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Glossary

Definitions

• Situation

– complete state of the world at a particular point in time

– might include agents’ beliefs (incomplete knowledge)

• Action

– function from one situation to another

– changes situation to another situation, given preconditions

• Recipe (Plan)

– sequence of actions to perform

• Objective (Goal)

– an intention driving current behavior

– actions defined in terms of their effects

• Resource

– an object used during execution of a recipe

– consumable or reusable.
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Introduction 1
I

n computer science, a software agent is a piece of software that acts for an user or
other program in a relationship of agency. Such ‘acting on behalf of’ implies the
authority to decide which (and if) action is appropriate. The idea is that agents are

not strictly invoked for a task, but activate themselves.
To date, agents have been successfully employed in multiple application endeavors,

such as:

• data collection and filtering

• pattern recognition

• event notification

• data presentation

• planning and optimization

• rapid response implementation.

One might imagine an agent which is involved in all of these activities, sequencing
through each of those states in response to environmental events, acting independently
or in collaboration with a human client.

The number of application areas for software agents continues to expand. Currently,
software agents are primarily used in research, but other areas such as education,
commercial, law enforcement, intelligence, and even military are showing their interest
as well, as future clients increasingly find themselves swamped by information overload.
Agents can process vast volumes of data which would be unmanageable by human
agents. Additionally, agents can analyze, assess, plan, and react to environmental events
at super-human speeds.

A problem with designing agents is the fact that their competence is necessarily
restricted to situations similar to those they have encountered in the past. The agents,
when working on their own, have only a limited vision of the world, and have their
resource limitations. If social ability is introduced however, and multiple agents are able
to engage other components through some sort of communication and coordination, they
may collaborate on a task, and collect information that would not be available to them
if they were working alone. They could share knowledge and resources, which could lead
to better decisions based on more information, and tasks may be completed in less time.

As with every advantage, sharing knowledge has its problems as well. The agents
need to deal with issues like distributed or centralized data, the storage of data, and

1



2 CHAPTER 1. INTRODUCTION

have to deal with multiple sources of information. Received and stored information
may not be up-to-date anymore, and the original source of that information may be
disconnected from the network of agents. Tradeoffs have to be made: is information
distributed between all the agents, even to agents that can’t see the original source?
Maybe a centralized control center which keeps track of all the information and assigns
tasks to the agents is more applicable? What to do with history of data, and do we trust
the information that is received from other agents?

1.1 The Collaboration Problem

When several intelligent agents interact they may form a multi-agent system or multiple-
agent system. The agents are considered to be autonomous entities collaborating with
each other, and their interactions can be either cooperative or selfish. That is, the agents
can share a common goal (e.g. an ant colony), or they can pursue their own interests
(as in the free market economy).

Multi-agent systems can be used to solve problems which are difficult or impossible
for an individual agent or monolithic system to solve. Examples of problems which are
appropriate to multi-agent systems research include online trading, disaster response,
and modeling social structures.[1] They have been successfully applied in domain
areas like entertainment, computer games, air-traffic control, air combat, personal
assistants, load-balancing, logistics, mining large (distributed) datasets in astronomy or
transportation, finance, geographic information systems as well as in many other fields.
Multi-agent systems are widely being advocated to be used in networking and mobile
technologies, to achieve automatic and dynamic load balancing, high scalability, and
self healing networks.

Central to the design and effective operation of collaborative agents are a core set of
issues and research questions that have been studied over the years by the distributed
AI community:[2]

• How do we formulate, describe, decompose, and allocate problems and synthesize
results among a group of intelligent agents?

• How do we enable agents to communicate and interact? What communication
languages and protocols do we use? What and when can they communicate? How
can we find useful agents in an open environment?

• How do we ensure that agents act coherently in making decisions or taking action,
accommodating the nonlocal effects of local decisions and avoiding harmful inter-
actions? How do we ensure the agents do not become resource bounded? How do
we avoid unstable system behavior?

• How do we enable individual agents to represent and reason about the actions,
plans, and knowledge of other agents to coordinate with them. How do we reason
about the state of their coordinated process (for example, initiation and comple-
tion)?

c©2008 Delft University of Technology



1.2. RESEARCH OBJECTIVES 3

• How do we recognize and reconcile disparate viewpoints and conflicting intentions
among a collection of agents trying to coordinate their actions?

• How do we engineer and constrain practical distributed AI systems? How do
we design technology platforms and development methodologies for multi-agent
systems?

Typically multi-agent systems research refers to software agents. However, the agents
in a multi-agent system could equally well be robots, humans or human teams. A multi-
agent system may even contain combined human-agent teams. This thesis primarily
focuses on robot agents, which are used in various kinds of applications:

• robots as entertainment

• robots as watchdogs

• security and surveillance

• robots as social entities.

Each of these applications differ in the kind of information that they gather, and the
actions each of the agents can perform. Since the information they use differs, the way
they could share it differs as well. A robot that is used for entertainment may collect
information such as ‘where can I find the charging station’ or ‘where are my toys’, while
a robot in a search-and-rescue situation collects information about missing people or
‘where is the location of the fire’. Sharing information and keeping it up-to-date in the
last example is of greater importance then in the entertainment example, because in a
search-and-rescue situation every second counts, and having the correct information is
much more valuable. Not having agents/robots explore rooms that have already been
searched by distributing knowledge between them, can significantly reduce the time of
the rescue mission.

While the information that is shared and the way agents collaborate differ in each
situation, the underlying technique of ‘message passing’ and ‘communication’ applies to
all applications. A common communication protocol is needed that allows the agents
to communicate and understand each other and to share information/knowledge with,
and an expert system is needed with which the agents can make decisions based on all
the information that they gather from other agents. Furthermore, choices have to be
made whether to keep the agents/robots autonomous, or use a central controller PC, and
whether to save and use historic data and how to deal with ‘trust’. All of these decisions
should be based on the demands that each different application described above has.
When all this is carefully chosen, designed and implemented, collaboration could give a
huge benefit over single operating agents.

1.2 Research Objectives

The research objective described in this thesis is the design and development of a system
of collaborative agents, applied to AIBO. Collaboration methods must be investigated in

c©2008 Delft University of Technology



4 CHAPTER 1. INTRODUCTION

detail and a protocol that can be used on the AIBO should be developed. The software
should work in an ad-hoc wifi network with clients that can connect and disconnect at all
times. Data can then be shared between the clients (AIBOs) so that they can determine
the right objectives for themselves and fine-tune their actions with the others.

The application that this thesis primarily focuses on is the ‘Four-Legged Robot
Soccer League’. Therefore the robots should stay autonomous, since the rules of the
RoboCup soccer game clearly states that the use of a central controller PC is forbidden.

Figure 1.1: Four-Legged Robot Soccer League

The followings tasks contribute to achieving the research objective:

• Understanding of current collaborating techniques, by studying relevant literature.

• Evaluation of the different development platforms that are available for AIBO.

• Study of the expert systems that are currently available.

• Design of the software and corresponding communication protocol.

• Implementation of the software in a development platform of choice.

• Implementation of knowledge in an expert system.

• Evaluation of the software when running on AIBO.

The software that is going to be developed is called AiboCommOpenR.

1.3 About This Document

This document represents the partial fulfillment of the requirements for obtaining a
Master of Science degree. Each of the research tasks listed above will be discussed
in detail. In chapter 2 the different kind of agents are described and the collaborative
agent is discussed in further detail. It also includes a detailed problem solving model, and

c©2008 Delft University of Technology



1.3. ABOUT THIS DOCUMENT 5

discusses collaborative frameworks such as JADE. Chapter 3 is the result of studying the
relevant literature related to communication protocols. In this chapter different protocols
are described and a preliminary design of the protocol for AiboCommOpenR is given.
Chapter 4 gives an overview of all the available development platforms for AIBO, and
chapter 5 discusses the development platform used for this project, called OPEN-R SDK,
in more detail.

Chapter 6 describes the design of AiboCommOpenR including the needed communi-
cation protocol, and discusses some design tradeoffs. In Chapter 7 a few possible expert
systems are introduced including their arguments for and against. It results in an ex-
pert system that can be used in this project. Chapter 8 describes some applications of
the technique and introduces a few strategies for the Four-Legged Robot Soccer League,
which is the application that is chosen in chapter 9 to design expert system rules for.

Finally, in chapter 10 AiboCommOpenR is put to the test, and chapter 11 concludes
this thesis and indicates directions for future work.

c©2008 Delft University of Technology
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Collaborative Robot Agents 2
A

global definition of the term ‘agent’ would be ‘a component of software and/or
hardware which is perceiving its environment through sensors and acting on the
environment through actuators, thus effecting what it senses in the future’.[3]

The term percept is used to refer to the agent’s perceptual inputs at any given instant.
Perception is initiated by sensors and provides agents with information about the world
they inhabit (see figure 2.1).

Figure 2.1: Agent definition

This tends to obscure the differences between radically different approaches. Agents
differ in the way they communicate and co-operate and so on. The different kind of
agents can be split into 7 categories:[4][5]

• Collaborative agents

• Interface agents

• Mobile agents (static vs. mobile)

• Information/Internet agents

• Reactive agents (deliberative vs. reactive)

• Hybrid agents

• Smart agents.

7



8 CHAPTER 2. COLLABORATIVE ROBOT AGENTS

Figure 2.2: Agent classification

All these type of agents have different motivations and challenges. This thesis
investigates the ‘collaborative agents’. These agents negotiate in order to resolve
conflicts and they collaborate to integrate information. Collaborative agents can wrap
around legacy systems (‘glue’ to interconnect them) and can provide solutions to
inherently distributed problems like air traffic control, telecommunications and network
management.

An other classification scheme for agents is the weak and strong notion of agency.
In the weak notion of agency, agents have their own will and operate without the direct
intervention of humans or others (autonomy). They are able to interact with each other
(social ability) and perceive their environment and respond to changes in it (reactivity).
Finally they are able to exhibit goal-directed behavior by taking the initiative (pro-
activeness).

In the strong notion of agency (used particularly by researchers working in AI), the
weak notions of agency are preserved and in addition agents can move around (mobility),
they are truthful (veracity) and they do what they’re told to do (benevolence). They will
also perform in an optimal manner to achieve goals (rationality). Some AI researchers
have gone further and considered emotional agents.[6]

2.1 Designing Collaborative Agents

A problem with designing agents is the fact that their competence is necessarily re-
stricted to situations similar to those they have encountered in the past. A collaborative
framework can alleviate these problems. When faced with an unfamiliar situation, an

c©2008 Delft University of Technology



2.1. DESIGNING COLLABORATIVE AGENTS 9

agent can consult its peers who may have the necessary experience to help the agent.

Collaborative agents need to be able to:[7]

• discuss and negotiate goals

• discuss options and decide on courses of action, including assigning different parts
of a task to different agents

• discuss limitations and problems with the current course of action and negotiate
modifications

• assess the current situation and explore future possibilities

• discuss and determine resource allocation

• discuss and negotiate initiative in the interactions

• perform parts of the task and report to others to update shared knowledge of the
situation.

The main motivation factor for designing cooperative agents is the fact that some
problems are simply to large for a centralized single agent. Resources might be limited
or there is too much risk involved. But beside resources limitations, other motivations
play an important role as well:[8]

• Allow for interconnection/interoperability of multiple existing legacy systems.

• Provide solutions to inherently distributed problems, e.g. distributed sensor net-
works or air-traffic control.

• Provide solutions which draw from distributed information sources.

• Provide solutions where the expertise is distributed, e.g. in health care provision-
ing.

• Enhance modularity (which reduces complexity), speed (due to parallelism), reli-
ability (due to redundancy), flexibility (i.e. new tasks are composed more easily
from the more modular organisation) and reusability at the knowledge level (hence
shareability of resources).

• Research into other issues, e.g. understanding interactions among human societies.

So by letting agents cooperate we are able to:

“create a system that interconnects separately developed collaborative
agents, thus enabling the ensemble to function beyond the capabilities of
any of its members”[9]

c©2008 Delft University of Technology



10 CHAPTER 2. COLLABORATIVE ROBOT AGENTS

The central issue of collaborative problem solving is that in order to collaborate to
achieve a common goal, the agents must coordinate their individual actions. Therefore,
some sort of ‘Collaborative Problem Solving Level’ must exist, and the agents should cap-
ture the joint objectives, and the jointly chosen recipes and resources etc. to accomplish
those objectives.

The collaborative problem solving level must serve 2 purposes. It must provide the
structure that enables and drives interactions, and it should provide the connection
between the joint intentions and the individual actions that an agent performs as part
of the joint plan, while allowing an agent to have its own objectives. Agents must agree
to some level of detail on the abstract joint recipes that they construct in order to
collaborate. An agent does not need to know how the other agent accomplishes things be-
low this level of abstraction and agents do not need to have the same library of recipes.[5]

Being able to solve problems, the cognitive state of the agent, affected by problem-
solving actions, need to contain at least the following:[7]

• current situation

• intended objectives

• active objectives

• intended recipes

• recipe library

• function on objectives and situations giving recipes.

As a summary, the different phases to agent problem solving can be summed as
follows:[7]

1. Determine the objective (agents may reconsider objectives at any time).

2. Determine the recipe (find a recipe that may achieve the objective).

3. Use the selected recipe and identify the next action to perform from the recipe (if
the recipe returns a sub-objective, go to step 1).

2.2 Collaborative Framework

While a particular agent may not have any prior knowledge about a certain problem,
there may exist a number of agents who do. Instead of each agent re-learning what
other agents have already learned through experience, agents can simply ask for help.
This gives each agent access to a potentially vast body of experience that already exists.
There are two classes of such collaboration:[8]

• Desperation based communication which is invoked when a particular agent has
insufficient experience to make a confident decision.
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• Exploratory communication communication, on the other hand, is initiated by
agents in bids to find the best set of peer agents to ask for help in certain classes of
situations. Exploratory communication is undertaken by agents to discover new (as
yet untried) agents who are better advisors in the solving of the agents’ problems
than the current set of peers they have previously tested.

Both forms of communication may occur at two orthogonal levels. At the situation
level, desperation communication refers to an agent asking its peers for help in dealing
with a new situation, while exploratory communication refers to an agent asking previ-
ously untested peers for how they would deal with old situations for which it knows the
correct action, to determine whether these new agents are good advisors for future prob-
lems. At the agent level, desperation communication refers to an agent asking trusted
peers to recommend an agent that its peers trust, while exploratory communication
refers to agents asking peers for their evaluation of a particular agent perhaps to see how
well these peers’ modeling of a particular agent corresponds with their own.

Collaborative communication between agents occurs in the form of request and reply
messages. An agent is not required to reply to any message it receives. This leaves each
agent the freedom to decide when and whom to help.

Agents model peers’ abilities to assist with solving problems by a trust value. For
each class of situations an agent has a list of peers with associated trust values. Trust
values vary between 0 and 1. The trust values reflect the degree to which an agent is
willing to trust a peer’s solution for a particular situation class. A trust value represents
a probability that a peer’s solution for a certain problem is a good solution based on
prior history of proposed solutions from the peer. Trust values are further discussed in
chapter 6.2.3.[5]

When an agent sends out a solution request to more than one peer its likely to
receive many replies, each with a potentially different solution and confidence value.
In addition, the agent has a trust value associated with each peer. This gives rise to
many possible strategies which an agent can use to choose a solution and a confidence
value for this solution. Both trust and peer confidence should play a role in determining
which proposed solution gets selected and with what confidence. Each proposed action is
assigned a trust-confidence sum value which is the trust weighted sum of the confidence
values of all the peers predicting this action. The action with the highest trust-confidence
sum is chosen.

2.3 A Detailed Problem Solving Model

The following problem solving model is primarily focused on human-machine collabo-
ration, but can be equally well applied to interactions between sophisticated software
agents that need to coordinate their activities.[7]

An overview of the model is shown in figure 2.4. At the heart of the model is the
problem solving level, which describes how a single agent solves problems. An agent
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Figure 2.3: Communicating agents

might adopt an obligation or might evaluate the likelihood that a certain action will
achieve that objective. This level is based on a fairly standard model of agent behavior.
The problem solving level is specialized to a particular task and domain by a task model.
The task model describes how to perform certain tasks, such as what possible objectives
are, how objectives are (or might be) related, what resources are available, and how to
perform specific problem solving actions such as evaluating a course of action. For an
isolated autonomous agent, these two levels suffice to describe its behavior, including the
planning and execution of task-level actions. For collaborative activity, more is needed.

The collaborative problem solving level builds on the single-agent problem solving
level. The collaborative problem solving actions parallel the single-agent ones, except
that they are joint actions involving jointly understood objects. For example, the agents
can jointly adopt an intention (making it a joint intention), or they can jointly identify
a relevant resource, and so on. Finally, an agent cannot simply perform a collaborative
action by itself. The interaction level consists of actions performed by individuals in
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Figure 2.4: Collaborative problem solving model

order to perform their part of collaborative problem solving acts. Thus, for example,
one agent may initiate a collaborative act to adopt a joint intention, and another may
complete the collaborative act by agreeing to adopt the intention.

When two agents collaborate to achieve goals, they must coordinate their individ-
ual actions. To mirror the development at the problem solving level, the collaborative
problem solving level operates on the collaborative problem solving (CPS) state, which
captures the joint objectives, the recipes jointly chosen to achieve those objectives, the
resources jointly chosen for the recipes, and so on.[7]

The collaborative problem solving model must serve two critical purposes. First it
must provide the structure that enables and drives the interactions between the agents
as they decide on joint objectives, actions and behavior. In doing so, it provides the
framework for intention recognition, and it provides the constraints that force agents to
interact in ways that maintain the collaborative problem solving state. Second, it must
provide the connection between the joint intentions and the individual actions that an
agent performs as part of the joint plan, while still allowing an agent to have other
individual objectives of its own.

Establishing part of the collaborative problem solving state requires an agreement
between the agents. One agent will propose an objective, recipe, or resource, and the
other can accept, reject or produce a counterproposal or request further information.
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Figure 2.5: Life cycle of an intention

This is the level that captures the agent interactions. To communicate, the agent receiv-
ing a message must be able to identify what CPS act was intended, and then generates
responses that are appropriate to that intention.

2.4 JADE: The Java Agent DEvelopment Framework

JADE can be considered an agent middle-ware that implements an Agent Platform and
a development framework. It deals with all those aspects that are not peculiar of the
agent internals and that are independent of the applications, such as message transport,
encoding and parsing, or agent life-cycle.[10]

JADE offers a list of features to the agent programmer such as:[11]

• Distributed agent platform. The agent platform can be split on several hosts
(provided that there is no firewall between them).

• Programming interface to simplify registration of agent services with one, or more,
domains.

• Transport mechanism and interface to send/receive messages to/from other agents.

• Light-weight transport of messages inside the same agent platform.

• Graphical user interface to manage several agents and agent platforms from the
same agent. The activity of each platform can be monitored and logged.

The software architecture is based on the coexistence of several Java Virtual Machines
(VM) and communication relies on Java RMI (Remote Method Invocation) between
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different VMs and event signaling within a single VM. Each VM is a basic container of
agents that provides a complete run time environment for agent execution and allows
several agents to concurrently execute on the same host.

2.5 Remaining Research

The problem solving model outlined above can be applied to AIBO and might be usable
for the collaboration between different AIBOs. However, using JADE on AIBO is not
an option. Resources on AIBO are too limited for a full ‘agent framework’, specifically
if written in a rather slow language such as JAVA. Besides, there is no Java Virtual
Machine available for AIBO, making it impossible to run Java-based applications on it.

Since it turned out that JADE is not an option, an own transport mechanism for
sending and receiving messages, and a full ‘discussion protocol’ needs to be developed
in order to let the AIBOs communicate.

If the resources on the AIBO turn out to be sufficient, the possibility of sharing
‘knowledge’ between agents and maybe even ‘keeping history’ can be further investigated.
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Communication Protocols 3
I

n order to let the AIBOs collaborate, some form of communication and therefore a
protocol is needed. In the field of telecommunications, a communication protocol
is the set of standard rules for data representation, signaling, authentication, and

error detection required to send information over a communication channel.[12] The
same definition will be used throughout this chapter.

Protocols may be implemented in hardware, software, or a combination of the two. At
the lowest level, a protocol defines the behavior of a hardware connection. It is difficult
to generalize about protocols because they vary so greatly in purpose and sophistication.
Most protocols specify one or more of the following behaviors:

• detection of the underlying physical connection (wired or wireless), or the existence
of the other endpoint or node

• handshaking

• negotiation of various connection characteristics

• how to start and end a message

• how to format a message

• what to do with corrupted or improperly formatted messages (error correction)

• how to detect unexpected loss of the connection, and what to do next

• termination of the session or connection.

3.1 Network Protocol Design

A protocol specification consists of five distinct parts. To be complete, each specification
should include explicitly:

1. the service to be provided by the protocol

2. the assumptions about the environment in which the protocol is executed

3. the vocabulary of messages used to implement the protocol

4. the encoding (format) of each message in the vocabulary

5. the procedure rules guarding the consistency of message exchanges.
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Below is an overview of a general set of principles of sound design. It is important
to recognize that all these notes are variations on two common themes: simplicity and
modularity.[13]

3.1.1 Simplicity

A well-structured protocol can be built from a small number of well-designed and well-
understood pieces. Each piece performs one function and performs it well. To understand
the working of the protocol it should suffice to understand the working of the pieces from
which it is constructed and the way in which they interact. Protocols that are designed
in this way are easier to understand and easier to implement efficiently, and they are
more likely to be verifiable and maintainable. A light-weight protocol is simple, robust,
and efficient.

