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"As soon as an Analytical Engine exists, it will necessarily guide the future course of
science." [1] This is what Charles Babbage wrote in 1864. And he was right! Today he is
considered a thought father of the computer and scientific research without the help of
computers has become nearly unimaginable. For instance, computers enable the stor-
ing and processing of huge amounts of data which played a key role in the experimental
discovery of the Higgs particle [2]–[5]. Also, for scientists of many fields computer sim-
ulations became a fundamental tool. For example, weather simulations now allow us
to attribute specific extreme weather events to climate change [6]. Furthermore, many
experimental undertakings, including the exploration of Mars by the Mars rover [7], are
computer-controlled, and the internet – a network of computers – allows for rapid inter-
national scientific communication and exchange.

While computers help to push the boundaries of scientific knowledge, we run into
their limitations, too, especially at the scale of the tiny, for systems governed by the
laws of quantum mechanics. For instance, the best computational simulations have
not yet allowed us to accurately model the underlying mechanism of nitrogen fixation
in microorganisms [8], a fundamental process in the biogeochemical nitrogen cycle [9].
The quantum-mechanical nature of the reaction renders this problem intractable on a
"classical" computer. Yet, there is reason for optimism. New forms of computing are
proposed and under development. For example, computing inspired by the structure
of the human brain, artificial neural networks [10] and neuromorphic computing [11],
recently received growing attention [12] and promise to impact multiple areas of sci-
ence [13], [14]. Another fundamentally different type of computer, a computer that
might enlighten the processes of nitrogen fixation in microorganisms [8], was suggested
by Richard Feynman who realized [15]: "... [N]ature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d better make it quantum mechanical ...". But
how could we make it quantum mechanical? What could a quantum computer look like?

1.1. QUANTUM BITS AND QUANTUM COMPUTING
Digital quantum computing is a concept of quantum computing based on the theory of
logical circuits which conventional computing is based on [16]. The fundamental build-
ing block of such a digital quantum computer is a quantum bit (qubit). Analogous to the
classical bit in conventional computing which is described by

b ∈ [0,1] , (1.1)

a qubit is a quantum-mechanical two-level system with eigenstates |0〉 and |1〉. How-
ever, in contrast to a classical bit, the physics of quantum mechanics determines the
states that a qubit can be in. A qubit can be in a superposition state of the 0 and 1 state.
Generally, a qubit state is described by two real-valued coefficients ci and a phase φ:∣∣ψ〉= c0 |0〉+ c1e−iφ |1〉 . (1.2)

In this notation, the norm c2
1 + c2

2 = 1 is widely used. Neither a single bit nore a single
qubit do allow for meaningful calculations yet, this requires multiple bits or qubits. A
classical bit register of N bits can represent 2N states of the form:

b = (b1,b2, . . . ,bN ) . (1.3)
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Analogously, a qubit register of N qubits has 2N eigenstates. However, in contrast to
the bit string, they can exist in superposition and the general state of a qubit register is
described by:

∣∣ψ〉= 1∑
i1=0

1∑
i2=0

· · ·
1∑

iN=0
ci1,i2,...,iN e−iφi1,i2,...,iN |i1, i2, . . . , iN 〉 . (1.4)

Thus, while a classical bit-register can represent 2N different states (000..00, 000..01,
000..10, . . . ), a single quantum bit register state is described by 2N − 1 complex num-
bers ci1,i2,...,iN e−iφi1,i2,...,iN . Generally, a quantum register state is not separable. This
means it can not always be written as a tensor product

⊗
m

∣∣ψm
〉

of single-qubit states∣∣ψm
〉=∑1

im=0 c ′im
e−iφ′

im |im〉. When the state is inseparable, the quantum register is said
to be entangled.

Entanglement and superposition are effects that enrich the complexity of systems
governed by the rules of quantum mechanics. Therefore, one can imagine that – if they
could be harnessed – they could provide a source for exponentially increased computing
capabilities. For instance, when bringing a quantum register into a superposition state
consecutive quantum operations will act on all its eigenstates. Thus, in a single run, an
algorithm can be applied to multiple classical inputs (corresponding to the eigenstates),
providing a quantum parallelization.

Yet, there is a catch. The outcome of the quantum algorithm has to be extracted
by performing measurements to be further processed or displayed. These measure-
ments have a classical output state. Thus, the state

∣∣ψ〉
is reduced to a bit register state

b which probabilistically depends on the coefficients describing the quantum register
state. Additionally, the quantum register itself collapses to the corresponding eigenstate
|i1, i2, . . . , iN 〉 upon measurement. Therefore, at first sight, the advantage of quantum
parallelism is not accessible. However, for specific problems, quantum algorithms with
a measurable output have been invented including simulation, number-theoretic, and
optimization algorithms [17]. For instance, quantum algorithms might become a tool to
address problems in computational chemistry that cannot be solved on regular comput-
ers [8] or speed up processes in drug development [18].

Thus, how can a quantum computer be built? To provide guidance for this question,
in 2000 David DiVincenco published five requirements [19] which state (rephrased) that
one must have:

1. a scalable physical two-level system that serves as a qubit

2. a method to initialize registers of qubits in a well-defined state

3. coherence times that significantly exceed the gate operation times

4. universal single and two-qubit gates

5. the ability to read out a qubit’s state
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1.2. QUANTUM COMPUTING WITH SPIN QUBITS
The spin states of an electron or hole form a two-level system that is governed by the laws
of quantum mechanics and thus present a natural candidate for implementing a qubit. A
single electron can be isolated in a semiconductor quantum dot, a small chargeable is-
land with clear energetic separation between states of different electron counts. Such
quantum dots can be created in metal-oxide-semiconductor (MOS) structures which
have strong similarities with MOS field effect transistors (FETs). As MOSFET-based clas-
sical computing technology is highly scalable, it is argued that this promises scalability
for quantum dot spin qubits as well. Also considering the other DiVincenzo criteria, spin
qubits are an attractive candidate to realize a quantum computer. Coherence times of
spin qubits exceeding single qubit gate operation times by more than 20,000 have been
reported [20]1, high fidelity initialization [21]–[23] and readout [24]–[26] are possible,
and universal single [20], [27], [28] and two-qubit [29]–[32] gates of high fidelity have
been demonstrated.

While all five DiVincenzo criteria are fulfilled – more or less2 – it is the word scalable in
the first criterion that still poses numerous challenges to be overcome before a spin qubit
quantum computer can be built that can solve practically relevant problems unsolvable
on a classical computer:

• The characteristics of spin qubits vary inside and across devices requiring individ-
ually tuned voltages and control sequences for each qubit. How these variations
can be reduced significantly to achieve high uniformity in spin qubit properties
presents a challenge that needs to be mastered before large high-density qubit ar-
rays can be realized.

• With a growing qubit count, simultaneous operation at high fidelity becomes a
necessity to stay within the qubit coherence times and to avoid overheads in com-
putation time that get out of hand. To achieve this, crosstalk effects between qubits
need to be reduced or compensated for [33].

• Achieving the coherence and operational fidelities required for practical (univer-
sal) quantum computing through optimizing physical qubit error rates is thought
to be impossible. Instead, the idea is to combine multiple physical qubits into a
single logical qubit to which error correction protocols are applied. Quantum er-
ror correction codes that rely on two-dimensional interconnected quantum bits,
such as the surface code [34], are among the most promising. However, realizing
such arrays is challenged by the finite room on a chip to route control voltages
while still maintaining individual qubit(-pair) addressability at low error rates.

• Quantum error correction protocols require that a significant amount of physi-
cal qubits can be measured repeatedly with a high repetition rate. Considering
the large numbers of physical qubits required for useful universal quantum com-
puting, a capable readout mechanism that integrates with the densely intercon-

1Derived from the Rabi frequency fR = 3.9 MHz and Carr-Purcell-Meiboom-Gill (CPMG) coherence time
T CPMG

2 = 3.1 ms (for 1024 π pulses): fRT CPMG
2 ≈ 23,800 [20]

2For instance, the fidelities of initialization, operation, and readout need to be further increased significantly.
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nected qubit array and provides high-fidelity readout is demanded. This is a chal-
lenge as current techniques often rely on sensing quantum dots [35] connected
to large-footprint charge reservoirs that cannot be placed inside a dense array.
Also, a scalable initialization mechanism is required. However, if a capable readout
mechanism is found it might be possible to utilize it for initialization, too [25].

• Quantum states are extremely fragile. Therefore semiconductor spin qubits are
placed in dilution refrigerators capable of achieving millikelvin temperatures. How-
ever, reaching these temperatures is extremely energy-consuming, and thus cur-
rent refrigerators only provide microwatts of cooling power at millikelvin tempera-
tures [36], [37]. Consequently, a sophisticated heat management is required. Cur-
rently, most control electronics are placed outside the fridge from where they are
directly wired to the cooled-down quantum chip. This approach, utilizing indi-
vidual control lines per qubit, challenges scalability. On-chip and in-fridge con-
trol electronics could contribute to overcoming this challenge but need to be op-
timized for low-power dissipation [38]. A better understanding of heat flows in
quantum devices is required and it might be necessary to increase the operation
temperature of spin qubits to gain higher cooling powers [39]–[42].

1.3. WHAT CAN BE LEARNED FROM FLASH MEMORY
When working on a problem it can be beneficial to get inspiration from other areas of
engineering, research, or from nature itself. There are similarities between the problems
that are faced in quantum computing research today and the challenges engineers and
researchers working on integrated circuits for classical computing had to overcome.

Today we often take it for granted that there exist SD cards or USB sticks with up
to terabyte storage capacity [43]3, but developing the underlying technology came with
considerable hurdles. Before 1970 a memory providing fast access, highly scalable ca-
pacities, and continued storage when disconnected from power (non-volatility)4 was
not invented yet. This changed during the 1970s with the development of electrically
erasable programmable read-only memory (EEPROM) [44] and led to the invention of
flash memory in 1984 by Fujio Masuoka [45]. Flash memory builds – among others –
upon two essential ideas [46]:

1. A crossbar array of vertical and horizontal control lines (word and bit lines) pro-
vides a selection mechanism of single cells in a two-dimensional grid.

2. In a MOSFET a floating gate can be positioned in the oxide layer between the
semiconductor and gate electrode. In such a structure, under large gate voltages
charges can tunnel through the oxide to the floating gate. There they remain, even
when the voltage is removed, and change the MOSFET threshold voltage.

The role of these two ideas is illustrated in Fig. 1.1. In flash memory, information
is stored in the individual threshold voltages of floating gate FETs. For instance, a high

3Although, USB sticks are seeming to disappear more and more in favor of cloud storage solutions.
4while being reprogrammable and economic in production
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Figure 1.1: Flash memory architecture. (a) Scheme of electrical interconnects. Word lines W Li and bit lines
BLi and a global source line SL are connected to the gate, drain, and source contact of floating gate FETs
which are arranged in a 2D grid. (b)-(d) Cross-section of floating gate FETs illustrating the erase, program,
and read process, respectively. (b) A voltage difference of 10 V applied across the source S and gate contact
induces Fowler-Nordheim (FN) tunneling of electrons from the floating electrode to the source contact. This
lowers the transistor threshold voltage. (c) A gate voltage of 10 V is applied and a high current is induced in
the channel causing the injection of channel hot electrons (CHE) into the floating electrode. This increases the
threshold voltage. (d) Probing the channel conductivity at moderate gate voltage (3 V) reveals the stored bit.
Detection of (no) current corresponds to a logical (1) 0. Note that the figure only shows one specific variant
of flash memory: a NOR architecture with EPROM tunnel oxide cells (ETOX). Figure reproduced from ref [46]
page 353 with permission from John Wiley & Sons, Incorporated.

threshold voltage could correspond to a logical 1 and a low threshold voltage to a logical
0.

The floating gate FETs are arranged in a grid and connected to a crossbar array of
control lines (Fig. 1.1.a) allowing for random access to all array sites. As an example, to
read the bit stored in the upper left floating gate FET a gate voltage is applied to line W L1

(also see Fig. 1.1.d). This gate voltage is chosen to lie in between the threshold voltages
decoding a 1 or 0. Therefore, when a source drain bias is applied across SL and BL1,
the state of the upper left bit can be inferred from the presence or absence of a current
flowing through the transistor.

Fig. 1.1.b and c show how bits can be erased (set to 0) and programmed (set to 1),
respectively. To erase a memory bit a stress voltage, for instance 10 V, is applied to the
source contact (S) upon which electrons will tunnel from the floating gate through the
oxide to the source contact (Fig. 1.1.b)5. In contrast, to program a memory bit 10V is
applied to the gate electrode and drain contact (D) to inject electrons into the floating
gate via hot carrier injection (Fig. 1.1.c). The removal or addition of electrons from or to
the floating gate shifts the threshold voltage of the transistor such that the stored bit is
set to 0 or 1, respectively.

The crossbar arrangement of interconnects and the electrical tunability of threshold
voltages lie at the heart of high-capacity flash drives but they also could play an impor-

5This erase process cannot be applied to individual floating gate FETs. When 10 V are applied to the SL control
line the full array is erased or more colloquially the array is "flashed".
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tant role in semiconductor spin qubits. While crossbar interconnects provide random
access to the stored information in flash memory, in this work they enable the control
over an unprecedented count of 16 quantum dots with odd charge occupation in a dense
array. Furthermore, in the second half of this thesis, it is shown that stress voltages not
only can shift FET threshold voltages but also allow to increase the uniformity of voltage
characteristics in quantum dot arrays. This is demonstrated by reaching single electron
occupation at equal plunger gate voltages in a 2×2 quantum dot array.

1.4. THESIS OUTLINE
The following chapters are structured as follows:

• Chapter 2 provides a discussion of the experimental methods and theoretical back-
ground underlying this work. It presents the heterostructures utilized in this the-
sis, discusses mechanisms that limit the electrical uniformity in quantum dot de-
vices, and provides details on the tuning and characterization of quantum dot ar-
rays including a discussion on fitting the polarization of detuned double quantum
dots.

• In Chapter 3 a 2×2 quantum dot array in a Si/SiGe heterostructure is presented.
Single electron occupation is reached in all quantum dots simultaneously and
control over interdot tunnel couplings is demonstrated.

• The quantum dot array of chapter 3 comes with individual control of all plunger
and barrier gate voltages. A more scalable approach based on shared plunger and
barrier gate electrodes is the topic of chapter 4. In this chapter a 4×4 quantum dot
array in Ge/SiGe is presented. It is shown that an odd charge occupancy of either
one or three holes can be reached for all 16 quantum dots simultaneously and
that a double barrier architecture allows for selective control over interdot tunnel
couplings.

• Further scaling of shared gate arrays such as the one presented in chapter 4 re-
quires improvements of the electrical uniformity in quantum dot devices. In chap-
ter 5 a new method to increase the electrical uniformity in quantum dot devices is
presented and characterized. The method, which is purely based on stress voltage
sequences, is demonstrated by equalizing the pinch-off voltages of four plunger
gates in a linear array.

• In chapter 6 the stress voltage tuning method from chapter 5 is utilized in quan-
tum dot arrays to demonstrate control over the plunger gate voltages that are re-
quired to reach single electron occupation. It is shown that a 2×2 array identical
to the one from chapter 3 with 1 V applied to all plunger gates can be tuned from
irregular charge occupancy to single electron occupation without changing any
other gate voltage.

• Chapter 7 concludes this thesis by placing the contributions on two-dimensional
arrays and voltage uniformity control into the context of recent developments in
the field of semiconductor spin qubits and by providing an outlook on the near
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and more distant future for stress voltage tuning and dense two-dimensional spin
qubit arrays.
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THEORETICAL AND EXPERIMENTAL

BACKGROUND
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Figure 2.1: Heterostructure schematics Cross-sectional drawing of the Si/SiGe and Ge/SiGe material stacks
of the devices in this thesis. The direction of the strain in the quantum well, the spin-carrying charge, the
valley splitting, and the spin-orbit coupling are indicated by pictograms explained in the legend below. Figure
inspired by ref [5].

Semiconductor spin qubits are defined in purposely designed semiconductor het-
erostructures on which metallic gate electrodes are deposited. Applying the right set of
voltages to these gate electrodes – "tuning the device" – will isolate single electrons or
holes which then can be utilized as spin qubits. This chapter presents the experimental
and theoretical background on the heterostructures employed in this thesis work, the
imperfections of quantum dot devices, and the tuning and characterization of quantum
dot arrays.

2.1. MATERIALS FOR GATE-DEFINED QUANTUM DOTS
The heterostructures underlying the works presented in this thesis are based on silicon
(Si), germanium (Ge), and silicon-germanium alloys Six Ge1−x with x the stoichiometric
concentration of silicon (or SiGe in short notation). Specifically, the devices of chap-
ter 3, chapter 5, and chapter 6 are fabricated on a Si0.7Ge0.3/28Si/Si0.7Ge0.3 (Si/SiGe)
stack [1]–[3] and the devices in chapter 5 section 5.10 as well as in chapter 4 are based
on a Si0.2Ge0.8/Ge/Si0.2Ge0.8 (Ge/SiGe) stack [4]. A schematic representation of both sys-
tems is provided in Fig. 2.1.

High-quality heterostructures are fundamental in the development of scalable quan-
tum dot spin qubit arrays for quantum computing. Ideally, they should provide quantum
wells with high electrical uniformity, low noise levels, and a non-degenerate ground state
that energetically is sufficiently separated from the first excited state. Considering these
requirements, while not perfect, both Si/SiGe and Ge/SiGe devices positioned themself
as highly promising candidates for scalable spin qubit processors.

ELECTRICAL UNIFORMITY
Variations in the electrostatic potential of spin qubit devices are commonly observed [6]–
[8]. In devices designed for only a few qubits, these can be compensated for by indi-
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vidualized control voltages. However, when scaling to large numbers of qubits, a high
electrical uniformity significantly eases the operation and is likely crucial [9], [10].

A fast and robust way to characterize heterostructures is provided by Hall effect mea-
surements from which the maximum achievable mobility and percolation density can be
extracted. These serve as an indicator of electrical uniformity. Both Si/SiGe and Ge/SiGe
come with (steadily improving) high mobilities µ and low percolation densities np/pp

with:

• µSi/SiGe ≈ 105 cm2/Vs and np ≈ 1010 cm−2 in Si/SiGe [1]

• µGe/SiGe ≈ 106 cm2/Vs and pp ≈ 1010 cm−2 in Ge/SiGe [11]

at the time of writing. The high mobility and low percolation density, proofing the low
disorder landscape, are possible due to the epitaxial uniformity of the quantum well/SiGe
spacer interface and the considerable distance of the quantum well from the topmost di-
electric layers. The combination of these two characteristics greatly increases mobility
and percolation density compared to Si-MOS [12], [13]. Furthermore, careful selection of
the Six Ge1−x alloy composition sets the band offset between the quantum well and SiGe
spacer and enables to achieve low strain induced disorder while still providing electron
or hole confinement [5].

Quantum dot gate structures are significantly smaller than Hall bars (≈ 0.1×0.1 µm
vs. ≈ 100×1000 µm). Still, the charge density in a quantum dot array will be of the same
order of magnitude as the above-reported percolation densities. However, the larger sur-
face area of a Hall bar renders mobility and percolation density a more averaged measure
of the disorder. Therefore, effective potential fluctuations experienced by quantum dots
can differ from those revealed by Hall effect measurements. A discussion on electrical
uniformity in quantum dot devices follows in section 2.3 which also details potential
physical effects causing the underlying disorder.

NOISE ENVIRONMENT
A quiet noise environment is a prerequisite for the implementation of high-fidelity ini-
tialization, manipulation, and readout in quantum devices. Semiconductor spin qubits
are predominantly affected by charge noise, describing dynamic fluctuations of the elec-
tric field, and nuclear noise, describing dynamic fluctuations of the nuclear spin bath of
the host material.

Charge noise couples to the electron or hole spin through exchange coupling (if de-
pendent on the electric field) and spin-orbit interaction. A strong spin-orbit interaction
is found in Ge/SiGe. In Si/SiGe, the spin-orbit interaction is significantly lower [5]. How-
ever, a micromagnet is commonly added on top of the device to induce an artificial spin-
orbit field allowing for fast high-fidelity single qubit gates [14]–[17]. In one-dimensional
arrays, these magnets can be designed to suppress magnetic field gradients that lead to
charge noise induced dephasing [17], [18]. However, such suppression is significantly
more challenging in two-dimensional arrays [19], [20]. Therefore, Si/SiGe and Ge/SiGe
low charge noise characteristics are essential.

Charge noise can originate from gate voltage fluctuations but can have its source in
the material stack as well. Its noise power spectral density (PSD) often is observed to
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follow an inverse frequency trend (PSD ∝ 1/ f ), suggesting two-level fluctuators (TLFs)
as a dominant noise source [15], [21]. These can reside in the device dielectrics which
are known for high charge trap densities [22]–[24]. In Si/SiGe and Ge/SiGe, the dielectrics
are separated from the SiGe buffer layer reducing their influence on the quantum well.
TLFs also might be present in the semiconductor layers, for instance originating from
disorder induced by strain relaxation in the quantum well [3].

Magnetic noise from nuclear spins of the host material can directly couple to the
electron or hole spin degree of freedom. Silicon and germanium both exhibit abundant
nuclear spin-free isotopes (28Si, 30Si, 70Ge, 72Ge, and 74Ge1) [25]. Therefore, decoherence
induced by nuclear fluctuations is suppressed. Additionally, silicon quantum wells can
be isotopically purified by reducing the amount of 29Si [26]. Also, germanium crystals
can be purified [27], [28] promising the development of heterostructures with purified
germanium quantum wells.

EXCITED STATES

Low-lying excited states can be detrimental to qubit initialization, readout, and opera-
tion as they can induce leakage out of the computational Hilbert space. For instance,
the presence of low-lying excited states can lift Pauli spin blockade and thus hamper its
use for spin readout [29]. Low-lying excited states originate from insufficient quantum
confinement or low-lying valley states. In germanium quantum wells, the degeneracy of
the valence band is lifted by confinement and strain resulting in a generous energy gap
of ≈ 50−100 meV between the two topmost states (heavy holes and light holes) [4], [30].
However, in silicon, these two mechanisms only split off four of the six degenerate con-
duction band valleys. The remaining two-fold degeneracy is lifted by the interplay of the
electron wavefunction with the Si/SiGe interface [31], [32] resulting in fluctuating valley
splittings of 50-250 µeV [1], [5], [33], [34]. Engineering consistently high valley splittings
is one key goal of Si/SiGe heterostructure development. For instance, the incorporation
of germanium into the silicon quantum well was proposed and is explored as a means to
increase the valley splitting in Si/SiGe heterostructures [35], [36]

SPIN-ORBIT INTERACTION

While spin-orbit interaction can mediate charge noise into decoherence as described
above, it can also provide a mechanism for the implementation of fast, low-footprint sin-
gle qubit rotations. Holes in Ge/SiGe naturally come with strong spin-orbit interaction
and applying an on-resonant modulation of a nearby gate voltage allows for high-fidelity
single qubit operations [37]. This eliminates the need for multi-micron large structures
to induce strong oscillating magnetic fields for electron spin resonance (ESR) [38], [39].
However, the spin-orbit interaction in Ge/SiGe also induces a pronounced g-factor aniso-
tropy with principal axes that can strongly vary from quantum dot to quantum dot [40].
This variation might pose challenges to the scaling towards large numbers of qubits.
While this is not of concern in Si/SiGe heterostructures, the intrinsic spin-orbit inter-
action is not strong enough for sufficiently fast single-qubit rotations, either. As already
mentioned, the placement of micro- or nanomagnets can provide a tailored artificial

1There is also 76Ge which has a half-life time of 1021 years and thus could be considered as stable.
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Figure 2.2: Electrical transport characteristics. a, b Distributions of mobility µmeasured at n = 6×1011 cm−2

and percolation density np for heterostructures featuring quantum wells of different thickness w : 9.0(5) nm
(blue, heterostructure A, 16 Hall bars measured and reported in ref. [3]), 6.9(5) nm (purple, heterostructure B,
10 Hall bars), and 5.3(5) nm (green, heterostructure C, 22 Hall bars measured and reported in ref. [3]). Violin
plots, quartile box plots, and mode (horizontal line) are shown.

spin-orbit interaction that allows for fast high-fidelity single qubit gates, too [14]–[17].
Beyond that, architectures that do not require (artificial) spin-orbit interaction are ex-
plored. For instance, global control schemes do not require individual single qubit ro-
tations [41], [42], and a qubit encoding with single and two-qubit gates solely based on
exchange interaction requires neither spin-orbit interaction nor on-chip ESR infrastruc-
ture [43].

2.2. SI/SIGE HETEROSTRUCTURES IN THIS THESIS2

The development of Si/SiGe and Ge/SiGe heterostructures is an ongoing process yield-
ing continuous improvements. This is also reflected in the Si/SiGe devices underlying
this thesis which are fabricated on two heterostructures, heterostructure A [3] is found
in chapter 3 and chapter 5, and heterostructure B is found in chapter 5 section 5.10,
and chapter 6. The two heterostructures differ in the thickness of the quantum well and
in their dielectric interface. Heterostructure A is grown with a 9 nm and heterostruc-
ture B with a 7 nm thick quantum well and while a ≈ 1− 2 nm thick partially oxidized
silicon layer caps the Si/SiGe stack in heterostructure A, the upper SiGe buffer layer in
heterostructure B is passivated in dichlorosilane at 500◦C.

Improving the uniformity, noise performance, or valley splitting in Si/SiGe often re-
quires careful trade-offs. While some instances of large valley splittings (up to 0.286 ±
0.026 meV) within a wide distribution have been measured in 3 nm ultra-thin quantum
wells [44], they also may lead to increased wavefunction overlap with the quantum well
interfaces enhancing scattering and reducing mobility [45]. Thicker quantum wells pro-
vide higher mobilities. However, too thick quantum wells can exhibit strain release de-
fects which reduce the mobility again [3]. These effects also can be seen when comparing

2This section has been published as Degli Esposti et al. [1].
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Figure 2.3: Charge noise and valley splitting measurements. a Experimental scatter plots of charge noise at 1
Hz (S1/2

ϵ (1 Hz)) for multiple devices and different electron occupancy. Data from the 6.9(5) nm quantum well
(purple, heterostructure B, 2 devices, 17 spectra) is compared to data from the 5.3(5) nm quantum well (green,
heterostructure C, 63 spectra, 5 devices, reported in ref. [3]). We compare single-layer devices (diamonds) and
multi-layer devices featuring overlapping gate geometry and micromagnets (circles). Dashed lines and shaded
areas denote the mean value and two standard deviations. b Experimental scatter plots of valley splitting ob-
tained by magnetospectroscopy on complete spin qubit devices. Data from heterostructures with a 6.9(5) nm
quantum well (purple, heterostructure B, 9 quantum dots from 2 devices) is compared to data from a 9.0(5) nm
quantum well (blue, heterostructure A, 16 quantum dots, 3 devices, from ref. [17]). Dashed lines and shaded
areas denote the mean value and two standard deviations.

the mobilities of heterostructures A and B as well as a third heterostructure (C) identical
to heterostructure B but with a thinner 5 nm thick quantum well. Fig. 2.2.a shows the
mobility and percolation density distribution obtained from at least 10 hall-bar-shaped
heterostructure field-effect transistors per heterostructure3. The 6.9 nm quantum well
performs the best, with a mean mobility at high densities of µ = 3.14(8)× 105 cm2/Vs
and a percolation density of np = 6.9(1)×1010 cm2. The distributions show two notable
features: a 50% boost in mobility between the 5.3 nm and 6.9 nm quantum well and
a three-fold reduction in the variance of the distribution between the 9.0 nm quantum
well and the remaining two. The increase in mobility is attributed to reduced scattering
from alloy disorder, as the wave function delocalizes further into the quantum well in-
stead of penetrating into the barrier [46]. The large spread in transport properties of the
wider quantum well is attributed to some degree of strain relaxation and associated de-
fects [3]. Comparing heterostructures A-C, the 7 nm quantum well provides the highest
mobilities.

While mobility and percolation density serve as indicators for electrical uniformity,
low-frequency charge noise measurements conducted utilizing single electron transis-
tors (SETs) can inform about the degree of dynamical disorder. Fig. 2.3.a shows the
noise power spectral density at 1 Hz of the 6.9(5) nm (B) and the 5.3(5) nm (C) quantum
well obtained by tuning to multiple Coulomb peaks and recording source-drain current
traces in two and six devices, respectively. Both heterostructures come without the sil-

3The data on heterostructure A is taken from ref. [3]
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icon capping layer. Additionally, the devices on the 5.3 nm quantum well are defined
by a single layer of gates, whilst the devices on the 6.9 nm quantum well are complete
qubit devices featuring three layers of overlapping gates, additional dielectric films in
between, and micromagnets. The noise power spectral density in the multi-layer de-
vices (purple) and single-layer devices (green) are similar, with power spectral densities
of 0.9(3)) µeV/Hz1/2 and 0.9(9) µeV/Hz1/2, respectively. Thus both heterostructures are
characterized by low mean charge noise values values which are comparable with val-
ues reported in the literature [15], [21], [47]. Compared to heterostructure A, the power
spectral density at 1 Hz was reduced by nearly one order of magnitude [3].

Lastly, the valley splitting of the heterostructures underlying this thesis is consid-
ered. Fig 2.3.b compares the valley splitting of quantum dot devices on the 6.9 nm quan-
tum well (purple, heterostructure B) and on the 9.0 nm quantum well (blue, heterostruc-
ture A) studied in ref. [3]. The plotted values are obtained via magnetospectroscopy[48],
[49] providing singlet-triplet splittings which are reliable estimates of the valley split-
ting energies in strongly confined quantum dots [48]–[51]4. While the dots in all de-
vices measured have the same nominal design and share the same fabrication process,
the heterostructures further differ in the passivation of the SiGe top barrier. The het-
erostructure with the 6.9 nm well is passivated by an amorphous self-terminating Si-rich
layer, while the 9.0 nm well has a conventional epitaxial Si cap [2]. Passivation by a self-
terminating Si-rich layer yields a more uniform and less noisy semiconductor-dielectric
interface, which in turn promotes higher electric fields at the Si/SiGe interface [2], [3].
A statistically significant 60% increase in the mean valley splitting in the 6.9 nm quan-
tum well with an amorphous Si-rich termination is observed, featuring a mean value of
0.24 ± 0.07 meV.

Note that consistently achieving large valley splittings still might be an open chal-
lenge as a larger amount of data points from across the corresponding wafers is required
to reach a comprehensive conclusion. Speculatively, the tighter vertical confinement
within the narrower quantum well [44], coupled with the relatively wide quantum well
interface width increases the overlap of the electron wavefunction with Ge atoms in the
barrier. This amplifies the effect of random alloy disorder, which is known to increase
valley splitting [32], [48]. Similarly, the improved semiconductor dielectric interface fa-
cilitates tighter lateral and vertical confinement of the measured quantum dots, which
leads to a stronger electric field, contributing to driving the valley splitting [52], [53].

In summary, both heterostructures underlying this thesis work provide high mobili-
ties, low percolation densities, respectable charge noise amplitudes, and respectable val-
ley splittings. Additionally, heterostructure B which succeeded heterostructure A shows
simultaneous improvements in all those characteristics achieved by carefully choosing
the quantum well thickness and improvements of the semiconductor-dielectric inter-
face [3].

4The singlet-triplet splitting of two electrons confined in a quantum dot is determined not only by the valley
splitting but also by the orbital splitting, electron-electron interactions (on-site exchange interaction) and the
valley-orbit coupling strength. However, for strong confinement and sufficiently low valley-orbit coupling,
the singlet-triplet splitting can be approximated by the valley splitting [49].
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2.3. IMPERFECTIONS IN THE POTENTIAL LANDSCAPE OF QUAN-
TUM DOTS

Voltages applied to gate electrodes patterned on top of the Si/SiGe and Ge/SiGe material
stacks provide confinement and define the quantum dots. This approach provides flexi-
bility as gate structures can be designed freely within the limits of the utilized fabrication
process. For instance, gates with large aspect ratios can allow for elongated quantum
dots [54], [55]. However, due to their small feature size, quantum dot devices and their
fabrication process are very fragile. Consequently, gate design and gate voltage configu-
ration are not the only parameters shaping the potential landscape. Disorder and device
imperfections often need to be compensated for by individualized gate voltages for each
quantum dot. This challenges the scaling towards devices containing well above tens of
coupled quantum dots.

Statistics on the potential variations in quantum dot arrays would be a valuable source
of feedback to improve device uniformity. However, gathering such statistics is a time
and resource-intensive endeavor as each device needs to be placed in a correspondingly
wired dilution refrigerator and needs to be tuned to single-charge occupation. Recently,
more focus has been put on efforts to automate the tuning process [56]–[64]. Yet, reliable
and repeatable automatic initialization of a given charge state in quantum dot arrays re-
mains a challenge. Until automatic tuning is applied routinely, time-intensive manual
tuning is required rendering the gathering of statistics unattractive. Instead, large-scale
characterizations of easy-to-measure pinch-off voltages can serve as an estimator of po-
tential uniformity in quantum dot devices [6], [8], [65], [66]. Substantial statistics can
be gained by wafer-scale characterizations in cryo-probe stations [8] or through multi-
plexed arrays of sparse and uncoupled single electron transistors [6], [66].

Alternatively, gate voltages can be extracted from the literature on quantum dot and
spin qubit arrays. Fig. 2.4 shows the voltages required to obtain a single electron or hole
per quantum dot across four material platforms and multiple research works. In the
top panel, each bar shows the average real plunger gate voltage VP of a (sub)array of N
quantum dots, while in the bottom panel the voltage range [V −

P −VP,V +
P −VP] for which

a single electron or hole is present are presented in the same color. Here, V −
P and V +

P are
the first and the second charge addition voltage read off directly from charge stability
diagrams5.

For 5 devices and tuning configurations with N = 2, the voltage ranges show an over-
lap in contrast to 14 devices and tuning configurations with N = 2 that exhibit no plunger
gate voltage that is part of both voltage ranges. For the last data set (Borsoi (2023))
corresponding to chapter 4 with N = 16 the ranges of up to 4 quantum dots overlap.
Fig. 2.4 also reveals large variations in the average plunger gate voltage VP in a given
material system. For hole quantum dots, no comparison can be carried out due to the
limited number of data sets available. Furthermore, the distribution of charging voltages
V C =V +

P −V −
P in SiMOS devices exhibits the largest standard derivation of 144 % relative

to its mean value V C. In Si finFETs, Si/SiGe and Ge/SiGe standard derivations of 70 %,
27 %, and 27 % are observed, respectively.

Highly overlapping voltage ranges [V −
P ,V +

P ] and uniform charging voltages are de-

5For a detailed definition of V −
P and V +

P see chapter 6 section 6.4.



2.3. IMPERFECTIONS IN THE POTENTIAL LANDSCAPE OF QUANTUM DOTS

2

21

0

1

2

|
̅

V P
| 

(V
)

Ve
ld

ho
rs

t (
20

15
)

Hw
an

g 
(2

01
7)

Zh
an

g 
(2

02
0)

Lil
es

 (2
02

3)

An
sa

lo
ni

 (2
02

0)

Ch
an

rio
n 

(2
02

0)
Ke

lly
 (2

02
3)

Za
ja

c (
20

16
)

La
w

rie
 (2

02
0)

Ta
ke

da
 (2

02
1)

W
ue

tz
 (2

02
2)

Zi
eg

le
r (

20
23

)
La

w
rie

 (2
02

0)

Bo
rs

oi
 (2

02
3)

−500

0

500

1000

V P
−
̅

V P
 (m

V)

SiMOS Si finFET Si/SiGe Ge/SiGe

+1 electron

-1 electron
centre 1 electron state + VP=

-1 hole

+1 hole
centre 1 hole state + VP=

Figure 2.4: Gate voltage variations in quantum dot devices. The top panel shows absolute average real plunger
gate voltages |VP| for (sub)arrays of N quantum dots extracted from charge stability diagrams from the litera-
ture [13], [48], [64], [67]–[75] and chapter 4 of this thesis. The bottom panel shows the corresponding plunger
voltage ranges [V −

P −VP,V +
P −VP] for which a single electron or hole is present. Electron device voltages are

presented by solid bars in the top panel and a circle marking the center of the one-electron state in the bottom
panel. Hole device voltages are presented by shaded bars in the top panel and a triangle marking the center
of the one-hole state in the bottom panel. Note that in two references multiple double quantum dot voltage
configurations are presented. These are presented separately as indicated by different plot colors.
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Figure 2.5: Illustration of device imperfections affecting the potential landscape. Schematic representation
of a heterostructure with a dielectric capping layer and gate electrodes. Multiple imperfections and types of
disorder are drawn and labeled. Figure inspired by ref [76].

sirable as they can relax requirements on control electronics or enable the implemen-
tation of quantum dot arrays with shared gate voltages easing voltage routing [9], [10].
Fig. 2.4 highlights the need to develop quantum dot devices with more uniform gate
voltage characteristics. Generally, a spectrum of factors can contribute to the observed
variations in characteristic voltages as illustrated in Fig. 2.5. In the following subsections,
these will be discussed.

