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Summary 
 
Wave fields in the close vicinity of a coastal structure can be very complex, this is especially the 
case during extreme storm conditions and for complex geometries. There is a growing interest for 
numerical simulation tools capable of predicting in detail the complex hydrodynamic loads due to 
waves and currents and its effect at structures. In this context the model ComFLOW will be used 
in this thesis to study wave run-up on dikes. The code is a (3D) hydrodynamic flow model based 
on the incompressible Navier-Stokes equations. The evolution of the free water surface is 
described by the Volume-of-Fluid method (VOF). The model is capable of calculating velocities, 
pressures and water levels in a detailed level, while geometries are easily adjustable. 
 
The objective of this study is to analyze numerical simulation of wave run-up and other relevant 
wave-structure interaction processes on smooth and impermeable coastal structures with 
perpendicular  wave  attack  and  to  investigate  whether  the  Volume  of  Fluid  (VOF)  model  
ComFLOW is able to accurately represent these processes with 2DV simulations. A related aim is 
to determine whether the model is robust and which model settings are preferred.  
 
To  investigate  whether  the  numerical  model  different  mathematical  aspects  properly  solves  for  
relevant processes, simulation results are compared with analytical solutions. Its performance 
with  respect  to  accuracy  of  shoreline  movement,  velocities  along  geometries,  flooding  of  the  
domain at high speed and similarity to the analytical solution is investigated. Three analytical test 
cases are considered: the dam break test with a horizontal bed and with an upward sloping bed 
and test of Carrier and Greenspan of a standing wave on a sloping structure. The maximum run-
up  and  run-down  values  of  the  analytical  solution  are  well  reproduced  by  the  model.  General  
performance of the model for the analytical solutions is well. The study of the analytical solutions 
led to  the following observation:  numerical  diffusion can lead to  a  decrease of  run-up and run-
down heights. Numerical dissipation factors that are indicate as influential on the results:   
• The discretization of the geometry 
• The algorithm of flooding of dry cells  
• Artificial viscosity  
 
An  analysis  of  the  different  wave-structure  interaction  processes  is  performed,  by  studying  not  
only wave run-up, but also wave run-down, reflection and visual inspection of the type of wave 
breaking. Simulations are performed with regular waves, three different slopes are used (of 1:3, 
1:4  and  1:6).  In  combination  with  seven  different  wave  conditions,  this  gives  a  wide  range  of  
breaker parameters. The results are compared with data from experimental model tests of 
Schüttrumpf  and  Bruun  and  Günbak.  During  these  simulations  different  model  settings  are  
investigated,  including  grid  refinement,  different  methods  to  prescribe  incident  waves  and  
refinement of the discretization of the geometry. The number of integration points define in the 
discretization a dimension for the smoothness of the geometry, in this study a number of 4 and 8 
integration points is used. 

To test the performance of the model qualitatively, the numerical results are compared 
with video recordings of breaking wave on a slope of a physical experiment. This is intended to be 
illustrative to  give a  general  idea how well  the  breaking or  non-breaking of  waves for  different  
breaker parameters is represented. Visual inspection showed that the model represents the wave 
motion along the slope well.  
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The results  with respect  to  wave run-up are  convincing,  having very good resemblance 
with data of physical experiments. Especially for lower values of the breaker parameter ( <2), 
which are breaking waves, the run-up results do not show a significant deviation compared to the 
experimental results. Nevertheless, for wave with higher breaker parameters ( >2), the computed 
wave run-up values are in the lower regions of the experimental data. For these non-breaking 
waves, the (relative) numerical dissipation is too high during structure-wave interaction and hold 
responsible for the underestimation of relative wave run-up (Ru/H) of approximately 0.3 
compared to the experimental data of Schüttrumpf.   

The  numerical  dissipation  due  to  the  discretization  of  the  geometry  is  indicated  as  the  
main cause of the lower wave run-up heights as compared with experimental data. By means of 
the stair-case boundaries, numerical roughness is created at the slope. Artificial viscosity and the 
restriction in the flooding algorithm are other processes that are indicated as cause for numerical 
dissipation, but it is assumed that they have a small influence on the wave run-up.   

The results concerning wave run-down are less convincing than the run-up results. The 
relative wave run-down is overestimated (hence the lowest water level reached in the simulations 
is lower than in the experiments) compared to experimental data, especially in the region of <3. 
An  overestimation  for  relative  run  down  (Rd/H)  of  approximately  0.6  compared  to  the  data  of  
Schüttrumpf and 1 to Bruun and Günbak is observed. For values of >3 the run-down results and 
are  in  the  same  range  as  the  data  of  Schüttrumpf.  It  is  observed  that  the  numerical  model  
simulates the retreating of the wave too fast, but no clear explanation is found for this. The answer 
may lay in the different physical characteristics of wave run-up and run-down or the difference in 
handling of flooding and drying of cells by the numerical model.  

Both  run-up  and  run-down  results  show,  for  a  given  value  of  the  breaker  parameter,  
dependency  on  the  slope,  which  already  should  have  been  accounted  for  in  the  breaker  
parameter. Steeper slopes have a smaller vertical amplitude at the slope, resulting in lower run-up 
and run-down values. A clear explanation is not found for the observed dependency in this study, 
but two hypothesis are formulated: the number of grid cells the wave runs through at the slope or 
the difference in numerical roughness that is formed for different slopes due to discretization of 
the geometry.  

Reflection  is  analyzed  by  separating  the  incoming  and  reflected  waves  from  simulated  
wave signals. The calculated reflection coefficients show good resemblance with data from 
physical experiments, showing that the right amount of wave energy is reflected at the structure. 
Nevertheless,  the  same  trend  is  observed  for  the  non-breaking  waves  as  for  the  run-up  results.  
Results  for  waves  that  give  lower  run-up  values  also  show  lower  reflection,  as  this  energy  is  
dissipated at the slope.   

 
Concerning model settings the following settings are preferred:  
• When simulating smooth bodies  it  is  advised is  to  set  the number of  integration points  as  

high as possible to obtain the smoothest geometry.  
• The number of grid cells per wave length and wave height give guidance for the choice of 

the grid size in terms of relevant physical parameters. In horizontal direction 170-200 grid 
cells  per  wave  length  and  4-6  cells  per  wave  height  in  vertical  direction  are  concerned  
sufficient for these type of simulations.  

• The robust settings for the generating and absorbing boundary conditions (GABC) perform 
very well and handle the generation and absorption of wave satisfying.   

Overall it can be stated that the model is well able to accurately represent different wave-
interaction processes  including wave run-up and the model  proved to  be robust  for  this  type of  
simulations.  
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1  Introduction 

This  report  is  written  in  the  context  of  the  Master  of  Science  Thesis  at  Delft  University  of  
Technology, faculty Civil Engineering and Geosciences, section Hydraulic Engineering and 
Environmental Fluid mechanics. The research has been carried out in cooperation with Deltares 
and presents the results of numerical simulations with the ComFLOW model for wave run-up on 
a dike.  

1.1 Motive for research  
 
The Netherlands has a long tradition in protecting the low-lying country against the sea. Dikes 
and seawalls along the coast have been constructed to protect the hinterland from flooding. 
Waves  and  currents  can  induce  large  forces  and  loading  on  these  structures,  which  have  to  be  
designed to withstand these forces. Due to climate change, stronger storms are expected, leading 
to more severe wave loading in the future. Understanding changes in flood risk, due to increasing 
wave loading on seawalls, is a key requirement for the effective management of coastal defenses 
and essential as the risk of loss of life and economic damage is getting higher. Creating the need 
for a very detailed (and still increasing) level of knowledge on the prediction and predictability of 
hydrodynamic loading.  
 
Analyses of dike breaching events in The Netherlands and Germany show that most of them were 
initiated  by  the  failure  of  inner  slopes  of  dikes.  Overtopping  waves  cause  erosion  on  the  inner  
slope and crest, slip failure of the inner slope or a combination of both, this phenomenon is one of 
the most important causes of failure of sea dikes (Van Gent, 2002).  
Overtopping discharges occur because of waves running up the face of a seawall. If these wave 
run-up levels are high enough water will reach and pass over the crest of the wall. This causes a 
discontinuous sheet of water passing over the crest. Foregoing implicates that wave overtopping 
and run-up heights are interrelated and these are the main parameters in determining the crest 
height  of  a  dike.  Good  insight  in  these  phenomena  is  needed  for  the  design,  assessment  and  
management of coastal structures. In order to obtain better understanding, these complex 
phenomena are subjected to a growing interest for research. An example is the investigation of the 
Dutch government on existing statutory criteria for overtopping (RWS, 2007).  
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Figure 1.1: Flow domain of wave overtopping on a dike, subdivided in five sub-flow domains. This study focuses on sub-domain 

1,2 and 3. (Schüttrumpf, 2001: figure 2.8)  
  
Analyzing the flow domain of wave overtopping on a dike (see Figure 1.1) it can be subdivided 
this  into  five  sub-domains.  The  first  three  sub-domains  are  selected  for  this  research,  which  
includes  all  processes  at  seaward  slope  of  the  dike.  Wave  overtopping  is  dependent  on  the  
processes associated to wave breaking and wave run-up on the seaward slope of the dike. Run-up 
is the basic input parameters for calculation of number of overtopping wave over a dike, which is 
required to calculate overtopping volumes, velocities and flow depths. Therefore it is advisable to 
first  investigate  the  processes  in  the  first  three  sub-domains  before  going  into  the  last  two  sub-
domains.  

1.2 Problem definition  
 
Wave fields in the close vicinity of a coastal structure can be very complex, this is especially the 
case during extreme storm conditions and for complex geometries. In shallow areas the wave field 
is  subjected  to  significant  transformations,  for  example  due  to  wave  breaking,  shoaling  and  
refraction. These transformations lead to highly non-linear and complex wave dynamics. For the 
study of hydrodynamic processes such as wave run-up in this environment three different basic 
methods are available: analytical, experimental and numerical.  
Analytical models have proven to be inadequate and inaccurate for these predictions. For a long 
time experimental methods were the only way most topics in the coastal engineering field could 
be studied. Experimental methods comprise usually physical model tests in which a scale model is 
tested in a flume or basin with correctly scaled wave conditions. However, model testing is known 
to have some disadvantages, such as scale and model effects, limited reproducibility and high 
costs.  
 
There  is  a  growing  interest  for  numerical  simulation  tools  capable  of  predicting  in  detail  the  
hydrodynamic  loads  due  to  waves  and  currents  and  its  effect  at  structures,  see  for  example  
Veldman and Huijsmans (2008) and references therein. A numerical model can quickly be adapted 
to small changes in geometry or conditions, scaling effects can be avoided, and detailed insight in 
the hydrodynamic processes can be obtained. Not until recently, numerical models could not 
predict  the complex and non-linear  wave situations that  occur  in  heavy seas  and shallow areas.  
Research among others by (Kleefsman, 2005, Kleefsman et al., 2002) has shown that new 
hydrodynamic models  based on the Navier-Stokes  equations,  in  combination with a  Volume Of 
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Fluid (VOF) based method for the description of the free-surface dynamics, are able to predict 
such effects. The (3D) VOF-based ComFLOW code developed at the University of Groningen 
(RUG) has shown potential for the modeling of detailed wave simulations. An ongoing research 
program has the objective to improve, develop and validate the model for complex free-surface 
flow at off-shore and coastal structures (Veldman and Huijsmans, 2008). In this context the 
program ComFLOW will be used in this thesis to study wave run-up on dikes and could be 
extended to wave overtopping.  

1.3 Objective and methodology 
 
The objective of this research is twofold. In the first place it will contribute to the application of 
ComFLOW to coastal engineering problems and to gain better insight in the capabilities and 
limitations of the model in this matter. In second place if the model is capable of accurate 
simulations of wave run-up, it could be used in future research and potentially assist and/or 
contribute  to  the  design  and  assessment  of  sea  dikes.  The  model  is  capable  of  calculating  
velocities, pressures and water levels in a detailed level and geometries are easy adjustable. 
Therefore,  it  can  be  used  as  a  numerical  flume.  The  objective  of  the  research  presented  in  this  
thesis can be phrased as:  
  
To thoroughly analyze numerical simulations of wave run-up and other relevant wave-structure interaction 
processes on smooth and impermeable coastal structures with perpendicular wave attack and to verify the 
ability of the Volume of Fluid (VOF) model ComFLOW to represent these processes.  
 
A smooth structure like a dike or embankment is mostly impermeable for water or waves and the 
slope has no, or almost no roughness. A type of dike typically seen at the Dutch coast, examples 
are embankments covered with a placed block revetment, asphalt or concrete slope. In ComFLOW 
it  is  (at  the  start  of  this  study)  only  possible  to  simulate  solid,  impermeable  structures  without  
surface roughness. Sub-questions related to the objective are formulated to structure the research:  
 
• Which physical processes are important for proper numerical reproduction of wave-

structure interaction at the seaward slope of the dike?  
• Is ComFLOW capable of accurate predictions with 2DV simulations of these relevant 

physical processes?  
• Does the model show robustness during simulations? And which model settings are 

preferred?  
  
In order to reach the formulated goal, the model should extensively be tested using a wide range 
of examples. Therefore the  following methodology is adapted:  
 
• To investigate whether the numerical model different mathematical aspects properly solves 

for relevant processes, simulation results will be compared with analytical solutions known 
from literature. Its performance with respect to accuracy of shoreline movement, velocities 
along  geometries,  flooding  of  the  domain  at  high  speed  and  similarity  to  the  analytical  
solution  will  be  investigated.  These  tests  should  give  more  insight  in  the  cause  of  the  
differences and resemblances that occur during the wave run-up simulations in the next step 
and the overall performance of the model.  

• Regular waves will be simulated on three different slopes (1:6, 1:4, and 1:3) in combination 
with 7 different wave conditions. The general performance with respect to wave interaction 
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with  the  structure  will  be  analyzed.  Wave  run-up  and  other  wave-structure  interaction  
processes will be compared with experimental data.   

• The last step in this study is meant to be illustrative. For two different breaker types of 
waves on the slope ComFLOW simulations will be visually compared with video recordings 
of  a  physical  model  test  with  regular  waves.  Differences  and  agreement  in  outcome  are  
analyzed in a qualitatively way.   

 
The flow-diagram of  the methodology,  see  Figure 1.2,  gives  an overview of  the steps taken,  the 
relevant  processes  and  the  corresponding  chapters.  Therefore  it  also  acts  as  the  outline  of  the  
report. 

 
Figure 1.2: Flow-diagram methodology 
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2 Wave processes  

This  chapter  will  give  an  overview  of  literature  and  relevant  theoretical  background  for  the  
research of wave run-up and other relevant wave processes. Wave run-up has been subject to a lot 
of  research,  as  it  is  an important  design parameter  for  dikes  and breakwaters.  Many books and 
papers discuss this topic, for example lecture notes on bed, bank and shore protection (Schiereck, 
2001), extensively used in this thesis. Most research has been summarized in the Overtopping 
Manual (Pullen et al., 2007). Since the present thesis is treating smooth, impermeable slopes with 
perpendicular wave attack, the presented theory focuses on these conditions.  
To give a thorough analysis of the performance of the ComFLOW model for wave run-up not only 
run-up  heights  should  be  studied,  this  would  give  an  incomplete  picture.  Therefore  different  
wave  processes  at  the  seaward  slope  of  coastal  structures  will  be  discussed,  giving  the  
characteristics of wave run-up, breaker types, reflection, and wave run-down for regular waves on 
impermeable structures with uniform slopes. By treating these processes the qualities (and 
shortcomings) of the model will be shown on multiple fronts.    

2.1 Breaker parameter 
 
The surf similarity parameter, also called breaker parameter or Iribarren number ( ) is of 
importance in all kinds of shore protection problems. This parameter plays an important role in 
the behaviour of waves on a slope. It represents the ratio of slope steepness and deep water wave 
steepness, and therefore combines  hydraulic and structural parameters, see equation (2.1):   
 

 
0

:

2

0

in which L0

tan

2

 

H
L

gTL

 (2.1) 

    
Where:  

 =  breaker parameter  [-] 
 =  angle of the slope  [°] 

H=  wave height    [m] 
T =  wave period   [s] 
L0   deep water wave length  [m] 
g =  gravitational acceleration [m/s2] 
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2.1.1 Wave breaker types 
 
Near a structure, for different values of , waves behave in a completely different way. Not only 
does this relation of provide insight whether waves will break and how the wave will break, also 
reflection, run-up and stone stability (as non-breaking or breaking strongly determines pressures 
and velocities along the slope) are related to this parameter.  
The different ways of breaking of waves can be classified in three main types; surging, plunging 
and spilling. Where the type collapsing is distinguished as a transition between surging and 
plunging.  Figure  2.1  gives  an  impression  of  the  different  breaker  types  and  the  range  of   for  
which they occur, obviously the transition between the types is not sharp-cut.  
 

 
Figure 2.1: Breaker types as function of  

 
Both Iribarren (1938) and Battjes (1974) theoretically deduced the critical value for the breaker 
parameter, c, for which > c waves do not break. Iribarren came to a value of c =2.3 and Battjes 
of  c =2.5.  Given  the  coarseness  of  the  estimation  it  is  stated  that  these  values  are  virtually  the  
same.  The range of  values  for  breaker  types  presented in  Figure 2.1  was deduced from physical  
experiments, this also shows that in this highly turbulent and complex environment it is very 
difficult to extract exact values for the transition between breaker types.    

2.2 Wave run-up 
 
The wave run-up height is defined in the overtopping manual (Pullen et al., 2007) as the vertical 
difference between the highest point of wave run-up and the still water level (SWL). For irregular 
waves,  due  to  the  stochastic  nature  of  the  incoming  waves,  each  wave  will  possibly  give  a  
different run-up level. In case of regular waves, on the other hand, each incoming wave will give 
the same run-up level. 
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Figure 2.2: Wave run-up level Ru (Van der Meer and Janssen, 1994) 

 
In  the Netherlands as  well  as  in  Germany many dike heights  have been designed using a  wave 
run-up height Ru2%. This is the wave run-up height which is exceeded by 2% of incoming waves at 
the  toe  of  the  structure.  Note  that  the  wave  run-up  level  is  related  to  the  number  of  incoming  
waves and not to the number of run-up levels. Most of the research in the past focuses on this 2% 
run-up  height.  But  for  regular  waves  the  Ru2% value  is  irrelevant,  as  all  incoming  waves  should  
give the same run-up value.   

