
Unsatisfiable core
learning for
Chuffed

Improving the performance of Chuffed,
a Lazy-Clause-Generation solver, by using

machine learning to predict unsatisfiable cores.

by

Ronald van Driel

Unsatisfiable
core learning for

Chuffed
Improving the performance of Chuffed, a
Lazy-Clause-Generation solver, by using
machine learning to predict unsatisfiable

cores
by

Ronald van Driel
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday July 24, 2020 at 9:30 AM.

Student number: 4289870
Project duration: September 1, 2019 – July 24, 2020
Thesis committee: Dr. N. Yorke-Smith, TU Delft, Supervisor

Dr. ir. S. Verwer, TU Delft
Dr. S. Roos TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
You are currently reading my Master thesis, this document marks the conclusion of my M.Sc. in Com-
puter Science at the Delft University of Technology. A lot of time and effort went in the creation of this
document, but throughout the process I have learned many valuable lessons both on personal and
scientific level.

This thesis would not have been possible without the excellent guidance and support of my su-
pervisor Dr. Neil Yorke-Smith, who I would like to thank extensively for all the meetings and guidance.
Additionally, I thank Peter J. Stuckey and Kevin Leo for providing me with some insightful answers to my
questions. Finally, I also would like to thank my friends and family. My parents for their unconditional
support. My friends for providing welcome distractions during uninspired moments.

Ronald van Driel
Delft, July 2020

iii

Contents

Abstract 1
Keywords . 1

1 Introduction 3
1.1 Motivation . 3
1.2 Background . 3

1.2.1 SAT . 4
1.2.2 CP. 4
1.2.3 Hybrid SAT/CP . 5

1.3 Research goal . 5
1.4 Research questions . 5
1.5 Structure of this document . 6

2 Background & Related work 7
2.1 Traditional research . 7

2.1.1 SAT . 7
2.1.2 CP. 8
2.1.3 Integration of SAT and CSP . 9

2.2 Emergence of machine learning . 10
2.3 Related work . 11

3 Initial experiments 13
3.1 Satisfiability prediction . 13

3.1.1 Can satisfiability be accurately predicted? . 13
3.1.2 Does satisfiability prediction benefit Chuffed? . 14
3.1.3 Conclusion . 14

4 Methodology 15
4.1 Approach . 15

4.1.1 Intuition . 15
4.1.2 High-level Procedure . 15

4.2 Data . 16
4.2.1 Alternatives . 17
4.2.2 Acquisition . 17
4.2.3 Data characteristics . 18

4.3 Machine learning . 19
4.3.1 Model . 19
4.3.2 Features . 21
4.3.3 Configuration . 22

4.4 Implementation . 22
4.4.1 Integration . 22
4.4.2 Chuffed’s Parameters . 23

5 Experiments 25
5.1 Experimental setup . 25
5.2 Exploratory trial . 27
5.3 Results . 28

5.3.1 MRCPSP . 28
5.3.2 Bin-Packing . 29
5.3.3 Price-collecting . 30
5.3.4 Fastfood. 31

v

vi Contents

6 Discussion 33
6.0.1 Statistical significance . 33
6.0.2 Interpretation . 34

7 Conclusion 37
7.1 Answers to the research questions . 37
7.2 Scientific impact . 37
7.3 Future research. 38

A Available data instances 39

B Single run example 41

C Scientific paper 43

Bibliography 51

Abstract
Solving propositional satisfiability (SAT) and constraint programming (CP) instances has been a fun-
damental part of a wide range of modern applications. For this reason a lot of research went into
improving the efficiency of modern SAT and CP solvers. Recently much of this research has gone into
exploring the possibilities of integrating machine learning approaches with these solvers. However, with
hybrid solvers, which combine both SAT and CP, dominating recent benchmarks it is surprising that
no research has been done yet to apply those machine learning approach to improve hybrid solvers.
This research proposes using a machine learning technique called unsatisfiable core learning to im-
prove the performance of the Lazy Clause Generation solver Chuffed. The approach developed for
this study uses a Graph Convolutional Network model, which is trained on a dataset containing un-
satisfiable instances. This machine learning model is then used for predicting unsatisfiable cores on
CP instances and the predictions are used to initialise the activity score of the Variable State Indepen-
dent Sum heuristic which is incorporated in Chuffed. The resulting approach managed to consistently
solve a set of Multi-mode Resource-Constrained Project Scheduling instances 2.5% faster on average.
These results indicate that, while this technique was originally developed for SAT, it can also be used
to improve hybrid SAT/CP solvers.

Keywords
Constraint programming (CP) • Propositional Satisfiability (SAT) • Chuffed • Graph Convolutional Net-
work (GCN) • Variable State Independent Sum (VSIDS) • Machine Learning • Lazy Clause Generation
(LCG)

1

1
Introduction

Both propositional satisfiability (SAT) and constraint programming (CP) are automated reasoning tech-
nologies prevalent in modern computations. They form the foundation of a wide range of real-life
problems such as: scheduling, logistics and resource allocation [36]. Solving SAT or CSP instances as
quickly as possible is therefore of great economical interest to many companies. In the last decade a
trend has emerged where much research is being done to developing improved SAT and CP solvers by
integrating them with recent machine learning techniques. However, with hybrid SAT/CP approaches
dominating the recent MiniZinc challenges [30, 31], the questions arises if any of these developments
can be also be useful to improve these hybrid approaches.

1.1. Motivation
The immense popularity of propositional satisfiability (SAT) and constraint-satisfaction problems (CSPs)
is reflected in the vast amount of research that has been conducted over the years to make SAT and
CSP solving as efficient as possible [4]. In general, SAT solvers are known for being surprisingly
efficient, whereas constraint programming (CP) sacrifices some of this efficiency for more expressive
power.

It is worth noting that across time the fields of SAT and CP have grown increasingly similar, this
similarity has caused a raise in interest to transferring knowledge from one domain to the other. Con-
sequently, more researchers have started exploring the possibility of directly combining SAT with CP.
The intention behind these combinations is to take advantage of the efficiency of SAT solving while
retaining the expressiveness of CSP [34].

Stuckey identified SAT’s effective use of conflict learning as a major reason for SAT’s efficiency
and developed the first successful hybrid SAT/CP approach [42]. This hybrid is based on a technique
called Lazy Clause Generation (LCG) [11]. LCG introduces a way to integrate SAT’s conflict learning
with finite domain propagation, which is a typical solving technique for CP. Recent benchmarks [30, 31]
show that such hybrid SAT/CP approaches are very competitive with the state-of-the-art.

Concurrently, recent machine learning developments have inspired increasingly many researchers
to explore the potency of enhancing SAT and CP solving using machine learning approaches. While
research has been conducted to explore a wide range of machine learning enhanced approaches [9,
46], researchers are yet to experiment with using machine learning to improve hybrid SAT/CPmethods.
It is, however, interesting to try this, because these methods have shown to be very capable at beating
he state-of-the-art solvers on recent benchmarks [30, 31]. Any benefit that can be gained frommachine
learning might push the boundaries of what is currently possible in the area of CP solving.

1.2. Background
This thesis expands on the existing research on SAT and CP. It is essential to have a basic under-
standing on the background of SAT and CP in order to follow the thesis statement and the reasoning
process behind it. The purpose of this section is thus to briefly introduce readers who are unfamiliar
with the underlying scientific background to allow them to better understand the remainder of this doc-
ument. To this purpose, this section briefly introduces the definition and applications of SAT and CSP.

3

4 1. Introduction

Additionally, the hybrid approachis which combine SAT and CSP solving techniques are of particular
interest to this research and they will also briefly be touched upon. For a more complete understanding
of the scientific foundations it is recommended to also read the Background & Related work chapter 2
and look into the references provided throughout this document.

1.2.1. SAT
Propositional satisfiability (SAT) is a widely studied NP-Complete problem. SAT solvers are generally
known for being remarkably efficient, but they are only useful for specialised data structures.

The input for a SAT problem is called a propositional formula which comprises a set of Boolean
variables and any combination of the basic logic operations AND, OR and NOT. Given such formula,
the SAT problem can be viewed as finding an assignment for all variables such that the formula evalu-
ates to true or, otherwise, determine that no such assignment exists. A simple example would be the
propositional formula shown below.

𝐹 ∶= (𝑥 ∨ 𝑥) ∧ (¬𝑥 ∨ ¬𝑥)

A solution to this example would be the following assignment: 𝑥 = 𝑇𝑟𝑢𝑒, 𝑥 = 𝐹𝑎𝑙𝑠𝑒. This means
that this proposition is satisfiable. The formula comprises a total of two variables 𝑥 and 𝑥 , and two
clauses (𝑥 ∨ 𝑥) and (¬𝑥 ∨ ¬𝑥). When a variable appears in a clause, either accompanied with or
without a negation (¬), it is called a literal, which means this formula has four literals: 𝑥 , 𝑥 , ¬𝑥 and
¬𝑥 .

It is worth noting that this formula is written in conjunctive normal form (CNF) which is the most
common way of formulating propositional formulas within the SAT domain. A formula is considered to
be in conjunctive normal form if 1) clauses only contain literals and OR operators and 2) the clauses
are separated by an AND operator.

The simplicity and restrictive syntax of SAT solvers allows SAT to be used as a low-level founda-
tion of a wide range of modern applications such as: hardware/software verification, theorem proving,
cryptography, circuit design and artificial intelligence.

1.2.2. CP
Comparable to SAT, but more general, would be constraint programming (CP). Similar to SAT, CP has
been a very active field of research in the past decades. While CP solvers are more expressive than
SAT solver they sacrifice some of the efficiency associated with SAT.

Two variants of CSP are distinguished, being the decision problem and the optimisation problem.
The decision problem for CSP amounts to finding an assignment for each variable for which all con-
straints are satisfied or otherwise determine that no such assignment exists. The optimisation problem,
on the other hand, also tries to find the best solution with respect to some objective value. Commonly
the optimisation problem is referred to as constraint optimisation problem (COP) or as a minimisation-
or a maximisation problem depending on if it is desirable for the objective value to become smaller or
greater. In this document CSP refers to both the decision and the optimisation variant unless otherwise
specified.

A CSP is composed of the following:

1. A set of variables V = {𝑥 , 𝑥 ,...}

2. A universe, comprising a domain for each variable, U = {𝐷 , 𝐷 ,...}

3. A set of constraints C = {𝐶 , 𝐶 ,...}

In addition to the above, a COP also considers an objective function for which the outcome, the objective
value, must be maximised or minimised.

Variables each have their own domain, being a predefined range or set of values. The constraints
impose all sorts of restrictions on the values to which the variables can be assigned to. The actual types
of values and the availability of constraints depend on the specific tool or library which is used. Even
though there is no general consensus on the implementation of values and constraints, most CP solvers
support values being Boolean, integer and float and at least implement the lesser-than, greater-than,
equality and inequality constraints. Additionally, it is common for CSP solvers to expand their constraint

1.3. Research goal 5

language with as many constraints as desired. A popular constraint to include, for example, would be
a constraint which requires a set of variables to be all different.

The general and versatile nature of CP solvers allows them to be widely useful to a broad range of
real-world applications including: scheduling, resource allocation and logistics [36].

1.2.3. Hybrid SAT/CP
While hybridisation of CP andmathematical programming has been proposed in the early 2000s [3, 15],
hybrid approaches which integrate SAT and CP have only been invented in the past decade. Combining
SAT and CP has proven to be a very efficient approach to solve CP instances.

The possibility of expressing SAT problems directly as a CSP makes SAT a subset of CP, implying
a strong relation between the two solving paradigms [44]. Ever since researchers realised the strong
connection betwen SAT and CP, they have taken inspiration from successful approaches in one domain
and tried to apply it to the other. However, it is only since the last decade that researchers have started
to combine SAT and CP into a hybrid approach. The first successful SAT/CP hybrid was proposed
by Stuckey [42]; this hybrid approach is based on a technique named Lazy Clause Generation (LCG).
LCG is a technique which uses finite domain propagation solving from CP and combines it with SAT’s
conflict learning ability. Integrating SAT’s conflict learning is realised by creating an inference graph
which is used to prevent searching similar parts of the problem.

Both cutting-edge solvers Chuffed [6] and Google OR-Tools [1] have deployed LCG in their solving
paradigm. These solvers show that LCG is very competitive compared against state-of-the-art CSP
solvers. This claim is backed up by OR-Tools’ performance at the MiniZinc Challenge 2017 [30] where
their LCG based version of OR-Tools managed to score top three in four out of five categories. After-
wards OR-Tools has evolved towards an approach involving linear programming (LP) as well as SAT
and CP. This new version of OR-Tools even managed to dominate all other competition by achieving
gold on each of the five categories at the MiniZinc Challenge 2019 [31].

1.3. Research goal
Hybrid SAT/CPmethods rely on SAT for representing conflicts which are encountered during the search
procedure. This means these methods inherit some of SAT’s characteristics and may thus benefit from
SAT related research. Recently, research on combining SAT solving with machine learning has risen
in popularity, therefore it makes sense to use this knowledge to apply it to improve a hybrid SAT/CP
solver. For this research a modified version of Lazy Clause Generation (LCG) solver Chuffed [6] is
developed and compared against the original. If this machine learning enhanced version obtains better
performance, this may suggest that similar machine learning approaches could also be carried over to
improve other hybrid SAT/CP solvers such as the current state-of-the-art Google OR-Tools [1].