3.1.2 Modularity

A protocol that performs a complex function can be built from smaller pieces that
interact in a well-defined and simple way. Each smaller piece is a light-weight protocol
that can be separately developed, verified, implemented, and maintained. Orthogonal
functions are not mixed; they are designed as independent entities. The individual
modules make no assumptions about each others working, or even presence. Error control
and flow control, for instance, are orthogonal functions. They are best solved by separate
light-weight modules that are completely unaware of each others existence. They make no
assumptions about the data stream other than what is strictly necessary to perform their
function. An error-correction scheme should make no assumptions about the operating
system, physical addresses, data encoding methods, line speeds, or time of day. Those
concerns, should they exist, are placed in other modules, specifically optimized for that
purpose. The resulting protocol structure is open, extendible, and rearrangeable without
affecting the proper working of the individual components.

3.1.3 Effectiveness

For a protocol to be effective it needs to be specified in such a way that engineers, design-
ers, and software developers can implement and/or use it. In human-machine systems,
its design needs to facilitate routine usage by humans. Protocol layering accomplishes
these objectives by dividing the protocol design into a number of smaller parts, each of
which performs closely related sub-tasks, and interacts with other layers of the protocol
only in a small number of well-defined ways.

Protocol layering allows the parts of a protocol to be designed and tested without a
combinatorial explosion of cases, keeping each design relatively simple. The implemen-
tation of a sub-task on one layer can make assumptions about the behavior and services
offered by the layers beneath it. Thus, layering enables a ‘mix-and-match’ of protocols
that permit familiar protocols to be adapted to unusual circumstances.

An example for this is TCP/IP. A sub-task of error detection and either message
correction or retransmission may be performed by the Transmission Control Protocol
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(TCP), while the related sub-task of addressing is implemented by the Internet Proto-
col(IP). TCP/IP may assume some point-to-point connectivity offered by point-to-point
protocol (PPP) implemented in the lower-level Data link layer. At the lowest level
is the sub-task involving the electrical encoding/decoding of bits into/from voltages
performed in the Physical layer.

This example motivates the need to specify some software architecture or reference
model that systematically places each subtask into its proper context. The reference
model usually used for protocol layering is the OSI seven layer model, which can be
applied to any protocol, not just the OSI protocols initially sanctioned by the ISO. This
reference model also provides an opportunity to teach more general software engineering
concepts like hiding, modularity, and delegation of tasks.

The seven layers of the OSI model and the general purpose of each are shown in
figure 3.1.[14]

3.1.4 Reliability

Assuring reliability of data transmission involves error detection and correction, or some
means of requesting retransmission.

Communication systems correct errors by selectively resending bad parts of a mes-
sage. For example, in TCP (the Internet’s Transmission Control Protocol), messages are
divided into packets, each of which has a checksum. When a checksum is bad, the packet
is discarded. When a packet is lost, the receiver acknowledges all of the packets up to,
but not including the failed packet. Eventually, the sender sees that too much time has
elapsed without an acknowledgment, so it resends all of the packets that have not been
acknowledged. At the same time, the sender backs off its rate of sending, in case the
packet loss was caused by saturation of the path between sender and receiver.

3.1.5 Resiliency

Resiliency addresses a form of network failure known as topological failure in which a
communications link is cut, or degrades below usable quality. Most modern communica-
tion protocols periodically send messages to test a link. In phones, a framing bit is sent
every 24 bits on T1 lines. In phone systems, when ‘sync is lost’, fail-safe mechanisms
reroute the signals around the failing equipment.

In packet switched networks, the equivalent functions are performed using router
update messages to detect loss of connectivity.

3.1.6 Robustness

It is not difficult to design protocols that work under normal circumstances. It is the
unexpected that challenges them. It means that the protocol must be prepared to deal
appropriately with every feasible action and with every possible sequence of actions under
all possible conditions. The protocol should make only minimal assumptions about its
environment to avoid dependencies on particular features that could change. Many link-
level protocols that were designed in the 1970s, for instance, no longer work properly if
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Figure 3.1: The OSI model

they are used on very high speed data lines (in the Gigabits/sec range). A robust design
automatically scales up with new technology, without requiring fundamental changes.
The best form of robustness, then, is not over-design by adding functionality for antic-
ipated new conditions, but minimal design by removing non-essential assumptions that
could prevent adaptation to unanticipated conditions.

3.1.7 Consistency

There are some standard and dreaded ways in which protocols can fail. The three more
important ones are ‘Deadlocks’, ‘Livelocks’, and ‘Improper terminations’:
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• Deadlocks - states in which no further protocol execution is possible, for instance
because all protocol processes are waiting for conditions that can never be fulfilled.

• Livelocks - execution sequences that can be repeated indefinitely often without ever
making effective progress.

• Improper terminations - the completion of a protocol execution without satisfying
the proper termination conditions.

In general, the observance of these criteria cannot be verified by a manual inspection
of the protocol specification. More powerful tools are needed to prevent or detect them.

3.2 Well-formed Protocols

A well-formed protocol is not over-specified, that is, it does not contain any unreachable
or unexecutable code. A well-formed protocol is also not under-specified or incomplete.
An incompletely specified protocol, for instance, may cause unspecified receptions
during its execution. An unspecified reception occurs if a message arrives when the
receiver does not expect it, or cannot respond to it.

A well-formed protocol is bounded. It cannot overflow known system limits, such as
the limited capacity of message queues.

A well-formed protocol is self-stabilizing. If a transient error arbitrarily changes the
protocol state, a self-stabilizing protocol always returns to a desirable state within a
finite number of transitions, and resumes normal operation. Similarly, if such a protocol
is started in an arbitrary system state, it always reaches one of the intended states
within finite time.

A well-formed protocol, finally, is self-adapting. It can adapt, for instance, the rate
at which data are sent to the rate at which the data links can transfer them, and to the
rate at which the receiver can consume them. A rate control method, for instance, can
be used to change either the speed of a data transmission, or its volume.

3.3 Ten Rules of Design

The principles discussed above lead to ten basic rules of protocol design.[13]

1. Make sure that the problem is well-defined. All design criteria, requirements, and
constraints should be enumerated before a design is started.

2. Define the service to be performed at every level of abstraction before deciding
which structures should be used to realize these services (what comes before how).

3. Design external functionality before internal functionality. First consider the solu-
tion as a black-box and decide how it should interact with its environment. Then
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decide how the black-box can internally be organized. Likely it consists of smaller
black-boxes that can be refined in a similar fashion.

4. Keep it simple. Fancy protocols are buggier than simple ones; they are harder to
implement, harder to verify, and often less efficient. There are few truly complex
problems in protocol design. Problems that appear complex are often just simple
problems huddled together. The job as designer is to identify the simpler problems,
separate them, and then solve them individually.

5. Do not connect what is independent. Separate orthogonal concerns.

6. Do not introduce what is immaterial. Do not restrict what is irrelevant. A good
design solves a class of problems rather than a single instance.

7. Before implementing a design, build a high-level prototype and verify that the
design criteria are met.

8. Implement the design, measure its performance, and if necessary, optimize it.

9. Check that the final optimized implementation is equivalent to the high-level design
that was verified.

10. Don’t skip rules 1 to 7.

The most frequently violated rule, clearly, is rule 10.

3.4 Protocol Families

A number of protocol stacks or families exist. A few well known (both proprietary and
open) protocols are summed below:

• Proprietary standards:

– AppleTalk

– DECnet

– IPX/SPX

– SMB

– Systems Network Architecture (SNA)

– Distributed Systems Architecture (DSA)

• Open standards:

– Open Systems Interconnect (OSI)

– Internet Protocol suite (TCP/IP).
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These protocols work on different layers of the OSI model. The predominant stan-
dards at layer 7 and layer 6 were developed by the Department of Defense (DoD) as
part of the Transmission Control Protocol/Internet Protocol (TCP/IP) suite. This suite
consists of more than 40 protocols at several layers of the OSI model, such as:[14]

• File Transfer Protocol (FTP), the protocol most often used to download files from
the Internet.

• Telnet, to connect to mainframe computers over the Internet.

• HyperText Transfer Protocol (HTTP), which delivers Web pages.

• Simple Mail Transfer Protocol (SMTP), which is used to send e-mail messages.

SMB is a proprietary protocol from Microsoft, and is used to share files and printers.
It also works at layer 7 and 6, and can use a variety of underlying protocols for
transportation. The most popular are ‘NetBIOS over NetBEUI’ and ‘NetBIOS over
TCP/IP’

IBM’s NetBIOS (Network Basic Input/Output System) works at layer 4 and 5.
Because it is designed specifically for a single network, this protocol does not support
a routing mechanism to allow messages to travel from one network to another. For
routing to take place, NetBIOS can be used in conjunction with another transport
mechanism such as TCP. TCP provides all functions required for the transport layer.

Probably the most important layer 3 standard is Internet Protocol (IP), another
part of the TCP/IP suite. This protocol is the basis for the Internet and for all intranet
technology. IP has also become the standard for many LANs.

The most commonly used layer 2 and layer 1 protocols are those specified in the
Institute of Electrical and Electronics Engineering (IEEE): 802.2 Logical Link Control,
802.3 Ethernet, 802.4 Token Bus, and 802.5 Token Ring. Most PC networking products
use one of these standards.

Another layer 2 standard is Cells In Frames (CIF), which provides a way to send
Asynchronous Transfer Mode (ATM) cells over legacy LAN frames.[14]

3.5 Protocol for AiboCommOpenR

The protocol that is needed for AiboCommOpenR can use UDP for the transmission of
the data, because it is already available on AIBO, and supports broadcasting of data,
which is an important aspect of AiboCommOpenR. Because UDP fulfills level 4 and 5
of the OSI model, the protocol should work on level 6 and 7, and needs to take care
of the serializing and unserializing of the data that is transported between the AIBOs.
A library must be written which takes care of that, so that other modules can link
to it and use AiboCommOpenR. All other layers for the communication protocol of
AiboCommOpenR can be fulfilled with existing protocols as described in chapter 3.4.
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Figure 3.2: Important standards at various OSI layers

Because UDP is used as transport protocol, packets may get lost, reordered, and
even duplicated. AiboCommOpenR should take care of these issues, so no deadlocks can
occur while waiting for data that might be lost.
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I

n order to make AIBO an autonomous robot that can make decisions without the
help of a stand-alone PC, a module has to be developed that runs on the AIBO itself.
A variety of development platforms are available for developing such a module. This

chapter outlines the limitations and benefits of these platforms for this project.

4.1 URBI: Universal Real-time Behavior Interface

“URBI (Universal Real-time Behavior Interface) is a scripted language de-
signed to work over a client/server architecture in order to remotely control
a robot or, in a broader definition, any kind of device that has actuators and
sensors.”[15]

The main characteristics of URBI are:

• It is a low level command language. Motors and sensors are directly read and set.
Although complex high level commands and functions can be written with URBI,
the raw kernel of the system is low level by essence.

• It includes powerful time oriented control mechanisms to chain commands, serialize
them, or build complex motor trajectories.

• It is designed to be independent from both the robot and the client system. It
relies on TCP/IP, or ‘Inter-Process Communication’ if the client and the server
are both running on board.

• It is designed with a constant care for simplicity. There is no ‘philosophy’ or
‘complex architecture’ to be familiar with. It is understandable in a few minutes
and can be used immediately.

URBI consists of a server which is available for both AIBO and Linux, and of 4
different clients which can be programmed in 2 different languages:

• liburbi-cpp (programming language: C++, Linux)

• liburbi-cpp-windows (programming language: C++, WIN32)

• liburbi-java (programming language: JAVA)

• liburbi-OPENR (programming language: C++).
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Since this project focuses on having an autonomous agent, both the server and the
client have to run on the AIBO. Therefore, the only option is liburbi-OPENR, because
there is no Java Virtual Machine available for Aperios, which is the operating system
running on AIBO. Aperios can only use programs written in C/C++.

URBI has the advantage that the same written C++ code can compile as the client
for a normal PC as well as the client for the robot simply by changing the urbi-library.
Only a few things need to be taken into account. No threads, semaphores, or any other
function call not available under OPEN-R can be used and the application has to end
with urbi::execute, instead of having an infinite loop in the main function.

Using the library is fairly easy. Simple commands exist that move the joints of the
robot and read the current values of different parameters.

Listing 4.1: Mirror the right front leg to the left front leg
1 legLF.load = 0; // make Left Front leg joints loose
2 while (true) {
3 legRF1.val = legLF1.val &
4 legRF2.val = legLF2.val &
5 legRF3.val = legLF3.val
6 };

Since moving joints is not really part of this research, it is important to take a closer
look at the networking capabilities of URBI.

URBI uses one main class called ‘UClient’ which contains 2 functions that are needed
to send messages between different UClient instances (one instance running on each
AIBO):

• setCallback: void setCallback(UCallbackListener listener, String tag)

Registers a callback associated with the given tag.

Parameters:

listener: the registered callback.
tag: the tag associated with the registered callback.

• send: int send(String arg)

Sends a string to the other UClient.

Parameters:

arg: the string to send.

Listing 4.2 is a simple example using the UClient and the functions above.
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Listing 4.2: From examples: ‘URBIPing’[15]
1 #include <uclient.h>
2

3 ...
4

5 UClient ∗c;
6

7 UCallbackAction pong(const UMessage & msg) {
8

9 unsigned int ptime=msg.client.getCurrentTime() − sendtime;
10

11 ...
12

13 return URBI CONTINUE;
14 }
15

16 int main(int argc, char ∗ argv[]) {
17

18 if (argc<2) {
19 printf("usage: %s robot [msinterval] [count]\n",argv[0]);

exit(1);
20 }
21 rname=argv[1];
22 c=new UClient(argv[1]);
23 c−>start();
24

25 ...
26

27 c−>setCallback(&pong,"uping");
28

29 ...
30

31 for (int i=0;i<count | | (!count);i++) {
32

33 ...
34

35 sendtime = c−>getCurrentTime();
36 c−>send("uping:ping;");
37 }
38

39 ...
40 }

The only drawback with this method is that the exact IP address of the other party
(UClient) must be known, and that a broadcast can’t be used. However using a fixed list
with IP addresses is an option here because of the simplicity of liburbi. Communication
in plain OPEN-R is more difficult (as described later in this chapter), so the overhead
of using a fixed list with addresses is compensated here.

4.2 Tekkotsu

“Tekkotsu means ‘iron bones’ in Japanese, often used in the context of build-
ings’ structural framework. Similarly, this software package aims to give you
a structure on which to build.”[16]

Tekkotsu builds on the basic functionality provided by the OPEN-R operating sys-
tem. It is written in C++, (like the underlying system APIs) and makes full use of
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inheritance and templates. There is a delicate balance between ease of programming
and speed of execution.

At its lowest level, Tekkotsu provides primitives for sensor processing, smooth
control of effectors, and event-based communication. Higher level facilities include a
hierarchical state machine formalism for managing control flow in the application, and
an automatically maintained world map. Tekkotsu also provides housekeeping and
utility functions useful to application developers, and a set of remote monitoring tools
to permit real-time monitoring of various aspects of the robot’s state.

Figure 4.1: Tekkotsu object overview

A Tekkotsu application is organized as a collection of Behaviors and MotionCom-
mands. Their member functions run in two cooperating processes, ‘Main’ and ‘Motion’.
Separate processes are used because they require different execution styles. Main handles
perception and decision making. These are deliberative processes where each operation
can potentially take a substantial amount of time. Motion is concerned with realtime
control of effectors. All operations must be guaranteed to complete quickly, because sev-
eral may have to be performed within a 32 msec timeslice. A third process, SoundPlay,
handles audio output, and operates under the same realtime constraints as Motion. The
processes are labeled MainObj, MotoObj, and SoundPlay in figure 4.1.

Behaviors are instantiated and run exclusively in the Main process’ address space
(green hatching in figure 4.1). MotionCommands are instantiated in shared memory
(solid blue in the figure). Most of their computation is done in the Motion process
(orange hatching), but certain member functions run in Main. A clever mutual exclusion
mechanism called ‘MMAccessor’ provides Behaviors running in Main with a safe way to
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update shared memory structures while they are in use by the MotionManager running
in Motion.

Where a lot of work is done in the motion part of AIBO, the communication part
(which is of interest in this thesis project) is fairly limited. A socket class is available but
is not really usable for communication between AIBOs, because it is to complex and was
written for communication between a GUI and the AIBO. The developers of Tekkotsu
also state that the networking code needs a complete rewrite:

“The networking code is actually scheduled for an overhaul. It definitely has
some limitations, although it probably is easier to use than the OPEN-R
code it is hiding. Limitations to be aware of – the buffer size you set when
initializing a socket is the maximum you can send at a time. Probably not a
big issue for robosoccer. You don’t want to be sending huge amounts of data
between AIBOs anyway. More annoying though is currently no support for
‘server sockets’, meaning incoming connections are bound on the port they
connected to, thus preventing other AIBOs from connecting on the same
port. So your AIBOs each need to connect to a different port on each other.
Not a huge limitation, as long as you plan for it.”

– Ethan Tira-Thompson <ejt@andrew.cmu.edu>, in a personal e-mail

Especially the last part about ‘server sockets’ is a problem for this project. Keeping a
list of ports and distributing them between the AIBOs seems like a waste of the already
scarce resources. It is much easier if all the AIBOs have only one port on which they
listen for incoming messages from all other AIBOs.

4.3 AIBO SDE: AIBO Software Development Environ-
ment

“The AIBO SDE is a full-featured development environment where you can
make software for AIBO. The AIBO SDE contains the OPEN-R SDK, the
R-CODE SDK, the AIBO Remote Framework and the AIBO Motion Ed-
itor. [...] OPEN-R is the standard interface for the entertainment robot
system that SONY is actively promoting. This interface greatly expands the
capabilities of entertainment robots.” [17]

The AIBO SDE is the ‘AIBO Software Development Environment’ that can make
software that either executes on AIBO, or executes on a PC and controls AIBO by using
a wireless LAN. AIBO SDE contains three SDKs (Software Development Kits), and
one motion editor (AIBO Motion Editor). The three SDKs are named OPEN-R SDK,
R-CODE SDK, and AIBO Remote Framework.

• The OPEN-R SDK is a cross-development environment based on gcc (C++), with
which software can be written that runs on AIBO.
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• The R-CODE SDK is an environment which can execute programs written in R-
CODE, a scripting language, on AIBO.

• The AIBO Remote Framework is a Windows PC application development environ-
ment based on Visual C++, with which software can be written that runs on a
Windows PC. The software can control AIBO remotely via wireless LAN.

• AIBO Motion Editor is a motion creation editor for AIBO. Motions created with
AIBO Motion Editor can be used with the OPEN-R SDK, R-CODE SDK, and
AIBO Remote Framework.

Characteristics of the AIBO SDE:
Three Software Development Kits for different uses.

• The OPEN-R SDK is typically used for research in robotics programming.

• The R-CODE SDK is used with an easy-to-understand scripting language. A
complete R-CODE program can consist of only a few lines of code.

• AIBO Remote Framework is used to create rich PC programs that interact with
AIBO. For example, streaming camera data and microphone audio can be sent to
a nearby PC, and streaming audio data can be send back to AIBO as well. Taking
advantage of the PC’s power and connectivity can lead to feature-rich commercial
applications.

Because of the wireless LAN capabilities of AIBO, and the development a stand-
alone program which runs on the AIBO itself are important for this thesis project, the
‘OPEN-R SDK’ has to be used.

The OPEN-R SDK discloses the specifications of the interface between the ‘system
layer’ and the ‘application layer’. OPEN-R software is object-oriented and modular.
Software modules are called ‘objects’ (specifically, ‘OPEN-R objects’). In OPEN-R,
robot software is implemented so that processing is performed by multiple objects with
various functionality running concurrently, communicating with each other via inter-
object communication. Concurrency is achieved by giving running objects time slices in
which to perform a task before being preempted or forced to yield to the next object
that is ready to run.

The OPEN-R system layer provides a set of services (input of sound data, output
of sound data, input of image data, output of control data to joints, and input of data
from various sensors) as an interface to the application layer. This interface is also im-
plemented by inter-object communication. These services enable application objects to
utilize the robots underlying functionality, without requiring detailed knowledge of the
hardware devices that comprise the robot. The system layer also provides an interface
for the TCP/IP protocol stack, which enables programmers to create networking applica-
tions utilizing the wireless LAN. For this, a complete IPv4 protocol stack is available.[18]

OPEN-R SDK has an extra feature called ‘Remote Processing OPEN-R’ (RP OPEN-
R), which is a remote processing environment where an OPEN-R based program is
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executed on a machine other then AIBO. By using RP OPEN-R, some objects can
be executed on a remote host (connected to AIBO via wireless LAN), and the other
objects can be executed on AIBO directly. There is no concern about which object
is running on which host, since all the communication is done transparently using
inter-object communication. ‘Remote Processing OPEN-R’ has the advantage that the
high performance and versatile functionality of the remote host can be used, and makes
it easier and more efficient to develop programs and perform debugging. However, since
this thesis project focuses on a stand-alone module, it is of little use here.

Because the IP stack communicates through message passing with objects and with
device drivers, and because of the complexity of this inter-object communication, no
sample-code of OPEN-R wireless LAN communication will be given here. Object com-
munication will be further discussed in chapter 5.1.

