
Delft University of Technology
Master of Science Thesis in Embedded Systems

Deep Reinforcement Learning for Rapid
Communication Network Recovery with

Multiple Repair Crews

Ingimundur Vilhjálmsson

Deep Reinforcement Learning for Rapid

Communication Network Recovery with Multiple

Repair Crews

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Ingimundur Vilhjálmsson
I.Vilhjalmsson@student.tudelft.nl

ingimundurvi@gmail.com

13 September, 2021

mailto:I.Vilhjalmsson@student.tudelft.nl
mailto:ingimundurvi@gmail.com

Author
Ingimundur Vilhjálmsson (I.Vilhjalmsson@student.tudelft.nl)
(ingimundurvi@gmail.com)

Title
Deep Reinforcement Learning for Rapid Communication Network Recovery with Multiple Repair Crews

MSc Presentation Date
27 September, 2021

Graduation Committee
Dr.ir. Fernando A. Kuipers Delft University of Technology
Dr.ir. Johan Pouwelse Delft University of Technology
Ir. Jorik Oostenbrink Delft University of Technology

mailto:I.Vilhjalmsson@student.tudelft.nl
mailto:ingimundurvi@gmail.com

Abstract

Natural disasters can destroy communication network components, potentially
leading to severe losses in connectivity. During those devastating events, net-
work connectivity is crucial for rescue teams as well as anyone in need of assist-
ance. Therefore, swift network restoration following a disaster is vital. However,
post-disaster network recovery efforts have been proven to be too slow in the
past.

Rapidly deployable networks (RDN) are communication networks that can
be configured as a wireless mesh network and can be integrated into an existing
communication network. As the name suggests, RDNs have a quick setup time
and are highly transportable. The technologies behind RDNs for communication
networks have received considerable advancements in recent times. Nonetheless,
the deployment strategy of such a network remains open.

The existing solutions on rapid post-disaster network recovery are built in
an inflexible way. First, each of them is designed around a specific problem.
Making slight modifications to the problem greatly increases the complexity of
the algorithm and can require major design changes to the system. Second,
the proposed solutions are unable to adapt to unexpected circumstances, such
as repair times taking longer than anticipated. We propose an online network
recovery approach to solve these flexibility issues.

With the optimization objective of maximizing a network’s weighted con-
nectivity while minimizing the overall recovery process duration, we design a
Deep Reinforcement Learning (DRL) system to produce optimal RDN deploy-
ment decisions. Experiments show our Deep Q-network (DQN) algorithm out-
perform greedy and naive approaches on any disaster scenario.

iv

Preface

This report presents my thesis project for the Master of Science in Embed-
ded Systems at the Delft University of Technology. During my time with this
project, I gained a vast amount of knowledge and experience in the fields of
communication networks and machine learning. My research in these fields has
revealed to me their immense capabilities as well as their future objectives.

I would like to express my deepest gratitude to Professor Fernando Kuipers
for giving me the opportunity to work on this thesis. To my daily supervisor
Jorik Oostenbrink, thanks for all the guidance and detailed feedback. I highly
appreciate the support you gave me during the challenging times. I also want
to thank Professor Johan Pouwelse for being on my graduation committee.

To my friends at TU Delft, thanks for all the wonderful memories. To Jacob,
Kaustubh, Teodor, Yordan, Naveen, Thomas, Jón, and Nikoleta, I am grateful
for the times we spent together at the university and in life. To Alejandro, Rafa,
and Jacob T., thanks for keeping the spirit alive in Michiel when the pandemic
hit. So many special memories were made and I will cherish them forever. To
Avinab, Barry, Catalina, Eveliina, Iñigo, and Loucas, your warmth made me
feel at home during my stay in Breestraat.

To mom and dad, none of this would have been possible without you. It is
hard to describe how grateful I am for your support and belief in me. To my
brothers, thanks for encouraging and motivating me to go the distance in all
my endeavors.

Ingimundur Vilhjálmsson

Delft, The Netherlands
19th September 2021

v

vi

Contents

Preface v

1 Introduction 1
1.1 Rapidly Deployable Networks . 1
1.2 Existing Solutions . 2
1.3 A Reinforcement Learning Based Approach 2
1.4 Contributions . 3

2 Related Work 5
2.1 Mobile Cell Sites . 5

2.1.1 Movable and Deployable ICT Resource Units 5
2.1.2 Cell on Wheels and Cell on Light Trucks 6

2.2 Recovery Strategies . 6
2.2.1 Progressive Network Recovery Approaches 6

2.3 Machine Learning . 8

3 Problem Definition 9

4 Approach 11
4.1 Network Recovery Simulator . 11

4.1.1 Simulator Control Flow 12
4.1.2 Queuing Process . 14

4.2 Modeling a Markov Decision Process 15
4.2.1 State space . 16
4.2.2 Action space . 16
4.2.3 State transition probability 16
4.2.4 Reward function . 16

4.3 Reinforcement Learning . 18
4.3.1 Q-learning . 18
4.3.2 Deep Q-learning . 19

5 Disaster Model and Graph Generator 23
5.1 Earthquakes . 23
5.2 Graph Generator . 24

6 Experiments 27
6.1 Experimental Setup . 27

6.1.1 Approaches Compared . 27
6.2 Experiments . 28

vii

6.2.1 Training and Testing Procedures 28
6.2.2 Experimental Objectives 29
6.2.3 Choosing an Optimal Time Slice 29
6.2.4 Approach Performance Comparisons 30
6.2.5 Remarks . 39

7 Conclusion 41

8 Future Work 43

viii

Chapter 1

Introduction

The increasing dependence that society has on communication networks has
reached nearly every person around the world. This dependence has been in-
grained into most aspects of our lives including work, obtaining news, enter-
tainment, and keeping in touch with people. More importantly, we rely on
communication networks for contacting first responders during emergency situ-
ations.

It is well known that events such as earthquakes, hurricanes, and other natural
disasters can cause severe damage to communication networks. During those
critical times, people may not be able to call for help until the network has been
restored. Repair operations are, however, often extremely time consuming and
can range from weeks to months [25]. Besides the economic impact, this amount
of time is too long to endure for people that get trapped and are in need of food
and water [5]. It is therefore essential to find an effective way to quickly recover
a damaged communication network following a major disaster.

1.1 Rapidly Deployable Networks

From the need for fast network establishment and recovery emerged the concept
of Rapidly Deployable Networks (RDN). The origin of RDNs goes back to 1998,
when Evans et al. proposed the concept as a means for maintaining connectiv-
ity between troops traversing through unknown locations [7]. This concept has
been the subject of many researches over the years, and still is to this day. Re-
cently, much of the published work in the field of RDNs has specifically been on
methods pertaining to the deployment of network components for post-disaster
scenarios [17] [25].

An RDN is an adaptive and scalable network that can be set up as a wireless
mesh network (WMN) or as an extension to an existing network. Typical applic-
ations of RDNs make use of transportable network components such as Cells On
Wheels (COW) and the Movable and Deployable Resource Unit (MDRU). As
these mobile cell site units offer the same services as existing permanent network
components, they can be utilized as replacements for damaged components. In
addition, integrating these units into an existing network is a swift and seamless
process, and far less time-consuming than performing network repairs.

1

1.2 Existing Solutions

In the field of rapid post-disaster network recovery, numerous approaches with
various optimization objectives have been proposed. For instance, some studies
focus on maximizing throughput over time, while others consider reachability
or other metrics. Still, most of the existing approaches share a similar repair
resource allocation mechanism to achieve their recovery goal. That is, these ap-
proaches tackle the network recovery problem in a so called progressive manner.

Since there is a limited amount of repair resources available at a time, it is
not possible to repair the whole network at once. Thus, progressive network
recovery strategies slice the total repair time into stages. In each stage, an
operator allocates the available repair resources to a number of components. The
problem is then to find the repair order that fulfills the optimization objective.

There exist many variations in the application of the existing progressive net-
work recovery approaches. In other words, the existing solutions are typically
designed around a specific issue, in addition to their optimization objective.
Some approaches consider, for example, partial repair, uncertainty, or data cen-
ters. However, the existing approaches usually focus on a just a single variant.
As a consequence, these solutions suffer from the lack of flexibility.

First, many of the proposed solutions assume full knowledge on aspects such as
network damage, demand, and repair times. In real-life, however, operators are
not guaranteed to have full knowledge on numerous parameters. Furthermore,
the parameters considered in the optimization objective of an approach may turn
out to be different in the real world. This raises questions on the practicality of
many of these studies.

Second, the proposed approaches are designed to consider only a limited set
of factors relevant to network recovery. Some of these factors include travel
time, repair time, uncertainty, and more. Although incorporating more factors
into the model could lead to better results, such changes would often require
major or complete changes to the proposed algorithms.

Last, the stage-like manner of these solutions prevents repair resources from
being immediately assigned to their next repair site, leading to inefficient time
management. That is, even though repair resources can become available before
the next stage, they can only get allocated at the beginning of each stage.

1.3 A Reinforcement Learning Based Approach

To address the main issue of inflexibility, we present an online and adaptable
approach that is also capable of considering multiple factors relevant to network
recovery. Our approach involves training a reinforcement learning (RL) agent
to learn how to recover a network optimally. The use of RL for our problem
is appealing because it (1) allows for one to easily make modifications to the
underlying model, and (2) can adapt to unforeseen conditions.

In our network environment model, we consider damage uncertainty, compon-
ent repair times, repair crew travel speeds, crew locations, and the remaining
times of each crew’s assignment. Hence, these parameters are taken into ac-
count in the agent’s decision on where to assign the repair crews. As we will
explain later, the agent learns to optimally recover the network through simu-
lations of interactions with the environment. Furthermore, we design our RL

2

based approach to be adaptable to unexpected situations.

1.4 Contributions

The motivation and objective of this thesis is to bring new ideas into the field
of rapid post-disaster network recovery. In our opinion, the existing solutions
are inflexible with respect to design and to the uncertainties present in real-life.
It turns out that adding or changing a parameter in these algorithms requires
their design to be completely modified. That is the main reason why there exist
so many papers on the topic in the first place.

With this thesis, our contributions to the area of rapid post-disaster network
recovery are as follows:

• A simulation environment that incorporates the essential parameters of
network recovery: time, distances, locations, repair crews, different net-
work component types and their states. These parameters enable for in-
teractions one would need in real-life network recovery scenarios.

• Two RL algorithms that are trained to make optimal repair order of a
network subject to uncertain damage extent. Further, these algorithms
are flexible to parameter variations. They are also flexible in the way that
changing or adding parameters to the model is simple.

• We demonstrate our approach outperforming naive baseline algorithms in
all of our experiments.

3

4

Chapter 2

Related Work

This chapter provides an insight into the related work. As the subject of RDNs
is broad, the chapter is organized into sections based on each item involved in
RDNs.

2.1 Mobile Cell Sites

While this thesis focuses on the deployment strategy of RDNs, it is important
to understand the hardware used in recovering a network. Since we assume
that only network nodes are prone to failures, we consider existing work on
mobile cell sites. Although mobile cell sites are commonly utilized in temporary
network expansion situations where there is increased traffic, their function in
the context of this thesis is to serve as replacements to damaged nodes.

