how well it performs on real-world data. We will first explain
some extra pre-processing that we have to do to be able to run reconstructions
using this data, and define how we measure the reconstruction distance without
knowing the correct reconstruction result.
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5.10.1 Sail rest configuration

Since all real-world data was created before this thesis, we unfortunately do
not have a sail rest configuration available to reconstruct the taken measure-
ments. To solve this problem, we took the measurement where most markers
were recorded and performed a Delaunay triangulation on that measurement
to obtain a mesh, trimming very long and small triangles at edges to prevent
introducing an undesired infinite bending stiffness along those edges. Since this
measurement consists of only 183 markers, we perform an extra triangle subdi-
vision over this to obtain a finer mesh. This process is shown in Figure 23. For
our convenience and to ensure that gravity will act in approximately the right
direction, we define the mast-boom intersection to be the origin in our 3D space,
we rotate the mast top vertex to be on the positive y-axis, and we rotate the
boom end vertex to be on the positive x-axis. Constraining the mast and boom
edges, this leaves us with a mesh that can be used as sail rest configuration.

Figure 23: From left to right: The measurement image, the point-cloud measure-
ment data, the Delaunay triangulation of the point-cloud measurement data,
and its four-to-one-split subdivided mesh that is used as the real-world test rest
configuration.

5.10.2 Measurements pre-processing

Since measurements were taken from outside of the sailing boat, their 3D space
origin and rotation do not yet match the sail rest configuration. To solve this, we
first translate the measurements to share the mast-boom intersection marker as
the origin. We then rotate the measurements such that the measurement marker
corresponding with the rest configuration mast top marker is on the positive y-
axis, and the measurement marker corresponding with the rest configuration
boom end marker is in the positive x-axis direction. We do have to note that
the boat from which the measurements were taken has a flexible mast, which this
alignment does not account for. This means that this sail rest shape will cause
large reconstruction distances when the mast in the measurement is bent in a
different way. A possible solution for this problem is to place markers onto the

34



mast and boom themselves to use for alignment and for sail rest shape constraint
adjustment, but we cannot do this with the measurements that we have because
no markers are placed directly onto the mast and boom there. Leaving this as
a recommendation for future real-world measurement generation, we can still
perform reconstructions for measurements with a similar mast bend compared
to the sail rest configuration.

5.10.3 Marker selection

As with the artificial test configurations, we select a desired amount of markers
using farthest-first traversal. The only difference here is that we now traverse
all available markers in a measurement, rather than all vertices in an artificially
generated mesh.

5.10.4 Reconstruction distance and marker selection

Since the correct reconstruction result is unknown for real-world measurements,
we approximate the reconstruction distance by using only a subset of measured
markers as measurements and using the remaining markers to approximate the
average and maximum reconstruction distance of the entire reconstruction. We
know that these markers are fairly well spread across the mesh because these
will be the markers remaining after a farthest-first traversal selection.

5.10.5 Test setup

Using the sail rest configuration as defined above, we selected 4 measurements
to run reconstructions on. One measurement (measurement 2 in the results) is
the measurement that was used to generate the sail rest shape, meaning that
marker alignment is ideal, but also that the mesh edge rest lengths form an
ideal solution. This might cause the reconstruction result to be able to rely on
additional information that it won’t have when we would have a perfect sail
rest configuration. The other three measurements were taken in the same rack
under unknown but likely similar wind conditions. The reconstructions were
run with 30, 50, 80, and 110 markers to get an indication of how the number
of markers affects the reconstruction distance on real-world data. Note that we
did not choose more markers to ensure that enough markers are left to estimate
the reconstruction distance from.

5.10.6 Results

The results are shown in Figure 24 and Figure 25.

5.10.7 Discussion

Looking at the results for marker configuration 2, we can clearly see that the
reconstruction was successful and that the result is very good with 0.3-1.8mm av-
erage reconstruction distance and 6.6-38mm maximum reconstruction distance.
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Figure 24: The average reconstruction distance against the number of measure-
ments for different real-world measurements.