4.4 Final Assessments

Having all the pros and cons in mind, the right development platform for this project
can be chosen. While URBI seems to be the best candidate, it can’t be used here, simply
because at the time of starting with this project, ‘liburbi-OPENR’ is not available yet.

Tekkotsu’s networking capabilities are too limited, and having all the modules around
for motion while not using them seems to be too much overhead.

Therefore, OPEN-R remains as the final candidate for this project and will be the
platform of choice. It has the most advanced networking capabilities, and is the fastest
in runtime. Because of the complexity of object communication, the next chapter (5)
will describe it in detail.

Table 4.1: Development platform overview

Platform Language Ease of Use Networking Code Comments

URBI Java/C++ Medium Simple to use

- Pro: Ease of programming
- Pro: Simple networking code
- Pro: Different programming languages
- Con: liburbi-OPENR is not available yet

Tekkotsu C++ Medium Not usable
- Pro: Ease of programming
- Con: Limited networking capabilities
- Con: Lot of overhead (sound/vision)

R-CODE SDK Scripting Easy Not available
- Pro: Very easy to use
- Con: Lack of networking capabilities

OPEN-R SDK C++ Difficult Difficult to use
- Pro: Fastest in runtime
- Pro: Advanced networking capabilities
- Con: Difficult to use

c©2008 Delft University of Technology



32 CHAPTER 4. CHOOSING THE RIGHT DEVELOPMENT PLATFORM

c©2008 Delft University of Technology



OPEN-R Objects 5
T

his chapter will discuss ‘OPEN-R Objects’ and especially the communication be-
tween them. If the word ‘object’ is mentioned in this chapter, it means an ‘OPEN-
R object’ and not an object in the traditional C++ (Object Oriented Program-

ming) sense of the word.
In OPEN-R, multiple objects with various functionality are running concurrently

and communicate with each other via inter-object communication (see figure 5.1). The
concept of an object in OPEN-R is similar to one of a process in the UNIX or Windows
operating systems.

Figure 5.1: OPEN-R Application software

An object is a concept that only exists at run-time. Each object has a counterpart
in the form of an executable file, created at compile-time. Source code is compiled and
linked (with the use of the OPEN-R SDK) to create this executable file. The file is put
on an AIBO Programming Memory Stick and when AIBO boots, the operating system
loads the file from the AIBO Programming Memory Stick and executes it as an object.[18]

Unlike an ordinary programming environment in which a program has a single en-
try point ‘main()’, OPEN-R allows an object to have multiple entry points. Some
entry points have purposes that are determined by the system, e.g. initialization and
termination. Other entry points have purposes specific to the object.

An object can send messages to other objects. A message contains some data and
the selector, which is an integer that specifies the task to be done by the receiver of the
message. When an object receives a message, the function corresponding to the selector
is invoked, with the data in the message as its argument. A function corresponding
to a selector is called a ‘method’. An important feature of objects is that they are
single-threaded. As a consequence, an object can process only one message at a time. If
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an object receives a message while it is processing another message, the second message
is put into the message queue and processed later.

Below is the typical life cycle of an object:

1. loaded by the system

2. wait for a message

3. when a message arrives, execute the method corresponding to the selector specified
in the message and send some messages to other objects when necessary

4. when the method finishes execution, go to step 2.

This is an infinite loop. An object cannot terminate itself and persists while the
system is activated.

5.1 Inter-Object Communication

OPEN-R objects communicate with each other while they perform their tasks. In
OPEN-R, this communication between objects is called ‘inter-object communication’.
The use of inter-object communication enables each object to be created separately
and later be connected to other objects. When two objects communicate, the side that
sends data is called the ‘subject’, and the side that receives data is called the ‘observer’.
Figure 5.2 shows a case where the subject of object A communicates with the observer
of object B.

Figure 5.2: Inter-object communication

When the observer is in a state ready to receive data, the observer sends
ASSERT-READY to the subject. When the observer is in a state not ready to receive
data, the observer sends DEASSERT-READY to the subject. The subject receives these in
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the form of a ReadyEvent. When the function IsAssert() in the ReadyEvent returns
true, the subject can send a NotifyEvent to the observer. NotifyEvent includes the
data that the subject wants to send to the observer.

Figure 5.3: A core class

Objects have entry points for receiving messages. As shown in figure 5.3, each entry
point corresponds to a particular method of the object, and each method corresponds
to a particular member function of the object. In C++, an OPEN-R object can be
represented by a core class. Core classes have the following characteristics:[18]

• A core class inherits from the OObject class (which is the base class for all objects).

• A core class implements the DoInit(), DoStart(), DoStop() and DoDestroy()
functions.

• A core class has the necessary number of OSubject and OObserver (described in
chapter 5.2).

• Some member functions in the core class correspond to specific methods in the
object:

1. Methods that are called at startup and shutdown:

– Init method
This is called at startup and initializes instances and variables.
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– Start method
This is called at startup after Init is executed in all objects.

– Stop method
This is called at shutdown.

– Destroy method
This is called at shutdown after Stop is executed in all objects and de-
stroys the subject and observer instances.

The Init method, Start method, Stop method, and Destroy method corre-
spond to each DoInit(), DoStart(), DoStop() and DoDestroy() function in
the object’s corresponding core class, respectively.

2. Methods that are called when a message is received from another object:
Methods used in subjects:

– Control method
This receives the connection results between the subject and its observers.

– Ready method
The subject receives ASSERT-READY or DEASSERT-READY notifications from
the observers.

Methods used in observers:

– Connect method
This receives the connection results between an observer and its subjects.

– Notify method
This receives a message from the subject.

5.2 Configuration Files

A stub.cfg file is used to describe the entry points and member functions of each object.
A tool from OPEN-R SDK (stubgen2) reads the stub.cfg file and generates stub files
for each object. These stub files are needed for compilation purposes. The following
items are described in stub.cfg:

• the number of subjects and the number of observers

• services used in inter-object communication.

The subjects and observers provide the services for inter-object communication.
Each service has a unique name, in order to distinguish that service from other services
in the system.

Below, the configuration files are given where one object is a ‘observer’ and one is a
‘subject’.

Listing 5.1: Sample observer stub.cfg
1 ObjectName : SampleObserver
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2 NumOfOSubject : 1
3 NumOfOObserver : 1
4 Service : "SampleObserver.DummySubject.DoNotConnect.S", null, null
5 Service : "SampleObserver.ReceiveString.char.O", null,

ReceiveString()

Listing 5.2: Sample subject stub.cfg
1 ObjectName : SampleSubject
2 NumOfOSubject : 1
3 NumOfOObserver : 1
4 Service : "SampleSubject.SendString.char.S", null, SendString()
5 Service : "SampleSubject.DummyObserver.DoNotConnect.O", null, null

Following are the descriptions of each item:

• ObjectName - the core class name.

• NumOfOSubject - this is the number of subjects. At least 1 subject must be
specified. If none is available, a dummy subject should be registered (as shown on
line 4 of listing 5.2).

• NumOfOObserver - this is the number of observers. At least 1 observer must
be specified. If none is available, a dummy observer should be registered.

• Service - this is the communication service that the object provides. A service
corresponding to each subject and observer is described. A service consists of the
following items: ‘(Connection name)’, (Member function 1), (Member function 2).

– Connection name
The connection name consists of the following items:
(Object name).(Subname).(Data name).(Service type)

∗ Object Name
This can be any name, but is usually the core class name.

∗ Subname
This is the service name, which must be unique. Do not use the same
subname for other services.

∗ Data name
This is the name corresponding to the data type used in inter-object
communication. It accepts primitives as well as complex structures.

∗ Service type
This is the type of the service. S for subject or O for observer.

– Member function 1
This member function is called when a connection result is received. It should
correspond to a function implemented in the core class. In case it is not
needed, ‘null’ can be specified here.
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– Member function 2
If this service is for observers, this function is called when a message is re-
ceived from a subject. If this service is for subjects, this function is called
when ASSERT-READY or DEASSERT-READY is received from an observer. If this
member function is left out (defined as ‘null’) as described in chapter 6.1.2,
one can call the subject function by hand, and no function is called when the
observer is ready.

The subject’s service can be connected to the observer’s service by describing both
service names in connect.cfg. When the system software boots, this description file
is loaded and used to allocate and configure the communication paths for inter-object
communication. For the examples above, the two services are tied together by the
following connect.cfg:

Listing 5.3: Sample connect.cfg
1 SampleSubject.SendString.char.S SampleObserver.ReceiveString.char.

O

5.3 Example Code

5.3.1 When the Observer Activates the Subject

In listing 5.1, a ‘member function 2’ is specified as ReceiveString(). This means
that when the observer in the SampleObserver object is in the ready-state, the subject
function in SampleSubject is automatically activated. This happens as soon as macro
ASSERT READY TO ALL OBSERVER is called in DoStart() (see listing 5.4, line 20).

Listing 5.4: SampleObserver source
1 #include <OPENR/OSyslog.h>
2 #include <OPENR/core macro.h>
3 #include "SampleObserver.h"
4

5 ...
6

7 OStatus
8 SampleObserver::DoInit(const OSystemEvent& event)
9 {

10 NEW ALL SUBJECT AND OBSERVER;
11 REGISTER ALL ENTRY;
12 SET ALL READY AND NOTIFY ENTRY;
13 return oSUCCESS;
14 }
15

16 OStatus
17 SampleObserver::DoStart(const OSystemEvent& event)
18 {
19 ENABLE ALL SUBJECT;
20 ASSERT READY TO ALL OBSERVER;
21 return oSUCCESS;
22 }
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23

24 ...
25

26 void
27 SampleObserver::ReceiveString(const ONotifyEvent& event)
28 {
29 const char∗ text = (const char ∗)event.Data(0);
30 OSYSPRINT(("SampleObserver::Notify() %s\n", text));
31 observer[event.ObsIndex()]−>AssertReady();
32 }

Listing 5.5: SampleSubject source (with ‘member function 2’ specified)
1 #include <string.h>
2 #include <OPENR/OSyslog.h>
3 #include <OPENR/core macro.h>
4 #include "SampleSubject.h"
5

6 ...
7

8 OStatus
9 SampleSubject::DoInit(const OSystemEvent& event)

10 {
11 NEW ALL SUBJECT AND OBSERVER;
12 REGISTER ALL ENTRY;
13 SET ALL READY AND NOTIFY ENTRY;
14 return oSUCCESS;
15 }
16

17 OStatus
18 SampleSubject::DoStart(const OSystemEvent& event)
19 {
20 ENABLE ALL SUBJECT;
21 ASSERT READY TO ALL OBSERVER;
22 return oSUCCESS;
23 }
24

25 ...
26

27 void
28 SampleSubject::SendString(const OReadyEvent& event)
29 {
30 OSYSPRINT(("SampleSubject::Ready() : %s\n",
31 event.IsAssert() ? "ASSERT READY" : "DEASSERT READY

"));
32

33 static int counter = 0;
34 char str[32];
35

36 if (counter == 0) {
37

38 strcpy(str, "!!! Hello world !!!");
39 subject[sbjSendString]−>SetData(str, sizeof(str));
40 subject[sbjSendString]−>NotifyObservers();
41

42 } else if (counter == 1) {
43

44 strcpy(str, "!!! Hello world again !!!");
45 subject[sbjSendString]−>SetData(str, sizeof(str));
46 subject[sbjSendString]−>NotifyObservers();
47

48 }
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49

50 counter++;
51 }

The corresponding stubs are in listing 5.1 and 5.2.

The flow of this application is as follows. Both objects are loaded into memory
and DoInit() of both objects is called. After both DoStart() functions are called and
SampleObserver ‘asserts’ his observers. This signal is captured by SampleSubject and
entry-point ‘void SampleSubject::SendString(const OReadyEvent& event)’ is ac-
tivated. This function returns his data to SampleObserver using SetData() and
NotifyObservers() (line 39, 40 of listing 5.5). SampleObserver receives this data with
the use of event.Data() (line 29 of listing 5.4). After that he ‘re-asserts’ himself using
AssertReady() (line 31 of listing 5.4) and SampleSubject then sends the second string.

5.3.2 When the Subject is Called Manually

In the example given above, it is clear that the observer controls when data is send. In
case it is necessary to have the subject initialize the process, we can specify ‘member
function 2’ as ‘null’ in the stub.cfg for the subject object (see listing 5.6, line 4) and
use the following technique.

Listing 5.6: Sample subject stub.cfg (with no ‘member function 2’)
1 ObjectName : SampleSubject
2 NumOfOSubject : 1
3 NumOfOObserver : 1
4 Service : "SampleSubject.SendString.char.S", null, null
5 Service : "SampleSubject.DummyObserver.DoNotConnect.O", null, null

The connect.cfg is the same for both cases, and so is the observer stub. Only the
source code of SampleSubject is different (see listing 5.7).

Listing 5.7: SampleSubject source (with no ‘member function 2’)
1 #include <string.h>
2 #include <OPENR/OSyslog.h>
3 #include <OPENR/core macro.h>
4 #include "SampleSubject.h"
5

6 ...
7

8 void
9 SampleSubject::SendString()

10 {
11

12 static int counter = 0;
13 char str[32];
14

15 if (counter == 0) {
16

17 strcpy(str, "!!! Hello world !!!");
18 subject[sbjSendString]−>SetData(str, sizeof(str));
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19 subject[sbjSendString]−>NotifyObservers();
20

21 }
22

23 ...
24

25 }

Every function in SampleSubject can now call SendString() and send data to
SampleObserver. Notice, however, that SampleObserver needs to have his observers
ready! This can be done like in the example in listing 5.4 or by asserting a specific
observer (notice the difference in line 20 of 5.4 and line 12 of 5.8).

Listing 5.8: SampleObserver source (with different ‘asserting’)
1 #include <OPENR/OSyslog.h>
2 #include <OPENR/core macro.h>
3 #include "SampleObserver.h"
4

5 ...
6

7

8 OStatus
9 SampleObserver::DoStart(const OSystemEvent& event)

10 {
11 ENABLE ALL SUBJECT;
12 observer[obsReceiveString]−>AssertReady();
13 return oSUCCESS;
14 }
15

16 ...

Using this technique, we can control the entire message-passing between the running
objects. When the observer sends ASSERT-READY, the corresponding subject method
won’t be activated. The observer will keep waiting until the subject sends the data.
That moment can be controlled by calling the subject-function (SendString()) at
any given time. Waiting for data is non-blocking, which means that the observer can
send and receive data to and from other observers and subjects while waiting for data
from a specific subject. After receiving the data from a subject, the observer needs to
‘re-assert’ himself again, and is then ready to receive new data.

When an observer is not ready to receive data, and a subject sends him a
NotifyEvent(), this message will be ignored.
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AiboCommOpenR Module
Overview 6
A

number of issues have to be addressed in order to develop a successful distributed
system for AIBO. These issues pertain to several different subject areas, such as
a functioning motion system, which deals with mechanical robotics, as well as a

functioning vision system, which deals with digital image analysis and color calibration.
Furthermore, the system deals with artificial intelligence, distributed systems, real time
systems and communication.

The focus for this project has been on the distribution and communication issue.
The main goal is the design and implementation of a system that runs on the AIBO
and operates concurrently with the modules that are already developed (e.g. the motion
modules for the soccer game). The system consists of several modules which can be used
to make distributed decisions with other AIBOs. It takes care of the reasoning and of
the transmission of data between the AIBOs. The only thing that other modules have
to do is:

1. Suggest an action to the AiboReasoning module.

2. Wait for a ‘go’ or ‘no go’ and act accordingly.

6.1 Design

As described above, the system has been divided into a number of modules according to
functionality. The modules that make up AiboCommOpenR are:

• AiboReasoning - this is the module that does the actual reasoning, with the help
of an expert system.

• AiboCommIN - listens for incoming data from other AIBOs.

• AiboCommOUT - this module is used by AiboReasoning to broadcast data to
other AIBOs.

• AiboDummyActionGenerator - used as a test module in replacement of real
modules that are used on AIBO (e.g. from the soccer game). The current imple-
mentation starts the whole sequence of events when the back-sensor of AIBO is
touched, and blinks its head-LEDs when a ‘go’ is received.

• PulseGenerator - is used as a timer for AiboCommOUT when it is broadcasting
data and waiting for feedback.

The communication between these modules is done using the ‘observer/subject’ struc-
ture described in chapter 5.1. An overview of the modules and how they communicate
is presented in figure 6.1. An example of using the design is given in chapter 6.1.1.
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Figure 6.1: Module overview of AiboCommOpenR, showing the flow when AIBO 1 wants
to perform an action

6.1.1 Example of Using AiboCommOpenR

This example gives the sequences of events that occur when AiboCommOpenR (as
outlined in figure 6.1) is used in the soccer game example.

In figure 6.1, AIBO 1 is the initiator. The vision- and pattern recognition module
on that AIBO finds the ball, and decides to move towards it. This might seem like a
good idea from one AIBO’s point of view, but if other AIBOs are closer to the ball, they
should go to the ball and attack instead. This AIBO should then stay in the background
and play defense. Using AiboCommOpenR for this example require the following steps:

1. The vision- and pattern recognition module detects the ball and decides to move
towards it. However, before he acts, he gives a signal to AiboReasoning using
discussAction(). He sends along the actionID for moving (which he gets from
a list, distributed between all AIBOs) and the data, in this case the distance to
the ball and his own position in the field. For this example we take 150cm for the
distance.

Because of the limited number of actions that AIBO can perform, we can use a list
of actionIDs. Every AIBO in the field has a copy of this list.
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2-4. AiboReasoning broadcasts the data and actionID to the other available AIBOs
using the AiboCommOUT module and a call to broadcastAction().

While the previous communication between the modules was done using the ‘ob-
server’ and ‘subject’ technique, AiboCommOUT broadcasts the data and actionID
using UDP. After broadcasting the information, AiboCommOUT starts listening for
replies from the other AIBOs.

5-8. The other AIBOs (AIBO 2 and AIBO 3 in this case) have a AiboCommIN mod-
ule listening on port 8451 and receive the information. They pass it to their own
AiboReasoning module with a reasonScore() call. The received data, in com-
bination with their own data and knowledge, is used by the reasoning engine for
calculating a score for the idea of ‘moving to the ball’ of AIBO 1.

If AIBO 2 calculates a distance of himself to the ball of 200cm, he sends back a
high score (e.g. (8)) to AIBO 1, since he is much further away from the ball. AIBO
3, in this example, finds a distance of 30cm to the ball, and therefore sends back a
very low score (e.g. (2)). He does this by calling returnScore() in AiboCommIN.
AIBO 1 receives these on his listening port in his AiboCommOUT module.

9. After receiving all the scores of the other AIBOs, or after waiting for a maximum
amount of time (we don’t want to stall the AIBO for to long), AiboCommOUT of
AIBO 1 stops listening and returns the received scores to the AiboReasoning
module using donateScores(). AiboReasoning receives the array of scores and
based on these scores, it makes a final decision whether to give a ‘go’ or ‘no go’
to the vision- and pattern recognition module (which was the module that made
the initial call to discussAction(). In this example it decides to give a ‘no go’,
because the average of the received scores ((8+2)/2 = 5 ) results in a low score.

10. The vision- and pattern recognition module receives this advice (with the help of
performAction()) and abandons the idea of moving towards the ball. After that
it resumes his normal work.

Corresponding sequence diagrams, statechart diagrams, and a class diagram for
AiboCommOpenR can be found in appendix A.

6.1.2 Using the ‘Observer/Subject’ Structure

When using the ‘observer/subject’ structure as in the design above, the observers and
subjects need to be chosen carefully.

An observer sends a signal to the subject that it can receive information (as described
in chapter 5.1):

“When the subject receives ASSERT-READY from the observer, the subject
starts to send data to the observer. The observer receives this data and
when it is in a state ready to receive the next data, it sends ASSERT-READY
again.”[18]
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Notice that the observer requests data from the subject. The opposite is required
in the AiboCommOUT module. When AiboReasoning has all the data available that
it wants to broadcast, it needs to send that to AiboCommOUT, calling the subject
in AiboReasoning itself. This is possible by not defining a subject-function in the
corresponding stub.cfg (see chapter 5.3.2), and call the subject like a normal function
(which then sends the data). This is only possible if the corresponding observer in
AiboCommOUT is ready to receive data! Therefore some sort of timing scheme needs to
be designed to make sure that all the observers are ready when they should. Figure 6.2
and 6.3 show the scheme that is designed for AiboCommOpenR.

Figure 6.2: ‘Observer/Subject’ structure of ‘AiboCommOpenR, AiboCommIN’
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Figure 6.3: ‘Observer/Subject’ structure of ‘AiboCommOpenR, AiboCommOUT’
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6.1.3 Communication Protocol

The communication in AiboCommOpenR is done in both the AiboCommIN and
AiboCommOUT module. Sending data between these two modules involves serializing
and unserializing the data using a predefined format. The following scheme is used for
AiboCommOpenR:

actionID::data-element1::data-element2::data-element3

In AiboCommOUT the data elements are made up by data received from other
modules. In case of the football example above, a data element could be the dis-
tance to the ball. In AiboCommIN, data elements are either the received data from
AiboCommOUT, or a score (with or without confidence levels as described in chapter 6.2.3).

If more complex data has to be transmitted, the serializer can be easily extended to
serialize complex structs as well. The current implementation of AiboCommOpenR only
supports the struct in listing 6.1.

