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Abstract: The incoherent emission of periodically structured Light Emit-
ting Diodes (LEDs) can be computed at relatively low computational cost
by applying the reciprocity method. We show that by another application
of the reciprocity principle, the structure of the LED can be optimized
to obtain a high emission. We demonstrate the method by optimizing
one-dimensional grating structures. The optimized structures have twice the
extraction efficiency of an optimized flat structure.
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1. Introduction

There has always been much interest in coupling light in or out of optical gratings. In the last
decade, light-emitting diodes (LEDs) and solar cells have attracted much attention. Whereas
for LEDs it is desirable that light is efficiently extracted out of the device, in photovoltaics light
from the exterior should be absorbed inside the device. For both applications, highly efficient
designs are required to fulfill their promise as a sustainable light and energy source for the near
future.

The extraction efficiency of new LEDs is often enhanced by patterning the semiconductor-air
interface. Good results have been obtained by random surface roughening [1], but there is also
much interest in periodic structures i.e. two-dimensional gratings (photonic crystals) [2–4,6,7].
In unpatterned LEDs, the light is mostly trapped by total internal reflection and it radiates
primarily from the sides of the device. In photonic crystal LEDs, the mode structure of the
photonic crystal helps to prevent that light is radiated laterally. However, it does not guarantee
that the light radiates into the direction that is desired. This paper focuses on describing an
efficient method for optimizing the radiated intensity of LEDs into a desired cone.

The complexity of current designs requires accurate, rigorous, large-scale, three-dimensional
(3D) electromagnetic simulations which need a lot of memory and extensive computations.
In this paper, we first describe a very efficient method, based on the reciprocity principle, to
calculate the radiation in a single direction from a complete photonic crystal LED for any
number of incoherent dipoles at any position in the LED. It requires solving only two small
quasi-periodic scattering problems on a single cell of the periodic structure. The calculation of
the entire radiation pattern of an LED is thus split up into many small computational problems,
one for each direction of emission and polarization. Each of the simulations can be done on a
standard PC, but in practice we use a supercomputer or cluster to run many angles in parallel.
Next to computing the far field radiation, we apply the reciprocity to derive a useful expression
of the derivative of the radiated intensity with respect to the grating surface. With this expression
the radiated intensity in a certain cone is maximized. Our approach is related to the inverse
problem of reconstructing shapes of scattering objects in scatterometry. In this field, an initially
unknown permittivity distribution or object shape is reconstructed using only limited field or
intensity information, such as far field scattering information. Several of such methods have
been developed for gratings [8] and for more general object shapes [9]. Our formulation is
specifically derived for structures which contain incoherent sources such as LEDs.

In classical electrodynamics, the electric field E radiated by a time-harmonic current density
J is derived. The relationship between the field and the source remains unchanged if one inter-
changes the position of the source and that of the observer. This so-called Lorentz reciprocity
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principle can be written as
∫∫∫

EJ1 ·J2 d3r =
∫∫∫

EJ2 ·J1 d3r, (1)

where all quantities are complex field amplitudes. A concise derivation of the reciprocity princi-
ple can be found in [10], while in [11] an overview is given of the application of the reciprocity
theorem in optics. The theorem is valid for absorbing and anisotropic media, but in general
not for nonlinear and active media. In [13], it is suggested that the reciprocity principle can
be used to calculate the radiation of a single dipole in a planar dielectric stack. In the field of
near-field imaging [12], reciprocity is specifically used for extended incoherent sources. For
photonic crystal LEDs, the theorem is applied in combination with a rigorous modal simulation
method in [5] and also in [6] to design a highly directive light source. The efficient calculation
of the derivative of the radiated intensity using the reciprocity principle is based on the adjoint
method, described in [14]. It is used for inverse scattering problems in for instance [15, 16].