Therefore, the primary goal of this research is to explore promising machine learning approaches
used within the SAT domain and determine if their potency can be applied to improve Chuffed’s per-
formance. It is typical for CSP solvers to have a varying performance depending on different problem
types, this behaviour may extend to machine learning assisted solvers where for some problem types
machine learning is more helpful than others. Another important factor that could influence the impact
of the machine learning integration is the available training data, sometimes they do not require train-
ing instances of the same problem types to be successful, but this need not be the case. For these
reasons the secondary goals are to 1) determine if there are significant differences in performance on
different problem types and 2) determine if machine learning generalises well between different training
instances.

1.4. Research questions
The aforementioned research goals can be expressed as the following research questions:

1. Is it possible to reduce the run-time of solving a CP instance by integrating machine learn-
ing in the LCG solver Chuffed?

2. Does the impact of using machine learning on the run-time of Chuffed differ across differ-
ent problem types?

6 1. Introduction

3. Does the impact of using machine learning depend on the type of problems in the training
set?

Answering these research questions will require obtaining data for training and testing, and devel-
oping a modified version of Chuffed which uses output from a machine learning model.

1.5. Structure of this document
This thesis follows the following structure: first a more detailed background is given alongside related
work in Chapter 2. Thereafter, Chapter 3 discusses some initial experiments which were conducted
prior to the actual research described in this document. Chapter 4 describes and explains which data
was used and how the approach used to answer the research questions was realised. The procedure
used to conduct experiments to evaluate the performance of the final approach is described in Chapter
5 which also presents the corresponding results. Statistical analysis and interpretation of these results
follow in Chapter 6. Finally, a conclusion is drawn in Chapter 7 which finishes with some recommen-
dations for future work.

2
Background & Related work

This research investigates the application of machine learning approach within the domain of proposi-
tional satisfiability (SAT) to solving constraint progamming (CP) instances. It thus finds its foundation
in both the domains of SAT and CP, it is essential to know what the building blocks of this research are
to understand its relevance. A more condense summary on SAT and CP is given in the introduction;
this chapter, discusses relevant prior scientific advances within the SAT and CP domains. First an
overview of the development within the traditional setting is given for both SAT and CP, then research
is covered about combining SAT and CP solving in hybrid approaches. The last section investigates
machine learning and how it has affected modern research to SAT and CP.

2.1. Traditional research
Within the context of this document traditional research refers to research which does not involve any
form of machine learning. Both SAT and CP have already been popular research domains for over
four decades. This has resulted in traditional research to these domains to become rather saturated,
meaning that over the years a so many traditional algorithms have been proposed with each their own
advantages that it has become challenging to make any significant contribution to this field. Giving an
overview of all existing algorithms would require an unrealistic amount of space and time, therefore
this section aims to just provide some understanding of the most important approaches and insights
that are central to this research. Whereas this document focuses on research relevant to this research,
a more extensive comparison between traditional SAT and CP approaches has been conducted by
Bordeaux et al. [4].

2.1.1. SAT
Most of the state-of-the-art work on SAT rely on previously established techniques, one such technique
originates from the work of Davis, Logemann and Loveland [7]. This work forms the foundations of
arguably the most influential SAT method, which referred to as the Davis, Putnam, Logemann and
Loveland (DPLL) algorithm proposed back in 1962 [8]. It is one of the first algorithms to implement a
backtrack and search approach. Backtrack search is a technique which involves the construction of
a search tree and then use local reasoning to prune away branches that do not contain the desired
solution. To this day, the majority of SAT solvers are based on the backtrack search technique intro-
duced with the DPLL algorithm. This can be attributed to the fact that the backtrack search approach
has proven to be impeccable for complete algorithms.

An algorithm is considered to be complete when it explores the entire solution space. This property
allows complete methods to always give the best solution if it exists or alternatively determine the ab-
sence of a solution if the problem is unsatisfiable. Incomplete methods, on the other hand, are typically
driven by heuristics and do not necessarily perform exhaustive exploration of the search space, while
typically faster at generating a good solution they lack the ability to detect unsatisfiability. Incomplete
methods are typically either population-based algorithms [28], for which ant colony optimization [10]
is the best known example, or algorithms based on stochastic local search [20], such as simulated
annealing [43]. While some local search approaches, such as the one proposed in 2007 by Hutter et

7

8 2. Background & Related work

al. [22], make for a strong competitor to complete methods, complete SAT solvers remain considerably
more common in both research and application. The popularity of complete methods can be accred-
ited to their exceptional performance on real-world applications. Additionally, their ability to determine
satisfiability makes them a good fit for low-level decision problems encountered in many modern appli-
cations.

Because of their prevalence, recent research on SAT solvers is primarily directed at complete meth-
ods, continuing on the DPLL backtrack search algorithm. Most of this research is aimed at improving
different sorts of branching techniques and heuristics. Two major advances in this area have been the
introduction of clause learning and nonchronological backtracking [27], they work especially well for
the structured nature as encountered in real-world applications.

Within the context of SAT solvers, clause learning refers to the analysing of conflicts as they occur
and store some information in order to prevent similar conflicts from occurring. Clause learning is typi-
cally realised by adding a clause containing relevant conflicting literals. Nonchronological backtracking,
on the other hand, refers to an approach where the solver is not limited to backtrack to the most recent
decision level when a conflict occurs, instead it makes use of conflict analysis to try and backtrack to a
decision level that actually resolves the conflict.

Another notable advance for SAT solving has been the development of a solver called Chaff which
was released in 2001 [32], at the time this solver had a major impact on the field with its remarkably
efficient performance. One innovative heuristic introduced with Chaff that allowed for this performance
was the Variable State Independent Decaying Sum (VSIDS) heuristic. The VSIDS heuristic can es-
sentially be viewed as having an activity score for each literal of the original formula, this score for
a literal is increased by a constant amount whenever a clause containing this literal is added during
search and is decreased by division periodically over time, the solver prioritises branching on literals
with the highest activity score. The nature of this procedure, having additive increments and multi-
plicative decay, emphasises branching on literals that appear more recently in the search history. The
VSIDS heuristic manages to capture the search process of the solver due to its temporal nature, yet
it is very efficient because of the property of being independent on the state of the variables. Being
variable state independent allows for this efficiency because, contrary to earlier heuristics, only one
value needs to be stored per variable, which is cheap to maintain. Ever since the release of Chaff,
researchers have explored different variations of the VSIDS heuristic [26] and have achieved similar
performance. A simplified version the of backtrack & search algorithm which uses the VSIDS heuristic
is given in pseudo-code 1 below.

Further research has been done to address an issue where poor initial branching can significantly
amplify the solving time of some instances. A widely adopted strategy to combat this issue is randomly
restarting the solver as originally proposed by Gomes et al. [16]. With random restarts, typically the
current variable assignment is discarded but additional clauses from clause learning are retained, this
allows the solver to explore a different part of the search tree without repeating previous mistakes.

2.1.2. CP
Constraint programming (CP) is a broad area of research directed at solving both constraint satisfaction
problems (CSP) and constraint optimisation problems (COP). The main differences between SAT and
CP which sets them aside are both the fact that the variable domains in CP are not restricted to be
Boolean and the fact that CP supports a wider range of constraints. Because of this, CP solvers are
way more expressive and general than SAT and are more suitable for higher level applications.

Beingmore general, research on CP has had a different focus where, instead of focusing on decision
problems like SAT, research on CP is typically more directed at the optimisation variant. This has
impacted the focus of research to CP solving, where the aim was not to find a general purpose solver
for all possible CP instances, instead many CP solvers rely on the tuning of heuristics or parameters
in order to specialise in a specific subset of CP. This also means CP supports a more varied range of
algorithms tailored to specific types of CP instances. Instead of providing a single algorithm, CP solving
is usually performed with the assistance of high level modeling languages or toolkits such as MiniZinc
[33] and Gecode [38].

Despite the wide range of different approaches that exist for solving CPs, a typical CP solver can
be roughly divided into the two components propagation and search [36]. Propagation refers to the
implementation of the constraints where values violating the constraints are systematically eliminated.
Search is a higher level procedure that dictates which parts of the search tree to explore. Typically,

2.1. Traditional research 9

Algorithm 1: Backtrack & Search with VSIDS
input : SAT instance
output: Satisfying assignment or UNSAT
foreach literal 𝑖 do 𝑉𝑆𝐼𝐷𝑆[𝑖] ← 0
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ← ∅
while True do

if All variables assigned then
return SAT, assignment

end
𝑙 ← DecideNextBranch(𝑉𝑆𝐼𝐷𝑆) Choose to branch on a literal with high VSIDS score
𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡[𝑣] ← 𝑙 Assign variable to the literal branched on
while True do

𝑉𝑆𝐼𝐷𝑆[𝑖] ← 𝑉𝑆𝐼𝐷𝑆[𝑖] ∗ 𝑐 With c a constant between 0 and 1
𝑠𝑡𝑎𝑡𝑢𝑠 ← DoUnitPropagation
if 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 then

if assignment = ∅ then
return UNSAT

end
𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 ← AnalyseConflict
for 𝑙 ∈ 𝑙𝑖𝑡𝑒𝑟𝑎𝑙𝑠 do

𝑉𝑆𝐼𝐷𝑆[𝑙] ← 𝑉𝑆𝐼𝐷𝑆[𝑙] + 𝑘 With k any positive constant
end
Backtrack Undo any assignments that resulted in unsatisfiable state

end
end

end

search is implemented together with heuristics or branching policies to strategically traverse the search
tree .

The research fields of SAT and CP have grown to become similar over time. From a high level
perspective the predominant solving strategies for SAT and CP have become virtually the same. While
incomplete SAT approaches are typically based on stochastic local search [20], CP methods are only
different in that they offer a wider range of local search approaches integrated with constraint pro-
gramming [21]. Regarding complete methods, both SAT and CP have widely adopted variations of the
backtrack search algorithm as the most prominent approach.

2.1.3. Integration of SAT and CSP
While originally SAT and CP were commonly treated as separate fields of study, they have grown
towards each other over the past couple decades. This proximity became further apparent when re-
searchers discovered that SAT and CSP instances can easily be translated from one to the other [44].

With researchers realising the similarity between SAT and CP more and more researchers have
attempted to transfer successful methods from one domain to the other [4]. With SAT solvers being
incredibly efficient, researchers have even started to propose encoding difficult CSPs in SAT. This effi-
ciency can be accredited to SAT’s conflict analysis in conjunction with the Variable State Independent
Decaying Sum (VSIDS) heuristic [26]. Unsurprisingly, researchers have made an effort to try and in-
tegrate conflict learning with CP [23]. Clause learning is usually referred to as no-good learning in a
broader context. Multiple efforts have been made over the years to integrate no-good learning learn-
ing into CP solving [14, 18, 35]. However, while related techniques such as intelligent backtracking
approaches have been successfully adopted for CP, conflict learning has remained far more effective
within the SAT domain. The explanation for this difference is the fact that the specialised clausal struc-
ture of SAT problems is much more effective at representing conflicting assignments than the general
and complex structures found in CP.

A solution to this problem was proposed by Stuckey [42], his work describes a SAT/CP hybrid

10 2. Background & Related work

approach where parts of the CP solving paradigm are mapped to clauses in a SAT solver. This hybrid
approach is based on a technique named Lazy Clause Generation (LCG). This technique uses finite
domain propagation solving from CP and combines it with SAT’s conflict learning ability. It works by
generating SAT clauses representing finite domain propagators, based on these clauses an inference
graph is created and used to prevent searching similar parts of the problem.

2.2. Emergence of machine learning
In the last decade increasingly much research has been conducted to explore the potential of integrating
machine learning into traditional SAT and CP solvers. Recent advances in the field of machine learning
have stimulated researchers to try and explore different ways of applying machine learning to improve
traditional research. The promising results and versatility of machine learning has further contributed to
the popularity of this field. The major benefit of adopting machine learning is that, even though training
may take considerable time and space, once a model has been trained the prediction or classification
can be performed in constant time. This may have practical benefit as models can be trained during
idle times allowing for a more effective utilisation of computing resources. Although many use cases
for machine learning are described in SAT or CP related research, roughly five ways of integrating
machine learning with traditional methods can be distinguished.

Satisfiability prediction Machine learning can be used to predict whether an instance is satisfiable
or not. This application has been identified and realised for both SAT [9] and CSP [46]. Determining
satisfiability is considered to be NP-Complete for both SAT and CSP, meaning that it can be very costly
to use traditional methods for this. Machine learning, on the other hand, is able to provide a prediction
virtually instantaneously with very high accuracy. For example, the work by Devlin and O’Sullivan [9]
claims that they are able to achieve over 90% accuracy for large industrial benchmarks using standard
learning techniques like random forests. This means that for any application where absolute certainty is
not required machine learning can be used to significantly speed up the process. Research by Selsam
et al. [40] has shown that it is even possible to extend satisfiability prediction to end-to-end solving.

End-to-end solving Another popular application of machine learning is using a model to predict the
output of a solver, effectively proposing a direct solution to the problem. Research has shown that it
is possible for machine learning to solve both SAT [40] and CSP instances [2]. Interestingly, even if
the machine learning model fails to find a proper solution to a problem, the predicted assignment can
still be useful as a starting point for a traditional complete solver. For example the work by Wu [45]
describes an approach where the run-time of SAT solver is reduced by using an initial SAT formula
which is generated using machine learning.

Heuristics learning Perhaps the most widely studied application of machine learning is to improve
existing solvers. Most solvers use heuristics to guide their search, traditionally, heuristics were hand-
crafted based on the expertise gathered over years of domain knowledge. Machine learning; however,
has the ability to quickly analyse and learn from innumerable amounts of data to automatically learn
or improve heuristics to that work well for a specific instance. An example of such approach is pro-
posed by Selsam and Bjørner [39] where a neural network architecture is used to initialise the values
of the VSIDS heuristic for SAT. Another example would be the work of Song et al. [41] where machine
learning is deployed to automatically learn variable ordering heuristics for solving CSP instances.