2.1.1 Movable and Deployable ICT Resource Units

Following the immense network destruction caused by the Great East Japan
earthquake in 2011, substantial research has been put into the technology of
Movable and Deployable ICT Resource Units (MDRU). The MDRU first emerged
in 2013 and was developed by a collaboration between Nippon Telegraph and
Telephone (NTT), Tohoku University, and Fujitsu. In their initial article,
Sakano et al. present the architecture of the device and demonstrate that it
is applicable to large scale network failure scenarios [27].

In essence, an MDRU is a transportable ICT node in the form of a container
that houses communications equipment, servers, storage, power supplies, and
cooling systems [27][30]. The deployment scheme of an MDRU revolves around
setting up and connecting access points (AP) to gateways that are wirelessly
linked to the MDRU. Afterwards, the APs provide voice services and Wi-Fi In-
ternet access to the public. The authors note that the total MDRU installation
process takes around 40-140 minutes [28]. Furthermore, the MDRU is shown to
satisfy six key requirements from a user’s perspective: transportability, quick
installation, carrier-free usability, provide essential services, high capacity, and
large coverage [29]. It is worth noting that backhaul is achieved via existing
optical fibers, but can also be done with satellite links. In addition, the MDRU
can run for five days without outside interaction.

5

2.1.2 Cell on Wheels and Cell on Light Trucks

A Cell on Wheels (COW) is a fully fledged mobile communication system that is
transported by vehicles, usually as a trailer [38]. Typically, COWs are deployed
to provide extra capacity at public events where existing infrastructure will
likely not be able to handle the network traffic. However, COWs have also
been used in post-disaster situations [37]. Similar to the MDRU, the backhaul
to the network for COWs can be done through existing cables or via wireless
standards, including satellites. The main difference between COWs and MDRUs
lies in their setup procedure. COWs are simpler to setup since they are single
systems that users directly connect to, while MDRUs require the placement
of APs at locations around them for users to connect to. In fact, the COW
manufacturer Solaris Technologies Services notes that the operational setup time
of its products ranges from 10 to 40 minutes, depending on the model [31].

There is no significant technical difference between COWs and Cells on Light
Trucks (COLT), except that the cellular system is fixed on the COLT. However,
there are trade-offs between these two designs, primarily in the aspect of trans-
portability. A COLT can be more easily relocated as it is physically built to the
vehicle, whereas the COW system is on a trailer and thus can be detached from
the vehicle. The benefit of the COW design is that it allows the deployment
crew to stay on the move after setting it up. Nevertheless, both of these tech-
nologies have been tested and proven to work in extreme weather conditions,
from hot and humid weather to knee-deep snow levels, and even in areas struck
by hurricanes [20].

2.2 Recovery Strategies

The task of rapidly deploying repair resources for network recovery has been the
focus of numerous researches. While various strategies have been considered, it
is clear that the style of progressive recovery approaches is the most popular.

2.2.1 Progressive Network Recovery Approaches

Since repair resources are limited in amount, progressive network recovery strategies
slice the recovery process into stages. In each stage, the available resources are
assessed such that allocations can be made according to a recovery objective.

In the first-ever progressive recovery based approach, Wang et al. consider
the maximization of network capacity in terms of the total possible flow between
each source and destination node pairs as their objective [41]. Assuming that
only links need repair, the solution looks to find the best possible subset of links
to repair during each stage. The effectiveness of a recovery solution is evalu-
ated with the proposed metric of the Accumulative Weighted Total (AWT) flow
over all stages. To achieve this, methods based on Mixed Integer Linear Pro-
gramming (MILP) were designed. Proposed are three variants that differ in the
importance placed on stages during the recovery. That is, whether to strive for
gains in the early stages or in later stages. There are significant drawbacks to
this approach overall. First, full knowledge of the damages to the components
of the network is required. Second, it assumes exactly how much resources it
costs to repair a link, making it inflexible to the deviations present in real life.

Tootaghaj et al. propose a more realistic approach for progressive network

6

recovery by incorporating the aspect of partial state knowledge [35]. This ap-
proach uses a probabilistic estimate for node and link failures. That is, the
failure probability of elements with an unknown status get approximated using
various methods. These nodes are designated to a so called gray area, while
nodes known to work belong to a green area and those not working are placed
in a red area. The objective is then to minimize the Expected Recovery Cost
(ERC), which corresponds to the cost of repairing nodes and links, while satisfy-
ing demand under a specific capacity constraint. Nodes are allowed to monitor
or discover the status of other components within a certain hop count, hence
gaining better information on the gray area. The authors note, however, that
the impact of the hop count limit varies greatly with the network topology size.
In addition to this issue not being clarified further, it is hard to deduce the
effectiveness of this approach for large networks from the experiments that are
made. Nevertheless, as discussed later, our work borrows their method for ap-
proximating component failure probabilities.

In the context of network virtualization, Pourvali et al. developed progress-
ive recovery approaches that aim for repair resource allocations to minimize
disruption [23][24]. These approaches include a uniform placement of resources
between damaged components, random placements of resources, and resource
prioritization on node degree. As these approaches operate under the assump-
tion that repair resources are limited and cannot be endlessly reallocated, the
problem is then of partial network recovery. Furthermore, the components used
in this work can provide a partial or degraded level of service despite being
damaged. Experiments showed the uniform placement scheme producing fast
recovery in the initial stages. But, the node degree algorithms lead to a higher
level of recovery, after the resources have been fully utilized. These approaches
lack flexibility to deal with unexpected events that occur in real life, e.g. repairs
taking longer than anticipated.

Ferdousi et al. explore how progressive recoveries of networks coupled with
datacenters can be optimized [8]. Because network recovery and datacenter
recovery are interdependent, the authors look into maximizing the cumulative
weighted content reachability to users at each stage. This optimization is formu-
lated as an Integer Linear Program (ILP). The algorithm designed to solve this
problem evaluates potential reachability gains for repairing certain components
and chooses the order that yields the highest gains earlier. In addition to this,
the algorithm is resource-aware (limited number of resource reallocations) and
considers the partial recovery of components. That is, damaged components
can still operate at partial capacity.

Ciavarella et al. present a progressive approach for minimizing the duration
of the network recovery process [4]. Because a disaster can impact a network
such that the damage extent is unknown, it is necessary for operators to perform
monitoring and inspections to see which components were affected. Hence, the
authors propose a damage assessment program with that purpose along with
restoring components; the overall process covers monitor placement, network
probing and repair performed in a progressive manner. Comparing its perform-
ance to their other, non-progressive solution [2], the authors show substantial
improvements in recovery time and network flow throughout the process. How-
ever, optimizing recovery time is not the main objective of their non-progressive
approach.

Zhao et al. propose a progressive solution for finding the optimal recovery

7

schedule for Cyber Physical Systems (CPS) in post-disaster situations [45]. In
these networks, there is interdependency between components such that the or-
der of their repair matters. Additionally, components can differ in the repair
resources required. The proposed solution, while considering these two factors,
has the objective of maximizing the system utility over all repaired components
through the overall repair process. Similar to other works, this proposed ap-
proach uses an ILP algorithm. Experiments show that their ILP based solution
becomes too computationally intensive for cases where over 200 components
fail.

All the mentioned works were specially designed around a single issue and
are not easily modifiable to fit slightly different problems. Furthermore, they
all optimize for specific parameter values and are thus not flexible to unexpected
situations. The requirement for full knowledge on the damage extent is preval-
ent in the existing approaches. Lastly, scalability is a key aspect that is not
addressed widely. In fact, only Zhao et al. directly discussed this aspect after
discovering flaws in their work when recovering from large-scale failures.

2.3 Machine Learning

Recently there have emerged proposals of approaches utilizing machine learn-
ing for optimizing the network recovery process. These proposals show that
machine learning, specifically reinforcement learning, is viable for graph based
problems.

Within the scope of infrastructure networks, Sun and Zhang demonstrate that
deep reinforcement learning can be utilized to find effective recovery solutions
[32]. The authors propose a framework for Agent Based Modeling (ABM) and a
Deep Q-Network (DQN). As an infrastructure network is composed of different
yet interdependent components, such as transportation and power systems, the
DQN can and will learn about these relationships during training. The focus of
the proposed system is to find the action that improves the network function-
ality the most for a given state. Simulation experiments were carried out on a
large network and showed the learner converging towards an optimal solution.
However, the authors only compare the performance of their system to naive
random algorithms.

Ishigaki et al. also explore the recovery of dependent network layers, but with
regards to Virtual Network Functions (VNF) [12]. Similar to many of the ex-
isting network recovery strategies, the authors propose a progressive approach
that aims to maximize accumulated utility through the recovery effort; the same
objective as in [41], except with the interdependence of nodes in different lay-
ers taken into account. Furthermore, the employment of an RL algorithm sets
this recovery approach apart from the other progressive solutions. From their
results, the authors posit that RL coupled with a heuristic algorithm makes
for superior means to solve optimization problems over the ones utilizing only
either. However, the authors do not demonstrate a capability to adapt to un-
expected situations in their approach. Also, it is unclear how computationally
expensive the utility and demand functions in their heuristic algorithm are. This
information is critical for understanding the scalability of their approach.

8

Chapter 3

Problem Definition

This chapter defines the problem of rapidly deploying repair crews for post-
disaster communication network recovery. Specifically, we focus on recovering
networks damaged by devastating earthquakes. In such events, nodes are vul-
nerable to damages, while optical fiber links are robust [27]. To recover the
communication network, an operator sends repair crews to damaged nodes in
an online manner.

Problem 1. Minimizing a Network’s 1-WATTR: In our problem, we
consider an undirected graph G = (V,E) composed of nodes v ∈ V and links
e ∈ E to represent a real-world communication network. We also consider
repair crews r ∈ R that travel to failed nodes and recover them. The problem
is then to make repair crew deployments that minimize G′s 1-WATTR over the
recovery process. In other words, our optimization objective is to minimize the
area underneath the curve of the network’s 1-WATTR over time.

The metric Weighted Average Two-Terminal Reliability (WATTR) is the
weighted ratio of connected node pairs and the total amount of node pairs
in a graph. WATTR can be used to quantify the proportion of the population
connected to the network [22]. Thus, we let each node have its own scalar weight
vw ∈ R≥0. The WATTR of a graph is formally defined as follows:

Definition 1. Weighted Average Two-Terminal Reliability (WATTR)

Let

I(v, x) =

{
1 if node v is connected to node x
0 otherwise

(3.1)

Then

WATTR :=
1

W

∑
v∈V

∑
x∈V−{v}

vw · xw · I(v, x) (3.2)

where

W :=
∑
v∈V

∑
x∈V−{v}

vw · xw (3.3)

Since we consider an undirected graph in our problem, the computation of
the WATTR can be optimized by iterating through each connected component

9

0 10 20 30 40 50 60 70
Time [hours]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
- W

AT
TR

A Network's 1-WATTR During a Recovery Process

Figure 3.1: Example of a network’s 1-WATTR during post-disaster
recovery operations.

c ∈ C rather than each node pair:

WATTR =
1

W

∑
c∈C

∑
vi∈c

vw,i ∗

((∑
v∈c

vw

)
− vw,i

)
(3.4)

where vi is a node in the connected component c, vw,i is its weight, and W is
obtained from the graph prior to any damage:

W =
∑
vi∈V

vw,i ∗

((∑
v∈V

vw

)
− vw,i

)
(3.5)

Thus, a 1-WATTR of 0 signifies that all node pairs are connected, while a
1-WATTR of 1 indicates that no node pairs are connected.