In this paper, we first describe in Section 2 the efficient use of the reciprocity principle for
computing the emission pattern of incoherent sources in periodic structures and apply this to
LEDs. Although interesting in itself, we moreover need this derivation in the iterative optimiza-
tion of the topography of the LED, which is the topic of Section 3. In Section 4 we discuss LED
topographies consisting of one-dimensional gratings that have been optimized by our method.
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Fig. 1. (left) A typical photonic crystal LED geometry. (right) Schematic of one periodic
cell with pitch Λ of a periodic LED. Two different dipole sources pO and p are shown, one
in the active layer O and the other in the half-space above interface Γ.

2. The emission from an LED

The LEDs described in this paper consist of a metal contact layer that is covered by one or
more layers of semiconductor material (Fig. 1) defined in 3D space with unit vectors x̂, ŷ,
and ẑ as defined in the figure. Here and in the following, a ˆ on a bold face character denotes
a vector of unit length. To improve the emission efficiency, the interface Γ between the top-
most semiconductor and the surrounding medium is in general not flat. We will specifically
discuss the class of interfaces that are periodic in both horizontal directions x and y, though
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this periodicity is not a requirement for the computational method that we use and describe.
Within the semiconductor region, there is a thin region O that is the active layer. In this layer,
incoherent dipole sources are generated from multiple quantum well structures [17].

To calculate the far-field emission of an LED, we first consider the radiation in the direction
of the unit vector k̂ of a single dipole with dipole moment pO , oscillating at frequency ω , and
situated at point rpO

in the active layer. The corresponding current source density is: JpO
=

−iωpOδ (r− rpO
) and radiates the field denoted by EpO

(r). Let rp = k̂rp be a point in the
half-space above the LED and let there be a time harmonic dipole at rp with frequency ω and
dipole moment p. The electric field radiated by the latter dipole will be denoted by Ek. The two
sources and radiated fields satisfy the reciprocity principle:

EpO
(k̂rp) ·p = Ek(rpO

) ·pO . (2)

If rp is sufficiently large, the field that is emitted by p and that is incident on the LED can be
approximated by the field of a spherical wave with electric field vector:

Einc
k (r) =

k2

4πε0r
eikre−ik(k̂·r)(k̂×p)× k̂, (3)

which for large distances r from the source is incident as a plane wave. The wave vector of
this incident plane wave is kinc =−kk̂ =−k0

√
ε2k̂ =−k, where k0 = ω/c is the wave number

in vacuum and ε2 is the relative permittivity in the half-space above the LED. The vector kinc

points, of course, in the direction opposite to the direction of emission k̂ in which the field
radiated by dipole pO is observed. Without restricting the generality we may assume that p is
perpendicular to kinc. Then the incident field given by Eq. (3) can be simplified to

Einc
k (r) =

k2

4πε0r
eikreikinc·rp. (4)

The plane of incidence of this plane wave is through kinc and ẑ (see Fig. 1). It suffices to
consider two linear independent polarization stats of the incident plane wave. We choose for p
the unit vectors ν̂νν = Ŝ, P̂ corresponding to the S- and P-polarization respectively.

The fields at the location of dipole pO in the active layer due to an incident S- and P-polarized
plane wave is found by solving the two separate simulations the two boundary value problems
defined by:

ω2μ0ε(r)Eν
k(r)−∇×∇×Eν

k(r) = 0, Eν
k(r)−Einc,ν

k (r) satisfies the o.r.c, (5)

with ν = S,P. Here o.r.c. stands for the “outgoing radiation conditions” that apply to the scat-
tered fields, i.e. to the total fields minus the incident fields. For a periodically varying surface
Γ as shown in Fig. 1, the fields Eν

k(r) are quasi-periodic, so that only a single periodic cell has
to be considered with appropriate quasi-periodic boundary conditions. Note that this method
does not require periodicity of the domain, but for periodic domains only one cell has to be
considered.

