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Summary 
The shear problem is typically studied by testing small, heavily reinforced, slender beams subjected 
to concentrated loads, resulting in a beam shear failure, or by testing slab-column connections, 
resulting in a punching shear failure. Slabs subjected to concentrated loads close to supports, as 
occurring when truck loads are placed on slab bridges, are much less studied. For this purpose, the 
Bond Model for concentric punching shear was studied at first. Then, modifications were made, 
resulting in the Modified Bond Model. The Modified Bond Model takes into account the enhanced 
capacity resulting from the direct strut that forms between the load and the support. Moreover, the 
Modified Bond Model is able to deal with moment changes between the support and the span, as 
occurs near continuous supports, and can take into account the reduction in capacity when the load 
is placed near to the edge. The resulting Modified Bond Model is compared to the results of 
experiments that were carried out at the Stevin laboratory. As compared to the Eurocodes (NEN-EN 
1992-1-1:2005) and the ACI code (ACI 318-11), the Modified Bond Model leads to a better 
prediction.  

Keywords: arching action; bond; compressive strut; continuous supports; edge loading; punching 
shear; shear; slabs; torsion. 

1. Introduction 
The shear problem is typically addressed by studying two well-defined cases: 1) the one-way shear 
capacity of beams (beam shear), and 2) the two-way shear capacity of slabs (punching shear). One-
way shear in beams is most often studied on small, heavily reinforced, slender beams, tested in four 
point bending [1, 2], resulting in the semi-empirical expressions as given in NEN-EN 1992-1-
1:2005 [3] and ACI 318-11 [4] for the beam shear capacity. Two-way shear in slabs is studied on 
slab-column specimens [5]. These experiments form the basis of the semi-empirical punching shear 
provisions as given in NEN-EN 1992-1-1:2005 and ACI 318-11. 

Besides these two standard cases of the shear problem that have been widely studied over the past 
decades [6], other loading cases, often at the intersection of beam shear and punching shear, arise in 
practice. An example is the shear capacity of existing reinforced concrete solid slab bridges, 
subjected to concentrated live loads when located close to the support, resulting in large shear 
stresses at the support [7]. The available code provisions are not fully suitable to determine the 
shear capacity of slabs subjected to concentrated loads close to supports, a problem at the 
intersection between one-way and two-way shear.  

To describe the behaviour of reinforced concrete slabs subjected to concentrated loads close to the 
support, a new model is proposed. This model is a combination of load-bearing quadrants and strips, 
and is based on the Bond Model [8, 9]. The resulting Modified Bond Model can be considered a 
mechanical model, in which the concept of a limiting one-way shear stress is incorporated. Where 
most beam shear and punching shear models make a strict distinction between these two modes of 



failure, the Bond Model considers the shear-carrying behaviour as an action of two-way quadrants 
and one-way strips. As such, it is the most suitable model for the considered case that is a 
combination of one-way shear and two-way shear. 

2. Bond Model for concentric punching shear 
The Bond Model for concentric punching shear [8, 9] 
is a mechanical model for slab-column connections 
that explains the load transfer between plate and 
column by combining radial arching action and the 
concept of a critical shear stress, as used for beam 
shear. Shear, V, (moment gradient) results where the 
magnitude of the force T or lever arm z varies along 
the length of the member. As such, shear is carried by 
a combination of beam action and arching action: 

( ) ( ) ( )d Tz d T d z
V z T

dx dx dx
     (1) 

For slabs, arching action, expressed by the radial 
compression strut, is the dominant mechanism in the 
radial direction. It is assumed that the load is 
distributed in the radial directions from the column 
by arching.  

In the Bond Model, arching is represented by four 
strips branching out from the column, parallel to the 
reinforcement, Fig. 1. These strips separate the 
column from the slab quadrants. The length of the 

strips, lstrip, is determined from the column to a remote end, a position of zero shear. The strips are 
loaded in shear on their side faces only and are described as cantilever beams as shown in Fig. 2. 
These cantilevers have negative and positive moment capacities of Mneg and Mpos that can be 
combined into Ms, the total flexural capacity of the strip. At the side of the column, the axial load 
PAS,1 is acting. The length lw is the loaded length of the strip, and w the uniformly distributed load. 
The loading term w is an estimate of the shear that can be delivered by the adjacent quadrant of the 
slab to one side face of the strip.  For a strip with two side faces, the total uniformly distributed load 
on the strip is 2w. Using force and moment equilibrium of the cantilever strip (Fig. 2) results in the 
following expressions for the total flexural capacity Ms and the concentrated load PAS,1: 
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2AS,1 wP wl  (3) 
Solving Eq. (2) for the unknown 
loaded length lw and substituting this 
into Eq. (3) results in: 

2AS,1 sP M w  (4) 

To find the maximum column axial 
load PAS, the capacity of all four strips 
can be summed: 

8AS sP M w  (5) 

The maximum value of the loading 
term w can be found based on the 
equivalence between the maximum 
value of beam action shear and a 
limiting nominal one-way shear stress 

as prescribed by the codes. Using the 
one-way shear capacity from ACI 318-
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11, empirically defined as the inclined cracking load [10], was found to lead to the best results [9]. 
When the maximum value of the loading term is limited by beam action shear, it is expressed as 
follows: 

0,1667ACI ckw d f (6) 

In Eq. (6), wACI is given in [kN/m] with fck in [MPa] and d in [mm]. 