An example of a 1-WATTR curve over the course of a network’s recovery
process is illustrated in Figure 3.1.

Motivation for minimizing 1-WATTR: It might seem simpler to max-
imize the area underneath the WATTR curve, rather than to minimize the area
underneath the 1-WATTR curve. Although they mean the same thing, the
former case is harder to implement. Since we aim to optimize the area under
the curve from when recovery begins until it finishes, maximizing the WATTR
area would lead to inefficient repair orders that extend the total recovery time.

Flexible modelling: As explained in the next chapter, the communication
network and repair crews are modelled with specific properties. This is done to
enable the simulation of network recovery processes and the utilization of an RL
agent. Moreover, this type of approach is flexible in terms of modelling. That
is, an RL agent can learn to optimally deploy crews to nodes no matter how
they are modelled.

10

Chapter 4

Approach

Our approach to solve the problem defined in chapter 3 involves two systems:
a network recovery simulator and an RL agent. Although these systems are
distinct, they are dependent on each other. In essence, our agent’s purpose is
to assign crews to nodes, while the simulator’s role is to simulate their effects.
Since the agent assumes the role of a network operator, it has access to the state
of the crews and the communication network. This information is maintained
and provided by the simulator. Specifically, the state of the communication
network is managed using the NetworkX Python library [21].

In this chapter, we first present the design of the simulator and its operating
procedure, followed by details on our RL agent and how we train it to make
intelligent crew-to-node assignments.

4.1 Network Recovery Simulator

Because of the interactions between repair crews and the communication net-
work in our problem, we must model their relevant characteristics. We model
the nodes v ∈ V of our communication network as follows:

• Type vt ∈ {Base Station, Core Node}: a node is either a base station or
a core node. In the context of our work, core nodes represent switching
centers, while base stations provide users with connections to the network.

• Weight vw ∈ R≥0: a base station is weighted to reflect the population it
serves. Core nodes have a weight of zero.

• Location vl = (Latitude, Longitude): every node has specific GPS co-
ordinates corresponding to its location.

• Status vs ∈ [0, 1] ∨ 2: the probability of the node being damaged, where
values between 0 and 1 indicate the uncertainty of a node’s functionality,
and vs = 2 indicates that the node is reserved for repair.

Besides the nodes, we model repair crews in the following way:

• rl = (Latitude, Longitude): the location of a crew.

• rs ∈ {Free, Busy}: a crew is either free to be assigned to a node or is
busy working on a node.

11

• rt ∈ N0: the time a crew is busy for. This value is computed based on
travel distance and node installation times, which we explain later.

• rv ∈ N+: the speed at which a repair crew is traveling at.

• rq: repair crews have a list for their queued node assignments and their
corresponding time to complete.

Despite repair crews not performing actual repairs to damaged nodes, we will
still refer to them as repair crews in the context of network repair. Also, we
assume crews have an unlimited supply of both fuel and COW-like node re-
placement units.

Since these models undergo a change during network recovery, we design
a simulator to represent that process. Our simulator is designed as a discrete-
event simulator that constantly loops over the same instructions, which facilitate
environment state updates, until full network recovery is attained. Furthermore,
this is done through fixed-increment time progression, in which an iteration in
the loop reflects a certain time duration in the real-world.

There are tradeoffs to consider when choosing the real-life time duration that
an iteration should represent. Letting the simulator progress over small time
increments will yield a better time management of crew deployments at the cost
of more iterations. For instance, let us say that at time t = 0 a crew is busy for
25 minutes, meaning that at t = 25 minutes it becomes free and can be deployed
to a new node. If the simulator progresses over 30 minute intervals, then the
crew would get deployed at t = 30 minutes, after idling for 5 minutes. But,
if the simulator progresses at 1 minute intervals instead, then the crew would
be deployed immediately after becoming free at t = 25 minutes. However, the
former case, with 30 minute time progression per iteration, costs substantially
fewer iterations compared to the latter case.

In order to determine how much real-life time an iteration in our simulator
should represent, we must consider the actual time scale which the repair crews
operate at. Because repair crews use trucks for transporting COWs, we can
safely assume that traveling between nodes will take more than just a few
minutes. Moreover, as mentioned in chapter 2, the installation time of COWs
ranges from 10 to 40 minutes. We can therefore deduce that a reasonable time
progression per iteration is in the order of several minutes. For our experiments,
we let the simulator progress on 15 minute increments.

4.1.1 Simulator Control Flow

To clarify how the simulator operates, we delve into each of its stages and the
flow between them. But before simulating a network recovery process, we first
generate an initial state of the environment. That is, a disaster causes the de-
struction of nodes, and the initial states of our repair crews get chosen. Our
simulator then proceeds to continuously iterate over the instructions facilitating
the network recovery until all nodes have been recovered.

Figure 4.1 illustrates the stages and the flow within an iteration of the simu-
lator, which are further explained as follows:

1. Every iteration begins by retrieving the set of free repair crews.

12

Figure 4.1: Stages within an iteration

2. Then, the simulator checks if any crews are free. If there is a free crew,
the program enters stage 3. Otherwise, it transitions to stage 4 to prepare
for the next iteration by updating each crew’s work status.

3. The simulator iterates over each free crew.

3.1. If the free crew already has a node in its queue, the simulator trans-
itions to stage 3.6. If not, the simulator proceeds to stage 3.2.

3.2. The environment state is given to the agent. With that information,
the agent selects a node to assign the free crew to.

3.3. For each repair crew, the time it would take for it to recover the
selected node is computed. We calculate the time for a crew r to fix
a node v as follows:

tfix = ttravel + tinstall + rt + rtq (4.1)

where ttravel = haversine(rl, vl)/rv is the time it takes for a crew to
travel to the node. In the case where a repair crew has nodes in its
queue, its travel time is computed with the location of its last queued
node. Note, we use the haversine formula [43] to compute distances
between two points on Earth. To roughly reflect actual setup times
of COWs we let tinstall = 45 minutes (3 iterations). We denote
rtq as the total time it takes a crew to recover all the nodes in its
queue. Then, if the lowest tfix belongs to the iteration’s free crew,
the simulator proceeds to stage 3.5, otherwise it enters stage 3.4.

3.4. The queue of the fastest crew gets appended the node and the time
it will take to recover that node (ttravel + tinstall). Because the node
has been queued for repair, its state is set to vs = 2. The simulator
transitions back to stage 3.2, where the agent selects a different node
for the free crew. Further explanation on the queuing process is given
in section 4.1.2.

13

3.5. The free crew is deployed to the selected node. The simulator updates
the crew’s rt to equal tfix, in addition to setting rl = vl, and rs =
Busy. Lastly, the state of node is set to vs = 2, as it is now under
repair.

3.6. The free crew is deployed to the first queued node, changing its rl to
that location and its rt to the corresponding rq time. That node is
then removed from the crew’s queue.

3.7. The simulator checks whether all of the free crews have been iterated
over. If so, it proceeds to stage 4.

4. Crews are updated by decrementing their rt. Crews whose rt reaches zero
have their rs declared “Free” and their repaired nodes get reconnected to
the network. Hence, the state of those nodes is set to vs = 0.

5. The simulator checks whether all nodes are reachable. If all nodes are
connected, then network recovery is complete and the program proceeds
to stage 6. Otherwise, the whole iterative process is repeated from stage
1 onwards.

6. Simulation terminates.

4.1.2 Queuing Process

Without a crew coordination mechanism, the agent can make inefficient crew-
to-node assignments. For example, consider a scenario of one free crew, one
busy crew, and only one damaged node. The agent must then assign the free
crew to the damaged node, regardless of whether the busy crew could finish
recovering its current node and the damaged node faster. For this reason, we
design a queuing process that does two things: (1) prevent inefficient crew-to-
node assignments, and (2) queue node assignments for crews.

After the agent decides which node a free crew gets assigned to, its decision
gets evaluated by our queuing process. As described in stage in Equation 4.1, we
compute the times for each crew to finish their current and queued assignments
plus the time to recover the chosen node. If the free crew is the quickest to
recover the node it will get assigned to it. Otherwise, the node is queued to the
fastest crew.

Each crew’s queue, rq, is formatted as a list of tuples that contains the queued
node and the time it will take the crew to recover it. For example, a crew’s queue
could be as follows:

rq = [(17, 9), (2, 7)]

Here, after the crew finishes its current job, it will go to node 17 and recover
it in 9 iterations. At the time it gets deployed to node 17, this tuple will be
removed from the queue. Completing the recovery of node 17 will lead the crew
to node 2, for which it will take 7 iterations to recover.

Overall, our simulator enables for the simulation and evaluation of network
recovery operations. However, to solve our problem of finding a good recovery
order, we must implement an algorithm that trains our agent to make optimal
crew-to-node assignments. Let us now discuss the approach we make for imple-
menting the agent.

14

Figure 4.2: Interaction between the agent and its environment. The
environment receives the agent’s action, and in turn gives the agent
a reward and the updated environment state.

4.2 Modeling a Markov Decision Process

A Markov Decision Process (MDP) is a discrete-time stochastic control process
that models the decision-making of an agent within an environment. The agent’s
objective is to interact with the environment such that it accumulates maximal
reward. It does so by making actions based on the environment state, for which
it receives a reward and moves to a new state. Formally, an MDP is defined as
the 4-tuple (S, As, Pa, Rt+1), where:

• S is the set of states s.

• As is a set of actions available for the agent to take from state s.

• Pa(s, s′) = P [st+1 = s′ | st = s], is the probability of transitioning to state
s′ after taking action a from state s at time t.

• Rt+1 denotes the reward that the agent receives after transitioning from
state s to state s′ at time t+ 1.

The goal in an MDP is to find an optimal policy, π∗, that maximizes the
reward accumulation. Where a policy, π, is a mapping from each state s ∈ S
and action a ∈ As to the probability π(a|s) of taking action a in state s [33].
In essence, a policy specifies what action is to be taken from a given state.
Furthermore, a state’s value under a policy π is denoted as vπ(s). This value
equals the expected reward accumulation, discounted by 0 ≤ γ ≤ 1, going from
a state s, at time t, and following π:

vπ(s) = Eπ

[∞∑
i=0

γiRt+i+1

∣∣∣∣∣ st = s

]
(4.2)

Besides the state-value function described in Equation 4.2, an action-value
function qπ(s, a) is the expected reward return for starting in state s, taking a,
and then following policy π:

qπ(s, a) = Eπ

[∞∑
i=0

γiRt+i+1

∣∣∣∣∣ st = s, at = a

]
(4.3)

Equation 4.3 is important, as later we introduce the Bellman equation that
allows for the learning of a good policy.

15

In our approach, we implement the elements making up an MDP in the fol-
lowing ways:

4.2.1 State space

We formulate a state in the environment as a list containing each node’s status
and each repair crew’s location and busy time. An environment state could for
example be:

si = [vs(0) = 0, vs(1) = 1, vs(2) = 0.9, ..., vs(n−1) = 0, rl(0) = 5, rt(0) = 8, ...]