GATE DESIGN AND GATE SHAPE
The making of a quantum device starts with the design of a gate layout. In current de-
vices, gate structures often are not optimized for regular quantum dot gate voltages.
Individual control is prioritized and the required small feature sizes are at the limit of
what can be fabricated. Readout signatures such as Pauli spin blockade sensed by a
nearby sensing quantum dot require this one to be placed asymmetrically with respect
to the corresponding quantum dot pair. Thus, even without any further imperfections
present in the devices, non-identical required gate voltage ranges are expected. Further-
more, deviations from the designed gate structure originate from the finite grain size of
the deposited metals and other variations common to the fabrication in academic set-
tings [13], [77], [78]. However, utilizing more semiconductor foundry compatible pro-
cesses promises to improve the gate uniformity [65], [79].

VOLTAGE TUNING METHODOLOGY
Also, the tuning strategy can influence the distribution of gate voltages. Multiple volt-
age configurations can lead to the same charge occupation and tunnel couplings but
with slightly different quantum dot locations and shapes [51]. Cross-capacitive coupling
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of each gate to multiple characteristic properties, like quantum dot chemical potentials
or tunnel barrier heights, allows for multiple voltage configurations while maintaining
charge occupation and tunnel couplings. Virtual gate voltages can compensate for this
effect but they are valid for limited voltage ranges only [80], [81]. Their implementa-
tion requires the observation of clearly defined and measurable quantum dot parame-
ters. For instance, screening gates can control the confinement and position of multiple
quantum dots simultaneously while they are also used to prevent charge accumulation
in the direct vicinity of the quantum dot array. This palette of functionalities cannot
easily be summarized in a single continuous and measurable quantity as required for
virtualization. Additionally, the gate voltage configuration corresponding to a specific
system state can depend on the tuning history as will be outlined in more detail in the
subsection about surface tunneling below. Overall, this highlights that tuning strategies
for more uniform gate voltage configurations might become increasingly relevant when
developing larger quantum dot arrays.

GATE ELECTRODE INDUCED STRAIN

The heterostructure and gate stack are composed of various materials that are character-
ized by a range of thermal expansion coefficients. For instance, the thermal expansion
coefficient of silicon is 2.6×10−6 1/K [82] in contrast to Ti/Pd gate electrodes which show
a thermal expansion coefficient of ≈ 13×10−6 1/K [83]. Quantum dot devices experience
significant temperature variations between 10 mK when cooled down for operation and
573 K (300 oC) during their fabrication. The differences in expansion coefficients lead
to material strain that is propagated throughout the heterostructure. For SiMOS de-
vices with thermally oxidized aluminum gates, the strain-induced shift of the conduc-
tion band is predicted to be on the order of 10 meV [82]. In a silicon quantum well buried
91 nm deep in SiGe below a Ti/Pd gate stack a strain of 0.03 % was found [84] that fol-
lowing ref [82] would result in a conduction band shift of ≈ 3 meV. These strain-induced
alterations of the conduction band are comparable to typical charging energies in quan-
tum dot devices which are on the order of a few meV [58], [70], [85]. Thus they can have
a significant effect and even lead to the formation of spurious quantum dots or charge
traps. Gate materials with a thermal expansion coefficient closer to the semiconductors
are proposed to reduce stress-induced potential fluctuations [82], [86]. Alternatively, the
electrode-induced stress could actively be designed to refine the potential landscape of
quantum dots [82], [87].

INTERFACE CHARGE TRAPS

Potential fluctuations also originate from charge traps. These are predominantly found
in the oxides and oxide interfaces that separate the Si/SiGe material sandwich from the
gate stack [22]–[24]. While dependent on fabrication and tuning practices, the density
of trapped charges has been estimated to be ≈ 1012/cm2 [23], [88]–[91]. This trans-
lates to hundreds of charge traps present in the area occupied by a single quantum dot
(≈ 100 nm×100 nm). As oxide and oxide interface traps also affect the performance of
established MOS technology, they have been studied extensively. Measuring the capaci-
tance of a MOS capacitor as a function of bias voltage and frequency (CV-measurement)
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established as a routine characterization tool6 and let to the classification into four types
of charge traps [93] as illustrated in Fig. 2.6.a: (1) interface traps, (2) fixed oxide charges,
(3) oxide trapped charges, and (4) mobile ionic charge. Interface traps are located at
or close to the semiconductor-oxide interface. This allows them to exchange electrons
with the semiconductor valence or conduction band when energetically favorable. Fixed
oxide charge traps are located close to the semiconductor-oxide interface, too, (up to
≲ 2.5 nm for Si/SiOx) but cannot exchange electrons with the semiconductor anymore.
They are related to oxidation processes during the device fabrication and are positively
charged. Oxide-trapped charges are found in the bulk part of the oxide and are attributed
to post-oxidation treatments such as ionizing radiation or the application of large volt-
ages (stress voltages). They may also be charged through hot carrier injection or quan-
tum tunneling processes. Mobile ionic charge describes weakly bonded ions such as
positively charged hydrogen and sodium which at sufficiently large temperatures be-
come mobile and can redistribute inside the oxide under the force of an electric field.

Controlling the amount of charge traps turns out to be a complex endeavor requiring
a good understanding of the underlying physical trapping mechanisms and optimiza-
tion of device fabrication. Fig. 2.6.b illustrates this complexity by schematically depicting
a non-exhaustive selection of potential charge-trapping mechanisms at the SiGe/oxide
interface. It is based on the material composition of the devices presented in chapter 4,
chapter 5 section 5.10, and chapter 67. For these devices, the SiGe surface was passi-
vated in dichlorosilane at 500 ◦C [2] before being oxidized in air and during the subse-
quent atomic layer deposition of aluminum oxide [95], [96]. Increased silicon and oxide
concentration at the interface and a germanium pile up directly below indicate the pre-
dominant formation of silicon oxide between the SiGe buffer and the aluminum oxide
layer [2].

In this silicon oxide layer, a range of mechanisms can lead to the trapping of charge.
A few exemplary candidates are:

• Silicon and germanium dangling bonds can emerge close to the semiconductor-
oxide interface to relieve strain induced by the mismatch of the SiGe and SiO2 (av-
erage) lattice constant [92], [97]–[99].

• Strain-induced bond length and angle variations might lead to localized charge
states [100].

• The rupture of a silicon-oxygen, hydrogen-oxygen, or oxygen-oxygen bond can
result in an oxygen atom with an unpaired electron which is prone to trap another
electron [99].

The silicon oxide layer is followed by an aluminum oxide layer. This layer and its in-
terface with the silicon oxide can provide further charge traps. Some but not all potential

6An introduction to CV-measurements can be found in ref [92].
7The oxide-SiGe interfaces of the devices presented in chapter 3 and 5 differ by an additional partially oxidized

silicon capping layer between the SiGe and aluminum oxide. However, similar considerations apply.
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Figure 2.6: Charge traps in the oxide layers. a Schematic cross-section through a SiMOS capacitor illustrating
four types of charge defects in the silicon oxide interface layer. Categorization into these four types origi-
nates from a standard developed for capacitance-voltage measurements [93]. b Illustration of potential charge
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inspired by ref [93] and panel b inspired by ref [94].
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mechanisms are:

• To match the structure of silicon dioxide, amorphous aluminum oxide might form
in a tetrahedral arrangement exhibiting dangling oxygen bonds that can capture
electrons [101]–[103].

• Oxygen vacancies could facilitate electron or hole trapping [104].

• Increased oxygen counts at the silicon oxide-aluminum oxide interface might be
the origin of electron accumulation [105].

Note that these examples illustrate the complexity of the charge-trapping in the ox-
ide layers but detailed studies are required to make statements about the exact charge-
trapping effects in the SiGe heterostructures of this thesis or other works on quantum
dot spin qubits.

FURTHER DISORDER MECHANISMS
While oxide interface defects outnumber defects in the semiconductor stack, a single
misfit discoloration or impurity, if localized close to the quantum well, can reshape the
quantum dot potential landscape much more drastically. For the heterostructures un-
derlying this thesis, a low oxygen concentration around the quantum well [24] suggests a
limited influence of background impurities. Misfit dislocations can induce charge trap-
ping through dangling bonds, strain-induced potential fluctuations, or attraction of im-
purities that can catch holes or electrons [106]. They are found in the virtual substrate
and facilitate the relaxation of strain induced by the silicon-SiGe grading. However, their
influence is limited as their density decreases significantly towards the quantum well [1].

Besides misfit dislocations and background impurities, interface roughness at the
silicon or germanium quantum well or an interface slightly misaligned with the crystal
lattice planes could alter the potential landscape in the quantum well [45], [48], [107].

SURFACE TUNNELING
It was already mentioned that the quantum well background potential also can depend
on the tuning history. Measurements of the Hall effect in Si/SiGe and Ge/SiGe het-
erostructures have revealed a charge tunneling process that increases peak mobility but
also gives rise to hysteretic gate voltage characteristics [23], [108]–[111]. Fig. 2.7 schemat-
ically depicts the conduction band energy (EC) and charge density (in blue) in a Si/SiGe
heterostructure and illustrates the role of charge tunneling for three distinct gate volt-
age regimes (A-C). For low to moderate gate voltages (A) the conduction band is pulled
below the Fermi energy (EF). Provided through ohmic contacts, electrons can flow into
the Si quantum well and accumulate at its top interface. When the gate voltage is fur-
ther increased (B) the conduction band at the SiGe-oxide interface also approaches the
Fermi energy. If the gate voltage is high enough, electrons can tunnel from the quantum
well through the SiGe buffer conduction band barrier to the SiGe-oxide surface. The
tunneled electrons then occupy interface charge traps if they provide energetically fa-
vorable states within reach. This charge-trapping process can compensate for potential
fluctuations which for instance are induced by charged defects located deeper into the
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Figure 2.7: Charge tunneling from the quantum well to the dielectric interface. A cross-section through a
Si/SiGe devices is shown (bottom). The shape of the conduction band energy (EC) and Fermi level (EF) in
this heterostructure for three regimes (A-C) of gate voltages is drawn above. Interface traps are depicted by
horizontal lines and their occupation is indicated by blue circles. The charge density across the material stack
is depicted in blue. For low to moderate gate voltages (A) the conduction band is pulled below the Fermi energy
and electrons accumulate in the Si quantum well. For increased gate voltages (B) electrons can tunnel from the
quantum well through the SiGe buffer as indicated by the blue arrow and occupy interface charge traps. Under
the application of even higher gate voltages (C) electrons accumulate directly at the silicon oxide interface.
Figure inspired by refs [90], [108], [109].
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oxide. Therefore an increased mobility and a concurrent density saturation can be ob-
served [109], [110]. If at this point one would reduce the gate voltage back to the level
applied in A, a charge density lower than before would be observed as electrons that
are trapped close to the oxide interface cannot tunnel back and thus induce a potential
offset in the quantum well. Under the application of even higher gate voltages (C) the
SiGe conduction band at the oxide interface drops below the Fermi energy and electrons
accumulate directly at the interface. When the mobility threshold is surpassed this can
even result in a second conducting channel. All three stages are observed in Ge/SiGe het-
erostructures, too [90], [111]. Here the application of sufficiently low gate voltages also
leads to mobility improvements and hysteretic gate voltage shifts, which are attributed
to the tunneling of holes from the quantum well to interface trap states.

COMMENT ON NON-ELECTROSTATIC DISORDER AND NOISE
The discussion above is focused on electrostatic imperfections in quantum dot and spin
qubit devices. However, as also discussed in section 2.1, it shall be noted that the static
potential landscape is not the only aspect that is impacted by noise and disorder. Dy-
namic charge fluctuations (charge noise) [15], [21], [112], [113], as well as nuclear mag-
netic noise [114]–[116], and variations of parameters such as valley splitting [35], [36],
[51], [117], [118] and g-tensor [119]–[121] also affect the performance and scalability of
spin qubit processors.

2.4. TUNING AND CHARACTERIZATION OF QUANTUM DOT AR-
RAYS

SINGLE ELECTRON TRANSISTORS
The charge states of the quantum dots presented in this thesis are measured by sens-
ing the conductance through a single electron transistor (SET) that is placed close to the
quantum dot array. Each SET is defined by a plunger gate (S) and two barrier gates (B1
and B2). Before forming a SET a starting voltage is applied to the plunger and barrier
gates inside the array which is chosen close to the expected value for quantum dot for-
mation (e.g. ≈ 0.5− 1 V in the Si/SiGe heterostructures). Then, the voltages on gates
S, B1, B2, and gates required to form nearby charge reservoirs are increased simulta-
neously until a conducting path is obtained. The resulting channel is illustrated in the
inset of Fig. 2.8.a. In this state, the device functions like a field effect transistor and de-
creasing the voltage VS on gate S will pinch off the conductance channel as shown in
Fig. 2.8.a. Next, while continuously sweeping VS, the voltages VB1 and VB2 on the bar-
rier gates B1 and B2 are step-wise decreased while VS is increased until a quantum dot
with quantized energy levels forms as depicted in the inset of Fig. 2.8.b. The main pan-
nel of Fig. 2.8.b shows the resulting Coulomb oscillations characteristic for a SET. The
regularity of the Coulomb oscillations, the peak-to-valley signal ratio, and the shape of
the Coulomb peaks can be fine-tuned by adjusting the barrier gate voltages as demon-
strated in Fig. 2.8.c which shows the sensor conductance as a function of the voltages
on gates S and B1. At VB1 = −50 mV low-quality Coulomb oscillations are observed as
highlighted in the figure inset (I). Increasing VB1 to VB1 = 50 mV leads to more regular
Coulomb peak shapes (curve II in the figure inset). Generally, the aim is to reach sharp
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Figure 2.8: Tuning a single electron transistor. a Example plunger pinch-off curve of a single electron transis-
tor (SET) tuned to the field effect transistor (FET) regime. The conductance G is shown as a function of SET
plunger gate voltage VS. The inset illustrates the conduction band edge (EC) and the charge density (blue) in
this regime. The three SET gates (S, B1, and B2) are depicted and green arrows indicate that all gate voltages
are increased simultaneously from 0 V to reach the FET regime. The dark red arrow marks the current when
the charge reservoirs are biased. b The green and light read arrows in the inset illustrate how the gate voltages
(VS, VB1, VB2) are changed to form a quantum dot starting from the situation depicted in a. The quantum dot
potential landscape and its charge states are depicted above. The blue circle represents an electron occupying
the quantum dot. The main graph shows typical Coulomb blockade oscillations observed when sweeping the
SET plunger and indicative of quantized charge states. c Example SET conductance as a function of its plunger
voltage VS and a barrier voltage VB1. The shape of the Coulomb oscillations varies with the barrier voltage. For
two values of VB1 a line cut is shown in the lower left inset (I and II). Panel a, b, and c show data measured in
a Si/SiGe 2x2 quantum dot system. The data in panel a and b belong to the same device. The data in panel c
belongs to a different device.
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Figure 2.9: Charge-sensed quantum dots. a Example sensor response as a function of SET plunger gate voltage
VS and quantum dot Q1 plunger gate voltage VP1. The SET Coulomb oscillations are shifted abruptly when the
charge state of quantum dot Q1 is changed. These charge transitions are marked by black arrows. b Example
sensor response as a function of two quantum dot (Q1 and Q2) plunger gate voltages VP1 and VP2. A typi-
cal honeycomb pattern is observed. Dashed lines mark two example charge transitions. The more horizontal
charge transition line corresponds to quantum dot Q1 and the more vertical charge transition line to quantum
dot Q2. The continuous change in sensor response in the background is a consequence of the capacitive cou-
pling of the two plunger gates P1 and P2 to the sensing quantum dot (SET). Panel a and b show data measured
in a Si/SiGe 2x2 quantum dot system. The data in panel a and b belong to different devices.

and high Coulomb peaks as they provide the highest charge sensing contrast.

CHARGING THE QUANTUM DOTS
Next, the plunger gate of a quantum dot that lies adjacent to the SET is swept while
monitoring the Coulomb oscillations as illustrated in Fig. 2.9.a. Such a scan is repeated
continuously while adapting the offset of the plunger gate voltage VP1 and other close-
by gates. Similar to the tuning of a SET, one can start increasing VP1 and lowering the
surrounding gate voltages to shape a confining potential. When a quantum dot that is
sufficiently coupled to a charge reservoir (e.g. the SET itself) is formed, jumps in the
Coulomb oscillations are observed as marked by black arrows in Fig. 2.9.a. These jumps
correspond to a change in charge occupancy in the formed quantum dot which leads
to a capacitively induced shift of the Coulomb oscillations. The same procedure can be
repeated to tune further quantum dots in the array. It is also helpful to scan the sensor
response as a function of two quantum dot plunger gates as illustrated in Fig. 2.9.b which
shows a honeycomb pattern, a typical signature of a double quantum dot. The charge
transitions of the two quantum dots can be identified from their slopes (marked by two
dashed lines). Here the steeper slope corresponds to the quantum dot formed under-
neath gate P1 and the less steep slope to the quantum dot formed underneath gate P28.

8A detailed review of the charge characteristics of quantum dots and how they can be modeled can be found
in ref [122], [123].
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To tune up an array of quantum dots as presented in chapter 3, first, all four quantum
dot voltage configurations are searched for by SET plunger versus quantum dot plunger
scans. The abrupt shifts of Coulomb oscillations are attributed to a specific quantum
dot by comparing the charging voltages V Pi

C obtained for sweeping all plunger gate volt-
ages VPi . The charging voltage is defined as the voltage difference ∆VPi from one charge
transition to the next one. Assuming that all gates have a similar effect on the quan-
tum well potential, the quantum dot number Qi is given by the plunger gate for which
the smallest charging voltage is observed. When a quantum dot is identified its plunger
gate voltage is set far from charge transitions, for instance well below the last transition
feature. Then the next quantum dot is searched for analogously. After the signatures of
all quantum dots have been observed their presence can be confirmed by quantum dot
plunger versus quantum dot plunger scans as shown in Fig. 2.9.b recorded for all plunger
gate combinations.

VIRTUAL GATES
Virtual plunger gate voltages can ease the tracking of multiple quantum dots by provid-
ing voltages that independently control the chemical potentials of the involved quantum
dots and by keeping the charge sensing dot at high sensitivity [56]. They are defined as
linear combinations of the real gate voltages:

V⃗ virt =MV⃗ real (2.1)

Here V⃗ real and V⃗ virt contain the real and virtual gate voltages, respectively. The matrixM
can be obtained from its inverseM−1. Its elementsM−1

i , j are given by the effect of gate j

on the chemical potential of quantum dot i relative to the effect of gate i on the chem-

ical potential on quantum dot i . They can be estimated from the slopes
∆Vi

∆V j
of charge

transition lines in charge stability diagrams as highlighted by dashed lines in Fig. 2.9.b
or to the slope of Coulomb oscillation peaks as shown in Fig. 2.9.a (also indicated by a
dashed line). Note that iterative updates of the elements of M−1

i , j might be required to

obtain optimal virtualization [56].

ELECTRON TEMPERATURE
Determining the electron temperature(s) Te in quantum dot devices can provide insights
into the degree of thermal isolation and operation-related heating effects. Ideally, Te is
kept well below qubit energy scales Eq and leakage state energies El to prevent thermal
occupation leading to a loss of quantum information: Te ≪ Eq/kB and Te ≪ El/kB with
kB the Boltzmann constant. Additionally, recent work suggests improved qubit fidelities
by choosing an increased device temperature9 at which qubit frequencies do not shift
during quantum operations [124]. Beyond its direct interpretation, Te also enters as a
parameter during the extraction of tunnel couplings via polarization line fitting which
will be discussed further below.

The electron temperature of charge reservoirs can be determined by coupling a quan-
tum dot to a source and drain reservoir and measuring Coulomb blockade oscillations.

9compared to a typical dilution refrigerator base temperature
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The shape of the Coulomb peaks then is determined by the dot-reservoir tunnel cou-
pling, charge noise, and the reservoir electron temperature [125]. To measure the elec-
tron temperature the reservoir-dot tunnel coupling should be lowered until it does not
affect the shape of the coulomb peaks anymore. Furthermore, the measurement time
should be chosen such that charge noise has a negligible effect on the shape of the
coulomb peak10. Also, the applied bias is kept as small as possible. Then the Fermi dis-
tributions of both reservoirs can be assumed to be approximately equal and the current
through the quantum dot as a function of the quantum dot chemical potential is given
by the derivative of the Fermi function [128], [129]:

I = A cosh−2(
α(V −V0)

2kBTe
)+C (2.2)

Here, α is the lever arm of the quantum dot plunger gate (see the following subsec-
tion) and V is the potential on the quantum dot plunger gate. The coulomb peak can be
fitted by equation 2.2 with the scaling factor A, the offset C, and electron temperature Te

as fitting parameters.
It is often observed that the electron temperature can not be decreased below a min-

imum value Te,min [129], [130]. If the sample temperature 11 is lowered further the elec-
tron temperature decouples from the phonon temperature Tph. Phenomenologically
this observation is described by:

Te =
√

T 2
ph +T 2

e,min (2.3)

Note that it has been shown that the electron temperature of quantum dots that
are not directly coupled to a reservoir can differ from the reservoir electron tempera-
ture [131], [132]. Thus, it can be useful to measure the electron temperature of these
quantum dots directly. Similarly to the coulomb peak method, one can determine the
electron temperature from the broadening of an interdot charge transition. To that end
the detuning Vϵ = VP1 −VP2 is swept with VPi the plunger gate voltage that controls the
potential of quantum dot i . Charge sensing allows for the direct recording of the charge
response. For negligible tunnel coupling and charge noise, the charge transition again
can be fitted by a Fermi distribution:

S = A

1+exp

(
−αϵ(V −V0)

kBTe

) +C (2.4)

with the detuning lever arm αϵ and A, V0, and C as additional fitting parameters.

10Typical measurement times (O (ms)), typical integration times (O (µs)), and a typical charge noise power
spectral density of Sµ ≈ 1 µeV /

p
H z at 50 mK and 1 Hz will lead to a temperature error of ≈ 10 mK. Here

it is assumed that the charge noise power spectral density is described by Sµ( f ) = A f −1, the measurement
bandwidth is given by fH− fL, and that the quantum dot potential is given by µ=αV with V the gate voltage
and α the gate lever arm. Then the charge noise induced standard derivation of the quantum dot poten-

tial is given by σ2
V = 2A

α
log

(
fH

fL

)
and the effect of charge noise onto a Coulomb peak can be calculated by

convolution [126], [127].
11often assumed to be equal to the mixing chamber temperature of the corresponding fridge
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Figure 2.10: Extraction of lever arms. a Illustration of Coulomb diamonds emerging when the current through
a SET is recorded as a function of its plunger gate voltage VP and the applied source-drain bias Vsd. Outside the
diamonds, a current is detected, inside the diamonds, no current flows. The slopes ms and md allow to extract
the plunger gate lever arm. b Charge stability diagram of a double quantum dot (Q1 and Q2). The response of
a charge sensor as a function of the corresponding two virtual plunger gates vP1 and vP2 is illustrated. Charge
states are labeled (m,n) with m the charge occupation in quantum dot Q1 and n the charge occupation in
quantum dot Q2. The blue dashed line marks a detuning axis. The slope of the interdot transition is labeled
m12. c Illustration of the same charge stability diagram as in b but as a function of detuning voltage Vϵ and
offset voltage VU . The blue dashed line is identical to the blue dashed line in a.

LEVER ARM
The lever arm αi is the ratio between a voltage change ∆Vi applied to a gate electrode
and the corresponding variation of a relevant energy, for instance, the change in the cor-
responding quantum dot chemical potential ∆µi :

αi = ∆µi

∆Vi
(2.5)

The lever arm of the plunger gate P that controls a reservoir-coupled quantum dot
can be determined from Coulomb diamonds. Coulomb diamonds are observed when
recording the current I flowing through the quantum dot as a function of the plunger
gate voltage VP and the source-drain bias Vsd applied to the source reservoir. Only when
a quantum dot state is available between the Fermi levels of the source and drain reser-
voir a current can flow. This leads to blockaded regions taking the shape of diamonds as
illustrated in Fig. 2.10.a. The edges of these diamonds are given by:

Vs(VP) = msVP +V 0
s and Vd(VP) = mdVP +V 0

d (2.6)

Here mi
12 is the slope of the diamond edge and V 0

i is a constant offset. ms and md

can be determined from Coulomb diamond measurements and allow for calculating the
plunger gate lever arm:

αP = ∥ msmd

ms −md
∥ (2.7)

The lever arm of a gate electrode P1 to a quantum dot Q1 also can be determined
if the corresponding quantum dot is capacitively coupled to a quantum dot Q2 with

12ms = CP

CΣ−Cs
and md = CP

Cs
with CP the plunger, Cs the source, and Cd the drain capacitance to the quantum

dot. CΣ = CP +Cs +Cd. Note that a constant interaction model and thus a semi-classical description is
assumed [122].
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known plunger gate lever arm αP2. From a virtual gate voltage scan of the respective
interdot-transition as exemplary shown in Figure 2.10.b the slope m12 = ∆V virt

P2 /∆V virt
P1

can be extracted. Then the lever arm of P1 to Q1 is given by13:

αP1 = m12αP2 (2.8)

Besides quantum dot plunger gate voltages, the detuning voltage Vϵ is frequently uti-
lized in the tuning and operation of spin qubits. Its underlying energy ϵ is defined as the
potential difference µ1 −µ2 = α1V virt

P1 −α2V virt
P2 between two quantum dots Q1 and Q2.

By additionally introducing the energy offset U = 1

2
(µ1 +µ2) a linear transformation of

the plunger gate voltage space is provided as illustrated in Fig. 2.10.b and c. Then the
detuning lever arm αϵ can be calculated from the plunger gate lever arms αPi :

αϵ = αP1 +αP2

2
(2.9)

The detuning lever arm also can be determined directly by fitting the charge inter-
dot transition at a known tunnel coupling (see section 2.4). Further methods include
photon-assisted tunneling (PAT) [122] and magneto-spectroscopy [35] which require
microwave excitation or magnetic field sweeps, respectively.

TUNNEL COUPLING

The implementation of exchange-based two-qubit gates as well as analog quantum sim-
ulations in quantum dot arrays requires tunnel-coupled quantum dots and ideally con-
trol over the interdot tunnel couplings. Therefore, measuring tunnel couplings can pro-
vide insights how well a quantum dot array is suited for quantum computing or quantum
simulation.

The tunnel coupling between two quantum dots can be estimated by fitting the sen-
sor response of a detuning sweep across the corresponding interdot transition (see blue
dashed line in Fig. 2.10) by [133]:

δSET = δ+γ(ϵ)+ A

2
(1+ ϵ

Ω
tanh

(
Ω

2kBT

)
) (2.10)

with:

γ(ϵ) =
{
γLϵ if ϵ<= ϵ0

γRϵ if ϵ> ϵ0
(2.11)

and:

Ω=
√
ϵ2 +4t 2 (2.12)

13Here it is assumed thatM−1
i ,i = 1 and thus a change of the virtual plunger gate voltage ∆V virt

Pi equals the cor-

responding change of the real plunger gate voltage ∆V real
Pi . If this is not the case, virtual gates have different

lever arms than their corresponding real gates.
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Figure 2.11: Tunnel-coupled double quantum dot Illustration of the parameters describing a simple dou-
ble quantum dot model. ϵL and ϵR describe the on-site chemical potentials which are controlled by the gate
voltages VL and VR. UL denotes the on-site charging energy and t the tunnel coupling (hopping term). The
undulating line illustrates the potential landscape, horizontal lines the quantum dot charge states and blue
dots the charges in the quantum dots.

where ϵ is the detuning, t is the tunnel coupling, T is the electron temperature, kB is
the Boltzman constant and δ, A, ϵ0, γL, and γR are fitting parameters describing offsets
and scaling.

However, varying charge occupations, low-lying valley states, and spin-orbit interac-
tion can add complexity not covered by this fitting function. Therefore, in the following
section, the underlying physical model will be derived and discussed for multiple system
properties.

2.5. POLARIZATION OF TUNNEL COUPLED DOUBLE QUANTUM

DOTS

In this section, the polarization of a double quantum dot will be derived loosely following
reference [133].

The polarization of a double quantum dot can be modeled starting from a tight bind-
ing Hamiltonian as illustrated in Fig. 2.11. In the second quantization formalism, it is
expressed as:

H = ϵL
∑
σ

a+
L,σaL,σ+ϵR

∑
σ

a+
R,σaR,σ

+ t
∑
σ

a+
R,σaLσ+a+

L,σaR,σ

+UL
∑
σ,σ′

a+
L,σa+

L,σ′aL,σ′aL,σ+UR
∑
σ,σ′

a+
R,σa+

R,σ′aR,σ′aR,σ

(2.13)

Here ai ,σ and a+
i ,σ, are the fermionic annihilation and creation operators for i the left (L)

and right (R) quantum dot and σ the spin up (↑) or spin down state (↓), t is the tunnel
coupling strength (hopping parameter), ϵi is the orbital energy, and Ui is the on-site
charging energy of quantum dot i . |vac〉 denotes the vacuum state. Focusing on the
basis {|L〉 , |R〉} = {a+

L |vac〉 , a+
R |vac〉} which comprises a single charge located either in the
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Figure 2.12: Eigenenergy spectrum of a double quantum dot occupied by one charge. Energy E of the ground
state |−〉 and excited state |+〉 as a function of detuning ϵ, both normalized by the tunnel coupling t . At ϵ= 0 an
anticrossing with energy level splitting 2t emerges and the charge is fully delocalized across the two quantum
dots.

left or right quantum dot14 the matrix representation of H is given by:

H1 =

−1

2
ϵ t

t∗
1

2
ϵ

 (2.14)

Here, ϵ = ϵR − ϵL denotes the detuning of the on-site orbital energies, and energy shifts
(terms proportional to the identity operator) have been omitted. The eigenenergies of

H1 are given by E± =±1

2
Ω withΩ=

p
ϵ2 +4t 2. Their evolution as a function of detuning

is plotted in Fig. 2.12. At the anticrossing (at ϵ= 0) the |L〉 and |R〉 charge state hybridize
and show a level splitting of 2t .

From the eigenstates |E±〉 of H1, one can derive the conditional probabilities P (L|±)
of the charge being localized in the left quantum dot.

P (L|E±) = 1

2
∓ 1

2

ϵ

Ω
(2.15)

The respective occupation probabilities P (E±) of the ground and excited state can be
described by a Boltzmann distribution when the system is at a finite temperature T :

P (E±) = 1

1+exp

( ∓Ω
kBT

) = 1

2
tanh

( ±Ω
2kBT

)
+ 1

2
(2.16)

with kB the Boltzmann constant. By combining equation 2.15 and 2.16 the probability of
the charge being located in the left quantum dot P (L) and thus the polarization can be
described by:

P (L) = P (L|E−)P (E−)+P (L|E+)P (E+) = 1

2
(1+ ϵ

Ω
tanh

(
Ω

2kBT

)
) (2.17)

14Here the spin degree of freedom is neglected.
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HIGHER CHARGE OCCUPATIONS

To this point, we have assumed single-charge occupancy. However, to describe charge
transitions in a double quantum dot occupied by two or more electrons or holes, we
must also consider the spin degree of freedom. For example, when a double quantum
dot is occupied by two electrons, the ground state is a spin singlet, either localized in
the left (right) quantum dot, denoted as |S(2,0)〉 (|S(0,2)〉), or delocalized across both
quantum dots, represented as |S(1,1)〉. Assuming that the thermal occupation of spin-
triplet states is negligible and once again disregarding constant energy offsets, the rele-
vant Hamiltonian in the singlet basis {|S(1,1)〉 , |S(0,2)〉} is as follows:

H(1,1),(0,2) =

−1

2
ϵ′

p
2t

p
2t∗

1

2
ϵ′

 (2.18)

Here, to account for the on-site Coulomb repulsion in the |S(0,2)〉 state, the detuning is
redefined as ϵ′ = ϵ+UR. Equation 2.18 shows that the singlet tunnel coupling is

p
2 times

larger than the tunnel coupling for single charges. An adjusted fitting formula can be
derived by substituting t with

p
2t in Equation 2.17 if no magnetic field is applied and

in case the temperature is significantly lower than the singlet |S〉-triplet |T(1,1)〉 energy

separation (kBT ≪ 1

2
(−ϵ′ +

p
ϵ′2 +8t 2)). Otherwise, the singlet state may no longer be

the exclusive ground state for all ϵ [123] or triplet states may be thermally occupied. In
both scenarios, it becomes necessary to consider the occupation probabilities P (T j ) and
conditional polarization probabilities P (L|T j ) of the triplet states.

LOW LYING VALLEY STATES

Low-lying valley states (see section 2.1), which are commonly found in Si/SiGe-based
quantum dots, can alter the polarization P (L) of a double quantum dot. A detailed study
describing the effect of valley states on tunnel couplings as extracted from polarization
measurements has been conducted by Zhao and Hu [134]. From their work, the ensuing
discussion will be derived.

The degeneracy of the two low-lying z-valleys of the silicon quantum well (see sec-
tion 2.1) is lifted due to the interaction between the electron wavefunction and the upper
quantum well interface. This interaction leads to the mixing of the valleys, resulting in
two new valley eigenstates {|0〉 , |1〉} characterized by a mixing phase φ, which reflects
their composition from the z-valleys.

Note that the two quantum dots in a double quantum dot system can possess dif-
ferent z-valley compositions for their ground and excited state. The extent of overlap
between the valley eigenstates of the left and right quantum dot determines the tun-
neling strength from one valley in the left to another valley in the right quantum dot.
Consequently, when there is a non-negligible difference in the valley mixing phases be-
tween the two quantum dots ∆φ ̸= 0, both intra-valley tintra and inter-valley tinter tunnel
couplings affect the polarization.

Limiting the system description to single-charge occupancy, the Hamiltonian in the
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Figure 2.13: Eigenenergy spectrum of a singly occupied double quantum dot with low-lying valley states.
Energy E of the four eigenstates of Hvalley as a function of detuning ϵ, both normalized by the tunnel coupling
t . Four anticrossings with energy level splittings 2tinter and 2tintra emerge at which the charge delocalizes
across both quantum dots. The polarization of the double quantum dot is given by the plot color with dark
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∆R = 3.33t are the left and right quantum dot valley splitting.

basis {|L,0〉 , |L,1〉 , |R,0〉 , |R,1〉} reads:

Hvalley =



−1

2
ϵ− 1

2
∆L 0 tintra tinter

0 −1

2
ϵ+ 1

2
∆L tinter tintra

t∗intra t∗inter

1

2
ϵ− 1

2
∆R 0

t∗inter t∗intra 0
1

2
ϵ+ 1

2
∆R


(2.19)

Here ∆i is the valley splitting on site i and tintra and tinter relate to the tunnel coupling t

as defined above by | tintra/inter |=| 1

2
(1±e−i∆φ) |. Fig. 2.13 illustrates the eigenenergies of

Hvalley. Four anticrossings emerge with gaps defined by tintra and tinter. Analogously to
the simple valley-free case discussed above, the occupation probability of the left quan-
tum dot P (L) can be derived from the eigenstates of the system Hamiltonian Hvalley and
by accounting for a finite temperature through the incorporation of Boltzmann factors.
One can find both analytical and approximate expressions for P (L) in reference [134].
Numerical diagonalization of Hvalley as utilized for drawing Fig. 2.13 provides another
method to obtain P (L).

Fig. 2.14 shows the polarization function P (L)(ϵ), the eigenenergies E(ϵ), P (L|i) and
the thermal occupation of all eigenstates for a valley mixing phase difference ∆φ of
0.1π, 0.5π, and 0.9π assuming Hvalley as system Hamiltonian with ∆L = ∆R = 100 µeV,
Te = 50 mK, and t = 50 µeV. Additionally, P (L) is plotted assuming no low-lying val-
ley states are present (using Hamiltonian H1). For valley mixing phase differences close
to 0, no significantly different behavior is observed. However, for valley mixing phase
differences between the two quantum dots that are close to π, at the charge transition
point the excited valley state energy gets close to the valley ground state energy and thus
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Figure 2.14: Polarization of a double quantum dot for low, medium, and high valley-mixing phase differ-
ences. Polarization P (L), eigenenergy E and thermal occupation of the first excited state P (1stES) as a function
of detuning ϵ for valley mixing phase differences ∆φ of 0.1π, 0.5π, and 0.9π. In the upper row, the dashed line
depicts the polarization assuming a valley-free Hamiltonian H1. All other plots (solid lines) assume Hvalley with
low-lying valley states. Their coloring represents the double quantum dot or corresponding state polarization
as indicated by the color bar in the lower left corner. Curves are obtained numerically for ∆L =∆R = 100 µeV,
Te = 50 mK, and t = 50 µeV. Figure inspired by ref [134].

becomes thermally available. Additionally, the inter-valley tunneling becomes much
stronger than the intra-valley tunneling and thus mixes the valley eigenstates close to the
charge transition point of the ground state affecting its charge distribution. Both effects
lead to an observable difference between the polarization line described by the two-level
system and the polarization line described by the four-level system. This difference also
gets amplified when the tunnel coupling increases or the valley splitting decreases.

