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Abstract. An explanation is given of the convergence behavior of IDR(s) methods. The conver-
gence mechanism of these algorithms has two components. The first consists of damping properties
of certain factors in the residual polynomials, which becomes less important for large values of s.
The second component depends on the behavior of Lanczos polynomials that occur in the theoretical
description. This part of the residual polynomials is related to Lanczos methods with s left starting
vectors, as described in a paper by Yeung and Chan on their ML(k)BiCGSTAB method, in [SIAM
J. Sci. Comput., 21 (1999), pp. 1263–1290]. In this paper, the behavior of the second component is
compared with the full GMRES method [SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869] and
an expected rate of convergence is given, based on a random choice of the s shadow vectors.

Key words. iterative methods, IDR, Krylov subspace methods, Bi-CGSTAB, nonsymmetric
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1. Introduction. IDR(s) [32, 25, 30] is a recently developed family of short-
term recurrence Krylov subspace solvers for sparse linear systems Ax = b, in which
A is not necessarily Hermitian. The algorithms do not require multiplications with
the transpose matrix and belong therefore to the “Lanczos-type product methods”
[12]. The algorithms are related to the so-called block Lanczos algorithms [4, 9] with
multiple left starting vectors. These vectors occur also in the IDR(s) algorithms
and are called shadow vectors. The parameter s is a positive integer, indicating the
number of shadow vectors.

Relations with Bi-CGSTAB are described in [19] and the combination of IDR(s)
with BiCGSTAB(�) in [20]. Recent extensions to IDR(s) can be found in [3, 29], and
IDR(s)-eigenvalue algorithms have been developed [13].

1.1. Motivation. It has been observed that the rate of convergence of IDR(s)
usually increases at increasing s. However, the memory requirements as well as the
overhead CPU time grow quadratically with s, so the choice of s is a compromise
between these requirements and convergence of the method. Often s = 4 is a good
choice, but sometimes a (much) larger value is required. We provide some insight to
this problem.

The convergence behavior depends not only on the number of shadow vectors
but also on their choice, but a “best set” of these vectors has not yet been found.
It appears that best results are obtained if the shadow vectors have as little to do
with the problem as possible. Choices of the shadow vectors that were related to
properties of the matrix proved to be rather disappointing. For that reason, it is
advised in [25] to choose the shadow vectors randomly. This random choice is the
basis for the convergence analysis presented in this paper.
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Extensive experiments with IDR(s) often show a convergence behavior which is
more or less similar to the full GMRES method [16], but without the necessity of
storing a growing set of Krylov vectors. In this paper we try to explain this behavior
by observing two distinct convergence mechanisms in IDR(s): A “damping part” and
a “Lanczos part.” The residuals of the Lanczos part, which are similar to the residuals
of the ML(k)BiCG method [33], are compared to the full GMRES method.

1.2. Notation and prerequisites. We use boldface letters for vectors, boldface
capitals for matrices, and calligraphic symbols like S and G for spaces, sets, and
classes. The identity and zero matrices are denoted by I and O, or Ik and Ok if the
size is not clear from the context. The symbol P is used for the matrix of shadow
vectors (p1 p2 . . . ps) and to denote a projection. The range and the nullspace of
a matrix A are denoted by R(A) and N (A), respectively. The transpose and the
Hermitian transpose of a matrix A are denoted by AT and AH , respectively. A−H

means (AH)−1. By ⊆ and ⊂ we mean subset and proper subset, respectively. The
indexed Krylov subspaces Kj are defined by Kj(A, b) = span({b,Ab,A2b, . . . ,Ajb}),
so the dimension is j+1 in general. Polynomials are denoted by capital Greek symbols
Φn, Ωj , etc. The index refers to the degree.

This paper is partly based on probability theory. The probability of an event
E is denoted by Pr(E). The conditional probability for an event E1 conditional
with respect to an event E2 (“conditional on E2”) is denoted by Pr(E1|E2) and
satisfies the following identity: Pr(E1 ∩ E2) = Pr(E1|E2) · Pr(E2). Two events are
stochastically independent if Pr(E1|E2) = Pr(E1). So for independent events we have
Pr(E1 ∩ E2) = Pr(E1) · Pr(E2). A stochastic variable is a variable which attains
its value by chance. So a proper dice can be represented by a stochastic variable
which can take values 1 . . . 6, all with equal probability 1/6. The probability den-
sity function f (pdf ) for a continuous stochastic variable x in R

n has the following
meaning: Pr(x ∈ D) =

∫
t∈D f(t)dt1dt2 · · · dtn. The pdf f(x) is also called the joint

pdf or simultaneous pdf for the stochastic variables x1, x2, . . . , xn. Since the stochastic
variable x cannot have no value, the probability for having a value will be 1. Hence
the integral Pr(x ∈ Rn) =

∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞ f(t)dt1dt2 · · · dtn = 1. The integral

g(x1, x2, . . . , xk) =
∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞ f(x1, x2, . . . , xn)dxk+1dxk+2 · · · dxn is called the

marginal pdf for the variables x1, . . . , xk. If x and x̃ are two stochastic vectors in Rn,
related by the differentiable transformation x = φ(x̃), and if f(x) is the pdf for x,
then the pdf for x̃ reads g(x̃) = f(φ(x̃))| det(∂x∂x̃ )|, where

∂x
∂x̃ is the Jacobian of the

transformation.

1.3. Outline. The paper is organized as follows. In section 2 some basic infor-
mation about IDR(s) is recalled, and some elementary observations of the convergence
behavior are stated. In section 3 the splitting of the IDR(s) residuals in a damping
part and a Lanczos part is described. In section 4, the residuals of the Lanczos
part are interpreted as Galerkin residuals and compared with the residuals of the full
GMRES algorithm. In section 5 the random choice of the shadow vectors is analyzed,
which results in a “stochastic convergence analysis.” In section 6 the convergence
analysis is verified with experiments. Finally, in section 7 the results are discussed,
and some conclusions are drawn.

2. Background and basic experience.

2.1. Theoretical basis. The IDR(s) algorithms are based on the following
proposition [25]:
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A2578 PETER SONNEVELD

Proposition 2.1. Let A be an N × N complex matrix, let b be a vector in
CN , and let G0 be the full Krylov subspace K(A, b). Let S be a proper subspace of
G0 of codimension s, not containing a nontrivial invariant subspace of A, and let the
sequence of spaces Gj , j = 1, 2, . . . , be defined recursively by

Gj = (I − ωjA)(S ∩ Gj−1),

where ωj are nonzero complex numbers. Then the spaces Gj are nested in the following
way:

Gj ⊂ Gj−1.

Moreover, apart from exceptional circumstances, the dimensions of the spaces satisfy

dim(Gj) = dim(Gj−1)− s.

This is the so-called dimension reduction phenomenon, and it is proved in two
theorems in [25].

The IDR(s) algorithms make use of this property by constructing a sequence of
residual vectors rn = b − Axn that are forced to be in Gj for increasing values of

j. The space S is chosen to be the nullspace of PH , where P is an N × s matrix of
full column rank. Usually P is chosen randomly, and this choice is essential in the
following analysis.