Listing 6.1: OTransportVectorData struct
1 #ifndef DATATYPES H
2 #define DATATYPES H
3

4 #include <vector>
5 #include <string>
6

7 using std::vector;
8 using std::string;
9

10 struct OTransportVectorData {
11

12 int actionID;
13 vector<string> data;
14

15 void AddData(string dataToAdd) {
16 data.push back(dataToAdd);
17 }
18 };
19

20 #endif // DATATYPES H

Currently messages are limited to 512 bytes. For simple data such as positions of
objects, and discussing actions this seems enough. Because data is transmitted over wifi,
too much data should not be transmitted anyway.

6.2 Design Tradeoffs

For the design outlined above, certain tradeoffs had to be made. For instance, because of
using UDP and wireless LAN, packets may get lost and therefore the system should not
stall when not receiving any replies from other AIBOs. The system should not depend
on the distribution of data to work. Because of this more or less unreliable transmission
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medium, we want the AIBOs to work stand-alone and not being controlled by a leader
process or leader dog. Since data is distributed amongst all the AIBOs, this is not
necessary anyway. All AIBOs can make decisions on their own, using their own expert
system.

The sent and received data is merged into a summary of the team’s knowledge about
the current state. This state is referred to as the global world. Each dog has its own,
local, copy of the global world. Looking at the soccer example for instance, this world
contains information about the position of the ball, and position data of other AIBOs
that was received earlier. That data might be out-dated and is updated when new data
is received. For the sake of simplicity, no multi-hop is used and therefore AIBOs that
aren’t within each others reach won’t receive each others data. However, this can be
added later, in combination with history and confidence levels.

6.2.1 Using Multi-Hop

Multi-hop can be added to the system when the field that the AIBOs are operating in
is larger then the reach of AIBO’s wireless LAN, or when a lot of obstacles are around
which can block the communication. For instance, if AIBO were to operate within a
house with walls, using multi-hop would give an advantage as seen in figure 6.4. Using
multi-hop in the soccer example would not give any advantage, since the playing field is
small enough for the wireless signal to get to all AIBOs in the team, and there are no
large obstacles on the field.

Figure 6.4: Using multi-hop

6.2.2 Keeping History

History can be kept from the global world that was discussed above, to be able to make
assumptions for the future. The history of the ball position (i.e. in the soccer game)
for instance, can give the direction that the ball is heading. This also applies to the
positions of the other AIBOs. Using their directions and the direction of the ball, AIBO
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can decide whether to attack and proceed in the direction of the ball, or stay put and
defend.

In the example of AIBO as a watchdog, history of the received data can be used to
determine whether to explore a certain room or head the other direction if other AIBOs
have been there before. A condition for this to work, however, is that the history needs
to be shared and distributed. This can result in consistency problems. We need not
only keep one AIBO’s data up-to-date, but the data shared between other AIBOs as
well. This can give problems in case of failure of an AIBO, or when an AIBO leaves the
network for battery charging purposes.

It may also pay off to save the results of the reasoning process for future use.
Saving these results in combination with their outcome (i.e. whether the action was
successful) can give an idea whether similar actions in the future will be successful as
well. Broadcasts for help can be kept to a minimum this way, and AIBO will turn into
a learning agent.

The main problem with saving history is the fact that most data of the global world
is outdated after a small period of time and therefore not usable anymore. Different
applications also have different needs for saving history, and this history times out after
different periods. For instance, ball positions in the soccer game are useless after a
shorter period of time then information about rooms or walls in the watchdog example.
Dealing with different applications therefore need different implementations of the history
module. Therefore, history is not yet used in AiboCommOpenR.

6.2.3 Confidence Levels

Confidence levels can be used if it turns out that information from certain agents in
the field is not reliable or accurate. They can be used either at the sending or at the
receiving side, or even at both sides. If used at the sending side, they represent the
confidence that AIBO has on the score that it sends back. A low confidence can be
given if AIBO is unsure about some of his own data (e.g. his own position). This way
the receiving AIBO can consider not using the received advise. A high confidence value,
however, means that the receiving AIBO should use the advice.

If confidence levels are used at the receiving side, they represent the trust that the
receiving AIBO has in the other AIBOs. In this situation, AIBO has an overview of all
the agents and their corresponding trust values. This way AIBO can determine whether
a received advise or score from a specific agent is reliable, and make a decision based
on that. This trust value is calculated by the receiving AIBO itself, and is adjusted
every time AIBO decides to use or not use a specific advise from an specific agent.
Here a combination of both confidence levels can be used. Not using a score with a low
confidence level can result in a higher trust value of the sending agent. The sending
agent was not confident with his score and that results in a higher trust level for that
agent. This is mathematically described in:
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trust = clamp(0, 1, trust + δp ∗ (γ ∗ trust ∗ conf )) (6.1)

where

δp =

{
+1 if solution s = action a;
−1 if solution s 6= action a;

(6.2)

and trust represents the trust value of an AIBO, conf represents the confidence the
sending AIBO has in his advise, γ is the trust learning rate, and clamp(0, 1, trust, c)
ensures that the value of c always lies in (0, 1].[5][8]

This way an AIBO which proposes an incorrect advise with a high confidence value
is penalized more heavily than one that proposes an incorrect advise but with a lower
confidence value. Using confidence levels this way can result in a more reliable reasoning
process, but also result in extra overhead, which is not desirable in this project because
of the scarce resources of AIBO.
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I

n order to let AIBO reason with the available data and the different actions that it
can perform, a reasoning engine (expert system) is needed. Because such engines are
widely available, only the two most important ones will be discussed in this chapter.

Knowledge-based expert systems, or simply expert systems, use human knowledge to
solve problems that normally would require human intelligence. These expert systems
represent the expertise knowledge as data or rules within the computer. These rules and
data can be called upon when needed to solve problems.

Conventional computer programs perform tasks using conventional decision-making
logic. The only knowledge they contain is the basic algorithm for solving a specific prob-
lem and the necessary boundary conditions. This program knowledge is often embedded
as part of the programming code, so that as the knowledge changes, the program has
to be changed and then rebuilt. Knowledge-based systems collect the small fragments
of human know-how into a knowledge-base which is used to reason through a problem,
using the knowledge that is appropriate. A different problem, within the domain of the
knowledge-base, can be solved using the same program without reprogramming. The
ability of these system to explain the reasoning process through back-traces, and to han-
dle levels of confidence and uncertainty, provides an additional feature that conventional
programming don’t handle.[19]

7.1 CLIPS: C Language Integrated Production System

CLIPS was developed for NASA by the Software Technology Branch and the University
of Georgia. It is available to the public and has several features which make it a
desirable choice for producing expert systems. It offers the ability to integrate expert
systems developed in CLIPS into the environment of a standard C/C++ program. This
allows for quick prototyping and testing of expert systems alongside the development
of a control program written in C/C++. An object-oriented programming language
is also provided within CLIPS, called the CLIPS Object-Oriented Language (COOL).[20]

CLIPS uses forward-chaining. Its an empty tool and has to be filled with knowledge.
After that, it can develop a solution, starting from the facts. For this, CLIPS uses a
LISP-like procedural language.

CLIPS has the advantage of having an interpreted mode. This mode can be used
for prototyping the agents before including them in the entire program. It is also useful
for checking syntax, and for trying several ideas about the way in which rules should be
written. This feature is very useful for fast development of several agents simultaneously.
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Knowledge in CLIPS consists of ‘facts’, elementary information items:[21]

Ordered fact:

(person-name Franz J. Kurfess)

Deftemplate fact:

(deftemplate person ‘‘deftemplate example’’
(slot name)
(slot age)
(slot eye-color)
(slot hair-color)

)

To be able to reason with these facts, CLIPS needs ‘rules’:

General format:

(defrule <rule name> [‘‘comment’’]
<patterns>* ; left-hand side (LHS)

; or antecedent of the rule
=>

<actions>* ; right-hand side (RHS)
; or consequent of the rule

)

Example rule:[21]

(defrule birthday-FJK
(person (name ‘‘Franz J. Kurfess’’)

(age 46)
(eye-color brown)
(hair-color brown)

)
(date-today April-13-02)

=>
(printout t ‘‘Happy birthday, Franz!’’)
(modify 1 (age 47))

)

More complex rule:[21]

(defrule silly-eye-hair-match
(person (name ?name1)

(eye-color ?eyes1&blue|green)
(hair-color ?hair1&~black)
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)
(person (name ?name2&~?name1)

(eye-color ?eyes2&~eyes1)
(hair-color ?hair2&red|hair1)

)
=>

(printout t ?name1 ‘‘ has ’’?eyes1 ‘‘ eyes and ’’ ?hair1 ‘‘ hair.’’)
(printout t ?name2 ‘‘ has ’’?eyes2 ‘‘ eyes and ’’ ?hair2 ‘‘ hair.’’)

)

Where:

& = AND
| = OR
~ = NOT

7.1.1 Limitations of CLIPS

CLIPS has its limitations as well. In other expert systems like ‘LOOPS’, rule sets can
be arranged in a hierarchy, embedding one rule set inside another, etc. In CLIPS,
there’s only a single level of rule sets, which make things less clear. Also, there’s
only loose coupling of rules and objects, and rules cannot easily be embedded in
objects, as in for example Centaur. Further more, CLIPS has no explicit agenda
mechanism and only forward chaining is available as basic control flow. If an other kind
of reasoning is to be implemented, tokens in working memory have to be manipulated.[21]

But despite these limitations, CLIPS is a good choice as the expert building tool to
use in this project. Especially since it can be used in conjunction with the other tools
(OPEN-R SDK) that are used.

7.1.2 Alternatives to CLIPS

As stated above, a lot more expert systems are available such as JESS, Eclipse and
NEXPERT OBJECT. Also, there are various extensions and variants (like FuzzyCLIPS,
AGENT CLIPS, DYNACLIPS, KnowExec, CAPE, PerlCLIPS, wxCLIPS and EHSIS)
for CLIPS, that give it an advantage with respect to support of methods like fuzzy logic
and agents.

Eclipse uses the same syntax as CLIPS (both are based on ART) and supports
goal-driven (i.e. backwards) reasoning, a feature that’s missing in CLIPS. Other features
are a truth maintenance facility for checking consistency, and the ability to be integrated
with C++ and dBase. With the help of a new extension ‘RETE++’, C++ header files
can be generated for doing this integration. NEXPERT OBJECT uses another rule-
and object-based system. It has facilities for designing graphical interfaces, and has a
‘script language’ for designing a user front-end. This, however, is of no use in this project.
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JESS (Java Expert System Shell) is the other widely used expert system and is based
on CLIPS. It uses the same syntax and has a large majority of the features of CLIPS.
Instead of C/C++, it has a tight integration with Java and can be invoked easily from
within Java applications. It can also utilize the object-oriented aspects of Java and as
in CLIPS, it is also possible to call (Java) procedures, or be called by a procedure itself.
JESS is still in development and more and more features are added as new versions of
JESS are released.

7.2 CLIPS vs JESS

Since JESS is based on CLIPS, the syntax of both expert systems is roughly the same.
The most important difference is the language it is based on. JESS is easily embedded
in Java programs where CLIPS can be easily embedded in C/C++ applications. Other
(minor) differences exist as well.[22]

CLIPS
The CLIPS shell provides the basic elements of an expert system:

1. a fact-list and instance-list: this is global memory for data

2. a knowledge-base: which contains all the rules

3. an inference engine: for controlling the execution of rules.

Facts are data that usually designate relations or information like (is-animal dog)
or (animals dog cat cow chicken). Rules can be applied on these facts in the form
of IF-THEN rules. These rules are special because they ‘fire’ only once. Variables and
wildcards can be used in the rules, and functions can be defined to manage the rules.

Besides these basic properties, CLIPS has pattern matching abilities (the Rete
Algorithm), extended math functions, conditional tests, object-oriented programming
(COOL: Clips Object-Oriented Language) with abstraction, inheritance, encapsulation,
polymorphism and dynamic binding.[22]

JESS
JESS has the same basic properties as CLIPS, but its language lacks a few advanced
features, for instance:

1. The CLIPS-user has a choice of seven strategies in rule-firing, while JESS only has
the two most important ones.

2. The AND and OR conditional tests are not available in JESS in the left-hand side
of rules.

3. JESS does not implement modules.

4. COOL: JESS lacks most COOL functions, but this is not really necessary since
JESS is able to manipulate and directly reason about Java objects. Considering the
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Java language is already object oriented, the lack of COOL is only a disadvantage
when CLIPS code has to be ported to JESS.

In general, these shortcomings are not really an obstruction. The most harmful
shortcomings of JESS are however situated in the performance of Java, and the fact that
it is still work in progress:

1. it is generally accepted that JESS is up to three times (depending on the ap-
plication) slower than CLIPS. This is primarily due to Java itself, although the
implementation of JESS might also contribute significantly.

2. The JESS parser is considered less robust than CLIPS. The main reason for this is
that, unlike CLIPS, JESS is still work in progress. However, the quality of JESS
is improving with every new version.

3. As a consequence of the absence of some features, CLIPS code is sometimes hard
(or even impossible) to port to JESS. This will certainly be the case in bigger
projects.

On the other side, JESS has some advantages over CLIPS as well:

1. The Java language implementation makes JESS the choice for developing web-
based expert systems, although some people say they prefer to use CLIPS with
C++ in a CGI script. If Java is preferred, however, JESS is a more efficient choice.

2. JESS enables the user to put multiple expert systems in one process. Java threads
can be used to run these in parallel.

To summarize, CLIPS is still more complete and stable than JESS, but this might
change in the future, since the JESS package is being improved constantly. Besides that,
JESS also has the property of using Java, which in the long run might prove to be a big
advantage over CLIPS.

7.3 Implementing CLIPS

The choice between JESS and CLIPS depends on the application. If it is web-based or
should reside in applet-form, the choice of JESS is a very logical one (which is even sup-
ported by the authors of CLIPS). For applications written in C++, CLIPS seems to be
the most logical choice. It is therefore used in the reasoning engine of AiboCommOpenR.

AiboCommOpenR uses a special embedded version of CLIPS. For this a
CLIPSOutputFunction has to be defined in AiboReasoning as an output route for
CLIPS. Listing B.1 and B.2 of appendix B show how this is done for this project.
Using the defined CLIPSOutputFunction, output from CLIPS can be redirected to
AiboReasoning by defining the right output in the CLIPS rules:
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(defrule print final score ‘‘print the calculated score’’
(score ?C score)
(actionID ?C actionID)

=>
(printout t ‘‘Final score for acionID ’’ ?C actionID ‘‘ is ’’ ?C score)
(printout ReturnToAiboReasoning ?C actionID ?C score)

)

Listing B.3 of appendix B shows how facts can be added to the CLIPS engine from
within AiboCommOpenR.
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T

he technique outlined in chapter 6 can be used in numerous applications. Every
application has its own strategies and therefore needs his own set of rules. Explor-
ing a house needs a complete different strategy then being a pet dog for example.

This chapter describes a few applications for AiboCommOpenR, and outlines different
strategies where applicable.

8.1 AIBO as a Watchdog

Since AIBO has all sorts of input possibilities like video and audio, it can be used as a
watchdog to monitor certain environments. It can register robberies and theft of items,
and can even send a warning in case of fire or other suspicious events.

For this scenario, AIBO needs to walk around in a (possibly unknown) environment,
investigating and analyzing the surroundings. This is like walking through a maze, where
AiboCommOpenR can assist in sharing knowledge between different AIBOs about which
rooms are already investigated, or help finding the way through the environment by
discussing different routes. Multi-hop can be useful in this scenario in case of operating
in large areas.

8.2 Using AIBO for Security and Surveillance

Besides using AIBO for keeping an eye on properties, it can also be used as a surveillance
and security device for (elderly) people. In this application, AIBO doesn’t register theft
of devices or missing properties, but missing people or people having accidents like falling
on the floor for example.

Also in this application, communication and collaboration is of great importance. It
can be used for routing problems and share knowledge whether certain rooms are already
investigated. The maze that was discussed earlier is applicable in this scenario as well.
For instance if AIBO is used in unknown environments for search-and-rescue operations
of people in buildings.

8.3 Using AIBO for Entertainment

AIBO can also be used as a pet dog or as a digital buddy. Digital buddies can use
communication to play along with other AIBOs. This way AIBO can be a pet dog for
elderly and lonely people, and become a social entity. Like in the previous application,
the AIBOs can also use AiboCommOpenR to share knowledge. One example would be
sharing the location of the energy station, in case one of the AIBOs is almost empty and
can’t find it himself.
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8.4 AIBO in the ‘Four-Legged Robot Soccer League’

The ‘RoboCup Four-Legged League’ is a robot soccer league where AIBO robots play
in teams of four on a field of size 4m x 6m. In recent years the low level skills of
the robots such as vision, localization, and ball handling have improved substantially.
However, deliberate passing is extremely challenging and occurs rarely during games. If
the AIBOs were able to communicate and play as a real team, it would contribute to a
much more exciting game. For example, broadcasting ball information makes sure that
all the players in the field have knowledge over the ball position, even when their view
is blocked. This way none of the AIBOs get stalled searching for a ball that it can’t see,
and thus resulting in more action.

By sharing AIBO’s plans, multiple AIBOs can cooperate and even play a one-two or
use other passing techniques. Special defense and attack mechanism can be examined,
and special formations can be tried, bringing the RoboCup soccer game to a higher level.

AiboCommOpenR can be used for the communication and reasoning part, and can
therefore contribute to a better team play. Since this thesis focuses primarily on the use
of AiboCommOpenR in the soccer league, a few strategies will be discussed next.

8.4.1 Strategies

It is desirable for the dogs to have specific roles and not to act only individually, but as
a team. This way the dogs won’t end up in a big mess that destroys every possibility
to play nice soccer. The teamplay should be based upon the collective knowledge of all
the dogs, which would clearly be an advantage compared to solitary AIBOs.

Using AiboCommOpenR for this purpose requires rules for the different kind of
strategies that are used by the players that are in the RoboCup team. A goalkeeper
should use a different kind of strategy than a defender for example.

The actions of the goalkeeper are mainly based on the fact that he must not end
up too far from the own goal. This should be one of the first rules in the knowledge
base. It is very important for the goalkeeper to know its own position with great
accuracy. The goalkeeper is supposed to stay close to the goal line, turned towards the
ball to facilitate savings and other appropriate actions by getting confident and fresh
information through the his camera. In some situations it is possible that the ball, even
though it is close to the goal, is not visible with the own camera. The knowledge about
the ball position should then be based on information from the other AIBOs, if it is
available (and trustworthy if confidence levels are used as described in chapter 6.2.3).
To simplify this, the behavior of the goalkeeper can be made static in the sense that it
should act the same way no matter how the field players are placed.

The field players differ from the goalkeeper by their dynamic behavior, and the fact
that they move over larger areas. There are several tactical roles that an AIBO can
have:[23]

• single defender
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• single attacker

• left defender

• right defender

• left attacker

• right attacker.

Combinations of these roles depend on the number of active players and the chosen
team positioning. Other roles that can be considered are supporting attacker and
sweeper. The supporting attacker is supposed to be prepared to act as a second wave
in the offence. The sweeper is supposed to defend the area closest to the own goal and
just get the ball out of there. However, these two roles are only of interest if there are
more than four players in a team.

Besides different roles, different positionings can be distinguished in the RoboCup
game as well. Using the roles as stated above, the AIBOs can take a standard or
a defensive positioning for example. A standard positioning has one defender, a left
attacker, and a right attacker, as shown in figure 8.1.

Figure 8.1: RoboCup standard positioning

The positioning has to change whenever a player is removed from the game, because
of a penalty for example. The new disposition then consists of one defender and one
attacker. Using AiboCommOpenR, the remaining AIBOs can reload their rule set for
the new positioning, and get into an other role. This role can be reached in two different
ways:[23]

• If an attacker is taken from the field, the remaining attacker gets the role of single
attacker.

• If the defender is taken from the field, the attacker closest to the own goal gets the
role single defender, and the other gets the role of single attacker.
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An alternative positioning can be used when the focus lies on a strong defense. This
can be suitable when the team is playing a very good team, the team is winning, or
when the current result is satisfying for some reason. When a player is removed as
a consequence of penalties, a change to an even stronger defense can be made. This
disposition, consisting of two defenders, can also be reached in two ways:[23]

• If the attacker is taken from the field, nothing needs to be done.

• If any of the defenders are removed, the attacker is set to take this role.

Using these different strategies in combination with AiboCommOpenR can result in
better teamplay, and a more exciting RoboCup soccer game.
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A

s described in chapter 7.1, CLIPS needs rules in order to reason. Different kinds
of rules are needed for the different kinds of applications outlined in chapter 8.
This chapter will primarily focus on rules for the soccer game.

Currently, the AIBOs are already capable of playing soccer, so basic soccer rules are
not necessary in the reasoning engine. However, they are still playing so called ‘pupils
football’. There is no communication what so ever, and all AIBOs play for themselves.
For instance, if an AIBO can’t find the ball because his view is blocked, he will keep
looking for it, wandering around and thereby stalling the game. A simple sign from an
other AIBO in the field could easily fix this problem.

Therefore, having some form of communication, and reasoning with data that AIBO
receives from other players in the field can bring the soccer game to a higher level.
Following are a few rules that can be used for the reasoning part of AiboCommOpenR,
and their implementation in CLIPS.

9.1 Basic Soccer Game Rules

9.1.1 Moving Towards the Ball

The first rule uses the AIBO’s own distance to the ball and the distance from the other
AIBO to the ball, and calculates a score with that data for the idea of moving to the
ball that the other AIBO has.