SPIN ORBIT INTERACTION

Spin-orbit interaction as found for holes in Ge/SiGe or artificial spin-orbit interaction
induced by a micromagnet field gradient as typical for Si/SiGe devices also affects the
tunneling strength of the ground state. It can be considered by introducing spin-flip
tunneling. In systems with no spin-orbit interaction, the spin is a preserved quantity
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during a tunneling process from one quantum dot to the other quantum dot. Spin-flip
tunneling is the tunneling process that also results in a flipped spin. The inclusion of
spin-flip tunneling can be treated analogously to the treatment of different valley states
by introducing tconserve and tflip to describe the spin-conserving tunneling strength and
the spin-flipping tunneling strength, respectively. In the {|L,↑〉 , |L,↓〉 , |R,↑〉 , |R,↓〉} basis
with ↑ and ↓ denoting the spin-up and the spin-down state the Hamiltonian then reads:

Hso =



−1

2
ϵ− 1

2
EL 0 tconserve tflip

0 −1

2
ϵ+ 1

2
EL tflip tconserve

t∗conserve t∗flip

1

2
ϵ− 1

2
ER 0

t∗flip t∗conserve 0
1

2
ϵ+ 1

2
ER


(2.20)

Here Ei is the Zeeman splitting on-site i . The spin conserving and spin flipping tun-

nel coupling also can be expressed by | tconserve/flip |=| 1

2
(1± e−i∆θ) | through a total tun-

nel coupling strength t and the angle ∆θ between the spin quantization axes of the two
quantum dots. As this Hamiltonian has the same structure as Hvalley the same consider-
ations apply.

FITTING POLARIZATION LINES

The expression for the system polarization allows for the extraction of the tunnel cou-
pling from a simple sweep of the detuning ϵ across an interdot charge transition. By
tracking the resistance or impedance of a nearby SET tuned to the flank of its Coulomb
peak a signal that reflects the charge distribution P (L) is obtained. The collected data
can be fitted by:

SSET = δ+γ(ϵ)+ A P (L)(ϵ−ϵ0) (2.21)

with:

γ(ϵ) =
{
γLϵ if ϵ≤ ϵ0

γRϵ if ϵ> ϵ0
(2.22)

Here, δ is a global offset, γi accounts for the cross capacitance effect of the plunger volt-
ages on the SET signal, ϵ0 translates the charge transition point and P (L)(ϵ) is given by
the corresponding polarization function as derived above.

Note that the sweep has to be executed sufficiently slowly (adiabatic) to always re-
main in the system ground state but fast enough to reduce charge noise-induced broad-
ening. Also, when averaging several sweeps, charge noise can artificially increase the
extracted tunnel coupling. It can move the anticrossing back and forth along the ϵ axis
resulting in a broadened transition curve after averaging15. Further, note that when low-
lying valley states are present the valley splittings ∆i and the valley mixing phase differ-
ence∆φ are additional fit parameters. Analogously, in the presence of spin-orbit interac-
tion, ∆θ and the Ei become additional fitting parameters. Those additional parameters

15For a formal treatment see the footnotes in the subsection about electron temperature in section 2.4.
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can make the fitting significantly less robust and they ideally should be obtained through
a preceding experiment.

However, often the values of the inter-valley and intra-valley or spin-flip and spin-
conserving tunnel coupling are not of direct interest and the two-level fitting function
(based on equation 2.17) suffices to approximate the tunnel coupling strength of the
ground state tGS. This ground state tunnel coupling strength also is sufficient to estimate
the expected exchange coupling J between two spins present in the double quantum
dot [135]:

J = (4U tGS)2

U 2 −ϵ2 (2.23)

with U the quantum dot charging energy. Thus, for characterizing the viability of a quan-
tum dot array for the implementation of exchange coupled spin qubits equation 2.17 and
2.21 provide an effective fitting model for polarization traces.
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3
A 2D QUANTUM DOT ARRAY IN

PLANAR 28SI/SIGE

Semiconductor spin qubits have gained increasing attention as a possible platform to host
a fault-tolerant quantum computer. First demonstrations of spin qubit arrays have been
shown in a wide variety of semiconductor materials. Advances in qubit operation have
made silicon a credible platform for quantum computing, but scaling silicon quantum
dot arrays in two dimensions has proven to be challenging. By taking advantage of high-
quality heterostructures and carefully designed gate patterns, we are able to form a tunnel
coupled 2 × 2 quantum dot array in a 28Si/SiGe heterostructure. We are able to load a
single electron in all four quantum dots, thus reaching the (1,1,1,1) charge state. Fur-
thermore, we characterise and control the tunnel coupling between all pairs of dots by
measuring polarisation lines over a wide range of barrier gate voltages. Tunnel couplings
can be tuned from about 30 µeV up to approximately 400 µeV. These experiments provide
insightful information on how to design 2D quantum dot array and constitute a first step
towards the operation of spin qubits in 28Si/SiGe quantum dots in two dimensions.

This chapter has been published as F. K. Unseld, M. Meyer, M. Madzik, F. Borsoi, S. de Snoo, S. Amitonov, A.
Sammak, G. Scappucci, M. Veldhorst, and L. Vandersypen, A 2D quantum dot array in planar 28Si/SiGe, Appl.
Phys. Lett. 2023 123(8), 084002 [1].
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Figure 3.1: False colored SEM image of a nominally identical device to the one used in the measurements. The
four quantum dots in the center are labeled clockwise 1-4 with one sensor on each side marked as S1 and S2.
Dashed lines mark the boundaries of the screening gates in the first gate layer.

3.1. INTRODUCTION

Since the original proposal for quantum computation with semiconductor quantum
dots [2], remarkable developments have been made. Quantum dot qubits are small in
size, compatible with semiconductor manufacturing, and can be operated with single-
qubit gate fidelities and two-qubit gate fidelities above 99.9 % [3] and 99 % [4]–[6] re-
spectively.

The implementation of two-dimensional qubit arrays will allow this technology plat-
form to fully utilize its advantages. In GaAs heterostructures 2x2 and 3x3 quantum dot
arrays have already been demonstrated [7]–[9]. However, hyperfine interaction leads to
short dephasing times, preventing high-fidelity operation of qubit arrays. In contrast,
group IV materials benefit from nuclear spin-free isotopes, such that quantum coher-
ence can be maintained over much longer times [10].

In recent years, hole quantum dots in Ge/SiGe heterostructures progressed from a
single quantum dot to the 4×4 quantum dot array with shared gate control presented in
chapter 4 [11], [12]. Parallel to that also silicon based devices have been pushed towards
2D arrays. Using quantum dots confined in the corners of silicon nanowires, several 2×N
quantum dot arrays have been demonstrated, albeit not simultaneously at the single-
electron occupancy [13]–[15]. Furthermore, these devices did not contain separate gates
for independent control of the tunnel barriers between neighbouring dots. This limits
the controllability for quantum simulations and prevents sweet-spot operation [16]–[18]
of exchange-based quantum gates.

In this chapter, we present a 2D quantum dot array in gated planar 28Si/SiGe with
barrier gates to control inter-dot tunnel couplings. Four quantum dots in a 2×2 config-
uration are formed with occupations controlled down to the last electron. Furthermore,
all inter-dot tunnel couplings are characterized as a function of all barrier gate voltages.
We demonstrate control over a wide range of tunnel couplings and provide suggestions
for future scalable gate designs.
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3.2. RESULTS
The 2×2 quantum dot array investigated in this chapter is fabricated on a 28Si/Si70Ge30

heterostructure (see section 3.4). Fig. 3.1 shows a false-coloured scanning electron mi-
crograph (SEM) image of a nominally identical device, highlighting the three gate layers
of the multi-layer gate stack[19]. The screening gates in the first layer (purple) define an
active area, reduce the formation of spurious dots and prohibit accumulation of a two-
dimensional electron gas (2DEG) in the gate fan-out region. The second layer (yellow)
consists of plunger (P) and accumulation gates. Barrier gates (B) are fabricated in the
third layer (red). On top of the gate stack sits a micro magnet. The SEM image in Fig. 3.1
is taken before its deposition to highlight the quantum dot gate pattern.

The gate stack defines four quantum dots in a 2×2 grid (labeled clockwise 1-4) and
two single-electron transistors (SETs) (S1 and S2). Gate and dot pitches were loosely
adopted from the linear six dot array by Philips et al.[20]. The screening gates around
the four quantum dots were kept grounded. Two SETs serve as charge detectors and act
as electron reservoirs for the quantum dots Q2 and Q4 in the 2×2 array. The quantum
dots Q1 and Q3 are loaded via Q2 and Q4 respectively. The presented data was taken
exclusively with the sensor providing the highest contrast on the chosen dot pair for each
measurement.

The 22.5 degree rotation of the square array relative to the micromagnets gives every
quantum dot a distinct Zeeman splitting. The relative arrangement of the quantum dots
and the SETs allows for sensing charge movements between all possible dot pairs. This
is favorable for recording charge polarization lines and spin-to-charge conversion.

Off-chip NbTiN inductors connected to the SET reservoirs and parasitic capacitances
form a tank circuit that enables radio frequency (RF) reflectrometry readout, allowing for
fast and accurate detection of the charge occupation of all four quantum dots.

During the device tune-up, we measure the cross-capacitive coupling of all gates to
all dots and virtualise them as described in [21] with vPi (vBi j ) denoting the virtualised
plunger (barrier) gates. The chosen virtual gates compensate the cross-talk onto all dot
potentials and maintain the operation point of the charge sensors. The cross-capacitive
coupling matrix M, translating the real gate space to the virtual gate space via V⃗ virt =
MV⃗ real, is provided in the section 3.6.

CHARGE OCCUPATION

To show control over the charge occupation of the entire 2× 2 array, we measure four
charge stability diagrams as depicted in Fig. 3.2. We acquire this data by sweeping the
voltages on adjacent virtual plungers gates vPi and vP(i mod 4)+1 while monitoring the
response of the charge sensors. The colored circles in the top right corner of each charge
stability diagram indicate the position of the quantum dots corresponding to the swept
plunger gates.

A honeycomb pattern characteristic of double-dot behavior is observed for all four
plunger pairs. We identify the first electron in the four quantum dots by the absence of
any more charge transitions in the lower left corner. Thus we can controllably access
the (N1, N2, N3, N4) = (1,1,1,1) charge state, where Ni denotes the charge occupation of
quantum dot QDi, and isolate a single spin per quantum dot. The honeycomb patterns
in Fig. 3.2 also show that all four quantum dots are capacitively coupled to each other.
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Figure 3.2: Charge stability diagrams of nearest-neighbour quantum dots. Colored circles indicate the quan-
tum dots of the swept virtual plunger gates while the quantum dots corresponding to the white circles re-
mained with one electron each. The point [0 mV,0 mV] corresponds to the same gate voltages for all four
scans. At this operating point, the (1,1,1,1) charge state is reached, with one electron per quantum dot. For the
charge stability diagrams of Q1Q2 and Q2Q3 sensor S1 was used while for Q3Q4 and Q4Q1 sensor S2 was cho-
sen. At ∆vPi = 0 mV, the corresponding physical voltages on the gates are set to 2566 mV, 1831 mV, 3173 mV,
2487 mV for plungers 1-4, respectively. The arrows in the top left corner of each charge stability diagram indi-
cate the direction of the scans.

We note that there are apparent differences in the separation between the consecu-
tive charge transition lines as well as in the slopes of successive charge transition lines.
These could be caused by inherent differences and gate-voltage dependent variations in
size, position or lever arm of the four intended quantum dots. Alternatively, they might
be the charging signature of additional quantum dots in the close vicinity. While we can-
not fully rule out the presence of such stray dots at higher occupations, we can reliably
reach the (1,1,1,1) charge state in the 2×2 configuration of the array.

Next to the expected charge transitions, we observe additional diagonal features e.g.
in Fig. 3.2, which we associate with spurious defects in our system. These defects capaci-
tively couple to the charge sensor but there is no or only very weak capacitive interaction
with the four intentional quantum dots of the 2×2 array.

INTER-DOT TUNNEL COUPLING

Besides a well-defined charge state, controlled inter-dot tunnel couplings are essential
for the implementation of robust exchange-based quantum gates or the execution of
analog quantum simulation. Therefore, we probe the system evolution as a function of
the voltage applied to the virtual barrier gates vBi j located between the plunger gates
of quantum dot QDi and QDj with j = (i mod 4)+1. The tunnel coupling diagonally be-
tween QD1 and QD3 and anti-diagonally between QD2 and QD4 has no dedicated barrier
gate and thus is not independently controllable. The influence of other barrier gates on
the (anti-)diagonal tunnel coupling is presented below.



3.2. RESULTS

3

57

−200 0 200
ΔvP3 (mV)

−200

0

200

Δv
P2

 (m
V)

vB23 (mV)643 739 844 940

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

I II III IV

signal (arb. units)

Figure 3.3: Response of the charge stability diagram of QD2 and QD3 to changes of virtual barrier voltage
vB23, as indicated by the arrow above the charge stability diagrams. Small arrows in the top left corner of each
panel indicate the scan direction. From panel I to IV, we observe a gradual increase in both the capacitive and
tunnel coupling between the two dots. Similar data were taken for all other nearest-neighbouring pairs and
are displayed in section 3.7.

Fig. 3.3 shows the evolution of the charge stability diagram of QD2 and QD3 while
changing the virtual barrier gate voltage vB23. The sequence of panels allows us to qual-
itatively assess the influence of the barrier on the capacitive coupling and tunnel cou-
pling between the involved quantum dots. From panel I through IV, we observe that
the separation between the triple points increases, which indicates an increase in the
capacitive coupling between the dots. In addition, we observe that the interdot charge
transition is increasingly blurred (see the circled transitions) and the boundaries of the
charge stability diagram are increasingly rounded. Both are indicative of an increased
interdot tunnel coupling. In panel IV, for transition lines with N2 +N3 ≥ 4 the rounding
is so strong that the quantum dots have mostly merged into a single large dot.

To quantitatively determine the effect of the barrier voltage on the tunnel coupling,
we measure polarisation lines along the detuning axis ϵi j /αϵi j = vPi − vP j , with αϵi j

denoting the lever arm, across the (Ni , N j ) = (1,0) to (0,1) interdot transition, as shown
in Fig. 3.4a. The remaining dots were kept in the (1,1) charge occupation. Scanning along
this detuning axis moves the electron from dot 2 to dot 3 ((N1, N2, N3, N4) = (1,1,0,1) to
(1,0,1,1)), resulting in a step response in the sensor signal as seen in Fig. 3.4b. This step
response is broadened by both the electron temperature Te ≤ 78.5 ± 2.2 mK and the
tunnel coupling t , and can be fitted using SSig = ϵ

Ω tanh Ω
2kb Te

with Ω =
p
ϵ2 +4t 2 and ϵ

the detuning between the two quantum dots [22]. Additional slopes and offsets of the
sensor signal caused by imperfect virtualisation or drifts are taken into account in the
used fitting procedure [23]. We note that the error in the extracted tunnel coupling values
is dominated by the uncertainty in the lever arms.

We systematically extract the dependency of the inter-dot tunnel couplings tn,m be-
tween all dot pairs (QDn ,QDm) with respect to all barrier voltages vBi j . Fig. 3.4c shows
the resulting tunnel couplings tn,m grouped by barrier gates vBi j . As in previous works,
fading contrast along the polarization lines prevented us from characterizing tunnel
couplings up to higher values. We observe that changing the barrier voltage vBi j affects
only the corresponding tunnel couplings ti j significantly, while keeping the other tunnel
couplings largely constant. Note that the virtual gate matrix compensates for cross-talk
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Figure 3.4: a) Exemplary charge stability diagram around the (1,0) to (0,1) transition for QD2 and QD3 as a
function of the interdot detuning ϵ23 and U23/αU 23 = vP2 +vP3. The dashed line indicates the detuning axis
used to measure polarisation lines. b) Example of a measured (dots) and fitted (solid line) polarisation line
for QD2 and QD3. c) Dependence of the tunnel couplings extracted from polarization lines between neigh-
bouring quantum dots on each of the four virtual barrier gate voltages. The plots are ordered to follow the
physical position of the barrier gate e.g. barrier vB41 situated in the top left corner of the quantum dot array
is depicted in the top left plot. The legend for symbols and colors is shown above panels a) and b). We note
that the dc voltages of barriers vB12 (vB23) and vB34 (vB41) are of comparable values, which is consistent with
the symmetries of the gate pattern. Between scans we adjusted gate voltages of uninvolved gates to retain a
high visibility. These adjustments were done in such a way that all uninvolved barrier gates remained in the
small (residual) tunnel coupling regime. On several occasions, insufficient contrast between the (1,0) and (0,1)
charge states limited the data we were able to reliably fit. These data points are thus not available. d) Diag-
onal tunnel coupling and anti-diagonal tunnel coupling as a function of all four virtual barrier gate voltages.
The panels were split into two parts for both the diagonal and anti-diagonal coupling to keep the data points
visible. The physical gate voltages used at ∆vB = 0 mV varies between data sets, as the voltages were slightly
adjusted. As in c) uninvolved barrier gates remained in the residual tunnel coupling regime. Note also that in
c) and d) the charge states vary between scans, depending on which dots each polarization line connects.
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of the barrier gates onto all dot potentials, but does not account for possible cross-talk
on the tunnel couplings.

We furthermore find that below a given voltage (which is different for each vBi j ), the
influence of the barrier gate voltage on the corresponding tunnel coupling vanishes and
a residual tunnel coupling remains. Across all four neighbouring dot pairs, the residual
tunnel coupling is in the range between 30 µeV and 200 µeV.

We extend this characterisation to the (anti-)diagonal tunnel couplings. Fig. 3.4d
presents the influence of the four barrier gates on the diagonal and anti-diagonal tunnel
coupling respectively. While the anti-diagonal tunnel coupling t2,4 is elevated and can
be modulated using vB12 in particular, the diagonal tunnel coupling t1,3 is not system-
atically influenced by any barrier gate and remains in many cases lower than all other
tunnel couplings, albeit far from zero.

3.3. DISCUSSION
We demonstrated the first 2D quantum dot array in a planar silicon technology and op-
erated the four quantum dots in the single electron regime, consistently achieving the
(1,1,1,1) charge state. Furthermore, the barrier gates allow us to independently control
the interdot tunnel couplings. However, the residual tunnel couplings observed in this
sample are higher than the typical tunnel coupling of 1-10 µeV used in spin qubit exper-
iments [24]. Presumably the close proximity of the screening gates to the center of the
plunger gates compresses the quantum dots towards the center of the 2× 2 array and
hence towards each other, leading to rather large tunnel couplings. Furthermore, we
see in Fig. 3.4 that at low tunnel coupling values, the tunnel coupling barely responds to
the barrier gate voltages anymore. The compressed position of the quantum dots in the
center region enhances also the diagonal coupling between them. While analog quan-
tum simulation and quantum computation can benefit from diagonal tunnel coupling,
the lack of dedicated control over magnitude and directionality i.e. diagonal versus anti-
diagonal, also poses limitations. Suppressing any diagonal coupling with a center gate as
demonstrated in a GaAs 2×2 array could be a suitable way to circumvent this issue [25].

The encountered challenges help to identify possible improvements in the design
of planar 2× 2 28Si/SiGe quantum dot arrays. Specifically, moving the screening gates
away from the center of the array is expected to yield lower tunnel couplings, as the elec-
trons are not squeezed towards each other as much. The experiments also offer relevant
learnings for scaling to larger arrays. For instance, changing the device architecture from
a square array to a triangular array will alleviate the issues regarding undesired diagonal
tunnel couplings [26], [27]. Furthermore, in order to maintain control of individual tun-
nel couplings, either more sophisticated patterning techniques must be applied to route
gates to the inside of a larger array [28], or crossbar addressing must be employed [29],
[30]. In both cases, the observations made for the present device provide guidance for
suitable plunger and barrier gate pitches and dimensions.
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3.4. DEVICE FABRICATION AND SCREENING

This device is fabricated on a 28Si/Si70Ge30 heterostructure. A 2.5 µm strain relaxed
Si70Ge30 buffer layer makes the foundation. On top of it the isotopically enriched 28Si
quantum well is grown. It has a residual 29Si concentration of 0.08% and was measured
to be 9.0± 0.5 nm thick. Afterward, a 30 nm thick Si70Ge30 spacer is grown to reduce
strain relaxation in the quantum well and separate it from the gate dielectric. The het-
erostructure is finalized with a 1 nm silicon cap [31]. The gate stack is separated from the
heterostructure by 10 nm Al2O3, formed by atomic-layer deposition (ALD) at 300 ◦C. The
three gate layers of the gate stack are made from Ti:Pd with thicknesses of 3:17, 3:27 and
3:27 nm and are patterned using electron beam lithography, electron beam evaporation
and lift off. Each layer is electrically isolated from the previous layer by a 5 nm Al2O3

dielectric grown by ALD. Above the three gate layers a micro magnet is fabricated from
Ti:Co (5:200 nm).

After fabrication every device was screened by measuring turn-on curves and testing
for gate leakage or shorted gates at 4.2 K with a dipstick in liquid helium. This high
turnaround testing allows to verify the basic functionality of the device and quickly filter
out defective devices. After verifying the functionality of all gates, NbTiN inductors are
added to the ohmic contacts to enable RF-readout. To address electrostatic discharge
concerns during rebonding, we screen the device a second time in liquid helium to verify
that no damage has been done. Then we cool down the devices in a Bluefors LD400
dilution refrigerator to its base temperature of around 10 mK.

3.5. SETUP
The room-temperature control electronics to operate this device are separated into ac
electronics in one rack and dc electronics in a second one. In the latter, several in-house
built Serial Peripheral Interface (SPI) racks host 18 bit Digital to Analog Converter (DAC)
modules which provide the required dc voltages. Voltage dividers were used to apply
an accurate source-drain bias when needed. The currents are measured with a Keith-
ley 2000 Multimeter (placed in the ac rack) via an in-house developed transconductance
amplifier. The dc rack is powered by batteries which are continuously charged via gyra-
tors and filters.

The ac rack comprises the host computer, a Keysight chassis (M9019A) and an addi-
tional dedicated RF SPI rack. The circuitry for RF reflectometry measurements consists
of two in-house built RF sources, a combiner (Mini-Circuits ZFSC-2-5-S+), a 15 dB cou-
pler (Mini-Circuits ZEDC-15-2B) at the mixing chamber stage, a cryo-amplifier at the 4K
stage (Cosmic Microwave Technology Inc. CITLF3), a room temperature amplifier, two
IQ-mixers and a Keysight digitizer (M3102A). The coaxial lines from 4 K to the mixing
chamber flange are made from NbTiN to ensure a high signal quality and low thermal
conductance. From 4 K to room temperature, SCuNi-CuNi cables are used. Discrete at-
tenuators with a total attenuation of 23 dB are distributed over the various temperature
stages on the downward path.

Next to the digitizer, several Keysight AWG modules (M3202A) are situated in the
same chassis and connected via a PCIe connection to a host computer. SCuNi-CuNi
0.86 mm coaxial cables are used from room temperature to the mixing chamber plate.
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Figure 3.5: Virtual gate matrix (M−1) during the recording of the charge stability diagrams of Fig. 3.2

Also on these lines discrete attenuators are mounted, with a total attenuation ranging
from 12 dB to 20 dB (typically we equip the barrier gates with lower attenuation than
the plunger gates). From the mixing chamber flange to the sample printed circuit board
(PCB), hand-formable 0.086" coaxial cables were used to route both RF and AWG signals.
Bias tees on the sample PCB combine the ac pulses and dc voltages. Ferrite cores and dc
blocks were installed at room temperature to suppress 50 Hz noise.

3.6. VIRTUAL GATE MATRIX

The virtual gate matrix defining the virtual gates in the charge stability diagrams of Fig. 3.2
is displayed in Fig. 3.5. Note that we constantly adapted the virtual gate matrices through-
out the measurements to improve the compensation of cross capacitive effects on the
plunger gates of the quantum dots and SETs.
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3.7. QUALITATIVE TUNNEL COUPLING CONTROL FOR ALL BAR-
RIER GATES

Fig. 3.6 shows the influence of all barrier gates on the charge stability diagrams of their
neighbouring quantum dots. Fig. 3.6b is replicated from Fig. 3.3. All barriers show simi-
lar influence on the charge stability diagram as discussed by way of example for barrier
vB23 in the results section above.



3.7. QUALITATIVE TUNNEL COUPLING CONTROL FOR ALL BARRIER GATES

3

63

−200 0 200
ΔvP4 (mV)

−200

0

200

Δv
P1

 (m
V)

vB41 = 1352 mV vB41 = 1544 mV vB41 = 1659 mV

−200 0 200
ΔvP4 (mV)

−200

0

200

Δv
P3

 (m
V)

vB34 = 16 mV vB34 = 234 mV vB34 = 426 mV

−200 0 200
ΔvP3 (mV)

−200

0

200

Δv
P2

 (m
V)

vB23 = 643 mV vB23 = 739 mV vB23 = 844 mV vB23 = 940 mV

−200 0 200
ΔvP1 (mV)

−200

0

200

Δv
P2

 (m
V)

vB12 = -5 mV vB12 = 137 mV vB12 = 241 mV vB12 = 417 mV
(a)

(b)

(c)

(d)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1) (1,1,

 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

(1,1,
 1,1)

Figure 3.6: Charge stability diagrams for all four quantum dot pairs for several values of the voltage on the
barrier gate between the respective dots. Pictograms on the left indicate the quantum dot pair used in the
respective row. To ensure comparability every scan is around the (1,1,1,1) regime as indicated.
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3.8. ELECTRON TEMPERATURE AND LEVER ARMS
To estimate the electron temperature, we measure the thermal broadening of Coulomb
peaks of SET S1 using the equations provided by [32]. We sweep gate B1 as it has a smaller
lever arm compared to the SET plunger gate and therefore allows us to sweep across a
Coulomb peak with a much finer resolution, improving the fit quality. Fig. 3.7a shows
the Coulomb diamonds that were used to calculate the lever arm of gate B1. We com-
bine the slopes mS and mD of the Coulomb diamonds to compute the lever arm αB1

with αB1 = | mS mD
mS−mD

| ≈ 0.027± 0.003. The stated uncertainty is based on bounding the
slopes extracted from the Coulomb diamond from below and from above by eye. The
horizontal trace at VSD ≈−1150 µV shown in Fig. 3.7c was used to upper bound the elec-
tron temperature to Te ≤ 80 mK.

Furthermore we require the lever arms of the plunger gates to convert the detuning
axis ϵi j from gate voltage to energy. Due to the high tunnel coupling, photon-assisted
tunneling measurements with the available microwave source were unsuccessful. In-
stead we estimate the lever arms of the quantum dots via the slope of their interdot tran-
sitions.

We convert the lever arm of gate B1 to the lever arm of virtual plunger gate vS1 us-
ing the ratio of the sensing dot peak spacing as measured when scanning gate voltage vS1

versus that measured when scanning B1. We estimate the error introduced by estimating
the peak spacing of the Coulomb peaks to be below 10%. From here we can successively
use the angle of the interdot transitions to calculate the lever arm ratio between all other
gates. For example, Fig. 3.7b shows the manually fitted interdot transition used to cal-
culate the lever arm ratio of plunger gate of vS1 and vP2. Similar as before, we bound
the error by over- and underestimating the slope of the interdot transition by eye. For
the plunger gates vP1 through vP4 we find lever arms of 0.071±0.016 (vP1), 0.073±0.013
(vP2), 0.044±0.009 (vP3), 0.080±0.017 (vP4). The square geometry allows for a consis-
tency check as the lever arm of e.g. Q4 can be calculated via S1-Q2-Q3-Q4 but also via
S1-Q2-Q1-Q4. The found differences from using different paths fell within the error of
the final value.
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Coulomb peak used to estimate the electron temperature. The Coulomb peak is the smallest measured peak
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4
SHARED CONTROL OF A 16

SEMICONDUCTOR QUANTUM DOT

CROSSBAR ARRAY

The efficient control of a large number of qubits is one of the most challenging aspects for
practical quantum computing. Current approaches in solid-state quantum technology
are based on brute-force methods, where each and every qubit requires at least one unique
control line, an approach that will become unsustainable when scaling to the required
millions of qubits. In this chapter, inspired by random access architectures in classical
electronics, we introduce the shared control of semiconductor quantum dots to efficiently
operate a two-dimensional crossbar array in planar germanium. We tune the entire ar-
ray, comprising 16 quantum dots, to the few-hole regime and, to isolate an unpaired spin
per dot, we confine an odd number of holes in each site. Moving forward, we demonstrate
on a vertical and a horizontal double quantum dot a method for the selective control of
the interdot coupling and achieve a tunnel coupling tunability from less than 3 GHz to
more than 10 GHz. The operation of a quantum electronic device with fewer control ter-
minals than tunable experimental parameters represents a compelling step forward in the
construction of scalable quantum technology.

This chapter has been published as F. Borsoi, N. W. Hendrickx, V. John, M. Meyer, S. Motz, F. van Riggelen, A.
Sammak, S. L. de Snoo, G. Scappucci, and M. Veldhorst, Shared control of a 16 semiconductor quantum dot
crossbar array, Nat. Nanotechnol. 2024 19, 21–27 [1].
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4.1. INTRODUCTION
A fault-tolerant quantum computer will require millions of interacting qubits [2]–[4].
Scaling to such extreme numbers imposes stringent conditions on all the hardware and
software components, including their integration [5]. In semiconductor technology, sev-
eral decades of advancements have led to the integration of billions of transistor compo-
nents on a single chip. A key enabler has been the ability to control such a large number
of components with only a few hundred to a few thousand control lines [6], [7]. In quan-
tum technology, such a game-changing strategy has yet to be embraced owing to the fact
that qubits are not sufficiently similar to each other. Nowadays, leading efforts in solid
state, such as superconducting and semiconducting qubits, all require that each and ev-
ery qubit component is connected to at least one unique control line [8]. Clearly, this
brute-force approach is not sustainable for attaining practical quantum computation.

The development of spin qubits in semiconductor quantum dots has strongly been
inspired by classical semiconductor technology [9]–[11]. Advanced semiconductor qubit
systems are based on CMOS-compatible materials and even foundry-manufactured qu-
bits have been realised [12], [13]. In addition, it is anticipated that the small qubit foot-
print and compatibility with (cryo-)CMOS electronics will open up avenues to build in-
tegrated quantum circuits [14], [15]. To enable the efficient control of large qubit archi-
tectures with a sustainable number of control lines, proposals of architectures inspired
by classical random access systems have been put forward [16], [17]. However, their
practical realisation has been so far prevented by device quality and material uniformity.

In this chapter, we take the first step toward the sustainable control of large quan-
tum processors by operating semiconductor quantum dots in a crossbar architecture.
This strategy enables the manipulation of the most extensive semiconductor quantum
device with only a few shared-control terminals. This is accomplished by exploiting the
high quality and uniformity of strained germanium quantum wells [18], by introduc-
ing an elegant gate layout based on diagonal plunger lines and double barrier gates,
and by establishing a method that directly maps the transitions lines of charge stabil-
ity diagrams to the associated quantum dots in the grid. We operate a two-dimensional
16 quantum dot system and demonstrate the tune-up of the full device to the few-hole
regime. In this configuration, we also prove the ability to prepare all the quantum dots
in the odd charge occupation, as a key step for the confinement of an unpaired spin in
each site [19], [20]. We then introduce a random access method for addressing the inter-
dot tunnel coupling and find a remarkable agreement in the response of two vertically-
and horizontally-coupled quantum dot pairs. We also discuss some critical challenges
to efficiently operating future large quantum circuits.

4.2. MAIN TEXT

A TWO-DIMENSIONAL QUANTUM DOT CROSSBAR ARRAY

Our shared-terminals control approach for a two-dimensional quantum dot array with
dots Q1, Q2t,...Q7 is based on a multi-layer gate architecture (Figs. 4.1a-d). We use two
barrier layers (with gates UBi and LBi with i ∈ [1,8]) to control the interdot tunnel cou-
plings, and exploit a layer of plunger lines (Pi with i ∈ [1,7]) to vary the on-site energies
(Fig. 4.1c). In contrast to brute-force implementations, here a single plunger gate is em-
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Figure 4.1: A 16 quantum dot crossbar array. a, False-colour scanning electron microscopy image of the
crossbar array device. The architecture consists of two staircase barrier gate layers (two lines of each layer are
shown in red and blue), and one plunger gate layer (two lines are illustrated in green). 16 quantum dots are
defined under the plungers, while four charge sensors in the form of single-hole transistors are located at the
corners (ohmic contacts in orange, barriers in dark green, and plungers in yellow). The scale bar corresponds
to 100 nm, which is also the size of the designed plunger gate diameter. This shared-control approach enables
to control a number of quantum dots (g ) with a sublinear number of control terminals (T ). Here, the scaling is
given by T = 6g 1/2 −1 (Fig. 4.8). b, Schematic illustration of the device and labeling of each quantum dot. We
choose to label the quantum dots after their positions on their controlling plunger line, e.g., the quantum dot
Q6b(t) is located on the bottom (top) site controlled by the plunger line P6. c, Shared-control elements: from
the top of the gate stack, seven P plunger gates, eight LB barrier gates, and eight UB barrier gates. The overlay
of these layers is visible in (b). d, Schematic cross-section of the device. Holes are isolated in quantum dots in
a 55 nm-deep germanium quantum well in a silicon-germanium heterostructure grown on a silicon wafer.
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ployed to control up to four quantum dots, and an individual barrier up to six nearest-
neighbours interactions. In analogy with classical integrated circuits, this strategy en-
ables to manage a number of experimental parameters (i.e., dot energies and interdot
couplings) with a sub-linear number of control terminals, an approach that may over-
come, among other aspects, the wiring interconnect bottleneck of large-scale spin qubit
arrays (Fig. 4.8) [7], [8].

To monitor the quantum dot array, we make use of charge sensing techniques [19].
Four single-hole transistors at the corners of the array (named after their cardinal posi-
tions: NW as north-west, NE as north-east, SW as south-west and SE as south-east) act
as charge sensors as well as hole reservoirs for the array (also see Fig. 4.9). The simul-
taneous read-out of their electrical response in combination with fast rastering pulse
schemes enables us to continuously measure two-dimensional charge stability diagrams
in real-time (i.e., in video-mode technique), while updating the dc gate voltages control-
ling the array [21], [22].
To bring the device in the 16 quantum dots configuration, we identify an alternative
strategy to the tune-up methods established for individually-controlled quantum dot
devices [23]. We begin by lowering all gate voltages to starting values based on previous
experiments and by defining a set of virtual gates (also see section 2.4) as linear combi-
nations of real gates [23]–[25]. Such virtual gates are defined to eliminate the crosstalk
to the charge sensors and to independently control the on-site energies [24], [25] (full
matrix in Fig. 4.10). Here, we will refer to vPi as the virtual gate associated to the actual
gate Pi .
We continue the tuning of the device by adjusting the gates controlling the quantum dots
at the corner (i.e., those closest to the charge sensors) until we accumulate the first few
holes as signaled by the first addition lines in charge stability diagrams. We then proceed
with the tune-up of the adjacent dots and finish with the quantum dots furthest to the
sensor. Owing to the homogeneity of our heterostructure [26] and the symmetry of our
gate layout, the accumulation of the first few holes in quantum dots controlled by the
same plungers occurs at similar gate voltages.

Rather, challenges in tuning up the array are mainly due to elements outside the ar-
ray. In fact, we observe that small variations of the gate voltages impact the electrostatics
of the dense gate fanout area, which in turn affects the charge sensors and the readout
quality. Furthermore, specific gate settings cause unintentional quantum dots under the
gate fanout, which restrict the operational window. Altogether, these issues are a chal-
lenge for the implementation of automated tuning methods [27], but we envision that
the integration of a lower layer of “screening" gates or the implementation of the gate
fanout in the third dimension [28] can mitigate this issue (section 4.8).

FROM MULTI-DOT CHARGE STABILITY DIAGRAMS TO QUANTUM DOT IDEN-
TIFICATION

Moving forward, a direct result of our control approach is the fact that, upon sweeping
the voltage of a plunger gate controlling n quantum dots, up to n sets of charge transi-
tions can be observed, each associated with (un)loading an additional hole in one of the
n quantum dots. For the case of vP2 and vP3, this results in the charge stability diagram
shown in Fig. 4.2 where a number of vertical and horizontal charge addition lines mark-
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Figure 4.2: Multi-dot charge stability diagrams Few-hole charge stability diagram obtained by combining the
signal gradients of the SW and NW charge sensors. The labels indicate for each addition line the corresponding
quantum dot. At (0,0) the fillings of Q2t, Q2b, Q3t, Q3m, and Q3t are 0, 0, 0, 3, and 0, respectively.

ing well separate charge states are visible. However, because of our control approach,
a priori it is unknown to which of the Q3 (Q2) quantum dots these vertical (horizontal)
lines are associated.