Basically the construction principle is as follows. Suppose we have s + 1 inde-
pendent residuals rj,1, rj,2, . . . , rj,s+1 in Gj . We can find a nontrivial combination∑s+1

k=1 ckrj,k in S ∩ Gj by solving c1, c2, . . . , cs+1 from the homogeneous linear system

PH

(
s+1∑
k=1

ckrj,k

)
= 0.(1)

By applying the mapping I−ωj+1A to this combination, we obtain a vector in Gj+1.

By suitable scaling, e.g., requiring
∑s+1

k=1 ck = 1, this vector can be made a residual
rn+1, and an update xn+1 for the solution can be found. This process can be repeated
using this new residual, because the G-spaces are nested, and every vector in Gj+1 is
in Gj . After s + 1 steps, we have found s + 1 vectors in Gj+1, and therefore we can
enter the space Gj+2, etc. In the generic case we have, after finding l new vectors in

Gj+1, s+ 1 + l independent vectors in Gj . So we may find a combination in N (PH)
by solving the s× (s+ 1 + l) system

PH

(
s+l∑
k=0

ckrj(s+1)+k

)
= 0.(2)

Hence we have a lot of freedom in constructing combinations of them which are in
N (PH). Also it is not necessary to choose these vectors from the set of residuals [30].
But in all variants, the first residuals rj(s+1) in Gj are unique.

In the generic case, every s + 1 iterations we enter a new space of which the
dimension is s less than the previous one. Therefore in about s+1

s N steps, the space
Gj with js ≥ N has dimension zero, and hence the residuals in it are zero. In this
sense, the IDR(s) method is finite. The process may break down by inconsistency of
the small linear system (2). In exact arithmetic, and using random shadow vectors,
such a breakdown has zero probability. In finite precision, however, a breakdown can
occur, but at increasing s breakdowns become rare.
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2.2. Finite precision issues. Most short-term recurrence Krylov solvers may
suffer from heavy loss of digits. Sometimes this is caused by bad properties of the
linear system itself, such as some Matrix Market examples. IDR(s) for reasonably
small values of s will probably not converge in these cases. This phenomenon is
almost incurable since the original problem is ill-posed.

For these problems full GMRES sometimes works well, in the sense that it pro-
duces the best possible approximation of the solution in a finite number of steps. But
this finite number is often close to the theoretical bound N , the size of the system,
which is much larger than what we expect from an iterative solver.

But also in the case of well-posed problems, short-term recurrence Krylov solvers
may lose digits, caused by the fact that the residuals can behave very irregularly. Using
finite precision arithmetic, these irregularities can degrade the accuracy dramatically.

One way of reducing degradation is to use reliable updates [23, 10, 22]. This
is an implementation style in which updates of residuals are calculated as rn+1 =
rn + A(xn+1 − xn) whenever possible. This is common practice in implementing
Krylov subspace solvers.

Despite using reliable updates, degradation may occur by heavy fluctuations in
order of magnitude of the residuals. Also, this kind of heavy round-off can be attacked
rather well. In the basic form of the IDR(s) method, it has been observed that the
occurrence of residuals that are some orders of magnitude larger than the initial
residual is followed by a final (stagnation) level that is comparably higher than the
theoretically possible level, i.e., the level dictated by the condition number of the
matrix. Roughly speaking, occurrence of a residual ‖rk‖ > 10d‖r0‖ leads to a loss of
about d digits in the end. This is explainable on very elementary grounds.

Backgrounds of these phenomena can be found in [28, 31]. Most remedies are
based on a careful application of residual replacement. This means that at a certain
stage the recursively calculated residual is replaced by the actual one: b − Axk, at
the cost of one extra matrix vector product. This may not be done near the end of
the process, since then the convergence will deteriorate by another cause.

In the experiments, we used the following, somewhat simplified, variant of this
principle. As soon as ‖rn‖ ≥ 10 ·‖r0‖ for some n (which almost always happens in the
beginning of the process), a repair flag is set. As soon as some residual rn′ satisfies

‖rn′‖ < ‖r0‖
1000 , while the repair flag is set, the current residual is replaced by the true

residual rn′ = b−Axn′ , and the repair flag is reset.
In many experiments using this strategy, the stagnation level turned out to be

comparable to the stagnation level of full GMRES, and sometimes even lower. The
number of extra matrix vector products never exceeded 3, so it is done at marginal
cost.

The original version of IDR(s) [25] was extra sensitive for round-off at higher
values of s. Although in most cases s = 4 is a suitable choice, we want to analyze
the behavior of the method for a wide range of values of s. This was an important
argument for choosing the “elegant” IDR(s) variant [30] for our experiments, which
does not suffer from this problem. Actually, this choice is also very good for other
reasons, as will become clear in section 3.

In all experiments, the residual replacement strategy is used as described above,
in order to simulate exact arithmetic as much as possible. Finally, in practical use
of the method, the residuals as produced by the recurrence relations are also used as
indicator for convergence. Now if a recursive residual is below the tolerance level, the
true residual is calculated in order to verify the actual convergence, and if necessary
some more steps can be done, or a message about the actual accuracy can be produced.
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Fig. 1. History for Problem 1.

Since we are analyzing the analytic convergence behavior of the method, we let IDR(s)
calculate the residuals recursively, except when residual replacement must occur, but
we always show and analyze the exact residuals b−Axn.

2.3. First observations on the convergence behavior of IDR(s). The
behavior of IDR(s) is illustrated by applying the method on the following simple test
problems:

Problem 1. A discretized one-dimensional diffusion equation, leading to 60 linear
equations.

Problem 2. A two-dimensional convection diffusion equation on a square 60× 65
grid, with mesh-Peclet numbers [0.5 , 0], leading to 3900 linear equations.

Problem 3. The same problem as Problem 2, but with mesh-Peclet numbers
[20 , 0].

The finiteness property of IDR(s) is illustrated in the left plot of Figure 1, showing
the convergence history of IDR(s) applied to Problem 1, for several values of s.

In the right plot of Figure 1, the same graph is shown, but now with the horizontal
axis stretched by a factor s

s+1 . This plot confirms the s+1
s N behavior as predicted

by the theory. Plots in which this scaling has been applied could be called rescaled
plots. In the actual implementation, however, we did not scale the horizontal axis,
but we obtained the effect by simply skipping the residuals with index j · (s+ 1) for
j ≥ 1. Consequently we call these convergence plots reindexed plots. In these plots,
the horizontal axis shows no longer the number of matrix-vector multiplications but
only s

s+1 times that number. We call these essential matrix-vector-multiplications.
Similarly as in the CG-algorithm, the method frequently converges as an iterative

method in a number of steps that is far below the theoretical bound s+1
s N . This is

illustrated in the left plot of Figure 2, showing the convergence history for IDR(s)
applied to Problem 2. Here only about 200 iterations are required to gain 13 deci-
mal digits, which is much less than the theoretical bound s+1

s · 3900. The maximal
attainable accuracy is related to the minimal attainable residual via the the condi-
tion number of the matrix. Generally speaking, since full GMRES is a minimization
method, we may expect that the final stagnation level of this method indicates the
minimal attainable level and indirectly indicates the maximal attainable accuracy.