3. Development of Modified Bond Model 

3.1 Concentrated loads close to the support 

To apply the Bond Model to the case of slabs 
subjected to concentrated loads close to supports, it is 
necessary to take into account direct load transfer. 
For one-way slabs, the different properties in the 
span direction and in the transverse direction need to 
be taken into account. The four cantilevering strips 
branching out from the load can be studied together 
to sketch the assumed moment distribution, Fig. 3. In 
Fig. 3, the geometry and layout from the slab shear 
experiments carried out at Delft University of 
Technology [11] are used. 

For the x-direction strip between the concentrated 
load and the support, direct load transfer between the 
load and the support is taken into account. Regan 
described the punching capacity of slabs under 
concentrated loads close to supports by considering 
the 4 sides of the punching perimeter separately [12]. 

To take into account the beneficial influence of direct load transfer, the capacity of the side of the 
punching perimeter at the support was enhanced with a factor 2dx / av, in which dx is the effective 
depth to the reinforcement in the x-direction and av is the face-to-face distance between the load and 
the support. Similarly, it is proposed to increase the capacity of the strip between the load and the 
support by enhancing the capacity with 2dx / av for 0,5dx < av < 2dx and 4 for av ≤ 0,5dx.  

3.2 Loads close to the continuous support 

A first extension of the Bond Model deals with loads 
applied close to the continuous support, in which the 
positive moment reinforcement can increase the total 
flexural capacity. As the negative and positive 
moment capacities are not activated in the same cross-
sections of the strips and because yielding of the 
compression reinforcement is not assumed in the 
model, the following expression is proposed to take 
into account the effect of the positive moment 
reinforcement: Ms = Mneg + λmoment Mpos. The factor 

λmoment ranges from 0 (for simply supported edges) to 1 (for fully restrained cases) and equals: 
λmoment = Msup / Mspan ≤ 1 (Fig. 4). 

When the concentrated load is placed close to a continuous support, two quadrants experience the 
change in moment from hogging moment Msup to sagging moment Mspan. As a result, the combined 
effect of the top and bottom reinforcement should be taken into account on the three strips that 
border these two quadrants: the two y-direction strips as well as the x-direction strip between the 
load and the support. 
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4. Study of edge effect 

4.1 Extreme cases 

When loads are placed close to the edge of the slab, the edge effect plays 
a role. Before studying the case of concentrated loads close to the free 
edge of the slab, two extreme cases are considered: the case where the 
load is in the middle of the width and no edge effect is present and the 
case where the load is placed right at the edge and only 3 strips can be 
used. 

When no edge effect is present, the load and strips are as shown in Fig. 
5a. All strips are loaded with 2w and the capacity of each strip is PAS,1 
as given by Eq. (4).  

The second case is the case in which the load is placed right at the edge, 
as shown in Fig. 5b. For this case, only 3 strips can be used and only 2 
quadrants result. As a result, the strips in the y-direction are loaded with 
w and the strip in the x-direction is loaded with 2w. The case of loading 

with 2w gives a capacity PAS,1 from Eq. (4). For the strips in the y-direction a load of w is placed 
over a loaded length of lw as sketched in Fig. 6.  

Horizontal equilibrium for the strips at the edge gives: 

edge wP wl  (7) 

Moment equilibrium gives:  
2
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so that: 
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Substituting the value for lw into the expression of 
Pedge from Eq. (7) gives the capacity of the y-
direction strips as: 

 2edge sP M w (10) 

4.2 Describing the edge effect for the loaded length 

To describe the edge effect, the loaded length of the x-direction strip between the load and the edge 
is studied. When all strips are loaded with 2w, as shown in Fig. 5a, the loaded length will be:  

s
w

M
l

w
  (11) 

For loads close to the edge, the distance between the edge and the face of the load, ledge (Fig. 7a) is 
expressed as (with br the distance between the centre of the load and the edge and lload the length of 
the load): 

2
load

edge r

l
l b  (12) 

If lw from Eq. (11) is larger than ledge from Eq. (12), the model would be assuming a loaded length 
of the strip that is longer than what is physically possible. Therefore, for those cases the edge effect 
needs to be taken into account: the loaded length lw needs to be limited to the edge length ledge. The 
capacity of the strip between the edge and the load then becomes:  

Fig. 5: Strips and loads 
for: (a) load in middle of 
slab, or (b) load at the 
edge  

Fig. 6: Loading on slab strips in y-direction 
equals w when load is placed at the edge of the 
width 
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,2edge edge ACI yP l w  (13)  if the edge effect is present, and  

,2y w ACI yP l w   (14)   if no edge effect is present. 