When the solutions ES
k(r) and EP

k(r) have been computed numerically, the Ŝ and P̂ com-
ponent of the field radiated by dipole pO at rpO

in the direction k̂ follows from reciprocity
principle in Eq. (1):

lim
rp→∞

EpO
(rpk̂) · ν̂νν = Eν

k(rpO
) ·pO . (6)

Using that Ŝ and P̂ are orthonormal, the total radiated intensity at r → ∞ in the direction of k̂
due to dipole pO is proportional to:

lim
rp→∞

|EpO
(rpk̂)|2 = lim

rp→∞ ∑
ν=S,P

|EpO
(rpk̂) · ν̂νν |2 = ∑

ν=S,P

|Eν
k(rpO

) ·pO |2. (7)
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The time-averaged intensity in the direction of k̂ due to incoherent dipoles at rpO
with random

orientation of the dipole vector pO , is obtained by integrating Eq. (7) over all directions of pO .
By substituting pO = pO(cosφ sinθ x̂+ sinφ sinθ ŷ+ cosθ ẑ) into Eq. (7) and averaging over
the unit sphere of directions for pO , we obtain for the intensity emitted in the direction k̂ per
solid angle due to randomly isotropically oriented dipoles at rpO

with all the same strength pO :

I(k,rpO
) =

1
2

√
ε0ε2
μ0

1
4π

∫ 2π

0

∫ π

0
∑

ν=S,P

|Eν
k(rpO

) ·pO |2 sinθ dθ dφ

=
p2

O

6

√
ε0ε2
μ0 ∑

ν=S,P

|Eν
k(rpO

)|2. (8)

This result is valid for isotropically oriented dipoles only. For LEDs using multiple quantum
well structures it is known, however, that the dipoles are mainly oriented in the plane of the
active layer [18]. In that case θ = π/2 and averaging should be done over 0≤ φ ≤ 2π , yielding:

Ĩ(k,rpO
) =

1
2

√
ε0ε2
μ0

1
2π

∫ 2π

0
∑

ν=S,P

|Eν
k(rpO

) ·pO |2 dφ

=
p2

O

4

√
ε0ε2
μ0 ∑

ν=S,P

(|Eν
k,x(rpO

)|2 + |Eν
k,y(rpO

)|2). (9)

To be specific and for simplicity, we shall use Eq. (8) for the radiation pattern. In the radiation
cones considered in this paper, dipoles oriented along the z-axis have a minimal influence on
the radiation efficiency. Hence, we assume that the dipoles are isotropically oriented. In case
this is not true, only minor modification of the derivations need to be carried out. The total
intensity radiated in the direction of k̂ per solid angle of randomly oriented incoherent dipoles
with fixed length p2

O = 6
√

μ0/ε0ε2 in the entire active layer O is found by integrating rpO
over

the active layer:

I(k̂) =
∫∫∫

O
∑

ν=S,P

|Eν
k(rpO

)|2 d3rpO
. (10)

Writing k̂ = cosφk̂ sinθk̂x̂+ sinφk̂ sinθk̂x̂+ cosθk̂ẑ, the total radiation emitted inside the cone
0 ≤ θk̂ ≤ θC, with solid angle Ω = 2π(1− cosθC), is given by

I(Ω) =
∫

I(k̂) dΩ, (11)

where dΩ = r2 sinθk̂dθk̂dφk̂. To compute the integral numerically, I(k̂) has to be calculated
for sufficiently many θk̂, φk̂. Each angle requires solving two quasi-periodic rigorous scattering
problems.

3. Optimization of the LED surface

For the radiation pattern and the total radiated energy of an LED, the shape and position of
the surface Γ is essential. The main goal is to find a suitable Γ for the application under con-
sideration. For simplicity, we restrict ourselves in this paper to a two-dimensional LED-like
geometry, i.e. the interface Γ is translational invariant with respect to y and hence is specified
by a periodic curve z = Γ(x) = Γ(x+Λ), with Λ the period. The radiating sources are in this
two-dimensional situation current wires parallel to the y-axis. In addition, all quantities are per
unit length in the y-direction. The full three-dimensional case can be tackled in the same manner
as the two-dimensional case.
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The assumption of radiation current lines implies that all dipoles along these wires are co-
herent. It can be shown that in a homogeneous medium when the dipole moments are in the
y-direction, i.e. the current is parallel to the wire, the radiation pattern of these coherent dipoles
is identical to that of incoherent dipoles [19]. For dipoles oriented in other directions than the
y-direction, there is a difference between the radiation pattern of the coherent and incoherent
case. However, this difference is not large in a two-dimensional configuration.