If the IDR(s) methods are compared with full GMRES, the convergence char-
acteristics for increasing s seem to “converge” to a limiting curve close to the full
GMRES curve for the same problem. Now the GMRES curve is a “lower bound”
for all Krylov subspace methods, because it minimizes the residual norm ‖rn‖ over
the Krylov space span{r0,Ar0, . . . ,A

nr0}, so the observed increasing similarity of
GMRES and IDR(s) for increasing values of s is quite promising.
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Fig. 2. History for Problem 2.

If we take a closer look to the left plots of Figures 1 and 2, it can be observed
that the convergence curves for different s-values in both plots tend to the GMRES
curve for increasing s, in a similar way. The convergence speed of IDR(s) seems to
be about s

s+1 times that of GMRES.
Whether this is true can be verified by applying the same stretching (with the

factor s
s+1 ) of the horizontal axis as in the right plot of Figure 1. The result is shown

in the right plot of Figure 2.
We can make two observations about this picture:
1. The curves for s = 1 and s = 2 seem to show faster convergence than GMRES,

which is not possible. This has a simple explanation: For s = 1, only half the actual
matrix-vector multiplications are shown, and for s = 2, only 66%.

2. The curves for s = 8 and s = 16 are nearly covering the fast convergence part
of the full GMRES curve. It may be expected that this will also be the case for higher
values of s. This behavior will be analyzed and explained in the following sections.

3. The polynomial background of the IDR(s) residuals.

3.1. Damping and Lanczos part of the convergence. In each step of an
IDR(s) algorithm a new residual is constructed, involving one matrix-vector multipli-
cation. Therefore, as in other Krylov subspace methods, we can write

rn = Φn(A)r0,(3)

where the so-called residual polynomial Φn is an nth degree polynomial satisfying
Φn(0) = 1. We call this the IDR-polynomial.

Furthermore, as described in [25], for residuals that are in Gj , the IDR-polynomial
Φn can be explicitly written as a product of two polynomials:

Φn(A) = Ωj(A)Ψn−j(A),(4)

where

Ω0(t) ≡ 1, Ωj(t) =

j∏
k=1

(1 − ωkt), j ≥ 1, Ψn−j(t) = 1−
n−j∑
l=1

clt
l.(5)

The choice 1 for the zero-order coefficient follows from the required property Φn(0) =
1. The polynomials Ψn−j are not all uniquely determined. For n = j(s+ 1)− 1 and
n = j(s + 1), corresponding to the last residual in Gj−1 and the first residual in Gj ,
respectively, we get different definitions of Ψn−j , since in general

Φj(s+1)−1(A)

Ωj−1(A)
	=

Φj(s+1)(A)

Ωj(A)
.
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We can deal with this ambiguity by dropping one of the “definitions.” The obvious
choice is to drop the variant for n = j(s + 1) − 1 and to keep the variant based on
the first residual in the new space. See also [13]. The ambiguity does not occur in the
variant of IDR(s) described in [30], since in this variant the critical residuals satisfy

rj(s+1) = (I − ωjA)rj(s+1)−1, j = 1, 2, 3, . . . .(6)

We call the factors Ωj(A) damping factors or stabilization factors and the polyno-
mials Ψn−j(A) Lanczos factors. The damping factors have their name because the
coefficients ωj are usually calculated with the purpose of minimizing the norm of
rj(s+1) = (I − ωjA)v for some vector v that arises in the algorithm at that stage.

It is plausible to expect that the matrix polynomial Ωj(A) will act as a contrac-
tion, but this is not always the case. In many cases, however, the damping factors in
the residuals are at least partly responsible for the convergence. So we still call them
“damping factors” or “stabilization factors,” even if they do not damp or stabilize at
all.

The name Lanczos factors for the polynomials Ψn−j(A) is chosen because they
occur explicitly in a block Lanczos process with s starting vectors at the left-hand side.
In Yeung and Chan [33], a theoretical Krylov solver called ML(k)BiCG is defined with
these factors as residual polynomials. In a similar way as is done in the derivation of
BiCGSTAB in [27], the handling of the left-hand starting vectors is changed such that
matrix-vector products with the transpose are avoided. This leads to the practical
solver ML(k)BiCGSTAB, which is, at least mathematically, closely related to the
IDR(s) algorithms.

The Lanczos polynomials Ψn−j in the IDR(s) algorithms are not precisely those
of the ML(k)BiCG algorithm. This is because the small linear systems (2) leave a lot
of freedom in the chosen solution.

We define the Lanczos residuals r̃n−j by

r̃n−j = Ψn−j(A)r0.(7)

These vectors are residuals indeed, since according to (5) Ψn−j(0) = 1. The IDR(s)
algorithms do not produce the Lanczos residuals directly. In the IDR(s) variant
[30], it is easy to calculate the Lanczos residuals r̃n−j and corresponding x̃n−j by
implementing a copy of this IDR(s) algorithm, running together with the IDR(s)
algorithm itself and using the same coefficients, but in which the explicit multiplication
with I−ωjA at step j(s+1) is omitted. This “shadow process” produces the Lanczos
iterates and residuals. Strictly speaking, we deviate here from the condition “keep
the newest residual” in the definition of the Lanczos polynomial Ψn−j. However, in
the elegant variant of IDR(s) the two variants of Ψn−j are identical according to (6).

In [13] a theoretical framework is developed, in which a similar procedure is
described, based on a reduction of a Hessenberg pencil related to IDR(s). Although
this procedure is applicable to general variants of IDR(s), the author’s implementation
on the prototype IDR(s) turned out to be rather unstable. In the case of the IDR(s)
variant [30] the procedure can be reduced to a simple ad hoc modification of a working
algorithm, as described.

In the shadow process for producing the Lanczos residuals, we apply residual
replacement with the same strategy as in the IDR(s) algorithm itself, and we always
show the true residual norms ‖b−Ax̃j‖.

Note that the skipping procedure in the shadow process leads to the same reduc-
tion by a factor s

s+1 as is applied in the rescaling of convergence plots, which actually
was carried out by dropping one matrix-vector multiplication every s+ 1 steps.
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The procedure described above has also been suggested in [2] as a tool for retriev-
ing f.i. BiCG residuals from the BiCGSTAB algorithm. It requires s extra (hidden)
matrix vector products every s + 1 steps, so probably this is not a practical solver.
However, the (theoretical) solver ML(k)BiCG [33] requires k direct matrix vector
products and k products with the transpose for every k steps, so the variant used in
our experiments is easier, and not much more expensive then ML(k)BiCG would be.

3.2. Experiments on damping and Lanczos parts. We can view the con-
tributions of the Lanczos part, and the damping part by comparing the plots of the
Lanczos residuals with the reindexed plots of IDR(s) residuals.