Portfolio selection Portfolio selection refers to choosing between algorithms or search strategies
based on the instance that needs to solved. This technique is especially useful for CP as a broad
range of strategies have been developed which all perform differently depending on the characteristics
and structure of the problem. Using machine learning to automatically choose the best strategy can
result in incredibly good performing and robust solution. Research by Guerri and Milano [17] shows
that machine learning is very capable at deciding when to use an constraint programming approach or
when to use an integer programming approach to solve an instance. Even without the availability of
multiple algorithms this technique can also be used to learn when to use a certain search strategy [13].

2.3. Related work 11

2.3. Related work
This research described in this document is aimed at using machine learning to improve the hybrid
SAT/CP solver Chuffed. To the best of my knowledge, no other machine learning approaches have
been used to improve hybrid SAT/CP solvers. Instead, the final method deployed and analysed in this
research primarily draws inspiration from the work by Selsam and Bjørner on using machine learning
for SAT solving [39]. Their work describes how the existing neural network architecture called Neu-
roSAT, which was developed for predicting satisfiability on SAT instances [40], is modified to predict
unsatisfiable cores. An unsatisfiable core is an the smallest unsolvable subset of variables, also re-
ferred to as minimum unsatisfiable core (MUC). The work of Selsam and Bjørner [39] suggests that
when a variable is being classified as being part of a MUC it means that it should be prioritised during
solving. Following this intuition they integrated their modified machine learning model with the existing
SAT solvers MiniSat, Z3 and Glucose. They do so by using the predictions to initialise the values for the
VSIDS heuristic. Using this approach they manage to solve between 6 and 20% more problems from
SAT-COMP 2018 compared to the unmodified versions within the same time. Other work has shown
that it is possible create a generic problem class model to which allows using conflict learning across
different instances of the same problem type for Chuffed [5], which indicates that there may, in fact, be
learn-able concepts across instances.

The approach described in Chapter 4 continues on themethod proposed by Selsam and Bjørner [39]
by developing a procedure to examine if the improvements obtained for SAT solving can be extended
to improve the CP solver Chuffed.

3
Initial experiments

Before committing to the research approach described in Chapter 4 some exploratory research was
done to explore different possibilities for machine learning to improve hybrid SAT/CP solving. This
section briefly describes the experiments conducted as part of this preliminary research.

3.1. Satisfiability prediction
As a lazy-clause-generation solver, Chuffed relies on SAT to perform conflict analysis. Initially some
research was done to investigate the possibility of using satisfiability prediction on SAT instances to
leverage the conflict analysis component of Chuffed. For this approach the following two questions
need to be answered:

3.1.1. Can satisfiability be accurately predicted?
While research already exists on predicting satisfiability on SAT instances [47], it is not yet a given that
it is possible to accurately predict satisfiability on SAT instances that are generated during the solve
procedure of Chuffed. For this classification to be any useful to Chuffed requires the machine learning
model to to acquire the features in constant time and accurately make predictions. Given the complex
nature of CP problems, it is not unlikely that Chuffed produces large and difficult SAT instances.

To validate the capability of machine learning to predict satisfiability in Chuffed’s setting, multiple
different classifiers (Random forest, SVM, MLP, DNN) are trained and cross-validated on a dataset
containing 600 3SAT instances at phase transition, which are obtained through the public library SATLib
[19]. The models were initially trained on 32 features, including features such as: minimum/maximum
occurrences, horn rate, amount of positive/negative literals and co-occurrences of variables. These
selected features were based on the results presented in earlier work on SAT classification [47, 48].
Additionally only shallow features were selected, meaning that they can be extracted with minimal
overhead, typically within a single pass over the instance.

Initially, no single classifier managed to achieve an accuracy higher than 50%. These results indi-
cated that the features did not sufficiently correlate to the satisfiability of the SAT instance. Particularly,
11 features did not have any influence on the prediction output. Therefore, these 11 features were re-
placed with a new feature, which represented the average ratio of positive versus negative occurrences
of literals. This specific feature was chosen because it appeared to be very effective according to the
results of Xu et al. [48].

Using the new 22 features, the same experiment was repeated. This resulted that the random
forest classifier performs the best on the data by correctly classifying 60% of the instances. While
60% does not seem convincing, it is actually quite promising given the difficulty of the instances. For
actual instances, as encountered with CP solving, a higher accuracy may be expected as they likely
have more similarities in structures. Additionally more features could be added based on the linear
relaxation of the SAT instance.

13

14 3. Initial experiments

3.1.2. Does satisfiability prediction benefit Chuffed?
The next step is to investigate the possibility of integrating satisfiability in the solving process of Chuffed.
Like any lazy-clause-generation (LCG) solver, Chuffed generates clauses during each propagation
step. This clause is used to explain the propagation, it does so by identifying which variables would
otherwise be in conflict and creates a clause containing the conflicting variables. The clause is then
used to build and store a redundant constraint, also called a no-good, which prevents exploring similar
parts of the search tree where those same variables would end up in a conflict.

Unfortunately, there seemed to be no obvious way to use satisfiability prediction on the clauses
generated by the LCG solver. The main reason for this is the fact that these clauses are temporarily
created and used to build a no-good, but are never stored themselves. Another reason is the fact
that by definition all clauses generated during search are unsatisfiable which makes it very difficult to
provide sensible guidance for the solver based on the machine learning predictions.

3.1.3. Conclusion
The results obtained during the experiments do not contradict the possibility of using shallow features
to classify SAT instances generated by Chuffed. However, no obvious way could be discovered to use
SAT classification for improving the performance of Chuffed.

4
Methodology

As described in Chapter 1, the objective of this research is to try and use unsatisfiable core learning
to create an improved version of the Lazy Clause Generation (LCG) solver named Chuffed [6]. This
chapter explains the steps that have been taken towards accomplishing this goal. The first section
briefly explains the general approach used for this research. The next section describes which data
was required, how it was acquired and what the characteristics are for the obtained data. The third
section covers the machine learning model which is deployed for this research, why it is chosen and
how it is implemented. Lastly, the final section explains how the approach was implemented in such a
way that the machine learning output could be used for improving the solver Chuffed.

4.1. Approach
This section covers the intuition behind the approach used for this research and briefly summarises
the complete procedure. A more detailed description on the execution of the steps mentioned in this
section is provided in the corresponding subsequent sections.

4.1.1. Intuition
The intuition behind this research is based on the observation that the activity score for the Variable
State Independent Decaying Sum (VSIDS) represent the frequency of a variable being part of a conflict.
Normally the score for each variable is initialised at zero and incremented when the corresponding
variable occurs as part of a conflict. Consequently, the scores do not initially provide any information to
the solver but they gradually become more useful. However, with machine learning the activity scores
can be directly initialised based on predictions. To achieve this a machine learning model is trained
to predict the likelihood of variables to be part of a conflict. Having the VSIDS heuristic initialised
immediately may benefit the solver in the early stages of solving an instance thus reducing the total
run-time.

This approach was originally proposed by Selsam and Bjørner [39], they use a machine learning
technique called unsatisfiable core learning to predict which variables belong to a so called minimal
unsatisfiable core (MUC). Logically, variables which are part of such unsatisfiable core are more likely to
occur in a conflict, which matches with the conflict driven nature of the VSIDS heuristic. The results they
obtain by using unsatisfiable core learning to set the values of the VSIDS heuristic show a considerable
improvement for the performance of SAT solvers.

Being a hybrid solver combining SAT and CP allows Chuffed to use conflict driven heuristics similar
to the ones typically used for SAT solving. In particular, Chuffed also uses the same VSIDS heuristic
which is used for SAT. This aim of this research is to answer the question whether unsatisfiable core
learning can also be used to initialise the VSIDS scores for Chuffed to obtain an improvement similar
to the results presented by Selsam and Bjørner [39].

4.1.2. High-level Procedure
This section provides a high-level overview of the steps constituting the research process. Generally
speaking, this research can be roughly divided into five different steps, these steps are introduced and

15

16 4. Methodology

described below.

1. Acquisition of the data This research required a dataset for both unsatisfiable and satisfiable
instances. Contrary to datasets for SAT, no large datasets were available which contained more
than a dozen distinct unsatisfiable industrial CP instances. Therefore, the first step of this re-
search was to develop a procedure to obtain sufficient data. Ultimately this procedure involved
modifying instances from the MiniZinc benchmark suite [29] to become unsatisfiable.

2. Identifying and developing a machine learning model

After gathering the data, the next step was to implement a machine learning model that would
be capable of using this data to predict the likelihood of a variable belonging to an unsatisfiable
core. While the model used by [39] has shown to work well for unsatisfiable core learning on SAT
instances, a more complex model was chosen to account for the more general nature of CSP
instances.

3. Extract features from the data

The unsatisfiable CSP instances are not directly usable to the machine learning model, they first
need to be converted to features that represent the instances. For this the data instances need
to be parsed and characteristic metrics need to be extracted.

4. Predict unsatisfiable variables of a satisfiable instance

When the machine learning model is trained on the unsatisfiable dataset it can be used to output
prediction scores for each variable of an instance, even if the instance is actually satisfiable. The
output of the model is expected to have a correlation with how much this variable contributes to
the solving complexity, this means that it makes sense to prioritise branching to variables which
were classified to be unsatisfiable with high confidence. The VSIDS heuristic allows for an easy
way of implementing this priority by initialising the scores for each variable with their respective
classification confidences.

5. Evaluation

To determine if the selected approach actually improves the performance a modified version of
Chuffed, which uses the machine learning predictions, needs to be developed. This modified ver-
sion should than be compared against the original unmodified version of Chuffed on a statistically
significant amount of test data.

While this section gives some insight into how this research took shape it omits many important details,
for a more elaborate description refer to the corresponding sections, which constitute the remainder of
this chapter.

4.2. Data
As is the case for any computer science experiment it is essential to use the right type of data. This
research required a dataset containing a substantial amount of unsatisfiable and satisfiable constraint
programming (CP) instances. To avoid testing on trivially simple instances the decision was made to
use a dataset containing industrial instances which is the best way to simulate the performance of the
proposed approach in a real application. Ideally, the dataset should also contain data for multiple differ-
ent problem types in order to compare performances. To the best of my knowledge, the only two public
CP benchmark datasets that contain a vast amount of industrial instances from multiple problem types
are the MiniZinc benchmark suite [29] and CSPlib [12]. However, neither of these datasets contained
sufficiently many unsatisfiable instances to train any machine learning model on. Nevertheless, mul-
tiple ways are investigated to still be able to create a dataset containing unsatisfiable instances. The
first subsection discusses two possibilities for obtaining unsatisfiable data that have been considered,
but were deemed insufficient for the purpose of this research. It is followed by a detailed explanation
of the data acquisition procedure which was actually used. The last subsection shows some notable
characteristics of the resulting dataset and briefly discusses their impact on this research.

4.2. Data 17

4.2.1. Alternatives
To resolve the lack of unsatisfiable instances the following two options have been considered, but were
ultimately not included in this research.

Generate unsatisfiable instances One common solution would be to just generate instances. There
are two ways of doing so, random generation or procedural generation.

Achieving good results on random instances does not imply that the same approach will work for
real-world applications. To get any scientifically relevant results on random instances they need to be
provably difficult to solve and classify. Although there are some ways to realise these properties, such
as generating instances at phase transition [48], this comes at the cost of having unstructured data.
Similarly to the findings discussed in 3 it may be very difficult to machine learning techniques to achieve
adequate performance.

Procedural generation, on the other hand, allows for more control over the structure of the generated
instances. Unfortunately, designing a procedure which is able to output realistic instances in terms of
structure and complexity would be beyond the scope of this research.

Add constraints to make instances unsatisfiable Another way to obtain unsatisfiable instances
would be to use a satisfiable instance and continue adding constraints until it becomes unsatisfiable.
This approach does introduce some problems, however. By design, the instances will always fail on at
least some of these added constraints, since they were satisfiable before adding them. This introduces
the problem that any machine learning model would learn a bias towards the artificial constraints, even
if the artificial constraints were explicitly excluded from the unsatisfiable cores on which the machine
learning model is trained. Because of this possible bias it is hard to tell if the classifier is actually
learning something useful for the solver to use or something arbitrarily related to the added constraints.

4.2.2. Acquisition
The actual method for creating unsatisfiable data, which was performed for this research, was to use
constraint optimisation problems (COP) from theMiniZinc benchmark suite [29] and transform them into
unsatisfiable instances. This MiniZinc dataset originally contains 133 different problem types written
in the standard MiniZinc language with separate model and data files. These files were processed
according to the following steps in order to obtain the data used for this research.

1. First the full MiniZinc benchmark dataset was downloaded [29].

2. All model and data files were then flattened to obtain flatzinc and path files, this was done us-
ing the following command: minizinc –solver chuffed –output-paths-to-file path_to/output.paths -I
path_to/mznlib -o path_to/output.fzn -c path_to/minizinc.mzn path_to/data.dzn.

3. Thereafter any instance containing the keyword “Satisfy” was removed from the dataset, meaning
that only minimization and maximization instances remain.

4. The remaining instances were solved using a three hour timeout: fzn-chuffed -s -f -t 10800000
path_to/instance.fzn and the optimal objective value was saved to a file.

5. Any instances which could not be solved, such as the ’trucking_hl’ problem type, were removed
from the dataset.

6. A copy of the resulting dataset, which contained the flatzinc files, was made. The instances in
this copy were modified by setting an impossible domain for the objective value. Specifically,
the upper bound of the objective value was set to be less than optimal value for minimization
problems and the lower bound of the objective value was set to be higher than the optimal value
for maximization problems. This caused all instances within this copy of the dataset to become
unsatisfiable.