Here, we solve this problem by establishing a statistical method that maps such tran-
sition lines to the respective quantum dot. In our protocol, we first evaluate the shift
of the charge transition lines induced by a voltage variation of each barrier gate to esti-
mate the (normalized) capacitive coupling λ between each barrier gate and the associ-
ated quantum dot (Figs. 4.3a, b). Because the two barrier layers form a grid of lines and
columns, we can use their capacitive couplings to infer the spatial location of the quan-
tum dot in the array. For this purpose, we consider the normalised capacitive couplings
of the two orthogonal barrier sets, λvUB and λvLB, as two independent probability distri-
butions. We then use λvUB and λvLB to calculate the combined probability W on each of
the 16 sites (Fig. 4.3c, section 4.4). Finally, our protocol ends assigning the site with the
maximum probability to the quantum dot loaded via the specific charge addition lines.
In practice, W quantifies how much an electric field generated on each site is perceived
by a hole in a specific quantum dot site. Hence, a low (high) W value identifies a location
that is weakly (strongly) coupled to the analysed quantum dot.

In Figs. 4.3a-c, we show how this routine is effective for distinguishing and charac-
terising the three Q3 quantum dots, whereas similar results are obtained also for the
remaining dots in the grid (Figs. 4.11, 4.12-4.16, 4.17). The demonstrated ability of la-
belling multi-quantum dot charge stability diagrams makes this method an important
tool in the tune-up of large quantum dot devices.

QUANTUM DOT OCCUPANCIES
Whilst useful in reducing drastically the number of control terminals, a crossbar ap-
proach is effective for spin-based quantum computing if it enables to isolate a single
or an unpaired spin in the individual quantum dots [9], [17]. Here, we demonstrate the
tune-up of the array to an odd-charge occupancy configuration with 11 quantum dots
filled with one hole, and five quantum dots filled with three holes.
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a b c

vUB vLB

λvUB, λvLB
 

Figure 4.3: Quantum dot identification. a, Bar plots of the (normalized) capacitive couplings λ of the barrier
gates to the transition lines (in red for the vUB, and in blue for the vLB virtual gates) obtained by analyzing three
different sets of transition lines coupled to the virtual plunger vP3. Middle and bottom panels are extracted
from the shift of the transition lines at ∼ (-20, -63) and (-15, -7) in Fig. 4.2, respectively. The top panel (relative
to dot Q3t) is obtained from a measurement shown in Figs. 4.25g,h, where the transition line is more visible.
Red and blue backgrounds are added to emphasize the two barriers with the highest couplings. The data points
correspond to the peak of the chart bars as well as the centers of the error bars. Each error bar is the standard
deviation of the parameter obtained from the linear fit. b, Device layout with the capacitive couplings color-
coded on the filling of the gate lines. Here, both the vUB and vLB capacitive couplings, λvUB and λvLB, are
normalized to their maximum values. c, Visualisation of the probability (W ) calculated from of the shift of the
three sets of addition lines (see section 4.4 for details). The comparison of the top, middle, and bottom panels
of a, b, c clearly distinguishes the three Q3 quantum dots.

Our setup allows for fast charge stability maps, albeit of a size that it is often insuf-
ficient to fully visualise the absence of further transition lines in the zero charge state.
Therefore, we perform repeated scans of the kind ∆vPx vs ∆vPy, while increasing the dc
voltage vPx in discrete steps of 10 mV. We stop the sequence when the quantum dot con-
trolled by vPx, say Qx, is fully depleted. We present these emptying sequences in videos
1-12 described in section 4.11, where we use the addition lines or the interdot transitions
to monitor the charge occupancy.

In general, multi-dot transition lines, low charge sensitivity, spurious quantum dots
and low reservoir-tunnel coupling may complicate the assessment of the occupancy.
In fact, quantum dots that are located in the core of the array are loaded/unloaded by
means of cotunneling processes via the outer dots [29], leading to latching transition
lines and elongated charge interdot transitions when the reservoir-dot tunnelling time
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Figure 4.4: Charge transition detection algorithm. a-e Illustration of the detection algorithm on the Q4b
charge transition lines. From the charge stability diagrams in (a), labeled with the index n, we compute the
image correlation (C ) maps in (b), with the reference feature in the red box in (a) containing a portion of a Q4b
charge transition. After splitting the correlation maps in 4 vertical sections (dashed lines in (b)) we determine
the local maxima in each of them (blue markers in (b)). We track the thresholded local maxima across all
the scans of the sequence, as displayed in (c). We quantify the occurrence of high-correlation features along
potential lines with a fixed expected slope and varying intercept, black lines in (d). In (d), we show only one-
fifth of the actual sampling lines for clarity. In (e), we color-code all the potential lines according to their
associated p. Emerging peaks in p (i.e., red traces) identify the actual first two Q4b charge transitions.

approaches the timescale of our scan (∼ 0.01 s) [30]–[33]. We note that adding reservoirs
within the array may reduce this effect and simplify the tune-up. However, optimal qubit
operation and high qubit connectivity may require low tunnel coupling between qubits
and reservoirs. Thus, initialising the array without having each quantum dot strongly
coupled to a reservoir is highly relevant [7], [11], [34].

To track specific transition lines in complex multi-dot charge stability diagrams, we
have defined an algorithm based on image correlation analysis, which may be refined by
machine learning methods [27], [35]–[37]. First, we select a small window from a specific
charge stability diagram in the sequence containing a Qx charge addition line. We refer
to this as the Qx reference feature as shown in Fig. 4.4a for Q4b. Second, we compute
digital image correlation (C ) maps of all the charge stability diagrams in the sequence
with respect to the previously defined reference feature (section 4.12). Then, we divide
the correlation maps into four sections (delimited by the vertical dash lines in Fig. 4.4b),
with a size that is smaller than the typical addition voltage. This choice results in a high
probability of having, at most, a single occurrence of a Qx charge transition per section.
We then select the coordinates of the points with maximum correlation in each section,
and threshold them to ensure that only points with high correlation are passed.

Because of the dc voltage step between each map, the same high-correlation feature,
if reproducible, is then expected to be found at a ∆vPx value that is 10 mV higher than in
the previous charge stability diagram (Fig. 4.4c). Therefore, in a plot of coordinates with
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high correlation vs scan index (n), we expect these points to follow a line with a well-
defined slope of 10 mV/scan. To assess the presence of possible charge transition lines
within the clouds of high-correlation coordinates, we consider a series of potential lines
with slope 10 mV/scan and varying intercept (Fig. 4.4d). We then define the quantity p
that accounts for the density of high-correlation points falling along each line. In prac-
tice, p represents a quantum dot transition-line likelihood (Fig. 4.4e), and details on its
mathematical description are discussed in section 4.12).

Figs. 4.5a-u present the detected coordinates with high correlation of all the 16 quan-
tum dots as a function of scan index and associated stepped voltage, together with all
possible transition lines plotted with a colour that is proportional to their respective p.
High values of p are rendered as visible lines intercepting several high-correlation fea-
tures, enabling a rapid visualisation of the charge transition lines of all the quantum dots
of the array.

By comparing all the panels, we can resolve a small shared-gate voltage window
around the tuning point defined by ∆vPx =0 at the largest n where all the quantum dots
are in the odd charge regime (also see Fig. 4.19).

While the algorithm is successful in detecting the transition lines of every quantum
dot, we note that it returns a false-positive line for the case of Q3b. The first visible Q3b
transition, labelled with a star in Fig. 4.5i is in reality an outlier due to a detected feature
at n = 0 and ∆vP3 ∼ 55 mV not related to Q3b, but due to an artefact of a charge sensor,
that is clarified in section 4.11. While the algorithm is remarkably strong in detecting the
transitions, a definite conclusion on the odd occupancy is most likely only achieved by
performing coherent operation on each qubit.

INTERDOT COUPLINGS CONTROL

The ability to selectively tune the interdot coupling in a quantum dot architecture is
crucial for generating exchange-based entanglement between semiconductor qubits [9].
Here, inspired by the word and bitlines approach as in dynamic random-access memo-
ries [14], [17], we exploit the double barrier design to spatially define and activate unique
points in the grid structure. Conceptually, each two-barrier intersection point can be set
by the respective voltages in the four configurations: (ON, ON), (ON, OFF), (OFF, ON),
(OFF, OFF). For selective two-qubit operations in qubit arrays, the voltage set points
should be calibrated such that only when both barriers are in the ON-state a two-qubit
interaction is activated, leaving all the other pairs non-interacting (also see Fig. 4.20).
Here, we implement a proof-of-principle of this method by demonstrating two-barrier
control of the interdot tunnel coupling in a horizontal and a vertical pair of quantum
dots. To this end, we investigate the tunnel coupling variations of the horizontal Q6b-
Q7 and vertical Q6t-Q7 quantum dot pairs as a function of the two intersecting barriers.
Starting from the respective UB4 and LB7 gates, we define the virtual barriers t6b7 and
j6b7 (section 4.4), which separate the quantum dots Q6b and Q7, while keeping their de-
tuning (e67) and on-site (U67) voltages constant at the (3,1)-(2,2) Q6b-Q7 interdot tran-
sition (Fig. 4.6a). After obtaining the detuning lever arm αϵ67 to convert the detuning
voltage into an energy scale (∆ϵ67 =αϵ67 ·∆e67), we evaluate the strength of the interdot
couplings by analysing the charge polarisation lines along the detuning axis at ∆U67 =
0 (Figs. 4.6b, c) [38]. By performing this measurement systematically, we demonstrate
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Figure 4.5: Counting holes in a 16 quantum dot array. a-p, Same as Fig. 4.2/e for all the 16 quantum dots.
The numbers in each plot indicate the quantum dot fillings, according to the algorithm. In 3 cases (Q3t, Q6b,
Q6t) out of 16, we step a barrier, rather than a plunger, to better isolate the shift of only one of the dots under
the same plunger line. High-correlation features (blue points) are found up to the bounds of the area of the
datasets analyzed by the protocol, highlighted by the dotted grey polygon. The horizontal dashed line indicates
the actual limit of the dataset. The star in panel (n) indicates a false-positive transition line.
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a b c

d e

j6b7

t6b7

Figure 4.6: Addressable control of the horizontal interdot tunnel coupling using double barrier gates. a
Schematics of the crossbar indicating the two intersecting barriers (in red and blue) controlling the Q6b-Q7
interdot tunnel coupling. b Exemplary charge stability diagrams taken via reflectometry methods showing the
(Q6b,Q7) charge states at four different virtual barrier voltage configurations near the (3,1)-(2,2) transition. At
the centre of the panels, the vertical interdot transition line is clearly visible. The circle, square, diamond, and
triangle markers correlate each map to the voltages, (t6b7, j6b7) = −(330,380), (270,380), (330,510), (270,510)
mV, respectively. c Charge polarisation traces (black) relative to panel (b), together with best fit (dashed grey).
d Colour map of the two-axis controlled tunnel coupling of the systems Q6b-Q7, with markers located at the
respective voltages. We note that a variation of a virtual barrier corresponds to the same variation of the real
gate. e Vertical (left panel) and horizontal (right panel) linecuts of (d) at t6b7 = −330 mV and j6b7 = −510
mV, respectively. Grey traces are fits with an exponential function of the data, from which we obtain the four
effective barrier lever arms (section 4.4).

that the tunnel coupling can be controlled effectively by both barriers (Figs. 4.6d,e). At
values of (t6b7, j6b7) = (−270,−380) mV, the coupling is virtually OFF, but our method is
inherently not accurate for tc ≤ 3 GHz, because the thermal energy dominates the broad-
ening of the polarisation line [32], [38]. In contrast, upon activating both barriers at
(t6b7, j6b7) = (−330,−510) mV, the tunnel coupling is turned on following approximately
an exponential trend (section 4.4). Within the displayed voltage range, we can tune it
well above 10 GHz, much higher than in the configuration in which only one barrier is
activated. We perform the same experiment on the dots pair Q6t-Q7 by defining the
virtual barriers t6t7 and j6t7 based on the gates UB5 and LB7, respectively (Fig. 4.7a and
section 4.4). Using the same barrier voltages window as for Q6b-Q7, we find that the
coupling tunability of the pair Q6t-Q7 is comparable to the previous pair, with a virtu-
ally OFF state ( ≤3 GHz) at (t6t7, j6t7) = (−270,−380) mV, and with a ON state reaching 20
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Figure 4.7: Addressable control of the vertical interdot tunnel coupling using double barrier gates. Analo-
gous to Fig. 4.6 but for the vertical quantum dot pair Q6t and Q7 and barrier voltages t6t7, j6t7.

GHz at (t6t7, j6t7) = (−330,−510) mV (Figs. 4.7b-e). These results are corroborated by the
two-barrier tunability of the interdot capacitive coupling for both double-dot systems
(shown in Fig. 4.21) and by the tunability of another dot pair (shown in Fig. 4.22). We
envision that for rapid qubits exchange operations at the charge symmetry point, the
required barrier voltage window might be different from our measurable window via po-
larisation lines. Specifically, for state-of-the-art values of ON (OFF) exchange interaction
of 50 MHz (10 KHz) and a typical charging energy of 1 mV, the required tunnel coupling
is ∼ 2 (0.02) GHz, which can be better calibrated via qubit spectroscopy techniques [21],
[39], [40].

4.3. CONCLUSIONS
By implementing a strategy that allows to address a large number of quantum dots with
a small number of control lines, we have operated the most extensive two-dimensional
quantum dot array so far. With this approach, the number of gate layers is indepen-
dent of the grid size, which greatly simplifies the nanofabrication of quantum dot arrays.
With the introduction of a double barrier paradigm and a statistical method for labelling
multi-dot charge stability diagrams, we have demonstrated two critical requirements for
quantum logic in shared-control architectures: the tunability of 16 interacting quan-
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tum dots into an odd charge state with an unpaired spin and the proof of principle of a
method for the selective control of the interdot tunnel coupling, which is crucial for the
control of the exchange interaction. We envision that future crossbar arrays may find ap-
plications in large and dense two-dimensional quantum processors or as registers that
are coupled via long-range quantum links for networked computing.

4.4. METHODS

FABRICATION

The device is fabricated on a Ge/SiGe heterostructure where a 16-nm-thick germanium
quantum well with a maximum hole mobility of 2.5 ·105 cm2 V−1 s−1 is buried 55 nm be-
low the semiconductor/oxide interface [26], [41]. We design the quantum dot plunger
gates with a diameter of 100 nm, and the barrier gates separating the quantum dots with
a width of 30 nm. The fabrication of the device follows these main steps. 30 nm-thick
Pt ohmic contacts are patterned via electron-beam lithography, evaporated and diffused
in the heterostructure following an etching step to remove the oxidised Si cap layer [42],
[43]. A three-layer gate stack is then fabricated by alternating the atomic layer deposi-
tion of a Al2O3 dielectric film (with thicknesses of 7, 5, 5 nm) and the evaporation of Ti/Pd
metallic gates (with thicknesses 3/17, 3/27, 3/27 for each deposition, respectively). Af-
ter dicing, a chip hosting a single crossbar array is then mounted and wire-bonded on a
printed circuit board. Prior to the cool down in a dilution refrigerated, we tested in a 4 K
helium bath two nominally identical crossbar devices following the screening procedure
shown in ref. [39]. Both devices exhibited full gates and ohmic contacts functionality,
and one of them was mounted in a dilution refrigerator.

EXPERIMENTAL SETUP

The experiment is performed in a Bluefors dilution refrigerator with a base temperature
of 10 mK. From Coulomb peaks analysis, we extract an electron temperature of 138±9
mK, which we use to estimate the detuning lever arm (Fig. 4.23 and 4.24). We utilise
an in-house built battery-powered SPI rack https://qtwork.tudelft.nl/~mtiggelman/
spi-rack/chassis.html to set direct-current (dc) voltages, while we use a Keysight M3202A
arbitrary waveform generator (AWG) to apply alternating-current (ac) rastering pulses
via coaxial lines. The dc and ac voltage signals are combined on the PCB with bias-tees
and applied to the gates. Each charge sensor is galvanically connected to a NbTiN in-
ductor with an inductance of a few µH forming a resonant tank circuit with resonance
frequencies of ∼ 100 MHz. In our experiment we have observed only three out of four
resonances, likely due to a defect inductor. Moreover, because two resonances over-
lap significantly, we mostly avoid using reflectometry (unless explicitly stated in the text)
and use fast dc measurements with bandwidth up to 50 kHz. The four dc sensor currents
are converted into voltages, amplified and simultaneously read out by a four-channel
Keysight M3102A digitizer module with 500 MSa/s. The digitizer module and several an
arbitrary waveform generator (AWG) modules are integrated into a Keysight M9019A pe-
ripheral component interconnect express extensions for instrumentation (PXIe) chassis.
Charge stability diagrams here typically consists of a 150x150 pixels scan with a mea-
surement time per pixel of 50 µs. Throughout this article, we refer to ∆gi to identify

https://qtwork.tudelft.nl/~mtiggelman/spi-rack/chassis.html
https://qtwork.tudelft.nl/~mtiggelman/spi-rack/chassis.html
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a ramp supplied by an AWG to the gate gi with respect to a fixed dc reference voltage.
To enhance the signal-to-noise ratio, we average the same map 5-50 times, obtaining a
high-quality map within a minute.

TUNE-UP DETAILS

Throughout the experiment, we have tuned all 16 quantum dots of the device two times.
In the first run, the gate voltages were optimised to minimise the number of uninten-
tional quantum dots in order to better visualise and characterise the crossbar quantum
dots (Fig. 4.2, 4.3, 4.25 and 4.26). In the second run, the stray dots were neglected to tune
the quantum dot array into a global odd-occupation regime (Fig. 4.5). Between the two
tune-up cycles, the gate voltages were reset to zero without thermal cycling the device.
The protocol followed in the two tuning procedures was the same, but the need for emp-
tying accidental quantum dots in the first session led to some restrictions in the voltage
window of certain gates. The starting gate voltage values for the tune-up are -300 mV for
the barriers and -600 mV for the plungers. In Fig. 4.27 we display the dc gate voltages
relative to the measurements displayed in Fig. 4.5, with the crossbar array tuned in the
odd-charge occupation. In this regime, we also study the variability of the first hole volt-
age onset in each dot obtaining −1660±290 mV (Fig. 4.28). Furthermore, we characterise
the variability of the transition lines spacing to be ∼ 10−20% as a metric for the level of
homogeneity of the array (Fig. 4.29) [44]. Strategies to further reduce these variations are
discussed in section 4.8.
The odd charge occupancy is demonstrated by emptying each quantum dot as shown
in Suppl. Videos 1-12. All the datasets underlying Fig. 4.5 and in Suppl. Videos 1-12 are
taken at the same gate voltage configuration on the same day. Still, across all the maps,
there are minimal voltage differences, the largest is a variation of 6 mV in vP1 that how-
ever does not affect the Q1 and Q2b, Q2t occupancies (Tab. 4.2). During the experiment,
the gate UB8 did not function properly, possibly due to a broken lead. To compensate for
this effect and to enable charge loading in the dots P3t and P5t, we set UB7 at a lower volt-
age compared to the other UB gates. Additionally, LB1 is set at a comparatively higher
voltage to mitigate the formation of accidental quantum dots under the fanout of LB1
and P1 at lower voltages. The first addition line of such an accidental quantum dot is
visible as a weakly interacting horizontal line in Fig. 4.4a.

VIRTUAL MATRIX

The matrix M defined by G⃗ = M · v⃗G , with virtual gates v⃗G and actual gates G⃗ is shown as
a colour map in Fig. 4.10. For the tunnel coupling experiments presented in Fig. 4.6 and
4.7, we employ additional virtual gate systems for achieving independent control of the
detuning voltage e67 and U67, and of the interdot interactions via virtual barriers t6b7,
j6b7, t6t7 and j6t7. With SE_P the SE plunger gate, we write:


P5
P6
P7

SE_P

=


0.04 −1.2
−0.5 0.9
0.492 0.9
−0.08 −0.26

(
e67
U67

)
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P6
P7

UB5
LB7

SE_P

=


−1.28 −0.33
−1.18 −0.72

1 0
0 1

0.15 −0.01


(
t6t7

j6t7

)


P6
P7

UB4
LB7

SE_P

=


−2.05 −0.97
−1.18 −0.41

1 0
0 1

−0.19 −0.01


(
t6b7

j6b7

)

QUANTUM DOT IDENTIFICATION

To obtain the capacitive coupling of all the barrier gates to a set of transition lines (as
shown in Fig. 4.3a), we acquire and analyse sets of 112 charge stability diagrams. The
same charge stability diagram is taken after stepping each barrier gate around its cur-
rent voltage in steps of 1 mV in the range of -3 to 3 mV (i.e., 7 scans x 16 barriers). The
number of charge stability diagrams required to identify all quantum dots scales linearly
with their total number. The number of maps results from the product of the number
of plunger and barrier gates, which both scale as its square root. We emphasise that an
array with individual control would also require a linear number of charge stability di-
agrams to infer each dot. In the analysis, we first subtract a slowly varying background
to the data (with ndimage.gaussian.filter of the open-source scipy package) and then
calculate the gradient of the map (with ndimage.gaussian_gradient_magnitude). For
a given line cut of such two-dimensional maps, we extract the peaks position using a
Gaussian fit function. Due to cross capacitance, the transition line positions manifest a
linear dependence on each of the 16 barriers, which we quantify by extracting the lin-
ear slope (Fig. 4.11). After normalisation to the maximum value, these parameters are
named capacitive couplings (λ), and, because of the grid structure of the two barrier lay-
ers, provide a first information of where the hole is added/removed to/from. To extract
the quantum dot positions, we consider the capacitive couplings to the vUB (λvUB) and
vBL (λvLB) gates as two independent probability distributions. With this approach, the
integral of the λvUB (λvLB) between vUBi (vLBk) and vUB j (vLBl ) returns a “probability”
pU ,(i , j ) (pL,(k,l )) to find the dot in-between these control lines. As a result, the combined
probability in the site confined by these four barriers is given by the product of these el-
ements: w(i , j ),(k,l ) = pU ,(i , j ) ·pL,(k,l ). We note that the sum of the 16 probabilities returns
1. As already observed in ref. [33], the gates cross-coupling to a specific quantum dot
defined in a germanium quantum well manifest a slow falloff in space (i.e., gates with a
distance to the dot of > 100 nm still have a considerable cross-coupling to the dot). This
can be attributed to the rather large vertical distance between the gates and the quantum
dots (> 60 nm), and is in contrast with experiments in SiMOS devices where the falloff
is rather immediate due to the tight charge confinement. This aspect explains why our
probability W at the identified quantum dot reaches at a max of 0.25−0.5.
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TUNNEL COUPLING EVALUATION
For the estimation of the tunnel coupling results presented in Fig. 4.6 and 4.7, we es-
tablished an automated measurement procedure that follows this sequence: 1) we step
the virtual barriers across the two-dimensional map (t , j ); 2) at each barrier configura-
tion, we take a two-dimensional (e67, U67) charge stability map (Figs. 4.6b and 4.7b); 3)
we identify the accurate position of charge interdot via a fitting procedure of the map
(Fig. 4.21) [45]; 4) we perform small adjustments at the e67, U67 virtual gates to cen-
tre the interdot at the (0,0) dc-offset; 5) measure the polarisation line by using ∼0.1
kHz AWG ramps (Figs. 4.6c and 4.7c). For an accurate analysis, each polarisation line
is the result of an average of 150 traces, using a measurement integration time of 50
µs per pixel. With this method, the full 30x30 maps are taken in a few hours. We fit
the traces considering an electron temperature of 138 mK and a detuning lever arm of
αϵ67 = 0.012(4) eV/V, extracted from a thermally broadened polarisation line (Fig. 4.24).
We observe that the extracted tunnel coupling follows approximately an exponential
trend as a function of the barrier gates. We fit the data presented in Figs. 4.6e and 4.7e
with the function A ·e−BVg , with A a prefactor, B the effective barrier lever arm and Vg the
gate axis. We find that the effective barrier lever arms of j6b7 and t6b7 are 0.007±0.002 and
0.021±0.003mV−1, respectively. Similarly, we find for j6t7 and t6t7 values of 0.008±0.001
and 0.026±0.003mV−1, respectively. This indicates that the real barrier LB7 controls the
vertical and horizontal coupling in a similar manner. Altogether these results indicate
that the lower barrier layer of UB gates is ∼ 3 times more effective than the upper barrier
layer of LB gates. This is consistent with what is found in Fig. 4.3a and Fig. 4.13. We note
that for qubit operations in such crossbar array, it is actually necessary to fully charac-
terise and calibrate the two-barrier tunability of all the 24 nearest-neighbours. Perform-
ing this task requires improving further our hardware implementation and is beyond the
scope of this work.
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4.5. RENT’S RULE AND GATE COUNT
Scalable architectures impose stringent requirements at all layers of the quantum com-
puting stack [5]. If we focus on the lowest layers of the computing stack, state-of-the-
art solid-state quantum processors do not meet these prerequisites yet [8]. In fact, cur-
rent processors still make use of a few control terminals per qubit, an approach that
will lead to arduous interconnectivity and control challenges in the route toward mil-
lions qubits [46], [47]. To quantify the level of optimisation and interconnectivity of a
quantum processor, we borrow the concept of Rent’s rule from classical electronics [48].
In quantum dot devices, the Rent’s rule can be used to correlate the number of control
terminals T (i.e., gates, ohmic leads,...) and the number of active components g (i.e.,
quantum dots or qubits):

T = t g p (4.1)

where t is the average number of control terminals per qubit and p is the Rent exponent
that lies in the range (0,1]. Without any quantum hardware optimisation, the number of
terminals will keep increasing linearly with the number of qubits, creating major inter-
connect problems in the quantum computing stack [8].
An analogous challenge emerged in the 1950s in classical electronics when every elec-

NQDs= 4

NQDs= 9
NQDs= 16

Figure 4.8: Rent’s rule in two-dimensional quantum dot architectectures and gates count. Number of con-
trol terminals (gates) versus the number of quantum dots for a two-dimensional array. The blue trace indicates
the scaling of our shared-control gate architecture. The red trace shows the scaling for an architecture with in-
dividual control (inset) of interdot couplings and quantum dot energies. Scatter points represent the gates
counts of a 2x2 [39], 3x3 [49] and 4x4 quantum dot array (this chapter). We draw a horizontal line at 2000 con-
trol terminals, which currently identify the current maximum number of input/output terminals of classical
integrated circuits. Assuming this as a practical limit for the control terminals of a quantum processor without
on-chip control logic [7], the individual control strategy is limited to control up to a few hundred quantum
dots. In contrast, the shared control approach may be able to control few hundreds of thousands.

trical component needed to be soldered to several others [50]. The turning point was the
invention of the integrated circuit, which led to the realisation of the first microprocessor
- the Intel 4004 - with 2300 transistors and only 16 external pins. Nowadays, integrated
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circuits are at the heart of our technology and, with a Rent exponent of about 0.5 and
a maximum number of input/output lines of T ∼ 2 ·103, present a ratio of transistor to
input/output pins g /T of ∼ 106 [7], [51]. On the contrary, in infant quantum chips, the
g /T ratio is below 1 [8], and therefore, significant efforts have to be made to downscale
the quantum Rent exponent.
In our work, we have moved from electrostatic gating strategies with individual control of
every unit to crossbar architectures with shared control of quantum dots energies and in-
terdot couplings [17]. This advance is crucial for scalability because it may enable to use
O(N 1/2) terminals for O(N ) qubits (i.e., p = 0.5). The impact of this strategy can be visu-
alised in Fig. 4.8, where we compare the different scalings of control terminals for a two-
dimensional quantum dot array controlled with a shared- and with an individual-control
approach. For the shared-control architecture presented in this chapter, the gates count
as a function of quantum dots g is given by:

T = 6g 1/2 −1 ∝ 6g 1/2 (4.2)

while for an architecture with individual control of all the on-site dot energies and inter-
dot couplings (see inset of Fig. 4.8), we obtain:

T = 3g +2g 1/2 −4 ∝ 3g (4.3)

These equations hold for square arrays with a minimum 2x2 size, i.e., g ≥ 4.
Scaling the crossbar architecture to a 6x6 crossbar array would already result in a de-
vice with fewer gates than total number of quantum dots. In particular, a 6x6 crossbar
array with 36 quantum dots requires only 35 gates. We note that while this may seem
a marginal improvement, comparing the required number of gates to quantum dot de-
vices with individual connectivity shows already a remarkable difference: a 4x4 (6x6)
quantum dot device requires 23 vs 52 (35 vs 116), for the respective systems.
We emphasise that in these considerations we do not account for the terminals control-
ling the read-out charge sensors. In the future, a strategy for integrating charge sensors
within quantum dot crossbar arrays needs to be fully worked out to establish and oper-
ate scalable modules of semiconductor qubit arrays with a Rent exponent of 0.5. We note
that germanium can make ohmic contacts to metals, thus facilitating a very small foot-
print for charge sensors, and providing a route toward the integration of charge sensors
in the quantum dot array.

4.6. TYPICAL CHARGE SENSORS RESPONSE
To read out the charge states of the 16 quantum dots, we prepare four charge sensors in
the Coulomb blockade regime, as demonstrated by the transport features in Fig. 4.9, and
operate them at the steepest points.
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ba dc

Figure 4.9: Typical charge sensor responses. a, b Direct-current I via the NW and SW sensor. c, d Reflectom-
etry signal S21 of the NE and SE sensor respectively. The traces are taken as a function of the relative sensor
plunger gate.

4.7. VIRTUAL GATE MATRIX
In Fig. 4.10 we display the virtual matrix used in software to define the set of virtual gates.
We define the virtual gates such that their variation does not influence the position of
the charge sensors Coulomb peak. Concretely, we perform in video-mode fast 2D gate
scans of the kind NW_P vs LB1. We then identify the slope of the position of the sensor
Coulomb peak in such a 2D map, and set this value to the matrix element (NW_P, vLB1).
This method results in the definition of a virtual gate vLB1 that maintains the NW charge
sensor tuned. This procedure is iterated across all plunger and barrier gates, and all the
charge sensors.
Similarly, virtual plungers are also designed to be able to tune independently the on-
site energies of the quantum dots by using only nearest-neighbours compensations as
described in refs. [24], [25]. Because multiple sites are controlled by a single plunger line
and each of the site can have a slightly different crosstalk to the surrounding gate, our
procedure results in an approximation. We note that in this work we have not virtualised
the barrier gates beyond the two double dots considered in Fig. 4.6 and 4.7.
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1.00.50.0-0.5-1.0

Figure 4.10: Virtual gate matrix. Visualization of the virtual gate matrix. Virtual barriers vLBi and vUBi are
defined as combination of the relative barriers LBi and UBi with i ∈ [1,8] and sensor plungers. NW_P, NE_P,
SW_P and SE_P identify the plungers of the respective charge sensors.
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4.8. PRACTICAL DEVICE IMPROVEMENTS
Here, we present a series of practical ideas to mitigate challenges observed (and not)
throughout the experiment.

1. The tune-up of the current implementation is complicated by the emergence of
a few (∼ 5) unwanted stray dots outside the array, located under the dense gates
fanout. These decrease the read-out sensitivity to the designed quantum dots and,
in general, complicate the system tune-up.
Near-term solutions can be: the addition of a lower “screening” gate layer (kept
at a more positive voltage), or an upper “depleting” gate layer that prevents any
charge puddles from forming in between different gate lines. A more sophisticated
solution consists of the implementation of vertical interconnect access through
the oxide layer that enables to fan out the gate lines at a much higher level in the
stack [28]. We also envision that, in the future, boundary effects of large qubit
arrays need to be accounted for (e.g., dots at the perimeter of the array experience
a smaller electric field than the ones in the middle). Hence, another possibility is
to neglect the dots at the perimeter completely.

2. A faster device tune-up can be achieved by using radio frequency reflectometry,
which, in our experiment, worked out only partially.

3. A higher level of homogeneity and functionality than is presented here will be
needed for practical quantum computation with quantum dots. Leaving aside the
development on the material stack itself (Ge/SiGe) and on the device nanofabri-
cation, there appears to still be space for improvements on the gate layout.
Similarly to the behaviour of the turn-on voltages in transistors [52], a higher quan-
tum dot homogeneity may be achieved by increasing their size. This will also have
the beneficial effect of increasing the plunger gates lever arm, which will be less
screened by the lower layers. Clearly, an excessively large quantum dot can lead
to (Pauli spin-blockade) read-out problems if the energy of the first excited state is
too low. Therefore a search for an optimal size needs to be performed.

4. Other strategies can be adopted in the near future to further improve the level of
quantum dot uniformity. In particular, a method presented in chapter 5 and 6
relies on engineering the electrostatic landscape using the hysteretic shift of the
gate voltage characteristics.

5. In the current device, we observed that the ratio of the two barrier layers lever
arms is approximately 2-3. Due to imperfections in the nanofabrication and an
oxide layer in between them, the top layer partially overlaps the bottom one. As
a consequence, its electric field is screened. To enhance the coupling of the top
layer, one can design the top layer to have a slightly larger width, or add a gap of a
few nm in between the two lines.
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4.9. QUANTUM DOT IDENTIFICATION
To obtain the capacitive coupling of each barrier to each dot, we analyse several charge
stability diagrams as shown in Fig. 4.11a. We monitor the position of the transition lines
(away from charge interdots) by fitting the derivative of the data with a Gaussian func-
tion, after subtraction of a slow-varying background. In the small voltage range that we
consider, the extracted peak positions respond linearly to each barrier gate (Figs. 4.11b,
c) The normalised slope of the fitted linear function is used to quantify the capacitive
coupling of each gate. The latter are plotted as bar plots and visualised on the device
layout in Fig. 4.12- 4.16. As described in the Methods, this information can be used to
clearly assign each set of transition lines to the dot in the grid.
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a b

c

Figure 4.11: Detecting the shift of the transition lines: an exemplary case. a, Charge stability diagram (gradi-
ent of the SW sensor signal) showcasing a set of vertical and horizontal charge transition lines. The green trace
shows the derivative of the data at the vP4 value identified by the horizontal green tick. The white dashed line
is a fit of the linecut with a Gaussian function, and the green marker identifies the fitted centre of the peak.
The red marker labels the fitted coordinate of a vertical transition line (not shown). b, c, Scatter points are the
fitted positions of the green and red markers, respectively, as a function of the voltage applied at all barriers.
Error bars on the points display the standard deviation of the fitted centre of the Gaussian. Dashed lines are
the best linear fit to the data. The normalised absolute values of the slope parameter are taken as capacitive
couplings of each gate to the specific transition line. The error bar on the capacitive coupling is taken as one
standard deviation of the fitted slope parameter. The horizontal (vertical) transition line in (a) is attributed to
the quantum dot Q4b (Q5b).
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a b cλvUB, λvLB

Figure 4.12: Quantum dot identification of the Q2 quantum dots. a, Bar plots of the (normalised) capacitive
couplings (in red for the vUB, and in blue for the vLB gates) obtained by the analysis of transition lines at-
tributed to different quantum dots as shown in Fig. 4.11. Red and blue backgrounds are added to emphasise
the two barriers that surround the labeled quantum dot. b, Device layout with the capacitive couplings colour-
coded on the filling of the gate lines. The vUB (vLB) capacitive couplings are normalised to their maximum
values. Intuitively, the quantum dot associated with the analysed transition lines is located at the intersection
of the two intensely coloured red and blue lines. c, Extracted probabilities (W ) of each set of addition lines
(calculated as discussed in section 4.4). The comparison of the top and bottom panels of a, b, c clearly distin-
guishes the two Q2 quantum dots. In a the data points correspond to the peak of the chart bars as well as the
centers of the error bars. Each error bar is the standard deviation of the parameter obtained from the linear fit.

a b c
λvUB, λvLB

Figure 4.13: Quantum dot identification of the Q6 quantum dots Same as in Fig. 4.12 but applied to the Q6
quantum dots. TThe comparison of the top and bottom panels of a, b, c clearly distinguishes the two Q6
quantum dots.
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a b cλvUB, λvLB

Figure 4.14: Quantum dot identification of the Q6 quantum dots Same as in Fig. 4.12 but applied to the Q5
quantum dots. The three different rows of panels a, b, c enable to label the Q5 quantum dots.
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a b c

vUB vLB

λvUB, λvLB

Figure 4.15: Quantum dot identification of the Q6 quantum dots Same as in Fig. 4.12 but applied to the Q4
quantum dots. The three different rows of panels a, b, c enable to label the Q4 quantum dots. The dot Q4t
could not be systematically analysed because, in this gating regime, we observe a slow loading mechanism via
the defective barrier UB8 with respect to the timescale of our scan (∼ ms). However, because such transition
lines are controlled by vP4 (labelled in Fig. 4.25), do strongly respond to vUB7 and vLB5, we can still map them
to the site Q4t, in a qualitative way.
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a b c

d e f

vUB vLB

λvUB, λvLB

λvUB, λvLB

Figure 4.16: Quantum dot identification applied to the Q1 and Q7 quantum dot The method in Fig. 4.12 is
applied to the two quantum dots controlled by independent plunger lines Q1 and Q7 in panels a, b, c and d, e,
f, respectively.
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4.10. SPURIOUS QUANTUM DOT IDENTIFICATION: AN EXAM-
PLE

We make use of the method presented above to also map the position of accidental quan-
tum dots that arise outside the crossbar array. In Fig. 4.17a, we display the capacitive
coupling of the barrier gates to a spurious quantum dot. The addition lines of such a
quantum dot are mainly controlled by vP2 and are visible as quasi-vertical lines in the
charge stability diagrams of the type ∆vP2 vs ∆vP3 in the Supplementary Videos (see
section 4.11). In particular, from these maps, it is possible to observe a negligible mutual
capacitance between this specific accidental dot and the crossbar quantum dots Q1, and
Q3b. However, we emphasise that the presence of such spurious quantum dot compli-
cates the tuning efficiency of our device, and strategies to mitigate their presence need
to be in place in the near future, as already discussed in the main text. In Fig. 4.17b,
we present the device layout with the capacitive couplings colour-coded on the filling
of the gate lines. Here, both the vUB and vLB capacitive couplings, λvUB and λvLB, are
normalised to their maximum values. Following this analysis, we can conclude that such
spurious quantum dot is approximately located under the fanout of the gates UB1, LB3
and UB3. This is furthermore corroborated by the fact that this dot is well sensed by the
SW charge sensor.

vUB vLB

a b λvUB, λvLB

Figure 4.17: Spurious quantum dot identification. a, Bar plots of the (normalised) capacitive couplings (in
red for the vUB, and in blue for the vLB gates) obtained from the analysis of transition lines attributed to a
spurious quantum dot located under the gates fanout. The data points correspond to the peak of the chart
bars as well as the centers of the error bars. Each error bar is the standard deviation of the parameter obtained
from the linear fit. b, Device layout with the capacitive couplings colour-coded on the filling of the gate lines.
The vUB (vLB) capacitive couplings are normalised to their maximum values. The orange oval in (b) indicates
the approximate position of the quantum dot associated with the analysed transition lines (under the fanout
of the barriers UB1 and LB3).
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Quantum dot Size of the visible 0th 1st addition Ratio
charge state (mV) voltage (mV)

Q1 111 49 2.3
Q2b 120 46 2.6
Q2t 116 46 2.5
Q3b 71 54 1.3
Q3m 78 46 1.7
Q3t 77 40 1.9
Q4b 96 52 1.8

Q4mb 101 52 1.9
Q4mt 105 64 1.6

Q4t 125 47 2.7
Q5b 107 48 2.2
Q5m 125 54 2.3
Q5t 125 65 1.9
Q6b 66 50 1.3
Q6t 105 50 2.1
Q7 75 44 1.7

Table 4.1: Comparison of the size of the visible 0th charge state in the charge stability diagrams with the addi-
tion voltage of each quantum dot. The range in which no transition lines are observed is always larger than 1.3
times the spacing of the first two transition lines.