Hunt’s formula (1959) 
Hunt derived this formula for regular waves, with wave height H and period T, on smooth slopes 
during model tests. He found that the relative wave run-up is equal to the breaker parameter (for 

 < 2.5-3):  
  

 uR
H

 (2.2)  

 
Run-up appears  to  be  maximum around =2-3,  which is  just  at  the transition between plunging 
and surging (collapsing waves).  

Schüttrumpf formula (2001) 
For waves with values for  lower than 2.5, waves will break. The plunging waves hit a sheet of 
water  that  flows down from the foregoing wave (see  Figure 2.1).  This  result  in  highly turbulent  
flows and energy dissipation, resulting in a reduction of wave run-up and reflection (see section 
2.1.4). For non-breaking waves this is not the case and energy is preserved. Therefore a more or 
less horizontal equilibrium in relative wave run-up is reached for higher breaker parameters.   
Schüttrumpf derived the following empirical function for regular waves on smooth slopes: 
 

 

*
1 1

1
*
1

tanh( )

2.25
0.5

R c c
H
c
c

 (2.3) 

 
With  the  use  of  continuous,  hyperbolic  functions  for  wave  run-up  (and  other  wave  processes)  
Schüttrumpf tried to take natural processes of the breaking of waves into account and the 
transition for breaking to non-breaking. In the next figure both formulas by Hunt and 
Schüttrumpf  for regular waves are shown.  
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Figure 2.3: Wave run-up formulas by Hunt and Schüttrumpf  for regular waves 

Reduction factors 
In  reality  the relative wave run-up depends not  only on the parameters  included in the breaker  
parameter; slope angle, wave height and wave length. There are also other factors that reduce run-
up.  Although  these  factors  are  not  considered  in  this  study,  it  is  valuable  to  be  aware  of  the  
influence of other variables. These reduction factors include: roughness, oblique wave attack and 
berms. The reduction factors have all been determined separately in experimental model 
investigations and are all between 0 and 1. Formula 2.2 now extends to:  

 u
b r

R
H

 

 
The formula shows that a combination of reduction factors is possible that produces a very small 
run-up value. Since combinations of run-up reduction factors have not been investigated, a 
minimum total  reduction factor  is  set  to  0.5.  In  this  section the reduction factors  will  shortly  be 
discussed, to clarify the influence of these factors and which reduction factors are incorporated:   
 
• Roughness:  a  rough  surface  will  reduce  the  wave  run-up  heights.  For  smooth  slopes  this  

factor  is  1.  For  grass  slopes,  r,  is  between  0.95  and  1.  The  reduction  for  riprap  slopes  is  
between 0.7 and 0.55.  

• Angle of attack: when waves do not approach the slope perpendicularly a reduction factor is 
applied.  For  long  crested  waves  this  reduction  factor,  ,  has  a  minimum  of  0.7  and  for  
short-crested waves the minimum reduction is 0.8.  

• Berm: the presence of a berm also reduces wave run-up. The parameters that influence the 
reduction  is  the  length  of  the  berm,  wave  height  and  the  distance  between  SWL  and  the  
berm level. The reduction factor is limited by 0.6< b<1.  

2.3 Wave run-down 
 
The wave run-down height, Rd, is defined as the minimum water level on a slope during a wave 
period relative to the SWL. It is the opposite process of the run-up level, see Figure 2.4 below.  
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Figure 2.4: Run-down definition 

Battjes (1974) 
Battjes formulated a formula for wave run-down for regular waves based on experiments:   
 

 
(1 0.4 ),

(1 0.4 )

d u

d

R R
R
H

 (2.4) 

 
The relative run down has a positive value for  < 2.5, which means that the water level does not 
drop below the still water level. This is because the water in a wave that flows down on a slope, 
meets  the water  running up form the next  wave.  For  higher  Iribarren values  this  is  not  the case  
and the wave run-down reaches below SWL, this can be seen in Figure 2.5 where the wave run-
down is illustrated.  
Bruun and Günbak (1977) however analyzed the existence of this condition assuming the 
movement of a water mass along the smooth slope from the maximum run-up point down to SWL 
under  the  action  of  gravity  only.  This  theoretical  analysis  showed  that  for  smooth  slopes  that  
positive values for run-down are reached for  <1.6. The difference between the experimental and 
theoretically found value is explained by the fact that effects of pressure and friction forces on the 
flow  are  neglected  in  the  theoretical  derivation.  This  will  retard  the  run-down  and  will  cause  
waves with higher values than 1.6 for  not to cross the SWL, this may occur with waves breaking 
on  the  slope.  This  analysis  and  the  formula  by  Battjes  shows  that  the  run-down  values  are  
interrelated with the maximum run-up values.  
 

 
Figure 2.5: Wave run-down formula by Battjes for regular waves 
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The same reasoning for non-breaking waves can be used as for wave run-up, for this type of 
waves  no  energy  will  be  lost  during  surging  up-  and  down  the  slope  and  an  equilibrium  for  
relative wave run-down is reached for higher breaker parameters, which is for a matter of fact not 
included in the given formula.   

2.4 Reflection 
 
The extend to  which waves are  reflected against  a  structure  is  important  for  the resulting wave 
field near the structure. Wave breaking is the most effective, and for smooth impermeable slopes 
the only, mechanism of energy dissipation. There can be two extremes distinguished with respect 
to reflection: for non-breaking waves on steep slopes (vertical walls) reflection is almost 100%, 
leading to standing waves and for sufficiently gentle slopes, with breaking waves, nearly all 
incoming wave energy is dissipated so that reflection is negligible. 
The reflection-coefficient  is  defined as  the wave height  of  the reflected wave with respect  to  the 
incoming wave height:  

 r
r

i

H K
H

 (2.5) 

 
The derivation of a theoretical solution for reflection of breaking waves is hardly possible. An 
useful approach is given by Miche. He equalized the height of the reflected waves to a limit value 
(Hc) of H, in case of wave breaking. This approach implies that the reflection coefficient is 
proportional to 2 (see Battjes, 1974). For values of  below the breaking limit, the following 
formula was found experimentally:  
 
 

20.1rK  (2.6) 
For >2.5 reflection slowly tends to 1, the value for total reflection. Figure 2.6 shows this reflection 
coefficient as a function of the breaker parameter, the deflection for higher breaker parameters is 
obviously not represented by the formula.  
 

 
Figure 2.6: Reflection formula by Battjes, reflection coefficient as a function of  

 
 
 
 



   
December 2010 

 

 
 
Numerical modeling of wave run-up on a dike 
 

11} of 85  

2.5 Summary of wave processes 
 
Most formulas of the described processes are curve fittings, based on the results of physical model 
test. Differences in the data of experiments can be explained by different scales, different 
measurement  techniques and the fact  that  these  highly turbulent  flows are  difficult  to  measure.  
Schüttrumpf  and  van  Gent  (2003)  collectively  wrote  a  paper  and  indicated  the  test  set  up  (dike  
geometries and instruments) and test programmes as primary cause of discrepancies between 
different experimental model tests. The formulas based on curve fitting of experimental result are 
therefore  just  not  exact  solutions.  Analysis  of  numerical  results  will  be  done  with  experimental  
data.  In  this  section  the  used  experimental  data  will  be  shown,  differences  and  similarities  are  
shortly discussed.   
Differences  in  set-up of  the used physical  experiments  are  summarized here.  The data  of  Bruun 
and  Günbak  are  based  on  two  physical  experiments  of  regular  waves  on  smooth  slopes:  one  
performed by Hudson (1959) and one by themselves. They used slopes of 1:3, 1:2 and 1:5, wave 
heights of 4 to 15 cm with periods ranging from 0.8 to 2.43 seconds and a constant water depth of 
50 cm. Schüttrumpf used slopes of 1:6, 1:4 and 1:3, wave heights of 7.6 to 20 cm with periods 
ranging from 1.5 to 4.25 seconds and a constant water depth of 70 cm.  
In  Figure  2.7  the  experimental  data  result  for  wave  run-up  of  Bruun  and  Günbak  and  those  of  
Schüttrumpf  are  shown.  In  this  figure  we  can  already  discover  some  interesting  differences.  
Around 2< <3.5 we see in the results of Bruun and Günbak a large peak, which is not present in 
the data of Schüttrumpf. Notable fact is that all run-up results in this peak are those of plunging 
waves. This peak made Bruun and Günbak say that the formula of Hunt is valid to =3,  
Schüttrumpf on the other hand held this, also based on his result, to the breaking limit of =2.3. 
Another  remarkable  difference  is  the  fact  that  the  results  for  value  larger  than  4  are  lower  and  
more scattered for Bruun and Günbak.  
 

 
Figure 2.7: Wave run-up formulas with experimental data of Bruun and Günbak and Schüttrumpf. 

 
The wave run-down data, in Figure 2.8, are for both experiments less scattered than the run-up 
data. Most notable fact is that the data is for both experiments lower than the formula of Battjes 
and  that  all  results  of  Schüttrumpf  are  below  those  of  Günbak  and  Bruun.  The  last  also  gave  a  
curve  fitting  in  their  paper  based  on  the  formula  of  Battjes,  resulting  in  Rd=H(1-0.45  )  .  This  
gives  a  penetration  of  the  SWL  at  =2.2.  Schüttrumpf  based  his  curve  fittings  on  a  hyperbolic  
function, which looks more appropriate when looking at the data. However, he did not deduct 
this  curve  fitting  for  regular  wave  run-down.  From  his  data  the  penetration  of  the  SWL  can  be  



 
 
 
 
 

 
 
12 of 85 
 

Numerical modeling of wave run-up on a dike 
 

 December 2010 
 

read, which is at =1.8-1.9. Both penetration values  of the data are higher than the theoretical 
value of  1.6,  but  are  lower than the 2.5  value of  Battjes.  This  could indicate  that  the formula by 
Battjes gives too high run-up values.  
 

 
Figure 2.8: Wave run-down formulas with experimental data of Bruun and Günbak and Schüttrumpf. 

 
The formula of the reflection coefficient is also plotted with a experimental data cloud, this cloud 
is extracted from the lecture notes on bed, bank and shore protection (Schiereck, 2001). Clear is the 
deflection  from  values  around  =2.5,  slowly  tending  to  a  value  of  Kr=1.  For  lower  values  the  
formula describes the data well.  
 

 
Figure 2.9: Reflection formulas with experimental data. 
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3 ComFLOW  

ComFLOW is a model for numerical simulations of fluid flow. The code is a (3D) hydrodynamic 
flow model based on the incompressible Navier-Stokes equations, used in this study to simulate 
wave  run-up  and  other  processes.  The  evolution  of  the  free  water  surface  is  described  by  the  
Volume-of-Fluid method (VOF), designed originally by Hirt and Nichols (1981). Nowadays an 
adapted and (highly) improved version is used in the model. For introduction a short history of 
ComFLOW will be given here, the mathematical and numerical model and a description of the 
wave generation will be discussed hereafter. In this chapter only relevant aspects of ComFLOW 
are highlighted, functionalities as two phase-flow or moving bodies are not included as they are 
not used in this study. A more extensive description of ComFLOW can be found in Kleefsman 
(2005), the ComFLOW manual (ComFLOW, 2008) and Wemmenhove (2008) .  

History of ComFLOW 
The model has initially been developed in the late seventies by the University of Groningen 
(RUG), by Prof. dr. Arthur Veldman, to study the sloshing of liquid fuel in satellites. This micro-
gravity environment required a very accurate and robust description of the free surface.  
In the late nineties, MARIN got in touch with the application at RUG and started the development 
and utilization of  the model  for  offshore and maritime applications:  the  green water  loading on 
the deck of ships, semi-submersibles and tension-leg platforms, motions of offshore structures, 
sloshing in  LNG systems and air  entrapment  during wave impacts.  This  research was extended 
with support of a world-wide consortium of offshore-related companies in the ComFLOW-2 joint-
industry project.    
After the ComFLOW-2 project Deltares joint the consortium to apply and develop the simulation 
method  in  predicting  impact  forces  on  coastal  protection  structures.  The  research  is  part  of  the  
follow-up project, ComFLOW-3, which started in 2009. Objectives of this program are the 
inclusion of a sophisticated turbulence model, speed-up of the algorithms, improved 
functionality, less dissipative wave propagation, improvement of the generating and absorbing 
boundary conditions (GABC) and validation for various advanced engineering applications.    

3.1 Mathematical model 

3.1.1 Governing equations 
 
Since almost a century and a half the mathematical formulation of the laws describing the motion 
of fluid are known. The so-called Navier-Stokes equations, formulated by the Frenchman called 
Claude Louis Marie Henry Navier (1785-1836) and the Irishman called George Gabriel Stokes 
(1819-1903). This system of partial differential equations governs the laws of conservation of mass 
and momentum and is in most cases unsolvable analytically due to the high non-linearity of the 
equations. This is the point where numerical models as ComFLOW come in. ComFLOW describes 
the flow of  a  homogeneous incompressible  viscous fluid using this  law of  conservation of  mass  
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and momentum. Mass and momentum conservation together give a set of differential equations, 
which suffice to describe the motion of water. In combination with a set of boundary conditions 
on the boundary of the domain of interest a problem is defined with a unique solution. The laws 
of conservation of mass and momentum are given by:  
 

 2

0
1 +T p

t

u
u u u u F

 (3.1) 

With:  
p =   pressure     [N/m2] 
t =    time      [s] 
u =    velocity vector   [m/s] 

=  gradient operator  [-] 
µ  =    dynamic viscosity  [kg/sm] 

 =   fluid density   [kg/m3] 

F=     dissymmetric forcing term [m/s2] 
 
Note  that  the  dynamic  viscosity  and  fluid  density  are  assumed  constant  as  in  the  model  no  
turbulence model is included. And u=(u,v,w) the velocity vector with u,v and w the velocities in 
the  three  coordinate  directions  x,y  and  z,  respectively.  This  vector  reduces  to  a  scalar  in  one  
dimension and the system of equations reduces to a single equation. In case of wave run-up the 
only external force is gravity, given by:  
 

 ; ; (0;0; 9,81)x y zg g gF g  (3.2) 

 
The continuity and Navier-Stokes equations will be solved inside one fluid: water. In the 
simulations a second fluid will be present, air, for which no equations will be solved. Both fluids 
are  separated from each other  by a  free  surface.  The evolution of  free  surface  is  decribed by the 
following equation:  
 

 ( ) 0Ds s s
Dt t

u  (3.3) 

 
Where s(x,t)=0 gives the actual position of the free surface. A piecewise constant reconstruction of 
the free  surface  is  used,  where the free  surface  is  displaced by changing the VOF value in  a  cell  
using calculated fluxes through cell faces. The flux through a cell face is calculated as the velocity 
time the area of the cell face A and the time step t.  

3.1.2 Boundary conditions 
 
To solve the foregoing flow equations, boundary conditions are required at all fluid boundaries. 
At solid boundaries the no-slip boundary condition for viscous fluids is applied.  
 
 bu u  (3.4) 
With ub=0 for fixed objects and solid domain boundaries. This means that no fluid can go through 
the wall and also the velocity tangential to the solid boundary is zero. 
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At the domain boundaries a free-slip boundary condition is applied.   
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 (3.5) 

Where  un and  ut denote  the  normal  and  tangential  component  of  the  velocity  to  the  solid  
boundary respectively. This boundary condition implies velocity normal to the wall are zero and 
the gradient of velocities parallel to the wall are zero. Free slip denotes that there is no friction 
between fluid and wall.  
At the free surface the forces are balanced. Continuity of normal stresses and tangential stresses 
lead to the boundary conditions for the pressure and velocity at the free surface. When the fluid is 
assumed  incompressible  and  the  curvature  of  the  free  surface  is  neglected  in  the  viscous  stress  
terms, this results in the following equations (split in the normal and tangential direction):  
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In the equation xn denotes the normal of the free surface and xt is the tangential direction, un and ut 
denote the normal and tangential component of the velocity to the free surface respectively, p0 is 
the  atmospheric  pressure,   is  the  surface  tension,  and c the total curvature of the free surface. 
This formula is based on the assumption of laminar flow.  

3.2 Numerical model 

3.2.1 Grid and geometry definition  
 
To numerically solve the Navier-Stokes equations the computational domain is covered by a fixed 
Cartesian grid. A Cartesian grid is a simple rectangular grid. The grid can be defined in two ways: 
uniform, a grid in which all grid cells have the same dimension, or stretched, the size of the grid 
cells  varies  in  one  or  more  dimensions.  The  grid  will  always  be  of  rectangular  shape.  The  
simplicity of the grid is an advantage; it gives an easy geometric framework in which the position 
and slope of the surface can be more accurately described than other grid types, as preferred for 
the application in wave run-up. Moreover, it gives relatively simple and efficient data structures.  
 
The  form  of  a  defined  geometry  is  mostly  not  rectilinear  and  will  cut  through  the  rectangular,  
Cartesian grid cells, resulting in cut cells. For the definition of the geometry on the Cartesian grid, 
volume and edge apertures are introduced. To indicate which part of a cell volume and cell face is 
open  for  fluid  for  every  cell  has  a  volume  aperture  (Fb)  and  edge  apertures  (Ax,  Ay,  Az). Three 
aperture options are indicated:  
 
• Fb or A=0, the cell or edge is blocked for fluid (indicates solid body);  
• 0<Fb or A<1, the cell or edge is (partly) open for fluid; 
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• Fb or A=1, the cell or edge is completely open for fluid. 
 