First, we suppose that the transition of the permittivity function across the interface is smooth.
To be more specific, we choose b > 0 and define for a configuration with surface Γ the permit-
tivity function ε(Γ)(x,z) by:

ε(Γ)(x,z) =

⎧⎨
⎩

ε0ε1 for z ≤ Γ(x)−b;
ε0ε2 for z ≥ Γ(x)+b;
smooth for Γ(x)−b ≤ z ≤ Γ(x)+b.

(12)

The permittivity varies then smoothly in the strip SΓ
b defined by:

SΓ
b = {(x,z), 0 ≤ x ≤ a, Γ(x)−b ≤ z ≤ Γ(x)+b}. (13)

In the end, we will let b → 0 to represent a sharp transition, but until stated otherwise ε(Γ) is
smooth for fixed b > 0. For a given surface Γ, the quantity that we intend to maximize is the
energy emitted in a specific direction given by the unit vector k̂. Obviously, we can just as well
maximize the energy emitted inside the entire cone, but to keep the notation concise we choose
to optimize only a single direction. Hence we maximize

I(Γ) = ∑
ν=S,P

∫∫
O
|Eν(Γ)|2 dxdz, (14)

where Eν(Γ) is the electric field due to an incident plane wave with unit amplitude and direc-
tion of incidence given by −k̂. The plane wave is either S- or P-polarized. Only one case of
polarization is considered, the other can be dealt with in the same way, so that we omit in the
following the superscript ν from the electric field vectors due to an incident plane wave and of
the incident field itself. The field E(Γ) is computed by solving a single diffraction problem de-
fined by Eq. (5). From the theory of reciprocity, I(Γ) is also the contribution of one polarization
to the averaged intensity emitted by mutually incoherent wires in the active region, radiated in
the single direction specified by k̂ as described in the previous section.

We are interested in increasing this intensity by varying the surface by a perturbation ξh(x),
leading to a new surface Γ(x)→ Γ(x)+ξh(x), with ξ > 0. Since z = h(x) is a function we use
the Gateaux derivative [20] which in the direction h is given by

δ I(Γ;h) = lim
ξ→0

1
ξ
[I(Γ+ξh)− I(Γ)] = 2Re

[∫∫
O

δE(Γ;h) ·E(Γ)∗ dxdz

]
, (15)

where δE(Γ;h) is the Gateaux derivative of the electric field E(Γ) in the direction of h, and ∗
denotes the complex conjugate. To obtain δE(Γ;h) we consider two electromagnetic boundary
value problems. The first is that of an incident plane wave Einc on an LED with surface Γ as
described by Eq. (5) and the second is that of the same incident plane wave on an LED with
surface Γ+ξh:

ω2μ0ε(Γ)E(Γ)−∇×∇×E(Γ) = 0, E(Γ)−Einc satisfies the o.r.c, (16)

ω2μ0ε(Γ+ξh)E(Γ+ξh)−∇×∇×E(Γ+ξh) = 0, E(Γ+ξh)−Einc satisfies the o.r.c, (17)
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with in both cases quasi-periodic boundary conditions on the sides (x = 0,x = Λ) of the cell.
By subtracting Eq. (17) from Eq. (16) we get

ω2μ0ε(Γ)[E(Γ)−E(Γ+ξh)]−∇×∇× [E(Γ)−E(Γ+ξh)]

= ω2μ0[ε(Γ+ξh)− ε(Γ)]E(Γ+ξh), (18)

E(Γ)−E(Γ+ξh) satisfies the o.r.c.