The previous considerations did not take into 
account the fact that not the full load w will be 
transferred to the strip between the load and the 
edge when the edge effect is present. Let’s now 
assume that only a fraction αw with α < 1 can be 
carried off in the quadrants instead of w. The value 
of α can be expressed as:  

edge

w

l

l
  for ledge ≤ lw.  (15) 

This situation is sketched in Fig. 7a. As a result, a 
load of 2αw instead of 2w acts on the y-direction 
strip between the load and the support, as shown in 
Fig. 7b. The resulting capacity of this strip is then:  

,2edge ACI y wP w l . (16) 

Note that Eq. (16) is valid for the case in which an 
edge effect is present as well as the case for which 
no edge effect is present through the use of the 
factor α. 

4.3 Influence of the torsional moment 

Torsion was neglected in 
the original Bond Model, 
as the influence of the 
torsional moments is small 
when loads are placed on 
infinitely large slabs. 
However, when the load is 
placed close to the edge of 
a slab, torsional distress 
influences the capacity. As 
a result of the influence of 
torsion, a smaller capacity 
than predicted by the 
(Modified) Bond Model is 
found.  

 

The magnitude and influence of the torsional moment is studied based on experiments S1T1 and 
S4T1, as carried out in the Stevin Laboratory of Delft University of Technology [11]. In S1T1, a 
single concentrated load is placed on a reinforced concrete slab in the middle of the width. In S4T1, 
the load is placed close to the edge of the slab. The concrete compressive strength of slab S1 was 
fc,meas = 35,8MPa and for S4, fc,meas = 50,5MPa. Both slabs have a longitudinal reinforcement ratio 
of ρl = 0,996%, yet a different transverse reinforcement ratio: ρt = 0,132% for S1 and ρt = 0,182% 
for S4. All other material and geometric properties are the same for the two experiments. Failure 
occurs in S1T1 for a concentrated load of 954kN, which corresponds to a shear force at the support 
of 799kN. In S4T1, failure occurs for a concentrated load of 1160kN, corresponding to a shear force 
at the support of 964kN. 

Fig. 7: Assuming a uniform influence of the 
edge effect: (a) strips and quadrants, (b) 
resulting loading on strip 

(a) (b)

(c) (d)

Fig. 8: Bending moments (a) in S1T1, (b) in S4T1, torsional moments 
(c) in S1T1, (d) in S4T1.  
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To study the influence of the torsional moment, linear finite element models are used. The resulting 
principal bending moments for S1T1 are shown in Fig. 8a and for S4T1 in Fig. 8b. The principal 
bending moments are determined as: 

  2 2
1

1
( ) 4

2 x y x y xym m m m m m     (17) 

The torsional moments for S1T1 and S4T1 are shown in Fig. 8c and in Fig. 8d, respectively. The 
torque moments are determined as: 
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The resulting bending and torsional 
moments at the location of the load, 
around which the cruciform shape 
resulting from the strips of the Modified 
Bond Model is applied, are given in 
Table 1. Table 1 shows that for the 
experiment with the load at the edge, the 

influence of the torsional moment is significantly larger than for the experiment with the load in the 
middle of the width. 

 

To take the influence of the torsional moment into account in the 
Modified Bond Model, a simplified method is proposed which does 
not require the use of finite element models. This method is sketched 
in Fig. 9.  

As discussed in the previous section, the influence of the edge effect 
can be taken into account by using the reduction factor α. For the 
method proposed in Fig. 9, the edge effect is working on the y-
direction strip between the load and the edge. The capacity of the 
strip is then Pedge as given in Eq. (16). The influence of torsion is 
taken into account by using the factor β ≤ 1. Because the influence of 
torsion is related to the edge effect, this influence is assumed to act 
only in the quadrants between the load and the edge. Moreover, it is 
assumed that this influence acts only in the y-direction, the weaker 
direction in which a lower amount of reinforcement is provided. In 
other words, due to torsion, it is assumed that the capacity of the x-
direction strips, which carry the larger part of the load in one-way 
slabs, is reduced. As a result, the x-direction strips are loaded with (1 

+ β)w. The capacity of the x-direction strips is then: 

, ,

2
2(1 )l

sup s x ACI x
v

d
P M w

a
   (19)  

, ,2(1 )x neg x ACI xP M w   (20)  

In Eqs. (19) and (20) the following symbols are used: 
Psup  = the capacity of the strip between the load and the support 
Px  = the capacity of the x-direction strip from the load towards the span of the slab 
dl  = effective depth to the longitudinal reinforcement 
av = face-to-face distance between the load and the support 
Ms,x  = Mneg,x + λmomentMpos,x = the moment capacity, as explained in §3.2  
Mneg,x  = the hogging moment capacity of the x-direction reinforcement 
Mpos,x  = the sagging moment capacity of the x-direction reinforcement 

'
, 0,1667ACI x l cw d f with fc’ in [MPa]. 