In Figure 3 the reindexed IDR(s) residuals are compared with the Lanczos resid-
uals for Problem 2 with s = 1, 2, 8, 16. It is quite clear that IDR(1) has rather large
profit from the damping part of the convergence. For larger values of s this effect
becomes smaller. So this is a case in which the damping factors actually produce
damping.

In Figure 4, similar results are shown for Problem 3, i.e., the same convection
diffusion equation as in Problem 2, but with a rather large mesh-Peclet number 20
in the x-direction. For classical iterative procedures this is disastrous, and this effect
is visible in the left plot for s = 1 and s = 2. For the larger values of s, the method
converges.

The Lanczos residuals, depicted in the left plot of Figure 4, converge also for
s = 1 and s = 2, albeit rather slowly. So apparently, the damping factor of the
IDR(s) residual polynomial does not damp at all in Problem 3, and the convergence
is completely due to the Lanczos part.

The cause of the failing damping property is that the calculated real values for
ωj would be very small, causing stagnation of the procedure (as in Bi-CGSTAB).
Therefore a modified calculation of ωj is done, described in [21], which in these cir-
cumstances cause growth instead of a damping.
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Fig. 3. Reindexed versus Lanczos residuals in Problem 2.
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Fig. 4. No damping in Problem 3.
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Fig. 5. Remedy by complex P .

So it is quite reasonable to look seriously for alternative criteria for choosing the
parameters ωj . For the case s = 1, which is equivalent to Bi-CGSTAB, Gutknecht
[11] and Sleijpen and Fokkema [18] have developed variants of the algorithm, in which
the factors I −ωjA are combined into higher degree polynomials, allowing for better
minimization possibilities in this kind of cases. Recently Tanio and Sugihara [26] and
Sleijpen and van Gijzen [20] have developed similar techniques for IDR(s) with s > 1.

Simoncini and Szyld [17] developed alternative criteria for the ω-values, based on
the field of values of A.

One extremely easy way to handle the nondamping problem in IDR(s) is shown
in [25]. By choosing the matrix P complex, the algorithm is forced to use complex
arithmetic and therefore may find better factors. The result is shown in the left and
right plots of Figure 5. Apart from the increase in computational work caused by
complex arithmetic, this seems to be a perfect remedy.

The right plots in Figures 4 and 5 show an interesting property of the Lanczos
residuals. The convergence plots follow quite closely the typical plateau behavior of
GMRES in this kind of problem. Apparently the behavior of the Lanczos residuals is
somehow related to the behavior of the GMRES residuals. This will be analyzed in
the next sections.

4. Analysis of the Lanczos factors. It is shown in [25] that the polynomials
Ψn−j satisfy relations of the following type:

pH
r Ωl(A)Ψn−j(A)r0 = 0, l = 0, 1, . . . , j − 1, r = 1, 2, . . . , s,(8)

where s is the “order” of the IDR(s) algorithm. Since the polynomials Ω0, Ω1, . . . ,Ωj−1

are a basis for the space of polynomials of degree up to j−1, these relations are equiv-
alent with

pH
r AlΨn−j(A)r0 = 0, l = 0, 1, . . . , j − 1, r = 1, 2, . . . , s.(9)

Since Ψn−j has n− j coefficients to be determined, the above relations can be consis-
tent as long as n− j ≥ s · j. If the equality sign holds, the coefficients are determined
uniquely, which is the case if n = (s+1) ·j, corresponding exactly with the calculation
of the very first residual in the space Gj . In the calculations for the residuals rn for
intermediate values of n, there is freedom, which can be used for stability purposes.

One important conclusion can be drawn from the relations in (9): the Lanczos
factor Ψn−j is independent from the damping polynomial Ωj . So the Lanczos part of
the convergence is not influenced by the damping strategy, at least as long as finite
precision does not play a role.
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Define the Krylov vectors kl and the reduced Krylov matrices Kl by

kl = Alr0, l = 0, 1, 2, . . . , Kl = (k1 k2 . . . kl), l = 1, 2, . . . ,(10)

and let Ψn−j(A) be written as

Ψn−j(A) =

n−j∑
l=0

clA
l = I −

n−j∑
l=1

clA
l;

then the equations for the coefficients cl can be written as

pH
r Al[Kn−jc− r0] = 0, r = 1, 2, . . . , s, l = 0, 1, . . . , j − 1.

These relations can be written in the following form:

THKn−jc = THr0,(11)

where

T = (t1 t2 . . . tsj) , tls+r = (AH)lpr, l = 0, 1, . . . , j − 1, r = 1, 2, . . . , s.(12)

The vectors ti can be considered as test vectors and the matrix T as a test matrix in a
Galerkin context. In fact, the Lanczos residuals can be regarded as Galerkin residuals,
produced by a Galerkin approximation

r̃n−j = r0 −Kn−jc(13)

of the overdetermined system

Kn−jc = r0.(14)

The result of a Galerkin procedure depends on the model space M = R(Kn−j)
and the test space T = R(T ) rather than on the matrices Kn−j and T .

The Galerkin connection described here is valid for all values of n in the IDR(s)-
variant [30]. For other variants of IDR(s) the validity is restricted to the iteration
steps with n = (s + 1) · j, but still the analysis gives an explanation of the con-
vergence behavior. We call the procedure defined by (10)–(14) the Krylov–Galerkin
approximation.

The experiments as depicted in Figures 3–5 support the suggestion of a relation
between the Krylov–Galerkin approximations and the full GMRES algorithm. This
last method is a special Krylov–Galerkin approach, in which the test space coincides
with the model space, so in fact GMRES produces least-squares approximations.

Comparisons of GMRES with other Krylov subspace methods are done, e.g., in [1,
5, 7, 15]. Brown [1] compares Arnoldi’s method with GMRES. Cullum and Greenbaum
[5] compare BiCG and QMR, both being Galerkin methods, with GMRES.

Hochbruck and Lubich [15] give a short and clear basis for an error analysis of
BiCG, QMR, FOM, and GMRES, as well as for comparing these methods. One of
the formulas in the proof of Theorem 1 in their paper implies formula (15) in our
analysis.

Finally, Eierman and Ernst [7] make a geometrical analysis of the relation between
minimal residual methods, like GMRES, and orthogonal residual methods, like BiCG.
It turns out that the quality of the Galerkin method depends on the angle between
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the model spaces Kj(A, r0) and the test spaces Kj(A
H , r̂0). Here, small angles mean

“good quality.” The hard part is to find bounds for these angles, especially if A is far
from Hermitian positive definite.

We give a simple derivation of the essential formulas, applicable to any Galerkin
procedure for finite linear problems. Let Q be a matrix with orthonormal columns
that span the model space and let the test space be spanned by the columns of a
matrix T ,

M = R(Q), T = R(T ).

In the following analysis we assume THQ to be nonsingular. The corresponding
Galerkin solution for the system Qc = b satisfies

TH(b−Qc) = 0 =⇒ c = (THQ)−1THb.

The residual vector r = b−Qc satisfies

r = b−Q(THQ)−1THb = (I − P )b,

where P = Q(THQ)−1TH represents an oblique projection on the model space.
For the least-squares approximation we have the same relation, but with the

orthogonal projector P̂ = Q(QHQ)−1QH = QQH instead:

r̂ = b−QQHb = (I − P̂ )b.