An illustration is given in Figure 3.1, on the left side all information on the apertures is given. 
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Figure 3.1: Grid cell, volume aperture and edge apertures. (Figure 2.8 Kleefsman (2005)) 

 
As  showed  in  the  illustration  volume  and  edge  apertures  contain  all  relevant  geometrical  
information  for  the  discretization  of  the  flow  equations.  However,  this  information  is  not  exact  
and limited by the number of integration points (nrintp), specified by the user. ComFLOW checks 
for this number of points per grid cell whether this point is inside or outside the geometry. This 
number of integration points therefore actually defines the ‘smoothness’ of the geometry. A value 
of  1  will  give a  staircase  geometry,  while  higher  values  give more fluent  geometries.  Figure 3.2  
shows an example with two integration points. In this figure the bold lines on the outer part of the 
cells denotes the closed apertures by ComFLOW. The black, sloping line is the actual defined 
geometry by the user, dark grey denotes the part of the cell filled denoted as body by ComFLOW. 
Light  grey  denotes  possible  presence  of  geometry,  which  is  not  known  by  the  model.  More  
integration  points  result  in  a  smoother  geometry  and  make  the  uncertain  part  of  the  area  (light  
grey) smaller.   
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Figure 3.2: Aperture calculation using two integration points. The more integration points, the smoother the geometry. Given 
for the cells volume and edge apertures.  
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3.2.2 Free surface description 
 
Besides  the volume apertures  another  function has  been introduced to  identify  the fraction of  a  
cell that is filled with fluid: the Volume-Of-Fluid (VOF) function, denoted by Fs. The time-
dependent fluid aperture Fs indicates  which  fraction  of  a  cell  is  actually  occupied  by  fluid,  and  
hereby tracks the free surface. The same statements as for the aperture cells can be distinguished 
for  Fs.  Because  there  can  be  no  more  fluid  in  the  cell  than  the  open  part  of  the  cell,  the  VOF-
function is limited by 0  Fs   Fb   1.   
A piecewise constant reconstruction of the free surface is used where the free surface is displaced 
by changing the Fs value in a cell using the calculated fluxes through cell faces. The evolution of 
the  free  surface  is  given  by  equation  (3.3).  In  ComFLOW  an  adapted  and  improved  version  of  
original (Hirt and Nichols, 1981) VOF-method is used, see Kleefsman et. Al (2005). By combining 
the VOF-method with a local height function, strict mass conservation is ensured and almost no 
‘flotsam and jetsam’ occurs, thereby avoiding two main drawbacks of the original VOF method.    

3.2.3 Cell labeling 
 
Cell labeling is introduced to distinguish cells of different character. After the apertures have been 
assigned to the grid cells, every cell is given a label to distinguish boundary, air and fluid:  
 
• B(boundary)-cells :  Cells that are completely in the solid geometry. 
• E(empty) -cells : Cells that contain no fluid, air.  
• S(surface)-cells : Cells that contain fluid adjacent to empty cells. 
• F(fluid) -cells : Remaining cells that contain fluid.     
 
In Figure 3.3 an example of cell-labeling is given. 
 

 
Figure 3.3: Cell labelling: dark grey denotes solid body; light grey is liquid. (Figure 1,(Kleefsman et al., 2005)) 

 
Notes: S-cells always contain part of the free surface and F-cells do not have to be completely filled 
with fluid. 

3.2.4 Discretization of the continuity and Navier-Stokes equations 
 
The Navier-Stokes equations are discretised in time and space. The finite volume method is used 
for the spatial discretization. This means integration of the equations over a suitably chosen 
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control  volume  and  application  of  Gauss  divergence  theorem.  Conservation  of  mass  and  
momentum is in this way ensured.  
In the method the variables are staggered on the Cartesian grid, which means that the pressure is 
defined in cell centers and the velocities on cell faces. The advantage of a staggered grid is that 
mass conservation can be satisfied easily in a cell, without interpolations.  
A  first-order  upwind  spatial  discretization  for  the  convection  term  is  used  in  this  study,  
ComFLOW this scheme can be adapted. For the time discretization the first order Forward-Euler 
method is adopted. The time step t is automatically adapted during the simulation. It is halved 
when the CFL-number exceeds cflmax (specified by the user), or doubled when it is smaller than 
cflmin for ten successive time steps. The CFL-number is defined as:  
 

 
, , , , , ,

, ,
max i j k i j k i j k

i j k
i j k

u t v t w t
CFL

x y z
 (3.8) 

 
Where u,v and w are the velocity components, indices i,j,k refer to the cell number.  
 
For the solution of the discretised Navier-Stokes equation, a Poisson equation must be solved for 
the pressure, which is solved using Successive Over-Relaxation (SOR) iteration with an 
automatically adapted relaxation parameter, when one-phase flow without GABC boundaries is 
used (see next section). When absorbing boundary conditions are used the CGSTAB pressure 
solver should be used.   

3.2.5 Free surface boundary conditions: velocities 
 
Velocities in the neighbourhood of the free surface can be grouped in different classes (see Figure 
3.4). The first class contains the velocities between two F-cells, two S-cells and S- and F-cell. These 
velocities are determined by solving the momentum equation. The second class are the SE-
velocities and these are solved by an engineering mix between extrapolation from interior velocity 
field and mass conservation. This combination results in a highly accurate and robust method. The 
last  class  consists  of  velocities  between  two  E-cells  that  are  sometimes  needed  to  solve  the  
momentum equation. These are determined using the tangential free-surface condition, equation 
(3.7). An extensive description is given in (Kleefsman, 2005: page 38-46). 
  

 
Figure 3.4: Differeent classes of velocities near the surface (Kleefsman et al., 2005) 
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3.3 Wave generation and boundary conditions 

3.3.1 Description of wave generation  
 
A wave description theory is used to generate waves at the inflow boundary of the domain. At the 
inflow boundary positive and negative velocities can occur, so fluid can flow in and out.  
In ComFLOW the waves are prescribed at the inflow boundary using a theoretical description of 
the waves. In this model the wave is traveling in positive x-direction, making the left domain wall 
the  inflow boundary,  with an angle  of  incidence of  0  degrees.  The wave that  can be imposed in  
ComFLOW are based on Airy wave theory describing linear waves and 2nd order Stokes, 5th order 
Stokes or the Rienecker Fenton theory describing nonlinear waves. A superposition of linear wave 
components can be used to generate an irregular wave.   
When using linear waves (Airy wave), the wave elevation is defined by a cosine:  
 
 ( , ) cos( )x t A t x  (3.9) 
 
With A the amplitude,  the frequency,  the wave number and  the phase.  
When generating irregular waves, the variables A, ,  ,   should be prescribed by the user and 
the wave is defined as:  

 
1

( , ) ( )   cos( ( ) ( ) ( ))
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i
x t a i i t i x i  (3.10) 

 
For steeper waves, where in general the crests become higher and the troughs flatter, linear theory 
does no longer hold. To prescribe nonlinear waves, a solution to potential theory is used. The 
Rienecker-Fenton  wave  theory  gives  more  accurate  wave  kinematics  than  5th order  Stokes  in  
shallow water and for steep waves.  The Rienecker-Fenton wave is constructed by using a finite 
Fourier series to give a set of equations that can be solved using Newton’s method (Rienecker and 
Fenton,  1981).  The  only  approximation  for  a  Rienecker-Fenton  wave  is  the  truncation  of  this  
Fourier  series.  The  advantage  of  Rienecker  Fenton  compared  to  other  wave  theories  are  its  
applicability to all wave lengths and possibility to describe the propagation of steep non-linear 
waves.   

3.3.2 Generation and Absorbing Boundary Condition (GABC)  
 
At the outflow boundary conditions should be imposed, such that the wave can leave the domain 
undisturbed and prevent reflection. Therefore a generating and absorbing boundary condition 
(GABC) has been implemented in ComFLOW (Wellens et al., 2009), it ensures wave generation 
and  wave  absorption  at  the  same  time.  The  Sommerfield  radiation  boundary  condition  for  a  
velocity potential is the basis for the GABC, is given by:  
 

 
c rhsd

t x
 (3.11) 

 
Where  the  left-hand  side  absorbs  outgoing  waves,  and  the  right-hand  side  is  used  to  prescribe  
incident  waves.  Recognizing  that  the  velocity  and  dynamic  pressure  are  in  the  potential  theory  
given by respectively u= x and q=- t, the expression can than be rewritten as: 
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 cu q rhsd  (3.12) 
 The difficulty with evaluation of this expression is that the celerity of the outgoing waves is 
unknown.  In  the  GABC  the  celerity  is  computed  from  a  numerical  solution,  the  Padé-
approximation of the linear dispersion relation is used for this:  
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This is an essential ingredient in the GABC procedure as a0, a1, b1 need to be specified by the user. 
Combining  equation (3.11), (3.13) and relations following from linear theory give an expression 
for the GABC boundary condition:  
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A more extensive explanation and numerical evaluation can be found in (Wellens et al., 2009). 

3.4 Numerical default settings 
 
In this section the numerical setting that are used for all simulations are discussed. In this study it 
was decided to call these settings the numerical default settings, as they are for all simulation kept 
the  same.  This  will  be  referred  to  as  the  default  settings.  For  some  simulations  exceptions  are  
made, but this will be explained at the corresponding section on.  

Time integration, time steps and spatial discretization 
The following settings are used:   
 
• Space discretization: a first-order upwind spatial discretization for the convection term. 
• Time integration: forward Euler. 
• Initial time step: 0.01 seconds.  
 
The time step is adapted during simulation, as described in section 3.2.4, for cflmax=0.9 and 
cflmin=0.4. 

Geometry smoothness 
The number of integration points specifies the smoothness of the geometry by the ‘staircase’ way 
the discretization is handled, as explained in section 3.2.1. Initially four integration points 
(nrintp=4) are used for simulations, as the user manual describes this as the maximum usable (and 
stable) value. However personal communication with Peter Wellens revealed that according to 
theory  the  model  should  be  stable  for  higher  numbers  of  integration  points.  More  integration  
points  should  only  lead  to  an  increase  in  computational  time  in  case  of  moving  objects  in  the  
simulation. Therefore, additional simulations are performed to analyze the results and usability 
for higher numbers of integration points with a value of 8. 
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Physical parameter settings 
All simulations are one-phase flow, i.e. no physical parameters are included for air. The following 
physical model settings are used:  
 
• Water density:    =1000   [kg/m3] 
• Dynamic viscosity:  µ=1.0 x 10-3 [kg/(m.s)] 
• Gravitational acceleration : g=9,81  [m/s2] 
• Kinematic surface tension:  =0  [N/m] 
 
As can be seen the kinematic surface tension is neglected in these simulations. 

Wave boundary conditions  
The left domain boundary condition needs to be specified by the user when (regular) waves needs 
to be generated and absorbed at this boundary. The incoming waves have a wave height equal to 
H and a wave period equal to T. The GABC boundary condition (see section 2.2.4) is used for all 
simulations that include waves. Wenneker (2010) proposed to use more robust settings than the 
default  values  described  in  the  user  manual.  With  the  robust  settings  the  effect  of  the  second  
derivatives in the vertical is absent which destabilized the solution. This is realised by putting 
a1=b1=0. Equation (3.13) then reduces to 

0ac a gh  and now a0 needs to be specified. As most wave 

energy is stored in wave period T and this waves propagate at speed tanh( ) /c g kh kh , this leads 
to the following suitable value for a0 :  

 0
tanh( )

( )
kha

kh
 (3.15) 
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4 Analytical solutions 

To  investigate  whether  different  mathematical  aspects  for  relevant  processes  are  solved  well  by  
the numerical system, simulation results will be compared with analytical solutions known from 
literature. Three cases are chosen which show resemblance with the wave run-up processes that 
will  be  studied  in  the  next  chapter.  These  tests  should  give  more  insight  in  the  causes  of  the  
differences  and  resemblances  that  occur  during  wave  run-up  simulations  and  the  overall  
performance  of  the  model.  From  these  test  cases  the  performance  of  the  model  with  respect  to  
accuracy of shoreline movement, flooding of the domain at high speed, velocities along 
geometries and similarity to the analytical solution will be investigated. 
 
Three test cases are used, the classical dam break test with a horizontal bed, the dam break test 
with an upward sloping bed and periodic non-breaking waves on a sloping beach formulated by 
Carrier and Greenspan which both include different elements hat will be important for the wave 
run-up process.    
Theoretical run-up analysis mainly investigate the behaviour of a propagating bore on a slope, 
leaving wave breaking out of the analysis. If there is no breaking of waves the motion is smooth,  
incident waves are reflected and the water layer propagation along the slope can be describe well 
by linear theory for slopes, see Whitham (1979), or by solutions of the nonlinear shallow-water 
equations. The dam break test and the test of Carrier and Greenspan (1958) are solutions of these 
shallow water equations.  

4.1 Dam break test  
 
A dam wave break is the flow resulting from a sudden release of a mass of fluid in a channel. The 
work  on  the  dam  break  problem  was  initiated  by  major  dam  break  catastrophes  that  caused  
numerous  losses  of  lives.  In  point  of  fact  the  dam  break  test  is  a  propagating  flood  wave  in  a  
channel without any wave breaking. Here two cases are investigated a horizontal channel and an 
upward sloping channel. This test is suited to investigate the ability of the model to simulate the 
propagation of  the leading edge of  a  wave with high velocities.  In  the case  of  a  sloping bed the 
run-up under influence of gravity can be investigated. Difficulties that arise for the dam break test 
are: the thickness of the water layer at the front becomes infinitely small in the analytical solution, 
this  is  difficult  in  a  numerical  representation,  and  the  initial  gradient  of  the  water  front  is  very  
large,  flooding the dry part  of  the domain at  a  very high speed which causes  often problems in  
numerical models.  

4.1.1 Horizontal channel, dry bed 
 
The  dam  break  test  is  a  classical  test  widely  applied  to  validate  the  performance  of  numerical  
models, examples are Fraccarollo and Toro (1995), Stelling and Duijnmeijer (2003) and Kroon 
(2009). Kleefsman (2005) performed the dam break test with ComFLOW and compared it with lab 
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experiments.  In  this  test  a  closed  tank  was  used  with  a  cube  halfway  the  tank  with  pressure  
sensors. Yet the test is performed again with ComFLOW for two reasons. First, Kleefsman focuses 
on pressures and compares only with lab experiments. In this research interest is in the ability to 
represent  the analytical  solution and occurring velocities.  Secondly,  the test  is  extended with an 
upward sloping channel to investigate the influence of the presence of a slope, the classical test is 
then needed as a basis simulation.  
 
The  dam  break  test  is  based  upon  the  development  of  a  simple  analytical  solution  for  
instantaneous dam break of the Saint-Venant equations (1871) and method of characteristics 
(Stoker,  1957).  The  solution  relies  on  some  basic  assumptions:  the  flow  is  one-dimensional,  the  
streamline curvature is very small and the pressure distributions are hydrostatic, the flow is not 
affected  by  viscosity  of  bed  friction,  the  water  density  is  constant  and  the  channel  has  fixed  
boundaries. In other words this solution assumes non-linear shallow water (NLSW) equations, 
ComFLOW  on  the  other  hand  is  based  on  the  Navier-Stokes  equations  in  which  vertical  
acceleration is included. This will cause some deviations between the results.  

 
Figure 4.1: Sketch of the dam break problem in a dry, frictionless channel with zero initial velocity. Red line is solution at time 

t. (Chanson 2005: 24). 

Analytical description 
In this case a dam break on a dry, horizontal, frictionless channel is analyzed. The method to solve 
the wave profile was first proposed by Ritter in 1892. For an upstream water mass that is initially 
at rest (h=h0) behind a vertical wall at x=0 and a downstream water level equal to zero. At t=0 the 
water  mass  is  released  and  a  negative  wave  propagates  upstream  and  a  flood  wave  moves  
downstream. The solution describes the ideal fluid flow between the position of these waves, x=-c0 
t and x=2c0 t by (Stoker, 1957):  
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Numerical setup 
The test is performed three times, with the numerical default settings (as explained in section 3.4). 
The domain boundaries are closed. The domain is 40 meters long en 2 meters high (see Figure 4.2). 
Three different  grids  are  applied of  x= z=0,025;  0.05;  0.1  respectively.  The initial  water  level  is  
set to 1 m behind a virtual wall at x=0. The simulation time is set to 6 seconds. No input file for the 
geometry  needs  to  be  specified,  therefore  we  deal  with  free-slip  boundary  conditions  at  the  
horizontal bed.  

 
Figure 4.2: Domain setup dam break problem horizontal channel   

Results and analysis 
The results obtained for three different grid sizes are presented in Figure 4.3. The results for the 
water depth and velocity with respect to the analytical solution are shown at t=3 seconds. All grids 
give similar results and represent the analytical solution well, but the finest grid size gives the best 
fit. The propagating flood wave is close to the solution, observed wiggles in the velocity profile of 
the coarser grids are suppressed by the refinement and the velocity lag is the smallest. Therefore 
further analysis will focus on the results obtained on this grid.  
 

  
Figure 4.3: Results for the dam break problem at t=3 s, for three different grid sizes. 

 
Figure 4.4 presents the results for the finest grid size, the figure shows the water depth at t=1,2, 3, 
and 4 seconds. The four graphs show that the same agreements and disagreements with respect to 
the analytical solution are present during the propagation of the flood wave. The parabolic shape 
of the water height is well represented, and is improving during the simulation. In the analytical 
solution the thickness of the water layer becomes infinitely small in the leading edge of the wave, 
this  is  hard  to  represent  in  a  numerical  model.  The  leading  edge  indeed  lags  behind  in  the  
numerical results, but no artificial bore is created as in many other numerical schemes.  
For  the  negative  wave  front  the  transition  is  smoother  than  in  the  analytical  solution.  This  is  
created  in  the  first  half  of  a  second  and  is  caused  by  numerical  dissipation.  The  effect  of  
dissipation is that sharp gradients, discontinuities in the solution are smeared out. This is caused 
by the fact that the higher frequency components being damped more than lower frequency 
components.  
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Figure 4.4: Results for the dam break problem at t=1, 2, 3 and t=4 s, showing water depths solved on a fine grid. 

 
In  Figure  4.5  the  graphs  represent  the  velocity  in  the  x-domain.  The  velocities  are  represented  
quite well by the numerical model. Nevertheless a velocity lag in space and in speed is apparent, 
which is growing during the simulation. Part of this problem lies in the fact that the analytical 
solution  is  based  on  NLSW  equations  (pressure  is  assumed  hydrostatic),  whereas  ComFLOW  
solves the Navier-Stokes equations including vertical accelerations. Therefore, the analytical 
solution  is  actually  not  valid  for  the  initial  stage  of  the  simulation.  In  this  phase  the  numerical  
scheme develops a lag in the propagation of the leading edge of the wave, but this lag should not 
increase in time.  
 
 
 

  
Results for the dam break problem at t=1 and 2s  showing velocities solved on a fine grid.( t=3 and 4 s on next page) 
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Figure 4.5: Results for the dam break problem at t=1, 2, 3 and 4 s, showing velocities solved on a fine grid. 