Table 1: Results of bending and torsional moment at 
location of load 
Experiment m1 mtmax mtmax/m1
S1T1 315 kNm/m 20 kNm/m 6%
S4T1 412,57 

kNm/m 
181,35 
kNm/m

44%
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w
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Fig. 9: Proposed design 
method for taking into 
account the influence of 
the torsional moment. 



The value of the factor β, which takes torsion into account, can be expressed based on the resulting 
bending moment m1 and the resulting torsional moment mtmax. Since the goal of the Modified Bond 
Model is to provide a design method which can be used without the need of finite element programs, 
a simplification is to use β = 0 for loading cases where the maximum bending moment and 
maximum torsional moment in a slab coincide, such as the case of loads close to the edge, and to 
use β = 1 when the maximum bending moment coincides with a small torsional moment, such as for 
loading in the middle of the slab width.  

5. Comparison to experimental results 
To study the performance of the Modified 
Bond Model, all results of the experiments on 
slabs S1 to S10, tested at Delft University of 
Technology [11] are compared to the results 
obtained with the Modified Bond Model. The 
maximum concentrated load in the experiment, 
Pexp, is compared to the maximum capacity 
obtained with the Modified Bond Model, 
PMBM. Mean values are used for the material 
properties. The evaluation showed an average 
ratio Pexp/PMBM = 1,19 with a standard 
deviation of 0,13 and a coefficient of variation 
of 11%. Considering that the problem under 
study is a shear problem with a large number 
of parameters that have been varied in the 
experiments, the statistical results are 
excellent. The results are shown graphically in 
Fig. 10a. 

Next, these experimental results are compared 
to the shear capacities according to ACI 318-
11 [4] and NEN-EN 1992-1-1:2005 [3], to 
evaluate the performance of the Modified 
Bond Model as compared to existing code 
provisions. Note that the code provisions 
predict a maximum sectional shear force, 
while the Modified Bond Model predicts a 
maximum concentrated load. The values of 
the experimental sectional shear force Vexp 
compared to the shear capacity according to 
ACI 318-11, VACI, are shown in Fig. 10b. The 
reduced sectional shear force Vexp,EC is 
compared to the shear capacity according to 
NEN-EN 1992-1-1:2005, VR,c, in Fig. 10c. 
The reduced sectional shear force Vexp,EC takes 
into account a reduction of the contribution of 
the loads close to the support (0,5dx ≤ av ≤ 2dx) 
to the shear force by β = av / 2dx as prescribed 
by NEN-EN 1992-1-1:2005 §6.2.2 (6). The 
ratio of Vexp/VACI has an average value of 2,67, 
with a standard deviation of 1,00 and a 
coefficient of variation of 37%. For 
Vexp,EC/VR,c the average value is 1,99, with a 
standard deviation of 0,27 and a coefficient of 
variation of 13%. The statistical results show 

that the Modified Bond Model gives a better prediction of the experiments. The 45o line in Fig. 10a, 
b, and c indicates experimental shear capacities that are exactly as predicted by the method under 
consideration. When using ACI 318-11 and NEN-EN 1992-1-1:2005 to compare to the 
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Fig. 10: Comparison between experiments and 
predicted values according to: (a) Modified Bond 
Model, (b) shear capacity from ACI 318-11, (c) 
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experimental results, an increasing conservatism with increasing shear capacities is seen. The 
Modified Bond Model, on the other hand, shows more consistent results, as the cloud of test results 
lies above and parallel to the 45o line. 

6. Summary and conclusions 
A model for the shear capacity of reinforced concrete slabs under concentrated loads close to 
supports is proposed: the Modified Bond Model. This model is based on the Bond Model for 
concentric punching shear and takes direct load transfer between the load and the support into 
account. It is applicable to slabs with different amounts of reinforcement in the x- and y-direction 
and with a concentrated load close to the support. For continuous supports, the effect of the positive 
moment reinforcement is taken into account. For loads close to the edge, the edge effect and the 
influence of torsion are studied and a simplified method is proposed.The experimental results 
indicate that the Modified Bond Model is an improvement as compared to the code methods for 
slabs under concentrated loads close to supports. 
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