For comparing the Galerkin residual r with the least-squares residual r̂, we make use
of a remarkable yet simple property of projectors on the same space.

Lemma 4.1. Let P 1 and P 2 be projections, and let R(P 1) = R(P 2). Then
(i) P 1P 2 = P 2,
(ii) (I − P 1)(I − P 2) = I − P 1.
Proof. Let x be arbitrary, and let y = P 2x; then y ∈ R(P 2), and since R(P 1) =

R(P 2), y = P 1x̃, for some x̃. Hence (P 1P 2)x = P 1P 1x̃ = P 1x̃ = y = P 2x. This
being true for every x, property (i) follows. Property (ii) follows directly:

(I − P 1)(I − P 2) = I − P 1 − P 2 + P 1P 2 = I − P 1.(15)

Application of this lemma with P and P̂ playing the role of P 1 and P 2, respec-
tively, yields

r = (I − P )b = (I − P )(I − P̂ )b = (I − P )r̂,(16)

so we have a direct relation between r and r̂, not containing b anymore. Formula
(16) remains valid if r̂ is from any other Galerkin method, but in our case this is not
relevant.

The least-squares residual is in the orthogonal complement of R(Q). Let Q′ be an
N×(N−k) matrix with orthonormal columns that span this orthogonal complement.
Then r̂ = Q′s for some s ∈ CN−k. In this way the Galerkin residual can be split into
two mutually orthogonal components:

r̂ = Q′s ∈ R(Q′) (least-squares residual),(17a)

dr = r − r̂ = P r̂ = Q(THQ)−1THQ′s ∈ R(Q) (residual surplus).(17b)
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We are interested in the component dr. We have ‖r̂‖ = ‖Q′s‖ = ‖s‖, and

‖dr‖ = ‖(THQ)−1THQ′s‖.(18)

Let B = THQ and B′ = THQ′; then

‖dr‖
‖r̂‖ ≤ ‖B−1B′‖ ≤ ‖B−1‖ · ‖B′‖.(19)

The equality (18) is valid, independent of the choice of basis for the test space. This is

not the case, however, for the estimate (19). If we change the basis for T by T = T̃C,

for any invertible matrix C, then B = CHB̃, and B′ = CHB̃′. Then B′−1B is not
affected, but ‖B−1‖ · ‖B′‖ is.

We now assume the new basis for T to be orthonormal: T = R(Q̃), where Q̃ is
an N × k matrix with orthonormal columns. With this choice we have

B̃ = Q̃HQ ∈ C
k×k, B̃′ = Q̃HQ′ ∈ C

k×(N−k).

Let σ1 ≤ σ2 ≤ · · ·σk denote the singular values of B̃, and let similarly σ′
1 ≤ σ′

2 ≤ · · ·σ′
k

denote the dominant singular values of B̃′. Then we have

‖B̃−1‖ =
1

σ1
, ‖B̃′‖ = σ′

k.

Now the singular values of B̃ and B̃′ satisfy the following remarkable relations:

σ′
k+1−j =

√
1− σ2

j , j = 1, 2, . . . , k.(20)

To see this, consider the k ×N composite matrix B̂ = [B̃ | B̃′]. We have

B̂B̂H = Q̃H · [Q |Q′] · [Q |Q′]HQ̃ = Ik

since [Q |Q′] is unitary. Hence

B̂B̂H = B̃B̃H + B̃′B̃′H = Ik.

The singular values of B̃ and B̃′ are the positive square roots of the eigenvalues of
B̃B̃H and B̃′B̃′H , respectively, from which (20) follows. So we can write

‖B̃−1‖ =
1

σ1
, ‖B̃′‖ =

√
1− σ2

1 ,

and hence

‖dr‖
‖r̂‖ ≤

√
1− σ2

1

σ1
.

This last formula suggests the use of trigonometric functions. We can define a positive
angle ϑ such that σ1 = cos(ϑ). Then

‖dr‖
‖r̂‖ ≤ tan(ϑ).(21)
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The angle ϑ in (21) is precisely the angle between the model space and the test space,
according to the definition

∠(U ,V) = max
x∈U

{
min
y∈V

∠(x,y)
}
.(22)

This result, although derived in a different way, can also be found in [7].
If ϑ is small, the estimate (21) guarantees that ‖r − r̂‖ is small compared to

‖r̂‖. On the other hand, if a Galerkin-based method performs poorly compared with
least squares, then ϑ is close to π/2. So if a Krylov–Galerkin method converges
poorly compared to GMRES, this is caused by bad relative orientations of the Krylov
subspaces Kj(A, b) and Kj(A

H , b̃).
We shall apply the framework differently, because the test matrix in the Krylov–

Galerkin procedure has a different background. Instead of being built up from im-
ages (AH)nr̃0 of one shadow residual, the sequence of test vectors is defined by
p1,p2, . . . ,ps, A

Hp1,A
Hp2, . . . ,A

Hps, (A
H)2p1, . . . . So the amount ofAH -influence

in the test matrices is far less than in BiCG and in other classical two-sided Lanczos
methods.

In the next section, we exploit the fact that the shadow vectors p1,p2, . . . ,ps are
chosen at random.

5. Random test vectors. In the prototype IDR(s) algorithm as presented
in [25], the s shadow vectors are chosen randomly. During the development of the
method, choices related to spectral properties of the equation matrix have been tried
out, but these choices often produced poor results. In fact, the random choice for the
shadow vectors arose because nothing better could be found.

In the prototype code, every component of every vector was chosen independently
uniformly distributed in the interval [0, 1]. This choice, however, does not provide true
random vectors in CN , because the density of vectors in directions like [1, 1, . . . , 1]T

is considerably higher that in directions like [1, 0, 0 . . . , 0]T .
Since in the IDR(s) algorithms the length of the vectors pk is not of importance,

we want the vectors uniformly distributed over the directions in space. So if we
normalize them, we want the results to be uniformly distributed over the unit sphere
in CN or RN . This is accomplished by choosing vectors of which all components are
stochastically independent variables, with a standard normal distribution, i.e., with
zero mean and unit variance. The simultaneous probability density then reads

f(P ) = C · exp
(
−1

2

(
N∑

k=1

s∑
l=1

|pk,l|2
))

(23)

with C = (
√
2π)−Ns, providing

∫∫
· · ·
∫
f(P )dp11dp12 · · · dpNs = 1. In the version

[30] of the IDR(s) algorithm, this choice for P is made.
For simplicity and readability, we define the class N as the set of stochastic

variables normally distributed with zero mean and unit variance:

x ∈ N → x
iid∼ N(0, 1).