 
However, from Figure 4.5 it is apparent that the wave front is lagging further behind. Secondly, 
according to the analytical solution the maximum velocity of 2*c0 is constant in time, but the 
maximum  velocity  in  the  simulation  decreases.  This  indicates  that  some  kind  of  resistance  is  
encountered in the model. Figure 4.6 shows that this resistance is (probably) not created by free-
slip boundary conditions at the domain boundary. Observed is a hydrostatic pressure 
distribution,  a  fairly  straight  velocity  profile  and  no  boundary  layers  are  formed  at  the  bottom,  
indicating that there is hardly friction between wall and fluid. Part of the answer may be found in 
the  artificial  viscosity,  this  will  be  discussed  in  section  5.5.1,  this  leads  to  an  increase  of  the  
viscosity at higher speeds, in combination with the imposed boundary conditions this can lead to 
deceleration  of  the  leading  edge  of  the  wave.  As  for  a  larger  grid  size  the  artificial  viscosity  
increases, the worse performance for the coarser grids may also partly be explained by this 
influence.   
Secondly  the  wetting  and  drying  algorithm  can  have  a  contribution  to  this  deceleration.  Before  
empty cells (E) become fluid cells (F) or surface cells (S) the velocities should be calculated, this is 
done with a  combination of  linear  extrapolation and mass  conservation,  see  section 3.2.5.  In  the 
numerical model of ComFLOW the following restriction applies. If two adjacent cells are 
considered, the first cell contains some fluid and it a surface cells, the adjacent second cell contains 
no  fluid  which  makes  it  an  empty  cell.  The  first  cell  has  to  be  filled  completely  before  it  can  
transmit fluid to its neighbouring cell. This restriction decelerates the flooding process for high 
speeds. This influence is less with a smaller mesh size.  
 

 
Figure 4.6: Result for dam break test at t=3s showing velocity profile over the water depth. 
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Figure 4.7: Result for dam break test at t=3s showing pressures over the water depth. 

 
Above  it  was  stated  that  the  analytical  solution  is  not  valid  for  the  early  stages  of  the  dam  
breaking, due to vertical acceleration the NLSW equations would not be appropriate to describe 
the  processes.  For  t=3  seconds  it  is  shown,  in  Figure  4.7,  that  the  pressure  distribution  is  
hydrostatic.  
If  the  above  stated  is  true  the  pressure  should  be  non-hydrostatic  in  the  beginning  of  the  
simulation. In Figure 4.8 the pressure at t=0.5 and t=1 s are shown, observed is that the pressures 
at t=0.5 second are indeed non-hydrostatic, between x=0 and x=1 m. For t=1 second the pressures 
are nearly hydrostatic. These figures show that the analytical solution is indeed not valid for the 
early stages of the test and that this statement is correct. If one is aware of this problem, the test is 
still very suitable to investigate the performance of the numerical model.     
 

 

 
Figure 4.8: Pressure distribution for the dam break test at t=0.5s in the upper figure and t=1.0s in the lower figure. 
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4.1.2 Sloping channel, dry bed 
 
An  extended  solution  of  the  ideal  flow  solutions  of  the  dam  break  problem  is  described  by  
Chanson (2005). He presents the solution of the dam break problem for an upward sloping 
channel. However his solution is limited to the development of the initial stage of the dam 
breaking and to small bed slope angles. The initial conditions used by Chanson are based on real 
life basins behind a dam on a sloped channel, which severely complicated the solution 
mathematically.  
In this research, focus is on the propagation of the wave front on a slope, occurring velocities and 
maximum  run-up.  Personal  communication  with  R.J.  Labeur  led  to  the  decision  to  rewrite  the  
solution  to  a  dam  break  test  on  a  sloping  bottom,  which  can  be  applied  for  all  slopes  and  time  
periods. This solution is obtained by rotating the initial conditions of the classic test, as described 
in section 4.1.1, by the slope angle and solving this with the method of characteristics. The 
problem  is  sketched  in  Figure  4.9,  which  reveals  that  the  problem  is  basically  the  same  as  the  
previous problem, but with an extra gravitational acceleration in the horizontal plane and a 
decreased  gravitational  acceleration  in  the  vertical  plane.  A  more  extensive  explanation  can  be  
found in appendix A.  
 
 

 
Figure 4.9: Sketch of the dam break problem in a dry, frictionless, sloping upward channel with zero initial velocity. 
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Analytical description 
The solution represents a dam break in a dry, frictionless, upward sloping channel bed with zero 
initial velocity, in a prismatic wide rectangular channel. The solution for a sloping channel gives 
different solutions for the propagating waves as the velocity will decrease in time by gravitational 
force. The solution between the negative propagating wave, 2

0 01 2x c t S g t  and the 

leading edge of the wave, 2
0 02 1 2x c t S g t , is described by:  

 

 

0 0

2

0

0 0

0

2 ,
3

1 2 1 1 , with
' 3 6 3

'
' cos

sin

xu c S g t
t

xh S g t
g t

c g h
g g
S

 (4.2) 

 
In which,  is the angle between the bed and the horizontal plane and  >0 for an upward slope. 
For an upward slope, the maximum elevation reached by the wave front is zmax=2*h0 at x=2/tan ,  
for t=2 c0/g*S0 , this result is independent of the bed slope.  

Numerical setup 
This  test  is  performed  with  the  numerical  default  settings  and  the  simulation  time  again  6  
seconds.  Five different  bed slopes  are  applied;  1,2,  5,  10  and 15 degrees.  Note  that  a  slope of  10  
degrees is in the same order as a slope of 1:6 and that 15 degrees is in the order of 1:4, which will 
be  used during the run-up simulations.  The simulations are  performed in two main differenced 
ways: one with an actual sloping channel and one with a horizontal channel with rotated g-forces 
(see for theoretical description section 3.1.2 and equation 3.2). The simulations are in fact 
graphically shown in the lower sketch of Figure 4.9 and the set-up of the domains in the numerical 
model are shown in Figure 4.10. 
 

 

 
Figure 4.10: Domain setup dam break test for sloping bed channel. Top with defined geometry, down with rotated g-force. 
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Simulation  with  bed  slopes  of  1,2  and  5  are  performed  with  a  sloping  channel  and  a  defined  
geometry in ComFLOW. Two different values of integration points (nrintp 4 and 8) are used, see 
section 3.4.  
For all slopes the simulation is performed with a horizontal channel with a rotated g-force. This 
results in simulations with a free-slip boundary condition at the bottom. At last two simulations 
were performed with the horizontal channel and rotated g-force, but with a defined cube on the 
bottom of the domain. This cube imposes a no-slip boundary condition at the bottom. In table 4.1 
an overview is given of the 13 performed simulations.  
 

Table 4.1: Overview of simulations dam break test with an upward sloping channel 
Slope Rotated Channel 

Nrintp 4 
Rotated Channel 

Nrintp 8 
Rotated  g-force 

‘free-slip’ 
Rotated  g-force 

‘no-slip’ 
1    - 
2    - 
5     
10 - -   
15 - -  - 

 = simulation performed, - = not performed 
 
In all 13 simulations for the analytical solution with a sloping channel a natural effect caused by 
the gravitational forces could influence the results. Water will not only travel in positive x-
direction, as in section 4.1.1, but under influence of gravity the water mass will also start flow in 
opposite direction. With the closed domain boundaries a sort of tank is created in the model. The 
water will flow against the left wall and leading to an accumulation of water, as showed in Figure 
4.11.  This  process  should  not  influence  the  results,  therefore  the  domain  is  enlarged  in  the  x-
direction to -50 m and just as in the previous simulations only the results till -20 m are analyzed. 
 

 
Figure 4.11: Results for the five degree bed slope at t=3.82s illustrating the water accumulation at the left domain boundary. 

 
The mesh size was set on x= z=0.03. It turned out that ComFLOW  has a limited number of grid 
cells, therefore it was not possible to have the same grid size for all simulations. The problem lies 
in the fact that the domain height increases with the increase of slope steepness, this leads to a 
situation were more grid cells are needed to obtain the same grid size. The problem caused the 
grid size for the 5 degrees bed slope with a geometry to be coarser, the smallest possible grid size 
is x= z=0.04. This problem is the reason that the slopes of 10 and 15 degrees are only performed 
with the rotated g-force setting. With these even steeper slopes the grid would end up too coarse 
to make a good comparison between the results of the two methods.  
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Results and analysis 
Figure 4.12 shows the results of the dam break test with a sloped channel giving the location of the 
propagating  flood  wave  as  a  function  of  time.  It  illustrates  that  the  leading  edge  is  represented  
quite  well,.  It  is  somewhat  behind the analytical  solution and is  lagging behind further  in  time,  
giving the same image as in the previous section. The graphs show that increasing the number of 
integration points indeed improves the results of the wave propagation, the use of eight points 
leads to less deceleration. However this improvement is far less significant than for the rotated g-
force, the simulations with the rotated g-force are less dissipative than the ones with the geometry. 
The computed location of leading edge of the wave is much closer to the analytical solution and 
the wave front is less decelerated in time.   
 

  

  

 
Figure 4.12: Results dam break problem showing the wave front as a function of time for all bed slopes and simulations.   

 
For the ten and fifteen degrees bed slope, which are conform the slope angles of 1:6 and 1:4, the 
maximum run-up of  the flood wave is  only slightly  underestimated for  the rotated simulations.  
One should keep in mind that the underestimation is also partly caused due to the fact that the 
thickness of the water layer at the front becomes infinitely small in the analytical solution, this is 
not represented in the numerical model. Therefore in terms of run-up we can say that the model 
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performs very well for the simulation with the rotated g-force. Remarkable is that the down-rush 
is at the same speed as the analytical solution and that it seems that the maximum run-up is better 
approached for steeper slopes. The results on the sloped bottoms for the 1, 2 and 5 degree show 
the opposite process, gentler slopes give better results. For the five degrees bed slope it must be 
noted  that,  as  already  mentioned,  the  simulations  with  nrintp=4  and  8  are  on  a  coarser  grid.  
Therefore it is expected that a grid size of 0.03 m should have improved the results and that the 
difference between the results should have been smaller. 
Two  significant  differences  between  the  simulations  with  rotated  g-force  and  the  sloping  bed  
channel can be distinguished. First the free-slip at the horizontal bed and the no-slip boundary 
condition at the geometry body. Apparent from the simulations with no-slip boundary condition 
at  the  bottom  for  the  rotated  g-force,  for  five  and  ten  degrees,  is  that  the  results  of  these  
simulations are quite similar to the ones with the free-slip boundary conditions. Second difference 
is the totally smooth bottom at the horizontal bed and that the discretization of the defined 
geometry  for  the  sloping  bed  is  not  completely  smooth,  the  geometry  is  handled  in  a  ‘staircase  
way’. This discretization of the geometry is the main cause of the deceleration of the wave front 
and it is creating a sort of numerical roughness at the slope.  
 

  
(a) (b) 

  
(c) (d) 

Figure 4.13: Results for dam break problem with sloped channel showing velocities as a function of x at t=3 s for slope 1 (a), 2 
(b), 5 (c)  and 10 (d) degrees and for different model settings. 

 
The results for the velocities at t=3 are showed in Figure 4.13. The velocities are simulated quite 
well for the simulations with a rotated g-force, the results for a sloped bottom are less and more 
wiggly. A velocity lag is observed, this lag is smaller for the simulations with rotated g-force. The 
analysis of the velocities is in agreement with the analysis of the leading edge of the wave.  
Figure 4.14 (a) shows that the wiggles in the velocities of the simulations with sloped bottom are 
caused by the fact that the defined geometry is causing the development of boundary layers. In 
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the velocity profiles of simulations with the rotated g-force, for both free-slip and no-slip 
conditions this forming is not present at all. This observation is in agreement with the earlier 
statement that the discretization of a sloped geometry leads to friction between fluid and the solid 
geometry.   
The velocities  of  the water  flowing in  opposite  direction (Figure 4.11)  are  simulated well.  These 
are the negative velocity values in Figure 4.13 for x<0. For the steeper slopes (Figure 4.13c) the 
simulations with the sloped geometry (nrintp 4  & 8)  the velocities  are  too low compared to  the 
analytical  solution.  This  is  caused  by  the  influence  of  the  numerical  roughness.  In  Figure  4.14a  
small boundary layers are formed in the water mass that is running down the slope, for example 
around x=-10 m.  
 

 
(a) 

 
(b) 

Figure 4.14: Velocity profiles on a slope of two degrees for t=3s, a: results for nrintp 8 and b: results for rotated g-force. 
 
During the analysis of the simulation it was found that ripples arise on the propagating wave, as 
shown  in  Figure  4.15.  These  ripples  occur  in  all  simulations.  This  type  of  problem  occurs  more  
often  in  numerical  simulations  with  flooding  of  cells  at  high  speed.  In  the  dam  break  test  
performed by Kleefsman in 3d mode also ripples arose during the simulation. She concluded that 
these  ripples  are  probably caused by post-processing.  It  was advised (Kleefsman et  al.,  2005)  to  
use  a  piece-wise  linear  reconstruction  of  the  free  surface,  instead  of  the  reconstruction  aligned  
with  the  coordinate  axes  as  used  in  ComFLOW,  this  is  a  constant  reconstruction  of  the  free  
surface. These ripples do not seem to affect the results, so they are not considered as a problem.  
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Figure 4.15: The forming of ripples on propagating flood wave, results for a bed slope of two degrees.  

4.2 Waves on a sloping beach  
 
Numerous times numerical models have been compared with the analytical solution of standing 
waves on a slope given by Carrier and Greenspan (1958), amongst others by Stelling and Zijlema 
(2008) and van Gent (1995).     
Carrier and Greenspan show in their paper that waves can climb a sloping beach without 
breaking. In this classical test a sinusoidal wave runs up and down a frictionless, sloping beach 
without  breaking.  The  test  is  particularly  suited  to  verify  the  accuracy  and  quality  of  the  
calculated shoreline movement, during up-rush and down-rush. Maximum run-up and run-down 
and also the correct representation of the location of nodes of the standing wave can be checked.  

Analytical description 
Carrier and Greenspan derive their conclusions by using dimensionless quantities, and writing 
the solution in terms of the independent variables  and .  

 
2( )
4

v t
c

 (4.3) 

Where v, t and c are respectively the dimensionless velocity, time and propagation speed. The 
velocity, water surface elevation distance and time with respect to these variables are then written 
as:  
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Where J0 is the Bessel function of the first kind. This short analytical description is extracted from 
Kroon (2009). From the analytical solution a relation between the amplitude of sinusoidal incident 
waves ( in) and the vertical amplitude at the shoreline (As) can be derived (van Gent, 1995):  

 0/ ( / 8 ( / ))s inA sT g h  

Breaking at the slope does not occur if : 
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Numerical setup 
The  parameters  used  in  this  study  are  the  same  as  those  used  by  van  Gent  (1995).  He  took  for  
comparison with numerical model results an incident wave with amplitude equal to the 
maximum amplitude without occurrence of breaking waves. For a slope 1:4, a wave period of 5.0 s 
and a still water level of h0 =2.0 m at the toe of the slope is used giving an incident wave height of 
0.15m.  
The simulation is done on two grids, with a mesh size of x= z=0.025 m and a refined grid with 

z= x=0.015 m. At the left in- and outflow boundary the generating and absorbing boundary 
condition (GABC) has  been used,  see  also section 3.3.2.  For  the discretization of  the geometry 8  
integration points of integration are used. Use is made of linear wave theory and Airy waves are 
used to prescribe the incoming waves. Again the numerical default settings are used.  
 

 
Figure 4.16: Domain setup Carrier Greenspan, slope 1:4, still water level 2,0 m.  

Results and analysis 
It must be emphasized that the chosen parameters are near the breaking criterion, this is one of the 
most difficult choices of parameters for a model to represent the Carrier Greenspan test. Keeping 
this in mind we can evaluate the results of the model rather good. The results of the medium and 
the fine grid are similar, maximum run-up and down values are equal. The finest grid is shown in 
the figures,  only because the representation is  smoother.  The results  during up-rush and down-
rush are analyzed separately.  
The numerical results obtained with the finest grid during up-rush are presented in Figure 4.17.  
The model is quite well able to represent the location of the node of a standing wave, although the 
node is more concentrated in one point compared to the analytical solution the position on x-axis 
is the same.  
The  wave  shape  is  represented  moderate,  although  the  profiles  of  the  extreme  values  are  
represented well. For intermediate time steps the wave shape, especially behind the node, is rather 
different.  Friction  at  the  slope  deforms  the  wave  profile  and  small  bores  are  formed.  Another  
possible factor of influence is the hydrostatic character of the analytical solution. ComFLOW 
includes non-hydrostatic components and this could cause the wave to form into a different 
shape. However as this is mostly dependent on the ratio of wavelength and water depth the 
influence should not be too large.  
Analyzing the results for the vertical amplitude at shoreline it can be seen that the maximum run-
up and run-down values of the analytical solution are represented well by the numerical results. 
Although in Figure 4.17 the lowest water level is still somewhat behind, in the intermediate period 
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the  maximum  run-down  value  is  reached.  Observed  is  that  the  amplitude  at  the  shoreline  is  
behind the analytical solution for the lower water levels at the shoreline, but the numerical results 
catches  up  and  the  amplitude  at  the  shoreline  is  at  the  same  location  as  the  analytical  solution  
during the remaining up-rush, despite the different wave shape.   
 

 
Figure 4.17: The analytical water level compared to the numerical water level for the Carrier and Greenspan test during up-

rush. 

 
Figure 4.18: The analytical water level compared to the numerical water level for the Carrier and Greenspan test during down-

rush. 
 
In Figure 4.18 the numerical results compared to the analytical solution during down-rush are 
presented. The location of the node is again in the correct place. The node is less clustered and at 
some points the water levels are too low compared to the analytical solution.  
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The wave shape behind the node is again represented rather different from the analytical solution. 
During down-rush the water is sticking to the slope, causing the vertical amplitude to fall behind 
the  analytical  solution.  As  already  stated  for  up-rush  the  maximum  run-up  and  down  is  
represented quite well by the numerical solution, as can be seen in the next Figure.  
   

Figure 4.19: Numerical results of shoreline movement and maximum run-up value for analytical solution. Left: results 
medium grid, right: results fine grid. 

 
During the simulation on the fine grid we encountered a small form of, the so called flotsam and 
jetsam, the accumulation of unphysical small scale fluid bodies. Forming of this droplets does not 
influence the results and are this is extensively discussed chapter 5, section 5.4. 

4.3 Discussion and concluding remarks 
 
The  goal  of  this  chapter  was  to  investigate  whether  different  mathematical  aspects  for  relevant  
processes are solved well by the numerical system. To that end to simulation results are compared 
with analytical solutions known from literature. Three test cases are used, the classical dam break 
test with a horizontal bed, the dam break test with an upward sloping bed and periodic non-
breaking waves on a sloping beach formulated by Carrier and Greenspan.  
 