7. Since the machine learning model is trained on the unsatisfiable cores the variables belong to
such core had to be extracted from the unsatisfiable instances. This was done by using a MiniZinc
command which uses the previously stored path files and the unsatisfiable flatzinc files: findMUS

18 4. Methodology

-a –ignore-sat-model path_to/instance.fzn path_to/paths.paths. The output of this command pro-
vided a set of variable identifiers for each unsatisfiable core. Unfortunately, this command was
quite computationally demanding and did not work for all instances, this command successfully
completed on only approximately 52% of the data.

Note that the listed steps are only the final steps which ended up contributing to the final result. A lot
of trial and error went prior to discovering exactly which steps to take and how to perform them. In total
it took several months to perform all steps from start to finish. However, using the final configuration,
repeating all of the aforementioned steps would only take about a week combined. Especially extract-
ing the unsatisfiable cores and solving all instances to optimality took a considerable amount of time.
Initially all of these steps were executed on a personal computer. In the interest of time the solving of
instances for the optimal value and unsatisfiable cores was later continued on a more powerful virtual
machine provided by the Delft university of technology. This virtual machine allowed 16 threads to
run in parallel, speeding up the process significantly. Even still these processes were slowed down by
unforeseen errors during solving, these errors would occasionally cause one or more threads to freeze.
Eventually, the scripts used for the execution of these steps had to be changed to handle these errors
properly. Additionally, some intermediate steps had to be adapted along the way to better connect to
subsequent steps.

4.2.3. Data characteristics
One of the most important things towards understanding research is to understand the data. This
section is therefore dedicated to explaining the most important characteristics which may have impact
on future applications of the data. The process of acquiring this data is described in in the previous
section 4.2.2, this chapter discusses the data resulting from this process.

The definitive data which is used for this research comprises two datasets; one with satisfiable con-
straint optimisation problems (COP) and one containing unsatisfiable versions of the same instances.
Additionally, for the unsatisfiable dataset information is stored on the unsatisfiable cores of over half
the instances. The satisfiable dataset contains 13667 flatzinc files, which are distributed across 84
different problem types. The unsatisfiable dataset, which is the result of converting the satisfiable in-
stances to unsatisfiable ones, contains slightly less instances at 12133 in total. This total ended up
slightly lower because the procedure for generating unsatisfiable instances required solving the satis-
fiable version, which was not possible for all instances within a three hour time limit. For only 8057 out
of these 12133 instances it was possible to extract unsatisfiable core data within the three hour time
limit. For a complete overview of the amounts of data for each problem type refer to Appendix A.

While having 8057 instances to train on would normally be more than enough, just the sheer vol-
ume itself does not give any insight in the quality of the data. Another important factor to consider
is the distribution of the data across the different problem types. Figure 4.1 shows a pie-chart of this
distribution.

The pie-chart clearly shows that the Multi-mode Resource-Constrained Project Scheduling Problem
(MRCPSP) dominates almost the entire dataset. The presence of such a dominant problem type is
might introduce the issue that the machine learning model fails to learn any patterns from other problem
types by focusing too much on the MRCPSP data.

Another difficulty is introduced when examining the distribution of the run-times of instances in the
dataset. The data generation procedure was limited by the timeout of three hours for solving and
extracting unsatisfiable core data, thus any instance that would require longer would be excluded from
the final dataset. However, even accounting for the lack of such large instances, the vast majority of
the data instances are solvable in less than a tenth of a second. The distribution of the run-times of the
satisfiable instances can be seen in Figure 4.2.

For technical reasons this figure does not include instances which did not solve due to an error.
Approximately five to six percent of the original instances did not finish solving due to an error.

The machine learning model uses this data to learn and predict whether a variable belongs to an
unsatisfiable core. Therefore, it is also interesting to state that the unsatisfiable dataset contains a total
1532444 variables across all instances and 623293 of them belonged to an unsatisfiable core which
amounts to roughly 40.67%. This means there is a slight class imbalance, but no class significantly
dominates the other in such way that it will have a negative impact on the final predictions.

4.3. Machine learning 19

Figure 4.1: A pie-chart showing the distribution of the most common problem types.

4.3. Machine learning
It is important to realise that, similar to the research by Selsam and Bjørner [39], it is not the intention to
achieve the best possible prediction scores. Perfect predictions are not necessarily more informative for
the solver. For instance, it may be the case that the smallest unsatisfiable core includes all variables,
which gives no meaningful information to the solver to branch on. Instead, the presumption is that
the machine learning model will have imperfect predictions. The assumption is that the prediction
confidence of a variable belonging in an unsatisfiable core correlates well with the asset of branching
on that variable. In fact, having perfect predictions would even undermine the point of this research,
since the goal is to use predictions on satisfiable instances to improve a branching heuristic.

For the aforementioned reason there is no emphasis on obtaining the best possible classification
accuracy. Instead a machine learning model which works well for the available data is chosen and
configured to obtain at least a decent accuracy, but is not extensively fine tuned.

The remainder of this section proves an in depth description of the selected machine learning pro-
cedure. It starts with the features which were selected from the data and is followed by a description
and justification of the chosen machine learning model.

4.3.1. Model
As for the actual machine learning model, it made sense to use a model that has already proven to
work for classifying CP instances in earlier research. Unfortunately, the publicly available models were
often only trained for binary CSP, a variant of CSP where all variables are restricted to be Boolean.
In reality CP instances, including the MiniZinc benchmark suite, are rarely binary. Theoretically, it is
possible to convert between binary and non-binary CSP, which would retain the possibility of using of a

20 4. Methodology

Figure 4.2: Distribution of six different run-time intervals for satisfiable instances.

binary CSP model. However, doing so would not a viable approach because of the massive translation
overhead. Another approach would be to use the architecture of a good performing model on binary
CSP and modifying it to work with non-binary instances. Based on the work presented by Samaras
and Konstantinos [37] there is, unfortunately, no guarantee that such model would also work well for
CP in general.

Because of the aforementioned reasons, a model needed to be implemented which had not yet
been used for CP instances. Designing such model from scratch to would require considereable time,
instead an existing architecture was selected for which an existing implementation was available to
modify.

Even though the original research to unsatifiable core prediction for SAT [39] uses a simple version
of the MPNN model used in earlier work on predicting satisfiability [40], the decision was made to
use the architecture of a Graph Convolutional Neural Network (GCN). Both MPNNs and GCNs are
known for working particularly well on undirected graph structures. Both SAT and CP instances can be
represented with an undirected graph where the variables are represented by nodes and the constraints
are represented with vertices between the nodes corresponding to the variables that are restricted by
the constraint. For SAT it would suffice to represent an instance as a graph containing a node for each
literal. However, using the same approach for CP would impose an exponential increase in the size of
each graph as it would have to contain a node for each possible value in the domain of each variable.
Contrarily, using a GCN allows individual features representing the domain and neighbours of each
node, which means the graph representation can be reduced to just having a single node for each
variable.

The GCN model which has been used for this research was originally implemented by Kipf [25] and

4.3. Machine learning 21

was made available at https://github.com/tkipf/gcn.
A GCN works by learning a function of the features on a graph. In this case no actual graph was

constructed but it is sufficient that the data is structured in such way that it could be represented with a
graph. A simplified overview of the architecture is shown in Figure 4.3.

Figure 4.3: Visualisation of the Graph Convolutional Network architecture

The input of this GCN model is:

1. A feature matrix of size N×D Here N represents the number of variables and D the number of
selected features.

2. An adjacency matrix of size N×N In this matrix variables are considered adjacent if they co-
occur in a constraint.

3. The labels in an N×C matrix Here C represents the number of output classes, in this case 2;
one for variables which are part of an unsatisfiable core and the other for variables which are not.

The output of the model is a N×Cmatrix which contains the output of the soft-max function for each
variable. The resulting values from soft-max can be interpreted as the probability for each variable to
belonging to each class. This research only considers two distinct classes; a variable either belongs
to an unsatisfiable core or it does not. This means that the probability of belonging to the first class
equals one minus the probability of belonging to the second class. Therefore it is possible to express
the output of the machine learning predictions with a single value. For the remainder of this document
this value will be referred to as the prediction confidence, representing the probability of a variable
belonging to an unsatisfiable core.

The original implementation of the GCN model by Kipf [25] did not work for the data described in
the previous section 4.2.3, therefore the data processing part of the model was rewritten accordingly.
Besides this modification, no further changes were made to the architecture. The chosen parameters
of the model will be covered in Section 4.3.3.

4.3.2. Features
For any data to be usable for any machine learning model, the first step is to select features from the
data. Determining representative features is paramount to the effectiveness of the model.

The features were selected to provide as much information on a variable as possible while minimis-
ing the time required to extract them. Ultimately, the features used for this research are:

1. Categorical features indicating if a variable is declared as a Boolean, integer, float or set.

2. Minimum value of the variable domain.

3. Maximum value of the variable domain.

4. The range of the variable domain.

https://github.com/tkipf/gcn

22 4. Methodology

5. A set of identifiers of variables which co-occur in some constraint.

The categorical features were implemented using one-hot-encoding which means a binary feature is
used for each category to indicate whether it applies to the variable. With sufficient knowledge on the
implementation of Chuffed these features can be integrated in the flatzinc parsing process of Chuffed
with very minimal overhead. However for this research the features were extracted through an external
Python script specifically written for this purpose. This script was used to parse any set of flatzinc
files and store the extracted features in a format which is directly usable by the modified GCN model
described in 4.3.1.

4.3.3. Configuration
The performance of most machine learning architectures varies depend largely on the selected param-
eters. For this research the parameters of the model were set based on a couple empirical trials.

1. Learning rate: 0.3

2. Number of epochs: 200

3. Number of units in the first hidden layer: 16

4. Dropout rate: 0.1

5. Weight decay: 5e-4

6. Tolerance for early stopping: 10

With this configuration and the selected features the training would normally terminate before reach-
ing 100 epochs due to early stopping. This means that, with the given parameters, it took around 90
epochs for the accuracy of the model to not significantly improve anymore. At this stage the model must
have reached either a local optimum or the global optimum. The accuracy achieved after this training
phase varied roughly between 0.70 and 0.80, depending on the training data. While these results are
definitely not disappointing given the complexity of the data, it is worth noting, however, that a high
accuracy does not necessarily translate to being useful as a branching heuristic. Therefore, while it
may have been possible to improve these results using different models or parameters, no further ef-
forts have been made towards achieving the best possible predictions. For these reasons the resulting
model was used for all following experiments.

4.4. Implementation
With both the data and the machine learning model covered, the remaining part was to combine them
in such way that the output can be used by Chuffed as a heuristic. This section covers the integration
of the prediction confidences with the VSIDS heuristic of Chuffed. This section is divided in a part about
the integration of all the components and a part describing how the parameters of Chuffed had to be
configured.

4.4.1. Integration
A modified version of Chuffed had to be created to allow for the integration of the machine learning
output with Chuffed. This was done by creating a local repository with Chuffed’s code as available
at https://github.com/chuffed/chuffed on the 3rd of November 2019. In total three copies
of Chuffed were used, two of them were modified to use the machine learning output the other was
configured exactly the same but without the machine learning integration. Chapter 5 explains the
difference between the machine learning enhanced version and compares them against the unmodified
version of Chuffed.

The machine learning model described in Section 4.3.1 outputs the prediction confidences of a vari-
able belonging to an unsatisfiable core. Because this model was implemented using external feature
extraction the output would not be directly accessible within Chuffed’s code. Therefore, the output
needed to be integrated with the Chuffed solver using an intermediate data file. For each instance in
the test-set a comma-separated file was created containing the prediction confidences alongside the
flatzinc identifier of tat variable. Internally, Chuffed refers to the same flatzinc identifiers when creating

https://github.com/chuffed/chuffed

4.4. Implementation 23

the variables which represent the CP problem. Whenever a variable is created Chuffed also assigns
a VIDS activity score to that variable. By default this activity score gets assigned a zero. By making
use of the previously created comma-separated file containing it was possible to match the variables
created internally in Chuffed with the prediction confidences from the machine learning model. This
allowed Chuffed to be modified in such way that, instead of assigning zero, it was now possible to
initialise the VSIDS with different activity scores depending on the prediction confidences.

Besides the previously mentioned modification and the parameters discussed in the following Sec-
tion 4.4.2 no further changes were made to version of Chuffed that were used during this research.

4.4.2. Chuffed’s Parameters
For the approach to work it was necessary that some of Chuffed’s parameters were changed in order
to actually use the VSIDS heuristic. By default Chuffed is configured to only use search annotations.
The free search procedure of Chuffed will start the solving procedure with the VSIDS heuristic disabled,
the VSIDS will automatically be enabled once a predetermined number of conflicts is reached. By just
enabling free search, which can be done through the -f command-line option, Chuffed would still use
annotations until at least a billion conflicts have been encountered. Realistically, Chuffed can manage
around 20.000 conflicts per second, meaning that it would use annotations for the first one and a half
hour before switching to VSIDS. With the VSIDS being initialised with machine learning predictions it
made sense to set the number of required conflicts to a much smaller number, in this case a value
of 100 was chosen. This has the effect that the solver uses VSIDS almost immediately and therefore
takes advantage of the learned initialisation to make branching decisions.

5
Experiments

The most straightforward way to verify if the machine learning output is actually informative to the
solver is to conduct experiments. This chapter covers all relevant experiments that contribute towards
evaluating the machine learning integration into Chuffed. More experiments have been conducted
throughout the duration of this research in order to figure out how to correctly set up the procedure
and choose the right parameters for Chuffed. However, these preliminary experiments are excluded
from this document because they do not provide any additional insight in the performance of the final
version. First an overview is given of the general procedure which is used throughout all experiments.
The second section of this chapter describes the conducted experiments and discusses their results.