Then by N k and N k×l we mean classes of vectors, respectively, matrices, of which
all entries are in N and are mutually stochastically independent. Formula (23) is the
probability density of a variable P in NN×s.
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In the practical IDR(s) algorithms, the Galerkin test matrices are built from the
columns

p1,p2, . . . ,ps,A
Hp1,A

Hp2, . . . , (A
H)jps,

spanning the left Krylov block subspace Kj(A
H ,P ). These columns are not stochas-

tically independent for k > s and therefore are not easily analyzed. In the numerical
tests of IDR(s), the convergence curves were shifted to the left at increasing s, with
a virtual limiting position close to the full-GMRES curve. Similarly, the Lanczos
convergence curves were located more or less on a fixed distance of the full-GMRES
curve, for s large enough, say, s > 4 in some cases.

As a first attempt for analyzing the role of random shadow vectors we choose a
case where s is greater than the number of iterations. In this case we might expect to
get a convergence curve that is to the left of all practical IDR(s) curves. We refer to
this—highly impractical—method as the “full random Galerkin–Krylov” algorithm.
Let T be the test matrix corresponding to the kth iteration step; then T ∈ NN×k.

Then the residual surplus dr = r − r̂ is a stochastic vector, and its norm is a
stochastic variable v = ‖dr‖. We figure out properties for v. According to (18), v
satisfies

v = ‖(THQ)−1THQ′s‖,

where s satisfies ‖s‖ = ‖r̂‖. The matrix Q̂ = [Q |Q′] is a unitary N ×N matrix. Let

x ∈ NN , and let x̃ = Q̂Hx; then

C · exp
(
−1

2
‖x‖2

)
dx1dx2 · · · dxN

= C · exp
(
−1

2
‖Q̂x̃‖2

)
det(Q̂)dx̃1dx̃2 · · · dx̃N

= C · exp
(
−1

2
‖x̃‖2

)
dx̃1dx̃2 · · · dx̃N .(24)

Hence x̃ ∈ NN too. Therefore all columns of Q̂HT are in NN , and since the columns
of T are stochastically independent, the images also are, hence

T̂ = Q̂HT ∈ NN×k.

The matrix T̂H = THQ̂ can be split,

T̂H = THQ̂ = [THQ |THQ′] = [T̃H | T̃ ′H ],

from which follows that T̃H ∈ N k×k, T̃ ′H ∈ N k×(N−k).
The stochastic variable v satisfies

v = ‖(THQ)−1THQ′s‖ = ‖(T̃H)−1T̃ ′Hs‖.

The vector s is completely determined by the least-squares procedure and is
therefore not stochastic. We determine the probability distribution of y = T̃ ′Hs. Let
U be an (N − k) × (N − k) unitary matrix such that s = ‖s‖Ue1; then T̃ ′Hs =

‖s‖(T̃ ′HU)e1. Since U is unitary, T ′HU ∈ N k×(N−k). The vector z = (T̃ ′HU)e1 is
its first column, and therefore z ∈ N k. So finally we find

y = ‖s‖z = ‖r̂‖z with z ∈ N k.
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It follows that dr = r − r̂ can be written as

dr = T̃−Hy = ‖r̂‖ · T̃−Hz =⇒ v = ‖r̂‖ · ‖T̃−Hz‖(25)

with T̃ ∈ N k×k and z ∈ N k.
Usually in numerical mathematics, one is interested in the worst case that can

happen. In many practical situations, however, the worst case produces a far too
pessimistic prediction. In the case of (25), the worst case bound is infinity, since
‖T−1

1 z‖ is a stochastic variable with unbounded range. Therefore we must apply
statistical concepts like expectations and standard deviations.

The norm of the inverse of a matrix is the reciprocal of the smallest singular
value of the matrix. Edelman [6] has derived an asymptotic probability density for
the smallest singular value of a matrix in N k×k. Denote this singular value by σ1;
then the probability density for σ1

√
k reads

f(σ) = (1 + σ)e−σ2/2−σ.(26)

This means that with probability close to 1, σ1

√
k ≥ C for moderate C, and conse-

quently ‖T̃−H‖ ≤ C̃
√
k for moderate C̃.

For the random vector z in (25), we may expect, by elementary statistics, that
‖z‖ ≤ D

√
k with probability close to 1, again for moderate D. Therefore, since T 1

and z are stochastically independent, we may expect

‖dr‖ ≤ Ĉ · k · ‖r̂‖(27)

with probability close to 1 and Ĉ = C̃D a moderate constant.
In order to verify whether this kind of bound is realistic, we do an investigation

on linear systems Ax = b, where A ∈ N k×k and b ∈ N k. Such systems could be
named random systems, but this term is sometimes used for systems in which only
the matrix is random. Therefore we use the term completely random systems.

5.1. Completely random linear systems. In order to verify the quality of
(27), we study the probabilistic properties of linear systems Ax = b with A ∈ N k×k

and b ∈ N k.
Definition 5.1. 1. A k× k linear system Ax = b is called a completely random

linear system if all entries of A and b are stochastically independent and normally
distributed stochastic variables.

2. The class of solutions x of a completely random k×k system is denoted by Qk

if the matrix and the right-hand side are real and by QC

k if they are complex.
We start with constructing an experimental probability density function (e-pdf)

of ‖x‖, for x ∈ Qk, by computing 500 samples of this stochastic variable for sizes
k = 25, 50, 100, 200.

We actually plotted the histograms of u = log10(‖x‖) instead of ‖x‖, since they
represent e-pdfs for the number of decimal digits that random Galerkin will “be be-
hind” the least-squares method. The results are shown in Figure 6, and related
statistical information is given in Table 1. For each k the histogram is plotted in a
different color. The patterns have similar bell shapes, shifting slightly to the right
at increasing k. According to (27), the shift should be about log10(2) between two
subsequent k-values. From the calculated means in Table 1, the shift is closer to
1
2 log10(2). Therefore we also plot the histograms shifted to the left at an amount of
1
2 log10(k) for the case corresponding to size k. The result is shown in Figure 7, and
the 1

2 log10(k) shift seems to be confirmed.
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Fig. 6. e-pdf of log10(‖x‖), x ∈ Qk.

Table 1

Parameters for log10(‖x‖), x ∈ Qk.

k Mean Shifted Var stdd
25 0.953 0.254 0.239 0.488
50 1.099 0.249 0.226 0.476
100 1.270 0.270 0.211 0.459
200 1.413 0.263 0.264 0.514

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

log
10

(x*k−1/2)   (decimal digits)

ν(
x)

 Frequency plot for x=|A−1b|*k−1/2 

k=  25
k=  50
k= 100
k= 200

Fig. 7. e-pdf of log10(‖x‖/
√
k), x ∈ Qk.

Table 2

Parameters for log10(‖x‖), x ∈ QC
k.

k Mean Shifted Var stdd
25 0.816 0.117 0.080 0.283
50 0.996 0.146 0.083 0.288
100 1.097 0.097 0.064 0.253
200 1.270 0.120 0.068 0.261

So experimentally we observe that ‖x‖ ≤ C
√
k with probability close to one for

moderate C.
For the classes QC

k, the solutions of complex completely random systems, similar
histograms can be made; these can be found in [24]. The corresponding statistical
quantities are presented in Table 2.

The calculated means as well as the histograms indicate that the variable log10
(‖x‖/

√
k) may have a distribution function that is nearly independent of k.