The basic facts needed for this rule are:

• AIBOs own the distance to the ball

• the distance from the other AIBO to the ball (has been send along with the data)

• the default score to start with, for calculating the final score.

(defrule calculate score using distance ‘‘use distance’’
(not (calc using distance done))
(distance self ball ?D me ball)
(distance other ball ?D other ball)
?sc <- (score ?C score)

=>
(printout t ‘‘Distance self-ball: ’’ ?D me ball)
(printout t ‘‘Distance other-ball: ’’ ?D other ball)
(printout t ‘‘Current score: ’’ ?C score)
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(if (< ?D me ball ?D other ball)
then

(printout t ‘‘I’m closer to the ball! decr score’’)
(retract ?sc)
(assert (score (- ?C score 1)))

else
(if (= ?D me ball ?D other ball)
then

(printout t ‘‘Same distance to the ball, let him go!
incr score’’)

(retract ?sc)
(assert (score (+ ?C score 1)))

else
(printout t ‘‘He is closer to the ball! incr score’’)
(retract ?sc)
(assert (score (+ ?C score 1)))

)
)
(assert (calc using distance done))

)

Testing this rule with a default score of 5, a distance of AIBO 1 to the ball of 10,
and a distance to the ball of AIBO 2 of 20 results in:

CLIPS> (run)
Distance self-ball: 10
Distance other-ball: 20
Current score: 5
I’m closer to the ball! decr score
Final score is 4
CLIPS>

The score is correctly decreased by ‘1’ since AIBO 1 (where CLIPS is running) is
closer to the ball than AIBO 2 (the initiator). Therefore, AIBO 1 should be moving
towards the ball instead of AIBO 2, and AIBO 1 should discourage AIBO 2 by returning
a low score.

9.1.2 Goalkeeper Moving

The second rule can be used in combination with the previous rule. If the previous rule
increased the score (i.e. it thought that moving was a good idea), the second rule has
to check whether the initiating AIBO is not a goalkeeper. If it is, the score has to be
decreased again if the goalkeeper is getting to far away from the goal.

The basic facts needed for this rule are:
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• whether the initiating AIBO is a goalkeeper or not (has been send along with the
data)

• the new distance between the goalkeeper and the goal (can be calculated using the
old and new position that has been send along with the data)

• maximum distance between the goalkeeper and the goal

• the default score to start with, for calculating the final score.

(defrule calculate score moving goalkeeper ‘‘moving goalkeeper’’
(not (calc moving goalkeeper done))
(role goalkeeper)
(distance goal new ?D goal new)
(distance goal max ?D goal max)
?sc <- (score ?C score)

=>
(printout t ‘‘Goalkeepers new distance from the goal: ’’

?D goal new)
(printout t ‘‘Goalkeepers max distance from the goal: ’’

?D goal max)
(printout t ‘‘Current score: ’’ ?C score)
(if (> ?D goal new ?D goal max)
then

(printout t ‘‘Goalkeeper reached goal max! decr score’’ )
(retract ?sc)
; decrease by 2 (really bad idea to be moving right now)
(assert (score (- ?C score 2)))

)
(assert (calc moving goalkeeper done))

)

Testing this rule in combination with the rule and basic facts from above, and using
a role as goalkeeper with a distance from the goal of 6, and a maximum distance from
the goal of 5 results in:

CLIPS> (run)
Goalkeepers new distance from the goal: 6
Goalkeepers max distance from the goal: 5
Current score: 5
Goalkeeper reached goal max! decr score
Distance self-ball: 10
Distance other-ball: 20
Current score: 3
I’m closer to the ball! decr score
Final score is 2
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CLIPS>

The score is decreased by ‘3’, because AIBO 1 is closer to the ball than AIBO 2
(and should move to the ball instead), and by moving, the goalkeeper (AIBO 2) would
get to far away from the goal. AIBO 2 should therefore stay on his current position,
and hence the low score.

Testing the rule in combination with the rule above, but with a distance from the
ball for AIBO 1 of 20, and a distance from the ball for AIBO 2 of 10, shows that the
score is decreased by ‘2’ first, and then increased by ‘1’ again. This is because when
looking only at the distance between the ball and AIBO 2, moving towards it looks like
a good idea. However, taking into account that AIBO 2 is a goalkeeper which gets to far
away from the goal when moving towards the ball, AIBO 1 should return a low score for
discouragement. It therefore decreases the score by ‘2’, resulting in a final score of ‘4’.

CLIPS> (run)
Goalkeepers new distance from the goal: 6
Goalkeepers max distance from the goal: 5
Current score: 5
Goalkeeper reached goal max! decr score
Distance self-ball: 20
Distance other-ball: 10
Current score: 3
He is closer to the ball! incr score
Final score is 4
CLIPS>

9.1.3 Shooting the Ball

This rule uses the fact that AIBO 1 (where CLIPS is running) might see a different part
of the play field than AIBO 2 (the initiator). This way, when AIBO 2 wants to shoot
the ball to a specific part of the field, AIBO 1 can return a low score when it detects an
enemy there, or a high score when a team player is close to that position.

For this rule, the field has to be split up in different numbered parts, which can then
be used as directions for the ball, and for positions of other AIBOs. The part where
the enemy-goal is in should have a special number, so that a high score can be returned
when AIBO 2 is aiming at the goal and should therefore try to score.

The basic facts needed for this rule are:

• direction that the initiating AIBO wants to shoot the ball to (has been send along
with the data)

• positions of enemy AIBOs
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• positions of team players

• position of the enemy goal

• the default score to start with, for calculating the final score.

(defrule calculate score using ball direction "use ball direction"
(not (calc using ball direction done))
(position ball new ?P ball new)
(position self ?P self)
(position team player 1 ?P team player 1)
(position team player 2 ?P team player 2)
(position enemy 1 ?P enemy 1)
(position enemy 2 ?P enemy 2)
(position enemy 3 ?P enemy 3)
(position enemy goal ?P enemy goal)
?sc <- (score ?C score)

=>
(printout t ‘‘New ball position: ’’ ?P ball new)
(printout t ‘‘Self position: ’’ ?P self)
(printout t ‘‘Team player 1 position: ’’ ?P team player 1)
(printout t ‘‘Team player 2 position: ’’ ?P team player 2)
(printout t ‘‘Enemy 1 position: ’’ ?P enemy 1)
(printout t ‘‘Enemy 2 position: ’’ ?P enemy 2)
(printout t ‘‘Enemy 3 position: ’’ ?P enemy 3)
(printout t ‘‘Enemy goal position: ’’ ?P enemy goal)
(printout t ‘‘Current score: " ?C score)
(if (= ?P ball new ?P self)
then

(printout t ‘‘Going to kick in my direction! incr score’’)
(bind ?C score (+ ?C score 1))

)
(if (= ?P ball new ?P team player 1)
then

(printout t ‘‘Going to kick in direction of team player 1!
incr score’’)

(bind ?C score (+ ?C score 1))
)
(if (= ?P ball new ?P team player 2)
then

(printout t ‘‘Going to kick in direction of team player 2!
incr score’’)

(bind ?C score (+ ?C score 1))
)
(if (= ?P ball new ?P enemy 1)
then
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(printout t ‘‘Going to kick in direction of enemy 1!
decr score’’)

(bind ?C score (- ?C score 1))
)
(if (= ?P ball new ?P enemy 2)
then

(printout t ‘‘Going to kick in direction of enemy 2!
decr score’’)

(bind ?C score (- ?C score 1))
)
(if (= ?P ball new ?P enemy 3)
then

(printout t ‘‘Going to kick in direction of enemy 3!
decr score’’)

(bind ?C score (- ?C score 1))
)
(if (= ?P ball new ?P enemy goal)
then

(printout t ‘‘Going to kick in direction of the goal!
incr score’’)

; increase with 2 (aiming at the goal is a good idea)
(bind ?C score (+ ?C score 2))

)
(retract ?sc)
(assert (score ?C score))
(assert (calc using ball direction done))

)

The rule increases the score whenever it finds a team player in the direction of the
ball, and decreases it if there’s an enemy there. If it finds more than one enemy, the
score is decreased even more. This results in the following output when the rule is tested
with two different positionings of the players:

CLIPS> (run)
New ball position: 4
Self position: 3
Team player 1 position: 3
Team player 2 position: 6
Enemy 1 position: 4
Enemy 2 position: 4
Enemy 3 position: 6
Enemy goal position: 10
Current score: 5
Going to kick in direction of enemy 1! decr score
Going to kick in direction of enemy 2! decr score
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Final score is 3
CLIPS>

CLIPS> (run)
New ball position: 4
Self position: 3
Team player 1 position: 4
Team player 2 position: 6
Enemy 1 position: 2
Enemy 2 position: 4
Enemy 3 position: 6
Enemy goal position: 10
Current score: 5
Going to kick in direction of team player 1! incr score
Going to kick in direction of enemy 2! decr score
Final score is 5
CLIPS>

The last example above shows that the score remains the same if there’s a team
player and an enemy in the direction that AIBO 2 wants to kick the ball to. AIBO 1
can’t really give a good advice here, and therefore the score stays neutral.

If AIBO 2 is aiming at the goal, the following output is obtained:

CLIPS> (run)
New ball position: 10
Self position: 3
Team player 1 position: 3
Team player 2 position: 6
Enemy 1 position: 4
Enemy 2 position: 4
Enemy 3 position: 10
Enemy goal position: 10
Current score: 5
Going to kick in direction of enemy 3! decr score
Going to kick in direction of the goal! incr score
Final score is 6
CLIPS>

The rule adds ‘2’ to the final score because AIBO 2 is aiming at the goal, but also
decreases the score with ‘1’ because an enemy is in the vicinity of the goal. Shooting the
ball towards the goal while an enemy is near is not that smart, but worth a try. The
final score is therefore a ‘6’.
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9.2 Remarks

The rules given above are simplified rules designed and implemented to be able to test
AiboCommOpenR. If AiboCommOpenR is really to be used in the RoboCup soccer
game, more complex rules are needed. As described in chapter 8.4.1, different position-
ings require different rule sets (i.e. focusing on a strong defense needs an other rule set
then focusing on attacking). While the rules above don’t implement that yet, they do
already take into account the different roles that each player can have.
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A

proof of concept implementation of AiboCommOpenR has been made to
be able to demonstrate the technique and to verify the design from chapter 6.
A part of the source code of this implementation has been included as appendix B.

The proof of concept implementation has its own logging system which writes all the
debug information to the memorystick that is used in AIBO. This chapter contains parts
of these log files to demonstrate the flow of information between the various modules,
when working on two different AIBOs. It uses the CLIPS rules from chapter 9.

10.1 Log Files

10.1.1 AiboDummyActionGenerator

AiboDummyActionGenerator waits for input from one of its sensors and then calls
DiscussActionS(). In a real life situation, this module would be replaced by a module
that benefits from reasoning with other AIBOs.

The log file shows that after initiating a discussion whether actionID 1313 is a good
idea, it receives a ‘go’ from AiboReasoning (line 8 and 9), and then blinks its head-LEDs.

Listing 10.1: Log file of AiboDummyActionGenerator
1 AiboDummyActionGenerator.cc:AiboDummyActionGenerator:11@15324

AiboDummyActionGenerator::AiboDummyActionGenerator()
2 AiboDummyActionGenerator.cc:DoInit:20@16994

AiboDummyActionGenerator::DoInit()
3 AiboDummyActionGenerator.cc:DoInit:28@18981

AiboDummyActionGenerator::DoInit() : OPENR::SetMotorPower(
opowerON) 0

4 AiboDummyActionGenerator.cc:DoStart:36@19490
AiboDummyActionGenerator::DoStart()

5 AiboDummyActionGenerator.cc:InitERS7SensorIndex:145@20595
AiboDummyActionGenerator::InitERS7SensorIndex() : [31] PRM:/t2−
Sensor:t2

6 AiboDummyActionGenerator.cc:InitERS7SensorIndex:145@21457
AiboDummyActionGenerator::InitERS7SensorIndex() : [32] PRM:/t3−
Sensor:t3

7 AiboDummyActionGenerator.cc:InitERS7SensorIndex:145@21979
AiboDummyActionGenerator::InitERS7SensorIndex() : [33] PRM:/t4−
Sensor:t4

8 AiboDummyActionGenerator.cc:DiscussActionS:71@27114
AiboDummyActionGenerator::DiscussActionS() : going to discuss
actionID 1313

9 AiboDummyActionGenerator.cc:PerformActionO:91@35467
AiboDummyActionGenerator::PerformActionO() : doPerform action?
TRUE
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10 AiboDummyActionGenerator.cc:DoStop:51@88602
AiboDummyActionGenerator::DoStop()

10.1.2 AiboReasoning

AiboReasoning starts by loading the CLIPS rules and then waits for a call to
DiscussActionO(). The log shows that after receiving a call, AiboReasoning broad-
casts this call to other AIBOs using BroadcastActionS(), and waits again (line 7
through 12). After a few milliseconds it receives data back from the other AIBOs
(line 13 trough 15) and then uses these scores to determine what to send back to the
initiating module (in this case AiboDummyActionGenerator). It decides to sends back a
‘go’ on line 21.

Line 22 through 32 show what happens if AiboReasoning receives a reasoning
request from an other AIBO. It receives actionID 1234 and two data-elements from
AiboCommIN (line 22 through 24), which are fed into CLIPS (line 25 through 27). The
outcoming score is returned to AiboCommIN (line 30 and 31), which sends the score
back to the AIBO it received the request from, using UDP.

Both sections of the log file show that the communication using the wifi network and
UDP, and the reasoning part using CLIPS are working correctly.

Listing 10.2: Log file of AiboReasoning
1 AiboReasoning.cc:AiboReasoning:13@14670 AiboReasoning::

AiboReasoning()
2 AiboReasoning.cc:DoInit:19@16994 AiboReasoning::DoInit()
3 AiboReasoning.cc:DoStart:29@19154 AiboReasoning::DoStart()
4 AiboReasoning.cc:DoStart:34@22499 AiboReasoning::DoStart() :

loading CLIPS file
5 AiboReasoning.cc:DoStart:39@23323 AiboReasoning::DoStart() : file

loaded
6 AiboReasoning.cc:DoStart:50@23665 AiboReasoning::DoStart() : CLIPS

engine is now up and running
7 AiboReasoning.cc:DiscussActionO:102@27283 AiboReasoning::

DiscussActionO() : going to discuss action for actionID 1313
8 AiboReasoning.cc:DiscussActionO:109@27538 AiboReasoning::

DiscussActionO() : pendingActionToSend contains:
9 AiboReasoning.cc:DiscussActionO:110 OTransportVectorData ::

actionID [1313] data−elements [test1, test2]
10 AiboReasoning.cc:BroadcastActionS:124@27878 AiboReasoning::

BroadcastActionS() : going to broadcast for actionID 1313
11 AiboReasoning.cc:BroadcastActionS:125@28050 AiboReasoning::

BroadcastActionS() : pendingActionToSend contains:
12 AiboReasoning.cc:BroadcastActionS:126 OTransportVectorData ::

actionID [1313] data−elements [test1, test2]
13 AiboReasoning.cc:DonateScoresO:149@33426 AiboReasoning::

DonateScoresO() : got 2 score(s) for actionID 1313
14 AiboReasoning.cc:DonateScoresO:150@33764 AiboReasoning::

DonateScoresO() : receivedScores contains:
15 AiboReasoning.cc:DonateScoresO:151 OTransportVectorData ::

actionID [1313] data−elements [10, 6]
16 AiboReasoning.cc:PerformActionS:170@34363 AiboReasoning::

PerformActionS() : send back good advice...
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17 AiboReasoning.cc:PerformActionS:173@34531 AiboReasoning::
PerformActionS() : Reasoning advice for actionID 1313

18 AiboReasoning.cc:PerformActionS:180@34787 AiboReasoning::
PerformActionS() : got ’10’ as a score

19 AiboReasoning.cc:PerformActionS:180@34955 AiboReasoning::
PerformActionS() : got ’6’ as a score

20 AiboReasoning.cc:PerformActionS:185@35125 AiboReasoning::
PerformActionS() : got ’16’ as a total score with 2 score(s)
received

21 AiboReasoning.cc:PerformActionS:189@35294 AiboReasoning::
PerformActionS() : returning advice: TRUE

22 AiboReasoning.cc:ReasonScoreO:215@62336 AiboReasoning::
ReasonScoreO() : received reasoning request for actionID 1234

23 AiboReasoning.cc:ReasonScoreO:216@62592 AiboReasoning::
ReasonScoreO() : receivedData contains:

24 AiboReasoning.cc:ReasonScoreO:217 OTransportVectorData :: actionID
[1234] data−elements [77, 88]

25 AiboReasoning.cc:ReasonScoreO:230@62938 AiboReasoning::
ReasonScoreO() : running command: ’(assert (actionID 1234))’

26 AiboReasoning.cc:ReasonScoreO:236@63109 AiboReasoning::
ReasonScoreO() : running command: ’(assert (distance me ball
10))’

27 AiboReasoning.cc:ReasonScoreO:242@63365 AiboReasoning::
ReasonScoreO() : running command: ’(assert (distance other ball
77))’

28 AiboReasoning.cc:ReasonScoreO:247@63540 AiboReasoning::
ReasonScoreO() : starting CLIPS reasoning

29 AiboReasoning.cc:CLIPSOutputFunction:296 AiboReasoning::
CLIPSOutputFunction() : received from CLIPS : ’1234::4’

30 AiboReasoning.cc:ReturnScoreS:259 AiboReasoning::ReturnScoreS() :
got score from CLIPS : ’1234::4’

31 AiboReasoning.cc:ReturnScoreS:260 AiboReasoning::ReturnScoreS() :
returning score to AiboCommIN

32 AiboReasoning.cc:ReasonScoreO:251@63714 AiboReasoning::
ReasonScoreO() : resetting CLIPS engine

33 AiboReasoning.cc:DoStop:73@91220 AiboReasoning::DoStop()

10.1.3 AiboCommOUT

The log file of AiboCommOUT shows that after receiving a broadcast request from
AiboReasoning (line 8 through 13), it enables his GivePulseO() observer and waits for
scores from other AIBOs (line 14 though 17). After a timeout, it donates the received
scores to AiboReasoning on line 22 through 25.

Listing 10.3: Log file of AiboCommOUT
1 AiboCommOUT.cc:AiboCommOUT:18@13530 AiboCommOUT::AiboCommOUT()
2 AiboCommOUT.cc:DoInit:24@16994 AiboCommOUT::DoInit()
3 AiboCommOUT.cc:InitUDPBuffer:257@18066 AiboCommOUT::InitUDPBuffer

()
4 AiboCommOUT.cc:InitUDPBuffer:290@18377 AiboCommOUT::InitUDPBuffer

() : success
5 AiboCommOUT.cc:DoStart:43@19154 AiboCommOUT::DoStart()
6 AiboCommOUT.cc:CreateUDPEndpoint:297@20166 AiboCommOUT::

CreateUDPEndpoint()
7 AiboCommOUT.cc:Bind:317@20854 AiboCommOUT::Bind()
8 AiboCommOUT.cc:BroadcastActionO:343@28894 AiboCommOUT::

BroadcastActionO() : going to broadcast serialized data ’1313::
test1::test2’

9 AiboCommOUT.cc:Send:108@29323 AiboCommOUT::Send()
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10 AiboCommOUT.cc:SendCont:131@29494 AiboCommOUT::SendCont()
11 AiboCommOUT.cc:SendCont:145@29665 AiboCommOUT::sendData : 1313::

test1::test2
12 AiboCommOUT.cc:SendCont:146@29835 AiboCommOUT::sendAddress :

0.0.0.0
13 AiboCommOUT.cc:SendCont:147@30008 AiboCommOUT::sendPort : 0
14 AiboCommOUT.cc:Receive:163@30179 AiboCommOUT::Receive()
15 AiboCommOUT.cc:ReceiveCont:180@30522 AiboCommOUT::ReceiveCont()
16 AiboCommOUT.cc:ReceiveCont:199@30692 AiboCommOUT::ReceiveCont : 7

bytes received
17 AiboCommOUT.cc:ReceiveCont:200@30946 AiboCommOUT::ReceiveCont :

recvScore 1313::6
18 AiboCommOUT.cc:Close:214@31291 AiboCommOUT::Close()
19 AiboCommOUT.cc:Receive:163@31460 AiboCommOUT::Receive()
20 AiboCommOUT.cc:GivePulseO:403@31630 PulseGenerator::GivePulseO() :

received pulse @ 31629
21 AiboCommOUT.cc:GivePulseO:408@31803 PulseGenerator::GivePulseO() :

difference between start/end pulse: 1451ms
22 AiboCommOUT.cc:DonateScoresS:379@31973 AiboCommOUT::DonateScoresS

() : received ’10’ as score for actionID 1313
23 AiboCommOUT.cc:DonateScoresS:379@32398 AiboCommOUT::DonateScoresS

() : received ’6’ as score for actionID 1313
24 AiboCommOUT.cc:DonateScoresS:383@32570 AiboCommOUT::DonateScoresS

() : donating vector:
25 AiboCommOUT.cc:DonateScoresS:384 OTransportVectorData :: actionID

[1313] data−elements [10, 6]
26 AiboCommOUT.cc:CloseCont:232@33085 AiboCommOUT::CloseCont()
27 AiboCommOUT.cc:CreateUDPEndpoint:297@33427 AiboCommOUT::

CreateUDPEndpoint()
28 AiboCommOUT.cc:Bind:317@33851 AiboCommOUT::Bind()
29 AiboCommOUT.cc:DoStop:70@88685 AiboCommOUT::DoStop()

10.1.4 AiboCommIN

AiboCommIN binds to a socket and waits for requests from other AIBOs. After receiving
data it passes it along to AiboReasoning (line 9 through 12). After a few milliseconds
it receives a score back from AiboReasoning, and it returns that score to the initiating
AIBO on line 13.