5.1. Experimental setup
The aim of the conducted experiments was to find out if machine learning predictions are any infor-
mative for the solver and to determine the effect of training on different problem types. In order to
determine the effect of training on different problems, all the experiments conducted in this document
are all directed at solving instances from a single problem type, but different training sets are used. As
a result the following experimental setup was created.

For each experiment three different versions of Chuffed were compiled, these will be referred to
as Chuffed0_OG, Chuffed1_Ex and Chuffed1_Inc. While all three versions have the same configu-
ration, they are different in the way the machine learning was integrated. Besides the configuration
Chuffed0_OG was left completely unmodified, and serves purpose as a benchmark. Chuffed1_Ex was
modified to have the VSIDS scores initialised with the predictions obtained from training on a training
set which contained only instances from different problem types. Similarly, Chuffed1_Inc was modified
to initialise the VSIDS scores with predictions from training on all training instances, including from the
same problem type. These different version were used to solve different instances from the selected
problem type and their performance was compared against each other.

All experiments conducted for this research follow the same general procedure, using the data
described in section 4.2 and the Graph Convolutional Network (GCN) covered in section 4.3.1. Addi-
tionally, all experiments discussed in this chapter are performed on the virtual machine provided by the
Delft university of technology. This virtual machine uses an Intel®Xeon Gold 6248 CPU @ 2.50 GHz
with 16 cores and has access to 32GB RAM.

Any machine learning approach relies on training on a sufficiently large data set. For this reason the
experiments discussed in this section are conducted on the four largest problem classes. As described
in the previous chapter 4.2.3 the majority of the data belongs to the Multi-mode Resource-Constrained
Project Scheduling (MRCPSP) problem type. Therefore it made sense to start experimenting with
MRCPSP instances, thereafter some more experiments were conducted to compare the performance
on different problem types. The general procedure for each experiment is visualised in the flowchart
shown in Figure 5.1.

25

26 5. Experiments

Figure 5.1: Box-plot showing the total run-time of all test instances averaged over 10 runs.

The following list provides a more elaborate explanation for the steps shown in Figure 5.1:
1. Create test-set The first part of the procedure was to construct a test-set which by setting aside

a selection of instances from the selected problem type. The instances are drawn from the sat-
isfiable dataset described in Section 4.2, these instances will be solved using different version of
Chuffed to compare the difference in performance.

2. Remove instances from unsatisfiable data to create the training data Since the unsatisfiable
dataset, which is used for training, is obtained by direct modification of instances from the sat-
isfiable dataset it may occur that the unsatisfiable instance in the training set corresponds to a
satisfiable instance from the test-set, for good practise any such instance is not included in the
training data.

3. Create two copies of the training data Two different training sets were used for the experiments.
The first training set contained all unsatisfiable instances, including those of the same problem
type. This training set will be referred to as the inclusive training set. The second, exclusive,
training set contained only instances from the unsatisfiable dataset which belonged to problem
classes other than the selected problem type. Consequently, the exclusive training set is a direct

5.2. Exploratory trial 27

subset of the inclusive training set and could be created bymaking a selective copy of the inclusive
training set.

4. Parse all instances to extract features The GCN model requires features to be extracted from
both training- and test datset as well as labels for the training dataset. Therefore the next step in
the procedure is to parse the instances using an external Python script and store the correspond-
ing features and labels.

5. Train GCN model on the extracted features The GCN is trained separately on the features
extracted from the inclusive and exclusive training sets.

6. Create predictions for the test-set After training the GCN on either the inclusive or exclusive
training sets the model is used to make predictions using the features from the test-set. These
predictions are then used to initialise the VISDS scores for the machine learning enhanced ver-
sions; Chuffed1_Ex and Chuffed1_Inc.

7. Solve the instances from the test-set Finally, all instances from the test-set are supplied to each
of the previously described versions of Chuffed, Chuffed0_OG, Chuffed1_Ex and Chuffed1_Inc,
and the resulting performances are monitored and analysed.

Besides run-time, the following statistics have been recorded for each run: a flag indicating timeout,
the number of visited nodes and the best found objective value. An example of the output for a single
run is shown in Appendix B.1. However, these statistics did not contribute any information and are
excluded for the remainder of this chapter.

5.2. Exploratory trial
Initially, an exploratory trial was performed to verify that the developedmethods work as intended and to
see if any performance is gained using the machine learning enhanced versions. For this experiment
all instances from the test set were solved with all three Chuffed version for a total of 10 times per
instance. The box-plot shown in figure 5.2 gives an overview of the results of this trial.

Figure 5.2: Box-plot showing the total run-time of all test instances averaged over 10 runs.

28 5. Experiments

Figure 5.2 shows that both machine learning enhanced version of Chuffed outperform the version
which does not use machine learning. However, while these results may seem promising, there is
a lot of variance going on due to the outliers, this could indicate that these results may be different
when repeating this experiment. Therefore, these results do not provide sufficient statistical evidence
to make any strong scientific claims. Since the experiment was conducted on a virtual machine with no
other active processes it was safe to assume that there were no significant external influences which
may have caused this variance in run-time. This means that the variance is likely caused by Chuffed’s
solving procedure thus the only way to reduce this variance is to repeat the same experiment with
increased number of measurements.

In an attempt to minimise the variance the amount of runs have, therefore, been increased to 100
per instance for any further experiment.

5.3. Results

Further experiments were conducted to verify that the machine learning enhanced version outperforms
the unmodified version. The same procedure used for the exploratory trial 5.2 was repeated on the four
largest problem types: MRCPSP, Bin-packing, Price-collecting and Fastfood. The goal was to find out
if machine learning has a different effect on the performance for different problem types. Once again,
the same three versions Chuffed0_OG, Chuffed1_Ex and Chuffed1_Inc were used to investigate the
effect of training on instances from different problem types. To address the large variance encountered
during the exploratory trial 5.2 all following trials were run a total of 100 times instead of 10. The results
of these 100 runs for the four largest problem types are presented in the following subsections.

Thereafter, Chapter 6 provides an analysis and interpretation of the results presented in these sub-
sections.

5.3.1. MRCPSP

The box-plot in figure 5.3 below shows the distribution of the the total run-time of all instances from the
test-set averaged over the 100 runs.

5.3. Results 29

Figure 5.3: Box-plot showing the total run-time of all test instances averaged over 100 runs.

A more detailed summary of the results for this experiment is presented in table 5.1, which shows
the average run-time over 100 runs for each of the instances from the test-set as well as some statistics
on the total run-time.

Chuffed0_OG Chuffed1_Ex Chuffed1_Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

mrcpsp10900 4.507 4.356 4.461
mrcpsp36 2.399 2.428 2.410
mrcpsp4425 311.565 296.139 302.595
mrcpsp4777 5274.736 5153.284 5155.367
mrcpsp4871 892.922 865.954 865.404
mrcpsp4960 32.713 32.241 32.099
mrcpsp7051 16.091 15.884 16.028
mrcpsp896 0.152 0.155 0.189
mrcpsp9880 0.236 0.241 0.240
mrcpsp9994 0.033 0.034 0.035

Total(s) 6535.354 6370.715 6378.829
Standard Deviation 282.493 273.983 271.103
Relative(%) 100.0% 97.5% 97.6%

Table 5.1: Average run-time per mrcpsp instance across 100 runs.

5.3.2. Bin-Packing
A box-plot showing the results of 100 runs on the bin-packing instances is presented in figure 5.4.

30 5. Experiments

Figure 5.4: Box-plot showing the total run-time of all test instances averaged over 100 runs.

The following table 5.2 shows the average run-time per instance as well some statistics on the total
run-time.

Chuffed0_OG Chuffed1_Ex Chuffed1_Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

2DLevelPacking238 171.700 151.000 152.580
2DLevelPacking23 1563.956 1499.611 1512.328
2DLevelPacking492 1221.866 1275.854 1237.965
2DPacking13 5065.462 5037.534 5025.021
2DPacking165 683.933 708.044 641.285
2DPacking168 2511.413 2430.075 2431.017
2DPacking62 58.744 57.180 57.587

Total(s) 11277.074 11159.298 11057.783
Standard Deviation 381.016 359.230 347.639
Relative(%) 100.0% 99.0% 98.1%

Table 5.2: Average run-time per bin-packing instance across 100 runs.

5.3.3. Price-collecting
A box-plot showing the results of 100 runs on the price-collecting instances is presented in figure 5.5.

5.3. Results 31

Figure 5.5: Box-plot showing the total run-time of all test instances averaged over 100 runs.

The following table 5.3 shows the average run-time per instance as well as some statistics on the
total run-time.

Chuffed0_OG Chuffed1_Ex Chuffed1_Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

pc52 12.211 12.326 12.152
pc56 8.777 8.750 8.750
pc58 15.283 15.409 15.431
pc61 10.501 10.648 10.644
pc65 12.111 11.908 12.049
pc73 42.743 42.407 42.948
pc77 7.886 8.013 8.040
pc79 20.479 20.631 20.709

Total(s) 129.991 130.092 130.722
Standard Deviation 3.373 2.895 3.452
Relative(%) 100.0% 100.1% 100.6%

Table 5.3: Average run-time per price-collecting instance across 100 runs.

5.3.4. Fastfood
A box-plot showing the results of 100 runs on the fastfood instances is presented in Figure 5.6.

32 5. Experiments

Figure 5.6: Box-plot showing the total run-time of all test instances averaged over 100 runs.

The following table 5.4 shows the average run-time per instance as well as a some statistics on the
total run-time.

Chuffed0_OG Chuffed1_Ex Chuffed1_Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

fastfood15 30.568 31.614 31.580
fastfood17 23.212 25.660 23.382
fastfood20 8.492 6.361 6.867
fastfood36 6.414 6.464 6.396
fastfood53 80.526 86.375 86.946
fastfood58 49.063 40.309 45.349
fastfood61 18.369 20.553 20.467
fastfood74 81.844 84.775 82.858

Total(s) 298.487 302.111 303.844
Standard Deviation 20.318 18.402 19.197
Relative(%) 100.0% 101.2% 101.8%

Table 5.4: Average run-time per fastfood instance across 100 runs.

6
Discussion

This section analyses the results presented in chapter 5 and discusses their significance. First an anal-
ysis is given on the statistical significance of the observed results, thereafter the results are interpreted
within the context of this research.

6.0.1. Statistical significance
With 100 runs per instance it becomes visible that the outliers, which have been discussed in section
5.2, are still present. However, they they do appear consistently for version of Chuffed. Given the
large amount of time required for performing these trials it would not be feasible to further increase the
amount of runs to the point where the outliers are completely flattened.

Instead, to confirm the statistical significance of these observations a two-tailed t-test [24] is con-
ducted to prove that the results are significantly different. The results of this t-test are shown in Table
6.1.

MRCPSP
Version Pair T-Stat P-Value

Chuffed0_OG - Chuffed1_Ex 4.163 4.693e-5
Chuffed0_OG - Chuffed1_Inc 3.978 9.761e-5
Chuffed1_Ex - Chuffed1_Inc -0.209 0.834

Binpacking
Version Pair T-Stat P-Value

Chuffed0_OG - Chuffed1_Ex 2.238 0.026
Chuffed0_OG - Chuffed1_Inc 4.230 3.577e-5
Chuffed1_Ex - Chuffed1_Inc -2.020 0.045

Price-collecting
Version Pair T-Stat P-Value

Chuffed0_OG - Chuffed1_Ex -0.226 0.821
Chuffed0_OG - Chuffed1_Inc -1.506 0.134
Chuffed1_Ex - Chuffed1_Inc -1.390 0.166

Fastfood
Version Pair T-Stat P-Value

Chuffed0_OG - Chuffed1_Ex -1.316 0.190
Chuffed0_OG - Chuffed1_Inc -1.907 0.058
Chuffed1_Ex - Chuffed1_Inc -0.648 0.518

Table 6.1: T-Test analysis

The p-values shown in Table 6.1 mean that for the results of the two selected version pairs, under
the hypothesis that they follow the same distribution, the probability of obtaining less similar results is
less than the P-Value for this version pair. Obtaining very small P-Values indicate that there is evidence
for the hypothesis to be rejected, meaning that the distributions are in fact significantly different.

For MRCPSP the probability for obtaining less similar results compared to Chuffed0_OG is less
than 0.01% for Chuffed1_Inc and less than 0.005% for Chuffed1_Ex, which provides sufficient statisti-
cal evidence to conclude that they outperform Chuffed0_OG. There is, however, no sufficient statistical
evidence to conclude any significant difference between the results obtained with Chuffed1_Inc and
Chuffed1_Ex. The probability of obtaining less similar results with identical distribution amounts to

33

34 6. Discussion

more than 83%. With bin-packing, in addition to the difference between the machine learning en-
hanced version compared to Chuffed0_OG, there is also a statistically significant difference between
Chuffed1_Ex and Chuffed1_Inc.

For price-collecting and fastfood there is insufficient evidence to conclude any significant differences
between results of the different Chuffed versions.

6.0.2. Interpretation
The statistical analyses in the previous section 6.0.1 confirms the observation that the machine learning
enhanced versions of chuffed Chuffed1_Inc and Chuffed1_Ex both outperform the unmodified version
Chuffed0_OG on the MRCPSP and bin-packing instances.

The fact that Chuffed1_Inc and Chuffed1_Ex achieve such similar performance is particularly inter-
esting. This indicates that the machine learning generalises well enough to be able to learn informative
concepts from other problem types. This is especially surprising because MRCPSP represents over
91% of the training data, meaning that similar performance can be achieved not only without learning
from any similar problem but also with less than 9% of the data available.