D
ow

nl
oa

de
d 

02
/0

7/
13

 to
 1

31
.1

80
.1

30
.1

98
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2592 PETER SONNEVELD

In searching for an explanation for the observed behavior, the analytical proba-
bility densities of vectors in Qk and QC

k and of their norms were discovered by chance.
Theorem 5.2. Let x belong to Qk, and let the stochastic variable x = ‖x‖ have

the probability density function fk. Then

fk(x) = C
xk−1

(1 + x2)(k+1)/2
with C =

2√
π

Γ(k+1
2 )

Γ(k2 )
.(28)

If x is in QC

N , the density function for ‖x‖ reads

f̂k(x) =
2kx2k−1

(1 + x2)k+1
.(29)

For (28), we give a sketch of the proof by induction.
Step 1. The idea for the following reduction was found in [6].
The main inductions step is based on a Householder transformation on the system

Ax = b =⇒ HAx = Hb,

where H represents is the unitary reflection that transforms the first column a1 of A
to αe1 with α = ‖a1‖:

HA =

[
α pT

0 Ã

]
, Hb =

[
c

b̃

]
.

Here the scalar α = ‖a1‖ satisfies the χk distribution; the scalar c, the vectors p and

b̃ and the matrix Ã are mutually stochastically independent, as well as independent
from α, and distributed according N , N k−1, and N (k−1)×(k−1), respectively.

Let xT = [x1 , x̃
T ]; then

Ãx̃ = b̃, x1 =
c− pT x̃

α
.

It follows that x̃ belongs to Qk−1. We denote the pdf ’s of x and x̃ by g1(x) and
g̃1(x̃), respectively.

Step 2. The following idea of using conditional probability densities was found in
[8], a two-page paper on an elementary derivation of the Wishart distribution.

Consider x̃ as a given (= nonstochastic) vector. Then the scalar c − pT x̃ is
normally distributed with variance 1+‖x̃‖2, so c−pT x̃ =

√
1 + ‖x̃‖2 ·z, with z ∈ N .

Therefore

x1 =
√
1 + ‖x̃‖2 z

α
.

The pdf of this variable can be considered as the conditional pdf of x1 with respect to
x̃. Denote the pdf of x1 by g2(x1), and it follows that

g1(x) = g1(x1, x̃) = g2(x1)g̃1(x̃).(30)

Step 3. For the derivation of g2(x1), consider the simultaneous pdf for z and α:

F (z, α) = C exp

(
−1

2
z2
)
exp

(
−1

2
α2

)
· αk−1 = C exp

(
−1

2
(z2 + α2)

)
· αk−1,

where C is a normalization constant, providing
∫
F (z, α)dzdα = 1.
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Fig. 8. pdf’s for log10(‖x‖), x ∈ Qk.
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Fig. 9. pdf’s for log10(‖x‖/
√
k), x ∈ Qk.

Choose new variables ξ and t according to z = ξt, α = t, so ξ = z/α. The pdf F̃
for ξ and t satisfies

F̃ (ξ, t) = F (ξt, t) ·
∣∣∣∣det(∂(z, α)

∂(ξ, t)

)∣∣∣∣ = C exp

(
1

2
t2(1 + ξ2)

)
· tk.

Integrating over t, we get the marginal distribution of ξ, which turns out to be the
so-called Student distribution:

g3(ξ) =
C′

(1 + |ξ|2) k+1
2

.

We have x1 = λzα , with λ =
√
1 + ‖x̃‖2, so the pdf g2 of x1 reads

g2(x1) =
1

λ
g3

(
ξ

λ

)
= C′ (1 + ‖x̃‖2) k

2

(1 + ‖x‖2) k+1
2

.

According to (30), we have the following recursion between g1(x) and g̃1(x̃):

g1(x) = C′ (1 + ‖x̃‖2) k
2

(1 + ‖x‖2) k+1
2

· g̃1(x̃).

For k = 1, the pdf g1 coincides with g3. Using this as initial condition for the recursion,
we arrive at

g1(x) =
C′′

(1 + ‖x‖2) k+1
2

.

This distribution is known as the multivariate Cauchy distribution.
Step 4. Equation (28) is derived by using hyperspherical coordinates dx1dx2 · · · dxk =

rk−1drdΩ and integrating over the “angle” Ω.
A complete proof, written for nonstatisticians, can be found in in a Delft Univer-

sity report [24].

In Figures 8 and 9 the densities fk(‖x‖) and fk(
‖x‖√

k
) are plotted on a logarithmic

horizontal scale, in the real case for k = 25, 50, 100, 200.
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For this family of pdf ’s, the expectation μk = E(log10(x)) and the variance σ2
k =

σ2(log10(x)) can be derived analytically. We give the asymptotic behavior for large
k:

μk ≈ 1

2
log10(k) + 0.27586, σ2

k ≈ 0.23269 (real case),(31a)

μk ≈ 1

2
log10(k) + 0.12534, σ2

k ≈ 0.077563 (complex case).(31b)

The behavior of μk ≈ C + 1
2 log10(k) indicates that the experimentally observed shift

has a theoretical basis.
For practical use, it is interesting for which values of ‖x‖, the probability is less

than, say, 10−j. It is easy to give estimates that are quite sharp for j ≥ 2,

Pr

(
log10(x) >

1

2
log10

(
2k

π

)
+ j

)
< 10−j (real case),(32a)

Pr

(
log10(x) >

1

2
log10(k) + j/2

)
< 10−j (complex case).(32b)

The graphs for different k in Figure 9 are nearly identical, again confirming the
log10(

√
k) shifting behavior. This can be explained by an asymptotic approximation

of the pdf. Let the stochastic variable y be defined by x = y
√
k; then the probability

density of y satisfies

gk(y)dy = fk(x)dx = fk(
√
ky)

√
kdy

=⇒ gk(y) = C
xk−1

√
k

(1 + x2)
1
2 (k+1)

= C
yk−1k

k
2

(1 + ky2)
1
2 (k+1)

with C as defined in (28).

With the help of Stirling’s formula we find C ≈
√

2k
π . Then by applying the

elementary approximation (1+ a)b ≈ eab(1 +O(a2b)) for |a| < 1, to [1 + 1
ky2 ]

− 1
2 (k+1),

we arrive at

gk(y) ≈
√

2

π

exp(− 1
2y2 )

y2
.

For y → 0 and k fixed, gk(y) = O(yk−1), so it tends to zero rapidly. The asymptotic
approximation tends to zero extremely fast as y2 becomes small. Although there is
a difference in behavior, this difference is hardly visible in practice. Therefore the
asymptotic formula might replace the original distribution perfectly well if only k is
not too small, say, k > 20.

This analysis explains the coinciding graphs in Figure 9.

6. Experimental verification. According to the theory described in section 4,
the Lanczos residuals r̃k can be regarded as Krylov–Galerkin residuals with increasing
Galerkin dimension k. The GMRES residuals are considered as least-squares residuals
and denoted by r̂k. The residual surplus, as defined in (17b), is then drk = r̃k − r̂k,
and its norm is calculated as

‖drk‖ =
√
‖r̃k‖2 − ‖r̂k‖2.