Most important finding in this chapter is the large influence of discretization of the geometry in 
both  tests  where  a  geometry  is  present.  The  ‘staircase’  way  of  the  discretization  is  creating  a  
numerical  roughness  at  solid  (sloped)  structures  in  the  model.  This  numerical  roughness  is  
possibly of negative influence for the run-up and run-down results in the next chapter, as this will 
cause a decrease in velocities, deceleration of up-rush and down-rush of waves. Further findings 
are split between the test cases.  

Dam break test  
Horizontal channel test 
• The analysis of the dam break test on a horizontal slope, showed that in this test the leading 

edge  of  the  wave  was  decelerated  in  time,  in  spite  of  the  fact  in  this  test  no  sloped,  solid  
geometry was present. Two causes were identified: artificial viscosity and a restriction in the 
algorithm of the flooding of dry cells.   

 
Sloping channel test 
• The smoother  geometry,  with a  number of  integration point  of  eight,  shows improvement  

compared  to  the  use  of  four  integration  points,  but  the  results  for  both  simulations  show  
much more dissipation than the simulations with a rotated g-force on a horizontal bed.   
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• During  the  dam  break  test  with  a  sloping  channel  the  no-slip  and  free-slip  boundary  
conditions  gave  similar  results.  Implying  that  the  no-slip  boundary  condition  at  the  
boundary of defined structures in ComFLOW is not causing the numerical roughness.  

• For  the  dam  break  test  with  rotated  g-force  simulations,  where  no  influence  of  the  
discretization is present, the maximum run-up heights are represented well. Some small 
underestimation is observed, but the analytical solution becomes infinitely small in this area 
and that is difficult to represent in the numerical solution.  

• Results  on  maximum  run-up  are  better  for  the  steeper  slopes  for  the  simulations  with  the  
rotated g-force on a horizontal bed. The results with the sloped bottom and with the 
roughness  present  show  a  opposite  image,  for  the  steeper  slopes  more  dissipation  is  
observed,  causing  more  deceleration  of   the  leading  edge  of  the  wave  and  less  maximum  
run-up.   

 
• It was stated that the analytical solution becomes infinitely small in the area of the leading 

edge of the wave and that is difficult to represent in the numerical solution. Visually it was 
observed that no bores were formed in the numerical results, but more detailed 
investigation on the relation of mesh size and layer thickness in the wave front could be a 
contribution to the study of wave run-up.   

Carrier and Greenspan 
• In  the  test  of  Carrier  and  Greenspan  the  location  of  the  node  of  the  standing  wave  is  

represented well, which suggests that wave energy is correctly reflected at the structure. 
This should lead to good results on calculation of the reflection coefficients.   

• The effect of the numerical roughness at the slope is clearly visible in the results of this test 
case. Clearly is the sticking to the slope during the down-rush of the wave, making the water 
levels at the slope fall behind the analytical solution. During up-rush this lag in water level 
is  not  present,  but  the  wave  shape  is  clearly  deformed,  resulting  in  the  forming  of  small  
bores.    

• Interesting  enough  the  extreme  values  of  the  vertical  amplitude  are  reached  by  the  
numerical model, so this is promising for run-up and run-down results of the simulations 
with regular waves.  

 
• In their paper Carrier and Greenspan also give the solution for occurring velocities. In the 

analysis of the results the velocities were not included. It could be rewarding to study the 
velocities in more detail in future research, as this could give more insights in the differences 
and resemblances that occur during the run-up simulations.  
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5 Run-up simulations with regular waves 

To test the performance of ComFLOW for wave run-up, simulations with regular waves are 
executed.  Regular  waves  should,  as  known  from  physical  experiments,  give  the  same  run-up  
height  for  each  incoming  wave.  These  simulations  are  compared  with  data  from  physical  
experiments.   
In the first part of this chapter a description of the model setup is given and the simulation setup 
will be presented; the wave conditions that are used and which output is generated. Hereafter the 
results  of  the  simulations  are  analysed  and  discussed.  The  results  are  analysed  on  general  
qualitative  performance  and  for  the  wave  processes  for  regular  waves  presented  in  section  2.2.  
This are wave run-up, wave run-down, and reflection. At last a discussion on artificial viscosity, 
robustness, sensitivity of the monitoring lines and CPU time is given.  

5.1 Numerical setup 
 
In this section the numerical setup of the model is discussed. The domain width and height, the 
defined geometries, the boundary conditions and the grid sizes used. In all simulations the 
numerical default settings are used, as discussed in section 3.4.  

5.1.1 Domain, geometry and boundary conditions 
 
The simulations are done in 2DV, which means a horizontal x-direction and a vertical z-direction. 
The y-direction does not influence the results and is not considered. This type of domain can be 
regarded as a numerical wave flume, dimensions are also based on physical model tests in a wave 
flume.  Table  5.1  gives  the  coordinates  of  the  domain.  It  is  important  to  choose  the  coordinates  
suitably;  maximum  water  level  should  not  reach  the  (upper)  boundaries  of  the  computational  
domain, which would lead to unrealistic and unwanted reflections. On the other hand a too large 
domain will lead to unnecessary long computational time. The chosen domain height is therefore 
based on the maximum used wave height and the maximum calculated run-up height.  
  

Table 5.1: Coordinates of the computational domain for regular waves 
 Min value [m] Max value [m] Length [m] 
x-direction 0 23.4 23.4 
z-direction -0.7 0.7 1.4 

 
Three different geometries are used in the computations, dikes with a uniform slope of 1:6, 1:4 and 
1:3 respectively. These slopes are typical for dikes in the Netherlands. To keep the computational 
conditions  equal  for  all  simulations,  the  same  domain  is  used.  For  all  geometries  the  toe  of  the  
dike  is  situated  at  the  same  point  (x=15m)  from  the  boundary,  this  distance  is  twice  the  wave  
length of the longest wave length used in the simulations. The offshore water depth is 0.7m. The 
choice for these variables (including wave conditions which will be discussed in section 3.2.1) is 
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based on physical experiment conditions, mainly on the experiments of Schüttrumpf (2001). In the 
next figure the three domain setups are shown.  

 

 

 
Figure 5.1: Domain setup for three different geometries: slope 1:6, 1:4 and 1:3 

 
At the right domain boundary a defined geometry is present, here a no-slip boundary condition 
holds,  at  the  bottom  of  the  domain  a  free-slip  condition.  Use  is  made  of  the  GABC  boundary  
condition as default setting, in Table 5.3 the values for kh are presented for each wave condition.  

5.1.2 Grid size 
 
For the simulations three different grids sizes are used, coarse, medium and fine. Grid refinement 
is done with a factor 2 and these grids are based on the number of horizontal grid cells per wave 
length and vertical grid cells per wave height as based on Wenneker (2010):  
 
• The number of  horizontal  grid cells  per  wave length is  taken roughly 85 for  a  coarse  grid,  

170 for a medium and 340 for a fine grid. 
• The number of vertical grid cells per wave height is taken roughly 2-3 for coarse, 4-6 for 

medium and 7-12 for a fine grid.   
 
The grid sizes are presented in Table 5.2, where the number of grid cells in different directions is 
indicated by N.  

Table 5.2: Gridsizes regular wave simulations 
 Nx Nz Ntotal x [m] z [m] 

Coarse 330 36 11880 0.07 0.04 
Medium 670 40 26800 0.035 0.035 
Fine 1300 78 101400 0.018 0.018 
Fine extra 1300 120 156000 0.018 0.012 
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The grid cell sizes in the horizontal and vertical direction (indicated by x and z) are taken equal 
for the medium and fine grid. This is done because hydrodynamics in horizontal and vertical 
length scales have about the same magnitude.  
For some of the used waves heights this grid sizes did not meet the proposed number of grid cells 
and grid refinement in vertical direction was applied. For the coarse grid this refinement is done 
for all simulations, because most wave heights were otherwise around the same size as the grid 
cell height and performance was expected to be poor.  
The same holds for the two lowest wave heights (0.04 and 0.06 m, see table 5.3) on the fine grid, 
and the ‘fine extra’ grid was introduced for all simulations with these two waves. For these waves 
the fine grid did not reach the 4-6 grid cells per wave height and results of (test) simulations were 
poor.  

5.2 Simulation setup 
 
This section gives an overview of the performed simulations. All simulations start with water at 
rest  and  waves  start  to  develop  and  entering  the  domain  at  the  beginning  of  the  simulation.  It  
takes about 5 seconds for the waves to reach the given wave height and 10 to15 seconds to reach 
the toe of the dike. The simulation period is set to 35 seconds, to make sure enough waves reach 
the slope and to obtain a regular wave signal.  

5.2.1 Wave conditions  
 
All  geometries  are  exposed  to  six  wave  conditions,  chosen  in  line  with  the  guidelines  for  the  
number of grid cells per wave length and height. The waves are non-breaking (Miche-criterion), 
and satisfy the ratio h/H>3.0, where flow characteristics are assumed unaffected from the depth. 
Iribarren numbers are in the range of the validity of the run-up formulas (0.8-1<  <5) and wave 
heights and periods are in the same ranges as Schüttrumpf (2001) used.  
 

Table 5.3: Overview regular waves used in ComFLOW modelling 
Wave  H [cm] T [s] L [m] kh Slope* 

1 11.6 1.96 5.998 0.85 All 
2 9.3 2.2 7.557 0.76 All 
3 20.0 2.2 7.557 0.76 All 
4 11.6 1.5 3.513 1.12 All 
5 6.0 2.2 7.557 0.76 All 
6a 4.0 2.2 7.557 0.76 All 
6b 20.0 1.5 3.513 1.12 1:3 & 1:4 

(*) Last column gives an overview  which slopes are used for simulations 
 
For  wave  conditions  1  to  5  simulations  with  three  grids  are  done  (coarse,  medium,  fine).  Wave  
condition 6a and 6b are added in a later stage to obtain information on lower and higher Iribarren 
numbers  respectively, the simulations are only done with the finest grids. Wave condition 6b was 
not performed on slope 1:6, because it resulted in a too low breaker parameter.  
As  already  mentioned  in  section  2.2.4  different  ways  to  prescribe  waves  are  available  in  
ComFLOW. In this study two of these are used during the simulations, based on the Airy wave 
theory and based on the Rienecker-Fenton wave theory. The Rienecker-Fenton waves are chosen, 
because this theory gives the most accurate wave kinematics. The Airy wave theory is frequently 
used  to  prescribe  irregular  wave  fields  and  it  is  therefore  important  to  asses  the  possible  
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shortcomings of prescribing linear waves. All individual simulations were done for both theories, 
doubling the amount of simulations.  
As described in section 3.1.3 the number of integration points (nrintp) defines the geometry 
smoothness. Two values for nrintp are used, 4 and 8. The four points of integration are used for all 
grids, but the higher value of eight is only used on the medium and fine grid.   
Hence the six  wave conditions,  three slopes,  three grid sizes,  two number of  integration points,  
and two methods to prescribe wave results in a total of 170 simulations.  

5.2.2 Output ComFLOW 
 
ComFLOW has many possibilities to generate output. The output files used in this thesis are 
specified below: 
 
• During each simulation 250 2D snapshot files are generated, uniformely distributed in time. 

Each of these files contain the pressures and velocities in all grid cells at a given time level,. 
Figure 3.1 and 3.14-3.16 are generated using data of such a snapshot file.  

• A number of fill boxes are generated per simulation, defined by the user. These files contain 
time  series  of  the  computed  amount  of  fluid  in  a  vertical  box  with  dimension  equal  to  
domain height.  The signals  of  these  files  are  used as  a  kind of  wave gauge.  The boxes  are  
distributed uniformly over the horizontal domain, each 0.01 meter along the slope of the 
structure, and for the simulations used to calculate reflection 20 are placed in front of the 
structure.  

• Monitoring  lines  are  generated,  specified  by  the  user,  containing  time  series  of  computed  
velocities and pressures. Along this line 100 monitoring points are positioned at uniformly 
distributed distances to measure the velocities and pressures. This monitoring points are 
used  to  extract  the  maximum  run-up  on  the  slope.  The  lines  are  situated  parallel  to  the  
structure at 0.01, 0.03 and 0.05m distance.  

 
Both fill boxes and monitoring lines can be used to extract wave run-up along the slope. As the fill 
boxes could only be read every 5 centimeter, the monitoring lines turned out to be more precise. 
The  extraction  of  run-up  heights  from  the  monitoring  lines  was  also  less  time  consuming.  In  
appendix B it is explained how maximum run-up heights are extracted from the monitoring lines. 
It is important to remark here that the maximum inaccuracy in run-up and run-down heights is a 
correlation between the z of the grid size and the vertical distance between the monitoring 
points on the monitoring line. For all simulations this vertical distance is 0.0143 m, as the hundred 
points are evenly distributed along the monitoring line along the whole height of the structure 1.4 
m.  

5.3 Results and analysis of physical processes 
 
In this section the results of the simulations for physical processes are presented. The results of the 
run-up heights, the run-down heights, reflection coefficients are analyzed. The section will start 
with an analysis of the qualitative performance of the model on wave-structure interaction.  

5.3.1 General wave-structure interaction performance  
 
In section 2.2.1 it was stated that for different values of  waves break in a completely different 
way. From visual observations three main classifications are made in the transformation of waves 
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on a slope: plunging, surging and spilling, also collapsing is defined as a transition state between 
plunging and surging (see Figure 2.1). However the transitions between the breaker types are not 
sharp-cut.  
In this section it is analyzed whether ComFLOW simulates the wave transformation on the slope 
and the general performance of the simulations is analyzed. In order to do this three waves with 
different values of  were selected; one plunging, one surging and one collapsing. The type of 
wave breaking is analyzed using snapshots in time.        
 

  

  

  

  
Figure 5.2: ComFLOW simulation with =0.92, a plunging wave  on slope 1:6 with velocity profile [m/s]. 

 
Figure 5.2 shows a ComFLOW simulation of a plunging wave according to the breaker parameter. 
When looking at the snapshots, with time steps of 0.14 seconds, it is observed that the waves in 
the  simulation  indeed  have  the  visual  appearance  of  a  plunging  wave.  The  incoming  wave  is  
overtaking  the  previous  wave  which  is  still  drawing  back,  as  mention  in  theory  for  wave  run-
down  (section  2.1.3).  The  waves  are  breaking  and  having  impact  on  a  water  sheet  of  the  
withdrawing wave front of the previous wave, this would result in a turbulent flow in reality. In 
the model no turbulence model is implemented, so this is not caught in the numerical results. In 
the model the impact results in some wobbling in the flow. 
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Figure 5.3: ComFLOW simulation with =2.4, a collapsing wave on slope 1:3 with velocity profile [m/s]. 

 
Figure 5.3 shows a ComFLOW simulation of a collapsing wave according to the breaker 
parameter, when looking at the time frames one can say that the simulation indeed has the visual 
appearance of a collapsing wave. Waves are breaking, but unlike the plunging wave, the breaking 
occurs when the previous wave is withdrawn. Resulting in wave impact directly on the slope, 
which causes a large impact on the revetment. Furthermore it can be seen that the velocities along 
the slope are the highest for this wave type, according to data these waves also reach the highest 
relative run-up values.   
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Figure 5.4: ComFLOW simulation with =3.7, a surging wave on slope 1:3 with velocity profile [m/s]. 

 
Figure 5.4 shows a ComFLOW simulation of a surging wave according to the breaker parameter, 
when looking at the time frames we can say that the simulation indeed has the appearance of a 
surging wave. The reciprocating movement of the wave is clear, and there is not any breaking.   
In  this  section  it  is  only  possible  to  determine  the  form  of  the  breaking  waves  of  the  numerical  
results and to compare it in a qualitatively way with the range of values given for the transition 
between breaker types. In chapter 6 the results of ComFLOW are illustrated with video recording 
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of real waves. Visual comparison will be used to give more insight whether the numerical results 
are indeed a right representation of reality.  

5.3.2 Wave run-up 
 
In Table 5.4 the results of the simulations are summarized, giving the breaker parameter, the run-
up  height  resulting  from  formulas  of  Hunt  and  Schüttrumpf,  the  numerical  results  for  the  
different grid sizes and the different points of integration. If two results are given it means that the 
wave theories used to prescribe the incoming waves gave a different run-up height. 
The  analysis  of  the  wave  run-up  is  divided  in  four  parts.  First  the  influence  of  the  grid  size  is  
determined, giving a proposal for the relative grid fineness for this type of simulations. Hereafter  
the influence of the discretization of the geometry, the geometry smoothness, is analyzed, as this 
was indicated as an influential parameter in the previous chapter. Then the most important part of 
the analysis is done: the comparison with experimental data is made, giving a thorough analysis 
of the numerical results.  
 

Influence of the grid size 
The grid size is expected to be a parameter of large influence. The graphs of Figure 5.5 show the 
results  for  different  grids  with  Hunt’s  and  Schüttrumpf  run-up  formulas  for  regular  waves  
(equation (2.2) and 2.3) for each slope. From these graphs it is clear that the overall performance is 
quite  good  and  the  finest  grid  (blue  triangles)  performs  much  better  than  the  other  two.  Finer  
grids perform better as they are less dissipative and more accurate.  
 