4.11. DEMONSTRATION OF THE ODD OCCUPATION REGIME VIA

VIDEO SEQUENCES

We have combined the stepping charge stability diagrams into videos 1-12 which can be
found in the supplementary of ref [1]. In these videos, we present sequences of charge
stability diagrams of the type vPx versus vPy with x, y ∈ [1,7] and x ̸= y . Because the
maximum amplitude of the arbitrary waveform generator (AWG) ramps at the device is
at max ∼ 200 mV due to the attenuation in the lines, a single two-dimensional scan is not
enough to evaluate directly the number of holes in a quantum dot. Rather, we start from
the gate voltage regime presented in the main text Fig. 4.5 and proceed by increasing
the dc voltage vPx in steps of 10 mV toward more positive voltages until Qx is fully de-
pleted. At every step, we take a fast two-dimensional scan that allows to label and count
the number of transition lines visible in the available gate window. The size of the visible
zeroth charge sector is always chosen in all the cases to be bigger than the relative first
hole spacing (∼ 50 mV), see Table 4.1. We present these measurements starting from an
empty dot and finishing in the original configuration, with a square labelling the (0,0)
point in the map signalling the odd occupancy regime. In analogy to the main text, the
red, blue, green and yellow frames of the plots indicate that the data have been measured
with the NW, NE, SW and SE charge sensor, respectively.
In Table 4.2, we list the dc virtual plunger voltages of the datasets presented as Supple-

mentary Videos.
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Video vP1 vP2 vP3 vP4 vP5 vP6 vP7
1 -1369 -1354 -1527 -2056 -1995 -1612 -1380
2 -1369 -1354 -1527 -2056 -1995 -1612 -1380
3 -1363 -1354 -1527 -2056 -1995 -1612 -1380
4 -1363 -1354 -1527 -2056 -1995 -1612 -1380
5 -1363 -1354 -1527 -2056 -1995 -1612 -1380
6 -1363 -1354 -1527 -2056 -1995 -1612 -1380
7 -1363 -1354 -1527 -2056 -1995 -1612 -1380
8 -1363 -1354 -1527 -2056 -1995 -1612 -1380
9 -1363 -1354 -1527 -2056 -1995 -1612 -1380

10 -1369 -1354 -1527 -2056 -1995 -1612 -1379
11 -1369 -1354 -1527 -2056 -1995 -1612 -1380
12 -1369 -1354 -1527 -2056 -1995 -1612 -1378

Table 4.2: Virtual plunger voltages. Table listing all the dc voltages applied to the virtual plunger gates under-
lying the measurements presented in the Videos 1-12. All values are in mV. The largest variation (6 mV) on vP1
does not affect the occupancy of Q1 (neither the surrounding Q2b and Q2t quantum dots), as can be seen in
Videos 1 and 2.

4.12. IMAGE CORRELATION TECHNIQUES FOR QUANTUM DOT

DETECTION

Verifying the odd charge state requires tracking the charge addition lines of all 16 quan-
tum dots. This can be a tedious task as the Supplementary videos in the previous subsec-
tion demonstrate because it involves studying several charge stability maps at different
plunger gate configurations with varying visibility. Some charge transition lines only can
be reconstructed by their interdot transitions with other dots, and slow tunnel couplings
to the reservoirs (Fig. 4.18) cause postponed loading (i.e. latching) which further com-
plicates the interpretation [30]–[33]. Therefore, we have developed an algorithm that
unifies and simplifies the assessment of the first few charge transition lines of a given
quantum dot to ease the determination of its charge occupation.

In order to track the transitions of a given quantum dot Qx, we acquire charge stabil-
ity maps M raw

n sweeping the respective plunger gate vPx against a neighbouring plunger
gate vPy for Nscan constantly spaced offset voltages Voff,n applied to vPx or a third gate (as
presented in the Supplementary Videos). The charge stability maps are preprocessed by
applying an individual combination of background subtraction, derivatives, local con-
trast normalisation, cropping along the secondary axis (vPy) and normalisation as de-
tailed in Table 4.4. A reference feature F is then defined as a renormalised section of one
of the preprocessed charge stability maps Mn . It is chosen to uniquely identify the re-
spective quantum dot transition line, either directly containing a section of a transition
line or showing an interdot transition with an adjacent dot.
Next, we calculate the image correlation Cn of the charge stability maps Mn with the
reference feature F :

Cn(vPx,vPy) = ∑
∆vPx,∆vPy

Mn(vPx+∆vPx,vPy+∆vPy)F (∆vPx,∆vPy)
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Figure 4.18: Effects of low tunnel rate to the reservoir in charge stability diagrams. a, Cartoon of a conven-
tional honeycomb charge stability diagram of a double dot system where the reservoir tunnel rates to both
dots Q1 and Q2 are much higher than the sweep rate of both axes. If one dot (Q2) is located further away from
the reservoir than the other (Q1), loading in Q2 occurs thanks to cotunnelling events via Q1. b, c When Q2
is coupled to the reservoir at a rate much slower than the sweeping time, the charge stability map displays
hysteretic features whose occurrences depend on the sweep direction [30]. Q2 is then loaded via the extended
charge interdots of Q1-Q2, which remains active due to the finite Q1-Q2 interdot coupling. We note that when
the charge stability diagrams display such features, the interdots with Q1 still enables to reconstruct the Q2
transition line at equilibrium. We also emphasise that typical maps manifest a behaviour that is in between
the case displayed in (a) and in (b) (or (c)) depending on the sweep direction and the tunnel rate to the leads,
which is typically non zero.
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Typically Cn will exhibit a maximum at the gate voltages for which F was defined. How-
ever, often F also has an increased correlation with similar features of higher or lower
transition lines enabling the detection of those as well. We note that in some cases we
redefine the feature F to compensate for sensor shifts or features changing with the
charge occupancy of the dot (e.g. growing interdot transitions). The number of fea-
ture definitions per number of charge stability diagrams is given in the last column of
Table 4.4. Each correlation map Cn is then divided into sub-parts Cn,m along the vPx
axis and the maximum correlations Ĉn,m = max(Cn,m) and the respective coordinates
( ˆvPxn,m , ˆvPyn,m) are determined. In particular we choose four sub-parts (m ∈ {0,1,2,3})
for all quantum dots corresponding to a spacing similar to typical charging voltages and
thus increasing the probability of only a single transition line crossing each sub-part. To
minimise the number of falsely positive detections which are not related to actual occur-
rences of transition lines we furthermore apply a threshold keeping only ( ˆvPxn,m , ˆvPyn,m)
with Ĉn,m ≥ 0.35×maxm,n(Ĉn,m). In Fig. 4.4 and 4.5 in the main text we plot the remain-
ing ( ˆvPxn,m , ˆvPyn,m) as a function of n with Ĉn,m encoded in the individual colouring of
the scatter points.

The correlation maxima Ĉn,m corresponding to a specific charge transition i → j are

expected to shift from charge map to charge map by a regular voltage shift ∆ ˆvPxn
∆n , thus

falling on a line vP̂xi→ j given by:

vP̂xi→ j (n) = ∆vP̂xn

∆n
×n +vP̂xi→ j

0

Note that we dropped the m subscripts as with increasing n the transition line can shift
from one sub-part to another. We utilise this predictable behaviour to increase robust-
ness against occasionally missed features and further reduce the effect of falsely ob-
tained correlation maxima which do not correspond to a a charge transition and thus
typically shift randomly from charge map to charge map. To that end we define a dense
set of potential transition lines

vP̂xB (n) = ∆
ˆvPxn

∆n
×n +B

with B stepped in steps of 4 mV from Bmin ≪ min(vPx) to Bmax ≫ max(vPx). The chosen
∆ ˆvPxn
∆n are given in Table 4.3. Most values are close to 10 mV as for most quantum dots

we step the vPx gate offset with each charge stability map by 10 mV. Small deviations
from 10 mV arise due to imperfect calibrations of the AWG voltages with respect to the
Digital to Analog Converted (DAC) voltages. For each B we then identify all the scatter
points ( ˆvPxn,m , ˆvPyn,m) that are located in a range of ± 4 mV around vP̂xB (n). These then

allow for all lines vP̂xB (n) to determine a heuristic measure of likelihood to be an actual
transition line. We calculate this likelihood p(B) using the following equation, that keeps
into account the number of points NB falling in that range, their correlation Ĉn,m and the
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maximum number of feature occurrences that could have been detected N max
B :

p(B) = 1

N max
B

−L× (N max
B −NB )+ ∑

Ĉn,m if

vP̂ xB (n)−4 mV
≤ ˆvPxn,m≤

vP̂xB (n)+4 mV

max
m

(Ĉn,m)


Here L = 0.3×maxm,n(Cn,m) defines a penalty term lowering p(B) for every potential fea-
ture occurrence that has not led to a detected correlation maximum. Fig. 4.5 in the main
text shows the set of lines vP̂xB (n) with p(B) colour-coded in the colour of each trace. A
few lines clearly emerge from the others, identifying the charge transitions of the vari-
ous quantum dots. The white square with black outline marks the final voltage setpoint,
which is clearly located between two dense clusters of high-p(B) lines. In Fig. 4.19, we
combine the results of the method applied for all quantum dots, by showing a line-cut
of p(B) on the rightmost part of the panels (n = Nscan) presented in main text Fig. 4.5.
Charge transitions are visible as peaks, and are fitted with a Gaussian function to extract
their position. From this analysis, we obtain a ∼ 7 mV virtual plunger voltage range for
the odd charge regime presented here. We emphasise that gate voltages have not been
optimised to centre the charge symmetry points of the quantum dots at the tuning point,
but this may be required for qubit operation.

The detection precision of the resulting transition voltages for each dot depends on
the specific underlying set of charge stability diagrams. For transition lines perfectly
aligned with the vPy-axis the potential variation of the vPx-coordinate is minimised.
However, in practice residual cross capacitances not compensated by the virtual gates
remain leading to sloped transition lines. As a given feature often can reappear multiple
times on the same transition line at differing vPy voltages this then results in a scattering
of the vPx-coordinates around the expected behaviour. Also, latching effects depending
on the scan ranges of vPx and vPy can cause those variations. However, careful feature
definitions and reduced vPy scan ranges lower this impreciseness. Furthermore, we also
correct for constant offsets between the feature positions and the charge transition line
voltages.
While here our method is utilised to unify and ease the tedious task of tracking the full
spectrum of charge transitions for all dots which still requires careful prepossessing and
a manual selection of features we envision that in future work it could become part of
automatic tuning and verification procedures.
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Figure 4.19: Charge transition lines of all the quantum dots in the odd charge occupancy regime We plot
the likelihood quantity p(B) for all the quantum dots taken at the position of the white square marker in the
panels of main text Fig. 4.5 (i.e., at the max n = Nscan) and thus for the offset voltage configuration of the
odd charge state. Charge transition lines identified via image detection methods appear as peaks. We fit the
sequence of peaks with Gaussian functions to extract their position in the voltage space. The star on the first
peak of the quantum dot Q3b indicates a false-positive transition line, as discussed in the main text. The green
rectangle identifies the span in voltage of all the virtual plungers in which the odd occupancy is conserved.
The broadening of the peaks is mainly due to the jitter in high-correlation points ( ˆvPxn,m , ˆvPyn,m ) as visible in
main text Fig. 4.5. We note that the lines cover the range set by the algorithm, which is larger than the range
spanned by the data.
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Stepped gate ∆ ˆvPxn
∆n (mV/scan)

vP1 10.75
vP2 10.0
vP3 10.0
vP4 9.0
vP5 12.0
vP6 8.7
vP7 10.0

vUB3 7.5
vUB6 6.0
vUB7 5.4

Table 4.3: Slope coefficient ∆
ˆvPxn
∆n of the transition lines in the panels of the main text Fig. 4.5.



4.12. IMAGE CORRELATION TECHNIQUES FOR QUANTUM DOT DETECTION

4

105

cropping number of
Quantum background in vPy features per

dot subtraction derivative LCN direction charge maps

Q1 no
d Mn

dvPx
+ d Mn

dvPy
yes yes 1/6

Q2t no
d Mn

dvPx
no yes 1/8

Q2b no
d Mn

dvPx
no yes 1/8

Q3t no
d Mn

dvPy
yes yes 2/8

Q3m yes no no yes 1/12

Q3b no
d Mn

dvPx
no no 1/12

Q4t no
d Mn

dvPx
yes yes 1/12

Q4mt yes no no yes 1/12

Q4mb no
d Mn

dvPx
no yes 1/4

Q4b no
d Mn

dvPx
no yes 1/4

Q5t no
d Mn

dvPx
yes yes 2/16

Q5m no
d Mn

dvPx
no yes 2/16

Q5b no
d Mn

dvPx
yes yes 3/6

Q6t no
d Mn

dvPx
no no 1/8

Q6b no
d Mn

dvPx
yes yes 2/12

Q7 no
d Mn

dvPx
no no 1/4

Table 4.4: Preprocessing applied to the raw charge stability maps M raw
n to obtain Mn and number of de-

fined charge transition features. Here, background subtraction refers to subtracting a smoothed version
of the charge stability map: Mout

n = M in
n − M in

n ∗ fGaussian. Local contrast normalisation corresponds to

Mout
n = M in

n −M in
n ∗ fGaussian√

(M in
n −M in

n ∗ fGaussian)2∗ fGaussian

. In both cases M in
n and Mout

n refer to the charge stability diagram

before and after the respective processing and fGaussian is a Gaussian distribution with a standard devia-
tion of 7-10 pixels and 4-10 pixels respectively. The postprocessing steps are applied in the order as pre-
sented in the table (from left to right). In all cases the final charge stability map Mn is normalised such that
0 ≤ Mn (vPx,vPy) ≤ 1. The last column provides the number of defined transition features F and the total num-
ber of charge stability maps Mn (Nscan).
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4.13. ADDRESSABLE EXCHANGE OPERATIONS WITH A DOUBLE

BARRIER DESIGN
The ability to control the tunnel coupling with two barriers opens the opportunity to
design addressable exchange-based two-qubit gates in architectures with shared con-
trol. We envision an operation strategy in which a two-qubit gate can be activated only
when both barriers are in the ON state. For a fast CPHASE gate with a duration of 5 ns,
we require to activate an exchange interaction of JON/h = 100 MHz. In all other cases
(i.e., when the barriers are in the configurations (ON, OFF), (OFF, ON), (OFF, OFF)), we
demand a sufficiently low exchange to minimise errors. State-of-the-art values of OFF
exchange interaction are in the order of JOFF/h ∼ 10 KHz [40].

Fig. 4.20 illustrates the required barrier voltage points to obtain such exchange inter-
actions considering symmetric lever arms, a quantum dot charging energy of U = 1 meV
and operations at the charge symmetry point (i.e., at zero detuning). In Fig. 4.20, we have
approximated the dependence of the tunnel coupling energy tC with respect to the two
barrier voltages Bx and By with [9], [21], [53]:

tC =
p

JU

2
= c1 ·e−c2α(Bx−Bx,ON ) ·e−c2α(By−By,ON ) (4.4)

with Bx,ON and By,ON the ON set-points of the two barriers.
In this example, we have set the prefactor c1 to 5·h GHz with h the Plank constant, and
the effective barrier lever arms c2 ·α to 0.04 V −1.
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Figure 4.20: Addressable exchange operation with a double barrier design. a, b Target tunnel coupling and
exchange required for fast two-qubit gates with interaction ON (bottom left corner), and OFF (top left, top
right, bottom left corners in the map). The exchange interaction of qubit pairs at (ON, OFF) crossing points
remains four orders of magnitude smaller than in the (ON, ON) cases. The parameters displayed are calculated
at the coordinates (0, 0), (0, 150), (150, 0), (150, 150) mV. In reference to the experimental results of Fig. 4.6 and
4.7, the measurable tunnel coupling range (> 1 GHz) via polarisation lines is the bottom left corner of panel
(a) extending up to +24 mV on both axes.
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4.14. TWO-AXIS CONTROL OF THE INTERDOT TRANSITION LINE
By fitting the two-dimensional (e67, U67) charge stability maps (examples in Figs. 4.21a,
b), we obtain an estimate of the (3,1)-(2,2) charge interdot size L for the double dot sys-
tems Q6b-Q7 and Q6t-Q7. The size of the interdot line is indicative of the capacitive
coupling between the adjacent quantum dots. Consistent with the two-axis tunability of
the tunnel coupling, the interdot size is varied as the effective distance between the dots
is modified by the action of the two tunnel barriers (Figs. 4.21c-f).
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LL

a b

c d

e f
Figure 4.21: Two-axis control of
the quantum dot interdot tran-
sition line. a, b, Exemplary
charge stability diagrams taken
at the Q6t-Q7 (3,1)-(2,2) charge
interdot line. The two maps are
taken at the diagonally opposite
points of the two-dimensional
barrier scan, at t6t7, j6t7 = (-330,
-510) and (-270, -380) mV, re-
spectively. Orange lines repre-
sent a fit to the map following
the procedure shown in ref. [45].
A black circle identifies the fit-
ted centre of the interdot, and
the arrow illustrates the size in
voltage of the interdot line. c,
d, Size of the Q6b-Q7 (3,1)-(2,2)
charge interdot line as a func-
tion of the two virtual barriers.
e, f, Same for the Q6t-Q7 (3,1)-
(2,2) charge interdot line. Out-
liers in the plot are due to non-
accurate fits of the image.
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4.15. TWO-AXIS CONTROL OF THE Q6B-Q5M INTERACTION
We repeat the tunnel coupling experiments considering the double-dot pair Q6b and
Q5m by defining the virtual barriers t6b5 and j6b5 starting from the relative UB4 and LB6
barriers (Fig. 4.22): 

P5
P6

UB4
LB6

SE_P

=


−1.63 −0.58
−1.61 −0.48

1 0
0 1

−0.43 −0.02


(
t6b5

j6b5

)

We observe that the limited sensitivity at the interdot hinders a quantitative tunnel cou-
pling analysis. However, at a qualitative level, we still observe the expected pattern with
the size of the interdot tunable by both barriers.
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j6b5

t6b5

a

b

d e

(OFF, OFF)(ON, OFF)

(OFF, ON)(ON, ON)

Figure 4.22: Two-axis control of the Q6b-Q5m interdot coupling. a Schematic of the crossbar indicating the
two intersecting virtual barriers (in red and blue) controlling the Q6b-Q5m interaction. b-e Charge stability
diagrams at different barrier voltages: (b) (t6b5, j6b5) = (-330, -380) mV, (c) (-270, -380) mV, (d) (-270, -510)
mV, (e) (-330, -510) mV. In (d), in the high interdot coupling regime, we add dashed lines as guide for the eyes
on weakly visible transition lines. Here, we display the signal from the SE charge sensor after subtraction of a
background.
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4.16. ELECTRON TEMPERATURE EXTRACTION

a

b c

Figure 4.23: Electron temperature extraction. a Coulomb peak width as a function of fridge temperature.
b, c. Exemplary data (scatter points) and best fits (black lines) collected at T f = 10 mK and T f = 540 mK,
respectively. For every temperature, we perform five plunger sweeps across the Coulomb peak (each averaged
500 times) and, by fitting the curves, we obtain five different estimates for the Coulomb peak width. In (a), we
show the average width. The depicted standard deviation is determined by considering the standard deviation
from the single fit itself or the standard deviation between the five different fitting estimates, depending on
which is dominant.

We estimate the electron temperature of our setup by fitting a temperature broad-
ened Coulomb peak of the SE charge sensor. We choose a source-drain voltage VSD and
coupling energy to the leads hΓ such that hΓ,eVSD << kB Te , with h and kB the Plank and
Boltzmann constants, respectively and Γ the lead-dot tunnel rate. The current I at the
Coulomb peak is fitted with the Lorentzian distribution

Imodel = a ·cosh−2
(
αsensor ·ϵ

2kB Te

)
+ c, (4.5)

where a is an amplitude prefactor, αsensor is the lever arm of the sensor plunger gate, ϵ
is the plunger gate voltage and c an offset. The full width half maximum (FWHM) of the
peak is therefore given by

FWHM = kB Te

αsensor
=

kB

√
T 2

0 +T 2
f

αsensor
, (4.6)
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where T f is the nominal fridge temperature and T0 the base electron temperature [54].
We use the FWHM dependence on the nominal fridge temperature to extract both T0

and αsensor . The result can be seen in Fig. 4.23 with two exemplary fits for 10 and 540
mK. The fit with Equation 4.6 results in T0 = 138±9 mK and αsensor = 0.123±0.002 eV/V,
which is consistent with an independent lever arm extraction from Coulomb diamonds.
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4.17. DETUNING LEVER ARM EXTRACTION
For an accurate estimation of the interdot tunnel coupling, we evaluate the quantum dot
detuning lever arm by fitting the sensor signal S21 with a thermally limited polarisation
line (Fig. 4.24) as described in [38]:

Smodel = S0 ±δS
ϵ

Ω
· tanh

(
Ω

2kB Te

)
+ ∂S

∂ϵ
ϵ (4.7)

with S0 the background signal of the charge sensor, δS the signal amplitude, ϵ the detun-
ing energy,Ω the energy difference between the two levels and the term ∂S

∂ϵ ϵ a linear slope
due to cross-talk to the charge sensor. In the low-tunnelling regime, we can approximate
Ω=

p
ϵ2 +4t 2 ≈ ϵ, which reduces Equation 4.7 to

Smodel = S0 ±δS · tanh

(
αQD ·ϵ
2kB Te

)
+ ∂S

∂ϵ
ϵ. (4.8)

Figure 4.24: Temperature limited polarisation line. a, Charge stability diagram of the uncoupled Q6b-Q7 at
the (3,1)-(2,2) charge interdot. In this configuration, the tunnel time in Q6b is small with respect to the ramp
time of the detuning axis, therefore the interdot is extended and the Q6b addition line is not clearly visible in
the map. b, Thermally limited polarisation line (blue trace) taken at the centre of the interdot shown in (a).
From the best fit (orange line), we obtain the detuning lever arm αϵ67 = 0.012(4) eV/V.
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4.18. TUNE-UP OF THE CROSSBAR ARRAY IN THE FEW-HOLE

REGIME

In Fig. 4.25, we display the charge stability diagrams obtained for the first tune-up of the
device with the quantum dots in the few-holes regime. These maps are part of the data
sets that are used for the analysis presented in Fig. 4.12-4.16. The applied voltages at this
phase of the experiment are shown in Fig. 4.26.

a b c d

e f g h

i j k l

m n o p

Figure 4.25: Tune-up of the crossbar array in the few-holes regime. a-p, Charge stability diagrams (raw sensor
signal after subtraction of a background) showcasing the 16 quantum dot system in the few-hole regime. These
measurements are taken in the first tune-up of the crossbar array. In each map, the first visible transition lines
from the right or the top are labelled and assigned to the relative quantum dot by dashed lines with colours
defined in the schematic at the top. The identification is performed via the results of Fig. 4.12-4.16. The colour
of the panel frame identifies the sensor used: NW in red, NE in blue, SW in green, and SE in ochre.
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c

UB1 UB2 UB3 UB4

UB5 UB6 UB7 UB8

b

LB1 LB2 LB3 LB4

LB5 LB6 LB7 LB8

a

P1 P2 P3 P4

P5 P6 P7

Figure 4.26: Tune-up of the crossbar array in the few-holes regime. a-c, Schematics of the voltage applied
at all crossbar gates at the phase of the experiment shown in Fig. 4.25. The voltages are here optimised to
circumvent stray dots.

4.19. GATE VOLTAGES OF THE CROSSBAR IN THE ODD-CHARGE

REGIME

a

LB1 LB2 LB3 LB4

LB5 LB6 LB7 LB8

P1 P2 P3 P4

P5 P6 P7

b

UB1 UB2 UB3 UB4

UB5 UB6 UB7 UB8

c

Figure 4.27: Crossbar gate voltages. a-c, Voltages applied at the real P, LB and UB gates, respectively, when the
system is tuned in the odd charge occupation regime.

4.20. CHARACTERISATION OF THE VARIABILITY OF THE QUAN-
TUM DOT ARRAY

We have characterised the level of homogeneity in the array considering two different
metrics.
First, we consider the onset voltage of the first hole in each quantum dot, as displayed in
Figs. 4.28a, b. We obtain an average first-hole voltage of -1660 ± 290 mV, that indicates a
rather high variability across the quantum dot array. We also observe that a more nega-
tive voltage is required to accumulate the first hole when going toward the center of the
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array (e.g. under P4 and P5). This trend is anticorrelated with the voltages set to the LB
barrier gates, that run in parallel to the plunger gates (Fig, 4.28c). The higher values of
LB4 and LB5 lead to more negative values of the plunger gates within the array, due to
cross capacitance. We note that the need to set LB4 and LB5 to a more positive voltage
comes from the demand to maintain the charge sensors well separated by the array. In
practice, we have observed that the needs to preserve the quality of the charge sensors
and to set the interdot tunnel barriers seem conflicting. Therefore, we suggest in future
designs to dedicate to one gate the function to isolate the sensor to the dots and to an-
other gate to determine the interdot barriers.
A second metric to asses the variability in size and in dot lever arm relies on evaluat-
ing the homogeneity in quantum dot addition voltages, i.e. the spacing between two
consecutive charge transition lines [44]. We extract the charge addition voltages of all
the quantum dots from the corresponding stability diagrams (Fig. 4.29), and extract the
averaged spacing of the first and second hole to be 51±6 mV and 50±9, respectively, in-
dicating a ∼ 10−20% variability of the quantum dot confinement properties across the
array.
Overall, this demonstrates that, while quantum dots are accumulated at rather different
voltages under each plunger gate, their size and plunger gate coupling are similar, owing
to the grid structure of our design.

Figure 4.28: Onset voltages for the first hole. a, Colormap of the virtual plunger voltages required to accumu-
late the first hole in each quantum dot. b, Averages first hole virtual plunger voltages. The error bars represent
the standard deviations around the mean. We note that, while the variability of dot voltages for the same
plunger is rather low, the overall variability of 290 mV remains high. c, Voltages of the LB gates in the odd
charge regime.
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Figure 4.29: Charge Addition voltages of all the quantum dots. Bar plot of the addition voltages of each quan-
tum dot considering the first spacings, when detectable in the already existing datasets. The three horizontal
lines identify the spread of the first hole addition voltage of 51±6 mV.
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5
ELECTRICAL CONTROL OF

UNIFORMITY IN QUANTUM DOT

DEVICES

Highly uniform quantum systems are essential for the practical implementation of scal-
able quantum processors. While quantum dot spin qubits based on semiconductor tech-
nology are a promising platform for large-scale quantum computing, their small size
makes them particularly sensitive to their local environment. In this chapter, we present
a method to electrically obtain a high degree of uniformity in the intrinsic potential land-
scape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning
of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain
stable at least for hours. Applying our method, we homogenize the pinch-off voltages of
the plunger gates in a linear array for four quantum dots reducing the spread in pinch-off
voltage by one order of magnitude. This work provides a new tool for the tuning of quan-
tum dot devices and offers new perspectives for the implementation of scalable spin qubit
arrays.

This chapter has been published as M. Meyer, C. Déprez, T. R. van Abswoude, I. N. Meijer, D. Liu, C. Wang,
S. Karwal, S. Oosterhout, F. Borsoi, A. Sammak, N. W. Hendrickx, G. Scappucci, and M. Veldhorst, Electrical
control of uniformity in quantum dot devices, Nano Letters 2023 23 (7), 2522-2529 [1].
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5.1. INTRODUCTION
Spin qubits in semiconductor quantum dots are a promising platform for quantum in-
formation processing [2]–[5]. Group IV semiconductors such as silicon and germanium
can be isotopically purified [6], enabling long quantum coherence [7], [8], high-fidelity
single-qubit [9]–[11] and two-qubit gates [12]–[14] as well as multi-qubit operation [15],
[16]. Spin qubits can be operated at comparatively high temperatures [17]–[19] and their
compatibility with semiconductor technologies spurred the realization of qubits made
in industrial foundries [20], [21]. However, implementing more than a few qubits on a
single chip remains extremely challenging.

Variations, in particular at the nanoscale, may lead to significant alterations of the
relevant device metrics [2], [3], [22], such as the voltage needed to load a single elec-
tron to be used as a spin qubit. These variations can complicate the tuning of initializa-
tion, control or readout and potentially form a roadblock for larger systems. Addition-
ally, qubit-to-qubit variability may require the use of individual control electronics for
each qubit, as is common practice in current experimental implementations, thus chal-
lenging the scalability. While several proposals have been put forward to scale quantum
dot qubits [3], [23]–[25], in all cases a high level of device uniformity is critical in their
realization.

For semiconductor quantum dot qubits, the uniformity of the potential landscape is
the key parameter that dictates the number of control voltages required per qubit. Ide-
ally, a few voltages would suffice to induce a highly regular potential landscape as drawn
in Fig. 5.1.c. Yet, potential fluctuations are naturally present as illustrated in Fig. 5.1.d.
They can be caused by defects and charge traps, mechanical stress induced by the depo-
sition of metallic gates [26], [27], as well as variations in material growth or in the exact
shape of the gates. The development of devices based on quantum wells buried in het-
erostructures, similar to that sketched in Fig. 5.1.a, already has led to a drastic improve-
ment of the uniformity compared to metal-oxide-semiconductor systems [28]. This has
enabled the control of up to 16 quantum dots in a four-by-four array with shared gate
control (see chapter 4). However, significant variations in the quantum dot potential
landscape are still commonly observed [29], [30] (also see Fig. 2.4). This raises the ques-
tion whether material [5] and fabrication development [21], [31], [32] will suffice to reach
the required uniformity to operate large qubit arrays.

In this chapter, we present an alternative method and demonstrate electrical control
of quantum dot uniformity. Our approach takes advantage of the gate voltage hysteresis,
an ubiquitous effect observed in semiconductor heterostructures, that is mostly consid-
ered as a limitation in the tune-up of quantum dots. It manifests in shifts of the gate
voltage characteristics and is commonly explained by a build-up of charges at the inter-
face between the semiconductor barrier and the dielectrics which then alter the electric
field in the buried quantum well [33]–[39]. We unveil the hysteresis and its effects on the
potential landscape beneath the gates by studying how pinch-off characteristics evolve
with the application of tailored stress voltage sequences. This method allows us to tune
those pinch-off voltages over hundreds of millivolts after which they remain stable at
least on the time scale of hours. We then apply our findings to homogeneize the plunger
gate pinch-off characteristics in a linear quantum dot array reducing potential fluctua-
tions in the quantum well underneath the corresponding gates.
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Figure 5.1: Fluctuations in the potential landscape in semiconductor quantum dot devices. a, Schematics of
typical semiconductor heterostructures with buried quantum wells studied. The metallic gate electrodes col-
ored in yellow and blue represent the barrier (B) and plunger gates (P) of a quantum dot array, respectively. b,
Typical variations in the pinch-off characteristic of the plunger gates in a state-of-the-art linear quantum dot
array (device A), nominally identical to the one displayed in Fig. 5.5.a, just after a cooldown. The pinch-off volt-
age Vthres is defined as the gate voltage for which the current reaches Ithres = 50 pA at a bias of

∣∣Vsd
∣∣= 100 µV.

Here, the pinch-off voltages spread over a voltage range ∆V thres = 225 mV. c, Potential landscape in an ideal
device with shared gate control. The application of the same voltage VP/B on all plunger/barrier gates leads
to a regular potential landscape with fluctuations negligible compared to those of the other relevant energy
scales (α denotes the gate lever arm). The quantum dots all have the same charge configuration. d, Poten-
tial landscape in state of the art devices with shared gate control. The application of the same voltage VP/B
on all plunger/barrier gates leads to an irregular potential landscape due to local fluctuations which are of-
ten comparable or larger than the charging energy EC. Consequently, the quantum dots have different charge
configurations.
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5.2. RESULTS
The gate voltage required to confine a single electron or hole typically varies between
quantum dots in an array as it is dependent on the local electrostatic environment.
These fluctuations also affect the pinch-off curve as exemplary depicted for sweeping
the four plunger gates of a linear quantum dot device (similar to that shown in Fig. 5.5.a)
in Fig. 5.1.b. The curves reveal the local depletion of a conducting path through the
quantum well and experimentally can be obtained in a very short time compared to the
time required for the formation of a well defined quantum dot. Therefore, we will employ
pinch-off characteristics in the following to efficiently estimate variations in the poten-
tial landscape on the length scale of single quantum dots. In particular, we focus on the
pinch-off voltages Vthres defined as the gate voltages at which a current of Ithres = 50 pA
is reached for an applied source drain bias of |Vsd| = 100 µV.

GATE VOLTAGE HYSTERESIS

We study devices in 28Si/SiGe heterostructures [40] and investigate how the pinch-off
voltage of a single gate evolves depending on the previously applied gate voltages. To
that end, we conduct systematic transport measurements at 4.2 K similar to sequences
in [41]–[44] following the procedure depicted in Fig. 5.2.a. First a stress voltage Vstress

is applied to the gate under study for a time tstress = 1 min. Then the gate-voltage is
swept back until the pinch-off condition I = Ithres is met. This sequence is repeated
several times with evolving stress voltages to measure the evolution of Vthres as a function
of Vstress. First, the applied stress voltage Vstress is decreased step-wise to be increased
gradually again after reaching a reversal point Vstress =V rev

stress.
Fig. 5.2.b shows the resulting pinch-off voltage evolution for a plunger gate Pi that is

part of a linear quantum dot array for two different cooldowns (light blue and dark blue
curve, respectively). In these cases, Vstress is first lowered step-wise from Vstress = 1.05 V
to V rev

stress = −3.7 V. We observe that up to Vstress > −2.0 V the pinch-off voltages Vthres

stay within ±15 mV of the first pinch-off voltage V 0
thres = 1.06 V forming a plateau. Then,

they drop down rapidly to Vthres = 0.83 V. At V rev
stress = −3.7 V, the sweep direction is re-

versed and we start to increase Vstress progressively. However, we do not observe a re-
versed behavior. Instead, from Vstress = −2.7 V to Vstress = 0.9 V, the pinch-off voltages
increase by less than 25 mV forming a second plateau. Only when Vstress = 1.0(1.1) V
for the first(second) cooldown, Vthres starts to increase steeply again. The ensembles of
(Vstress,Vthres) values draw typical hysteresis cycles with plateaus marking the ranges of
applicable gate voltages over which the pinch-off voltage is not significantly changing.
Furthermore, Fig. 5.2.b highlights the effect of thermal cycling on these measurements
and reveals a remarkable overlap of the hysteresis cycles measured during two differ-
ent cooldowns. A high degree of similarity is also observed when comparing successive
measurements performed using the same stress voltage sequence as shown in Fig. 5.8 for
gate S of device D. This suggests that the underlying process has a deterministic nature.