We want to test whether the quantities vk = ‖drk‖ / ‖r̂k‖ can be regarded as realiza-
tions of ‖z‖ with z ∈ Qk (or QC

k in the case of complex P ).
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Fig. 10. log10(‖dr̃‖/‖r̂‖), Prob. 2, P ∈ RN×s.
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Fig. 11. log10(‖dr̃‖/‖r̂‖), Prob. 2, P ∈ CN×s.
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Fig. 12. log10(‖dr̃‖/‖r̂‖), Prob. 3, P ∈ RN×s.
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Fig. 13. log10(‖dr̃‖/‖r̂‖), Prob. 3, P ∈ CN×s.

The values vk are calculated from the observed residual norms:

vk =

√
‖r̃k‖2
‖r̂k‖2

− 1.

We plot log10(vk) against k. The test problems are Problem 2 (convection diffusion
with numbers [0.5, 0]) and Problem 3 (similar, but with Peclet numbers [20, 0]), as
described in section 2 and section 3.1. We obtained the Lanczos residuals from IDR(s)
for values s = 8 , 16 , 32 and with real as well as complex P .

The results are shown in Figures 10–13. In these plots, a solid black curve denotes
the expectation of this stochastic variable; a dashed black curve depicts the number
of digits that the Lanczos residual is behind the GMRES curve with a probability of
at most 1%.

The theoretical formulas are designed for s = ∞. For finite s, they are valid as
long as k < s. From the pictures we can see whether the theory remains valid for
lower values of s.

The upper plots show the results for Problem 2, the lower for Problem 3. In the
left plots P is real, in the right plots P is complex. It can be seen that for complex
P , for all three s-values the quantity log10(vk) obey the theory as if s were infinity.
For real P , the same can be said for the “easy problem.” For the difficult problem,
only for s ≥ 32 the theoretical behavior for s = ∞ can be observed.

7. Discussion and conclusions.
Convergence mechanisms. We have shown that the convergence of IDR(s) de-

pends on two mutually independent regimes. The Lanczos regime is completely de-
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termined by the choice of P , whereas the damping regime depends on the choice
of the ω-parameters. For convection diffusion equations with moderate mesh-Peclet
numbers, the damping polynomials Ωj(A) actually play a role in the convergence, but
for s ≥ 4 this role is negligible. Figure 4 shows an example in which the polynomials
Ωj(A) are not damping. For small values of s, the amplification is stronger than the
convergence by the Lanczos part in this example. Only for higher values of s is the
Lanczos component of the convergence stronger, because of the relatively low degree
of the Ωj(A) polynomials.

Since higher values of s come with a substantial increase of inner products and
linear combinations, it is important that alternative choice mechanisms are used for
the ωj parameters, aiming reduction of growth instead of damping.

The convergence of the Lanczos part. The central part of this paper is devoted
to the Lanczos part of the convergence. This part of the convergence can be regarded
as produced by a Galerkin method, in which the shadow vectors and their iterated
AH -images act as test vectors. Convergence of such a Galerkin method can be poor
if the angle between the test space and the model space is close to π/2.

For keeping this angle away from π/2, it seems to be essential that the shadow
vectors have only a weak interrelationship with the direct Krylov vectors in the pro-
cess. For very large values of s, this can be accomplished by choosing the shadow
vectors randomly. In this respect, the IDR(s) method belongs to the class of methods
described in Halko, Martinsson, and Tropp [14], in which randomness is exploited to
create vector sets that are “as independent as possible.”

For small s, however, (AH)k-images of the shadow vectors for large k are involved,
introducing possibly “wrong” relationships between test vectors and model vectors. It
appears that these wrong relationships (Figure 12, lower s-values) occur in the cases
that the damping factors are actually amplifying factors (Figure 4).

Stochastic theory for the Lanczos residuals. In section 5, a stochastic theory was
developed, based on the use of independent standard normally distributed shadow
vectors, resulting in a probability distribution for the norm of the residual surplus
‖rLanczos−rGMRES‖. The theory is valid for very large values of s. However, Figures 10–
13 show that that the results of this theory are also valid for lower values of s.

This stochastic theory in fact applies as well to the convergence behavior of the
(theoretical) ML(k)BiCG method of Yeung and Chan, described in [33] as an interme-
diate step in the derivation of their ML(k)BiCGSTAB algorithm. In the experiments,
we actually obtained the ML(k)BiCG residuals from a shadow process in the used
version [30] of IDR(s), at the cost of twice the number of matrix vector operations.

The stochastic theory provides a plausible explanation of the limiting behavior of
the IDR(s) residual curves for increasing s, as observed in many experiments.

Complex choice of shadow vectors. The results shown in Figure 5 demonstrate
that in the case of bad damping properties caused by high mesh-Peclet numbers, this
effect can be reduced considerably by choosing the shadow vectors complex instead
of real. In this way, the algorithm can search optimal ωj values in the complex plane,
yielding damping instead of amplification.

For noncomplex problems, the complex choice of P is a bit expensive. The work
load for inner product calculations and linear combinations is about four times as
high compared to the real choice of P . Only the matrix vector multiplications can
be carried out in twice the work for the real case, by calculating �(y) = A�(x), and
�(y) = A�(x) instead of simply y = Ax.

For complex problems, a real P could do the job as well, because we automatically
get complex arithmetic in that case. However, Figure 13 justifies the use of complex
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P also in these cases, because there is an extra advantage in the significantly lower
level of the expected residual surplus.

But besides that, contributions as in [11, 18, 17] and recently in [20] are important
for better mastering the stabilization/damping issue.

Bad damping by the Ωj(A) factors certainly occurs in cases where A has eigen-
values on both sides of the imaginary axis, as in the Helmholtz equation. In [25] is
shown that IDR(s) may converge very well in these cases. Unfortunately we could
not test the stochastic theory on this kind of problem, because we did not succeed in
obtaining reliable Lanczos residuals.

Practical expectations. Concluding from Figures 10–13, it appears that for a wide

range of problems and Krylov dimensions, ‖r̃IDR(s)
j(s+1)‖ � 10‖rGMRES

js ‖, as long as the

“damping factors” are not too amplifying. Whether a larger value of s is required can
be decided if one has some prior information about the spectrum of the matrix.

Finally if the damping factors are very amplifying, it would be attractive to use
the Lanczos residuals instead of the IDR(s) residuals. This would require nearly twice
the number of matrix vector multiplications. But probably a large value of s is also
required to reduce the angles between the left and right Krylov subspaces, which is
necessary for the Lanczos residuals to converge. However, a large s-value reduces
the amplification of the bad damping polynomials, which is in favor of IDR(s) itself.
Experiments on this question may produce interesting results.

If IDR(s) is compared to full GMRES when the latter is in a phase of fast con-
vergence, the factor 10 is visible as only a slight shift to the right, meaning IDR(s)
is only a few iteration steps behind. For problems that are not intrinsically suffering
from a matrix with an ill-structured spectrum, the IDR(s) method therefore provides
a relatively cheap and reliable alternative for full GMRES.
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