In this example, nodes 0 and n − 1 are known to be working, while node 1
is known to be damaged, and node 2 is not known to work and is assumed to
have a probability of 0.9 to be damaged. Also, repair crew 0 is at node 5, with
8 iterations until that node recovers.

Although the environment state is relayed to the agent, the simulator has
complete knowledge of the damage extent. That is, the simulator knows which
nodes are damaged with full certainty. Doing so allows for the functional but
disconnected nodes to be reconnected to the graph immediately when their
neighbor is recovered. For example, when a core node is destroyed, the func-
tionalities of its connected base stations will be uncertain to the agent. Then,
when a crew recovers the core node, all of the functional base stations connected
to it will also be reconnected to the network and with their status changed to
vs = 0.

4.2.2 Action space

The action space represents the set of actions available to the agent in a given
state. This is simply the set of nodes which the agent can assign repair crews
to. In our implementation, the action space for a state s could for example be:

As = {7, 9, 13}

where nodes 7, 9, and 13 are damaged or unreachable and thus available to the
agent for making crew deployments to.

4.2.3 State transition probability

After the agent selects an action, probabilities of to which state it leads to are
computed. However, as discussed later, we employ a model-free RL algorithm
for training our agent, hence the use of Pa is not needed.

4.2.4 Reward function

A fundamental factor for training our agent is how to reward its actions. As
defined in chapter 3, our problem is to minimize the area under the communica-
tion network’s 1-WATTR curve during the recovery operation. For this reason,
we let the environment reward the agent with a value equal to the estimated 1-
WATTR area between the time of a crew-to-node deployment and the recovery
of the action’s corresponding node. This means that the network’s 1-WATTR

16

Figure 4.3: Example of 1-WATTR area produced by an action leading
to the recovery of a node.

must be computed twice: when a crew gets assigned a node and after that node
is recovered.

We first compute the network’s 1-WATTR at the time a crew is deployed
to a node, ti. Then we estimate the network’s 1-WATTR for the time the
node is recovered, tr. For computing the 1-WATTR after recovering a node,
all other nodes that recover between ti and tr are included in the network for
the computation. However, if a core node will be recovered within that time
frame, then its base stations will also be recovered but based on their vs (failure
probability). We generate a random number on the uniform distribution [0,1]
for each of those base station nodes. If the randomly generated number is
greater than the node’s failure probability, then we include that node for the
1-WATTR estimation. This approximation is necessary because the agent does
not always know to what environment state its actions lead to, and thus neither
the network’s exact future 1-WATTR value.

With ti, tr, and the network’s 1-WATTR at those time points, we draw a line
between those points as illustrated in Figure 4.3. The area underneath this line
is then computed with basic geometry equations and used as the agent’s reward
for its action.

We choose this method for rewarding the agent because the agent’s total re-
ward accumulation will relate to the 1-WATTR area of the whole recovery pro-
cess. Therefore, by tuning the agent to accumulate as little reward as possible,
it will take actions that lead to the minimization of the network’s 1-WATTR.

It might seem more intuitive for the objective to be to maximize the area un-
der the WATTR connectivity curve. However, doing so will lead to issues where
the agent selects actions that drag out the recovery process. Due to the agent
being rewarded the area that its actions produce, it will accumulate maximal
reward by taking actions that recover the network slowly. Conversely, if the ob-
jective were to minimize the area under the WATTR connectivity curve, then
the agent could prefer making crew deployments that do not provide substan-
tial connectivity gains soon after a disaster. Consider, for instance, a disaster
destroying all nodes of a network that consists of numerous base stations and a
single core node. Recovering all base stations first and the core node last would

17

produce an WATTR connectivity curve with zero area.

4.3 Reinforcement Learning

Reinforcement Learning (RL), an area of machine learning, involves an agent
interacting with an environment, modeled by an MDP, to learn which action
to take in a given situation [33]. In RL systems, the environment is made up
of states in which there are a set of actions available for the agent to take. To
learn which action to take, the agent receives a reward based on the quality of
the action it takes. Therefore, when the agent returns to a state it has visited
before, it will remember which action yielded the best reward.

In each state, the agent can either take the best action it knows of, called
exploiting, or explore alternative paths by taking a random action. Exploring
is crucial for learning, since it can lead to discoveries of better and worse states.
The exploration rate of the agent is denoted with the parameter 0 ≤ ε ≤ 1.

Training the agent to learn which actions are good is done through running
numerous episodes of the simulation scenario. In finite state-action problems,
this can be done until a convergence to the optimal action-value function, q∗π,
is achieved.

Numerous RL algorithms exist for training an RL agent, but for our work we
only consider Q-learning and Deep Q-learning.

4.3.1 Q-learning

Q-learning is a simple RL algorithm where the quality of state-action pairs,
known as Q-values, are stored in a table, called the Q-table. Each Q-value in
the table is initialized with an arbitrary fixed value prior to the training process;
we choose zero for the initial Q-values in our work.

During training, at time t, the agent takes an action at in the state st for
which it subsequently receives a reward Rat . The value of this state-action
combination is then computed, using a Bellman equation, and is then updated
in the Q-table:

Q(st, at)←− Q(st, at) + α ·
(
Rat + γ ·max

a
Q(st+1, a)−Q(st, at)

)
(4.4)

where α is the learning rate, a coefficient on how important new information
is, and γ is the discount factor indicating the significance of future rewards. To
ensure that old information does not get overridden, we let the learning rate be
α = 0.1. Since the agent seeks to maximize the overall accumulated reward, we
let the discount rate be γ = 0.99. The exploration rate in our implementation
begins at ε = 1, and after each simulation episode it is reduced by 0.0002 until
ε = 0.001.

We format the environment states and actions for the Q-table the same way
as described in 4.2, as si = [vs(0), vs(1), ..., rl(0), rt(0), ...]. While classic Q-
learning examples construct and initialize the Q-table for all of the possible
states in the environment, we build our Q-table on the go. This is due to the
fact that, in most cases, our environment state space will be too large to fit in
a table on the average PC desktop. Additionally, to prevent incredibly large
Q-tables, we discretize vs to be vs ∈ {0, 1, 2, 3, 4, 5}, where:

18

• vs = 0: node is known to be functional.

• vs = 1: the node’s failure probability is on the interval (0, 0.25).

• vs = 2: the node’s failure probability is on the interval [0.25, 0.5).

• vs = 3: the node’s failure probability is on the interval [0.5, 0.75).

• vs = 4: the node’s failure probability is on the interval [0.75, 1].

• vs = 5: means that the node is under repair.

Not only does this prevent the Q-table from becoming enormous, but having
fewer states will also reduce the training time. This is slightly different from
how we modelled the node status property in chapter 3, which is for our Deep
Q-learning implementation.

Properly rewarding actions made by the agent is critical for it to correctly
learn the optimal actions in given states. Since our objective is to find the
solution with the lowest 1-WATTR area during a recovery operation, we reward
the agent according to the scheme presented in section 4.2. However, this makes
the agent’s goal be to accumulate the smallest possible reward. Therefore, we
modify the Bellman equation to consider the minimum Q-value of the next state
when updating the Q-value of the current state-action combination:

Q(st, at)←− Q(st, at) + α ·
(
Rat + γ ·min

a
Q(st+1, a)−Q(st, at)

)
(4.5)

This means that smaller Q-values are better. Thus, when our agent decides to
exploit in a state, it selects the action corresponding to the lowest Q-value. A
reward for that action is then produced, followed by having Equation 4.5 update
the Q-value for the state-action combination.

Unfortunately, the Q-learning algorithm comes with some major flaws. Its
main issue is that the agent is slow to converge to a good solution, especially
when γ is near one [1]. Furthermore, with large-scale networks and a high
amount of repair crews, the state-space will be tremendous. This causes the
amount of training episodes to be prohibitively many. Thus it is clear that the
scalability of Q-learning systems is inefficient.

4.3.2 Deep Q-learning

Because of the training challenges in Q-learning, we shift our approach to utilize
Deep Q-learning instead. This RL algorithm, introduced by Mnih et al. [18],
uses a deep neural network to approximate the Q-function, instead of a Q-table.
The authors coined the term Deep Q-Network (DQN) for this neural network,
as it returns Q-values for a given environment state.

Before diving into DQNs, we must first understand the basic building block
of neural networks, the artificial neuron. An artificial neuron is designed to
mimic the functioning of a biological neuron. We illustrate its structure in
Figure 4.4. A neuron’s role entails receiving inputs over weighted connections
to process into an output signal. That is, the neuron sums up the received
weighted input values and passes the result to an activation function, φ, which
in turn produces the neuron’s scalar output, y. The activation function is used
to introduce non-linearities to the neuron’s output, allowing for better learning

19

Figure 4.4: Artificial Neuron Model

in non-linear problems. Various activation functions exist, but for our work we
incorporate the ReLU function which is defined as:

φ(z) = max(0, z) (4.6)

Now, by organizing neurons into layers, with neurons getting connected to other
neurons in adjacent layers, we can construct a DQN.

As shown in Figure 4.5, a DQN consists of an input layer, hidden layers,
and an output layer. First, the input layer gets fed the current environment
state. The input is subsequently propagated to the neurons of the first hidden
layer. After receiving their inputs, the neurons of the first hidden layer per-
form the computations as described before. Results from each neuron are then
propagated to the next hidden layer where the computational and propagation
processes repeat. Finally, the last hidden layer feeds the output layer its values,
which in turn produces the Q-values of every action for the inputted state. An
example diagram of a DQN for an environment made up of three nodes and one
repair crew is shown in Figure 4.5.

It is known that single DQN systems are vulnerable to unstable learning.
Therefore, our implementation incorporates the two key ingredients proposed
in [19] that help overcome this issue: a target DQN and experience replay. A
target DQN is identical to the online DQN, except its weight parameters, θtarget,
update to be θtarget = θonline every τ steps. Essentially, the target network is
used to measure the loss or error in relation to the online network. This helps
prevent the online network from drifting away into a worse policy.

We train the DQN by adjusting the weights of the network, θonline, such that
the loss is minimized. The loss function in our implementation calculates the
mean squared error of the target Q-values and the predicted Q-values:

L = [(r + γ ·min
a
Q(st+1, a; θtarget)−Q(st, a; θonline)]2 (4.7)

To reach minimal loss, we compute and backpropagate the partial derivatives
of the loss function with respect to each of the weights. We can think of the loss
function as an irregular surface, where the partial derivative (the slope) aids
us in the search for the lowest point on it. For updating the weights, θonline,
based on the computed gradient, we use the Adam optimizer [6]. Adam extends

20

Figure 4.5: Deep Q-Network [15]

and improves on the classic stochastic gradient descent method by incorporat-
ing two additional elements for tuning the weights towards the minimum loss:
momentum and adaptive learning rate.

Momentum simply allows for larger steps on the loss surface to be made when
the direction of movement stays the same, and smaller steps are made when the
direction changes. This is take into account when determining the learning rate
α. More details about the Adam algorithm can be found in [6].

Since the Adam optimizer requires the training data to be independent and
identically distributed, we include a memory of previously made transitions
to avoid sampling correlated experiences. Thus, during training we randomly
sample a batch of transitions from the memory to run through the neural net-
work. This technique is referred to as experience replay. Note that after the
memory is filled, we let new transitions replace the oldest ones.