Similar experiments performed on another sample with varying reversal points V rev
stress

result in the cycles plotted in Fig. 5.3. The shape of the curves is nearly identical for
each iteration. Again, we observe plateaus where the pinch-off voltage deviates by less
than 50 mV from its first value. Yet, the position of the plateaus varies with the chosen
V rev

stress. The pinch-off voltage plateaus can be shifted by up to |∆Vthres| = 290 mV for the
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Figure 5.2: Hysteresis of the pinch-off characteristics. a, Schematics of the measurement sequence used to
probe the hysteretic behavior of the pinch-off voltage Vthres of a single gate. Vthres, i.e. the voltage when the
current reaches Ithres = 50 pA at a bias voltage

∣∣Vsd
∣∣= 100 µV, is measured after application of successive stress

voltages Vstress for tstress = 1 min. The measurements start with decreasing Vstress. Upon reaching Vstress =
V rev

stress, the direction is reversed and a sequence of increasing Vstress is applied. b, Evolution of the pinch-off
voltage Vthres of the sensor plunger gate S1 as a function of the stress voltage Vstress for two different cooldowns
of device B. The measurement cycle is sketched on the right side. The square and the circle mark the starting
point and the ending point of the cycles, respectively. The star indicates the point V rev

stress where the stress
voltage sequence is reversed. Vstress is first decreased before being increased again after V rev

stress = 3.7 V. Both
sets of points draw hysteresis cycles which overlap. The remaining gates that are needed to form a conductive
channel are set to V0 = 1.2 V.
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lower plateau and by up to |∆Vthres| = 400 mV for the upper one. Overall, Fig. 5.2.b and
Fig. 5.3 suggest that by applying a dedicated voltage sequence the pinch-off voltage can
be adjusted on-demand to chosen targets and thus that the intrinsic potential landscape
underneath the gates can be tuned.

We also note that similar hysteretic behaviours, with sample-dependent variations of
the exact shape of the (Vstress,Vthres) curves, are consistently found in several Si/SiGe de-
vices (e.g. device D gate S shown in Fig. 5.8) as well as in samples made from Ge/SiGe het-
erostructures (see Fig. 5.9) suggesting a common underlying mechanism. The observed
reproducibility and the large control window of the pinch-off voltage are the foundations
of our approach to homogenize the potential landscape below an ensemble of gates.

STABILITY OF THE RESHAPED POTENTIAL

However, the electrical tuning of the intrinsic potential uniformity is of practical interest
only if the resulting potential landscape remains stable afterwards. Therefore, we study
how the pinch-off voltage evolves in time after stopping the hysteresis measurement cy-
cle at varying points. The procedure followed is depicted in Fig. 5.4.a. The gate voltage
is swept back and forth continuously to determine the voltage range [V −

thres(t ),V +
thres(t )]

over which the current stays in a small range [Ithres −∆I , Ithres +∆I ] around the cur-
rent threshold Ithres as a function of time t . For each sweep [V −

thres(t ),V +
thres(t )] a lin-

ear regression I = m ×V +b with fitting parameters m and b is applied from which the
pinch-off voltage Vthres(t ) = (Ithres −b)/m is extracted. Fig. 5.4.a shows the time evolu-
tion directly after the application of decreasing (violet and blue) and increasing (light
pink) stress voltages. For comparison, we also plot how the pinch-off voltage evolves
right after a cooldown without prior application of a stress voltage sequence (dark pink).
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Figure 5.4: Stability of the pinch-off voltage after tuning. a, Schematical representation of the procedure
used to probe the time stability of the pinch-off voltage of a single gate. The gate voltage is continuously swept
back and forth to detect the voltage range [V −

thres(t ),V +
thres(t )] over which the current stays between Ithres −∆I

and Ithres +∆I with ∆I ∈ {10 pA,25 pA}. From each sweep Vthres(t ) is extracted by linear regression. b, Time
evolution of the Vthres prior to any application of stress voltages (dark pink) and after tuning via application
of increasing Vstress with V rev

stress > 0 V (light pink) or decreasing Vstress with V rev
stress < 0 V (violet and blue). The

curves are obtained for sensor plunger gate S in device C, except of the pink curve which is obtained for sensor
plunger gate S in device D. Ithres =50 pA, except for the blue curve of decreasing stress where it was defined as
Ithres =30 pA, which provided a more robust analysis. c, Relative variations ∆Vthres(t ) = Vthres(t )−Vthres(t =
3 h) of the data shown in b.

For decreasing Vstress sequences, the pinch-off voltages converge into steady states af-
ter initial decays and the time evolution exhibits random abrupt jumps. For the situa-
tion where no stress voltage or increasing stress voltages Vstress are applied no significant
variations of Vthres are observed. The relative evolution depicted in Fig. 5.4.b reveals
that for t > 2 hours, the voltage fluctuations are similar for all three situations. This is
confirmed by extracting the standard deviations of Vthres for experiments with and with-
out application of stress voltage sequence which are σstress = 0.4 mV (increasing Vstress),
σstress = 1.0 mV and 0.6 mV (decreasing Vstress) andσno stress = 0.8 mV (no stress), respec-
tively. These experiments suggest that after a potential initial transient regime there is no
change in the stability of the device due to the electrical tuning. This stability is observed
for at least one hour and up to three depending on the voltage sequence applied.
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HOMOGENIZATION OF PINCH-OFF VOLTAGES

Next we apply our findings and probe the capability to homogenize the pinch-off volt-
ages V i

thres of a group of plunger gates Pi with i in [1,4] in a quantum dot array. Fig. 5.5.a
displays the device studied which has a geometry similar to linear quantum dot arrays
in ref. [13], [16], [29], [45]. The pinch-off characteristics recorded prior to the tuning se-
quence are depicted in the left panel of Fig. 5.6.a and show a spread∆Vthres = max(Vthres)−
min(Vthres) of 153 mV. Employing increasing gate voltage stress we tune the individual
plunger pinch-off voltages to a target value Vtarget = 1.05 V chosen before starting the
tuning. Fig. 5.5.b illustrates the procedure followed for the specific case of two gates. A
schematic representation including all four gates is displayed in Fig. 5.10. Vstress is grad-
ually increased in n steps. For each V n

stress, the plunger gates are sequentially stressed,
measured and parked ∆Vpark = 50 mV above their latest pinch-off voltage where they
remain until the next stress voltage V n+1

stress = V n
stress +∆Vstress is selected. When a pinch-

off voltage V i
thres crosses the target voltage Vtarget the corresponding plunger gate Pi is

henceforth not stressed anymore. A full automated round of this sequence finishes af-
ter all pinch-off voltages are larger than the target voltage. The complete procedure is
repeated two times with a stress voltage resolution of ∆Vstress = 25 mV taking approxi-
mately 9 hours in total. All applied stress voltages and measured pinch-off voltages are
visualized in the panels of Fig. 5.6.b. After each repetition a pinch-off characterization
is performed with the resulting curves depicted in Fig. 5.6.a. During the first round the
pinch-off voltages shift towards the target voltage Vtarget (indicated by the red dashed
line) finally spreading in a range of ∆Vthres = 86 mV around it. This spread is further re-
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duced by the following iteration reaching a final value of ∆Vthres = 20 mV. Afterwards the
plunger pinch-off characteristics are observed to remain stable at least for 20 minutes
(see Fig. 5.11).

5.3. DISCUSSION
To discuss our results and their implications for the tuning of quantum dot arrays, we
assume that pinch-off voltages constitute a witness of the intrinsic potential landscape
in the quantum well. Thus, we state that the observed tunability of pinch-off voltages
also directly translates into a similar tunability of quantum dot chemical potentials. This
statement is supported by a study of the effect of stress voltages on charge transitions of
a quantum dot discussed in section 5.10. We find that the quantum dot potential can be
tuned analogous to the threshold voltage Vthres by applying stress voltage sequences on
the quantum dot plunger gate.

This motivates us to compare the final spread of the pinch-off voltages to the degree
of uniformity needed to load an array of quantum dots with a single electron at each
site using a single common gate voltage. Reaching such uniformity would require the
potential fluctuations below the gates to be smaller than the average charging voltage
VC = EC/α that is needed to alter the charge occupation, with EC the charging energy
and α the gate lever arm. Charging voltages typically range from 10 to 60 mV in devices
similar to that under study [28], [29], [45], [46]. Consequently, the final spread ∆Vthres =
20 mV reached after electrical tuning promises a path towards the homogenization of
quantum dot potentials inside an array. Even smaller spreads might be achievable by
decreasing the stress voltage resolution∆Vstress. We envision that a similar method could
be used to tune the potential underneath all plunger and all barrier gates simultaneously.
It could allow to also equalize the inter-dot tunnel couplings and to reach an energy
landscape similar to that in Fig. 5.1.c.

At the same time, optimization of the automated procedure could lead to a signif-
icant increase of the tuning efficiency. Such an optimized procedure may be obtained
by dividing the tuning into coarse and fine steps and exploring different stressing times
and thereby could drastically reduce the tuning time. Additionally, utilizing a model to
predict the effect of the next stress voltage, could further minimize the number of steps
required to reach the target potentials and simultaneous tuning of multiple gates may
be envisioned in larger quantum dot arrays.

Adapted tuning procedures may also be designed for scalable device architectures. In
a crossbar gate architecture [25] such as in chapter 4, one could envision to apply differ-
ent stressing voltages on different sets of gates such that only close to the crossing points
of these gates the combined electric field is strong enough to shift the intrinsic poten-
tial. This would allow parallel but individual stressing of selected sites in a row-by-row
manner. Another degree of selectivity might be provided through biasing of purposely
isolated parts of the quantum well. Effectively, this would locally change the gates’ ref-
erence potential and thereby locally alter the effect of the stressing voltages applied to
them. Further work is needed to confirm the viability of these approaches.

Also, a better understanding of the underlying mechanism of the hysteresis would
be valuable to exploit it most efficiently. A possible origin might be the trapping and
detrapping of charge in or close to the dielectric capping layer caused by the applica-
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tion of stress voltages [33]–[38]. For example, a positive stress voltage might enable the
tunnelling of electrons from the quantum well or traps underneath non-stressed gates
to traps underneath the stressed gate. These traps could be bound states in the non-
oxidized part of the silicon capping layer or at its SiGe interface. They can be induced
by charge defects in the gate oxide [47] or emerge due to mechanical stress originating
from the deposition of metallic gates [26], [27]. Also, charge trapping into and out of of
unpassivated silicon and germanium dangling bonds [48]–[50], charge trapping in the
oxide itself mediated by leakage currents [44], [51]–[53] or movement of mobile ions [54]
might be underlying the hysteresis. In all cases, when the gate voltage stress is removed
the charges would be expected to be immobile at the device operation temperature and
would cause local shifts in the intrinsic potential landscape observable as alterations in
the pinch-off characteristics. This tunneling and trapping of charge also would be highly
similar to the principle used to operate modern flash memories (based on electrically
erasable programmable read only memories) which encode their stored information in
pinch-off voltages and rely on gate stacks specifically engineered for that purpose [53],
[55]. They could inspire new heterostructures and gate stacks with dedicated trapping
layers further refining the tunability of the potential landscape using the gate voltage
hysteresis.

In conclusion, we have presented a new method to increase the electrostatic poten-
tial uniformity in quantum dot devices electrically. We demonstrate that we can take
advantage of hysteric shifts in gate voltage characteristics to deliberately tune pinch-off
voltages across a wide range of more than 500 mV by applying stress voltage sequences.
The resulting states remain stable on the time scale of hours. We also show that the
chemical potential of single quantum dots can be tuned using similar procedures. Uti-
lizing our method, we have shifted and equalized the pinch-off voltages of four plunger
gates in a linear quantum dot array to a predetermined target voltage. Although most of
our results were obtained in Si/SiGe heterostructures other measurements indicate that
the effect and method also can be used in other heterostructure materials like Ge/SiGe.
Our work opens up a new path to increase uniformity in quantum dot based spin qubits.
It may enable reducing overheads in tuning and control making the implementation of
scalable architectures more feasible in practise.
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5.4. MATERIAL AND METHODS

MATERIALS AND DEVICE FABRICATION

The devices studied in this chapter are made from 28Si/SiGe heterostructures [40]. They
are grown on top of a natural Si wafer and begin by a linearly graded Si1−x Gex wafer with
x varying from 0 to 0.3. A relaxed Si0.7Ge0.3 layer of 300 nm is then grown, followed by a
9 nm purified 28Si layer (with 800 ppm purity) and another 30 nm thick relaxed Si0.7Ge0.3

layer. Finally, an approximately 1−2 nm thin Si capping layer is deposited. The 2DEGs
are contacted via phosphorus ion implantation. Overlapping Ti/Pd gate electrodes are
deposited via electron beam evaporation. The different sets of gates are separated from
each other and from the Si capping layer by 5 nm and 10 nm aluminum oxide layers,
respectively, deposited through atomic layer deposition [28].

EXPERIMENTAL SET-UP

All the measurements presented are dc-transport measurement performed at 4.2 K by
dipping the devices directly in liquid helium. The gate voltages are swept using 18 bit
precision digital-to-analog converters having a ±4 V range of applicable voltages. The
current is measured via a current-to-voltage converter and a Keithley digital multimeter
at an applied source-drain bias of |Vsd| = 100 µV. The data acquisition, the application of
the stress voltages and the successive pinch-off voltage measurements were performed
automatically using a home-made Python program.

EXPERIMENTAL PROCEDURES

Prior to any experiment, the group and individual pinch-off voltages Vthres of all gates
forming a given conduction channel are measured. The group pinch-off voltage is mea-
sured by sweeping all gates corresponding to the channel under investigation simulta-
neously until a current of typically 200 to 300 pA is reached. The corresponding voltage
V0 is the voltage at which the gates not under study are parked most of the time. The in-
dividual pinch-off voltages are then measured by sweeping each gate voltage down and
back up again starting from V0. Such measurements allow to characterize the potential
uniformity just after the cooldown and to potentially discard malfunctioning devices.
The measurement of individual pinch-off voltages is repeated between experiments to
study how the spread of the pinch-off voltages evolves and thereby the potential unifor-
mity. To that end, first all gate voltages responsible for forming the conducting path are
set to the same value.

In most experiments, before recording a (Vstress,Vthres) curve, a minimum and a max-
imum threshold voltage V min

thres and V max
thres are defined. Once Vthres <V min

thres or Vthres >V max
thres

the sequence of stress voltages Vstress is reverted defining a reversal point V rev
stress. Further-

more, we define minimum and maximum stress voltages V min
stress and V max

stress for each cycle
and if Vstress ≤ V min

stress or Vstress ≥ V max
stress the sequence is also reversed defining a reversal

point V rev
stress as well. Tables 5.1 and 5.2 at the end of the chapter summarize the reversal

points for the different experiments.
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Figure 5.7: Scanning electron micrograph of Si/SiGe devices studied. a, Linear four quantum dot array, b,
Single electron transistor at the edge of a 3×3 quantum dot array. The plunger gates are colored in blue, the
barrier gates in yellow, the accumulation gates in orange, and the screening gates in violet. In a, the plunger
gates belonging to the linear channel are labeled Pi whereas that of the charge sensors are labeled Si. In b, the
plunger gate of the sensor used during the experiments is labeled S.

5.5. PRESENTATION OF THE SI/SIGE DEVICES IN THIS CHAP-
TER

Here, we present the Si/SiGe quantum dot devices investigated in this chapter. Fig. 5.7
shows typical scanning electron micrographs of the two types of devices. They are both
composed of screening, accumulation/plunger and barrier gates which are deposited in
that order. The screening gates are usually kept close to 0 V to prevent the formation of
conducting channels at undesired locations. The devices labeled A and B are nominally
identical to the one presented in Fig. 5.7.a. It is designed to form a linear array of four
quantum dots with two larger quantum dots at the ends to be used as charge sensors.
The devices named C and D are of the type displayed in Fig. 5.7.b which shows a single
quantum dot aimed to be a single electron transistor. It is located at the corner of a larger
3×3 quantum dot array (not shown here).

5.6. REPRODUCIBILITY OF THE (Vthres,Vstress) HYSTERESIS CY-
CLES

To provide further evidence of the reproducibility of the hysteresis cycles, we perform an
experiment where the same sequences of decreasing and then increasing stress voltages
are repeated ten times for gate S in device D. To reduce the measurement time, we focus
mostly on the voltage range where Vthres shows a strong evolution with Vstress. The results
are displayed in Fig. 5.8.

We recognize the left and right flanks of the hysteresis cycles as well as the end of the
Vthres plateaus for decreasing Vstress. Remarkably, the data obtained for the ten iterations
collapse onto single curves both for increasing and decreasing Vstress. This further illus-
trates the high reproducibility of the (Vthres,Vstress) hysteresis cycle that can be achieved.
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able reproducibility.

5.7. PINCH-OFF VOLTAGE HYSTERESIS IN GE/SIGE
The hysteretic behavior of the pinch-off voltages and its dependence on the previous
stress voltages applied is not exclusive to Si/SiGe heterostructures. The same effect can
be observed in Ge/SiGe heterostructures. We perform experiments similar to those dis-
cussed above in germanium single hole transistor (SHT) structures that are presented in
Fig. 5.9.a. Note that these SHTs are part of a larger device presented in chapter 4.

The corresponding device is made from a strained Ge/SiGe heterostructures grown
by chemical vapor deposition. Starting from a natural Si wafer, a 1.3 µm thick relaxed Ge
layer is grown, followed by a 0.9 µm reverse graded Si1−x Gex (x going from 1 to 0.8) layer,
a 500 nm relaxed Si0.2Ge0.8 layer, a 16 nm Ge quantum well under compressive stress,
another 55 nm Si0.2Ge0.8 spacer layer and a < 1 nm thick Si capping layer [56], [57]. The
quantum well is contacted via 30-nm platinium contacts evaporated and diffused after
etching of the oxidized Si capping layer [58]. Aluminum oxide layers of 7, 5, and 5 nm
thickness grown by atomic layer deposition precede the deposition of overlapping Ti/Pd
electrodes with thicknesses of 3/17, 3/27, 3/27 nm forming three different gate layers on
top of the heterostructure [28].

We study the devices by applying a common gate voltage to the two barrier gates and
the plunger gate defining the SHT such that a conductive channel is formed between the
ohmic contacts. Fig. 5.9.b-d show typical hysteresis cycles obtained by measuring the
evolution of the pinch-off voltage as function of the stress voltage applied on the three
gates for each SHT. Vstress is first increased and then decreased in each measurement cy-
cle contrary to the sequence followed in Fig. 5.2. These measurements are performed at
base temperature of a dilution refrigerator and an estimated electron temperature of ap-
proximately 140 mK (see chapter 4) and the pinch-off voltage was defined as the voltage
at which the current reaches Ithres = 500 pA at an source drain bias of |Vsd| = 100 µV.
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Figure 5.9: Hysteresis of Vthres in Ge/SiGe single hole transistors. a, Scanning electron micrograph of the
SHTs studied. The plunger gates are colored in blue, the barrier gates in yellow, the ohmic contacts in orange,
and the screening gates in violet. The plunger gates of the SHTs used during the experiments are labeled S
while the two barrier gates are labeled as B1,2. b, c, d, Evolution of Vthres as a function of Vstress for successive
stress voltage cycles applied simultaneously on the barrier gates and the plunger gate forming the SHT. The
stress voltage cycles are depicted schematically on the right side. The square and the circle mark the starting
point and the ending point of the cycles, respectively. The stress voltage V rev

stress upon which the stress voltage
sequence is reversed is indicated by a star. For each SHT, the different data points overlap and form a hysteresis
loop. In d, the device was kept idle for 5 hours between cycle 2 and cycle 3. This leads to a voltage difference
∆Vthres ≈ −80 mV between the last point of cycle 2 and the first point of cycle 3 similar to the time evolution
discussed in Fig. 5.4. The data is taken at an electron temperature of approximately 140 mK (see chapter 4).
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Overall, we observe similar features to those observed in the Si/SiGe devices i.e. over-
lapping hysteresis cycles with a tunable voltage range of a few hundred millivolts. These
measurements highlight that the hysteresis of the pinch-off voltages is observable in
multiple semiconductor heterostructures and that the tuning method presented in this
chapter may be used in different materials as well.

5.8. SEQUENCE OF STRESS VOLTAGE USED FOR THE TUNING OF

THE PLUNGER GATES OF THE QUANTUM DOT 1D ARRAY.
We show a schematic of the stress voltage sequence applied on the plunger gates of the
quantum dot 1D array to homogenize them and obtain the data displayed in Fig. 5.6.
As discussed above, the gates are sequentially stressed, one after the other, using the se-
quence of increasing stress voltages depicted in Fig. 5.10. After application of a stress
voltage on a given gate, its pinch-off voltages is measured and then the voltage applied
on it is increased by 50 mV. This voltage is kept constant during the stressing of the other
gates and the characterization of their pinch-off voltage. Once the target threshold volt-
age is reached or exceed for one gate, we stop applying stress voltages to it.

Ga
te

 v
ol

ta
ge

 V
g P1

P2

P3
P4

Time t

Figure 5.10: Schematics of the voltage sequence used for the tuning of the plunger-gate pinch-off voltages.
A sequence of increasing stress voltages is applied to the plunger gates P1-P4 with each stress voltage being set
sequentially. As soon as the pinch-off voltage of a plunger reaches the desired value the plunger is not stressed
anymore (not shown).

5.9. STABILITY OF PINCH-OFF CHARACTERISTICS AFTER TUN-
ING THEM USING THE HYSTERETIC BEHAVIOUR

Here, we discuss the stability of the pinch-off voltages after the reduction of their spread
using the protocol presented in Fig. 5.5 and 5.6. Fig. 5.11 shows the pinch-off character-
istics right after, 6, and 21 minutes after the tuning.

For each plunger gate considered, the three plots virtually overlap perfectly suggest-
ing a high degree of stability. This also is in agreement with the absence of variations
observed in the time stability measured after application of increasing stress voltages in
Fig. 5.4. It supports our choice of using increasing stress voltages in the tuning procedure
presented.
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5.10. COULOMB-BLOCKADE HYSTERESIS
We also investigate the effect of applying stress voltages to the plunger gate of a single
quantum dot. Fig. 5.12.a shows a scanning electron micrograph of a silicon quantum
dot device with the same gate layout as the device in chapter 3. The device is measured
at 4.2 K and a source-drain voltage |Vsd| = 100 µV is applied from left to right. This results
in a current which flows as indicated by white dashed lines in Fig. 5.12.a. We first apply a
full cycle of stress voltages to the plunger gate P4, resulting in the (Vstress,Vthres) hysteresis
cycle depicted in Fig. 5.13.a which is very similar to that measured in other devices.

Next, we form a quantum dot under the plunger gate P4 by tuning the voltages ap-
plied to P4 and the surrounding barrier gates. The formation of the quantum dot is
assessed by measuring the current flowing through the device as function of Vsd and
the voltage applied on the plunger gate VP4. Fig. 5.12.b shows the corresponding mea-
surements. We observe Coulomb diamonds confirming the presence of a quantum dot
underneath P4. Similarly to measuring the Vthres hysteresis, we probe the evolution of
Coulomb-blockade oscillations for a full cycle of stress voltages applied to P4. Fig. 5.12.c
contains a schematic representation of the measurement procedure. Here a full pinch-
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off curve is recorded after the application of each stress voltage. This procedure is re-
peated multiple times for sequences of increasing and decreasing stress voltages. The
resulting pinch-off curves exhibit clear Coulomb-blockade oscillations, as illustrated in
Fig. 5.14.a-d, from which we extract the voltages Vt where charge transitions occur using
a peak detection routine. Fig. 5.13.b depicts the evolution of the first five visible charge
transitions with the applied stress Vstress. Like in Fig. 5.13.a, a Vt hysteresis cycle is ob-
served which we divide in four parts (labeled I to IV). Note that the amplitude of the
detected peaks can vary along the cycle and that peaks might (dis)appear. Thus, the first
five peaks might not always correspond to the same five charge transitions.

To identify the evolution of a specific charge transition V i
t , we plot the corresponding

Coulomb-blockade oscillations for successive stress voltages as shown in Fig. 5.14.a-d.
For parts I and III, we observe that the Vt stay approximately constant from trace to trace
shifting less than their spacing. This suggest that the chemical potential in the quan-
tum dot and the confinement remain mostly unchanged. It also allows to identify the
voltages V i

t corresponding to a specific charge transition for each stress voltage. For this
purpose, we compare successive traces j and j +1 and we assign peak labels (coloured

markers) that minimize the charge transition voltage shift∆V i
t = |V i

t (V j
stress)−V i

t (V j+1
stress)|.

By minimizing∆V i
t , we also find the labelling that minimizes changes of the correspond-

ing peak heights I i
peak = I (V i

t ) between two traces as depicted in Fig. 5.14.e and Fig. 5.14 g.

It strengthens our confidence in the labelling of the charge transitions. We remark that
in part I, around Vstress =−1.2 mV, the amplitudes of Coulomb peaks all exhibit a sudden
jump. As the peak height is an indicator of the tunnel coupling between the quantum
dot and its leads, we interpret this jump as a sudden change of tunnel coupling. We see
no evidence for a peak shift in the corresponding Coulomb-blockade oscillation traces.
This suggest the application of stress voltages can also affect the tunnel coupling inde-
pendently of the quantum dot potential.

In contrast, for parts II and IV, we observe significant shifts of the charge transi-
tions from trace to trace. Therefore, in order to identify specific charge transitions, we
look for minimal shifts ∆V i

t but we also impose a monotonous evolution of the peak

height I i
peak and minimize its changes ∆I i

peak = |I i
peak(V j

stress)− I i
peak(V j+1

stress)|. Thus this

labeling assumes that the dot tunnel coupling evolves continuously with the applied
stress voltages. The assumption is strengthened by smooth I i

peak evolutions depicted in

Fig. 5.14.f and Fig. 5.14.h. The imposed constrains result in a peak identification with, on
part II, V i

t decreasing with decreasing stress voltages and, on part IV, V i
t increasing with

increasing stress voltages. Thus, we recover the dependence observed in Fig. 5.13.b. As
the charging voltages VC = V i+1

t −V i
t plotted in Fig. 5.14.i-l remain unaffected, we at-

tribute these shifts to changes in the quantum dot chemical potential and changes in
the dot coupling to its leads.

While the identification of the charge transition voltages V i
t (the colored markers in

Fig. 5.13.b and Fig. 5.14) might not be unique for a few selected traces, overall we ob-
serve a clear trend in V i

t . The quantum dot chemical potential follows an hysteresis cycle
(Fig. 5.13.b) similar to the pinch-off voltages Vthres hysteresis (Fig. 5.13.a). To quantify
this similarity, we extract the slopes dVthres/dVstress and dV i

t /dVstress for parts II and IV
by fitting the data with linear functions. For the Vthres hysteresis cycle, we fit only the
points marked with diamonds in Fig. 5.13.a. For the V i

t hysteresis, we fit the charge tran-
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Figure 5.13: Hysteresis of Coulomb-blockade oscillations. a, Vthres hysteresis cycle measured before the
quantum dot formation. The stress voltage cycle is depicted schematically on the right. The square and the
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sitions marked by dark blue circles. For part II, we extract dVthres/dVstress = 2.77±0.35
and dV i

t /dVstress = 3.6 ± 0.25. For part IV, we obtain dVthres/dVstress = 0.51 ± 0.01 and
dV i

t /dVstress = 0.87± 0.06. On both parts of the hysteresis cycles, the slopes obtained
by fitting the Vstress/Vthres and the Vstress/Vt hysteresis cycles do not differ substantially
confirming that the Vthres and the V i

t hysteresis cycles have a similar shape.
In summary, this set of measurements shows that the application of stress voltages

allows to shift the chemical potential of a quantum dot. The observed hysteresis of the
dot chemical potential is highly similar to that of the pinch-off voltage hysteresis for the
same plunger gate. This suggests that pinch-off voltages and charge transition voltages
can be equivalently utilized to witness changes in the intrinsic potential underneath a
gate.

5.11. SAMPLES USED FOR EACH MEASUREMENT AND REVERSAL

POINTS
Table 5.1 and Table 5.2 provide an overview of the different samples underlying the fig-
ures in this chapter, their gate design, the gates that were swept, and the reversal points
V rev

stress after which the stress voltage sequence was reversed if applicable. The gate de-
signs and gate names mentioned in Table 5.1 can be found in Fig. 5.7 and Fig. 5.12.a.
Fig. 5.9 shows gate designs and gate names for the SHTs referred to in Table 5.2.
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[12] M. Mądzik, S. Asaad, A. Youssry, et al., “Precision tomography of a three-qubit
donor quantum processor in silicon,” Nature, vol. 601, pp. 348–353, 2022.

[13] A. Noiri, K. Takeda, T. Nakajima, et al., “Fast universal quantum gate above the
fault-tolerance threshold in silicon,” Nature, vol. 601, no. 7893, pp. 338–342, Jan.
2022.

147



5

148 BIBLIOGRAPHY

[14] X. Xue, M. Russ, N. Samkharadze, et al., “Quantum logic with spin qubits crossing
the surface code threshold,” Nature, vol. 601, no. 7893, pp. 343–347, Jan. 2022,
ISSN: 1476-4687.

[15] N. W. Hendrickx, W. I. Lawrie, M. Russ, et al., “A four-qubit germanium quantum
processor,” Nature, vol. 591, no. 7851, pp. 580–585, Mar. 2021, ISSN: 14764687.

[16] S. G. J. Philips, M. T. Madzik, S. V. Amitonov, et al., “Universal control of a six-
qubit quantum processor in silicon,” Nature, vol. 609, no. 7929, pp. 919–924, Sep.
2022, ISSN: 1476-4687.

[17] L. Petit, H. G. J. Eenink, M. Russ, et al., “Universal quantum logic in hot silicon
qubits,” Nature, vol. 580, pp. 355–359, 2020.

[18] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, et al., “Operation of a silicon quan-
tum processor unit cell above one kelvin,” Nature, vol. 580, no. 7803, pp. 350–
354, 2020.

[19] L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumbühl, and A.
Kuhlmann, “A hole spin qubit in a fin field-effect transistor above 4 kelvin,” Na-
ture Electronics, vol. 5, pp. 178–183, 2022.

[20] F. Ansaloni, A. Chatterjee, H. Bohuslavskyi, et al., “Single-electron operations in
a foundry-fabricated array of quantum dots,” Nature Communications, vol. 11,
p. 6399, 2020.

[21] A. M. J. Zwerver, T. Krähenmann, T. F. Watson, et al., “Qubits made by advanced
semiconductor manufacturing,” Nat. Electron., vol. 5, no. 3, pp. 184–190, 2022,
ISSN: 2520-1131.

[22] P. L. Bavdaz, H. G. J. Eenink, J. van Staveren, et al., “A quantum dot crossbar with
sublinear scaling of interconnects at cryogenic temperature,” npj Quantum In-
formation, vol. 8, no. 1, p. 86, Jul. 2022, ISSN: 2056-6387.

[23] C. D. Hill, E. Peretz, S. J. Hile, et al., “A surface code quantum computer in silicon,”
Science Advances, vol. 1, no. 9, e1500707, 2015.

[24] M. Veldhorst, H. G. Eenink, C. H. Yang, and A. S. Dzurak, “Silicon CMOS archi-
tecture for a spin-based quantum computer,” Nat. Commun., vol. 8, no. 1, Dec.
2017, ISSN: 20411723.

[25] R. Li, L. Petit, D. P. Franke, et al., “A crossbar network for silicon quantum dot
qubits,” Sci. Adv., vol. 4, no. 7, eaar3960, 2018.

[26] T. Thorbeck and N. M. Zimmerman, “Formation of strain-induced quantum dots
in gated semiconductor nanostructures,” AIP Advances, vol. 5, no. 8, p. 087 107,
2015.

[27] R. M. Stein, Z. S. Barcikowski, S. J. Pookpanratana, J. M. Pomeroy, and J. Stewart
M. D., “Alternatives to aluminum gates for silicon quantum devices: Defects and
strain,” Journal of Applied Physics, vol. 130, no. 11, p. 115 102, 2021.

[28] W. I. L. Lawrie, H. G. J. Eenink, N. W. Hendrickx, et al., “Quantum dot arrays in
silicon and germanium,” Applied Physics Letters, vol. 116, no. 8, p. 080 501, Feb.
2020.



BIBLIOGRAPHY

5

149

[29] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta, “Scalable gate architec-
ture for a one-dimensional array of semiconductor spin qubits,” Phys. Rev. Appl.,
vol. 6, p. 054 013, 5 Nov. 2016.

[30] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta,
“Shuttling a single charge across a one-dimensional array of silicon quantum
dots,” Nature Communications, vol. 10, no. 1, p. 1063, 2019.

[31] J. P. Dodson, . Holman, B. Thorgrimsson, et al., “Fabrication process and fail-
ure analysis for robust quantum dots in silicon,” Nanotechnology, vol. 31, no. 50,
p. 505 001, 2020, ISSN: 0957-4484 1361-6528.

[32] W. Ha, S. D. Ha, M. D. Choi, et al., “A flexible design platform for Si/SiGe
exchange-only qubits with low disorder,” Nano Lett., vol. 22, no. 3, pp. 1443–1448,
Feb. 2022, ISSN: 1530-6984.

[33] T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, “Upper limit
of two-dimensional electron density in enhancement-mode Si/SiGe
heterostructure field-effect transistors,” Applied Physics Letters, vol. 99, no. 15,
p. 153 510, 2011.

[34] C.-T. Huang, J.-Y. Li, K. S. Chou, and J. C. Sturm, “Screening of remote charge scat-
tering sites from the oxide/silicon interface of strained Si two-dimensional elec-
tron gases by an intermediate tunable shielding electron layer,” Applied Physics
Letters, vol. 104, no. 24, p. 243 510, 2014.

[35] D. Laroche, S. H. Huang, E. Nielsen, et al., “Scattering mechanisms in shallow
undoped Si/SiGe quantum wells,” AIP Advances, vol. 5, no. 10, p. 107 106, 2015.

[36] Y.-H. Su, Y. Chuang, C.-Y. Liu, J.-Y. Li, and T.-M. Lu, “Effects of surface tunneling
of two-dimensional hole gases in undoped Ge/GeSi heterostructures,” Physical
Review Materials, vol. 1, no. 4, p. 044 601, 2017.

[37] K.-Y. Chou, N.-W. Hsu, Y.-H. Su, et al., “Temperature dependence of dc transport
characteristics for a two-dimensional electron gas in an undoped Si/SiGe het-
erostructure,” Applied Physics Letters, vol. 112, no. 8, p. 083 502, 2018.

[38] Y.-H. Su, K.-Y. Chou, Y. Chuang, T.-M. Lu, and J.-Y. Li, “Electron mobility enhance-
ment in an undoped Si/SiGe heterostructure by remote carrier screening,” Jour-
nal of Applied Physics, vol. 125, no. 23, p. 235 705, 2019.

[39] D. Degli Esposti, B. Paquelet Wuetz, V. Fezzi, M. Lodari, A. Sammak, and G. Scap-
pucci, “Wafer-scale low-disorder 2DEG in 28Si/SiGe without an epitaxial Si cap,”
Applied Physics Letters, vol. 120, no. 18, p. 184 003, 2022, ISSN: 0003-6951.

[40] B. Paquelet Wuetz, M. P. Losert, S. Koelling, et al., “Atomic fluctuations lifting the
energy degeneracy in Si/SiGe quantum dots,” Nature Communications, vol. 13,
no. 1, p. 7730, 2022, ISSN: 2041-1723.

[41] M. Ershov, S. Saxena, H. Karbasi, et al., “Dynamic recovery of negative bias
temperature instability in p-type metal–oxide–semiconductor field-effect
transistors,” Applied Physics Letters, vol. 83, no. 8, pp. 1647–1649, 2003.



5

150 BIBLIOGRAPHY

[42] B. Kaczer, T. Grasser, J. Roussel, et al., “Ubiquitous relaxation in BTI
stressing—new evaluation and insights,” in 2008 IEEE International Reliability
Physics Symposium, 2008, pp. 20–27, ISBN: 1938-1891.

[43] A. J. Lelis, R. Green, D. B. Habersat, and M. El, “Basic mechanisms of threshold-
voltage instability and implications for reliability testing of Sic MOSFETs,” IEEE
Transactions on Electron Devices, vol. 62, no. 2, pp. 316–323, 2015.

[44] J. Franco, A. Alian, B. Kaczer, et al., “Suitability of high-k gate oxides for III–V de-
vices: A PBTI study in In0.53Ga0.47As devices with Al2O3,” in 2014 IEEE Interna-
tional Reliability Physics Symposium, 2014, 6A.2.1–6A.2.6.

[45] S. F. Neyens, E. R. MacQuarrie, J. P. Dodson, et al., “Measurements of capaci-
tive coupling within a quadruple-quantum-dot array,” Physical Review Applied,
vol. 12, no. 6, p. 064 049, 2019.