While it is to be expected, given the available data, that MRCPSP achieves the best performance,
it is still interesting that an improvement is obtained for bin-packing. It is worth noting that, despite
being the 2nd largest class, bin-packing is still significantly smaller than MRCPSP with unsatisfiable
core data only being available for 17 ’2DPacking’ instances and 59 ’2DLevelPacking’ instances. Al-
though very limited training and test data was available, both machine learning enhanced version of
Chuffed were still able to achieve better overall performance on bin-packing than the unmodified ver-
sion, Chuffed0_OG. The difference in performance has however has somewhat decreased in compar-
ison to MRCPSP.

Interestingly, for bin-packing, there is a larger difference between the performance of Chuffed1_Inc
and Chuffed1_Ex. This may indicate that bin-packing shares less learn-able concepts with other prob-
lem types than MRCPSP.

While the experiments on MRCPSP and bin-packing show promising results, the results for price-
collecting and fastfood are a lot less convincing, however. There are multiple possible explanations for
this observation.

One explanation could be that there was just very limited data available for these problem types.
As discussed in section 4.2.3 the data-set is dominated by MRCPSP instances. Despite being the 3rd
and 4th largest problem types there were only 65 training instances available for price-collecting and
33 for fastfood. However Chuffed1_Ex, which only used training data excluding MRCPSP instances,
has shown promising performance despite only using around 9% of the data.

A more probable explanation is that, none of those instances required considerable solving time.
The average run-time per MRCPSP instance stated in table 5.1 indicate that the machine learning
integration works better for sizeable instances. Therefore it is most likely that lack of improvement on
price-collecting and fastfood is not because they are less similar to other problem types but because
the tested instances were not sufficiently large.

To further investigate the relation between run-time and the effect of machine learning the relative
run-time of the machine learning enhanced versions have been plotted against the run-time of the
unmodifed version of Chuffed, which can be seen in figure 6.1.

While there is an obvious declining trend visible in the plot, there is no clear linear or exponential
relation between the machine learning improvement and the corresponding run-times. It does indeed
show that the machine learning version generally perform worse on instances which take less than
around four seconds to solve.

The spike at the start is caused by the mrcpsp896 instance which was solved relatively slow with
Chuffed1_Inc, the reason for this could be that the concepts learned from similar MRCPSP instances
do not work well for this particular instance.

Another interesting observation is that for very large instances the relative run-time starts to slightly
increase again. While there are not enough data points to confirm this observation, it would make sense
given that the effect of initialising the VSIDS heuristic would diminish as more conflicts are encountered.

35

Figure 6.1: Relative run-time of Chuffed1_Ex and Chuffed1_Inc on MRCPSP instances plotted against the run-time of
Chuffed0_OG.

7
Conclusion

In this chapter the main findings of the research are covered as well as their implications to the scien-
tific field of research. This is done by first answering the research questions stated in 1.4. The next
section explains the scientific impact of the findings. Finally, some suggestions are presented for future
research on this topic.

7.1. Answers to the research questions
In this section an attempt is made to answer the research questions stated in section 1.4 according to
the observations discussed in chapter 6.

• Is it possible to reduce the run-time of solving a CP instance by integrating machine learn-
ing in the LCG solver Chuffed? As seen most evidently on the larger instances of the MRCPSP
and bin-packing problem types the machine learning integration is indeed able to reduce the run-
time of solving an CP instance. The total run-time for all the MRCPSP instances in the selected
test-set, for which most data was available, was proven with over 99.99% certainty to be signifi-
cantly less compared to the run-time of the unmodified version. On average a 2.5% increase in
performance was achieved with a standard deviation of approximately 4%.

• Does the impact of using machine learning on the run-time of Chuffed differ across differ-
ent problem types? The impact of machine learning seems to depend mostly on the difficulty of
the instance. For instances that take less than a four seconds the overhead of initialising VSIDS
may outweigh the benefit gained from it. Because of limited available data it was not possible to
determine a significantly different impact on performance across different problem types.

• Does the impact of using machine learning depend on the type of problems in the training
set? For the performance gained on the MRCPSP instances it made no significant difference
whether the Graph Convolutional Network model was trained exclusively on different problem
types or also on MRCPSP instances. This suggests that the chosen model was able to gener-
alise between the different problem types and still learn concepts which are useful to the solver.
However, for the bin-packing problem type the performance was adversely affected by excluding
any bin-packing instances from the training set. Therefore it may be concluded that it is possible
to generalise between different problem types, but the performance may depend on the selected
problem types.

7.2. Scientific impact
To this date, no other research has shown the possibility of using machine learning for Lazy Clause
Generation (LCG) solvers. This study shows that it is possible to use machine learning approaches
which are designed for solving SAT instances to improve LCG solving techniques. Specifically, this
research has shown that it is possible to use unsatisfiable core learning, which originates from the
work of Selsam and Bjørner [39], for improving the performance of the LCG solver Chuffed. With
LCG approach dominating recent benchmarks it is interesting that the proposed approach is able to

37

38 7. Conclusion

consistently achieve an improved performance on sizeable instances, even if only by a small margin.
Most importantly, the findings of this study may encourage more researchers to try and adapt existing
machine learning approach to further improve the performance of hybrid solving techniques.

7.3. Future research
This section gives some suggestions and points of attention for researchers who have interest in con-
tinuing this line of research.

• For this approach to be used in practical context the possibilities for integrating the classification
part directly into the solver should be investigated, this would require embedding the feature
extraction part directly into the solver.

• In order to examine the effect across different problem types this experiment it may be valuable
to repeat this study with more evenly distributed data.

• While the Graph Convolutional Network model proved sufficient for this study, it may be worth it
for any future research which involves adapting a similar approach to evaluate the effect of using
different machine learning architectures.

• It may be interesting to determine the effect of using the periodic refocussing technique described
in the original paper [39] and examine if it would provide better performance for instances which
take longer than a couple of hours to solve.

• The nature of this approach may reduce the time required to determine unsatisfiability on unsat-
isfiable instances, this may be interesting to further investigate.

• Another and possibly more successful way to improve LCG solvers would be to learn the best
configuration of the solver’s parameters given a certain instance.

• Machine learning may also be useful for predicting no-goods or their activity scores.

A
Available data instances

FlatZinc UnSAT MUC
Problem types # Files # Files # Files

mrcpsp 11182 11158 6425
2DLevelPacking 500 99 59
pc 80 80 65
fastfood 89 67 33
rect_packing_opt 61 48 40
amaze 47 47 30
open_stacks_ 50 27 21
2DPacking 500 26 17
TableLayout 26 26 14
depot_placement 24 24 23
ship-schedule 24 24 18
ghoulomb 25 23 18
pattern_set_mining 32 20 8
tpp 20 20 18
gfd-schedule 20 19 9
roster_model 20 19 0
mspsp 20 19 15
filter 29 19 14
jobshop 82 18 8
rcpsp_max 20 18 11
mario 16 16 9
evilshop 16 16 8
cc_base 20 13 3
rcpsp 13 12 9
radiation 23 11 6
handball 10 10 0
rcmsp 20 10 8
golomb 10 9 9
parity-learning 9 9 7
shortest_path 10 9 9
still_life 14 9 6
still_life_free 10 9 5
still_life_no_border 10 9 6
rcpsp-wet 12 8 6
p1f 15 7 6
tdtsp 11 7 3
league 20 7 6
tcgc 7 7 4
cargo_coarsePiles 11 6 4
hrc 6 6 6
mznc2017_cargo 11 6 3
mapf 6 6 0
still_life_full_border 6 6 6
maximum-dag 6 6 5
dcmst 6 5 4
mknapsack_global 7 5 2

FlatZinc UnSAT MUC
Problem types # Files # Files # Files

bus_scheduling 12 5 0
openshop 5 5 0
model 5 5 0
steelmillslab 6 5 0
train 15 5 2
group 6 5 0
sugiyama 5 5 5
sugiyama2 5 5 5
still-life 5 5 3
linear-to-program 5 5 4
trucking 15 5 5
smelt 5 4 3
crossword_opt 6 4 0
community-detection 7 4 1
rel2onto 6 4 4
mapping 6 4 2
oc-roster 5 3 1
fjsp 5 3 2
mqueens 5 3 2
pattern_set_mining 5 2 1
mznc2013_league 4 2 2
nfc 6 2 2
photo 2 2 2
mznc2017_aes_opt 6 2 0
spot 10 2 0
talent_scheduling 33 2 0
template_design 7 2 0
triangular 5 1 0
city-position 6 1 1
cutstock 121 1 1
ttppv 10 1 0
vrp 74 1 1
freepizza 5 1 1
road_naive 11 1 0
GridColoring 10 1 1
celar 10 0 0
cvrp 5 0 0
gbac 10 0 0
jp-encoding 10 0 0
trucking_hl 5 0 0
largecumulative 5 0 0
opd 11 0 0
wcsp 5 0 0
zephyrus 6 0 0

Total 13667 12133 7037

Table A.1: Total amount of data files processed

39

B
Single run example

Version Instance Timeout Run-time Nodes Objective
chuffed0_OG mrcpsp10900 FALSE 5.623 39201 41
chuffed1_Ex mrcpsp10900 FALSE 5.115 39201 41
chuffed1_Inc mrcpsp10900 FALSE 3.779 39201 41
chuffed0_OG mrcpsp36 FALSE 2.877 35302 48
chuffed1_Ex mrcpsp36 FALSE 2.493 35302 48
chuffed1_Inc mrcpsp36 FALSE 2.717 35302 48
chuffed0_OG mrcpsp4425 FALSE 369.861 1424755 42
chuffed1_Ex mrcpsp4425 FALSE 313.295 1424755 42
chuffed1_Inc mrcpsp4425 FALSE 349.088 1424755 42
chuffed0_OG mrcpsp4777 FALSE 5125.027 23222528 42
chuffed1_Ex mrcpsp4777 FALSE 5029.44 23222528 42
chuffed1_Inc mrcpsp4777 FALSE 5041.073 23222528 42
chuffed0_OG mrcpsp4871 FALSE 1001.316 4952765 37
chuffed1_Ex mrcpsp4871 FALSE 989.826 4952765 37
chuffed1_Inc mrcpsp4871 FALSE 983.291 4952765 37
chuffed0_OG mrcpsp4960 FALSE 38.007 228056 35
chuffed1_Ex mrcpsp4960 FALSE 39.07 228056 35
chuffed1_Inc mrcpsp4960 FALSE 39.698 228056 35
chuffed0_OG mrcpsp7051 FALSE 14.516 92240 36
chuffed1_Ex mrcpsp7051 FALSE 16.294 92240 36
chuffed1_Inc mrcpsp7051 FALSE 13.592 92240 36
chuffed0_OG mrcpsp896 FALSE 0.176 2630 27
chuffed1_Ex mrcpsp896 FALSE 0.256 2630 27
chuffed1_Inc mrcpsp896 FALSE 0.256 2630 27
chuffed0_OG mrcpsp9880 FALSE 0.239 4302 45
chuffed1_Ex mrcpsp9880 FALSE 0.246 4302 45
chuffed1_Inc mrcpsp9880 FALSE 0.262 4302 45
chuffed0_OG mrcpsp9994 FALSE 0.075 950 31
chuffed1_Ex mrcpsp9994 FALSE 0.077 950 31
chuffed1_Inc mrcpsp9994 FALSE 0.061 950 31

Table B.1: Output for a single run on MRCPSP instances.

41

C
Scientific paper

This appendix contains a draft of the scientific paper to be used for conference submission, which was
written together with my supervisor Neil Yorke-Smith.

43

Unsatisfiable Core Learning for Chuffed

Ronald van Driel and Neil Yorke-Smith
Algorithmic group, Delft University of Technology, Netherlands

ronald_van_driel@outlook.com and n.yorke-smith@tudelft.nl∗

Abstract

Contemporary research explores the possibilities of integrat-
ing machine learning (ML) approaches with traditional com-
binatorial optimisation solvers. Since optimisation hybrid
solvers, which combine propositional satisfiability (SAT) and
constraint programming (CP), dominate recent benchmarks,
it is surprising that the literature has yet to develop machine
learning approaches for hybrid CP–SAT solvers. We identify
a recent technique called unsatisfiable core in the SAT liter-
ature as promising to improve the performance of the hybrid
CP–SAT lazy clause generation solver Chuffed. We leverage
a graph convolutional network (GCN) model, trained on an
adapted version of the MiniZinc benchmark suite. The GCN
predicts which variables belong to an unsatisfiable cores on
CP instances; these predictions are used to initialise the ac-
tivity score of Chuffed’s Variable-State Independent Decay-
ing Sum (VSIDS) heuristic. We benchmark the ML-aided
Chuffed on MiniZinc benchmark suite and find a robust 2.5%
gain over baseline Chuffed. This paper thus presents the first,
to our knowledge, successful application of machine learning
to improve hybrid CP–SAT solvers.

1 Introduction
Both propositional satisfiability (SAT) and constraint pro-
gramming (CP) are immensely popular automated reason-
ing technologies, they form the foundation of many real-life
problems such as: scheduling, logistics and resource allo-
cation (Rossi, Van Beek, and Walsh 2006). Solving SAT
or CP instances as quickly as possible is therefore of great
economical interest to many companies. The popularity of
SAT and CP is reflected in the vast amount of research
that has been conducted over the years to improve SAT and
CP solvers. Recently, Stuckey proposed a new CP solving
technique called Lazy-Clause-Generation (LCG) (Stuckey
2010), this technique combines the conflict learning ability
from SAT solvers with finite domain propagation from CP
solvers, essentially creating a hybrid SAT/CP solver. These
hybrid solvers have shown to be capable of beating modern
state-of-the-art solvers.