Figure 4.6 shows how we connect all of these pieces together to create our
DQN system. Furthermore, we made this implementation using the open source
machine learning framework PyTorch [14]. There are several hyperparameters
in our system that need manual tuning.

• γ: the discount factor, which we set to 0.8 based on empirical results.

• ε: the agent’s exploration rate is initialized to 1, and is decremented by
εdec during training.

• εdec: how much ε decays by after every transition. We set this value to
4e-5.

• εmin: the minimum exploration rate of the agent is set to 0.001.

• α: the agent’s learning rate, set to 0.0001.

• Memory size: the amount of transitions that can be stored in the memory.
We found that a memory size of 10,000 works well.

21

Figure 4.6: Deep Q-learning Architecture

• Batch size: the amount of transitions sampled. We set the batch size to
be 64, which is fairly typical for DQNs.

• τ : the rate at which the target network updates to match the online
network. We set this rate to such that for every 1,000 transitions, the
target network gets updated.

For our experiments, we will use a DQN with three hidden layers. Each of the
hidden layers is composed of a number of neurons twice the number of nodes
plus repair crews. We found this configuration to work the best out of several
other ones.

22

Chapter 5

Disaster Model and Graph
Generator

In this chapter, we first present how we simulate the destructive effects that
an earthquake has on our communication network. We then introduce our
algorithm for generating the graphs used in our experiments.

5.1 Earthquakes

Earthquakes occur frequently around the world and are known to be able to
cause great damage to communication networks [36]. While an earthquake’s
power is characterized by its magnitude, the earthquake’s intensity is not uni-
formly spread over the area around it. The release of energy caused by an
earthquake creates seismic waves that propagate radially from the hypocenter
[11]. The attenuation of these waves are dependent on several variables, includ-
ing sedimentary composition through which the waves travel. Because of this,
the intensity or shaking is not exactly the same at equal distances from the epi-
center; making it challenging to generate a realistic earthquake for simulating.

In our experiments, we make use of data from historic earthquakes provided
by the United States Geological Survey (USGS) [40]. Such earthquake data is
stored in an XML file that formats a high resolution grid of locations over the
impacted region with their corresponding intensity values. The intensity val-
ues provided in these files correlate with the Modified Mercalli Intensity scale
(MMI) [39]. The MMI scale translates intensity values into physical damages,
described in table 5.1, and with it we can make estimates on the failure prob-
ability of every node in a network following the earthquake.

Using the rough indications on the damage probability to structures, we com-
pose and implement a function to estimate the node failure probability for a
given MMI intensity level to use in our experiments. As shown in table 5.1,
damage does not scale linearly over the intensity levels, and only at intensity VI

does the damage start to become increasingly likely. Therefore, we assume that
the damage probability scales exponentially with intensity. For these reasons

23

Intensity Damage Description
I Minimal shaking, not felt by most people.
II Noticeable to a few people, more so to those on upper floors.
III Felt by some people. Comparable to the shaking caused by a

passing truck.
IV Felt by many, light objects disturbed. Low chance of any damage.
V Shaking is felt by most. Still, low chance of any damage.
VI Felt by all. Heavy furniture moved. Some probability of damage.
VII Minimal damage to well-designed structures. Considerable

damage to poorly built structures.
VIII Slight damage to well-designed structures. Great damage to

poorly built structures.
IX Major damage to well-designed structures. Poorly built buildings

might collapse, and many become shifted off foundations.
X Almost all structures destroyed, save for some well-built

wooden structures.

Table 5.1: Modified Mercalli Scale [39]

we estimate the node the failure probability using the following function:

Node Failure Probability = exp

(
Intensity − 10

2.75

)
(5.1)

In other words, the node failure probability computed in Equation 5.1 is based
on the intensity at the location of the node. A visualization of this is provided
in Figure 5.1. Using this equation, along with an earthquake intensity file, we
can simulate the effects of the earthquake by computing each node’s failure
probability and destroying them accordingly. Furthermore, we let each node’s
status, vs, equal its computed failure probability if it is unreachable. Note, the
simulated earthquake is for demonstration purposes and has not scientific basis.

5.2 Graph Generator

Since topologies of real-world communication networks are not publicly avail-
able, we developed a simple method to build similarly structured networks.
To create such networks, we supply the generator with a CSV file of locations
to build a network around. More specifically, the rows contain the following
information for each city:

id, City Name, Population, Latitude, Longitude

where the id is the row number in the file, city can be any string, population
can be any positive number, latitude and longitude must be the decimal degrees
of the city’s coordinates.

We choose specific cities to host our network’s core nodes. Then, each core
node is connected to the two core nodes closest to it. Furthermore, to increase
robustness, we select a radius around each core node such that they connect to
all other core nodes within that distance.

24

1 2 3 4 5 6 7 8 9 10
Intensity

0.0

0.2

0.4

0.6

0.8

1.0
No

de
 Fa

ilu
re

 P
ro

ba
bi

lit
y

Figure 5.1: Node Failure Probability Function

For every city there is at least one base station at the location corresponding
to the coordinates given in the CSV file. The amount of base stations per city
can be determined in two ways: in relation to the city’s population or randomly.

Our population-based scheme involves generating a base station per 100,000
inhabitants of a city. This design choice is made to prevent the generation of
networks too large to experiment with. In the other method, each city gets an
amount of base stations randomly sampled from a chosen uniform distribution.
For example, let us say that a city can have at least two base stations and at
most five base stations. Then the generator would generate a random number
of base stations on that interval for each city.

After determining the number of base stations in each city, they are then
assigned locations around the city’s coordinates in a hexagonal manner with a
radius of 5 km. Note, we set a limit of 19 base stations per city to keep things
simple.

Assigning weights to base stations can also be done in two ways: in proportion
to the city’s population or randomly.

• Base stations of each city are assigned a weight equal to the city’s popu-
lation divided by the number of base stations located in it.

• The user chooses two positive numbers. Each base station weight is then
randomly sampled from a uniform distribution on that range.

Lastly, each base station is linked to the nearest core node, and the generated
graph gets stored in a GML file.

25

26

Chapter 6

Experiments

6.1 Experimental Setup

For our experiments, we use Southern California as the location of our simulated
disasters and communication networks. We choose this location as it is regularly
struck by devastating earthquakes. Specifically, we use USGS’ MMI intensity
data on the 1994 Northridge earthquake for our simulation experiments.

The basic characteristics of the communication networks used in our exper-
iments are described in table 6.1. While the weights of the nodes in networks
1 and 2 were made to reflect the actual population of their city, the weights in
network 3 were randomly chosen. Figure 6.1 shows the networks overlaid on a
map of Southern California.

Network Amount of Core Nodes Amount of Base Stations
1 6 57
2 8 115
3 26 61

Table 6.1: Communication Networks’ Characteristics

The system which we use to carry out our experiments on has the following
specifications described in table 6.2. This system runs on the Xubuntu 20.04
Linux operating system.

6.1.1 Approaches Compared

We compare our RL algorithms against the following alternative approaches:

• Weighted approach: repair priority is on nodes with the greatest weight.
In this approach, the weights of the core nodes equal the combined weight
of their connected base stations.

• Greedy approach: repair priority is on nodes that produce the smallest
immediate reward. Before a crew is deployed, the rewards of all potential
node assignments are computed. The agent then makes the crew-to-node
assignment with the smallest reward.

27

(a) Network 1. (b) Network 2. (c) Network 3.

Figure 6.1: Networks used in our experiments.

Component Model or Description
CPU AMD Ryzen 5 5600X
GPU Nvidia GTX 960
RAM 16GB

Table 6.2: System specifications.

6.2 Experiments

6.2.1 Training and Testing Procedures

To evaluate our RL algorithms, we conduct a training phase followed by a
testing phase. Since we want our agent to learn to recover a network from the
Northridge earthquake, we train it on the earthquake’s potential destructive
outcomes. That is, the node destruction for each training episode is generated
probabilistically with Equation 5.1 and the USGS’ Northridge intensity data.
Shown in Figure 6.2, the destructiveness of the scenarios used in training appear
to follow a Gaussian distribution.

In order to show that our approach is flexible and can make good repair
decisions for any situation, we must test it on disaster scenarios that were not
trained on. To properly generate test disasters, the node failure probability func-
tion is modified such that disasters are either weaker or stronger. We found that
the following functions consistently generate destructiveness that are around two
standard deviations from the mean of the training disasters’ destructiveness:

Node Failure Probability = exp

(
Intensity − 10

1.75

)
(6.1)

Node Failure Probability = exp

(
Intensity − 10

4

)
(6.2)

28

0.0 0.1 0.2 0.3 0.4 0.5
Proportion of Nodes Destroyed

0.00

0.02

0.04

0.06

0.08

0.10

0.12

p(
X)

(a) Network 1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Proportion of Nodes Destroyed

0.00

0.02

0.04

0.06

0.08

p(
X)

(b) Network 2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Proportion of Nodes Destroyed

0.00

0.02

0.04

0.06

0.08

0.10

p(
X)

(c) Network 3.

Figure 6.2: PMF’s of the destructiveness of the generated Northridge
earthquake disaster outcomes used for training.

6.2.2 Experimental Objectives

Our main experimental objective is to learn about the performance of our system
in terms of training time and the quality of the solution it produces. In addition,
to get the most out of our system, we need to determine the optimal time slice
for our simulator to progress on. Thus, we perform experiments that address
the following four questions:

1. What is an optimal time slice duration for an iteration in our simulator
for training the agent on?

2. How does Deep Q-learning fare compared to Q-learning, the Greedy al-
gorithm, and the Weighted algorithm in terms of the area of their produced
recovery schedule?

3. Is there a difference in the training times of Q-learning and Deep Q-
learning?

4. Is it possible for the DQN to train on scenarios and parameters different
from the ones used in the testing phase and still obtain good results?

6.2.3 Choosing an Optimal Time Slice

Before looking into the performance differences between the approaches, we
must first understand what time slice duration for an iteration in our simulator
is optimal. For this we consider two factors: the training time and the area
produced on different time slices. We do this because we want a system with a
minimal training time that also converges to good solutions.

It is our expectation that smaller time slices produce better recovery solutions
because it reduces the idling of repair crews, which we discussed previously.
However, as this increases the amount of iterations in the simulation, we expect
the training time to increase. For bigger time slices, we expect shorter training
times but network recovery processes with greater areas.

First, let us examine the Deep Q-learning training times, for 10,000 episodes
on network 1 and three repair crews, with whole number time slices on the
interval [1, 20] minutes. The outcome we receive, shown in Figure 6.3, confirms

29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Slice [min]

0

100

200

300

400

500

600

Tr
ai

ni
ng

 T
im

e
[s

]
Average Training Times

Figure 6.3: The training times for each time slice.

that the training time is lower for larger time slices. However, we observe
diminishing returns for time slices over 10 minutes in length.

Along with the training times for each time slice, we tested the Deep Q-
learning approach on a randomly generated disaster. Our results, illustrated
with the red bars in Figure 6.4, show a linear growth in 1-WATTR area with
increasing time slices. However, we discovered that the node recovery order
was rather similar regardless of the time slice used. Therefore, it appears that
training on big time slices yields a similar recovery order as when training on
small time slices. To confirm this, we train for each time slice as before but
make the test phase operate on a 1-minute time slice. The results we obtain are
plotted, with blue bars, in Figure 6.4.