[46] K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, and S. Tarucha, “Quan-
tum tomography of an entangled three-qubit state in silicon,” Nature Nanotech-
nology, vol. 16, no. 9, pp. 965–969, 2021, ISSN: 1748-3395.

[47] A. Goetzberger, V. Heine, and E. H. Nicollian, “Surface states in silicon from
charge in the oxide coating,” Applied Physics Letters, vol. 12, no. 3, pp. 95–97,
1968.

[48] E. H. Poindexter and P. J. Caplan, “Electron spin resonance of inherent and pro-
cess induced defects near the Si/SiO2 interface of oxidized silicon wafers,” Jour-
nal of Vacuum Science & Technology A, vol. 6, no. 3, pp. 1352–1357, 1988.

[49] P. M. Lenahan and J. F. Conley Jr., “What can electron paramagnetic resonance tell
us about the Si/SiO2 system?” Journal of Vacuum Science & Technology B: Micro-
electronics and Nanometer Structures Processing, Measurement, and Phenomena,
vol. 16, no. 4, pp. 2134–2153, 1998.

[50] A. Stesmans, T. Nguyen Hoang, and V. V. Afanas’ev, “Hydrogen interaction kinet-
ics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface,” Journal of Applied
Physics, vol. 116, no. 4, p. 044 501, 2014.

[51] A. Kerber, E. Cartier, G. Groeseneken, H. E. Maes, and U. Schwalke, “Stress in-
duced charge trapping effects in SiO2/Al2O3 gate stacks with TiN electrodes,”
Journal of Applied Physics, vol. 94, no. 10, pp. 6627–6630, 2003.

[52] M. Pioro-Ladrière, J. H. Davies, A. R. Long, et al., “Origin of switching noise
in GaAsAlx/Ga1−xAs lateral gated devices,” Physical Review B, vol. 72, no. 11,
p. 115 331, 2005.

[53] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. New Jersey: John Wiley
& Sons, 2006, p. 197–240, 213–214, 223 and 484–486.

[54] K. Vanheusden, W. L. Warren, D. M. Fleetwood, et al., “Chemical kinetics of
mobile-proton generation and annihilation in SiO2 thin films,” Applied Physics
Letters, vol. 73, no. 5, pp. 674–676, 1998.

[55] K. Hoffmann, System Integration: From Transistor Design to Large Scale Integrated
Circuits. Hoboken, United Kingdom: John Wiley & Sons, Incorporated, 2004, p.
339–340 and 345–352 and 532 ff.



BIBLIOGRAPHY

5

151

[56] A. Sammak, D. Sabbagh, N. W. Hendrickx, et al., “Shallow and Undoped Germa-
nium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology,”
Adv. Funct. Mater., vol. 29, no. 14, p. 1 807 613, Apr. 2019, ISSN: 1616-3028.

[57] M. Lodari, N. W. Hendrickx, W. I. L. Lawrie, et al., “Low percolation density and
charge noise with holes in germanium,” Materials for Quantum Technology,
vol. 1, no. 1, p. 011 002, Jan. 2021.

[58] N. W. Hendrickx, D. P. Franke, A. Sammak, et al., “Gate-controlled quantum dots
and superconductivity in planar germanium,” Nat. Commun., vol. 9, no. 1, pp. 1–
7, Jul. 2018, ISSN: 2041-1723.





6
SINGLE-ELECTRON OCCUPATION IN

QUANTUM DOT ARRAYS AT

SELECTABLE PLUNGER GATE

VOLTAGE

The small footprint of semiconductor qubits is favourable for scalable quantum comput-
ing. However, their size also makes them sensitive to their local environment and vari-
ations in gate structure. Currently, each device requires tailored gate voltages to confine
a single charge per quantum dot, clearly challenging scalability. In this chapter, we tune
these gate voltages and equalize them solely through the temporary application of stress
voltages. In a double quantum dot, we reach a stable (1,1) charge state at identical and
predetermined plunger gate voltage and for various interdot couplings. Applying our find-
ings, we tune a 2×2 quadruple quantum dot such that the (1,1,1,1) charge state is reached
when all plunger gates are set to 1 V. The ability to define required gate voltages may re-
lax requirements on control electronics and operations for spin qubit devices, providing
means to advance quantum hardware.

This chapter has been published as M. Meyer, C. Déprez, I. N. Meijer, F. K. Unseld, S. Karwal, A. Sammak, G.
Scappucci, L. M. K. Vandersypen, and M. Veldhorst, Single-Electron Occupation in Quantum Dot Arrays at
Selectable Plunger Gate Voltage, Nano Letters 2023 23 (24), 11593-11600 [1].
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Figure 6.1: Device and tuning of a double quantum dot. (a) Scanning electron micrograph of a device nomi-
nally identical to the one under study. Confinement (Ci ) and barrier (Bi and Bi j ) gates are designed to define
four quantum dots indicated by the white circles. Their charge occupation is controlled by four plunger (Pi )
gates. Confinement gates are outlined by dashed lines for clarity. A sensor quantum dot is formed under S1
and measured in transport. (b) Charge stability diagram showing the single-electron occupation of the Q3-Q4
double quantum dot formed underneath P3 and P4. The plotted signal is locally contrast normalized (LCN)
to increase the visibility of the charge transition lines as described in section 6.4. The white arrow marks the
sweep direction. Dashed lines connect charge triple degeneracy points and thereby indicate transitions of the
charge ground state. These cannot be observed directly as electrons are unloaded from Q3 via Q4 leading to
a dragging of charge transition lines in sweep direction (charge latching) [2]. The plunger gate voltage ranges
[V −

Pi ,V +
Pi ] that set a (1,1) charge state are indicated by vertical and horizontal bars. The ranges are extracted

around the center point of the (1,1) charge region (see section 6.4). Unprocessed data shown in section 6.11.
(c) Plunger gate voltage ranges [V −

Pi ,V +
Pi ] as extracted in (b).

6.1. INTRODUCTION

Semiconductor spin qubits have become a compelling platform for quantum compu-
tation. Single qubit gate fidelities of 99.99% [3] and two-qubit gate fidelities exceeding
99% [4]–[7] have been demonstrated. A moderate sensitivity to thermal effects allowed
for the implementation of quantum operations above one Kelvin [8]–[10]. Furthermore,
the small size of semiconductor spin qubits and their compatibility with advanced semi-
conductor manufacturing [11]–[13] may facilitate devices with large numbers of qubits
as required for practical applications. Recent advances in the material platforms sup-
ported the realization of a 2×2 qubit array in germanium [14], a linear six qubit system
in silicon [15], and the operation of a 16 quantum dot crossbar array (see chapter 4).
However, scaling up the number of qubits is challenging, especially when considering
the numbers needed for fault-tolerant quantum computation [16]–[18]. A particular
challenge lies in the sensitivity of qubits to their environment leading to considerable
variations of their properties, a notion that was already highlighted in the seminal work
on quantum computation by Loss and DiVincenzo [19].

Substantial reductions in variability have been achieved through progress in het-
erostructure growth and device fabrication. For instance, these efforts focus on reducing
material disorder [20]–[27], advancing device fabrication [28]–[30] and addressing fluc-
tuations in mechanical stress induced by the deposition of metallic gate electrodes [31]–
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[33]. However, significant variations remain observable in current devices [34], [35] (also
see chapter 4) and it is an open question whether sufficient uniformity can be reached
through material development alone.

Alternatively, fluctuations in the potential landscape can be compensated by tem-
porarily applying stress voltages (see chapter 5 and refs [36]–[38]). An alternating se-
quence of stress voltages and pinch-off measurements has already enabled on-demand
reshaping of pinch-off voltage characteristics and their homogenization without signs
of reduced device stability afterwards. Furthermore, such sequences allowed to alter the
potential offset of a single electron transistor (SET) at a temperature of ≈ 4.2 K (see chap-
ter 5). Yet, this methodology has not been applied to individual electrons in a quantum
dot. Also, overcoming qubit variations in quantum processors will require the tuning of
multiple quantum dots.

In this chapter, we demonstrate the use of stress voltages to tune the potential land-
scape in a quantum dot array. We show that this approach allows to change and equalize
the plunger gate voltages required to reach single-electron occupation in a double quan-
tum dot without changing any other gate voltages. Importantly, we find that the resulting
confining potential remains stable for hours afterwards. To illustrate its robustness and
versatility, we demonstrate that the method employed can be applied at various barrier
voltages and thus interdot tunnel couplings. Furthermore, we show that the procedure
can be extended to homogenize the plunger gate voltages defining the single occupation
charge state in a 2×2 quantum dot system.

6.2. RESULTS
Fig. 6.1.a shows a scanning electron micrograph of a device nominally identical to the
one under study in this chapter, which is fabricated on a 28Si/SiGe heterostructure [39]
(see section 6.4). The gate design allows for the formation of a 2×2 quantum dot array
(white circles) and two adjacent single electron transistors (SETs) on the left and right
side (see chapter 3). We form the quantum dots Q3 and Q4 underneath the plunger gates
P3 and P4 and also tune up the SET below the sensor gate S1. The left side of the device is
operated as an electron reservoir. Fig. 6.1.b depicts a charge stability diagram recorded
after the initial tuning. It shows the typical honeycomb pattern of a double quantum dot
and depletion down to the (N3, N4) = (1,1) charge state with Ni the charge occupation of
Qi .

The charge stability diagram reveals a large asymmetry in the plunger gate voltages
required to reach the single-electron regime. The voltage ranges [V −

Pi ,V +
Pi ] from the first

to the second charge transition line of the two quantum dots are indicated by a horizon-
tal and a vertical bar (see section 6.4 for the definition). As illustrated in Fig. 6.1.c those
ranges do not overlap for the two quantum dots and in particular we find a separation of
more than 2(4) times the Q3(Q4) charging voltage V C

Pi = V +
Pi −V −

Pi . While this is a rather
extreme case, variations in the plunger gate voltages that load a single electron larger
than the corresponding charging voltages are commonly observed [34], [40]–[42] (also
see Fig. 2.4 in chapter 2). For instance, in chapter 4 a variability of the first charge addi-
tion voltages of 290 mV is noticed while the average charging voltage is 51 mV. Therefore,
if single-electron occupation can be achieved at equal plunger gate voltages in the de-
vice of Fig. 6.1 this would provide good prospects for the homogenization of the required
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Figure 6.2: Single-electron occupation at predetermined plunger gate voltages through voltage stressing.
(a) Schematic of the stress-measure sequence applied to shift the voltages required to obtain the (1,1) charge
state. Increasing stress voltages Vstress are applied for tstress = 1 min interleaved by charge stability diagram
measurements. (b) Expected trajectory for the center of the (1,1) charge region V (1,1) in the (VP3,VP4) plane
during the tuning procedure as defined prior to conducting the experiment. The color of the path refers to
the plunger gate being stressed. (c) Actual trajectory of V (1,1) followed during the tuning procedure. The
triangle, circles, and diamond mark the starting point, (intermediate) targets, and the endpoint of the path,
respectively. After each intermediate target, a new sequence is started as visualized by a new trace. The trace is
also interrupted when insufficient contrast does not allow for obtaining V (1,1). Black arrows indicate the time
flow. (d) Plunger gate voltage ranges [V −

Pi ,V +
Pi ] that keep the double quantum dot in the (1,1) charge state after

tuning (see section 6.4). Targets are indicated by the dotted lines.

plunger gate voltages, also in devices that already are intrinsically more uniform.

(1,1) CHARGE OCCUPATION AT PREDETERMINED PLUNGER GATE VOLTAGE
To increase the potential uniformity, we follow the previous chapter (5) and apply stress
voltages Vstress on gate electrodes to reshape the background potential landscape. We
aim to tune the system such that the (1,1) charge state is reached at predetermined
plunger gate voltage. Specifically we target to load a single electron per quantum dot
for VP3 = VP4 = V T with V T = 1 V, 1.1 V and 1.2 V by sequentially tuning the potential
below the two plunger gates following the path shown in Fig. 6.2.b. Fig. 6.2.a illustrates
the employed procedure for a single plunger gate Pi . We apply a stress voltage Vstress for
tstress = 1 min. Afterwards, we measure charge stability diagrams around VPi =V T and if
necessary the sensor gate voltage VS1 is compensated to restore maximum sensitivity of
the SET. From the charge stability diagrams we then extract the voltage range [V −

Pi ,V +
Pi ]

required to reach single charge occupation. If setting the target voltage does not yield the
targeted electron occupation in Qi (V T not in [V −

Pi ,V +
Pi ]) the sequence is repeated with

an increased (decreased) stress voltage to shift the voltage range further upward (down-
ward). If a single electron is loaded at the target voltage configuration we stop applying
stress voltages to Pi and analogously tune the potential of the other quantum dot. After
the initial tune up (Fig. 6.1), we first follow the stressing procedure to lower the required
plunger gate voltage ranges [V −

Pi ,V +
Pi ] to reach single-electron occupancy at 1 V. During
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Figure 6.3: Evolution of charge stability regions under voltage stressing. Charge stability diagrams recorded
after the application of the respective stress voltage sequences. The white square markers show the target volt-
ages V T = (V T,V T). Plunger gate voltage ranges [V −

Pi ,V +
Pi ] that keep the system in the (1,1) charge state are

indicated by vertical and horizontal bars. Dashed lines indicate transitions of the charge ground state which
cannot be observed directly due to a slow dot-reservoir tunneling time of Q3 (charge latching, see section 6.4).
The white arrow marks the sweep direction which is identical for all panels. Unprocessed data shown in sec-
tion 6.11.

this process we adjust the barrier gate B2 voltage in order to maintain a significant tun-
nel rate. Then, we perform the stressing experiment and advance from point A to E in
Fig. 6.2.b. Here, we only change the sensor gate S1 voltage and keep all other gate volt-
ages constant (see section 6.13 for the voltage settings).

Fig. 6.3 shows charge stability diagrams recorded after tuning toward the predefined
targets V T. A clear shift of the (1,1) charge region to higher plunger gate voltages and
then back down is observable. Furthermore, after the completion of each tuning, set-
ting the plunger gate voltages (VP3,VP4) to V T = (V T,V T) (white square marker) loads a
single electron per quantum dot as also highlighted in Fig. 6.2.d showing the extracted
voltage ranges [V −

Pi ,V +
Pi ]. This demonstrates tunability of the chemical potentials and

control over the electron occupation in a double quantum dot through the temporary
application of stress voltage. Due to charge latching [2], for lower values of V T some
charge transition lines of Q3 get dragged leftwards. This suggests a crosstalk effect of the
applied stress voltages on the surrounding tunnel barrier potentials.

Fig. 6.2.c shows the reconstructed evolution of the center point of the (1,1) charge
region V (1,1) = (V (1,1)

P3 ,V (1,1)
P4 ) during the tuning procedure (see section 6.4). Overall, the

experimental trajectory reproduces qualitatively the intended one shown in Fig. 6.2.b.



6

158
6. SINGLE-ELECTRON OCCUPATION IN QUANTUM DOT ARRAYS AT SELECTABLE PLUNGER

GATE VOLTAGE

−4 −2 0 2
Vstress (V)

1.0

1.2

1.4

V(1
,1

)
P3

1.0

1.2

1.4

V(1
,1

)
P4

−4 −2 0 2
Vstress (V)

Figure 6.4: Hysteresis of the (1,1) charge region centre voltage V (1,1)
P34 (left) and V (1,1)

P3 (right) as a function of
the stress voltage Vstress applied to P4 and P3, respectively. The triangle, circles, and diamond mark the same
points as in Fig. 6.2.c and black arrows indicate the time flow.

The predominantly horizontal and vertical progressions in the (V (1,1)
P3 ,V (1,1)

P4 ) plane sug-
gest limited crosstalk, i.e. applying stress voltages to one gate Pi only has a small effect on
the charge transition voltages of the quantum dot below the other plunger gate. Quan-
titatively, we find slopes dV (1,1)

Pi /dV (1,1)
P j between −0.31 V/V and −0.04 V/V. The sign of

these slopes is consistent with the sign of the capacitive shift of the transition line voltage
of Q j when the plunger gate voltage VPi is changed (see section 6.5). Correcting for this
effect, we obtain the change of the charge transition voltages of Q j induced exclusively
by the application of stress voltages set to Pi . We find crosstalks of (+0.37±0.03) V/V and
(+0.19±0.03) V/V for P3 on Q4 and P4 on Q3 respectively. Overall, while these crosstalk
effects could be compensated for, the simple approach presented here allowed to tune
the potentials of the quantum dots to the predetermined targets.

In Fig. 6.4 the center voltages V (1,1)
3 and V (1,1)

4 are plotted as a function of the applied
stress voltage Vstress. We recover the typical hysteresis cycle observed when tuning pinch-
off voltages using an analogous method in similar devices (see chapter 5). Noticeably,
for steadily decreasing stress voltages there is an initial increase in V (1,1)

Pi before it rapidly
drops to lower voltages at Vstress ≈ −4 V. In Fig. 6.2.c this manifests as non-monotonic
progressions of V (1,1) between the target points C and D. V (1,1)

P4 and V (1,1)
P3 initially increase

by 40 mV and 180 mV, respectively, before they decrease and approach V T = 1.1 V.
Summarizing, Fig. 6.2, 6.3, and 6.4 demonstrate that the background potential in the

quantum well can be reshaped such that each quantum dot can be occupied with one
electron using uniform plunger gate voltages.

TIME STABILITY

To understand the impact of stress voltages on device stability, we record multiple charge
stability diagrams as a function of time after the initial stress tuning towards V T = 1 V (A
in Fig.6.4). Fig. 6.5.a shows the extracted evolution of the plunger gate voltage range
that keeps the quantum dots Q3 and Q4 in the single-electron occupation. Here, the
time t refers to the time since the last application of a stress voltage and voltages are
plotted relative to V T. We find that the double quantum dot system remains in the (1,1)
charge state for more than 15 h showing only a weak drift. This is confirmed by standard
deviations of 3 mV, 3 mV, 2 mV, and 1 mV for V −

P3, V +
P3, V −

P4, and V +
P4, respectively, which

remain negligible compared to the charging voltages of 148 mV and 87 mV for Q3 and
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Q4, respectively. Overlaying the charge stability diagrams recorded at t = 0 h and at
t = 17 h, as depicted in Fig. 6.5.b, provides further confirmation of the device stability.
Additional time traces demonstrating stability up to 40 h after the application of the last
stress voltages are presented in section 6.6. Moreover, we find that charge noise values
sensed by the right SET are comparable to values typically observed in devices based on
Si/SiGe (see section 6.8 for details).
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Figure 6.5: Stability of the (1,1) charge state after stress tuning. (a) Time traces of the plunger gate voltage
ranges that keep the system in the (1,1) charge state (see section 6.4 for the definition) after the application
of a sequence of increasing stress voltages. t is the time after the application of the last stress voltage. Note
that the underlying charge stability diagram measurements were interleaved with charge noise measurements
on the sensor (see section 6.8). Additional traces are presented in section 6.6. (b) Overlay of charge stability
diagrams taken at the beginning (star, olive green) and end (hexagon, light green) of the time trace shown in
(a). Horizontal and vertical bars indicate the respective plunger gate voltage ranges that keep the system in
the (1,1) charge state. Dashed lines indicate transitions of the charge ground state which cannot be observed
directly due to a slow dot-reservoir tunneling time of Q3 (charge latching, see section 6.4). The black arrow
marks the sweep direction. Unprocessed data shown in section 6.11.

PREDETERMINED PLUNGER GATE VOLTAGE FOR TUNNEL COUPLED QUAN-
TUM DOTS
We now address the question whether single-electron occupation can still be achieved
by a predetermined gate voltage, when changing the coupling between the quantum
dots. In our double quantum dot system, we can control the interdot coupling by adjust-
ing the barrier gate B34 voltage to tune the system from strong to weak coupling quan-
tum dots. We achieve this by varying the barrier gate voltages between 0 V and −0.5 V.
After setting a barrier gate voltage, we apply stress voltages to the plunger gates to obtain
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Figure 6.6: Single-electron occupation at predetermined plunger gate voltage for high and low interdot cou-
pling. (a)-(e) Charge stability diagrams measured after tuning the system through applying stress voltages
such that the (1,1) charge state is the ground state when applying the plunger gate voltages V T = (1 V,1 V)
(white square marker). In each case a different barrier gate voltage VB34 is set before the tuning (labeled in the
plot titles). The range of plunger gate voltages [V −

Pi ,V +
Pi ] that keep the system in the (1,1) charge state is indi-

cated by horizontal and vertical bars (see section 6.4). Dashed lines indicate transitions of the charge ground
state which cannot be observed directly due to a slow dot-reservoir tunneling time of Q3 (charge latching, see
supplementart section S1). The white arrow marks the sweep direction which is identical for all panels. The
unprocessed data is shown in section 6.11. (f ) Plunger gate voltage ranges [V −

Pi ,V +
Pi ] extracted from (a)-(e).

The dotted line indicates the target voltage V T = 1 V.
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the (1,1) charge state at V T = (1 V,1 V). Fig. 6.6.a-e shows the resulting charge stability di-
agrams. Note that we do not utilize virtual gates to allow for an eased identification of the
stress voltage effect. The charge transition line pattern changes from exhibiting nearly
diagonal lines at VB34 = 0 mV towards a rectangular grid-like pattern at VB34 =−500 mV,
revealing the transition from high to low coupling. In all cases the application of stress
voltage sequences allows to obtain the (1,1) charge state at V T = (1 V,1 V). This is con-
firmed by the extracted voltage ranges [V −

Pi ,V +
Pi ] plotted in Fig. 6.6.f. We conclude that for

a wide range of interdot couplings single-electron occupation can be achieved at prede-
termined plunger gate voltage independently of the applied barrier voltage.

(1,1,1,1) CHARGE STATE AT (1,1,1,1) V
Finally, we utilize our findings to tune a 2×2 quantum dot array such that the charge state
(N1, N2, N3, N4) = (1,1,1,1) is the ground state when all plunger gate voltages are set to
1 V. Starting from the Q3-Q4 double quantum dot, we form the quantum dots Q1 and Q2
which are predominantly controlled by the plunger gates P1 and P2. Then, the system
is tuned solely through tailored stress voltage sequences applied to the plunger gates.
Fig. 6.7 shows two charge stability diagrams recorded after this tuning process unveiling
four sets of charge transition lines. These can be associated with the four quantum dots
by analysing further charge stability diagrams recorded by sweeping additional plunger
gate combinations (see section 6.10). Yellow, orange, red and purple dashed lines mark
the first two charge addition voltages of quantum dot Q1, Q2, Q3 and Q4, respectively.
The target voltage configuration V T = (V T

P1,V T
P2,V T

P3,V T
P4) = (1 V,1 V,1 V,1 V) is shown by a

white square marker and the voltage ranges that keep the system in the (1,1,1,1) charge
state are indicated by horizontal and vertical bars. V T clearly falls between the first two
charge transition lines for all four quantum dots confirming that we reached the tar-
geted configuration. Here, V T = 1 V was arbitrarily chosen but we anticipate that other
target voltages can be reached as long as the crosstalk on the interdot and dot-reservoir
tunnel coupling remains negligible or is compensated for. Note that all quantum dots
are strongly affected by plunger gate P2 and P4 as observable in Fig. 6.7.b. However, in
Fig. 6.7.a the voltages on P1 and P3 only seem to affect the charge occupation of Q1 and
Q3. We speculate this behavior to originate from asymmetries in the gate layout and
device imperfections (see chapter 3). Crucially, we find that the stressing procedure is
effective for the tuning of a nonlinear quadruple quantum dot array.

6.3. DISCUSSION

In summary, we have shown that single-electron occupation in quantum dots can be
achieved at equal predetermined plunger gate voltage, by making use of a stress-voltage
based procedure. Importantly, we find that after such a tuning the systems remains sta-
ble for hours only exhibiting small progressive drifts which do not affect the charge con-
figuration. While our experiments suggest tunability of the entire potential landscape,
more research is needed to understand the level of control over the barrier potentials.
We envision that the stressing methodology may find several applications in semicon-
ductor quantum technology. For instance, it may facilitate individual control over quan-
tum dot potentials in crossbar arrays which crucially rely on shared gate voltages [43]
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Figure 6.7: (1,1,1,1) charge state at 1 V
on all plunger gates (a), (b) Charge
stability diagrams recorded after apply-
ing stress voltage sequences to tune the
(1,1,1,1) charge state to be the ground
state when all plunger gate voltages are
set to 1 V. The first two transition lines
of each quantum dot are indicated by
dashed lines. The voltage ranges to
keep the system in the (1,1,1,1) charge
state are indicated by horizontal and ver-
tical bars (see section 6.4). A white
square marks the point when all plunger
gates are at 1 V. The plotted signal is
the summation of several charge stability
diagrams with identical voltage ranges
recorded for slightly varied voltages on
the SET plunger S1 (see section 6.12).
Contrast is enhanced by a local contrast
normalization (LCN). (a) shows charge
transitions of Q1 and Q3 and (b) ex-
hibits charge transition lines of all four
dots. Note that in (a) two additional ver-
tical transition lines are present, presum-
ably corresponding to spurious quantum
dots which however show negligible cou-
pling to Q1-Q4. The white arrows mark
the sweep direction.
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(also see chapter 4). Tailored stress voltages could be applied to selected gate electrodes
simultaneously. The stress voltages would be chosen to leave the background potential
underneath each individual gate unaffected. However, where the selected gates are in
close vicinity to each other the combined electric field would be strong enough to shift
the background potential (see section 6.9). A predetermined gate voltage to set a given
charge state may also relax the requirements on control electronics and facilitate their
integration. For instance, lowering the required gate voltages would allow for smaller
capacitors in floating gate architectures while keeping the same refresh rate [44]. Fur-
thermore, we envision that stressing voltages can provide tunability of other parame-
ters. For example, the g -tensor of germanium qubits is strongly dependent on the elec-
tric field [29], [45], such that stressing voltages may provide tunability over the qubit
resonance frequency. We therefore envision that stressing procedures may become a
standard and essential routine in the tuning of large quantum circuits.
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6.4. MATERIAL AND METHODS

HETEROSTRUCTURE AND DEVICE FABRICATION

The device under study in this chapter is fabricated on a 28Si/SiGe heterostructure [39]
which is based on a Si wafer. First, a linearly graded Si1−x Gex buffer with x varying
from 0 to 0.3 is grown followed by a 300 nm relaxed Si0.7Ge0.3 layer. A 7 nm purified
(800 ppm) 28Si layer defines the quantum well and is separated from the gate stack by an-
other 30 nm thick relaxed Si0.7Ge0.3 buffer that is passivated in dichlorosilane at 500 ◦C.
Phosphorus ion implantation is utilized to contact the two dimensional electron gas and
a 10 nm aluminum oxide layer precedes the deposition of gate electrodes. The latter are
spread across three layers and made of Ti/Pd deposited via electron beam evaporation.
They are separated by 5 nm thick layers of aluminium oxide. In all cases aluminium
oxide is deposited via atomic layer deposition [29].

SETUP AND VOLTAGE PULSES
All measurements are performed in a dilution refrigerator at a base temperature of ≈
20 mK. The gate voltages are supplied by digital analog converters (DACs) with a resolu-
tion of 18 bit and a voltage range of ±4 V which was amplified to ±20 V for the plunger
gates. The current through the SET is measured via a current-to-voltage converter con-
nected to a digitizer module. Confinement and stress voltages are applied via the DACs
while charge stability diagrams are recorded by sending fast voltage pulses. The latter
are generated by an arbitrary waveform generator (AWG). DAC and AWG voltage sig-
nals are merged with a bias tee located on the sample PCB at the mixing chamber stage.
AWG pulses are modified to correct for voltage drifts caused by (dis)charging of the bias
tees. Furthermore, cross-capacitive shifts from P3 and P4 on the sensing dot potential
are compensated for by proportionally adjusting VS1 when sweeping the plunger gate
voltages VPi (∆VS1/∆VPi < 0.01).

LOCAL CONTRAST NORMALIZATION
In voltage scans spanning a large range, cross-capacitive coupling of the plunger gates
to the SET can cause significant variations in sensor sensitivity. This leads to contrast
fluctuations across the charge stability diagram and hampers identification of charge
transition lines. We compensated for this effect by applying a local contrast normaliza-
tion (LCN). In essence, a smoothed charge stability map is subtracted to compensate for
a slowly varying offset after which a smoothed local variance is utilized to locally nor-
malize the signal:

LCN(I ) = I − I ∗ fGaussian√
(I − I ∗ fGaussian)2 ∗ fGaussian

Here, the asterisk denominates a convolution, I is the sensor signal and fGaussian refers
to a normal distribution with a mean and variance chosen between 4 and 50 pixels.

EXTRACTION OF CHARACTERISTIC VOLTAGES FROM CHARGE STABILITY DIA-
GRAMS
For each charge stability diagram we identify the coordinates of the charge triple degen-
eracy points (triple points) that constitute the corners of the (1,1) charge region. From
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Figure 6.8: Stress voltage induced crosstalk on quantum dots. (a) Trajectory of the (1,1) charge state center
point V (1,1) in the (VP3,VP4) plane during the tuning experiment shown in Fig. 6.2, 6.3 and 6.4 (identical to
Fig. 6.2.c). (b) Part of the trajectory between the points A and AB. The black line is a linear fit to the data to
determine the slope s

γ
34 that quantifies the crosstalk of plunger gate P4 on quantum dot Q3.

these we calculate the voltage ranges [V −
Pi ,V +

Pi ] that keep the system in the (1,1) charge

state around the center point V (1,1) (in Fig. 6.1.b) or the target voltages V T (in all other
figures). The center point V (1,1) of the (1,1) charge region is determined as the centroid
of the triple points at the (2,0)− (1,1) and (1,1)− (2,0) charge transitions. Note that the
voltage ranges [V −

Pi ,V +
Pi ] are a measure of the maximum voltage variation on a single

plunger gate for which the charge state remains constant. When taking into account
more than a single gate voltage a polytope describes the applicable gate voltages that
keep the charge state at single electron occupation. For instance, when considering two
plunger gates the polytope would be the hexagon typically found in a double quantum
dot honeycomb pattern. While we utilize one-dimensional voltage ranges [V −

Pi ,V +
Pi ] to

ease visualizations, after all stressing experiments the target voltage point V T lies inside
the single charge occupation region (inside the respective gate voltage polytope).

We have used the triple points for the analysis because of their robustness against
latching effects [2]. For instance, in Fig. 6.1.b, the dashed lines show reconstructed charge
transition lines of quantum dot Q3 which has a weak coupling to the nearby charge reser-
voir. Electrons in Q3 are unloaded via Q4 when the potential of Q4 aligns with the Fermi
level. Consequentially, charge transition lines are dragged in sweep direction. Therefore,
[V −

Pi ,V +
Pi ] can include regions of meta-stable charge state (in between the observed and

the reconstructed charge transition). This does not impact our conclusions because, at
the end of all stressing experiments, the target voltage point V T lies in a region of stable
charge state.

6.5. STRESS VOLTAGE INDUCED CROSSTALK
A stress voltage applied to a plunger gate P j not only alters the potential of the quantum
dot Q j located directly underneath it but also affects neighbouring quantum dots Qi . We
investigate this crosstalk by further analyzing the tuning of the Q3-Q4 double quantum
dot presented in Fig. 6.2, 6.3 and 6.4. Fig. 6.8.a shows the trajectory of the center V (1,1)

of the (1,1) charge state region in the (VP3,VP4) plane (same as Fig. 6.2.c). The crosstalk
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manifests as a deviation from perfectly horizontal or vertical progressions of V (1,1). We
quantify it by applying a linear regression as exemplary shown in Fig. 6.8.b for the section
from A to AB. The extracted slope sγ34 is a measure for the crosstalk of plunger gate P4
onto quantum dot Q3.

Two mechanisms can explain the observed crosstalk as illustrated in Fig. 6.9.a: (1)
Tuning the potential landscape of Q4 through the application of stress voltages also af-
fects the potential of Q3 even if all gate voltages are reset to their initial value afterwards.
For instance, this effect could be caused by the (de)charging of traps at the interface that
capacitively couple to Q3 (Cτ

34) [36]–[38], [46], [47]. (2) V (1,1)
P3 is defined as the middle

point between the (1,0)-(1,1) and (1,1)-(1,2) charge transition at VP4 = V (1,1)
P4 (and vice

versa). Due to the capacitive coupling of P4 onto Q3 (Cα
34) a shift in V (1,1)

P4 is therefore

also reflected in V (1,1)
P3 . Fig. 6.9.b portrays the mechanism. It shows a schematic charge

stability diagram before (grey charge transition lines) and after (black charge transition
lines) tuning the potential below P4 through the application of stress voltages. As the
Q3 charge transition lines are tilted by the cross-capacitance Cα

34, a change in V (1,1)
P4 also

results in a change of V (1,1)
P3 (center point of the light and dark pink vertical bar).

To quantify the latter effect we determine the slope sα34 of the Q3 charge transition
lines at the (1,1) charge region. Fig. 6.9.c depicts an exemplary charge stability diagram
during the tuning process with the respective Q3 charge transition lines indicated by
dashed lines. All extracted sα34 between the points A and AB in Fig. 6.8.a are plotted
in Fig.6.9.d. We find that sα34 remains constant throughout the entire stress voltage se-
quence from A to AB.

The same analysis steps are repeated for all subparts between A and D of the trajec-
tory in Fig. 6.8.a. Fig. 6.9.e summarizes all sγi j (diamonds) and sαi j (downward pointing

triangles). The magnitude of the cross-capacitance effect sαi j is consistently larger than

the magnitude of the measured crosstalk sγi j . To estimate the stress voltage crosstalk

sτi j solely caused by shifts of the intrinsic potential we subtract sαi j from sγi j and plot the

difference in Fig. 6.9.e. We find a positive voltage stress related crosstalk, which has a
similar magnitude as the capacitive effect sαi j . As sτi j and sαi j have a different sign they

partially cancel each other and lead to a reduced effective crosstalk sγi j when applying

stress voltage sequences.

6.6. UNDERLYING PHYSICAL MECHANISMS
Applying a stress voltage to a selected gate electrode possibly alters the occupation of
charge traps in the gate dielectrics and heterostructure directly underneath [36]–[38],
[46], [47]. As the electric field bends the conduction band electrons might tunnel into or
out of these charge traps. Removing the stress voltage then effectively freezes their occu-
pation which permanently alters the intrinsic potential landscape. Charge traps can be
present in the oxide layer [48]–[51], originate from unpassivated silicon and germanium
dangling bonds [49]–[51] or arise from mechanical stress induced by the deposition of
metallic gate electrodes [31], [33]. Furthermore, also the relocation of mobile ions might
change the intrinsic potential [52]. Note that these processes in general are independent
of the quantum well material itself and stress-voltage-controlled shifts of the intrinsic
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Figure 6.9: Stress tuning crosstalk and cross-capacitance effects. (a) Illustration of a device cross-section
portraying the capacitive effect of the plunger gate voltage VP4 on the potential of quantum dot Q3 (Cα

34) and
the crosstalk effect of applying stress voltages to plunger gate P4 on the potential of quantum dot Q3 (Cτ

34).
(b) Schematic charge stability diagram illustrating how the charge transition voltages of quantum dot Q3 shift
when changing the voltage on plunger gate P4. Grey lines indicate the charge transition lines before and black
lines after changing the potential of Q4 through applying stress voltages. For illustration purposes, the interdot
coupling between Q3 and Q4 and the capacitive coupling of P3 onto Q4 are neglected. (c) Example charge
stability diagram taken at point A in Fig. 6.8.a. The slope sα34 of the transition lines of Q3 (black dashed lines)
are determined as a measure for the relative capacitive effect of plunger gate P4 onto the potential of quantum
dot Q3. To ensure robustness against distortions from charge latching effects, the Q3 charge transition lines
are defined as the lines connecting the respective triple charge degeneracy points. (d) All extracted sα34 during

the tuning from point A to AB in Fig. 6.8.a. (e) Crosstalk s
γ
i j caused by stressing plunger gate Pi (diamonds)

and cross-capacitance effect sαi j of plunger gate voltage VP j (downward pointing triangles) onto the potential

of quantum dot Qi along the trajectory in Fig. 6.8.a. Between C and CD and CD and D only the last ten points
are fitted to extract s

γ
i j . Due to a limited number of data points, no values are shown for the tuning between D

and E. (f ) Stress voltage induced crosstalk effect sτi j of plunger gate P j onto the potential of quantum dot Qi

corrected for the capacitive coupling of plunger gate P j onto the potential of quantum dot Qi .
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Figure 6.10: Additional time traces after applying stress voltage sequences. (a)-(c) Time traces of the voltage
ranges [V −

Pi ,V +
Pi ] after the application of a stress voltage sequence. (a), (b) and (c) are recorded after tuning to

the target points A, C and E as presented in Fig. 6.2, respectively. t is the time after the application of the last
stress voltage. (a) is identical to Fig. 6.5.a. Note that the underlying charge stability diagram measurements
were interleaved with charge noise measurements on the sensor (see section 6.8).

potential also have been observed in Ge/SiGe heterosturctures [53] (also see chapter 5).