  
(a) (b) 

 
(c) 

Figure 5.5: ComFLOW results for regular waves on different grids  for 1:6 (a),1:4 (b) and 1:3 (c) slopes. 
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Table 5.4: Results wave run-up simulations on slope 1:3, 1:4, 1:6 for different wave conditions 

Wave  [-] R [cm] Coarse Medium Fine 
  For. 2.2 For. 2.3  Nrintp 4 Nrintp 8 Nrintp 4 Nrintp 8 

Slope 1:6 
1 1.198 13.9 14.0 13.2 15.3 15.7 15.7 15.7 15.7 
2 1.502 14.0 13.3 12.1 14.3 14.3 15.7 12.9 15.7 
3 1.024 20.5 21.2 19.3 21.4 21.4 22.8 22.8 24.3 
4 0.917 10.6 11.2 11.4 8.6 11.4 11.4 11.4 12.9 
5 1.870 11.2 9.89 7.3 8.6 11.4 11.4 11.4 
6a 2.297 9.2 7.35 - - - 8.6 8.6 

Slope 1:4 
1 1.798 20.8 18.7 15.7 18.6 20 18.6 20 18.6 21.4 
2 2.254 20.9 16.9 14.3 14.3 18.6 18.6 17.2 18.6 
3 1.537 30.7 29.1 24.7 27.1 28.6 28.6 31.4 28.6 30.0 31.4 
4 1.376 15.9 15.6 12.5 14.3 15.7 17.1 15.7 
5 2.806 16.8 11.9 8.6 11.4 11.4 11.4 11.4 
6a 3.436 - 8.4 - - - 8.6 8.6 
6b 1.048 20.9 21.6 - - - 20.0 21.4 

Slope 1:3 
1 2.396 27.8 21.7 16.0 20 20 21.4 21.4 
2 3.005 27.9 18.9 11.0 15.7 15.7 17.1 15.7 17.1 15.7 
3 2.049 41.0 34.7 * 30 30 32.8 32.9 32.9 34.3 
4 1.834 21.3 18.9 13.6 15.7 18.6 18.6 18.6 
5 3.741 - 12.9 8.6 8.6 8.6 11.4 11.4 
6a 4.851 - 8.86 - - - 8.6 8.6 
6b 1.397 27.9 27.2 - - - 25.7 25.7 

(-) no simulation, (*) crashed simulation, if two results are given: left Airy wav theory, right Rienecker-Fenton. 
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The grid size in terms fine, medium and coarse do not correspondent to some formula, therefore 
another  expression  is  used  to  express  the  relative  fineness  of  the  grids.  This  gives  a  better  
indication of the grid size to be used for future research. The number of grid cells per wavelength 
and wave height expresses the relative fineness of the three grids used in dimensions of relevant 
physical parameters. This section focuses on question whether there is an optimum in the number 
of grid cells. At some point, the (exponential) increase in computational time does not 
counterbalance the improvement of the results. 
Because different waves were used during simulation, the number of grid cells per wave length 
and height varies for each wave. The number of grid cells per wave length and height per grid  is 
shown  in  Table  5.5  for  the  medium  and  fine  grid.  For  wave  condition  3  the  grid  is  relative  the  
finest.  
 

Table 5.5: Number of grid cells (N) per wave length (L) and wave height (H) for medium and fine grid. 
Wave  1 2 3 4 5 

Nx/L 171.7 216.4 216.4 100.6 216.4 Medium 
Nz/H 3.3 2.7 5.7 3.3 1.7 
Nx/L 333.2 419.8 419.8 195.2 419.8 Fine 
Nz/H 6.5 5.2 11.4 6.5 3.3 

Fine  extra  Nz/H - - - - 5.1 
 
In Figure 5.6 for each wave the results are shown for three slopes with the medium and fine grid. 
It  illustrates  that  the  differences  are  smaller  for  the  waves  with  more  grids  per  wavelength,  
comparing for  example wave condition 3  with 1  and 2.  There  is  also less  variation in  results  for  
lower  breaker  parameters  independent  of  the  number  grid  cells  than  for  higher  values.  This  
indicates that the optimum run-up value is reached earlier. Wave condition 5 is a good example, 
for the highest breaker parameter the increase from medium to fine and to fine extra gives every 
refinement quite large improvement in the results. For the lower parameters this is not the case.  
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Figure 5.6: Run-up results on medium and fine grid for wave condition 1-5. 

 
The  graphs  obviously  show  that  for  some  point  grid  refinement  is  not  leading  to  significantly  
better  results  and  that  there  is  an  optimal  grid  size  in  terms  of  number  of  grids  cells  per  wave  
height and wave length.    
Considering the results in this study and the conclusion by Wenneker (2010), 200 grid cells per 
wave length and 4-6 grid cells per wave height would be sufficiently fine for these type of 
simulations.  Further  grid  refinement  will  not  improve  results  so  much  and  does  lead  to  an  
(exponential)  increase  in  computational  time  (see  section  3.4.3).  Although  one  should  keep  in  
mind  that  extra  grid  refinement  will  decrease  the  uncertainty  margins,  as  these  depend  on  cell  
height, as discussed in section 3.2.2.    

Influence of geometry smoothness 
By defining different numbers of integration points for aperture calculation of the geometry the 
user can adjust the ‘smoothness’ of the geometry in ComFLOW. Although it is stated that smooth 
geometries are used in the simulation there is a difference between the number of points of 
integration. When using for example 1 point of integration a staircase is formed between the grid 
cells  and  a  more  (numerical)  roughness  is  built  in  the  model  than  when  using  4  points  of  
integration. However this roughness is not definable in terms of a roughness coefficient. In the test 
cases  of  dam  break  in  a  sloping  channel  already  was  shown  that  this  parameter  was  the  main  
cause in  decelerating water  layers  running up.  By running all  simulations for  medium and fine 
grids  with  both  4  and  8  number  of  integration  points  the  influence  of  this  parameters  on  wave  
run-up has been investigated.  
In  Figure  5.7  improvements  are  observed  on  both  grids,  but  especially  on  the  medium  grid  the  
results  improve.  These  results  are  getting  comparable  with  the  results  from  the  fine  grid.  Take  
again  one  integration  point  as  example  this  larger  influence  is  quite  easily  to  explain;  a  coarser  
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grid will lead to bigger steps of the staircase and therefore has more roughness. For a finer grid 
the influence of increasing integration points decreases, the grid is smoother and will faster lead to 
a stable solution.  
Illustrated is that for higher breaker parameters the increased number of integration points does 
not  lead  to  improved  results.  For  these  values  waves  are  of  the  surging  type  (non-breaking),  in  
this case there are no thin water layers running up the slope and the velocities are lower, which 
are both phenomena largely affected by roughness.  
     

  
Figure 5.7: Wave Run-up results for different number of integration points. Left: medium grid. Right :fine grid. 

Comparison with experimental data 
In  the  next  figure  the  results  of  all  fine  and  medium  grid  simulations  are  gathered  for  the  8  
number of integration points, as these gave the best results. In this figure the grey cloud displays 
the  range  of  results  presented  by  Bruun  and  Günbak  (1977).  The  blue  cloud  displays  the  data  
Schüttrumpf collected during his experiments.    
 

 

 
Figure 5.8: ComFLOW results for regular wave run-up. Top: medium grid, down: fine grid  
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The results with respect to wave run-up are convincing, having very good resemblance with data 
of  physical  experiments  and  show  the  same  trend:  a  sharp  increase  in  relative  run-up  with  ,  
reaching a maximum constant around =2.5-3. Striking is the good comparison with formula 
deduced by Schüttrumpf and his data cloud. The simulation set-up in this study was extracted 
from the conditions Schüttrumpf used in his experiment: same water depth, same magnitude of 
wave heights and periods and same slopes. 
For lower values of the breaker parameter ( <2), which are breaking waves, the run-up results are 
god and do not show a significant deviation compared to the experimental results.  
The results around the intermediate breaker parameter values (2< <3), are a bit too low compared 
to the range of data, all results are too low or in the lower regions of the experimental data. The 
peak Bruun and Günbak found is not observed at all in the numerical results.   
In the region of non-breaking waves, where >3, the results tend to a more or less constant value. 
The  values  of  the  fine  grid  give  rather  good  results  and  are  in  the  experimental  data  cloud,  
although the results are in the lower regions.  
For  these  higher  breaker  parameters,  results  of  the  medium  grid  are  even  less  accurate  and  far  
below  the  experimental  results.  This  indicates  that  there  is  too  much  energy  loss  during  the  
interaction (numerical dissipation) of the waves with the structure. The relative influence of the 
numerical  dissipation  can  partly  explain  this.  For  this  steeper  slopes  more  energy  must  be  
reflected and almost no dissipation will occur by physical processes by non-breaking waves. The 
relative influence of the numerical dissipation is getting larger for relative steep slopes, explaining 
the lower results for higher breaker parameters. The relative high numerical dissipation is hold 
responsible for the underestimation of relative wave run-up (Ru/H) for >2 of approximately 0.3 
compared to the experimental data of Schüttrumpf.   
 
It must be remarked that for the higher values the simulations were done on the ‘fine extra’ grid to 
get enough grid cells in the z-direction. For the medium grid such increase was not applied and 
with only 1.7 grid cells per wave height, one can imagine why the results are poor. See also the 
lowest graph in Figure 5.6 for the improvement of the results between of medium, fine and fine 
extra grid size.  
Besides the good comparison of the data one last important remark should be made. Although the 
influence  should  be  included  in  the  breaker  parameter,  the  numerical  results  seem  to  have  a  
dependency of the slope. The results of gentler slopes give higher relative run-up heights than the 
steeper slope. The data points of Schüttrumpf in Figure 5.9, especially around =2, show that these 
experimental  results  also  have  some  dependency  on  the  slope.  However  in  the  data  of  
Schüttrumpf the highest values are the results for the steeper slope (1:4) and are the results for the 
gentler slope (1:6) fitting the formula, but in the numerical results this are the run-up heights for 
the gentler slope (1:6) and are the results for the steepest slope (1:3) exact on the formula. In the 
next section on wave run-down this slope dependency and its causes will be elaborated further.  
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Figure 5.9:Wave run-up for regular wave, measurements Schüttrumpf (2001: abb. 4.8a) 

Regularity of wave run-up 
In  Figure  5.10  the  left  graph  shows  wave  run-up  along  the  slope,  a  clear  regular  wave  run-up  
pattern is visible. The right graph displays position of water as derived from the wet values along 
the slope,  showing in  the horizontal  parts  (scatter)  water  that  drops behind on the slope.  In  the 
graphs the influence of the grid and the distance between the measurement points on the 
monitoring line are visible, giving the edgy character. 
 

  
Figure 5.10: Wave signal (left)  and wet values (right)  along slope (For slope 1:3, wave condition 1, Airy Wave, fine grid). 

 
Most simulations do not give this perfectly regular signal, were all waves give the same run-up or 
run-down value.  Especially  the run-down values  are  in  most  cases  not  that  regular.  Figure 5.11  
shows four cases giving a less regular representation.  
The influence of the discrete grid cells is clear in the irregularities of Figure 5.11. For the run-up of 
most waves the water is just flowing into the neighbouring grid cell, giving therefore a higher run-
up height. Most of the irregularities give only one grid cell higher or lower run-up value for two 
or  three of  all  incoming waves.  In  fact  these  differences  are  quite  small  and are  enlarged by the 
discrete way the run-up is extracted. In their paper Bruun and Günbak (1977) mention an 
observed a deviation of 10% in run-up values during their experiments. The video recordings of 
physical experiments, discussed in chapter 6, also show small differences between consecutive 
waves. The small irregularities of wave run-up are therefore not large errors in the results and are 
not considered as a problem. The wave run-down results show far more irregular patterns, also 
for  more simulations.  The irregularities  in  the run-down in Figure 5.11  a&b look also to  have a  
sinusoidal form.  
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a) Slope 1:6, wave condition 4, Nrintp 8, Airy Wave b) Slope 1:4, wave condition 6, Nrintp 8, Rienecker Fenton 

  
c) Slope 1:6, wave condition 1, nrintp 4, Rienecker Fenton d)  Slope 1:3, wave condition 1, Rienecker Fenton 

Figure 5.11: Four cases (a-d) showing wave signals along different slopes (on fine grids). 
 
The graphs are showing different irregularities noticed in run-up patterns of the results:  
• a & b: irregular run-down en run-up 
• c: Irregular run-down, regular run-up  
• d: Irregular run-up, regular run-down  
 
In  Figure  5.11d  and  Figure  5.10  are  the  results  of  the  same  wave  conditions  but  for  different  
methods (Rienecker-Fenton and Airy)  to  prescribe waves.  Apparent  are  the small  differences  in  
the results, which is the case in all the simulations. Nevertheless, in most simulations the same 
wave run-up height is measured, but in 11 cases, see Table 5.4, the two methods give a different 
value.   
 
From  the  four  different  patterns  distinguishable,  percentages  of  occurrence  are  given  in  Figure  
5.12,  these  percentages  are  based on the medium and fine grid simulations for  nrintp =  4  and 8,  
which  are  2x72  simulations.  From  these  pie  charts  it  is  apparent  that  the  smoother  geometries  
causing more irregular run-up patterns than the ones with 4 integration points, there is no evident 
explanation  found  for  this.  Furthermore  it  should  be  said  that  medium  and  fine  grids  have  the  
same  distribution, although this is not clear from the figure.    
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Figure 5.12: Percentage pie of 4 cases of( ir-)regularities noticed in wave run-up results of all medium and fine grid 

simulations with 4 and 8 number of integration points. 
 

From the cases where irregular wave run-up occurs, 30% of the simulations gives the last 4 or 5 
waves a higher value, just as can be seen in Figure 3.4a. This could indicate that not all wave 
energy is transported out of the domain and is reflected on the incident wave boundary, resulting 
in somewhat higher waves. It is important to note that these are all simulations with linear waves 
(Airy waves).      

5.3.3 Wave run-down 
 
The analysis of the run-down results is less straightforward than that of the run-up results. Part of 
this lies in the more irregular run-down patterns, as it was more problematic to retrieve one 
(good) run-down value from the signal. Comparison of the ComFLOW results with experimental 
data show less resemblance than for wave run-up as can be seen in the next figure. The relative 
run-down is overestimated in comparison with the experimental data and the run-down values 
never  reach  above  the  SWL.  But  for  the  higher  values  of   (>3)  the  numerical  results  enter  the  
experimental data range. Just as for the run-up height the numerical results seems to be slope 
dependent giving lower run-down values for the steeper slope.  
 

 
Figure 5.13: Run-down regular waves; ComFLOW results and experimental results of Bruun and Günbak and Schüttrumpf 

on smooth slope  
 

Note that run-up is a more important design parameter and therefore the process has been 
extensively  studied  and  described  in  the  past.  In  contrast,  the  run-down  is  studied  in  fewer  
experiments. As mentioned in section 2.5, the results of both experiments show large differences.  
Nevertheless for wave run-down the numerical results for the run-down heights are too low for 
breaker parameters below a value of 3, for breaking waves. An overestimation for relative run 
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down (Rd/H) of approximately 0.6 compared to the data of Schüttrumpf and 1 to Bruun and 
Günbak is observed.  
Based on the findings of the earlier analysis these lower numerical results were not expected. The 
numerical  roughness  created  by  the  discretization  of  the  geometry  and  the  analysis  of  the  test  
cases  gave  the  impression  that  run-down  would  be  similar  to  the  experimental  data  or  even  
somewhat higher. As run-down is related to the maximum run-up that is reached and the run-up 
results for the lower values of  are good the run-down was expected to be good. In the test case 
of Carrier and Greenspan (section 4.1.2), during down-rush the fluid was sticking to the slope due 
to numerical friction and falling behind the analytical solution, but the maximum run-down was 
reached in the numerical solution. In the analysis of the dam break test the down-rush was with 
the  same  speed  as  the  analytical  solution.  Only  in  these  simulations  no  define  geometry  was  
present,  it  was  expected  that  with  a  structure  the  run-down  was  decelerated  by  the  numerical  
roughness. Summarizing no clear explanation could be found for the mismatch of the run-down 
heights in earlier analysis in this study. But in other numerical studies this mismatch is observed 
as well. The cause may lay in the different physical properties of the processes, the run-up is a 
more  abrupt  and  faster  process  and  the  run  down  is  more  smooth.  Also  the  differences  in  the  
handling of the numerical model of flooding and drying cells may cause the mismatch.  
 
Analyzing the observed dependency on the slope of  the numerical  results  in  both wave run-up 
and run-down one thing stands out. For the steeper slope the vertical amplitude at the shoreline is 
the smallest. In section 2.3 it was elaborated that wave run-down is dependent on the maximum 
run-up reached by a wave, therefore in the run-down formula the run-up height can be found. 
With  this  theory  in  mind  the  expectation  is  that  with  the  lower  values  reached  for  run-up,  the  
steeper slope would reach lower values in the wave run-down, but the opposite is happening. In 
the dam break test the simulations with a sloping bed showed the same trend, for steeper slopes 
the dissipation was larger.  
Two hypothesis are formulated to find an explanation for this slope dependency in the numerical 
model. First hypothesis is that slope dependency can be caused by the discretization of the 
geometry.  With  different  defined  slope  steepness  this  discretization  creates  different  types  of  
‘staircases’, which could lead to a different numerical roughness. It could cause more roughness at 
the steeper slope than for the gentler slopes. Second hypothesis is that the number of grids cells 
where the wave runs through at the slope has influence on the dissipation, for steeper slopes the 
wave movement will run trough less grid cells.  

5.3.4 Reflection  
 
The  reflection  coefficient  of  several  simulations  is  calculated,  in  order  to  see  whether  the  same  
amount of energy is absorbed and reflected at the structure as theory prescribes. This is done by 
separating  the  incoming  and  reflected  waves  from  measured  wave  signals.  The  separation  was  
performed by a 3-gauge wave reflection method (Mansard and Funke, 1980), which uses a least 
square method. In this method waves can only propagate in positive x-direction (incoming waves) 
and negative x-direction (reflected waves) and the water depth is assumed to be uniform. 
In ComFLOW fill boxes can be used as a kind of wave probe and users can define the position of 
this fill boxes. The boxes were placed at several positions in front of the structure. To calculate the 
reflection coefficient use was made of fill boxes. The location of the three fill boxes must be 
ordered such that x1<x2<x3.  
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The distance between these fill boxes is determined with the range of probe spacing 
recommended in Mansard and Funke (1980): 
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This resulted the following distances between the fill boxes, based on the different wave lengths 
used in the simulations:  
 
• x1=6.51 m, 
• x2=7.56 m, and  
• x3=7.91 m 
 
Time series of the incident and reflected wave in x1 are output of the procedure. To calculate the 
reflection coefficient simulations on a medium grid with a number of integration points of 8 were 
used with Rienecker-Fenton waves.   
 

  
Figure 5.14: Separation of the  incoming and reflected wave signal on slope 1:3, wave condition. Left: computed incoming and 

reflected wave signal. Right: wave signal at x1 in ComFLOW  and computed sum of incoming and reflected wave. 
      
The sum of the reflected and incident waves, in the right graph of Figure 5.14, does not exactly fit 
the measured wave signal. Although the differences are small, these are a result of the fact that 
Mansard  and  Funke  assume  linear  wave  theory  in  their  solution,  while  in  the  ComFLOW  
simulations non-linear waves are used. In the graph crests are higher and troughs are flatter for 
non-linear waves, which is according to theory. To obtain the incoming and reflected wave height 
from  the  computed  incoming  and  reflected  wave  signal  the  following  procedure  is  adopted  for  
each signal:  
 
• The number of waves and times at which zero-crossings occur are determined. 
• Parameters pertaining to individual waves are determined: wave height and period, crest 

and trough amplitudes and time at which those occur. 
• The mean and significant wave heights and periods can be determined.  
 