It is clear, from Figure 6.4, that training on any time slice leads to nearly
the same recovery order. That is, training on any time slice and conducting
the test phase on a 1-minute time slice produces a solution with an area close
to as having trained on a 1-minute time slice. Therefore, the choice of what
time slice to use should mostly be based on its training time. For our remaining
experiments, we configure our system to train on 15-minute time slices and test
one 1-minute time slices.

6.2.4 Approach Performance Comparisons

Recovering Network 1

Let us begin by analyzing the performance of the different approaches under
ideal conditions, meaning that the only uncertainty lies in the damage extent.
Hence, we train and test our RL approaches with the repair crews traveling at a
speed of 100 km/h and node replacements taking 45 minutes. Throughout the
training and testing phases, the different initial locations of the repair crews do
not change. Furthermore, we repeat this experiment to gain insight on whether
the RL approaches lead to the same results.

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Slice [min]

0.0

0.5

1.0

1.5

2.0

Av
er
ag

e
Ar
ea

Average Training and Test Areas
Train on time slice, test on same time slice
Train on time slice, test on 1 minute slice

Figure 6.4: Areas produced by each time slice.

We train with probabilistically generated disasters for each of the episodes,
according to Equation 5.1. To be clear, we train the RL approaches on 5,000
episodes in this experiment. Afterwards, testing is done on a set of 10 disasters
that were generated through Equations 6.1 and 6.2. Training and testing for
both one and three repair crew setups twice, we obtain the results shown in
figure 6.5.

In Figure 6.5(a), it appears that the RL approaches converge toward solutions
for recovering network 1 with a single repair crew. This is due to the fact that
there are multiple pairs of red dots of equal area in the plot. Furthermore,
both RL approaches perform slightly better on average compared to the greedy
algorithm.

Adding two more repair crews gives the results shown in Figure 6.5(b). The
key takeaway from this plot is that the Q-learning approach performs, on aver-
age, only 5.3% better compared to with just a single crew. It can also be seen
that the areas of the disaster recovery tests on the Q-learning approach are dis-
persed. This performance degradation is due to insufficient amount of training
on the larger state-space of this setup. Training the Q-learning approach for
longer (50,000 episodes) confirms this, as its results exhibit signs of convergence
in addition to substantial overall improvements. But, even after training for
longer, the Q-learning approach performs 9.5% worse than the Deep Q-learning
approach and 4.3% worse than the baseline Weighted algorithm on average.

Regarding the training times, we found that the Q-learning system, tuned
to train on 50,000 episodes, was approximately 2x longer than the Deep Q-
learning system, which trained for roughly 310 seconds on average. Since it is
clear that the Deep Q-learning system beats Q-learning by all measures, we will
not continue experimenting on the Q-learning system.

Scaling Up to Network 2

Let us now look into the performances of the approaches on a larger network.
Using network 2, we repeat the training and testing procedures, except for

31

Deep
Q-learning

Q-learning Q-learning
(longer training)

Weighted Greedy
0

1

2

3

4

5

6

Ar
ea

μ=1.24 μ=1.39 μ=1.28 μ=1.38 μ=1.30

Network 1: 1 Repair Crew

(a) Recovery areas of each approach with 1 repair crew.

Deep
Q-learning

Q-learning Q-learning
(longer trai i g)

Weighted Greedy
0

1

2

3

4

Ar
ea

μ=0.63

μ=1.32

μ=0.72 μ=0.69 μ=0.71

Network 1: 3 Repair Crews

(b) Recovery areas of each approach with 3 repair crews.

Figure 6.5: Performance of each approach on recovering network 1.
Each red dot represents the 1-WATTR area from recovering a test
disaster.

our test set we now use 16 disasters that vary considerably in destructiveness.
Furthermore, we let our approach train on 20,000 episodes, which for our system
took about 1,300 seconds to complete. After training and testing four separate
times, the results of applying the approaches to recover the larger network are
shown in Figure 6.6.

Under both the one and three repair crew setups, it is apparent that the
recovery areas grow linearly with the proportion of nodes destroyed for all ap-
proaches. This finding is shown in Figures 6.6(a) and 6.6(c). In regards to the
relative performance difference between the approaches, we can see that it is
less predictable for smaller disasters. Whereas for larger disasters, the Deep
Q-learning performs around 10-25% and 7-17.5% better than the Weighted al-
gorithm for one and three repair crew setups, respectively. Compared to the
Greedy algorithm, Deep Q-learning performs on around 5-15% and 3-9% better
for one and three repair crew setups respectively.

Interestingly, there is a noticeable relationship between the performances of
the Greedy and Deep Q-learning approaches, as can be seen in Figures 6.6(b)
and 6.6(d). This relationship stems from their similar crew to node assignment
strategies. However, the Greedy algorithm does not take the future into account,
as it only considers the reward from the time of making crew deployments.

Further investigation revealed that the Greedy approach takes the same ac-
tions as the Deep Q-learning approach during the early stages. This is due
to the way the node weights are distributed in the network. While the node
weights are somewhat even in our network, there is a set of nodes with weights
over 6x greater than the average node. Moreover, this set of nodes makes up
for over 80% of the network’s WATTR and is clustered at the location of the
disaster (Los Angeles). Hence, the aspect of optimizing travel is not highlighted
until when the remaining damaged nodes share similar weights. This is clearly

32

0.10 0.15 0.20 0.25 0.30
Proportion of nodes destroyed

0

2

4

6

8

10

12

Av
er
ag

e
Re

co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (1 Repair Crew)
Deep Q-learning
Greedy
Weighted

(a) Average recovery areas of each approach with 1 repair crew.

0.10 0.15 0.20 0.25 0.30
Proportion of node de troyed

−35

−30

−25

−20

−15

−10

−5

0

Re
la
tiv

e
Ar

ea
 [

%
]

Performance Relative to Weighted Approach (1 Repair Crew)

(b) Performances relative to Weighted approach with 1 repair crew.

0.10 0.15 0.20 0.25 0.30
Proportion of Nodes Destroyed

1

2

3

4

5

Av
er
ag
e
Re
co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (3 Repair Crews)
Deep Q-learning
Greedy
Weighted

(c) Average recovery areas of each approach with 3 repair crews.

0.10 0.15 0.20 0.25 0.30
Proportion f N des Destr yed

−17.5

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Re
la
tiv

e
Ar
ea

s [
%
]

Performance Relative to Weighted Approach (3 Repair Crews)

(d) Performances relative to Weighted approach with 3 repair crews.

Figure 6.6: Performances of each approach on recovering network 2 for
both one and three repair crew setups.

illustrated in Figures 6.7(a) and 6.7(b), where the nodes with by far the greatest
weights are all located in close proximity to each other and with a high prob-
ability of failure.

Disaster Impact to Network Recovery Performance Relationship

Knowing about the striking weight differences between nodes, it is clear that
disasters mainly affecting the Los Angeles area allow for major WATTR restor-
ation without significant travel costs.

Looking at our test disasters, one of them destroys the core node in Los
Angeles and three of its 12 major base stations, along with 13 other nodes within

33

(a) Node failure probabilities: red 40-65%, orange 30-39%,
yellow 20-29%, blue 0-19%

(b) Node weights: red >600, orange 200-600, yellow 100-199,
blue 0-99

Figure 6.7: Node failure probabilities and weights in network 2.

a 75 km radius around it. For this test case with a single repair crew, our Deep
Q-learning approach performed only 5% better than the other two approaches.
With three repair crews, our approach performed around 9% better. Plotting
the network’s 1-WATTR during the recovery process made by the different
approaches, for both 1 and 3 repair crew setups, is shown in Figure 6.8.

Recovering from this disaster with a single repair crew allows for uncertainty
to be solved through restoring the damaged core nodes first. It turns out, all
approaches begin by recovering the Los Angeles core node since its recovery
produces by far the best reward. After it is recovered, the agent now knows
with full certainty which of the major base stations are damaged, and proceeds
to recover them.

More significantly, with three repair crews, the Deep Q-learning agent has
learned about the risk of deploying a crew to an unreachable base station while
its corresponding core node is being restored. Furthermore, this also means
that the agent learns to coordinate the repair crews in the whole recovery pro-
cess. This is unlike the Greedy approach, which prefers deploying a crew to
an uncertain node in an attempt to gain as much connectivity as quickly as
possible.

Let us now examine whether the Deep Q-learning approach performs better,
relative to the other algorithms, when recovering from disasters mainly affecting
light-weight nodes. We expect Deep Q-learning to perform far better in those
disasters since the repair crew travel aspect plays a bigger role.

In our set of test disasters, there are a few that mostly affect light-weight
nodes. Let us examine test disaster 15, which causes the destruction of two
core nodes and 27 base stations. Of the heavy-weight nodes in the Los Angeles

34

0 5 10 15 20
Time [h]

0.0

0.2

0.4

0.6

0.8

1-
W
AT
TR

Recovering From Test Disaster 1

Deep Q-learning (1 Crew)
Greedy (1 Crew)

Weighted (1 Crew)
Deep Q-learning (3 Crews)

Greedy (3 Crews)
Weighted (3 Crews)

Figure 6.8: The network’s 1-WATTR curves under different approaches
for recovering network 2 from test disaster 1.

area, only four base stations are destroyed, while their corresponding core node
survives. Using a single repair crew to recover the network from this disaster,
our Deep Q-learning approach performed 12% better than the Greedy approach
and 19% better than the Weighted approach. However, with three repair crews
the Deep Q-learning approach performed only 4% better than the Greedy ap-
proach and 10% better than the Weighted approach. Again, the approaches
begin by recovering the core nodes first to gain full knowledge on the damage
extent. Figure 6.9 shows the network’s 1-WATTR during the recovery under
the different approaches and repair crew setups.

These results show that Deep Q-learning performs better, relative to the
other approaches, when node damages are more spread out and across nodes
with similar weights.

In the test disasters that do not destroy any core nodes, where the damage
extent is fully known, the approaches performed similarly well. Of course, the
crew coordination capability of the Deep Q-learning approach gave it an edge.

Varying the Travel Speed and Node Replacement Times

Although we have shown that the Deep Q-learning agent is able to train and test
on fixed travel speeds and node replacement times, these two parameters can
vary in the real-world. Therefore, let us investigate the possibility of training
on varied parameter values.

For our training phase, each episode gets these parameters values randomly
chosen from uniform distributions of travel speeds and node replacement times.
We let the speed at which the repair crews can travel range between 60 and
120 km/h. Furthermore, we let the time it takes for a repair crew to replace a
damaged node range from 30 to 120 minutes. We define these distributions as:

35

0 5 10 15 20 25 30 35 40
Time [h]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1-
W
AT
TR

Recovering From Test Disaster 15

Deep Q-learning (1 Crew)
Greedy (1 Crew)

Weighted (1 Crew)
Deep Q-learning (3 Crews)

Greedy (3 Crews)
Weighted (3 Crews)

Figure 6.9: The network’s 1-WATTR curves under different approaches
for recovering network 2 from test disaster 15.