Figure 25: The maximum reconstruction distance against the number of mea-
surements for different real-world measurements.
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We did however already note that since this marker configuration was used to
generate the sail rest shape mesh with, the result might be better than we can
expect from a real-world data reconstruction. Looking at marker configurations
1 and 4, we see a steady maximum reconstruction distance of 9cm for 50 or more
vertices. In both cases, this is caused by a marker that is constrained in the sail
rest shape mesh as being part of the mast, as can be seen in Figure 26. Looking
at the average reconstruction distances for marker configurations 1 and 4, we
find distances between 6.5-27mm, where using more markers certainly improves
the reconstruction result. Given that measurement marker alignment is not per-
fect and that a non-ideal sail rest shape was used for these reconstructions, these
results are better than expected. The expected result from misalignment can
be seen very clearly in marker configuration 3. Adding more markers does pull
more of the sail towards the correct position, but the maximum reconstruction
distance shows that a constrained mast or boom marker has been misaligned
by approximately 30cm. This emphasises the recommendation to place markers
directly on the mast and the boom to more easily align measurements with the
sail rest shape, as well as modify sail rest shape movement constraints to have
the correct mast bend in case that the sailing boat has a flexible mast.

Figure 26: The real-world sail rest shape with red lines between the vertices
and their corresponding location in the first real-world measurement.
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6 Conclusion

We introduced a physics-based sail simulator, and a point-based sail recon-
struction method based on this simulator. To our knowledge, this is the first
sail reconstruction method that respects the physical shape and properties of
the sail, whilst also using knowledge about the physical environment in which
sail measurements were captured.

In a series of tests on artificial data, we have shown that our reconstruction
method yields promising reconstruction results where the average reconstruction
distance over all vertices in the sail mesh is in the magnitude of millimeters
for a 12.25m2 sail. We have also shown how this reconstruction distance gets
worse when we perform reconstructions using measurements that were generated
using different material constants and alternative wind models, and that these
reconstruction results remain very good with reasonable amounts of markers on
the sail.

Regarding the number of markers, we found that 50 markers distributed
using farthest-first vertex traversal performed considerably well on the artificial
tests and that more markers yield a better reconstruction result, combined with
increased stability against mismatching material properties and a mismatching
wind model. Since we cannot be certain about the magnitude of such mis-
matches in all real-world cases, we can merely suggest the placement of at least
50 markers. We did find the reconstruction result to be best when markers are
present on the bulge in the sail and evenly spread around it. Having a majority
of markers on one side of this bulge should be avoided as it has a significantly
negative impact on the reconstruction result. It should be noted that we chose
farthest-first vertex traversal for marker placement in our tests to evenly dis-
tribute markers over the sail, but that this might not be a very practical recom-
mendation for placing real-world markers onto a sail. We therefore recommend
any marker placement method that approaches an even distribution, as this is
very likely to yield similar results.

Through reconstructions performed on real-world data, we have shown that
the reconstruction method does yield reasonable results outside of a controlled
artificial environment, even though the sail rest configuration was quite roughly
approximated. We found that misalignment between measurements and the
sail rest configuration (including its movement constraints) has a large negative
impact on the reconstruction result, and thus we recommend placing markers
directly on the mast and the boom to aid in this alignment. Having such markers
also allows for constraining the mast in the sail rest configuration in the right
bend, allowing for the sail rest configuration constraints to be correctly set for
sailing boats with a flexible mast.

7 Future work

Shell membrane energy
Selecting the membrane energy material constants kL and kA based on a known
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E-modulus and Poisson’s ratio proves to be difficult. Replacing this membrane
energy equation with an equation that takes these known material properties
as direct input will make it easier to configure the reconstructor for a new sail.
A possible candidate is the energy proposed in section 5 equation 8 of [4].

Runtime performance
In our test cases, each reconstruction on a 561 vertex mesh took approximately
5-6 minutes. Increasing the mesh resolution allows for better matching a real
sail, but also increases the reconstruction runtime. Performing the parallelizable
computations on the GPU instead of the CPU could speed up reconstructions,
allowing them to be feasible for higher mesh resolutions.

Wind model
Our simulator and reconstructor work with a very simplistic 3-DOF wind model.
It would be interesting to see whether reconstruction results on real-world data
would improve when a more complex wind model is used instead. When mak-
ing no additional changes to the reconstructor, this means that the wind model
must be able to provide us with a wind setting that causes wind forces to on
average compensate for marker vertex constraint forces. This restriction does
not count for the usage of solely the simulator, where we could use any wind
model that provides us with wind forces.

Marker placement
We have provided some guidelines for the marker placement on the sail and a
minimum amount of markers, which is limited to global zones in the sail. It
would be interesting to repeat a part of the performed tests using a genetic al-
gorithm with genes that tell whether a marker is placed for each vertex position
in combination with a penalty for using more markers, such that we can find
more complex marker patterns that cause reconstructions on them to perform
relatively well.
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