With the obtained information the reflection coefficients are calculated, using the significant wave 
height as parameter, for this value the incoming values agreed the defined incoming wave height 
and period. The calculations were done for different simulations, shown in Figure 5.15. 
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Figure 5.15: Reflection coefficients of regular waves; ComFLOW results and experimental results (Bruun and Günbak) on 

smooth slope. 
 
Comparing the results, the wave reflection in ComFLOW is about the same as measured in 
physical model tests. All calculated reflection coefficients are practically in the grey area of the 
experiments of Bruun and Günbak.  Although it is observed that waves for which run-up results 
are low (in the non-breaking range) also give less reflection. As energy is (numerical) dissipated at 
the slope. 
To  check  the  sensitivity  of  the  calculations  also  for  some  other  situations  the  reflection  was  
calculated. This situations were the same simulations but with use of Airy Waves and the use of 
fill boxes with same distance in between but at different distance from the structure. It was 
conducted that the reflection coefficient, Kr, calculated was in the same order, a mean deviation of 
0.01  with a  maximum deviation of  0.04.  Concluding,  the used simulations are  representative for  
the reflection and the distance of the gauges to the toe of the structure is quite indifferent. 

5.4 Sensitivity analysis of the use of monitoring lines 
 
This  section  is  introduced  to  gain  more  insight  on  the  use  of  monitoring  lines  in  this  study  to  
obtain wave run-up and run-down values. The accuracy results of physical experiments depend 
often on the used measurement techniques. Different measurement techniques is one of the 
indicated  causes  for  differences  between  results  of  experimental  tests.  Also  in  this  study  the  
measurement techniques, the use monitoring lines, can cause inaccuracy. Therefore this model 
setting is studied in more detail. First the placement of the monitoring lines at different distances 
from the slope is  discussed and thereafter  the influence on the results  of  uncertainty margins  in  
the extraction of run-up and run-down values is shown.  

5.4.1 Placement of monitoring lines 
 
The placement of monitoring lines is a possible variable in the model setting that could influence 
the  results.  Lines  at  a  larger  distance  possibly  cannot  monitor  thin  water  layers  running  up  the  
slope  The  sensitivity  of  the  results  for  wave  run-up  and  wave  run-down  is  investigated  by  
increasing and decreasing the distance of the monitoring lines to the structure, a sketch is showed 
of the monitoring line in Figure 5.16. The default setting is a distance of 1 mm to the geometry. In 
this section the influence of the position of the line at smaller and larger distances is investigated.  
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Figure 5.16: Illustrative sketch of monitoring line. Dark grey is the geometry, blue denotes fluid and red is the monitoring line 

with monitoring point uniformly distributed. 

Decrease distance of monitoring line to structure  
For some simulations in some points on the monitoring lines no output could be generated with 
the default  value.  This  problem occurred on the coarse  and medium grids  for  slope 1:4  and 1:6  
with four points of integration and gives the following (lack of) output as in Figure 5.17. It is mere 
coincidence that this problem did not occur on the 1:3 slope. In the left figure it is showed that the 
wave signal can not be plotted. This signal is generated by finding the first ‘no fluid present’ value 
in the output, which is now at the blank line in the right figure.  
 

  

Figure 5.17: Problems with output of monitoring lines for slope 1:6, wave 5, Airy wave, medium grid. Left, waves signal along 
the slope. Right, wet values along the slope.  

 
The  cause  for  the  problem  lies  in  the  discretization  of  the  geometry  (see  section  2.2.3).  Given  a  
point on the monitoring line that lies at 0.01m from the structure, the grid cell in which this point 
lies is almost completely solid and only a small part is open for fluid. This type of cells (with small 
edge apertures) can give stability problems with the computation motion of the fluid, therefore 
ComFLOW put this edge aperture in the computation to zero. As a result this grid cell becomes a 
body-cell where no fluid motion is solved and no output data is generated. In the next figure the 
situation is sketched, the green dot denotes a part of the monitoring line where no fluid motion is 
solved.  
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Figure 5.18: Illustrative sketch of monitoring line and the cause of problems with output generation. Green dot denotes a part 

of the monitoring line where no fluid motion is solved. 
  
To solve this inconvenience there are two obvious possibilities:  
• Increase the distance of the monitoring line to the structure. 
• Increase the number of integration points.  
 
As  for  the  eight  points  of  integration  this  problem  did  not  occur,  this  increase  was  sufficient  to  
solve the problems for these simulations. For the simulations were the problem came up, the 
distance of the line to the structure was increased to 0.03m to solve the problem.  
As  this  problem  already  occurred  at  the  default  value  the  decrease  of  the  distance  of  the  
monitoring  line  was  not  further  investigated,  as  this  would  lead  to  more  simulation  were  this  
problem would come up.  

Increase distance of monitoring line to structure  
The influence of the increase in distance on the accuracy of the results is investigated by looking at 
the output of lines at different distances (Figure 5.19).  
 

 
 (a)  

   
(b) (c) (d) 

Figure 5.19: Wave signal along the slope for different distances to the structure (a) all distances, (b)  0.03 m, (c) 008m, (d) 015. 
For slope 1:4, condition 5, Airy Wave, medium grid.  
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The figure corresponds to what one would expect, monitoring lines at larger distances give lower 
run-up  values  and  run-down  values.  It  also  shows  that  the  run-up  values  until  the  distance  is  
0.1m do not differ that much, the blue and green line, only the monitored water layers running up 
until the maximum value are getting thinner.   
The graphs of  the wet  values,  Figure 5.20,  are  also used to  check whether  the larger  distance of  
0.03 m lead to the same accuracy. As can be seen this is indeed the case for this example.    
 

  
(a)  (b) 

Figure 5.20: Plot of wet values on medium grid to compare accuracy of distance (a) 0.01 and (b) 0.03m. Slope 1:4, condition 5, 
Rienecker Fenton, medium grid. 

 
In  some  simulations,  it  occurred  that  the  line  at  0.03m  even  gave  higher  values  than  the  line  at  
0.01m, which was not as expected. Some analysis showed that this is due to the detachment of the 
final tip of the wave tongue.     
 

  
(a) b) 

Figure 5.21: Wave run-up higher at larger distance to structure, due to detachment of tip of the wave tongue. (a) wave tongue, 
(b) Results for distance of 0.01 and 0.03m.  

5.4.2 Uncertainty margins in wave run-up and run-down results 
 
This  section is  introduced to  give insight  in  the magnitude of  the accuracy of  the results  on the 
fine grid for  relative  run-up and run-down,  as  this  varies  for  the different  wave heights  used in  
the simulations. In Appendix B the generation of the output from ComFLOW is described. In the 
beginning of this chapter it was stated that the extracted run-up values were subject to a certain 
accuracy which was interrelated with the grid cell height and the distance between the monitoring 
points on the monitoring line. The data of the monitoring line contains time series of computed 
velocities and pressures at 100 points along the defined line. The points are uniformly distributed 
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along the line and the distance between the points in vertical direction is 0.0143 m. This distance is 
the same magnitude as the grid cell height of the finest grid. By the use of this output file the run-
up results are discrete. The output is always one of the monitoring points on the monitoring line, 
so with steps of 0.0143 meter. With these uncertainty margins, the sensitivity on the relative run-
up  and  run-down  largely  varies  for  different  wave  heights.  How  smaller  the  wave  height,  the  
larger the influence, as shown in Table 5.6.  
 

Table 5.6: Influence of accuracy of maximum run-up and run-down values on relative run-up and down results. 
Wave height H [cm] R/H 

11.6 0.123 
9.3 0.154 
20.0 0.072 
6.0 0.238 
4.0 0.357 

 
With the calculation of relative run-up and run-down, it becomes clear that with the used wave 
heights the inaccuracy for the higher breaker parameters in this study is quite large, as can be seen 
in Figure 5.22.  
To increase the accuracy three options are possible: decrease the height that the monitoring line 
should span, refine the grid cell size or adjust the simulation program and use higher waves. For 
the first two options one should keep in mind that the both components are interrelated and that 
the largest factor will be decisive.  

 

  
Figure 5.22: Run-up results with relative influence of the uncertainty margins with (right) and without (left) experimental 

data plotted.  

5.5 Analysis of numerical performance 
 
In this chapter the numerical performance is discussed and different model settings are analyzed 
in this matter. The chapter will start with a section on artificial viscosity or numerical diffusion, 
after  this  the  robustness  of  the  model  is  discussed  for  the  performed  simulations.  At  last  the  
computational time (CPU time) needed for different simulations is discussed.   

5.5.1 Artificial viscosity 
 
For the discretization of the convective terms in the Navier-Stokes equations a first order upwind 
scheme  has  been  used  in  our  simulations.  Although  central  discretization  is  less  dissipative,  it  
leads to wiggles in the solution and is less stable (leading to the necessity of very small grid size 
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and time step and thus higher computational time and costs). Compared to a central scheme, the 
upwind discretization can be interpreted as a central scheme plus an extra diffusive term. This 
term adds extra  viscosity  to  the physical  viscosity  of  µ/  and induces  dissipation of  energy and 
unphysical  wave  damping.  An  other  effect  is  already  seen  by  the  dam  break  problem,  the  
smearing out of sharp gradients.  
The amount of extra viscosity is equal to u /2 where u is the velocity and  is the mesh size. So 
this term is dependent on the position in space. An estimate of the maximum artificial viscosity 
that is added can be found by calculating u /2. For the velocity u the mean occurring velocities on 
the slope during run-up are taken:  

1,0 m/su  
 

This results in an approximation of the maximum artificial viscosity:  
 

3 2/ 2 1*0.018 / 2 9.0 10 /artk u m s  
 

The approximation of the artificial viscosity above is for a fine grid, whereas the medium grid has 
an artificial viscosity twice as high. In comparison, the physical kinematic viscosity  is equal to 
10-6  m2/s.  This artificial viscosity can in combination with the boundary conditions for the 
velocities (no-slip) lead to a decrease in run-up heights.   
 
Kleefsman (2005) investigated the influence of the numerical diffusion on wave propagation in the 
domain. She used a mesh size of 140/1500 = 0.0933 and waves in the same order as the waves used 
in  our  simulations,  giving  kart three  times  smaller  than  calculated  above  for  our  simulations.  A  
difference is that Kleefsman used deep water for the simulations. Kleefsman showed that for wave 
simulation in a long domain, where many periods are simulated a clear damping is visible. After a 
time  of  100  periods  and  14  wave  lengths  from  the  inflow  boundary  a  decrease  of  22%  in  wave  
height was observed in the simulations, showed in Figure 5.23. She also proved that this loss was 
mainly due to the artificial viscosity, but not entirely. The dampening of waves namely also occurs 
with  a  central  scheme,  this  part  of  energy  dissipation  is  coming  from  the  treatment  of  the  
boundaries and free surface.  

 
Figure 5.23: Decrease of wave height after a simulation time of 100 periods at different distances from the inflow boundary. 

(Kleefsman, 2005: figure 3.18) 
 
In  this  study  a  domain  of  only  2-4  wavelengths  and  a  total  simulation  time  of  maximum  of  20  
wave periods is used. In addition, the maximum artificial viscosity is in most simulations lower 
than that of Kleefsman (the coarse grid has the same magnitude). The damping of waves in our 
simulations is present, but will not be higher than only a few percent. This wave damping can 
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cause a decrease in wave run-up heights, but the effect is assumed not be very large in the used 
domain.  

5.5.2 Robustness 
 
The model proved to be robust during the simulations, from the 162 simulations only one could 
not be completed. This and some other irregularities were noticed: 
 
• For  the  coarse  grid,  on  slope  1:3,  wave  condition  3  with  the  Airy  wave  description  the  

simulation could not be completed. The time step goes to zero after 30-31 seconds and the 
simulation crashes. Analysis of the results shows that the crash occurs suddenly and is not 
an accumulation of errors. This type of crash also occurred during some of the simulations 
of Wenneker (2010). It is possible that origin of the crash may lie in the GABC, but it is not 
certain.   

• Despite the warning in the user manual, not to use higher values than four for the number of 
integration points, it appeared that the higher number of integration points of eight is stable 
and all simulations finished without problems. However, when trying higher values than 9 
in order to obtain even smoother geometries the program gave a warning not to use higher 
values than 3 or 4 and the simulation was stopped.  

• Unphysical small-scale fluid bodies suddenly arise in (only) four simulations. This flotsam 
and jetsam has the appearance of flying droplets that at one point detach from the slope of 
the structure and start to fly opposite direction to the inflow boundary (see Figure 5.24) in a 
time span of about 3 seconds. These fluid bodies do not seem to influence the result and are 
therefore not considered a problem.  

 

 
(a) (b) 

 
(c) 

Figure 5.24 Accumulation of unphysical small-scale fluid bodies travelling to left domain boundary at (a) t=24.1 and (b) 
t=25.7s (c) Enlargement of fluid body at t=25.7 s (For slope 1:4, wave 1, Airy wave, medium grid). 
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5.5.3 CPU time  
 
This section is introduced to give insight in the increased computational time for medium and fine 
grids and the different methods of wave description. 
  

Table 5.7: CPU time in minutes and time step in seconds, for medium and fine grids 
 Airy Wave Rienecker- Fenton 
 CPU time Time step CPU time Time step 
Medium grid 65-75 0.3143*10-2 120-130 0.3143*10-2 
Fine grid 550-580 0.1615*10-2 940-1200 0.1615*10-2 

 
From the analysis of CPU time presented in Table 5.7 some important remarks can be made:  
 
• Airy Wave and Rienecker-Fenton waves have the same accuracy in simulating wave run-up, 

but twice the computational time is needed for Rienecker-Fenton waves. Evaluating time 
steps shows that these are the same for both methods and not causing the increase in CPU 
time.  The  doubling  in  time  is  probably  caused  by  an  inefficiency  of  the  model,  the  wave  
kinematics  are  evaluated  in  all  grid  cells  while  it  should  only  be  necessary  on  in-  and  
outflow  boundaries.  As  Rienecker  Fenton  theory  is  more  complex  it  takes  more  time  to  
evaluate.  

• Fine  grids  lead  to  more  accuracy,  especially  for  Iribarren  numbers  higher  than  1,5  (see  
Figure 5.75, 5.6 and 5.8), but also lead to an increase of eight to nine times of computational 
time. This time increase is logical as number of grid cells double in both x- and z-direction 
and the time step is (almost) halved, leading to an increase of 2x2x2=8 in CPU time.  

• The increase of number of integration points does not lead to an increase of computational 
time. 

5.6 Concluding remarks 
 
In this last section a short summary of the main conclusions drawn in this chapter are given. These 
conclusions are divided in two topics, conclusions with respect to physical processes and with 
respect to the model settings and ComFLOW. 

Physical processes 
• The general performance of the numerical model is good, qualitatively the wave-structure 

interaction is simulated well.  
• The results of run-up height are convincing, having good resemblance with data of physical 

experiments. Nevertheless, for waves with higher breaker parameters values ( >2), around 
the transition from breaking to non-breaking and for non-breaking waves, the results are in 
the lower regions of the experimental data. Energy losses during structure-wave interaction 
and wave propagation are caused by numerical dissipation. Three possible causes for 
numerical dissipation are indicated: 
– Numerical roughness due to discretization of the geometry  
– Artificial viscosity 
– Restriction in flooding algorithm 

• The numerical dissipation due to the created numerical roughness on the structure is seen as 
the main cause for energy dissipation in these simulations.  
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• Artificial viscosity has a damping effect on propagating waves and can decelerate the 
leading edge of the wave front. The damping effect on waves is in this study assumed to be 
very small and less influential on the results than the discretization of the geometry.  

• Propagation  of  the  leading  edge  of  the  wave  front  is  influenced  by  the  way  flooding  is  
treated by the numerical model. This causes the deceleration of up-rush of waves, as shown 
in the dam break test. In the run-up simulations in this chapter the maximum velocities are 
lower than the high speeds reached in the dam break test and are only reached for a short 
time span. The influence of this dissipation factor is therefore assumed to be small in these 
simulations. 

• The results concerning run-down heights give a less regular pattern and are less convincing 
than  the  run-up.  The  results  are  too  low  compared  to  experimental  data.  No  clear  
explanation was found for this.  

• The results of the run-up and run-down values are showing slope dependency. The steepest 
slope gives smaller amplitudes at the shoreline than the gentler slopes. This could be caused 
by the fact that different slopes angles can cause different magnitude of numerical 
roughness in the discretization of the geometry. 

• The calculated reflection coefficients gave good resemblance with experimental results, 
showing that the reflected wave energy is correct. 

• The number of grid cells per wave length and wave height give guidance for choice of the 
grid size, 170-200 grid cells per wave length in the horizontal and 4-6 per wave height in the 
vertical are considered sufficient for this type of simulation.  

ComFLOW model 
• The program showed to be robust for these simulations. Only in three simulations flotsam 

and  jetsam  arose  which  did  not  influenced  the  results,  while  the  accumulation  of  flotsam  
and jetsam is a known problem for VOF-models. Second only one simulation crashed out of 
170 simulations in total.      

• Output problems occur with the use of monitoring lines, while the program gives no 
warning. 

• The increase of number of integration points leads to a stable solution, an improvement in 
run-up heights, due to the increase of smoothness of the geometry, while no extra CPU time 
is  needed.  The results  improve more for  coarser  grids.  However  it  must  be  remarked that  
the  model  does  not  run  with  values  higher  than  9,  so  at  this  moment  the  increase  of  
‘smoothness’ is not endless.  

• The GABC boundary conditions works good: it proved to be robust and all wave energy of 
reflected  waves  is  transported  out  of  the  domain.  Only  for  some  simulations  with  linear  
waves it seems that not all energy is transported out of the domain, for all other simulations 
no unwanted wave reflections at the boundaries are observed in the results.   
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6 Wave breaker types  

To  test  the  performance  of  the  model  in  a  qualitative  way  for  wave-structure  interaction,  the  
model results are compared with video recordings. These recordings are made during 
experimental  model  tests  in  a  wave flume with regular  waves.   It  must  be  emphasized that  this  
chapter  is  intended  to  be  illustrative  and  no  thorough  analysis  is  made  of  the  actual  physical  
processes.  It  will  give  a  general  idea  how  well  the  breaking  or  non-breaking  of  waves  with  
different breaker parameters on the slope is represented.    