Travel Speed ∼ U[60,120] km/h

Node Replacement T ime ∼ U[30,120]minutes

(6.3)

With the parameters sampled from these distributions during the training
process, we let the repair crews travel at 50 km/h and let node replacements
take 75 minutes in the test phase. Because this travel speed is not used in
the training episodes, the tests will reveal whether the approach works under
unexpected scenarios. After training for 20,000 episodes on network 1 with
varying parameters (repeated four times), the results we obtain from a set of 28
test disasters are shown in Figure 6.10.

As shown in Figure 6.10, the Deep Q-learning’s performance is consistently
better than the Weighted approach. But as discussed previously, the character-
istics of the test disasters influences the performance of the approaches to some
degree. We can see that for the three repair crew setup, our Deep Q-learning
approach is far better than the other two approaches. In fact, it performs about
10-20% better than the Greedy approach on disasters that damage more than
15% of the network’s nodes. That is, on disasters that damage core nodes, which
thus introduce uncertainty on the damage extent.

We can now safely say that it is possible to train the Deep Q-learning al-
gorithm on varying disasters and parameter values, and perform tests with
parameter values different from the ones used in training and still get good
results.

With the same training procedure made on network 2, we obtain the results
shown in Figure 6.11. These results reveal similarities to our previous exper-
iment on network 2, shown in Figure 6.6. Even though we use the same test
disasters as before, here our Deep Q-learning approach with a single repair crew

36

0.1 0.2 0.3 0.4
Proportion of Nodes Destroyed

0

5

10

15

20

Av
er
ag
e
Re
co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (1 Repair Crew)
Deep Q-learning
Greedy
Weighted

(a) Average recovery areas of each approach with 1 repair crew.

0.1 0.2 0.3 0.4
Proportion f N des Destr yed

−20

−15

−10

−5

0

Re
la
tiv

e
Ar
ea

 [%
]

Performance Relative to Weighted Approach (1 Repair Crew)

(b) Performances relative to Weighted approach with 1 repair
crew.

0.1 0.2 0.3 0.4
Proportion of Nodes Destroyed

0

2

4

6

8

Av
er
ag

e
Re

co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (3 Repair Crews)
Deep Q-learning
Greedy
Weighted

(c) Average recovery areas of each approach with 3 repair crews.

0.1 0.2 0.3 0.4
Proportion f N des Destr yed

−25

−20

−15

−10

−5

0

Re
la
tiv

e
Ar
ea

 [%
]

Performance Relative to Weighted Approach (3 Repair Crews)

(d) Performances relative to Weighted approach with 3 repair
crews.

Figure 6.10: Performances of each approach on recovering network 1
for both one and three repair crew setups with varied travel speeds
and node replacement times during training.

performs not as well as before, relative to the Weighted approach. Still, the
difference is only about 5% and is most likely due to insufficient training. With
three repair crews, however, our Deep Q-learning approach performs better on
average relative to the Weighted approach compared to our previous experi-
ment, shown in Figure 6.6(d). This is because the Weighted approach will make
more travel inefficient crew-to-node assignments when the crews operate slower.

37

0.10 0.15 0.20 0.25 0.30
Proportion of Nodes Destroyed

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag
e
Re
co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (1 Repair Crew)
Deep Q-learning
Greedy
Weighted

(a) Average recovery areas of each approach with 1 repair crew.

0.10 0.15 0.20 0.25 0.30
Proportion of Nodes Destroyed

−20

−15

−10

−5

0

Re
la

tiv
e

Ar
ea

s [
%
]

Performance Relative to Weighted Approach (1 Repair Crew)

Deep Q-learning
Greedy
Weighted

(b) Performances relative to Weighted approach with 1 repair
crew.

0.10 0.15 0.20 0.25 0.30
Proportion of Nodes Destroyed

1

2

3

4

5

6

7

8

Av
er

ag
e

Re
co

ve
ry

 A
re

a

Recovery Areas vs. Disaster Magnitude (3 Repair Crews)
Deep Q-learning
Greedy
Weighted

(c) Average recovery areas of each approach with 3 repair crews.

0.10 0.15 0.20 0.25 0.30
Proportion of Nodes Destroyed

−20

−15

−10

−5

0

Re
la

tiv
e

Ar
ea

s [
%
]

Performance Relative to Weighted Approach (3 Repair Crews)

Deep Q-learning
Greedy
Weighted

(d) Performances relative to Weighted approach with 3 repair
crews.

Figure 6.11: Performances of each approach on recovering network 2
for both one and three repair crew setups with varied travel speeds
and node replacement times during training.

Increasing the Uncertainty and Balancing the Node Weights

Our third network was created following the discovery of the issues with net-
works 1 and 2. That is, the weight differences and low core node counts of these
two networks are unrealistic. Network 3 incorporates more core nodes and bal-
ances the base station weights better. As noted in table 6.1, network 3 consists
of 26 core nodes and 61 base stations.

Adding more core nodes will lead to greater uncertainty of a network’s state
after a disaster. This will allow for more realistic experiments where the dam-
age extent can not be known after recovering just a few nodes. Furthermore,
the base station weights are randomly chosen from a uniform distribution the

38

interval of 80 to 120. This prevents unrealistic scenarios where a small set of
nodes contribute to majority of the network’s WATTR. In addition, distributing
weights this way makes the aspect of travel and node replacement times more
significant.

For this network, we train our Deep Q-learning agent on 20,000 episodes of
disasters generated from Equation 5.1 under the Northridge earthquake. Addi-
tionally, we vary the travel speed and node replacement time parameters during
training on the same distributions as before. As for the testing phase, we let
the parameters equal the same values as before (travel speed of 50 km/h and
node replacement time of 75 minutes). We generate 16 test disasters that span
the PMF of the training disasters destructiveness, shown in Figure 6.2(c).

Repeating the training and testing four times, we obtain the results shown in
Figure 6.12. The results show that our Deep Q-learning approach consistently
outperforms the other two algorithms. Even though our test disasters vary
in destructiveness and differ in the spread of damages, our Deep Q-learning
approach maintains a 20% better performance over the Weighted algorithms.
The results also shows that our approach can make good recovery decisions on
scenarios it has not seen or trained on before. The same can be said for the
three repair crew setup, except the performance varies slightly more. Lastly,
the full training time on this network takes around 1,500 seconds.

6.2.5 Remarks

For our experiments, we initially trained our system on a specific test disaster
scenario. That is, the disasters used in training were generated such that they
matched the state of the test disaster. Because this process was time consuming
to do for many test disasters, we explored the possibility of training on potential
disaster scenarios of an earthquake. It turns out that the network recovery per-
formance difference between these two training methods are minuscule. Because
this was discovered rather late, we did not have much time to incorporate more
test disasters in our experiments.

39

0.1 0.2 0.3 0.4 0.5
Proportion of Nodes Destroyed

0

10

20

30

40

50

60

Av
er
ag

e
Re

co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (1 Repair Crew)
Deep Q-learning
Greedy
Weighted

(a) Average recovery areas of each approach with 1 repair crew.

0.1 0.2 0.3 0.4 0.5
Proportion of Nodes Destroyed

−40

−20

0

20

40

Re
 a

tiv
e

Ar
ea

 [%
]

Performance Relative to Weighted Approach (1 Repair Crew)
Deep Q-learning
Greedy
Weighted

(b) Performances relative to Weighted approach with 1 repair
crew.

0.1 0.2 0.3 0.4 0.5
Proportion of Nodes Destroyed

0

5

10

15

20

Av
er
ag
e
Re
co
ve
ry
 A
re
a

Recovery Areas vs. Disaster Magnitude (3 Repair Crews)
Deep Q-learning
Greedy
Weighted

(c) Average recovery areas of each approach with 3 repair crews.

0.1 0.2 0.3 0.4 0.5
Proportion of Nodes Destroyed

−30

−20

−10

0

10

20

Re
 a

tiv
e

Ar
ea

s [
%

]

Performance Relative to Weighted Approach (3 Repair Crews)
Deep Q-learning
Greedy
Weighted

(d) Performances relative to Weighted approach with 3 repair
crews.

Figure 6.12: Performances of each approach on recovering network 3
for both one and three repair crew setups with varied travel speeds
and node replacement times during training.

40

Chapter 7

Conclusion

Communication network components are vulnerable to destruction caused by
natural disasters, which can subsequently leave countless people unable to con-
tact first responders. Post-disaster network recovery efforts are known to have
been frightfully slow in many real-world events. However, recent technological
advancements in mobile cell sites have made rapid communication network ex-
pansion for feasible in post-disaster scenarios. Still, the problem of how to
optimally deploy these cell sites remains open.

In our work, we consider an optimal network recovery strategy to be the one
which minimizes the area underneath the curve of the network’s 1-WATTR over
the recovery process. To address this, we designed a deep reinforcement learning
algorithm that is trained to compute optimal repair crew to node deployments,
given the observed state of the network and details on the repair crews. Our
system takes into account the uncertainty that lies in disconnected nodes when
making predictions of the future network state. This is because an unreachable
node might survive a disaster and still be functional.

A simulator was made to model the environment state, that our deep rein-
forcement learning agent interacts with. Its design was kept simple, as it works
by repeatedly iterating over instructions that maintain the network state and
crew deployments, with each iteration representing a real-life time duration.

We created two algorithms to compare our approach against: a greedy al-
gorithm that prioritizes the recovery of the node resulting the highest connectiv-
ity increase over the time it takes to recover it, and a weight based approach
in which priority is given to recover the node with the greatest weight. Experi-
ments revealed that our deep reinforcement learning algorithm produces better
strategies than the other algorithms in all disaster scenarios. More precisely,
on networks 1 and 2, our deep reinforcement learning algorithm performed on
average 9% better than greedy algorithm and 15% better than the weighted al-
gorithm. On the third network, our approach performed about 20% better than
the other approaches. Our work shows that RL offers a flexible and efficient
approach to optimize post-disaster network recovery.

41

42

Chapter 8

Future Work

For this work we chose to model an MDP rather than a Partially Observable
MDP (POMDP), even though the true underlying state is unknown. This was
done because having access to the node failure probabilities would enable for
good predictions of the network’s WATTR following actions. Furthermore, feed-
ing the DQN with the current and previous environment observations has been
reported to aid the agent in learning its environment [18] [13].

Nonetheless, this practice has become obsolete with the rise of the Long Short-
Term Memory (LSTM) which is capable of handling partial observability. In
essence, an LSTM is a type of a Recurrent Neural Network (RNN) that is
designed to capture long term time dependencies [42] [26]. Typically, an LSTM
is incorporated between the last hidden layer of the DQN and the output layer
to create a Deep Recurrent Q-Network (DRQN) [10].

Other things worth investigating include varying the repair crew travel speeds
and the node replacement times within training episodes. This better reflects
the uncertainty present in the real-world. Additionally, a reasonable addition
would be to introduce a limit to the capacity of mobile cell sites that repair
crews can carry.

As technology keeps evolving, new solutions such as UAV base stations emerge.
UAV base stations (UABS) have received considerable attention in recent years
and are said to be suitable in various post-disaster situations [44] [16] [9]. How-
ever, UABS still face challenges with regards to power consumption and optim-
izing their placements among others. If this technology turns out to be practical,
modeling it for our system would be simple.