6.7. ADDITIONAL TIME TRACES RECORDED AFTER THE APPLI-
CATION OF STRESS VOLTAGES

Fig. 6.6 shows two additional time traces not shown in Fig. 6.5. Note that in Fig. 6.6.b
and c the recording of the time traces was started 20 h and 4 h after the application of the
last stress voltage, respectively. The additional curves confirm that after the application
of a stress voltage tuning the system remains in a (1,1) charge state for 40 h at least only
exhibiting small progressive drifts.

6.8. CHARGE NOISE AFTER APPLYING STRESS VOLTAGES
As the presented tuning procedure might alter the configuration of charge traps in the
heterostructure (see section 6.6) we investigate the system charge noise after applying
stress voltages. Specifically, we measure time traces of the current through the sens-
ing quantum dot (underneath S1) and compute the power spectral density (PSD). To
obtain maximum sensitivity of the sensor current to potential fluctuations we tune the
sensor plunger gate voltage VS1 to the flank of a Coulomb peak. Fig. 6.11.a, b and c de-
pict PSD spectra obtained after tuning to the target point A, C and E in Fig. 6.2.b, re-
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Figure 6.11: Sensor charge noise after applying stress voltages. (a) Power spectral density (PSD) extracted
from sensor current time traces recorded after tuning to point A in Fig. 6.2.b. Sϵ =α2SI /|d I /dVS1| with α the
lever arm of sensor plunger gate S1 extracted from coulomb diamonds, |d I /dVS1| the maximum slope of the
coulomb peak and SI the PSD of the current through the sensor [54]. For the measurement the sensor plunger
voltage VS1 is tuned to the Coulomb peak flank, the voltage for which the sensing quantum dot is most sensitive
to potential fluctuations. The black line is a fit to Sϵ between 0.1 Hz and 5 Hz with Sfit

ϵ = A × f −κ. The noise
amplitude A at 1 Hz is given in the upper right. κ = 0.96 (b) and (c) Same as (a) but recorded after reaching
target point C and E in Fig. 6.2.b, respectively. κ= 1.38 for C and κ= 1.07 for E.

spectively. Note that target points A and C are reached by applying positively signed
stress voltages and target point E is reached by applying negatively signed stress volt-
ages. The charge noise curves follow the typical 1/ f frequency dependence. Therefore
we fit them between 0.1 Hz and 5 Hz with Sfit

ϵ = A × f −κ (black line). We find noise am-
plitudes of

p
A = 0.71 µeV/Hz1/2,

p
A = 0.60 µeV/Hz1/2 and

p
A = 0.78 µeV/Hz1/2 as well

as exponents κ = 0.96. κ = 1.38 and κ = 1.07 for target point A, C and E, respectively.
These values are comparable to charge noise amplitudes in Si/SiGe reported in the lit-
erature [54]–[56] and charge noise values measured in the same device during an earlier
cooldown [39]. However, further research is required as the charge noise sensed by the
sensor might not be representative of the charge noise affecting qubits that are tuned in
the quantum dots.
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6.9. STRESS VOLTAGE TUNING IN SHARED GATE ARCHITECTURES
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Figure 6.12: Proposal for local tunability in a shared gate architecture. A grid of gate electrodes intended
to form a two-dimensional quantum dot array is shown in gray. Plunger gates are depicted in dark gray and
barrier gates in light gray. Wires above the gates schematically indicate the routing of applied gate voltages.
Plunger electrodes share voltages column-wise and barrier gates share voltages diagonally forming a crossbar
architecture. Stress voltages Vstress are applied to a set of column wires and diagonal wires as indicated. The
resulting electrical potentialφ is illustrated below the gate electrodes. Shifting the background potential via the
application of stress voltages requires that the electrical potential crosses a threshold value φshift as illustrated
by a schematic hysteresis curve in the bottom right (also see Fig. 6.4). Vstress is chosen such that below each
stressed gate individually φ does not exceed φshift. Thus, no hysteretic shift of the background potential is
induced. However, where multiple stressed gate electrodes are in close vicinity to each other (near the crossing
points of the wiring), the combined electric potential exceedsφshift and thus is strong enough to induce a shift
in the background potential. This could enable local tunability of the electric potential, in the depicted case
below the central plunger gate. A sequential application of the method to multiple combinations of gate groups
may enable individual tunability of all quantum dots and tunnel barriers in a shared gate architecture.
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P1 P2 P3 P4
Q1 1 0.82 0.26 0.35
Q2 0.18 1 0.09 0.09
Q3 0.53 2.06 1 0.55
Q4 - - - 1

Table 6.1: Cross coupling matrix. The table shows the relative lever arms of the plunger gates P1-P4 to the
quantum dots Q1-Q4. The displayed values are obtained by extracting transition line slopes in the charge

stability diagrams of Fig. 6.13. The influence of plunger gate Pi on quantum dot Q j is given by the slope
∆VP j

∆VPi
of the Q j transition line. Slopes are extracted for the first addition line at the lowest feasible charge occupation.
The matrix diagonal is set to 1. Values for Q4 could not be obtained reliably as the Q4 transition is dragged due
to charge latching.

6.10. IDENTIFICATION OF THE FOUR QUANTUM DOTS

In order to identify the quantum dots visible in Fig. 6.7 we measure multiple charge sta-
bility diagrams by sweeping all pairwise combinations of the device plunger gate volt-
ages. The obtained charge stability diagrams are plotted in Fig. 6.13. The center left and
bottom center panel are identical with the charge stability diagrams shown in Fig. 6.7.
All maps are obtained at the same gate voltage configuration and at their center point all
plunger gates are set to 1 V.

The charge stability diagrams can be analyzed starting from one charge transition
line, e.g. the first vertical charge transition line in the center left panel (indicated by a
yellow dashed line). Due to its strong coupling to plunger gate P1 we identify it as a
charge transition line of quantum dot Q1. We mark the crossing point of this Q1 charge
transition line with the VP1 = 1 V line (vertical white line) by a yellow circle. Then we
place another yellow circle marker at identical VP3 on the VP2 = 1 V line in the center
panel of the figure. The vertical white lines inside one row of figure panels are identi-
cal line cuts in the gate voltage space. Therefore both marked points identify the same
charge transition line of the same quantum dot (Q1). Analogously two charge stability
diagrams in one column of figure panels can be compared. By repeating the process for
all neighbouring charge stability diagrams one can identify the charge transition lines
of four quantum dots Q1-Q4. Note that the charge transition lines of quantum dot Q4
(purple) latch when the sweep direction (black arrow in the upper right of each panel) is
nearly perpendicular to the charge transition lines. Therefore the crossing point of the
first Q4 charge transition line with the VP1 = 1 V line in the bottom left panel and the
crossing point with the VP3 = 1 V line in the bottom right panel differ from the crossing
point with the VP2 = 1 V line in the bottom center panel. Furthermore, in the left column
another nearly vertical charge transition line is visible in the background. However, it
shows negligible coupling to the other charge transition lines and likely is a signature of
a spurious defect quantum dot outside but close to the active device region.

Additionally, table 6.1 shows the relative lever arms as extracted from the charge sta-
bility diagrams in Fig. 6.13.
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Figure 6.13: Charge stability diagrams identifying the quantum dots Q1-Q4. Charge stability diagrams
recorded for all plunger gate combinations. The arrow in the upper left corner indicates the sweep direc-
tion. The center point (crossing point of the white lines) for each charge stability diagram corresponds to the
same voltage configuration with VP1 = VP2 = VP3 = VP4 = 1 V. Horizontal white lines mark identical line cuts
in the gate voltage space inside each column of charge stability diagrams. Vertical white lines mark identical
line cuts in the gate voltage space inside each row of charge stability diagrams. Colored dashed lines indicate
charge transitions and colored circles mark crossing points of the charge transitions with the white lines. Each
color refers to a quantum dot as indicated by the legend in the upper right. To enhance the visibility of the
charge transition lines the derivative of the sensor current was taken and a local contrast normalization (LCN)
was applied.
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6.11. RAW DATA UNDERLYING FIG. 6.1-6.6

Fig. 6.14, 6.15, 6.16, and 6.17 display the unprocessed charge stability diagram data un-
derlying Fig. 6.1.b, 6.3, 6.5.b, and 6.6.a-e, respectively.
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Figure 6.14: Raw data underlying Fig. 6.1.b.

0.8 1.0 1.2
VP4 (V)

C

0.8 1.0 1.2
VP4 (V)

D

0.8 1.0 1.2
VP4 (V)

E

0.8 1.0 1.2
VP4 (V)

0.8

1.0

1.2

V P
3 (

V)

A

0.8 1.0 1.2
VP4 (V)

B

I (a.u.)

0.8

1.0

1.2

V P
3 (

V)

Figure 6.15: Raw data underlying Fig. 6.3.
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Figure 6.16: Raw data underlying Fig. 6.5.b. (a) Charge stability diagram taken at the beginning of the time
trace shown in Fig. 6.5.a. (b) Charge stability diagram taken at the end of the time trace shown in Fig. 6.5.a.
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Figure 6.17: Raw data underlying Fig. 6.6. (a)-(e) correspond to Fig. 6.6.a-e, respectively.

6.12. RAW DATA UNDERLYING FIG. 6.7
Fig. 6.18 and Fig. 6.19 show the unprocessed charge stability diagram data underlying
Fig. 6.7.a and b, respectively. Each map is recorded at a different sensor gate S1 voltage to
account for the cross-capacitance effect of the plunger gates on the sensing dot potential
which limits the sensing dot sensitivity to small plunger gate voltage ranges.

We combine the charge stability diagrams by summing up the sensor current signals



6.12. RAW DATA UNDERLYING FIG. 6.7

6

175

as exemplary shown in Fig. 6.20.a for the data shown in Fig. 6.19. Afterwards, the signal
gradient ∇I is calculated as depicted in Fig. 6.20.b. Finally, a local contrast normalization
(see methods section) is applied to allow for an eased identification of charge transition
lines across the full map. Fig. 6.20.c depicts the resulting charge stability diagram which
is identical to the charge stability diagram shown in Fig. 6.7.b.
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Figure 6.18: Charge stability diagrams underlying Fig. 6.7.a. (a)-(f ) Multiple charge stability diagrams show-
ing charge transition lines of quantum dot Q1 and Q3. Maps are taken at various sensor gate S1 voltages as
indicated above the plots.
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Figure 6.19: Charge stability diagrams underlying Fig. 6.7.b. (a)-(h) Multiple charge stability diagrams show-
ing charge transition lines of quantum dot Q1-4. Maps are taken at various sensor gate S1 voltages as indicated
above the plots.
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Figure 6.20: Processing of the data underlying Fig. 6.7.b. (a) Sum of the sensor response I of the charge
stability diagrams shown in Fig. 6.19. (b) Gradient ∇I of the data shown in (a). (c) Final signal LCN(∇I ) after
applying a local contrast normalization to the map shown in (b).
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6.13. OVERVIEW OF APPLIED GATE VOLTAGE CONFIGURATIONS
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Figure 6.21: Gate voltage evolution during the presented experiments. Each panel shows the gate voltage
evolution of a single gate during the experiments presented in Fig. 6.1-6.7 as given on the x-axis. Note that
VS2C = 0 V during all experiments. The inset shows an SEM image of a device nominally identical to the one
under study. Confinement gates are outlined by a white dashed line. Labels indicate the gate electrode naming
convention utilized throughout the chapter and in the panels of this figure.
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Over the last four years – the time frame of this thesis work – significant progress has
been made in the field of semiconductor spin qubits. For example, industrially fabri-
cated spin qubits became reality [1], [2], a universal gate set for exchange-only qubits was
established [3] and the operability of spin qubits at elevated temperatures was demon-
strated [4]–[6]. Regarding qubit count, a six-qubit quantum processor was presented [7]
and germanium quantum well devices advanced from hosting a single qubit [8] to a four-
qubit quantum processor [9]. Furthermore, a two-qubit gate between two distant spin
qubits mediated by microwave photons was demonstrated [10] and two-qubit gates were
brought to the error threshold for fault-tolerant quantum computing [11]–[13].

In this thesis, chapters 3, 4, 5, and 6 presented contributions to the development of
two-dimensional quantum dot arrays for spin qubits and introduced a new method to
engineer the uniformity of the required voltages in these arrays:

TWO-DIMENSIONAL QUANTUM DOT ARRAYS

The realization of two-dimensional spin qubit arrays can significantly increase qubit
connectivity and qubit density compared to linear arrays. In GaAs/AlGaAs, which is of-
ten seen as a testbed for other material systems, arrays of up to 3×3 quantum dots had
already been explored [14]–[16] and arrays for singlet-triplet qubits or with shared con-
trol electrodes are being engineered [17], [18]. In silicon systems, two-dimensional ar-
rays are reported on in fin field effect transistor (finFET) devices which naturally allow for
2×N quantum dot arrays [19]–[21]. Here, the 2×2 array in Si/SiGe presented in chapter 3
presents the first realization of a two-dimensional quantum dot array in a planar silicon
quantum well. Also, it is the first two-dimensional system in silicon to provide barrier
voltage control over the interdot tunnel couplings. In Ge/SiGe a 2×2 quantum dot array
was characterized by van Riggelen et al. [22] and advanced into a spin qubit processor
by Hendrickx et al. [9]. This number of quantum dots was quadrupled with the 4× 4
quantum dot array presented in chapter 4 which in contrast to conventional devices re-
lied on shared gate electrodes for plunger and barrier gates. Additionally, a scheme to
individually control the interdot tunnel couplings in such an array was introduced and
demonstrated by example. For both, the Si/SiGe 2×2 (chapter 3) and Ge/SiGe 4×4 (chap-
ter 4) quantum dot array, considerable control over the charge occupancy was shown by
simultaneously reaching single charge occupation with either one or three charges per
quantum dot.

GATE VOLTAGE UNIFORMITY

Increasing the electrical uniformity is a target of material development for semiconduc-
tor spin qubits and significant progress has been made during the last few years. Bury-
ing the quantum well in a semiconductor as in Si/SiGe and Ge/SiGe [23], improving the
semiconductor-oxide interface [24], adjusting the buffer layer and quantum well prop-
erties [25]–[28], and Ge/SiGe heterostructures grown on germanium wafers [29] all con-
tributed to higher mobilities and thus better electrical uniformity. A method that can be
applied after growth and fabrication and that is fully based on gate voltage sequences
was presented in chapter 5 and applied to quantum dots in chapter 6. It allowed to reach
single electron occupation in a 2×2 quantum dot array at all equal plunger gate voltages.
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Figure 7.1: Updated gate electrode design for a two-by-two quantum dot array. Zoom in on the active area
designed to form quantum dots. The design is mostly identical to the layout of the devices presented in chap-
ter 3, chapter 5 section 5.10, and chapter 6. Single electron transistors (SETs) are placed on the left and right
sides. Screening (S), plunger (P), and barrier (B, B’) gates are designed to provide electron confinement and
control over the quantum dot chemical potential and interdot tunnel coupling. A new gate (C) is placed in an
additional gate layer on the top to keep the electron wavefunctions away from the device center. For the upper
half only its outline is shown. The inset in the lower right corner illustrates the order of the gate layers.

The following sections present ideas for the near and more distant future on how
two-dimensional arrays and their uniformity could be further advanced.

7.1. BETTER AND LARGER TWO-DIMENSIONAL QUANTUM DOT

ARRAYS

In chapter 3 a two-by-two quantum dot array in a Si/SiGe heterostructure was presented.
Its barrier gate electrodes allowed to individually increase the tunnel coupling of quan-
tum dot pairs, promising the implementation of exchange-based two-qubit gates at the
charge noise sensitivity sweet spot [30]–[32]. The lowest tunnel coupling that was achieved

tmin = 30µeV is estimated to translate to a residual exchange coupling of Jmin ≈ (2tmin)2

EC
≈

135 MHz with EC ≈ 6 meV the corresponding charging energy [33]. A lower residual
exchange coupling would benefit the implementation of fast diabatic controlled phase
gates [4] which already allowed to reach high fidelity two-qubit gates in Si/SiGe [11], [12].

In the near future, the gate electrode design of this 2×2 qauntum dot device could be
updated to reduce the residual tunnel coupling. Speculatively, the electron wavefunc-
tions are pushed toward the device center region which reduces the effectivity of the in-
terdot barrier gates (B). Fig. 7.1 illustrates how a center gate (C) could be added to keep
the electron wave functions below the corresponding plunger gates (P). Furthermore, in
Fig. 7.1 the screening gates (S) are retracted providing an enlarged effective surface area
for the plunger gates and reduced compression of the quantum dot array.

Next, a N ×N = 3×3 array could be developed. It is the smallest square array with a
quantum dot that has four nearest neighbors (the center dot). The array still could come
with individual plunger and barrier gate control employing a design based on 3-5 gate
layers. This would provide full flexibility in probing its properties before transitioning
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to more scalable architectures that compromise on individual control. Si/SiGe devices
with N > 31 could be based on shared gate control, for instance, a crossbar arrangement
as proposed in ref [34] or presented for a germanium quantum well in chapter 4. Note
that proposals of architectures based on sparse arrays and spin shuttling present an al-
ternative (and complementary) path to the scaling of dense arrays [35]–[38].

In all material platforms, with growing array size the voltage tune-up by a human ex-
pert gets increasingly time-consuming. Chapter 4 outlined how the capacitive coupling
of a quantum dot to its surrounding gate electrodes can help identify the corresponding
quantum dot by monitoring charge transitions under small gate voltage changes. Also,
a method based on image correlation was presented which eased the tracking of quan-
tum dot hole occupation numbers. These methods were applied after manually tuning
to a desired charge configuration. In the near future, they could be adapted and used al-
ready during the tuning process to support the human expert. They can also inspire the
development of automatic tuning strategies for shared gate arrays. Generally, the field of
automatic tuning methods for quantum dot arrays is growing rapidly [39]–[45] and has
the potential to speed up spin qubit research. Also, with steadily improving device uni-
formity, the tuning should become easier, and simplified algorithms might be sufficient
for initializing specific charge states and tunnel couplings.

In addition to increasing the array size N and co-developing tuning algorithms, tech-
niques to perform in-array readout should be focused on. This is to maintain charge
sensing in growing two-dimensional arrays as required for confirming the formation of
quantum dots and characterizing them but also benefits spin readout down the road. In
Ge/SiGe metallic gate electrodes can be diffused into the SiGe barrier to form an ohmic
contact with the quantum well [46]. The footprint of such ohmic contacts is determined
by the shape of the corresponding gate electrode and thus it might be possible to reduce
it to the size of a single quantum dot. This then could allow for in-array placed charge
sensors that do not consume more area than three regular quantum dots. Alternatively,
gate-dispersive readout could be employed [47]. When a quantum dot is tuned close
to a charge transition its quantum capacitance changes. This can be detected by con-
necting a close-by gate electrode to a tank circuit and probing the tank circuit resonance
frequency by reflectometry eliminating the need for charge-sensing quantum dots.

7.2. THE ROLE OF UNIFORMITY
Fig. 2.4 in chapter 2 showed the distribution of required plunger gate voltages for singly
occupied quantum dots across material platforms and highlighted the need for further
material advancement. For instance, while the demonstration of a 4×4 quantum dot ar-
ray in chapter 4 proofed that significant progress has been made in heterostructure de-
velopment, the spread of the first hole addition voltages in Ge/SiGe needs to be reduced
further to continue scaling the array size. Also, an increased chance of encountering spu-
rious or malfunctioning quantum dots when enlarging the quantum dot count presents
a challenge for tuning and operability. In chapter 5 and 6 a new method to improve
electrical uniformity in quantum dot devices was presented. Applying this method to a
shared gate array and aiming for a single hole per quantum dot would put the method

1These could also come with quantum dot arrangements different from a square lattice.
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to the test and probe its potential for realizing large quantum dot arrays in disordered
heterostructures.

Furthermore, there is room for advancing the stress-tuning method itself. The ramp
times and stress times have not yet been optimized and the stress voltage is increased
step-wise in constant steps∆Vstress ≈ 10−50 mV and without incorporating prior knowl-
edge to find the optimal stress voltage. Therefore a significant portion of the total al-
gorithm runtime is spent on sweeping voltages without having any measurable effect.
Modeling the underlying physical process [48] could speed up the tuning by predicting
the best next stress voltage. To fully automate the stress tuning also a reliable method
to detect the last hole or electron state is required. It needs to be robust against varying
tunnel couplings and a fluctuating contrast of charge transition features. For instance,
such a method could build upon the image correlation technique presented in chapter 4
and perform cross-checks with single charge occupation voltages predicted by a physical
model. Other detection schemes [40] or convolutional neural networks [39], [45] could
be employed as well.

Note that Wolfe et al. [49] recently showed how threshold voltages of heterostructure
field effect transistors can be manipulated via optical illumination with photon energies
larger than the host semiconductor band gap. Over a range of at least 1 V, the resulting
threshold voltage linearly depends on the gate voltage applied during the illumination.
This positions the method as a promising alternative to increase gate voltage uniformity.
Therefore, it would be insightful to apply it in a quantum dot array to probe its effect on
required gate voltages.

Finally, a clear next step lies in testing the performance of spin qubits in a stress-
tuned quantum dot array. Only spin qubits situated in a quiet noise environment and
stable potential landscape allow for the implementation of high-fidelity operations. It
has to be tested if the device stability is preserved under stress-tuning and if qubit per-
formance metrics such as the coherence times and gate fidelities remain unaffected.

7.3. SPIN QUBITS IN TWO-DIMENSIONAL QUANTUM DOT AR-
RAYS

The development of two-dimensional quantum dot arrays is a precursor for demonstrat-
ing two-dimensional spin qubit arrays. A 2× 2 spin qubit processor has already been
shown in Ge/SiGe [9]. Also, the Si/SiGe 2×2 device structure studied in chapter 3 is de-
signed for hosting spin qubits. It includes a cobalt micromagnet on top of the gate stack
and the fanout of the screening gates comes in the form of co-planar waveguides [50]
to optimize the transmission of microwave signals for electric dipole spin resonance
(EDSR). Currently, spin control is put to test by Unseld et al. [51]2 by operating the device
with a single electron in each quantum dot and utilizing Pauli spin blockade parity read-
out and post-selection for initialization and read out [7]. Chevron patterns are obtained
for all four electrons when a near-resonance EDSR pulse is applied as exemplary shown
for quantum dot Q1 in Fig. 7.2.a. The Lamor frequencies of the four electron spins are
distributed across a range of ∆ fL ≈ 309 MHz and coherence T ∗

2 and Hahn echo coher-

2These experiments are performed in a different device than presented in chapter 3, chapter 5 section 5.10, or
chapter 6 which however comes with the same gate electrode design to define the quantum dots.
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Figure 7.2: Spin manipulation in the 2×2 array. a) EDSR-driven Rabi oscillations of the spin in quantum
dot Q1. A typical Chevron pattern is obtained as a function of pulse duration tMW and the drive frequency
detuning ∆ f = fL − fMW where fL is the qubit Lamor frequency and fMW is the applied microwave signal
frequency. The microwave pulse is applied to the lower screening gate labeled S23 in chapter 3. Initializa-
tion and readout are based on PSB parity readout and post-selection [7] on readout pair (Q4, Q1). b) De-
coupled CZ gate [11] applied to Q1 and Q2 and as a function of interaction time tCZ and coupling strength
C(Q1,Q2) = (vB12−vB12min)/(vB12max −vB12min) with vB12min and vB12max barrier voltages corresponding
to an exchange interaction of fJ ≲ 20 kHz and fJ ≳ 1 MHz, respectively. The spins in Q1 and Q2 are initialized
followed by a π/2 rotation around the x-axis of Q1 (noted as X1(π/2)). Then two adiabatic controlled phase
gates of duration tCZ interleaved by refocusing X1(π) and X2(π) pulses are applied. Finally, a X1(π/2) and a
X2(π) pulse are followed by PSB readout on quantum dot pair (Q4, Q1). c) Table summarizing all four Lamor
frequencies fL, coherence times T∗

2 and Hahn echo times T H
2 as well as providing the applied B-field Bext,

the maximum applied B-field to magnetize the micromagnet Bmax and the quantum dot pairs used for PSB
readout. The quantum dots and gate electrodes are named as in chapter 3. For instance, quantum dot Q1 is
located at the upper right of the array. The device is tuned to the (1,1,1,1) charge state with one electron per
quantum dot.

ence T H
2 times lie between 2.0 and 3.7 µs and between 16.2 and 40.5 µs, respectively (see

Fig. 7.2.c). The device allows for barrier control over all3 two-qubit exchange interac-
tions at the charge noise detuning sweetspot [30]–[32] as is demonstrated in Fig. 7.2.b
by the example of a decoupled CZ gate [11] applied on quantum dots Q1 and Q2. In
summary, these findings showcase the suitability of the 2×2 quantum dot array intro-
duced in chapter 3 for the realization of a 2×2 spin qubit processor with individual qubit
addressability.

To scale the size of two-dimensional spin qubit arrays in Si/SiGe beyond a few qubits,
advanced magnet designs could be developed. Micrometer-scale magnets (micromag-
nets) can be optimized to reduce decoherence-inducing field gradients while providing
sufficient addressability in one-dimensional arrays [7] or for small two-dimensional ar-
rays [52]. While this approach cannot be scaled in two dimensions, a tailored pattern
of nanometer-scale magnets (nanomagnets) could provide alternating qubit frequen-
cies at reduced decoherence inducing field gradients [53]. For this approach, the length
scale over which the qubit frequencies repeat should be chosen such that the effect of
microwave crosstalk [54] is negligible.

It also might be worth exploring different mechanisms to drive single qubit rota-
tions. Recently in a Ge/SiGe quantum processor, single qubit gates were demonstrated
that rely on timed diabatic qubit transfers between two quantum dots with non-aligned

3(Q1, Q2), (Q2, Q3), (Q3, Q4), and (Q4, Q1)
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quantization axes [38]. This approach comes with the advantage that all operations can
be implemented at low frequencies (< 300 MHz) reducing requirements on control elec-
tronics and signal routing. Also, addressability in Lamor frequencies is not required any-
more as long as the qubits come with alternating quantization axes.

It might be interesting to implement shuttling-based single qubit gates in Si/SiGe
as well. As they do not require that individual qubits have different Lamor frequen-
cies, they might alleviate requirements on magnet design. A two-dimensional array of
horseshoe nanomagnets as already demonstrated in ref [53] could be placed on top of a
two-dimensional quantum dot array. The quantum dots then would be positioned be-
low the magnet geometric center and the magnet legs. At these locations, an increased
field homogeneity is expected which reduces decoherence induced by charge noise. At
the same time, the magnetic field direction would rotate by 90◦C from quantum dot to
quantum dot4 providing 90◦C angles between spin quantization and enabling shuttling-
based single qubit gates. Alternatively, currents could be sent through superconducting
gate electrodes to induce magnetic field gradients [34]. These gates would be arranged
periodically, too, to obtain 90◦C rotations in magnetic field direction from quantum dot
to quantum dot.

To further scale the size of Ge/SiGe spin qubit arrays, it might be worth investigating
how the spin-orbit interaction in quantum dots can be engineered, for instance through
the shape of the the corresponding gate electrodes [55], [56] or through stress engineer-
ing [57]. Here the aim could be to reduce decoherence [58] while allowing for individual
Lamor frequencies for EDSR control or while allowing for nonzero angles between the
qubit quantization axes for shuttling-based single qubit gates [38].

4in one direction of the array
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The field of spin qubit quantum computing has made remarkable progress over the
last years and there are no signs of stagnation. Other platforms, for instance relying on
superconducting circuits [59] or ion traps [60] are progressing rapidly as well. While the
road ahead of us is long, we are steadily getting closer to realizing a universal quantum
computer. Certainly, some hard challenges remain but surely when Charles Babbage was
working on the analytical machine in the 19th century [61] it was beyond his imagination
that about 180 years later a chip significantly smaller than a single paper punch card5

would fit a computer with gigabytes of flash memory.

5Charles Babbage considered paper cards with a pattern of holes to encode program operations for his analyti-
cal machines [62]. Punch cards were used extensively during the early development stages of computers [63].
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SUMMARY

The spin of a single electron or hole provides an attractive candidate for implementing a
quantum bit when confined in a semiconductor quantum dot. Such a spin qubit is char-
acterized by long coherence and short gate times. High-fidelity single and two-qubit
operations have been demonstrated as well. Additionally, semiconductor quantum dots
have a small footprint (≈ 100 nm × 100 nm) and their fabrication employs techniques
similar to processes commonly used in modern semiconductor technology foundries.
This promises the realization of dense qubit arrays, leverage through industrial fabrica-
tion, and direct co-integration with classical control circuits.

Thus far, one-dimensional quantum dot arrays have been studied extensively. Yet,
only by realizing two-dimensional quantum dot arrays the small footprint of quantum
dots is fully exploited. Also, due to their small size quantum dots are extremely sensitive
to their local environment and fabrication imperfections. In current devices, an individ-
ually tailored set of gate electrode voltages is required for each quantum dot to confine a
single charge. The limited space available for routing these voltages on the device, cou-
pled with the associated overhead in required voltage sources, presents a challenge in
scaling quantum dot arrays, especially two-dimensional arrays.

This thesis focuses on two-dimensional quantum dot arrays and gate voltage unifor-
mity. The first part (chapter 3 and 4) reports the realization of two-dimensional quantum
dot arrays in a silicon/silicon-germanium (Si/SiGe) and a germanium/silicon-germani-
um (Ge/SiGe) heterostructure. Afterward (chapter 5 and 6), a novel all-electric method
is presented to achieve increased homogeneity of the required gate voltages.

In chapter 3 a 2×2 quantum dot array in a Si/SiGe heterostructure is presented. It is
tuned to be occupied by a single electron per quantum dot reaching the (1,1,1,1) charge
state. Dedicated barrier gate electrodes on the device allow for controlling the interdot
tunnel couplings between neighboring quantum dots from about 30 µeV up to approxi-
mately 400 µeV as characterized through polarization line measurements.

In chapter 4 the focus is shifted towards a more scalable gate architecture for two-
dimensional quantum dot arrays. It is inspired by random access architectures that are
found in classical electronics. Specifically, a 4×4 quantum dot array in a Ge/SiGe het-
erostructure with shared gate electrode voltages is introduced. In this device, an odd
charge occupancy is reached with either one or three holes in all 16 quantum dots simul-
taneously. Also, two shared barrier gate electrodes are placed between adjacent quan-
tum dots. These enable selective control of the interdot tunnel coupling from less than
3 GHz to more than 10 GHz.

Spatial fluctuations in the electric background potential still limit the scalability of
such a shared control array. Therefore, chapter 5 introduces a new method to increase
the electrical uniformity in quantum dot devices. The presented method is based on
applying stress voltages to the device gate electrodes. It enables the tuning of pinch-off
voltages in quantum dot devices over hundreds of millivolts. Afterward, the new pinch-
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off voltages remain stable for hours at least. The method is used to homogenize the
pinch-off voltages of the plunger gates in a linear array designed for four quantum dots.
It reduces their spread by one order of magnitude from 153 mV to 20 mV.

Motivated by this demonstration, in the experiment presented in chapter 6 the stress
voltage tuning method is applied to control the plunger gate voltages required to reach
single electron occupation in a quantum dot array. In a double quantum dot, a stable
(1,1) charge state is reached at identical and predetermined plunger gate voltage and for
various interdot couplings. Finally, by applying stress voltages a 2×2 quantum dot array
is tuned such that the (1,1,1,1) charge state is reached when all plunger gates are set to
1 V.



SAMENVATTING

De spin van een enkel elektron of gat biedt een aantrekkelijke kandidaat voor de imple-
mentatie van een quantum bit wanneer deze wordt beperkt in een halfgeleider quantum
dot. Zo’n spin qubit wordt gekenmerkt door lange coherentie- en korte rekenoperatie-
tijden. Hoogwaardige enkele en twee-qubit rekenoperaties zijn ook gedemonstreerd.
Bovendien hebben halfgeleider quantum dots een kleine voetafdruk (≈ 100 nm × 100
nm) en hun fabricage maakt gebruik van technieken die vergelijkbaar zijn met proces-
sen die veel worden gebruikt in moderne halfgeleider-technologiefabrieken. Dit belooft
de realisatie van dichte qubit arrays, industriële fabricage en directe co-integratie met
klassieke besturingscircuits.

Tot nu toe zijn één-dimensionale quantum dot arrays uitgebreid bestudeerd. Maar
pas door het realiseren van tweedimensionale quantum dot arrays wordt volledig ge-
bruik gemaakt van de kleine voetafdruk van quantum dots. Bovendien zijn quantum
dots vanwege hun kleine formaat uiterst gevoelig voor hun lokale omgeving en fabricage-
imperfecties. In huidige quantum chips is een individueel afgestemde set elektrode-
spanningen vereist voor elke quantum dot om een enkele lading te houden. De beperkte
ruimte die beschikbaar is voor het routeren van deze spanningen op de chip, samen met
de bijbehorende overhead aan benodigde spanningsbronnen, vormt een uitdaging bij
het schalen van quantum dot arrays, vooral tweedimensionale arrays.

Dit proefschrift richt zich op tweedimensionale quantum dot arrays en uniformiteit
van spanningen op de elektroden. Het eerste deel (hoofdstuk 3 en 4) rapporteert de re-
alisatie van tweedimensionale quantum dot arrays in een silicium/silicium-germanium
(Si/SiGe) en een germanium/silicium-germanium (Ge/SiGe) heterostructuur. Vervol-
gens (hoofdstuk 5 en 6), wordt een nieuw volledig elektrische methode gepresenteerd
om een verhoogde homogeniteit van de vereiste spanningen te bereiken.

In hoofdstuk 3 wordt een 2×2 quantum dot array in een Si/SiGe-heterostructuur ge-
presenteerd. Het is afgestemd om bezet te worden door een enkel elektron per quantum
dot, waarbij de (1,1,1,1) ladingstoestand wordt bereikt. Speciale barrière-elektroden op
de chip maken de controle mogelijk van de interdot-tunnelkoppelingen tussen aangren-
zende quantum dots van ongeveer 30 µeV tot ongeveer 400 µeV, zoals gekarakteriseerd
door polarisatielijnmetingen.

In hoofdstuk 4 wordt de focus verlegd naar een meer schaalbare chiparchitectuur
voor tweedimensionale quantum dot arrays. Deze is geïnspireerd door random-access-
architecturen die worden gevonden in klassieke elektronica. Concreet wordt hier een
4× 4 quantum dot array in een Ge/SiGe-heterostructuur met gedeelde elektrodespan-
ningen geïntroduceerd. In dit apparaat wordt een oneven ladingstoestand bereikt met
één of drie gaten in alle 16 quantum dots tegelijk. Ook worden twee gedeelde barrière-
elektroden geplaatst tussen aangrenzende quantum dots. Deze maken selectieve con-
trole van de interdot-tunnelkoppeling mogelijk van minder dan 3 GHz tot meer dan
10 GHz.
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Ruimtelijke fluctuaties in het elektrische achtergrondpotentieel beperken nog steeds
de schaalbaarheid van zo’n gedeelde controle-array. Daarom introduceert hoofdstuk 5
een nieuwe methode om de elektrische uniformiteit in quantum dot chips te verbeteren.
De gepresenteerde methode is gebaseerd op het aanleggen van stress-spanningen op de
elektroden van de chip. Dit maakt het afstemmen van pinch-off-spanningen in quantum
dot chips mogelijk over honderden millivolts. Vervolgens blijven de nieuwe pinch-off-
spanningen minstens enkele uren stabiel. De methode wordt gebruikt om de pinch-off-
spanningen van de plunger-gates in een lineaire array ontworpen voor vier quantum
dots te homogeniseren. Het vermindert hun spreiding met een orde van grootte van
153 mV tot 20 mV.

Gemotiveerd door deze demonstratie, wordt in het volgende hoofdstuk (hoofdstuk 6)
de methode toegepast om de plunger-gate-spanningen te regelen die nodig zijn om
enkel-elektron-occupatie te bereiken in een quantum dot array. In een dubbele quan-
tum dot wordt een stabiele (1,1) ladingstoestand bereikt bij identieke en vooraf bepaalde
plunger-gate-spanning en voor verschillende interdot-koppelingen. Ten slotte wordt
door het toepassen van stressspanningen een 2×2 quantum dot array afgestemd, zodat
de (1,1,1,1) ladingstoestand wordt bereikt wanneer 1 V wordt aangelegd aan alle plunger-
gates.
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The data and analysis scripts underlying chapters 2, 3, 4, 5, 6 are stored in public reposi-
tories. Table 7.1 provides an overview of all repositories.

Chapter Repository
doi.org/10.5281/zenodo.10688909

2 and
doi.org/10.4121/a4e3765b-9e32-492b-96fe-a9b760baef48.v2

3 doi.org/10.5281/zenodo.8226044
4 doi.org/10.5281/zenodo.8083119
5 doi.org/10.5281/zenodo.7746206
6 doi.org/10.5281/zenodo.10254611

Table 7.1: Overview of the data repositories containing the data and analysis scripts underlying this thesis.
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