6.1 Numerical and physical model setup  
 
The videos of the waves are recorded within the test program of Patrick van Broekhoven at the 
flume of the Delft University of Technology. The results of his study are still being processed and 
will be presented in his master thesis.  
In  this  program  different  regular  wave  conditions  are  tested  on  smooth  slopes  of  1:2  and  1:1.5,  
respectively. The total test program of the experiment also includes irregular waves, rough slopes 
and  permeable  slopes.  This  part  of  the  test  program  is  not  considered  for  this  study,  as  in  this  
study  only  regular  waves  on  smooth  slopes  were  simulated.  In  Figure  6.1  an  overview  of  the  
flume is shown, with the set-up for a 1:2 slope. For this slope experiments are selected for analysis.  
The length from the wave paddle to the toe of the structure is 24.88 m, the width of the flume is 
0.8 m, the slope is 1:2 and the still water depth in front of the slope is 0.5 m.        
 
 

 
 

Figure 6.1: Experimental domain setup of test in TU Delft flume conducted by Patrick van Broekhoven. 
 
The length of the computational domain was chosen much shorter than in flume, this choice 
reduces  computational  time  and  should  have  no  influence  on  the  results.  In  Figure  6.2  the  
computational  domain  is  shown,  with  a  length  of  9.9  m  from  the  incoming  wave  domain  
boundary to the toe of the structure. The flume is more or less two wave lengths long. Six cell per 
wave height are used and 350 cells per wave length, leading to z=0.015 and x=0.010. The 
simulation period is set to 35 seconds.  
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Figure 6.2: Numerical domain setup for simulations with experimental data of Patrick van Broekhoven.   

 
Two  waves  are  selected  from  the  wave  conditions  that  were  tested  in  the  flume,  denoted  as  
EGM006 and EM014. These waves are selected on their corresponding breaker parameter, a 
surging and a plunging wave are chosen.  In Table 6.1 these two wave conditions are given, with 
the breaker parameter and the corresponding breaker type.  
 

Table 6.1:Wave parameters of the incoming waves used for the simulations 
Experiment H [cm] T [s]  Breaker type 
EGM006 9.36 1.7 3.47 Surging 
EM014p 8.84 0.97 2.03 Plunging/collapsing 

6.2 Results  
 
In this chapter the focus is on the comparison of  the wave motion of video recording of a physical 
experiment and numerical representation of this wave. This will indeed be done hereafter, but 
first  the  exact  computed  values  of  wave  run-up  and  down  are  given  and  compared  with  
experimental results and the results of the previous chapter. The results are given in the table 
below.  
 

Table 6.2: Run-up results of experiment and numerical simulations 
 Experiment ComFLOW 
 Ru Ru/H Ru Ru/H Rd Rd/H 
EGM006 20.7 2.21 15.3 1.73 -11.7 -1.25 
EM014 18 2.04 13.3 1.50 -5.1 -0.58 

 
For wave run-up the results are too low compared to the experimental results. Run-down is not 
analyzed in  the study of  Patrick van Broekhoven,  so  exact  values  cannot  be  compared with the 
physical experiment. In the next section differences and resemblances in wave motion during 
down-rush will be enlightened when analyzing video recordings and numerical results. 
The graphs with the run-up and run-down results of the previous chapter are shown again with 
the results of the simulation on the 1:2 slope of this chapter, see Figure 6.3. Observed is that the 
ComFLOW results are for the non-breaking wave far below the experimental data range. The  
results are in line with the observed slope dependency in the previous chapter. The slope 
steepness (1:2) is steeper (maximum 1:3) than for the simulations in the previous chapter and the 
same  trend  observed.  The  results  for  run-up  and  run-down  are  again  lower,  giving  a  smaller  
vertical  amplitude  at  the  slope.  The  run-down  results  are  therefore  more  in  line  with  the  
experimental data of Schüttrumpf and Bruun and Gunbak.  
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Figure 6.3: Results of regular  wave run-up and run-down (figure 5.8 and 5.13), including the results of the simulations with 

slope 1:2. 

6.2.1 Surging wave 
 
In  this  section  snapshots  are  shown  of  the  numerical  simulation  and  video  recordings  of  the  
experiment EGM006, with a surging wave. In these snapshots good resemblance between physical 
model  test  video  recordings  and  numerical  results  is  observed,  see  Figure  6.4.  General  wave  
motion is reproduced well for all stages of the wave movement, although some small differences 
are  observed.  For  example  a  t=20.58  s  the  wave  shape  is  less  bended  in  the  numerical  
representation. The turbulent movement around maximum run-down is not represented in the 
numerical  results,  as  a  turbulence  model  is  not  included.  This  induces  small  differences  at  the  
slope of the structure, but the overall wave shape is quite similar. This observation is in line with 
the results for run-down in the previous chapter, for non-breaking waves the run-down results are 
comparable with experimental data (slightly overestimated).  
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Figure 6.4: Snapshots of video recordings and ComFLOW results, displaying up- and down-rush of a surging wave. 

   

6.2.2 Plunging wave 
 
In  this  section  snapshots  are  shown  of  the  numerical  simulations  and  video  recording  of  the  
experiment EGM014, with a plunging wave. Comparing the video recordings and the numerical 
results,  the  same  statement  can  be  made  as  for  surging  waves:  the  general  wave  motion  is  
reproduced well for all stages of the wave movement, see snapshots in Figure 6.5. However, the 
observed differences are of larger influence in for this type wave breaking, shown in the snapshots 
in Figure 6.6. Again it is observed that turbulence can induce some difference in wave motion, for 
example  in  the  snapshot  at  t=21.28  s,  but  present  in  most  snapshots.  Furthermore  duration  of  
actual the breaking of the wave is somewhat faster in the numerical representation, compare the 
snapshots at t=21.93, 21.98 and 22.03 s. But the general shape of the wave is represented well.     
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Figure 6.5: Snapshots of video recordings and ComFLOW results, displaying a plunging wave. 

 
Figure 6.6 shows in more detailed the differences between the video recordings of the physical 
model test and the numerical representation, which are of influence on the run-down results. The 
snapshots Figure 6.6 show that during down-rush the water is retreated too fast in the numerical 
representation. In the numerical representation the appearance of the wave breaking is more a 
collapsing wave rather than a plunging one, while the video recording show a more plunging 
wave pattern.  
This  too fast  retreating of  the small  water  layer  is  of  influence in  the overestimation of  the run-
down results for breaking waves, as this will result in lower minimum water levels reached and 
thus lower wave run-down.  
An important  remark for  this  analysis  must  be  made,  that  it  gives  an answer to  which physical  
process is not represented well. However it does not answer the question why this is happening.  
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Figure 6.6: Snapshots at t=22.59, 23.61, 23.66 s of video recordings and ComFLOW results, displaying down-rush of a  

plunging wave.
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7 Conclusions and recommendations 

The  objective  of  this  research  was  to  thoroughly  analyze  numerical  simulation  of  wave  run-up  
and  other  relevant  wave-structure  interaction  processes  on  smooth  and  impermeable  coastal  
structures  with  perpendicular  wave  attack.  To  investigate  whether  the  Volume  of  Fluid  (VOF)  
model  ComFLOW  is  able  to  accurately  represent  these  processes  with  2DV  simulations,  if  the  
model  is  robust  and  which  model  settings  are  to  be  preferred.  In  this  chapter  conclusions  
concerning these investigations are presented as well as recommendations with respect to further 
research and further development of the program.  

7.1 Conclusions 
 
To  investigate  whether  the  numerical  model  different  mathematical  aspects  properly  solves  for  
relevant processes, simulation results are compared with analytical solutions. For the analysis of 
the different wave-structure interaction processes, simulations are performed with regular waves 
on impermeable structures with smooth, uniform slopes.  
Overall it can be stated that the model performs well and is able to accurately simulate different 
wave-structure interaction processes including wave run-up. For proper numerical reproduction 
of  wave-structure  interaction,  wave  run-down,  reflection  and  the  type  of  wave  breaking  are  
considered as important processes. Also the model proved to be robust. Below this conclusion is 
elaborated in more detail, divided in two main topics: the physical processes and the model 
performance. 

Physical processes 
• The results with respect to wave run-up are convincing, having good resemblance with data 

of  physical  experiments,  especially  for  lower  values  of  the  breaker  parameter.  For  waves  
with higher breaker parameters values ( >2), the (relative) numerical dissipation is too high 
during structure-wave interaction and is causing a decrease of approximately 0.3 in relative 
wave run-up (Ru/H).  

• The discretization of the geometry creates numerical roughness at the slope and is indicated 
as the main cause of decrease in wave run-up.  

• Artificial  viscosity  and  a  restriction  in  the  algorithm  of  the  flooding  of  dry  cells  are  other  
processes that are indicated as other causes for numerical (energy dissipation, but are 
assumed less influential in wave run-up simulations.   

• The results concerning wave run-down give a less regular pattern and are less convincing 
than  the  run-up  results.  The  relative  wave  run-down  is  overestimated  (hence  the  lowest  
water level in the simulations is lower than in the experiments) compared to experimental 
data, especially for breaking waves ( <3). An overestimation of approximately 0.6-1.0 in 
relative  run-down  is  observed.  It  is  observed  that  the  numerical  model  simulates  the  
retreating of the wave too fast, but no clear explanation is found for this. The answer may 



 
 
 
 
 

 
 
78 of 85 
 

Numerical modeling of wave run-up on a dike 
 

 December 2010 
 

lay in the different physical characteristics of wave run-up and run-down or the difference 
in handling of flooding and drying of cells by the numerical model.  

• Both run-up and run-down results showed dependency on the slope, which already should 
have been accounted for in the breaker parameter. Resulting in a smaller vertical amplitude 
at  the  shoreline  for  steeper  slopes.  An  explanation  is  found  in  the  difference  in  created  
roughness by the discretization of the geometry for different slope steepnesses. However, 
some physical experiments also show depency on the slope as well.   

• The calculated reflection coefficients gave good resemblance with data from physical 
experiments,  showing  that  the  right  amount  of  wave  energy  is  reflected  at  the  structure.  
Although it  is  observed that  waves for  which run-up results  are  low (in  the non-breaking 
range)  also  give  low  reflection  coefficients.  The  energy  is  (numerically)  dissipated  at  the  
slope.  

• Visual inspection of numerical results with video recordings of a physical model test 
showed that, the numerical model is capable of a good representation of different breaker 
types.  

ComFLOW and model settings  
• The model showed to be very robust for these simulations. Only one simulation crashed out. 

Only in three simulations unphysical small-scale fluid bodies (so called flotsam and jetsam) 
were formed, which did not influenced the results.    

• The number of grid cells per wave length and wave height give guidance for the choice of 
the  grid  size  and  determine  the  relative  grid  fineness  in  terms  of  relevant  physical  
parameters. 170-200 grid cells per wave length and 4-6 per wave height are concerned 
sufficient for these type of simulations.  

• During the study it was found out that the maximum number of integration points could be 
as high as nine. This value gives stable results, reduces the created numerical roughness and 
does  not  lead  to  an  increase  of  CPU-time.  It  is  advisable  to  use  the  highest  number  of  
integration points possible when simulating smooth bodies or geometries.  

• In this study it was proved that the use of the free-slip or no-slip boundary conditions did 
not lead to large differences in the propagation of the leading edge of the wave front along 
the slope.    

• Artificial viscosity has a damping effect on propagating waves and causes the deceleration 
of  the  leading  edge  wave  fronts  traveling  along  the  slope,  both  leading  to  lower  run-up  
heights.  

• The results concerning wave run-up showed that the differences in results were very small 
for Rienecker-Fenton waves and Airy waves. Rienecker Fenton waves however double the 
CPU-time,  therefore  it  should  be  sufficient/advisable  to  use  Airy  waves  in  these  type  of  
simulations.    

• The  use  of  GABC  boundary  conditions  with  the  ‘robust’  model  setting,  proposed  by  
Wenneker (2010), works very well. All wave energy of the reflected waves is transported out 
of the domain, none unwanted reflections on the boundaries influencing the results and this 
setting proved to be stable.   

7.2 Recommendations 
 
In this section recommendations are given, concerning further research and development and 
usage of the ComFLOW model.  
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Physical processes 
• It  is  recommended  to  perform  more  simulations  with  higher  breaker  parameters  .  Now  

most  simulations are  done with lower  values,  but  it  was recognized that  higher  breaker  
parameters gave relatively low values. More extensive research could reveal if this error is 
systematically and if a constant value is reached for the relative run-up.   

• Other relevant wave-structure interaction parameters should be investigated in future 
research.  Examples  are  velocities,  and  layer  thickness  on  the  slope  and  volumes.  These  
processes  could  possibly  be  important  for  future  research  on  overtopping,  Schüttrumpf  
(2001) derived formulas for the velocity and layer thickness. Volume exchange formulas are 
described by H.D. Jumelet (2010).  

• It is recommended to extend the research on wave run-up to irregular waves and compare 
this  simulations with experimental  data.  Examples  of  possible  usable  experiments  are  van 
Gent (1999), Smith (1998), De Waal and Van der Meer (1992) or the experiments with 
irregular waves of van Broekhoven used in this study.   

• Future  research  should  include  investigation  on  reduction  factors  on  wave  run-up.  This  
would comprise the inclusion of angular wave attack, berms and permeable structures in the 
simulations. The newest version of ComFLOW includes permeable structures. Work on the 
calculation  of  reduction  factors  is  one  of  the  fields  were  interest  in  numerical  modeling  is  
large and future application is anticipated.  

• More research should be done on the actual cause of the overestimation of the run-down 
values for breaking waves and the dependency on the slope. For example the dam break test 
with an downward sloping channel could be studied.  

• It is recommended to do more research on the slope dependency that was observed and the  
two hypothesis that are formulated as possible explanations.  

• The research should be extended to investigations on overtopping; this process is indicated 
as one of the most important causes for dike failure. The good performance on simulating 
wave run-up shows that the model has the potential for good performance on overtopping 
as well.  

ComFLOW model 
• The discretization of the geometry was indicated as the main cause of numerical energy 

dissipation. It is recommended to create better insight in the magnitude of the numerical 
roughness. If considered necessary it is recommended to asses solutions to this problem.    

• Further  research  on  the  free  slip  and  no-slip  conditions  and  the  impact  on  coastal  
engineering applications. A partial slip boundary condition at the geometry boundaries is in 
development (Veldman and Huijsman 2010). 

• The  use  of  Rienecker-Fenton  waves  needed  twice  CPU-time  as  Airy  waves.  Inefficient  
programming in ComFLOW probably causes this increase of CPU-time. As computational 
time is valuable it would be an improvement to eliminate this inefficiency.  

• It was found that for some parts of the monitoring lines no useful data could be generated. 
Problems of this kind were also detected by Wenneker (2010). ComFLOW could be 
improved by giving a warning message with sufficient information. The user can decide to 
abort the computation and change the position of the monitoring line, or to neglect this 
warning and continue the simulation. 
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A Derivation of dam break test, sloped channel dry 
bed 

The solution represents a dam break in a dry, frictionless, upward sloping channel bed with zero 
initial velocity, in a prismatic wide rectangular channel. The problem as formulated can be solved 
by advancing the solution along the characteristics. The problem is sketched in the figure below, it 
is shown that the rotation in fact only contributes to a constant acceleration in negative x-direction 
(denoted  with  gS0)  and  a  decrease  in  gravitational  acceleration  in  z-direction  (denoted  with  g’).   
Which causes a deceleration of the velocities in positive x-direction in time and a acceleration in 
negative x-direction. Although it is not used in this study we can also add an initial velocity v0  to 
the problem, in this derivation this initial velocity will be included.   
 

 
 
 
Assume the water occupies the region x<0;0<z>h0 initially held back by a dam at x=0. At t=0, the 
dam is removed (breaks). What is the height of the water h(x,t) for t>0, the initial condition is 
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On the characteristic that originates at t=0 for x<0, 
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Leading to constant for the forward and backward characteristic:  
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For the leading edge of the wave front this leads to the following equations:  
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Where the velocity is the derivative of the position of the wave front in time.  
For the leading edge of the negative wave this leads to the following equations:  

2
0 0

0 0

0

0

2 1 2

2

x c t v S g t

c v S g t

t
u  

 
Filling these characteristics in equation 4.1, the solution between the negative propagating wave 
and the leading edge of the wave, is described by:  
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In which,  is the angle between the bed and the horizontal plane and  >0 for an upward slope. 
For an upward slope, the maximum elevation reached by the wave front is zmax=2*h0 at x=2/tan 

,  for t=2 c0/g*S0 . This result is independent of the bed slope.  
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B Generating output from ComFLOW files 

Monitoring lines 
To extract the run-up heights from the monitoring lines the following procedure was adopted The 
data of the monitoring line contains time series of computed velocities and pressures at 100 points 
along the defined line. The points are uniformly distributed along the line and the distance 
between the points in vertical direction is 0.0143 m. In figure B-1 the monitoring line is showed, 
the figure shows the placement and the way the run-up vaules are extracted.  
For  all  the  100  points  on  monitoring  line  it  is  extracted  whether  fluid  is  present  in  the  grid  cell  
were the point is located. This is done by finding all points where a pressure larger than zero is 
computed. These points are labeled 1, regardless the amount of fluid present in this cell, F(ull) in 
the figure. All points in empty cells are labeled NaN (not a number). Now it is known were fluid 
is present and where not, this can be translated to z- and x- coordinates. These 100 monitoring 
points are uniformly distributed and the distance between is therefore defined by the length of the 
monitoring line and is independent of the grid size:  
 
• z=0.0143 for all grids and geometries 
• x=0.0429,0.057,0.0857 respectively depending of the geometry 1:3, 1:4, 1:6 
 
Because z  is  smaller  than the height  of  the grid cells  and therefore  in  each consecutive row of  
grids cells a point will be present, the accuracy of the wave run-up results is determined by the z 
or the grid cells and the monitoring lines (see also section 5.4.2). In figure B-1c the wave run-up is 
overestimated, but it can also be overestimated with the applied procedure.  
By plotting the extracted water heights on the z-axis in time, the wave signal along the slope of the 
geometry  appears.  It  is  checked  if  this  procedure  is  correct,  at  the  start  of  the  simulation  the  
waterline should be on z=0, the still water level.  
In this report two different graphs are given, showing the wet values and wave signal along the 
slope. For the graph showing the wet values all points indicated by 1 are filled in (F in the figure), 
giving all points were water is present. To extract the wave signal from this along vertical lines the 
first point that is NaN (E in the figure) is searched for, giving the dry area.  
The run-up height is determined from the created graphs, by reading the maximum height that is 
reached.  
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Figure B.1:The use of monitoring lines. Grey denotes body, blue denotes water and red denotes the monitoring line. A: 
monitoring line along the slope. B: with water present. C: the numbering of cels, F denotes full, E denotes empty.   