Listing 10.4: Log file of AiboCommIN
1 AiboCommIN.cc:AiboCommIN:17@16602 AiboCommIN::AiboCommIN()
2 AiboCommIN.cc:DoInit:23@16994 AiboCommIN::DoInit()
3 AiboCommIN.cc:InitUDPBuffer:191@18067 AiboCommIN::InitUDPBuffer()
4 AiboCommIN.cc:InitUDPBuffer:210@18377 AiboCommIN::InitUDPBuffer()

: success
5 AiboCommIN.cc:DoStart:42@19156 AiboCommIN::DoStart()
6 AiboCommIN.cc:CreateUDPEndpoint:217@20420 AiboCommIN::

CreateUDPEndpoint()
7 AiboCommIN.cc:Bind:237@21280 AiboCommIN::Bind()
8 AiboCommIN.cc:Receive:101@21804 AiboCommIN::Receive()
9 AiboCommIN.cc:ReceiveCont:118@61312 AiboCommIN::ReceiveCont()

10 AiboCommIN.cc:ReceiveCont:136@61565 AiboCommIN::ReceiveCont : 12
bytes received

11 AiboCommIN.cc:ReceiveCont:137@61738 AiboCommIN::ReceiveCont :
recvData 1234::77::88

12 AiboCommIN.cc:ReasonScoreS:263@61908 AiboCommIN::ReasonScoreS :
passing data to AiboReasoning

13 AiboCommIN.cc:ReturnScoreO:281@63886 AiboCommIN::ReturnScoreO :
returning score (1234::4) to initiating AIBO
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14 AiboCommIN.cc:Receive:101@64059 AiboCommIN::Receive()
15 AiboCommIN.cc:DoStop:68@88348 AiboCommIN::DoStop()

10.1.5 PulseGenerator

Line 4 and 5 in the following log file show that the PulseGenerator starts sending pulses
as soon as AiboCommOUT enables his corresponding GivePulseO() observer.

Listing 10.5: Log file of PulseGenerator
1 PulseGenerator.cc:PulseGenerator:8@15953 PulseGenerator::

PulseGenerator()
2 PulseGenerator.cc:DoInit:14@16994 PulseGenerator::DoInit()
3 PulseGenerator.cc:DoStart:24@19155 PulseGenerator::DoStart()
4 PulseGenerator.cc:GivePulseS:53@30179 PulseGenerator::GivePulseS()

: sending pulse
5 PulseGenerator.cc:GivePulseS:53@31973 PulseGenerator::GivePulseS()

: sending pulse
6 PulseGenerator.cc:DoStop:35@88348 PulseGenerator::DoStop()

10.2 Results

Listing 10.2, 10.3 and 10.4 show that the whole information flow between the different
modules is working as designed in chapter 6. The current proof of concept implemen-
tation demonstrates that AiboCommOpenR is capable of communicating and sharing
knowledge (without history), and can use CLIPS on the AIBO for reasoning. It thereby
shows that AiboCommOpenR can be used as a framework for collaborating AIBOs.

Listing 10.1 shows that the complete cycle of ‘requesting a ‘go’ or ‘no-go” and
receiving one takes 35467 - 27114 = 8353ms, which is not acceptable in most of the
applications described in chapter 8. However, disabling all the debug information (using
the compiler-flag -DOPENR DEBUG and -DDODEBUG) narrows this down to below 2 seconds.
It seemed that writing the debug information to the memorystick, and writing the debug
information to the console via wifi really slowed things down. Things can be speed up
even more by lowering the wait timeout in AiboCommOUT. This way, AiboCommOpenR
seems fast enough for the robots in the RoboCup game, and any of the other applications.

However, the current implementation cannot be used in combination with the cur-
rently available RoboCup software yet, simply because not all the rules for all the actions
that AIBO has to perform in the RoboCup are designed yet, and there is no connection
between the different modules of the RoboCup software and AiboCommOpenR at this
moment. When these rules are available and a connection has been made, something
about the usefulness of AiboCommOpenR in the RoboCup can be said. Currently the
log files only show that the technique works as was designed in the previous chapters.
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Conclusion and Future Work 11
I

n this final chapter an overview will be presented of how the research objectives
stated in the introduction of this thesis have been addressed. Some directions for
future work will also be discussed.

11.1 Research Objectives

The main research objective, developing a collaborative framework for AIBO has been
completed successfully. A design has been made and a fully working prototype has been
implemented and tested. In this section the completion of the individual tasks leading
to the realization of the main research objective are discussed.

Understanding of current collaborating techniques, by studying relevant
literature.
A lot of research on the subject of collaborating agents has been done throughout
the years. Chapter 2 contains a small summary of this research and concludes that
currently available agent development frameworks can’t be applied to AIBO, because of
AIBO’s limitations. However, the collaboration methods discussed in this chapter are
applicable, and were used in the next chapters.

Evaluation of the different development platforms that are available for
AIBO.
Since AIBO is a robot that is widely used in academic research, a lot of development
platforms are available. In chapter 4 the most important ones were discussed, and it
concludes that OPEN-R SDK is the platform of choice for this project. The decision
was based on the fact that OPEN-R is fast, has the most advanced network capabilities,
and the other SDKs were not yet fully complete at the time of starting with this project.
After that, chapter 5 was written as a manual for OPEN-R object communication,
which can be used by anyone wanting to write applications using the OPEN-R SDK.

Study of the expert systems that are currently available.
Expert systems are a popular research topic, and therefore expert systems are widely
available. Two of the most important ones (CLIPS and JESS) were researched, and
discussed in chapter 7. Because JESS is JAVA-based, and no Java Virtual Machine is
available for AIBO, CLIPS turned out to be the right expert system for AiboComm-
OpenR.
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The format of CLIPS facts has been included in chapter 7.1, and was used for adding
knowledge to the prototype.

Design of the software and corresponding communication protocol.
The design of the software and communication protocol for AiboCommOpenR was dis-
cussed in chapter 6.1 and 6.1.3. The corresponding class diagrams, sequence diagrams,
and statechart diagrams are included in appendix A.

For the design, a few tradeoffs had to be made; whether the prototype should keep
history, use confidence levels and/or use multi-hop. All off these were eventually not
implemented, because of resource limitations, and/or were unnessecary for the RoboCup
soccer game.

Implementation of the software in a development platform of choice.
The design from chapter 6.1 has been implemented in the OPEN-R SDK, and parts of
the source code from the prototype implementation have been included in appendix B.

Certain test-modules were written as well, to be able to debug the program, and to
emulate AIBO to be able to test the communication between different AIBOs, when
only one AIBO was available.

Implementation of knowledge in an expert system.
A few test rules were designed and implemented in CLIPS, to be able to test AiboComm-
OpenR and the communication between the AIBOs. They were described in detail in
chapter 9.

Evaluation of the software when running on AIBO.
Once the prototype implementation was complete and some CLIPS rules were imple-
mented, AiboCommOpenR could be put to the test. It turned out that the design
worked, and that the current proof of concept implementation is capable of communi-
cating and sharing knowledge (without history), and can use CLIPS on the AIBO for
reasoning.

However, the current implementation could not yet be tested in combination with the
currently available RoboCup software, because not all the rules for all the actions that
AIBO has to perform in the RoboCup were designed yet, and there was no connection
between the different modules of the RoboCup software and AiboCommOpenR. When
these items are resolved, something about the usefulness of AiboCommOpenR in the
RoboCup soccer game can be said.

11.2 Future Work

As stated above, the current implementation is not complete yet. It shows that AIBO
is able to communicate and share knowledge with other AIBOs, but can’t be used in
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a real-life situation yet. It can however be used as a basis for further development for
either the ‘Four-Legged Robot Soccer League’ or any of the other applications described
in this thesis. For doing this, a connection with the software that currently operates the
robot in other scenarios has to be made, and CLIPS rules for reasoning with the data
for that specific application need to be designed.

As described in chapter 6.2 future implementations of AiboCommOpenR can also
include history, from either the outcome of the reasoning process or from the received
data, and can use confidence levels. Using history, the AIBO can leave the event-driven
path that it uses now, and act more pro-actively. With history, AIBO can make assump-
tions for the future, calculating the direction that the ball is heading for example, and
keep broadcasts to a minimum when using the outcome of previous broadcasts for the
current situation.

Other enhancements of AiboCommOpenR could include sharing AIBOs plans, or
actively broadcasting information about the environment. For the soccer game example,
this could include information on the ball position. This way all players in the field
have knowledge over the ball position, even when their view is blocked, leading to a
more active game by not having all the AIBOs scanning the environment. By sharing
AIBO’s plans in the RoboCup league, multiple AIBOs can cooperate and even play
a one-two or use other passing techniques. Furthermore, special defense and attack
mechanism can be examined, and special formations can be tried. These enhancements
put different constraints on the communication protocol, demanding communication to
be more reliable. However, when implemented, they can bring the RoboCup game to a
higher level, using collaboration.
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UML Diagrams A
A.1 AiboCommOpenR Class Diagram

Figure A.1: AiboCommOpenR class diagram
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A.2 AiboCommOpenR Sequence Diagrams

Figure A.2: AiboCommOpenR, AiboCommIN sequence diagram

c©2008 Delft University of Technology



A.2. AIBOCOMMOPENR SEQUENCE DIAGRAMS 87

Figure A.3: AiboCommOpenR, AiboCommOUT sequence diagram
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Figure A.4: AiboCommOpenR, PulseGenerator sequence diagram
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A.3 AiboCommOpenR Statechart Diagrams

Figure A.5: AiboCommOpenR, AiboDummyActionGenerator statechart diagram

Figure A.6: AiboCommOpenR, AiboReasoning statechart diagram
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Figure A.7: AiboCommOpenR, AiboCommOUT statechart diagram

Figure A.8: AiboCommOpenR, AiboCommIN statechart diagram
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Source Code B
AiboCommOpenR exists of numerous source code files and is therefore to large to be
entirely

B.1 AiboReasoning

included in this appendix. However, a few important pieces of source code will be shown
here.

Listing B.1: void AiboReasoning::DoStart(const OSystemEvent& event)
1 OStatus
2 AiboReasoning::DoStart(const OSystemEvent& event)
3 {
4 DoDebug("AiboReasoning::DoStart()\n");
5

6 // load the CLIPS reasoning−engine
7 try {
8 clipsEngine = new CLIPSEngine();
9 DoDebug("AiboReasoning::DoStart() : loading CLIPS file\n")

;
10

11 // load the default facts (contains all the rules for
scores etc)

12 int loadResult = clipsEngine−>load("/MS/CONF/abreason.clp"
);

13 if (loadResult == 1) {
14 DoDebug("AiboReasoning::DoStart() : file loaded\n");
15 } else {
16 throw CLIPSException("error loading CLIPS file");
17 }
18

19 // add a route to redirect CLIPS output to AiboReasoning
20 clipsEngine−>addRouter("ReturnToAiboReasoning",

CLIPSQueryFunction, CLIPSOutputFunction);
21

22 // and start the engine
23 clipsEngine−>reset();
24

25 DoDebug("AiboReasoning::DoStart() : CLIPS engine is now up
and running\n");

26 } catch(CLIPSException ∗ex) {
27 DoDebug("AiboReasoning::DoStart() : exception: %s\n", ex−>

why());
28 delete ex;
29 }
30

31 // enable observers and subjects
32 ENABLE ALL SUBJECT;
33 aiboReasoningState = AR IDLE;
34

35 observer[obsDiscussActionO]−>AssertReady();
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36 // and wait for reasoning−requests from AiboCommIN
37 observer[obsReasonScoreO]−>AssertReady();
38

39 // and save a link to this instance (so CLIPS can return data)
40 instance = this;
41

42 return oSUCCESS;
43 }

Listing B.2: int CLIPSOutputFunction(void* env, char* logicalname, char* buffer)
1 int
2 CLIPSOutputFunction(void∗ env, char∗ logicalname, char∗ buffer)
3 {
4 // CLIPS sends an actionID and score as two different buffers
5 // append them and then return that string to AiboReasoning
6 if (CLIPSNumReceived == 0) {
7 CLIPSNumReceived++;
8 strcat(CLIPSOutput, buffer);
9 strcat(CLIPSOutput, "::");

10 } else {
11 strcat(CLIPSOutput, buffer);
12 string toReturn = string(CLIPSOutput);
13

14 OSYSDEBUG(("AiboReasoning::CLIPSOutputFunction() :
received from CLIPS : ’%s’\n", toReturn.c str()));

15

16 // reset for the next output from CLIPS
17 CLIPSNumReceived = 0;
18 strcpy(CLIPSOutput, "");
19

20 // and then return the output of CLIPS to AiboCommIN
21 AiboReasoning∗ ar = AiboReasoning::instance();
22 ar−>ReturnScoreS(toReturn);
23 }
24 }

Listing B.3: void AiboReasoning::ReasonScoreO(const ONotifyEvent& event)
1 void
2 AiboReasoning::ReasonScoreO(const ONotifyEvent& event)
3 {
4 // reasoning can be done in any state!
5

6 // get the serialized OTransportVectorData (format: actionID::
data::data::data)

7 string scoreDataSerialized = (const char∗)event.Data(0);
8

9 // use al these data−elements as facts in CLIPS
10

11 OTransportVectorData dataToReasonWith = unserialize(
scoreDataSerialized);

12

13 DoDebug("AiboReasoning::ReasonScoreO() : received reasoning
request for actionID %d\n", dataToReasonWith.actionID);

14 DoDebug("AiboReasoning::ReasonScoreO() : receivedData contains
:\n");

15 DoDebug OTransportVectorData(&dataToReasonWith);
16
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17 // add the data as facts to the reasoning engine
18 if (clipsEngine != 0) {
19

20 // debug only −> change these into real−live values and
add more facts

21 int distance me ball = 10;
22 // first element is the distance between the other aibo

and the ball
23 string distance other ball = (dataToReasonWith.data).at(0)

;
24

25 // assert the actionID
26 char command[64];
27 sprintf(command, "(assert (actionID %d))",

dataToReasonWith.actionID);
28 DoDebug("AiboReasoning::ReasonScoreO() : running command:

’%s’\n", command);
29 clipsEngine−>execCommand(command);
30

31 // assert my own distance
32 bzero(command, 64);
33 sprintf(command, "(assert (distance me ball %d))",

distance me ball);
34 DoDebug("AiboReasoning::ReasonScoreO() : running command:

’%s’\n", command);
35 clipsEngine−>execCommand(command);
36

37 // assert the other aibo’s distance
38 bzero(command, 64);
39 sprintf(command, "(assert (distance other ball %s))",

distance other ball.c str());
40 DoDebug("AiboReasoning::ReasonScoreO() : running command:

’%s’\n", command);
41 clipsEngine−>execCommand(command);
42 }
43

44 // and run CLIPS
45 DoDebug("AiboReasoning::ReasonScoreO() : starting CLIPS

reasoning\n");
46 clipsEngine−>run();
47

48 // after running and receiving the output of CLIPS, reset
everything for the next run

49 DoDebug("AiboReasoning::ReasonScoreO() : resetting CLIPS
engine\n");

50 clipsEngine−>reset();
51 }

Listing B.4: void AiboReasoning::ReturnScoreS(char* actionIDScoreString)

1 void
2 AiboReasoning::ReturnScoreS(string actionIDScoreString)
3 {
4 // return score to AiboCommIN
5 OSYSDEBUG(("AiboReasoning::ReturnScoreS() : got score from

CLIPS : ’%s’\n", actionIDScoreString.c str()));
6 OSYSDEBUG(("AiboReasoning::ReturnScoreS() : returning score to

AiboCommIN\n"));
7

8 // send the data (is already in the right actionID::score
format)
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9 subject[sbjReturnScoreS]−>SetData(actionIDScoreString.c str(),
strlen(actionIDScoreString.c str())+1);

10 subject[sbjReturnScoreS]−>NotifyObservers();
11

12 // and wait for a new reasoning−request
13 observer[obsReasonScoreO]−>AssertReady();
14 }

Listing B.5: void AiboReasoning::DiscussActionO(const ONotifyEvent& event)
1 void
2 AiboReasoning::DiscussActionO(const ONotifyEvent& event)
3 {
4 // only if we are idle (1 thing at the time. finish broadcast

first)
5 if (aiboReasoningState == AR IDLE) {
6 // received a request for discussion from an internal

module. broadcast
7 // this one and wait for scores
8

9 // read actionID
10 const int∗ actionID = (const int ∗)event.Data(0);
11 DoDebug("AiboReasoning::DiscussActionO() : going to

discuss action for actionID %d\n", ∗actionID);
12

13 // make some test data to broadcast (for debugging
purposes only)

14 pendingActionToSend.actionID = ∗actionID;
15 pendingActionToSend.AddData("test1");
16 pendingActionToSend.AddData("test2");
17

18 DoDebug("AiboReasoning::DiscussActionO() :
pendingActionToSend contains:\n");

19 DoDebug OTransportVectorData(&pendingActionToSend);
20

21 // and broadcast
22 BroadcastActionS();
23 } else {
24 // do nothing until we are idle again
25 DoDebug("AiboReasoning::DiscussActionO() (nothing to do

here)\n");
26 }
27 }

Listing B.6: void AiboReasoning::BroadcastActionS()
1 void
2 AiboReasoning::BroadcastActionS()
3 {
4 // broadcast the pending action
5 DoDebug("AiboReasoning::BroadcastActionS() : going to

broadcast for actionID %d\n", pendingActionToSend.actionID)
;

6 DoDebug("AiboReasoning::BroadcastActionS() :
pendingActionToSend contains:\n");

7 DoDebug OTransportVectorData(&pendingActionToSend);
8

9 // serialize and broadcast
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10 string pendingActionToSendSerialized = serialize(
pendingActionToSend);

11 subject[sbjBroadcastActionS]−>SetData(
pendingActionToSendSerialized.c str(), strlen(
pendingActionToSendSerialized.c str())+1);

12 subject[sbjBroadcastActionS]−>NotifyObservers();
13

14 // and wait for replies after broadcasting
15 aiboReasoningState = AR WAITING FOR SCORES;
16 observer[obsDonateScoresO]−>AssertReady();
17 }

Listing B.7: void AiboReasoning::DonateScoresO(const ONotifyEvent& event)
1 void
2 AiboReasoning::DonateScoresO(const ONotifyEvent& event)
3 {
4 // if we are waiting for scores, accept them
5 // (receiving from AiboCommOUT)
6 if (aiboReasoningState == AR WAITING FOR SCORES) {
7 // read serialized OTransportVectorData
8 string scoreDataSerialized = (const char∗)event.Data(0);
9 // save the received score in receivedScores

10 receivedScores = unserialize(scoreDataSerialized);
11

12 DoDebug("AiboReasoning::DonateScoresO() : got %d score(s)
for actionID %d\n", (receivedScores.data).size(),
receivedScores.actionID);

13 DoDebug("AiboReasoning::DonateScoresO() : receivedScores
contains:\n");

14 DoDebug OTransportVectorData(&receivedScores);
15

16 // after receiving a score, the pending action is no
longer pending

17 pendingActionToSend.actionID = −1; pendingActionToSend.
data.clear();

18

19 // return a go or no−go
20 PerformActionS();
21 } else {
22 // not waiting for scores −> do nothing
23 DoDebug("AiboReasoning::DonateScoresO() (nothing to do

here)\n");
24 }
25 }

Listing B.8: void AiboReasoning::PerformActionS()
1 void
2 AiboReasoning::PerformActionS()
3 {
4 // after receiving a score, we need to determine a go or no−go
5 // (received score is in receivedScores as an

OTransportVectorData element)
6

7 DoDebug("AiboReasoning::PerformActionS() : send back good
advice...\n");

8

9 // simplicity: check if the average of the scores >= 5
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10 DoDebug("AiboReasoning::PerformActionS() : Reasoning advice
for actionID %d\n", receivedScores.actionID);

11 // get all scores in receivedScores
12 int sumOfAllScores = 0; int totalNumberOfScores = 0;
13 vector<string>::const iterator i = (receivedScores.data).begin

();
14 vector<string>::const iterator end = (receivedScores.data).end

();
15 while (i!=end) { // for each score−element (strings in the

data element of receivedScores)
16 // debug
17 DoDebug("AiboReasoning::PerformActionS() : got ’%d’ as a

score\n", atoi((∗i).c str()));
18 sumOfAllScores = sumOfAllScores + atoi((∗i).c str());
19 ++i;
20 totalNumberOfScores++; // one more score
21 }
22 DoDebug("AiboReasoning::PerformActionS() : got ’%d’ as a total

score with %d score(s) received\n", sumOfAllScores,
totalNumberOfScores);

23

24 bool adviceToReturn = ((sumOfAllScores / totalNumberOfScores)
>= 5);

25

26 DoDebug("AiboReasoning::PerformActionS() : returning advice: %
s\n", adviceToReturn ? "TRUE" : "FALSE");

27

28 subject[sbjPerformActionS]−>SetData(&adviceToReturn, sizeof(
adviceToReturn));