Equation (18) is inhomogeneous with a source term that is non-zero exactly there where the
permittivity function is altered by the perturbation. We shall take the limit ξ → 0 of Eq. (18).
For the permittivity difference on the right-hand-side of Eq. (18), we note that, since ε(Γ+ξh)
is the function ε(Γ) translated by −ξh(x) parallel to the z-axis, we have

ε(Γ+ξh)(x,z) = ε(Γ)(x,z−ξh(x)) for all x,z. (19)

Hence, in the limit ξ → 0 the permittivity difference becomes, according to the definition of
the derivative, proportional to its partial derivative with respect to the z coordinate:

lim
ξ→0

[ε(Γ+ξh)(x,z)− ε(Γ)(x,z)] = lim
ξ→0

[ε(Γ)(x,z−ξh(x))− ε(Γ)(x,z)]

=−∂ε(Γ)
∂ z

(x,z)h(x)1SΓ
b
(x,z), (20)

where 1SΓ
b
(x,z) is the function that is 1 in the region SΓ

b and 0 otherwise. Hence, Eq. (18)

becomes in the limit ξ → 0:

ω2μ0ε(Γ)δE(Γ;h)−∇×∇×δE(Γ;h) = ω2μ0
∂ε(Γ)

∂ z
hE(Γ)1SΓ

b
. (21)

δE(Γ;h) satisfies the o.r.c.

We conclude that δE(Γ;h) is the electric field radiated by the current density defined by

JΓ(x,z) = iω
∂ε(Γ)

∂ z
(x,z)h(x)E(Γ)(x,z)1SΓ

b
(x,z), (22)

in the configuration with surface Γ. Note that JΓ depends linearly on the perturbation h of the
interface and is nonzero only inside the strip SΓ

b that surrounds the curve z = Γ(x).
Hence, to compute the Gateaux derivatives δE(Γ;h) and therefore δ I(Γ;h) in a particular

direction h, one has to solve the radiation problem of Eq. (21). In the optimization algorithm, out
of all possible h, the direction of steepest ascent should be found, i.e. the direction h̃ such that
δ I(Γ; h̃) is maximum compared to δ I(Γ;h) for all other h of the same norm. By applying again
the reciprocity principle in a manner explained below, it turns out that this optimal direction
can also be found by solving only one radiation problem (per polarization).

To explain this, we first define the current density

JO = E(Γ)∗1O . (23)

This current is only nonzero in the active region O . Let the field EJO
(Γ) be the electric field

that is radiated by this current JO in the configuration with curve Γ. Hence EJO
(Γ) satisfies:

ω2μ0ε(Γ)EJO
(Γ)−∇×∇×EJO

(Γ) =−iωμ0E(Γ)∗1O , (24)

EJO
(Γ) satisfies the o.r.c.
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We now use Eq. (23) and the reciprocity principle to rewrite Eq. (15) as follows:

δ I(Γ;h) =2Re

[∫∫
O

δE(Γ;h) ·JO dxdz

]

=2Re

[∫∫
JΓ ·EJO

(Γ)dxdz

]

=−2Im

[
ω
∫∫

SΓ
b

∂ε(Γ)
∂ z

hE(Γ) ·EJO
(Γ)dxdz

]
(25)

where the reciprocity principle is used in the second step. From Eq. (25), the Gateaux deriva-
tive δ I(Γ;h) can be determined for all perturbations h(x) at a small computational cost. In fact,
to compute δ I(Γ;h) for an arbitrary h one only needs to know the fields E(Γ) and EJO

. To
determine these fields one scattering problem (to compute E(Γ)) and one radiation problem
(to compute EJO

) have to be solved. Note that when both polarizations S and P are taken into
account we need to solve two scattering and two radiation problems, one for every polariza-
tion. But once these four problems have been solved, the Gateaux derivative δ I(Γ;h) can be
computed for any perturbation h by simply computing the integral in Eq. (25).