2 Approach
This section provides a high-level design of the proposed
approach for improving Chuffed with machine learning.

∗Contact author

Similar to SAT solvers Chuffed is able to use the Variable-
State Independent Decaying Sum (VSIDS) heuristic. VSIDS
is usually implemented by keeping track of an activity score
for each variable which indicates the value of branching on
that variable. Normally the score for each variable is ini-
tialised at zero and incremented when the corresponding
variable occurs as part of a conflict. To emphasise vari-
ables visited recently the activity scores are periodically de-
creased.

Consequently, the scores do not initially provide any in-
formation to the solver but they gradually become more use-
ful. Chuffed typically uses search annotations before switch-
ing to VSIDS for making branching decisions. However,
with machine learning the activity scores can be directly ini-
tialised, which may benefit the solver also in early stages of
the solving procedure.

To achieve this a Graph Convolutional Network model is
trained on unsatisfiable instances to make a prediction on
which variables belong to an unsatisfiable core. An unsatis-
fiable core is a minimal subset of variables which can not
not be simultaneously satisfied. The trained model is then
used to classify the variables of an instances which needs to
be solved and the softmax probabilities of this classification
are used to initialise Chuffed’s VSIDS scores.

3 Data
The approach described in section 2 requires two differ-
ent datasets containing CP instances. One of these datasets
should only contain unsatisfiable instances to train on, the
other one should contain satsifiable instances to solve using
this approach for evaluation.

The MiniZinc benchmark suite (MiniZinc 2016) was used
to supply over 13.000 satsifiable instances for evaluation.
However, to the best of my knowledge, no public CP dataset
contained sufficiently many unsatisfiable instances for train-
ing any machine learning model on. Therefore the constrain
optimisation problem (COP) instances from the MiniZinc
benchmark suite were also modified to become unsatisfiable.
This was done by first solving them for their optimal value.
Then the original instance was modified by setting the do-
main of the objective variable to only include values better
than the optimal value, which makes the instances unsatisfi-
able. While less computationally intesive alternatives exist,

this procedure was selected with the intention to not intro-
duce any unwanted bias for learning the unsatisfiable cores.

Using this procedure allowed to create both the satisfi-
able datset as well as the unsatisfiable dataset. For the un-
satisfiable dataset the labels were generated using MiniZ-
inc’s ’findMUS’ command. Ultimately the datasets con-
tained 13667 instances for which features were available and
8057 instances for which labels could be extracted. Unfor-
tunately over 90% of the data belonged to a single problem
type being the Multi-mode Resource-Constrainted Project
Scheduling Problem (MRCPSP), and over 80% of the data
were instances which could be solved in less than 0.1 sec-
ond. Because of that it was challenging to find enough size-
able instances to train and test on.

4 Implementation
This section covers the technique used to integrate machine
learning with the LCG solver Chuffed. It is important to
note that, similar to the approach proposed by Selsam and
Bjørner (Selsam and Bjørner 2019), it is not the intention to
achieve the best possible predictions. The reason for this is
that more accurate predictions do not necessarily imply that
they are more useful for the solver. In fact, if all variables
of a satisfiable instance would be correctly classified as not
being part of an unsatisfiable core with 100% certainty, it
would not provide any information to the solver at all. In-
stead, the assumption is that the confidence of classifying a
variable to be part of an unsatisfiable core correlates with the
effectiveness of branching on that variable.

4.1 Features
Using an external Python script the available data was trans-
lated to a feature representation which the GCN model is
able to use. For this research the following features were
used:

1. Categorical features indicating if a variable is declared as
a Boolean, integer, float or set.

2. Minimum value within the variable domain.

3. Maximum value within the variable domain.

4. The range of the variable domain.

5. A set of identifiers of variables which co-occur in some
constraint.

4.2 Model
The implemented GCN model is taken from (Kipf and
Welling 2016) which was made available at https://
github.com/tkipf/gcn. A GCN works by learning
a function of the features on a graph. In this case no ac-
tual graph was constructed but it is sufficient that the data
is structured in such way that it could be represented with a
graph.

The input of this GCN model is:

1. A feature matrix of size N× D Here N represents the
number of variables and D the number of selected fea-
tures.

2. An adjacency matrix of size N× N In this matrix vari-
ables are considered adjacent if they co-occur in a con-
straint.

3. The labels in an N× C matrix Here C represents the
number of output classes, in this case 2; one for variables
which are part of an unsatisfiable core and the other for
variables which are not.

The output of the model is a N× C matrix which contains
the soft-max output which can be interpreted as the proba-
bility for each variable to belonging to each class. Because
this research only considers two classes, it is possible to ex-
press the output of the machine learning predictions with a
single value, which is the prediction confidence of a variable
belonging to an unsatisfiable core.

A simplified overview of the architecture is shown in Fig-
ure 1.

For this research the following parameters of the model
were set based on a couple of empirical trials:
• Learning rate: 0.3
• Number of epochs: 200
• Number of units in the first hidden layer: 16
• Dropout rate: 0.1
• Weight decay: 5e-4

• Tolerance for early stopping: 10
Using the aforementioned configuration of the GCN

model, usually the early stopping criteria would be reached
at around 100 epochs at which point an accuracy varying
between 0.70 and 0.8 was achieved. It may be possible to
achieve even better predictions but doing so would serve lit-
tle purpose for the goals of this research.

4.3 Integration
A copy of Chuffed’s code, which is available at https:
//github.com/chuffed/chuffed, was made at on
the 3rd of November 2019. This code was modified to use
the predictions from the GCN described in Section 4.2. The
GCN was first trained to be able to output the prediction
confidences of a variable belonging to an unsatisfiable core.
For each instance in the test-set a comma-separated file was
created containing the prediction confidences alongside the
corresponding flatzinc identifier of that variable. Internally,
Chuffed refers to the same flatzinc identifiers when creating
the variables which represent the CP problem. By using the
previously created comma-separated file it was possible to
import the prediction confidences and match them with the
variables created internally in Chuffed. This means it was
now possible to initialise the VSIDS activity scores with re-
spect to the prediction confidences instead of always assign-
ing zero.

5 Evaluation
The research covered in this paper tries to answer the fol-
lowing research questions:

1. Is it possible to reduce the run-time of solving a CP
instance by integrating machine learning in the LCG
solver Chuffed?

Figure 1: Visualisation of the Graph Convolutional Network architecture

2. Does the impact of using machine learning on the run-
time of Chuffed differ across different problem types?

3. Does the impact of using machine learning depend on
the type of problems in the training set?
This section cover the experiment which has been con-

ducted to evaluate the effectiveness of the proposed ap-
proach. For this experiment three different versions of
Chuffed were compiled, these will be referred to as
Chuffed0 OG, Chuffed1 Ex and Chuffed1 Inc. All three of
them were configured to switch to VSIDS as soon as 100
conflicts have been encountered. While all three versions
have an identical configuration, they are different in the way
the machine learning was integrated. Chuffed0 OG was oth-
erwise left completely unmodified, and serves purpose as a
benchmark. Chuffed1 Ex was modified to have the VSIDS
scores initialised with the predictions obtained after being
trained on a training set which contained only instances from
other problem types. Similarly, Chuffed1 Inc was modified
to initialise the VSIDS scores with predictions after being
trained on all training instances, including from the same
problem type.

These three different version were used to solve different
selected test-sets containing instances from the four largest
problem types: MRCPSP, Bin-packing, price-collecting and
fastfood. Finally, their run-times were stored and compared
against each other. This experiment was run entirely on a vir-
tual machine provided by the Delft university of technology.
This virtual machine uses an Intel R©Xeon Gold 6248 CPU
@ 2.50 GHz with 16 cores and has access to 32GB RAM.

The box-plot in Figure 2 shows the resulting distribution
of the the total run-times of all instances from the each of
the four largest problem types, averaged over a total of 100
runs.

A more detailed summary of the results for this experi-
ment is presented in Table 5, which shows the average run-
time over 100 runs for each of the instances from the test-set

as well as some statistics on the total run-time.
To confirm the statistical significance of the presented re-

sults a two-tailed t-test (Kim 2015) is performed. The results
of this t-test are shown in Table 6.

The t-test analysis shows that the machine learning en-
hanced version significantly outperform the unmodifed ver-
sion for both MRCPSP and Bin-packing instances. The
probability for obtaining less similar results on the MRCPSP
test-set compared to Chuffed0 OG is less than 0.01% for
Chuffed1 Inc and less than 0.005% for Chuffed1 Ex. For
Bin-packing these probabilities are 2.6% and 0.0036% re-
spectively. This means the hypothesis that they follow the
same distribution as Chuffed0 OG can be rejected with over
99.99% certainty for MRCPSP and 97% certainty for Bin-
packing. Therefore, it makes sense to conclude that the
machine learning enhanced versions both outperform the
unmodifed version on MRCPSP and Bin-packing. There
is, however, no sufficient statistical evidence to conclude
any significant difference between the results obtained with
Chuffed1 Inc and Chuffed1 Ex for MRCPSP. The probabil-
ity of obtaining less similar results with identical distribu-
tions is over 83%. However, for bin-packing, in addition
to the difference between the machine learning enhanced
version compared to Chuffed0 OG, it is also 95% certain
that there is a statistically significant difference between
Chuffed1 Ex and Chuffed1 Inc. This may indicate that bin-
packing shares less learn-able concepts with other problem
types than MRCPSP.

For price-collecting and fastfood there is insufficient ev-
idence to conclude any significant differences between re-
sults of the different Chuffed versions. The most likely ex-
planation is that, because of the limited data available for
these problem types, none of the price-collecting or fast-
food instances required considerable solving time. The av-
erage run-time per instance stated in Table 5 indicate that
the machine learning integration works better for sizeable
instances. Therefore it is most likely that lack of improve-

(a) MRCPSP (b) Bin-packing

(c) Price-collecting (d) Fastfood

Figure 2: Box-plots showing the total run-time of all test instances averaged over 100 runs for the four largest problem types.

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

mrcpsp10900 4.507 4.356 4.461
mrcpsp36 2.399 2.428 2.410
mrcpsp4425 311.565 296.139 302.595
mrcpsp4777 5274.736 5153.284 5155.367
mrcpsp4871 892.922 865.954 865.404
mrcpsp4960 32.713 32.241 32.099
mrcpsp7051 16.091 15.884 16.028
mrcpsp896 0.152 0.155 0.189
mrcpsp9880 0.236 0.241 0.240
mrcpsp9994 0.033 0.034 0.035

Total(s) 6535.354 6370.715 6378.829
Standard Deviation 282.493 273.983 271.103
Relative(%) 100.0% 97.5% 97.6%

Table 1: MRCPSP

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

2DLevelPacking238 171.700 151.000 152.580
2DLevelPacking23 1563.956 1499.611 1512.328
2DLevelPacking492 1221.866 1275.854 1237.965
2DPacking13 5065.462 5037.534 5025.021
2DPacking165 683.933 708.044 641.285
2DPacking168 2511.413 2430.075 2431.017
2DPacking62 58.744 57.180 57.587

Total(s) 11277.074 11159.298 11057.783
Standard Deviation 381.016 359.230 347.639
Relative(%) 100.0% 99.0% 98.1%

Table 2: Bin-packing

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

pc52 12.211 12.326 12.152
pc56 8.777 8.750 8.750
pc58 15.283 15.409 15.431
pc61 10.501 10.648 10.644
pc65 12.111 11.908 12.049
pc73 42.743 42.407 42.948
pc77 7.886 8.013 8.040
pc79 20.479 20.631 20.709

Total(s) 129.991 130.092 130.722
Standard Deviation 3.373 2.895 3.452
Relative(%) 100.0% 100.1% 100.6%

Table 3: Price-collecting

Chuffed0 OG Chuffed1 Ex Chuffed1 Inc
Instances Avg. runtime(s) Avg. runtime(s) Avg. runtime(s)

fastfood15 30.568 31.614 31.580
fastfood17 23.212 25.660 23.382
fastfood20 8.492 6.361 6.867
fastfood36 6.414 6.464 6.396
fastfood53 80.526 86.375 86.946
fastfood58 49.063 40.309 45.349
fastfood61 18.369 20.553 20.467
fastfood74 81.844 84.775 82.858

Total(s) 298.487 302.111 303.844
Standard Deviation 20.318 18.402 19.197
Relative(%) 100.0% 101.2% 101.8%

Table 4: Fastfood

Table 5: The average run-time per instance of the four largest problem types, averaged over 100 runs.

ment on price-collecting and fastfood is not because they are
less similar to other problem types but because the tested in-
stances were not sufficiently large.

6 Related work
This study continues on the work of Stuckey (Stuckey 2010)
who proposed a hybrid SAT/CP solver based on Lazy-
Clause-Generation (LCG). LCG combines finite domain
propagation with the conflict learning ability of SAT. Be-
cause of this LCG solvers are able to use conflict driven
heuristics such as VSIDS, which were originally developed
for SAT solver Chaff (Moskewicz et al. 2001).

Multiple approaches have been proposed to combine ma-
chine learning with traditional SAT or CP solvers. For ex-
ample, (Song et al. 2019) shows that machine learning can
be used to automatically learn variable ordering heuristics
for CSP solving. Moreover, Guerri et al. (Guerri and Milano
2004) has shown that machine learning is very capable of
selecting solving strategies.

However, to the best of my knowledge, there has not been
any research to combining machine learning with hybrid
SAT/CP solvers, so far. This study mostly draws inspiration
from the work by Selsam and Bjørner (Selsam and Bjørner
2019). This work describes how they use a technique called
unsatisfiable core learning where to initialise the values

of the Variable-Sate Independent Decaying Sum (VSIDS)
heuristic for a selection of well-known SAT solvers. With
this approach they manage to solve between 6 and 20% more
instances within the same amount of time compared to the
original solver.