29 subject[sbjPerformActionS]−>NotifyObservers();
30

31 // ready for a new action
32 receivedScores.actionID = −1;
33 // scores are no longer needed (no history)
34 receivedScores.data.clear();
35 // and ready for new requests
36 aiboReasoningState = AR IDLE;
37 observer[obsDiscussActionO]−>AssertReady();
38 }

B.2 AiboCommOUT

Listing B.9: void AiboCommOUT::BroadcastActionO(const ONotifyEvent& event)
1 void
2 AiboCommOUT::BroadcastActionO(const ONotifyEvent& event)
3 {
4 // only if we are idle (because then we are binded)
5 if (aiboCommOUTState == ACO IDLE) {
6 // received a request for broadcasting data from the

AiboReasoning module, so send it around
7

8 // read the data to broadcast
9 string sendDataSerialized = (const char∗)event.Data(0);

10 DoDebug("AiboCommOUT::BroadcastActionO() : going to
broadcast serialized data ’%s’\n", sendDataSerialized.
c str());

11

12 // save it in pendingBroadcast
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13 pendingBroadcast = sendDataSerialized;
14

15 // for debugging only: add a score from myself already
16 // this way we can continue if we are not receiving

anything from other aibos
17 OTransportVectorData tmpDummyScore;
18 OTransportVectorData tmp = unserialize(pendingBroadcast);
19 tmpDummyScore.actionID = tmp.actionID;
20 tmpDummyScore.AddData("10");
21 receivedScores.push back(tmpDummyScore);
22

23 // and broadcast
24 aiboCommOUTState = ACO GOING FOR BROADCAST;
25 // transmit using the first available channel (always 0)
26 Send(0);
27 } else {
28 // do nothing until we are idle again
29 DoDebug("AiboCommOUT::BroadcastActionO() (nothing to do

here)\n");
30 }
31 }

Listing B.10: void AiboCommOUT::SendCont(ANTENVMSG msg)
1 void
2 AiboCommOUT::SendCont(ANTENVMSG msg)
3 {
4 DoDebug("AiboCommOUT::SendCont()\n");
5

6 UDPEndpointSendMsg∗ sendMsg = (UDPEndpointSendMsg∗)antEnvMsg::
Receive(msg);

7 int index = (int)(sendMsg−>continuation);
8 if (connection[index].state == CONNECTION CLOSED)
9 return;

10

11 if (sendMsg−>error != UDP SUCCESS) {
12 OSYSLOG1((osyslogERROR, "%s : %s %d", "AiboCommOUT::

SendCont()", "FAILED. sendMsg−>error", sendMsg−>error))
;

13 DoDebug("%s : %s %d", "AiboCommOUT::SendCont()", "FAILED.
sendMsg−>error", sendMsg−>error);

14 Close(index);
15 return;
16 }
17 char in buff[64];
18 DoDebug("AiboCommOUT::sendData : %s\n", connection[index].

sendData);
19 DoDebug("AiboCommOUT::sendAddress : %s\n", connection[index].

sendAddress.GetAsString(in buff));
20 DoDebug("AiboCommOUT::sendPort : %d\n", connection[index].

sendPort);
21

22 // after the broadcast, start listening
23 connection[index].state = CONNECTION CONNECTED;
24 connection[index].recvSize = SENDER BUFFER SIZE;
25 // change sate
26 aiboCommOUTState = ACO WAITING FOR SCORES;
27 // use the pulsegenerator as a timer
28 pulseStartTime = getTime();
29 observer[obsGivePulseO]−>AssertReady();
30 Receive(index);
31 }
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Listing B.11: void AiboCommOUT::ReceiveCont(ANTENVMSG msg)
1 void
2 AiboCommOUT::ReceiveCont(ANTENVMSG msg)
3 {
4 DoDebug("AiboCommOUT::ReceiveCont()\n");
5

6 UDPEndpointReceiveMsg∗ receiveMsg = (UDPEndpointReceiveMsg∗)
antEnvMsg::Receive(msg);

7

8 int index = (int)(receiveMsg−>continuation);
9 // only continue if we are waiting for scores

10 if (connection[index].state == CONNECTION CLOSED | |
aiboCommOUTState != ACO WAITING FOR SCORES) return;

11

12 if (receiveMsg−>error != UDP SUCCESS) {
13 OSYSLOG1((osyslogERROR, "%s : %s %d", "AiboCommOUT::

ReceiveCont()", "FAILED. receiveMsg−>error", receiveMsg
−>error));

14 DoDebug("%s : %s %d", "AiboCommOUT::ReceiveCont()", "
FAILED. receiveMsg−>error", receiveMsg−>error);

15 Close(index);
16 return;
17 }
18

19 // determine the received string
20 char recv string[receiveMsg−>size+1];
21 memset(recv string, ’\0’, sizeof(recv string));
22 memcpy(recv string, receiveMsg−>buffer, receiveMsg−>size);
23 DoDebug("AiboCommOUT::ReceiveCont : %d bytes received\n",

receiveMsg−>size);
24 DoDebug("AiboCommOUT::ReceiveCont : recvScore %s\n",

recv string);
25 // save the score in the receivedScore vector (as an

OTransportVectorData element)
26 // format of the received data: actionID::score
27 receivedScores.push back(unserialize(recv string));
28

29 // after receiving a score, we wait for more
30 // the pulsegenerator is used for timing−out
31 Close(index);
32 Receive(index);
33 }

Listing B.12: void AiboCommOUT::DonateScoresS()
1 void
2 AiboCommOUT::DonateScoresS()
3 {
4 // return the scores to AiboReasoning
5 // scores are currently in receivedScores as seperate

OTransportVectorData elements
6 // convert them to one element
7 vector<OTransportVectorData>::const iterator i =

receivedScores.begin();
8 vector<OTransportVectorData>::const iterator end =

receivedScores.end();
9 OTransportVectorData toDonate;

10 // fetch the first actionID (are all the same)
11 toDonate.actionID = (∗i).actionID;
12 while (i!=end) { //for each element
13 // debug
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14 DoDebug("AiboCommOUT::DonateScoresS() : received ’%s’ as
score for actionID %d\n", ((∗i).data.back()).c str(),
toDonate.actionID);

15 toDonate.AddData((∗i).data.back()); // there’s only 1
element in each TransportVector’s data−set

16 ++i;
17 }
18 DoDebug("AiboCommOUT::DonateScoresS() : donating vector:\n");
19 DoDebug OTransportVectorData(&toDonate);
20

21 // and return to AiboReasoning
22 string stringToDonateSerialized = serialize(toDonate);
23 subject[sbjDonateScoresS]−>SetData(stringToDonateSerialized.

c str(), strlen(stringToDonateSerialized.c str())+1);
24 subject[sbjDonateScoresS]−>NotifyObservers();
25 // after returning the scores, we are able to broadcast again
26 receivedScores.clear(); pendingBroadcast = "";
27 aiboCommOUTState = ACO IDLE;
28 observer[obsBroadcastActionO]−>AssertReady();
29 }

Listing B.13: void AiboCommOUT::GivePulseO(const ONotifyEvent& event)
1 void
2 AiboCommOUT::GivePulseO(const ONotifyEvent& event)
3 {
4 // create a timer using the pulses from the PulseGenerator
5

6 unsigned int curPulseTime = getTime();
7

8 DoDebug("PulseGenerator::GivePulseO() : received pulse @ %d\n"
, curPulseTime);

9

10 // the time is in ms (since boot)
11 // use a time−out of MAX WAIT TIME (default 500ms)
12 if ((curPulseTime − pulseStartTime) > MAX WAIT TIME) {
13 DoDebug("PulseGenerator::GivePulseO() : difference between

start/end pulse: %dms\n", (curPulseTime −
pulseStartTime));

14 // disable all observers (not receiving input from other
aibos anymore)

15 DEASSERT READY TO ALL OBSERVER;
16 // and return the received scores to AiboReasoning
17 DonateScoresS();
18 } else {
19 // get the next pulse
20 observer[obsGivePulseO]−>AssertReady();
21 }
22 }

B.3 AiboCommIN

Listing B.14: void AiboCommIN::ReceiveCont(ANTENVMSG msg)
1 void
2 AiboCommIN::ReceiveCont(ANTENVMSG msg)
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3 {
4 DoDebug("AiboCommIN::ReceiveCont()\n");
5

6 UDPEndpointReceiveMsg∗ receiveMsg = (UDPEndpointReceiveMsg∗)
antEnvMsg::Receive(msg);

7

8 int index = (int)(receiveMsg−>continuation);
9 if (connection[index].state == CONNECTION CLOSED) return;

10

11 if (receiveMsg−>error != UDP SUCCESS) {
12 OSYSLOG1((osyslogERROR, "%s : %s %d", "AiboCommIN::

ReceiveCont()", "FAILED. receiveMsg−>error", receiveMsg
−>error));

13 DoDebug("%s : %s %d", "AiboCommIN::ReceiveCont()", "FAILED
. receiveMsg−>error", receiveMsg−>error);

14 Close(index);
15 return;
16 }
17

18 // determine received string
19 char recv string[receiveMsg−>size+1];
20 memset(recv string, ’\0’, sizeof(recv string));
21 memcpy(recv string, receiveMsg−>buffer, receiveMsg−>size);
22 DoDebug("AiboCommIN::ReceiveCont : %d bytes received\n",

receiveMsg−>size);
23 DoDebug("AiboCommIN::ReceiveCont : recvData %s\n", recv string

);
24

25 // format of the received data: actionID::data::data
26 // send that to AiboReasoning (for determining a score)
27 aiboCommINState = ACI SENDING TO AIBOREASON;
28 ReasonScoreS(string(recv string));
29 }

Listing B.15: void AiboCommIN::ReasonScoreS(string data)

1 void
2 AiboCommIN::ReasonScoreS(string data)
3 {
4 if (aiboCommINState == ACI SENDING TO AIBOREASON) {
5 // pass the data to AiboReasoning so it can determine a

score
6 DoDebug("AiboCommIN::ReasonScoreS : passing data to

AiboReasoning\n");
7

8 subject[sbjReasonScoreS]−>SetData(data.c str(), strlen(
data.c str())+1);

9 subject[sbjReasonScoreS]−>NotifyObservers();
10

11 // after that, wait for a score from AiboReasoning
12 observer[obsReturnScoreO]−>AssertReady();
13 } else {
14 // not in send−mode so don’t do anything (won’t happen)
15 DoDebug("AiboCommIN::ReasonScoreS() (nothing to do here)\n

");
16 }
17 }
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Listing B.16: void AiboCommIN::ReturnScoreO(const ONotifyEvent& event)
1 void
2 AiboCommIN::ReturnScoreO(const ONotifyEvent& event)
3 {
4 string scoreDataSerialized = (const char∗)event.Data(0);
5

6 DoDebug("AiboCommIN::ReturnScoreO : returning score (%s) to
initiating AIBO\n", scoreDataSerialized.c str());

7

8 // TODO implement return of score (send())
9

10 // and wait for new requests from other aibos
11 aiboCommINState = ACI WAITING FOR DATA;
12 Receive(0);
13 }
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Paper C
This appendix contains a paper concerning collaborative robot agents, as submitted
to the CGAMES 2008, November 3-5, 2008, Wolverhampton, UK. Acceptance of the
submission is pending.

CGAMES is part of Game-On R© International Conference of The University of
Wolverhampton, UK. It will be held in the Light House Media Centre, Wolverhamp-
ton, UK, and is the 13th annual conference of its kind. The main aim of the conference
is to bring together researchers, games developers, sound, graphics, video, and animation
developers, education and training industry, and students from around the world to ex-
change ideas on design methods, research and development, and programming techniques
that are beneficial to the computer games industry and academia.
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Collaborative Robot Agents
E. Daman BSc., Z. Yang and L.J.M. Rothkrantz

Man-Machine Interaction Group
Delft University of Technology
2628CD Delft, The Netherlands

E-mail: L.J.M.Rothkrantz@tudelft.nl

Abstract—This paper describes how methods for collaborative
agents can be applied to the AIBO (Artificial Intelligence roBOt)
of SONY Corporation. A method for collaboration will be
explained in detail, and the design and implementation of a
working prototype will be presented. The software works in an
ad-hoc wifi network with clients that can connect and disconnect
at all times. Data can be shared between the clients (AIBOs) so
that they can determine the right objectives for themselves and
fine-tune their actions with the others.

Index Terms—Collaborative agents, problem solving model,
AIBO, OPEN-R, CLIPS, AiboCommOpenR

I. INTRODUCTION

IN computer science, a software agent is a piece of software
that acts for an user or other program in a relationship

of agency. Such ‘acting on behalf of’ implies the authority
to decide which (and if) action is appropriate. The idea is
that agents are not strictly invoked for a task, but activate
themselves.

To date, agents have been successfully employed in multiple
application endeavors, such as:

• data collection and filtering
• pattern recognition
• event notification
• data presentation
• planning and optimization
• rapid response implementation.
One might imagine an agent which is involved in all of

these activities, sequencing through each of those states in
response to environmental events, acting independently or in
collaboration with a human client.

The number of application areas for software agents
continues to expand. Currently, software agents are primarily
used in research, but other areas such as education,
commercial, law enforcement, intelligence, and even military
are showing their interest as well, as future clients increasingly
find themselves swamped by information overload. Agents can
process vast volumes of data which would be unmanageable
by human agents. Additionally, agents can analyze, assess,
plan, and react to environmental events at super-human speeds.

A problem with designing agents is the fact that their
competence is necessarily restricted to situations similar to

E. Daman BSc. is a student of the Faculty of Electrical Engineering, Math-
ematics and Computer Science, Delft University of Technology, Mekelweg 4,
2628CD Delft, The Netherlands. E-mail: e.daman@student.tudelft.nl

those they have encountered in the past. The agents, when
working on their own, have only a limited vision of the
world, and have their resource limitations. If social ability is
introduced however, and multiple agents are able to engage
other components through some sort of communication and
coordination, they may collaborate on a task, and collect
information that would not be available to them if they were
working alone. They could share knowledge and resources,
which could lead to better decisions based on more informa-
tion, and tasks may be completed in less time.

As with every advantage, sharing knowledge has its prob-
lems as well. The agents need to deal with issues like
distributed or centralized data, the storage of data, and have to
deal with multiple sources of information. Received and stored
information may not be up-to-date anymore, and the original
source of that information may be disconnected from the
network of agents. Tradeoffs have to be made: is information
distributed between all the agents, even to agents that can’t see
the original source? Maybe a centralized control center which
keeps track of all the information and assigns tasks to the
agents is more applicable? What to do with history of data,
and do we trust the information that is received from other
agents?

A. The Collaboration Problem

When several intelligent agents interact they may form a
multi-agent system or multiple-agent system. The agents are
considered to be autonomous entities collaborating with each
other, and their interactions can be either cooperative or selfish.
That is, the agents can share a common goal (e.g. an ant
colony), or they can pursue their own interests (as in the free
market economy).

Multi-agent systems can be used to solve problems
which are difficult or impossible for an individual agent or
monolithic system to solve. They have been successfully
applied in domain areas like entertainment, computer games,
air-traffic control, air combat, personal assistants, load-
balancing, logistics, mining large (distributed) datasets in
astronomy or transportation, finance, geographic information
systems as well as in many other fields. Multi-agent systems
are widely being advocated to be used in networking and
mobile technologies, to achieve automatic and dynamic load
balancing, high scalability, and self healing networks.

Central to the design and effective operation of collabo-
rative agents are a core set of issues and research questions
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that have been studied over the years by the distributed AI
community:[1]

• How do we formulate, describe, decompose, and allocate
problems and synthesize results among a group of intel-
ligent agents?

• How do we enable agents to communicate and interact?
What communication languages and protocols do we use?
What and when can they communicate? How can we find
useful agents in an open environment?

• How do we ensure that agents act coherently in making
decisions or taking action, accommodating the nonlocal
effects of local decisions and avoiding harmful inter-
actions? How do we ensure the agents do not become
resource bounded? How do we avoid unstable system
behavior?

• How do we enable individual agents to represent and
reason about the actions, plans, and knowledge of other
agents to coordinate with them. How do we reason
about the state of their coordinated process (for example,
initiation and completion)?

• How do we recognize and reconcile disparate viewpoints
and conflicting intentions among a collection of agents
trying to coordinate their actions?

• How do we engineer and constrain practical distributed
AI systems? How do we design technology platforms
and development methodologies for multi-agent systems?

This paper describes the design and development of a
system of collaborative AIBO-robots, and specifically focuses
on AIBO in the ‘Four-Legged Robot Soccer League’. A
collaboration method will be described in detail, and the
design and implementation of a working prototype will be
presented. The software works in an ad-hoc wifi network
with clients that can connect and disconnect at all times. Data
can be shared between the clients (AIBOs) so that they can
determine the right objectives for themselves and fine-tune
their actions with the others. The robots will stay autonomous,
since the rules of the RoboCup soccer game clearly states
that the use of a central controller PC is forbidden.

Fig. 1. Four-Legged Robot Soccer League

Currently, the AIBOs are already capable of playing soccer,
however, they are still playing so called ‘pupils football’.

There is no communication what so ever, and all AIBOs
play for themselves. For instance, if an AIBO can’t find the
ball because his view is blocked, he will keep looking for it,
wandering around and thereby stalling the game. A simple sign
from an other AIBO in the field could easily fix this problem.

Therefore, having some form of communication, and
reasoning with data that AIBO receives from other players in
the field can bring the soccer game to a higher level.

Section II first describes the different kind of agents that
exist and the collaborative agent is discussed in further detail.
It also includes a detailed problem solving model, that is
used in section III. Section III describes the design and
implementation of AiboCommOpenR, the software that is
written for the system of collaborating AIBOs. The conclusion
to this paper is presented in section IV.

II. DESIGNING COLLABORATIVE AGENTS

A global definition of the term ‘agent’ would be ‘a
component of software and/or hardware which is perceiving
its environment through sensors and acting on the environ-
ment through actuators, thus effecting what it senses in the
future’.[2] The term percept is used to refer to the agent’s
perceptual inputs at any given instant. Perception is initiated
by sensors and provides agents with information about the
world they inhabit (see figure 2).

Fig. 2. Agent definition

This tends to obscure the differences between radically dif-
ferent approaches. Agents differ in the way they communicate
and co-operate and so on. The different kind of agents can be
split into 7 categories:[3][4]

• Collaborative agents
• Interface agents
• Mobile agents (static vs. mobile)
• Information/Internet agents
• Reactive agents (deliberative vs. reactive)
• Hybrid agents
• Smart agents.
All these type of agents have different motivations and

challenges. This paper focuses on ‘collaborative agents’.
These agents negotiate in order to resolve conflicts and they
collaborate to integrate information.

Collaborative agents need to be able to:[5]
• discuss and negotiate goals
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Fig. 3. Agent classification

• discuss options and decide on courses of action, including
assigning different parts of a task to different agents

• discuss limitations and problems with the current course
of action and negotiate modifications

• assess the current situation and explore future possibilities
• discuss and determine resource allocation
• discuss and negotiate initiative in the interactions
• perform parts of the task and report to others to update

shared knowledge of the situation.

The main motivation factor for designing cooperative agents
is the fact that some problems are simply to large for a
centralized single agent. Resources might be limited or there
is too much risk involved. But beside resources limitations,
other motivations play an important role as well:[6]

• Allow for interconnection/interoperability of multiple ex-
isting legacy systems.

• Provide solutions to inherently distributed problems, e.g.
distributed sensor networks or air-traffic control.

• Provide solutions which draw from distributed informa-
tion sources.

• Provide solutions where the expertise is distributed, e.g.
in health care provisioning.

• Enhance modularity (which reduces complexity), speed
(due to parallelism), reliability (due to redundancy), flex-
ibility (i.e. new tasks are composed more easily from
the more modular organisation) and reusability at the
knowledge level (hence shareability of resources).

• Research into other issues, e.g. understanding interactions
among human societies.

So by letting agents cooperate we are able to:
“create a system that interconnects separately devel-
oped collaborative agents, thus enabling the ensem-
ble to function beyond the capabilities of any of its
members”[7]

The central issue of collaborative problem solving is that in
order to collaborate to achieve a common goal, the agents

must coordinate their individual actions. Therefore, some
sort of ‘Collaborative Problem Solving Level’ must exist,
and the agents should capture the joint objectives, and the
jointly chosen recipes and resources etc. to accomplish those
objectives.

The collaborative problem solving level must serve 2
purposes. It must provide the structure that enables and drives
interactions, and it should provide the connection between
the joint intentions and the individual actions that an agent
performs as part of the joint plan, while allowing an agent to
have its own objectives. Agents must agree to some level of
detail on the abstract joint recipes that they construct in order
to collaborate. An agent does not need to know how the other
agent accomplishes things below this level of abstraction and
agents do not need to have the same library of recipes.[4]

Being able to solve problems, the cognitive state of the
agent, affected by problem-solving actions, need to contain
at least the following:[5]

• current situation
• intended objectives
• active objectives
• intended recipes
• recipe library
• function on objectives and situations giving recipes.

As a summary, the different phases to agent problem solving
can be summed as follows:[5]

1) Determine the objective (agents may reconsider objec-
tives at any time).

2) Determine the recipe (find a recipe that may achieve the
objective).

3) Use the selected recipe and identify the next action to
perform from the recipe (if the recipe returns a sub-
objective, go to step 1).

A. Collaborative Framework

While a particular agent may not have any prior knowledge
about a certain problem, there may exist a number of agents
who do. Instead of each agent re-learning what other agents
have already learned through experience, agents can simply
ask for help. This gives each agent access to a potentially vast
body of experience that already exists. There are two classes
of such collaboration:[6]

• Desperation based communication which is invoked
when a particular agent has insufficient experience to
make a confident decision.