Let h be normed in some way, e.g.
∫ Λ

0 h(x)2 dx = 1, then the perturbation h̃ of given norm for
which δ I(Γ;h) is maximum is given by the h̃ for which the integral at the right of Eq. (25) is
maximum. Since h is only a function of x, h̃ is given by

h̃(x) =−C Im

[∫ Γ(x)+b

Γ(x)−b

∂ε(Γ)
∂ z

(x,z)E(Γ)(x,z) ·EJO
(x,z)dz

]
, (26)

where C is such that
∫ Λ

0 h̃(x)2 dx = 1.
The perturbation h̃ corresponding to the direction of steepest ascent for the case of a per-

mittivity function ε that is discontinuous across Γ is obtained by taking the limit b → 0 in the
previous result. Taking this limit requires a careful analysis of the integral in Eq. (26) in which
the components of the electric field that are parallel and perpendicular to the curve Γ have to
be considered separately. These components are denoted by E‖(Γ), EJO ,‖ and E⊥(Γ), EJO ,⊥,
respectively. The result of taking the limit b → 0 is then:

h̃(x) =−C Im
[
(ε2 − ε1)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))

−ε2(1− ε2

ε1
) E⊥(Γ)(x,Γ(x)+0) ·EJO ,⊥(x,Γ(x)+0)

]
. (27)

For the details of the derivation we refer to the Appendix.
Mathematical optimization means to iteratively find values for the degrees of freedom that

lead to the largest figure of merit, in our case the radiated intensity. These values are found by
systematically trying new values that are chosen such that every next step in the algorithm leads
to a higher figure of merit. By choosing h̃(x) such as defined in Eq. (27) the surface given by
Γ(x)+ξ h̃(x) will lead to a higher radiated intensity, provided that the step size ξ is not too big
and that Γ(x) is not already a local maximum.

4. Results

To compute radiation patterns and the Gateaux derivatives when the curve Γ is optimized elec-
tromagnetic boundary value problems on a periodic computational domain have to be solved.
Because the computational domain is relatively small (a single period), the problems can be
tackled by almost any type of rigorous electromagnetic solvers. For this paper, calculations are
performed using a implementation of the Finite Element Method [21].
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Fig. 2. Angle dependent intensity at the wavelength of 450nm of isotropically radiating
dipoles in a geometry with 700nm thick GaN, an active layer 100nm above the metal con-
tact, and a grating with a pitch of 250nm and a depth of 5nm. Values are normalized by
the intensity of the flat geometry I0

flat at kx = 0. The solid and dashed vertical lines depict,
respectively, the location of the S and P waveguide modes of the flat geometry. The insets
show the corresponding radiation patterns. (a) The metal contact is considered a perfect
metallic conductor. (b) The metal contact is considered to be silver (Ag) with complex
permittivity.

In Fig. 2 the radiated intensity from a one-dimensional grating with a shallow, 5nm deep,
grating is shown. It is calculated using the reciprocity theorem as described in Section 2. The
geometry is similar to that described in [22]. It is immediately clear that the resonance peaks
resulting from the patterning are sharp and several orders higher than the background intensity
of the unpatterned geometry. Assuming that the metallic contact layer is perfectly conducting,
the resonances have Q-factors (Q = kmax/Δkfwhm) up to 105.

Using tabulated permittivity data of silver [23], the Q-factors reach up to values of the or-
der of 103. These sharp resonances are potentially problematic for the reciprocity calculation
method, where for each discrete kx value a new simulation has to be performed. To cap-
ture all the maxima, taking into account a potential Full Width Half Maximum (FWHM) of
Δk̂fwhm = 10−6, the angles corresponding to 0 ≤ k̂x ≤ 1 would need to be approximated by at
least 106 reciprocal simulations. Since, the total radiation depends on the correct approximation
of these resonances, this computational burden would render the reciprocity method unpracti-
cal. However, since simulations can be done per kx, an adaptive method can be applied. First,
a relatively small number of angles (30 to 80 in our case) are simulated. Then a heuristic al-
gorithm determines at what angles additional simulations are required. This is in general close
to a local maximum of I(k̂x) or where the derivative ∂ I(k̂x)/∂ k̂x is large. New simulations are
then performed until all maxima are sufficiently resolved and usually not more than 150 angles
are required.