7 Conclusion
As seen most evidently on the larger instances of the MR-
CPSP and bin-packing problem types the machine learning
integration is possible to use this procedure to reduce the
run-time of solving an CP instance. The total run-time for
all the MRCPSP instances in the selected test-set, for which
most data was available, was proven with over 99.99% cer-
tainty to be significantly less compared to the run-time of
the unmodified version. On average a 2.5% increase in per-
formance was achieved with a standard deviation of approx-
imately 4%.

The impact of machine learning seemed to depend mostly
on the difficulty of the instance. For instances that take
less than a four seconds the overhead of initialising VSIDS
may outweigh the benefit gained from it. Because of limited
available data it was unfortunately not possible to determine
a significantly different impact on performance across dif-
ferent problem types.

For the performance gained on the MRCPSP instances it

MRCPSP
Version Pair T-Stat P-Value

Chuffed0 OG - Chuffed1 Ex 4.163 4.693e-5

Chuffed0 OG - Chuffed1 Inc 3.978 9.761e-5

Chuffed1 Ex - Chuffed1 Inc -0.209 0.834

Binpacking
Version Pair T-Stat P-Value

Chuffed0 OG - Chuffed1 Ex 2.238 0.026
Chuffed0 OG - Chuffed1 Inc 4.230 3.577e-5

Chuffed1 Ex - Chuffed1 Inc -2.020 0.045

Price-collecting
Version Pair T-Stat P-Value

Chuffed0 OG - Chuffed1 Ex -0.226 0.821
Chuffed0 OG - Chuffed1 Inc -1.506 0.134
Chuffed1 Ex - Chuffed1 Inc -1.390 0.166

Fastfood
Version Pair T-Stat P-Value

Chuffed0 OG - Chuffed1 Ex -1.316 0.190
Chuffed0 OG - Chuffed1 Inc -1.907 0.058
Chuffed1 Ex - Chuffed1 Inc -0.648 0.518

Table 6: T-Test analysis

made no significant difference whether the Graph Convolu-
tional Network model was trained exclusively on different
problem types or also on MRCPSP instances. This suggests
that the chosen model was able to generalise between the
different problem types and still learn concepts which are
useful to the solver. However, for the bin-packing problem
type the performance was adversely affected by excluding
any bin-packing instances from the training set. Therefore
it may be concluded that it is possible to generalise between
different problem types, but the performance may depend on
the selected problem types.

All things considered, this study shows that it is possible
to use machine learning approaches which are designed for
solving SAT instances to improve LCG solving techniques.
Specifically, this research has shown that it is possible to
use unsatisfiable core learning, which originates from the
work of Selsam and Bjørner (Selsam and Bjørner 2019),
for improving the performance of the LCG solver Chuffed.
With LCG approach dominating recent benchmarks it is in-
teresting that the proposed approach is able to consistently
achieve an improved performance on sizeable instances,
even if only by a small margin.

Our work demonstrates the first, to our knowledge, suc-
cessful application of machine learning to aid a CP–SAT
optimisation solver. This paper opens the door to further re-
search:

• For this approach to be used in practical context the possi-
bilities for integrating the classification part directly into
the solver should be investigated, this would require em-
bedding the feature extraction part directly into the solver.

• In order to examine the effect across different problem
types this experiment it may be valuable to repeat this
study with more evenly distributed data.

• While the Graph Convolutional Network model proved
sufficient for this study, it may be worth it for any future
research which involves adapting a similar approach to
evaluate the effect of using different machine learning ar-
chitectures.

• It may be interesting to determine the effect of using

the periodic refocussing technique described in the orig-
inal paper (Selsam and Bjørner 2019) and examine if it
would provide better performance for instances which
take longer than a couple of hours to solve.

• The nature of this approach may reduce the time required
to determine unsatisfiability on unsatisfiable instances,
this may be interesting to further investigate.

• Another and possibly more successful way to improve
LCG solvers would be to learn the best configuration of
the solver’s parameters given a certain instance.

• Machine learning may also be useful for predicting no-
goods or their activity scores.

References
[Guerri and Milano 2004] Guerri, A., and Milano, M. 2004.

Learning techniques for automatic algorithm portfolio selec-
tion. In ECAI, volume 16, 475.

[Kim 2015] Kim, T. K. 2015. T test as a parametric statistic.
Korean journal of anesthesiology 68(6):540.

[Kipf and Welling 2016] Kipf, T. N., and Welling, M. 2016.
Semi-supervised classification with graph convolutional net-
works. CoRR abs/1609.02907.

[MiniZinc 2016] MiniZinc. 2016. The minizinc benchmark
suite.

[Moskewicz et al. 2001] Moskewicz, M. W.; Madigan, C. F.;
Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff: Engineering
an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, 530–535.

[Rossi, Van Beek, and Walsh 2006] Rossi, F.; Van Beek, P.;
and Walsh, T. 2006. Handbook of constraint programming.
Elsevier.

[Selsam and Bjørner 2019] Selsam, D., and Bjørner, N.
2019. Neurocore: Guiding high-performance SAT solvers
with unsat-core predictions. CoRR abs/1903.04671.

[Song et al. 2019] Song, W.; Cao, Z.; Zhang, J.; and Lim, A.
2019. Learning variable ordering heuristics for solving con-
straint satisfaction problems.

[Stuckey 2010] Stuckey, P. J. 2010. Lazy clause genera-
tion: Combining the power of SAT and CP (and MIP?) solv-
ing. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6140 LNCS(June):5–9.

Bibliography
[1] Or-tools | google developers, 2016. URL https://developers.google.com/

optimization.

[2] H-M. Adorf and Mark D. Johnston. A discrete stochastic neural network algorithm for constraint
satisfaction problems. In 1990 IJCNN International Joint Conference on Neural Networks, pages
917–924. IEEE, 1990.

[3] Alexander Bockmayr and John N. Hooker. Constraint programming. Handbooks in Operations
Research and Management Science, 12:559–600, 2005.

[4] Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional satisfiability and constraint
programming: A comparative survey. ACM Computing Surveys (CSUR), 38(4):12–es, 2006.

[5] Geoffrey Chu and Peter J Stuckey. Inter-instance nogood learning in constraint programming. In
International Conference on Principles and Practice of Constraint Programming, pages 238–247.
Springer, 2012.

[6] Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, a lazy clause generation solver, 2018.

[7] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of the
ACM (JACM), 7(3):201–215, 1960.

[8] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

[9] David Devlin and Barry O’Sullivan. Satisfiability as a Classification Problem. Proc. of the 19th
Irish Conf. on Artificial Intelligence and Cognitive Science, 2008.

[10] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2006.

[11] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In Principles and Prac-
tice of Constraint Programming - CP 2009 - 15th International Conference, CP 2009, Proceedings,
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 352–366. Springer, November 2009. ISBN 3642042430.
doi: 10.1007/978-3-642-04244-7_29. 15th International Conference on Principles and Prac-
tice of Constraint Programming, CP 2009 ; Conference date: 20-09-2009 Through 24-09-2009.

[12] Ian P. Gent and Toby Walsh. Csplib: a benchmark library for constraints. In International Confer-
ence on Principles and Practice of Constraint Programming, pages 480–481. Springer, 1999.

[13] Ian P. Gent, Chris Jefferson, Lars Kotthoff, Ian Miguel, Neil C.A. Moore, Peter Nightingale,
and Karen Petrie. Learning when to use lazy learning in constraint solving. Frontiers in Ar-
tificial Intelligence and Applications, 215:873–878, 2010. ISSN 09226389. doi: 10.3233/
978-1-60750-606-5-873.

[14] Matthew L. Ginsberg. Dynamic backtracking. journal of artificial intelligence research, 1:25–46,
1993.

[15] Carla P. Gomes and David B. Shmoys. The promise of lp to boost csp techniques for combina-
torial problems. In Proc., Fourth International Workshop on Integration of AI and OR techniques
in Constraint Programming for Combinatorial Optimisation Problems (CP-AI-OR’02), Le Croisic,
France, pages 25–27, 2002.

51

https://developers.google.com/optimization
https://developers.google.com/optimization

52 Bibliography

[16] Carla P. Gomes, Bart Selman, Henry Kautz, et al. Boosting combinatorial search through ran-
domization. AAAI/IAAI, 98:431–437, 1998.

[17] Alessio Guerri andMichelaMilano. Learning techniques for automatic algorithm portfolio selection.
In ECAI, volume 16, page 475, 2004.

[18] K. Hirayama and M. Yokoo. The effect of nogood learning in distributed constraint satisfaction.
In Proceedings 20th IEEE International Conference on Distributed Computing Systems, pages
169–177, 2000.

[19] Holger H. Hoos and Thomas Stützle. Satlib–the satisfiability library.Web site at: http://www. satlib.
org, 1998.

[20] Holger H. Hoos and Thomas Stützle. Stochastic local search: Foundations and applications.
Elsevier, 2004.

[21] Holger H. Hoos and Edward Tsang. Local search methods. In Foundations of Artificial Intelligence,
volume 2, pages 135–167. Elsevier, 2006.

[22] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration based on
local search. In Aaai, volume 7, pages 1152–1157, 2007.

[23] George Katsirelos and Fahiem Bacchus. Generalized nogoods in csps. In AAAI, volume 5, pages
390–396, 2005.

[24] Tae Kyun Kim. T test as a parametric statistic. Korean journal of anesthesiology, 68(6):540, 2015.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

[26] Jia Hui (Jimmy) Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki. Un-
derstanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. CoRR,
abs/1506.08905, 2015. URL http://arxiv.org/abs/1506.08905.

[27] João P. Marques-Silva and Karem A Sakallah. Grasp: A search algorithm for propositional satis-
fiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[28] Zbigniew Michalewicz. A survey of constraint handling techniques in evolutionary computation
methods. Evolutionary programming, 4:135–155, 1995.

[29] MiniZinc. The minizinc benchmark suite, 2016. URL https://github.com/MiniZinc/
minizinc-benchmarks.

[30] MiniZinc. Challenge2017, 2017. URL https://www.minizinc.org/challenge2017/
results2017.html.

[31] MiniZinc. Challenge2019, 2019. URL https://www.minizinc.org/challenge2019/
results2019.html.

[32] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation Confer-
ence, pages 530–535, 2001.

[33] Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard cp modelling language. In International Conference on
Principles and Practice of Constraint Programming, pages 529–543. Springer, 2007.

[34] Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Springer, 2015.

[35] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational intelli-
gence, 9(3):268–299, 1993.

[36] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Else-
vier, 2006.

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1506.08905
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
https://www.minizinc.org/challenge2017/results2017.html
https://www.minizinc.org/challenge2017/results2017.html
https://www.minizinc.org/challenge2019/results2019.html
https://www.minizinc.org/challenge2019/results2019.html

Bibliography 53

[37] Nikos Samaras and Konstantinos Stergiou. Binary encodings of non-binary constraint satisfaction
problems: Algorithms and experimental results. CoRR, abs/1109.5714, 2011. URL http://
arxiv.org/abs/1109.5714.

[38] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode. Software download and online
material at the website: http://www. gecode. org, pages 11–13, 2006.

[39] Daniel Selsam and Nikolaj Bjørner. Neurocore: Guiding high-performance SAT solvers with unsat-
core predictions. CoRR, abs/1903.04671, 2019. URL http://arxiv.org/abs/1903.04671.

[40] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

[41] Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning variable ordering heuristics for
solving constraint satisfaction problems, 2019.

[42] Peter J. Stuckey. Lazy clause generation: Combining the power of SAT andCP (andMIP?) solving.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 6140 LNCS(June):5–9, 2010. ISSN 03029743. doi: 10.1007/
978-3-642-13520-0_3.

[43] Peter J.M. Van Laarhoven and Emile H.L. Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[44] Toby Walsh. Sat v csp. In International Conference on Principles and Practice of Constraint
Programming, pages 441–456. Springer, 2000.

[45] HaozeWu. Improving sat-solving withmachine learning. InProceedings of the 2017 ACMSIGCSE
Technical Symposium on Computer Science Education, pages 787–788, 2017.

[46] Hong Xu, Sven Koenig, and T. K. Satish Kumar. Towards effective deep learning for constraint
satisfaction problems. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 11008 LNCS:588–597, 2018. ISSN
16113349. doi: 10.1007/978-3-319-98334-9_38.

[47] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of artificial intelligence research, 32:565–606, 2008.

[48] Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Predicting satisfiability at the phase transition.
In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

http://arxiv.org/abs/1109.5714
http://arxiv.org/abs/1109.5714
http://arxiv.org/abs/1903.04671

	Abstract
	Keywords

	Introduction
	Motivation
	Background
	SAT
	CP
	Hybrid SAT/CP

	Research goal
	Research questions
	Structure of this document

	Background & Related work
	Traditional research
	SAT
	CP
	Integration of SAT and CSP

	Emergence of machine learning
	Related work

	Initial experiments
	Satisfiability prediction
	Can satisfiability be accurately predicted?
	Does satisfiability prediction benefit Chuffed?
	Conclusion

	Methodology
	Approach
	Intuition
	High-level Procedure

	Data
	Alternatives
	Acquisition
	Data characteristics

	Machine learning
	Model
	Features
	Configuration

	Implementation
	Integration
	Chuffed's Parameters

	Experiments
	Experimental setup
	Exploratory trial
	Results
	MRCPSP
	Bin-Packing
	Price-collecting
	Fastfood

	Discussion
	Statistical significance
	Interpretation

	Conclusion
	Answers to the research questions
	Scientific impact
	Future research

	Available data instances
	Single run example
	Scientific paper
	Bibliography