• Exploratory communication communication, on the other
hand, is initiated by agents in bids to find the best
set of peer agents to ask for help in certain classes of
situations. Exploratory communication is undertaken by
agents to discover new (as yet untried) agents who are
better advisors in the solving of the agents’ problems than
the current set of peers they have previously tested.

Both forms of communication may occur at two orthogonal
levels. At the situation level, desperation communication refers
to an agent asking its peers for help in dealing with a new
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situation, while exploratory communication refers to an agent
asking previously untested peers for how they would deal
with old situations for which it knows the correct action, to
determine whether these new agents are good advisors for fu-
ture problems. At the agent level, desperation communication
refers to an agent asking trusted peers to recommend an agent
that its peers trust, while exploratory communication refers to
agents asking peers for their evaluation of a particular agent
perhaps to see how well these peers’ modeling of a particular
agent corresponds with their own.

Collaborative communication between agents occurs in the
form of request and reply messages. An agent is not required
to reply to any message it receives. This leaves each agent
the freedom to decide when and whom to help.

Agents model peers’ abilities to assist with solving problems
by a trust value. For each class of situations an agent has a
list of peers with associated trust values. Trust values vary
between 0 and 1. The trust values reflect the degree to which
an agent is willing to trust a peer’s solution for a particular
situation class. A trust value represents a probability that a
peer’s solution for a certain problem is a good solution based
on prior history of proposed solutions from the peer. Trust
values are further discussed in section III-C3.[4]

When an agent sends out a solution request to more than one
peer it’s likely to receive many replies, each with a potentially
different solution and confidence value. In addition, the agent
has a trust value associated with each peer. This gives rise to
many possible strategies which an agent can use to choose a
solution and a confidence value for this solution. Both trust
and peer confidence should play a role in determining which
proposed solution gets selected and with what confidence.
Each proposed action is assigned a trust-confidence sum value
which is the trust weighted sum of the confidence values of
all the peers predicting this action. The action with the highest
trust-confidence sum is chosen.

B. A Detailed Problem Solving Model
The following problem solving model is primarily focused

on human-machine collaboration, but can be equally well
applied to interactions between sophisticated software agents
that need to coordinate their activities.[5]

An overview of the model is shown in figure 4. At the heart
of the model is the problem solving level, which describes
how a single agent solves problems. An agent might adopt
an obligation or might evaluate the likelihood that a certain
action will achieve that objective. This level is based on a
fairly standard model of agent behavior. The problem solving
level is specialized to a particular task and domain by a task
model. The task model describes how to perform certain tasks,
such as what possible objectives are, how objectives are (or
might be) related, what resources are available, and how to
perform specific problem solving actions such as evaluating a
course of action. For an isolated autonomous agent, these two
levels suffice to describe its behavior, including the planning
and execution of task-level actions. For collaborative activity,
more is needed.

Fig. 4. Collaborative problem solving model

The collaborative problem solving level builds on the
single-agent problem solving level. The collaborative problem
solving actions parallel the single-agent ones, except that they
are joint actions involving jointly understood objects. For
example, the agents can jointly adopt an intention (making
it a joint intention), or they can jointly identify a relevant
resource, and so on. Finally, an agent cannot simply perform
a collaborative action by itself. The interaction level consists
of actions performed by individuals in order to perform their
part of collaborative problem solving acts. Thus, for example,
one agent may initiate a collaborative act to adopt a joint
intention, and another may complete the collaborative act by
agreeing to adopt the intention.

Fig. 5. Life cycle of an intention

When two agents collaborate to achieve goals, they must
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coordinate their individual actions. To mirror the development
at the problem solving level, the collaborative problem solving
level operates on the collaborative problem solving (CPS)
state, which captures the joint objectives, the recipes jointly
chosen to achieve those objectives, the resources jointly chosen
for the recipes, and so on.[5]

The collaborative problem solving model must serve two
critical purposes. First it must provide the structure that
enables and drives the interactions between the agents as they
decide on joint objectives, actions and behavior. In doing so,
it provides the framework for intention recognition, and it
provides the constraints that force agents to interact in ways
that maintain the collaborative problem solving state. Second,
it must provide the connection between the joint intentions
and the individual actions that an agent performs as part of
the joint plan, while still allowing an agent to have other
individual objectives of its own.

Establishing part of the collaborative problem solving state
requires an agreement between the agents. One agent will
propose an objective, recipe, or resource, and the other can
accept, reject or produce a counterproposal or request further
information. This is the level that captures the agent interac-
tions. To communicate, the agent receiving a message must be
able to identify what CPS act was intended, and then generates
responses that are appropriate to that intention.

III. DESIGN AND IMPLEMENTATION OF
AIBOCOMMOPENR

Applying the problem solving model described in the previ-
ous section to AIBO results in a collaboration platform called
AiboCommOpenR, which can be used for the collaboration
between different AIBO-robots.

AiboCommOpenR is written in the OPEN-R SDK, which is
a cross-development environment based on gcc (C++). OPEN-
R is chosen because it has the most advanced networking
capabilities, is the fastest in runtime, and the software that
is written in it runs stand-alone on AIBO itself, without the
use of a controller PC.

Developing software in OPEN-R deals with the complex
process of inter-object communication, which is therefore
further described in the next subsection.

A. OPEN-R Objects

In OPEN-R, multiple objects with various functionality are
running concurrently and communicate with each other via
inter-object communication (see figure 6). The concept of an
object in OPEN-R is similar to one of a process in the UNIX
or Windows operating systems.

An object is a concept that only exists at run-time. Each
object has a counterpart in the form of an executable file,
created at compile-time. Source code is compiled and linked
(with the use of the OPEN-R SDK) to create this executable
file. The file is put on an AIBO Programming Memory Stick
and when AIBO boots, the operating system loads the file
from the AIBO Programming Memory Stick and executes it
as an object.[8]

Fig. 6. OPEN-R Application software

Below is the typical life cycle of an object:
1) loaded by the system
2) wait for a message
3) when a message arrives, execute the method correspond-

ing to the selector specified in the message and send
some messages to other objects when necessary

4) when the method finishes execution, go to step 2.
This is an infinite loop. An object cannot terminate itself

and persists while the system is activated.

OPEN-R objects communicate with each other while they
perform their tasks. In OPEN-R, this communication between
objects is called ‘inter-object communication’. The use of
inter-object communication enables each object to be created
separately and later be connected to other objects. When
two objects communicate, the side that sends data is called
the ‘subject’, and the side that receives data is called the
‘observer’. Figure 7 shows a case where the subject of object
A communicates with the observer of object B.

Fig. 7. Inter-object communication

When the observer is in a state ready to receive data, the
observer sends ASSERT-READY to the subject. When the
observer is in a state not ready to receive data, the observer
sends DEASSERT-READY to the subject. The subject receives
these in the form of a ReadyEvent. When the function
IsAssert() in the ReadyEvent returns true, the subject
can send a NotifyEvent to the observer. NotifyEvent
includes the data that the subject wants to send to the observer.

Objects have entry points for receiving messages. As shown
in figure 8, each entry point corresponds to a particular method
of the object, and each method corresponds to a particular
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Fig. 8. A core class

member function of the object. In C++, an OPEN-R object
can be represented by a core class, which has the following
characteristics:[8]

• A core class inherits from the OObject class (which is
the base class for all objects).

• A core class implements the DoInit(), DoStart(),
DoStop() and DoDestroy() functions.

• A core class has the necessary number of OSubject and
OObserver

Some member functions in the core class correspond to
specific methods in the object:

1) Methods that are called at startup and shutdown:
• Init method

This is called at startup and initializes instances and
variables.

• Start method
This is called at startup after Init is executed in all
objects.

• Stop method
This is called at shutdown.

• Destroy method
This is called at shutdown after Stop is executed
in all objects and destroys the subject and observer
instances.

The Init method, Start method, Stop method, and
Destroy method correspond to each DoInit(),
DoStart(), DoStop() and DoDestroy() function
in the object’s corresponding core class, respectively.

2) Methods that are called when a message is received from
another object:
Methods used in subjects:
• Control method

This receives the connection results between the
subject and its observers.

• Ready method
The subject receives ASSERT-READY or
DEASSERT-READY notifications from the
observers.

Methods used in observers:
• Connect method

This receives the connection results between an
observer and its subjects.

• Notify method
This receives a message from the subject.

These inter-object communication techniques are needed
for the design of AiboCommOpenR, which exists of several
objects, each handling a different part of the collaboration
framework.

B. Prototype Implementation

A number of issues have to be addressed in order to
develop a successful distributed system for AIBO. These issues
pertain to several different subject areas, such as a functioning
motion system, which deals with mechanical robotics, as
well as a functioning vision system, which deals with digital
image analysis and color calibration. Furthermore, the system
deals with artificial intelligence, distributed systems, real time
systems and communication.

The focus for this paper has been on the distribution and
communication issue. The main goal is the design and im-
plementation of a system that runs on the AIBO and operates
concurrently with the modules that are already developed (e.g.
the motion modules for the soccer game). The system consists
of several modules (OPEN-R objects) which can be used to
make distributed decisions with other AIBOs. It takes care
of the reasoning and of the transmission of data between the
AIBOs. The only thing that other modules have to do is:

1) Suggest an action to the AiboReasoning module.
2) Wait for a ‘go’ or ‘no go’ and act accordingly.
The modules that make up AiboCommOpenR are:
• AiboReasoning - this is the module that does the actual

reasoning, with the help of an expert system.
• AiboCommIN - listens for incoming data from other

AIBOs.
• AiboCommOUT - this module is used by AiboReason-

ing to broadcast data to other AIBOs.
• AiboDummyActionGenerator - used as a test module in

replacement of real life modules that are used on AIBO
(e.g. from the soccer game). The current implementation
starts the whole sequence of events when the back-sensor
of AIBO is touched, and blinks its head-LEDs when a
‘go’ is received.

• PulseGenerator - is used as a timer for AiboCommOUT
when it is broadcasting data and waiting for feedback.

An overview of the modules and how they communicate is
presented in figure 9. In this figure, communication in point
1, 2, 6, 7, 9 and 10 is done using the ‘observer/subject’
structure described earlier, where 3 and 8 use normal UDP
communication.

As shown in figure 9, the UDP communication in
AiboCommOpenR is done in both the AiboCommIN and
AiboCommOUT module. UDP is used here because it sup-
ports broadcasting of data, which is an important aspect of
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Fig. 9. Module overview of AiboCommOpenR

AiboCommOpenR. A transport mechanism for sending and
receiving messages had to be designed for that communica-
tion. The protocol works on level 6 and 7 (presentation and
application layer) of the OSI model, and because of that it
needs to take care of the serializing and unserializing of the
data that is transported between the AIBOs. A library is written
which takes care of that, so that other modules can link to it
and use AiboCommOpenR.

A predefined format is used for the serializing and
unserializing of the data. AiboCommOpenR uses the
following schema:

actionID::data-element1::data-element2

In AiboCommOUT the data elements are made up by
data received from other modules. In case of the RoboCup
soccer game, a data element could be the distance to the
ball for example. In AiboCommIN, data elements are either
the received data from AiboCommOUT, or a score (with or
without confidence levels as described later in this section).
The score that is meant here is the outcome of the reasoning
engine as described in section III-D.

If more complex data has to be transmitted, the serializer
can be easily extended to serialize complex structs as well. The
current implementation of AiboCommOpenR only supports
the struct in listing 1.

Listing 1. OTransportVectorData struct

1 # i f n d e f DATATYPES H
2 # d e f i n e DATATYPES H
3

4 # i n c l u d e <v e c t o r >
5 # i n c l u d e <s t r i n g >
6

7 us ing std : : vector ;
8 us ing std : : string ;
9

10 s t r u c t OTransportVectorData {
11

12 i n t actionID ;
13 vector<string> data ;
14

15 void AddData (string dataToAdd ) {
16 data .push_back (dataToAdd ) ;
17 }
18 } ;
19

20 # e n d i f / / DATATYPES H

C. Design Tradeoffs

For the design outlined above, certain tradeoffs had to be
made. For instance, because of using UDP and wireless LAN,
packets may get lost and therefore the system should not stall
when not receiving any replies from other AIBOs. The system
should not depend on the distribution of data to work. Because
of this more or less unreliable transmission medium, we want
the AIBOs to work stand-alone and not being controlled by a
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leader process or leader dog. Since data is distributed amongst
all the AIBOs, this is not necessary anyway. All AIBOs can
make decisions on their own, using their own expert system.

The sent and received data is merged into a summary of the
team’s knowledge about the current state. This state is referred
to as the global world. Each dog has its own, local, copy of
the global world. Looking at the soccer example for instance,
this world contains information about the position of the ball,
and position data of other AIBOs that was received earlier.
That data might be out-dated and is updated when new data is
received. For the sake of simplicity, no multi-hop is used and
therefore AIBOs that aren’t within each others reach won’t
receive each others data. However, this can be added later, in
combination with history and confidence levels.

1) Using Multi-Hop: Multi-hop can be added to the system
when the field that the AIBOs are operating in is larger then
the reach of AIBO’s wireless LAN, or when a lot of obstacles
are around which can block the communication. For instance,
if AIBO were to operate within a house with walls, using
multi-hop would give an advantage as seen in figure 10. Using
multi-hop in the soccer example would not give any advantage,
since the playing field is small enough for the wireless signal
to get to all AIBOs in the team, and there are no large obstacles
on the field.

Fig. 10. Using multi-hop

2) Keeping History: History can be kept from the global
world that was discussed above, to be able to make assump-
tions for the future. The history of the ball position (i.e. in the
soccer game) for instance, can give the direction that the ball is
heading. This also applies to the positions of the other AIBOs.
Using their directions and the direction of the ball, AIBO can
decide whether to attack and proceed in the direction of the
ball, or stay put and defend.

When using AIBO as a watchdog, history of the received
data can be used to determine whether to explore a certain
room or head the other direction if other AIBOs have been
there before. A condition for this to work, however, is that
the history needs to be shared and distributed. This can result
in consistency problems. We need not only keep one AIBO’s
data up-to-date, but the data shared between other AIBOs as
well. This can give problems in case of failure of an AIBO,
or when an AIBO leaves the network for battery charging
purposes.

It may also pay off to save the results of the reasoning
process for future use. Saving these results in combination
with their outcome (i.e. whether the action was successful)
can give an idea whether similar actions in the future will
be successful as well. Broadcasts for help can be kept to a
minimum this way.

The main problem with saving history is the fact that most
data of the global world is outdated after a small period of
time and therefore not usable anymore. Different applications
also have different needs for saving history, and this history
times out after different periods. For instance, ball positions in
the soccer game are useless after a shorter period of time then
information about rooms or walls in the watchdog example.
Dealing with different applications therefore need different
implementations of the history module. Therefore, history is
not yet used in AiboCommOpenR.

3) Confidence Levels: Confidence levels can be used if
it turns out that information from certain agents in the field
is not reliable or accurate. They can be used either at the
sending or at the receiving side, or even at both sides. If used
at the sending side, they represent the confidence that AIBO
has on the score that it sends back. A low confidence can be
given if AIBO is unsure about some of his own data (e.g. his
own position). This way the receiving AIBO can consider not
using the received advise. A high confidence value, however,
means that the receiving AIBO should use the advice.

If confidence levels are used at the receiving side, they
represent the trust that the receiving AIBO has in the other
AIBOs. In this situation, AIBO has an overview of all the
agents and their corresponding trust values. This way AIBO
can determine whether a received advise or score from a
specific agent is reliable, and make a decision based on that.
This trust value is calculated by the receiving AIBO itself,
and is adjusted every time AIBO decides to use or not use a
specific advise from an specific agent. Here a combination of
both confidence levels can be used. Not using a score with a
low confidence level can result in a higher trust value of the
sending agent. The sending agent was not confident with his
score and that results in a higher trust level for that agent. This
is mathematically described in:

trust = clamp(0, 1, trust + δp ∗ (γ ∗ trust ∗ conf )) (1)

where

δp =

{
+1 if solution s = action a;
−1 if solution s 6= action a;

(2)

and trust represents the trust value of an AIBO, conf
represents the confidence the sending AIBO has in his advise,
γ is the trust learning rate, and clamp(0, 1, trust, c) ensures
that the value of c always lies in (0, 1].[4][6]

This way an AIBO which proposes an incorrect advise with
a high confidence value is penalized more heavily than one
that proposes an incorrect advise but with a lower confidence
value. Using confidence levels this way can result in a more
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reliable reasoning process, but also result in extra overhead,
which is not desirable in this project because of the scarce
resources of AIBO.

D. Designing CLIPS Rules

The CLIPS engine that is used for the reasoning part of
AiboCommOpenR needs rules in order to reason. Different
kinds of rules are needed for different kinds of applications.
Since the focus of this paper is on the RoboCup soccer
game, one example of such a rule for that application will
be presented here.

1) Moving Towards the Ball: This example rule uses the
AIBO’s own distance to the ball and the distance from the
other AIBO to the ball, and calculates a score with that
data for the idea of moving to the ball that the other AIBO has.

The basic facts needed for this rule are:
• AIBOs own the distance to the ball
• the distance from the other AIBO to the ball (has been

send along with the data)
• the default score to start with, for calculating the final

score.

(defrule calculate_score_using_distance

‘‘use distance’’

(not (calc_using_distance done))

(distance self ball ?D_me_ball)

(distance other ball ?D_other_ball)

?sc <- (score ?C_score)

=>

(printout t ‘‘Distance self-ball: ’’ ?D_me_ball)

(printout t ‘‘Distance other-ball: ’’

?D_other_ball)

(printout t ‘‘Current score: ’’ ?C_score)

(if (< ?D_me_ball ?D_other_ball)

then

(printout t ‘‘I’m closer to the ball!

decr score’’)

(retract ?sc)

(assert (score (- ?C_score 1)))

else

(if (= ?D_me_ball ?D_other_ball)

then

(printout t ‘‘Same distance to the ball,

let him go! incr score’’)

(retract ?sc)

(assert (score (+ ?C_score 1)))

else

(printout t ‘‘He is closer to the ball!

incr score’’)

(retract ?sc)

(assert (score (+ ?C_score 1)))

)

)

(assert (calc_using_distance done))

)

Testing this rule with a default score of 5, a distance of
AIBO 1 to the ball of 10, and a distance to the ball of AIBO
2 of 20 results in:

CLIPS> (run)

Distance self-ball: 10

Distance other-ball: 20

Current score: 5

I’m closer to the ball! decr score

Final score is 4

CLIPS>

The score is correctly decreased by ‘1’ since AIBO 1
(where CLIPS is running) is closer to the ball than AIBO 2
(the initiator). Therefore, AIBO 1 should be moving towards
the ball instead of AIBO 2, and AIBO 1 should discourage
AIBO 2 by returning a low score.

The rules that are currently designed for AiboCommOpenR
are far from complete to be used in the RoboCup Soccer game.
They are simplified rules, designed and implemented to be able
to test AiboCommOpenR. If AiboCommOpenR is really to be
used in the RoboCup soccer game, more complex rules are
needed. Different rule sets can be written for different kinds
of game play. Focusing on a strong defense for example, needs
an other rule set then focusing on attacking. While the rules
currently designed don’t implement that yet, they do already
take into account the different roles that each player can have
in the team.

IV. CONCLUSION

This paper has provided an outline on the process of design-
ing and developing a system of collaborative AIBO-robots.
Test results of the current proof of concept implementation
show that AiboCommOpenR is capable of communicating and
sharing knowledge, and can use CLIPS on the AIBO for rea-
soning, and is thereby a complete framework for collaborative
AIBO-agents.

It turned out that a complete reasoning-cycle took around
8300ms, which is not acceptable in most applications. How-
ever, disabling all the debug information (using the compiler-
flag -DOPENR_DEBUG and -DDODEBUG) narrows this down
to below 2 seconds. It seemed that writing the debug informa-
tion to the memorystick, and writing the debug information
to the console via wifi really slowed things down. Things
can be speed up even more by lowering the wait timeout
in AiboCommOUT. This way, AiboCommOpenR seems fast
enough for the robots in the RoboCup game, and any of the
other applications.

For the design, a few tradeoffs had to be made; whether the
prototype should keep history, use confidence levels and/or
use multi-hop. All off these were eventually not implemented,
because of resource limitations, and/or were unnessecary for
the RoboCup soccer game.

However, when things get more optimized, future imple-
mentations of AiboCommOpenR could include some of these
aspects. It could include history, from either the outcome of
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the reasoning process or from the received data, and could use
confidence levels. Using history, the AIBO can leave the event-
driven path that it uses now, and act more pro-actively. With
history, AIBO can make assumptions for the future, calculating
the direction that the ball is heading for example, and keep
broadcasts to a minimum when using the outcome of previous
broadcasts for the current situation.

Other enhancements of AiboCommOpenR could include
sharing AIBOs plans, or actively broadcasting information
about the environment. For the soccer game example, this
could include information on the ball position. This way all
players in the field have knowledge over the ball position,
even when their view is blocked, leading to a more active
game by not having all the AIBOs scanning the environment.
By sharing AIBO’s plans in the RoboCup league, multiple
AIBOs can cooperate and even play a one-two or use other
passing techniques. Special defense and attack mechanism can
be examined, and special formations can be tried, bringing the
game to a higher level, using collaboration.
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