Another up-and-coming technology is SpaceX’s Starlink project, which aims
to bring internet access to every corner of the Earth via a satellite internet
constellation. In June 2021, after launching close to 1,800 satellites, almost
100,000 people were connected to Starlink through personal user terminals [3].
Additional signs of success come from the fact that ground stations are being
made for connecting cloud services to Starlink [34]. Although it is not yet clear
how Starlink could be utilized to provide people with network connectivity fol-
lowing a disaster, the technology offers interesting solutions that deserve deeper
investigation.

43

44

Bibliography

[1] M. G. Azar, R. Munos, M. Ghavamzadeh, and H. Kappen. Speedy q-
learning. In Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2011.

[2] N. Bartolini, S. Ciavarella, T. F. La Porta, and S. Silvestri. Network re-
covery after massive failures. 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 2016.

[3] Aimee Chanthadavong. Spacex president says starlink global satellite
broadband service to be live by september, 2021. [Online; accessed 24-
August-2021].

[4] S. Ciavarella, N. Bartolini, H. Khamfroush, and T. La Porta. Progress-
ive damage assessment and network recovery after massive failures. IEEE
INFOCOM 2017 - IEEE Conference on Computer Communications, May
2017.

[5] Melissa C Daniels and Barry M Popkin. Impact of water intake on energy
intake and weight status: a systematic review. Nutrition Reviews, 68(9),
September 2010.

[6] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization.
https://arxiv.org/abs/1412.6980, 2017.

[7] Joseph B. Evans, Gary J. Minden, K. Sam Shanmugan, Glenn Prescott,
Victor S. Frost, Benjamin J. Ewy, R. Sanchez, C. Sparks, K. Malinimohan,
James Roberts, R. G. Plumb, and David Petr. The rapidly deployable radio
network. IEEE Selected Areas in Communications, 17(4), April 1999.

[8] Sifat Fardousi, Massimo Tornatore, Ferhat Dikbiyik, Charles U. Martel,
Sugang Xu, Yusuke Hirota, Yoshinari Awaji, and Biswanath Mukherjee.
Joint progressive network and datacenter recovery after large-scale dis-
asters. IEEE Transactions on Network and Service Management, 17(3),
September 2020.

[9] Azade Fotouhi, Haoran Qiang, Ming Ding, Mahbub Hassan, Lorenzo Gal-
ati Giordano, Adrian Garcia-Rodriguez, and Jinhong Yuan. Survey on
uav cellular communications: Practical aspects, standardization advance-
ments, regulation, and security challenges. IEEE Communications Surveys
Tutorials, 21(4):3417–3442, 2019.

45

https://arxiv.org/abs/1412.6980

[10] Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for
partially observable mdps. CoRR, abs/1507.06527, 2015.

[11] D.G. Honegger and D. Wijewickreme. Handbook of seismic risk analysis
and management of civil infrastructure systems.

[12] Genya Ishigaki, Siddartha Devic, Riti Gour, and Jason P. Jue. Deeppr:
Progressive recovery for interdependent vnfs with deep reinforcement learn-
ing. IEEE Journal on Selected Areas in Communications, 38(10), October
2020.

[13] Jonás Kulhánek, Erik Derner, Tim de Bruin, and Robert Babuska.
Vision-based navigation using deep reinforcement learning. CoRR,
abs/1908.03627, 2019.

[14] Facebook AI Research Labs. Pytorch. https://pytorch.org/.

[15] Alexander Lenail. Nn-svg. https://github.com/alexlenail/NN-SVG,
2019. Tool for drawing neural network architectures.

[16] Arvind Merwaday and Ismail Guvenc. Uav assisted heterogeneous networks
for public safety communications. In 2015 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), pages 329–334, 2015.

[17] Karen Miranda, Antonella Molinaro, and Tahiry Razafindralambo. A sur-
vey on rapidly deployable solutions for post-disaster networks. IEEE Com-
munications Magazine, 54(4), April 2016.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning, 2013.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, Feb 2015.

[20] K. T. Morrison. Rapidly recovering from the catastrophic loss of a major
telecommunications office. IEEE Communications Magazine, 49(1), Janu-
ary 2011.

[21] NetworkX. Networkx: Network analysis in python. https://networkx.

org/, 2021.

[22] Jorik Oostenbrink, Fernando A. Kuipers, Poul E. Heegaard, and Bjarne E.
Helvik. Evaluating local disaster recovery strategies. ACM SIGMETRICS
Performance Evaluation Review, 46(2), January 2019.

[23] M. Pourvali, C. Cavdar, K. Shaban, J. Crichigno, and N. Ghani. Post-
failure repair for cloud-based infrastructure services after disasters. Com-
puter Communications, 111, October 2017.

46

https://pytorch.org/
https://github.com/alexlenail/NN-SVG
https://networkx.org/
https://networkx.org/

[24] Mahsa Pourvali, Kaile Liang, Feng Gu, Hao Bai, Khaled Shaban, Samee
Khan, and Nasir Ghani. Progressive recovery for network virtualization
after large-scale disasters. 2016 International Conference on Computing,
Networking and Communications (ICNC), February 2016.

[25] Gianluca Rizzo, Sasko Ristov, Thomas Fahringer, Marjan Gusev, Matija
Dzanko, Ivana Bilic, Christian Esposito, and Torsten Braun. Emergency
networks for post-disaster scenarios. Guide to Disaster-Resilient Commu-
nication Networks. Computer Communications and Networks, July 2020.

[26] Clément Romac and Vincent Béraud. Deep recurrent q-learning vs deep
q-learning on a simple partially observable markov decision process with
minecraft. CoRR, abs/1903.04311, 2019.

[27] Toshikazu Sakano, Zubair Md. Fadlullah, Hiroki Nishiyama, Masataka Na-
kazawa, Fumiyuki Adachi, Nei Kato, Atsushi Takahara, Tomoaki Kumagai,
Hiromichi Kasahara, and Shigeki Kurihara. Disaster-resilient networking:
A new vision based on movable and deployable resource units. IEEE Net-
work, 27(4), 2013.

[28] Toshikazu Sakano, Satoshi Kotabe, and Tetsuro Komukai. Overview of
movable and deployable ict resource unit architecture. 13, May 2015.

[29] Toshikazu Sakano, Satoshi Kotabe, Tetsuro Komukai, Tomoaki Kumagai,
Yoshitaka Shimizu, Atsushi Takahara, Thuan Ngo, Zubair Md. Fadlullah,
Hiroki Nishiyama, and Nei Kato. Bringing movable and deployable net-
works to disaster areas: Development and field test of mdru. IEEE Net-
work, 30(1), January 2016.

[30] Toshikazu Sakano, Satoshi Kotabe, Tetsuro Komukai, and Atsushi Taka-
hara. Movable and deployable ict resource unit for instant delivery of local
ict services. 2014 Asia-Pacific Microwave Conference, November 2014.

[31] Solaris Technologies Services. Solaris technologies services. https://

solaristechservices.com/, 2021.

[32] Jingran Sun and Zhanmin Zhang. A post-disaster resource allocation frame-
work for improving resilience of interdependent infrastructure networks.
Transportation Research Part D Transport and Environment, 85, August
2020.

[33] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 2018.

[34] Dan Swinhoe. Spacex’s starlink to house satellite ground stations at google
data centers, partner on edge, 2021. [Online; accessed 24-August-2021].

[35] Diman Zad Tootaghaj, Hana Khamfroush, Novella Bartolini, Stefano Ciav-
arella, Seamus Hayes, and Thomas La Porta. Network recovery from
massive failures under uncertain knowledge of damages. 2017 IFIP Net-
working Conference (IFIP Networking) and Workshops, June 2017.

[36] Anthony M. Townsend and Mitchell L. Moss. Telecommunications infra-
structures in disasters: Preparing cities for crisis communications. April
2005.

47

https://solaristechservices.com/
https://solaristechservices.com/

[37] International Telecommunication Union. Itu handbook on telecom-
munication outside plants in areas frequently exposed to natural
disasters. https://www.itu.int/en/ITU-D/Technology/Documents/

OutsidePlants/Appendix3_Q22-1_2.pdf, 2013. [Online; accessed 30-
August-2021].

[38] United States Department of Homeland Security. Portable cellular sys-
tems application note. https://www.dhs.gov/sites/default/files/

publications/Port-Cell-Sys_AppN_0714-508.pdf, 2014.

[39] United States Geological Survey. The modified mercalli intensity
scale. https://www.usgs.gov/natural-hazards/earthquake-hazards/

science/modified-mercalli-intensity-scale. Last accessed: Jun. 5,
2021.

[40] United States Geological Survey. Search earthquake catalog. https://

earthquake.usgs.gov/earthquakes/search/. Last accessed: Apr. 25,
2021.

[41] Jianping Wang, Chunming Qiao, and Hongfang Yu. On progressive network
recovery after a major disruption. 2011 Proceedings IEEE INFOCOM,
April 2011.

[42] Daan Wierstra, Alexander Foerster, Jan Peters, and Jürgen Schmidhuber.
Solving deep memory pomdps with recurrent policy gradients. In Joa-
quim Marques de Sá, Lúıs A. Alexandre, W lodzis law Duch, and Danilo
Mandic, editors, Artificial Neural Networks – ICANN 2007, pages 697–706,
Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[43] Wikipedia contributors. Haversine formula — Wikipedia, the free encyc-
lopedia. https://en.wikipedia.org/w/index.php?title=Haversine_

formula&oldid=1022071808, 2021. [Online; accessed 22-May-2021].

[44] Yong Zeng, Rui Zhang, and Teng Joon Lim. Wireless communications with
unmanned aerial vehicles: opportunities and challenges. IEEE Communic-
ations Magazine, 54(5):36–42, 2016.

[45] Yangming Zhao, Mohammed Pithapur, and Chunming Qiao. On progress-
ive recovery in interdependent cyber physical systems. 2016 IEEE Global
Communications Conference (GLOBECOM), December 2016.

48

https://www.itu.int/en/ITU-D/Technology/Documents/OutsidePlants/Appendix3_Q22-1_2.pdf
https://www.itu.int/en/ITU-D/Technology/Documents/OutsidePlants/Appendix3_Q22-1_2.pdf
https://www.dhs.gov/sites/default/files/publications/Port-Cell-Sys_AppN_0714-508.pdf
https://www.dhs.gov/sites/default/files/publications/Port-Cell-Sys_AppN_0714-508.pdf
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/modified-mercalli-intensity-scale
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/modified-mercalli-intensity-scale
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=1022071808
https://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=1022071808

	Preface
	Introduction
	Rapidly Deployable Networks
	Existing Solutions
	A Reinforcement Learning Based Approach
	Contributions

	Related Work
	Mobile Cell Sites
	Movable and Deployable ICT Resource Units
	Cell on Wheels and Cell on Light Trucks

	Recovery Strategies
	Progressive Network Recovery Approaches

	Machine Learning

	Problem Definition
	Approach
	Network Recovery Simulator
	Simulator Control Flow
	Queuing Process

	Modeling a Markov Decision Process
	State space
	Action space
	State transition probability
	Reward function

	Reinforcement Learning
	Q-learning
	Deep Q-learning

	Disaster Model and Graph Generator
	Earthquakes
	Graph Generator

	Experiments
	Experimental Setup
	Approaches Compared

	Experiments
	Training and Testing Procedures
	Experimental Objectives
	Choosing an Optimal Time Slice
	Approach Performance Comparisons
	Remarks

	Conclusion
	Future Work