For this shallow grating, the locations of the resonances found correspond well to the guided
modes in the GaN layer for the unpatterned geometry with a layer thickness of 698nm (Fig. 2).
Although all resonances correspond to a guided mode, not all guided modes result in a radiation
maximum. It is well known that for the unpatterned geometry most of the light is guided in
the GaN waveguide by total internal reflection and will never couple out into the air region.
Reciprocally, this means that with a plane wave we can never excite such a guided mode.
For the patterned geometry, most of these modes become leaky and result in radiation. There
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Fig. 3. Gateaux derivative at the surface Γ as defined for Fig. 2. The x-axis is cut as to
emphasize the derivative close to the resonances. (a) Gateaux derivative with respect to the
average layer thickness t. (b) Gateaux derivative with respect to the grating depth d.

are, however, still guided modes for this geometry that will not contribute to the LED radiation.
These resonant modes can be found by a different calculation of the modes in a photonic crystal
waveguide [24].

Figure 2 shows that even a very shallow patterning can significantly increase the radiated
power over that of the unpatterned geometry and in this case almost all of the enhancement
is in a cone with an opening angle of 90◦. For most LED applications, it is desired that the
enhancement is restricted to even smaller cones.

In Fig. 3 the Gateaux derivative δ I(Γ;h) with respect to the average layer thickness t and
grating depth d as indicated in Fig. 1 is shown. From the sign of the derivative it is clear that the
radiated intensity of this particular shallow grating can be improved by increasing its depth d.
For the average layer thickness it is also clear that the integral of the derivative over all angles
is positive and we should try a larger film thickness. However, at every resonance the derivative
has a negative and a positive lobe that almost cancel. This again shows that the discretization
of the angles is important to obtain an accurate value for the derivative. Because the left lobe
is always negative and the right lobe is always positive, the resonant peaks will shift to larger
angles if we increase the average layer thickness.

Since this grating is described by only 2 parameters, namely the average layer thickness and
the grating depth, it is feasible to find an optimal solution using a brute force method instead of
our method based on reciprocity. In Fig. 4 we show the radiated intensity for a large range of
geometries. The Fabry-Pérot maxima for the unpatterned geometry are visible in the bottom of
the plot i.e. for zero grating depth, with series of weaker and stronger local maxima for deeper
patterns. Using the gradient simulations described in the previous section, the 2-dimensional
parameter space is also optimized using a simple steepest ascent optimization method with
damped step size. Several optimization paths with random starting conditions are also shown
in Fig. 4. Using the optimization method based on reciprocity, with the same computational
effort, we can scan the optimization space of a surface defined by any number of parameters.

Figures 5(a) and 5(b) show two geometries at local maxima for the extraction efficiency
with a surface defined by only 2 parameters (a block grating) and one that is defined by 10
parameters. It is clear from the image that the ideal location of the active layer is in both cases
around z = 120nm. This position is mainly determined by the metal boundary and is very
insensitive to the actual grating above it. However, for the block grating it is clear that within the
patterning there are hot spots where the radiation from incoherent dipoles is much stronger than
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Fig. 5. Plot of the radiated intensity in a cone with 60◦ opening angle (k̂x < 0.5) resulting
from a local incoherent dipole as a function of its position within the grating. The plot
on the right is the radiated intensity of incoherent dipoles in a thin flat active layer at
the corresponding z-coordinate. (a) After optimizing with surface 2 parameters. (b) After
optimizing a surface parameterized by 10 parameters.

on average in the chosen active layer. The reciprocity method is thus convenient for determining
the ideal position of the active layer, provided that we assume that the active layer has a similar
refractive index as the surrounding semiconductor.

Similarly, the ideal thickness for the active layer can be found directly from the near-field
data. While for semiconductor LEDs the active layer thickness is more or less fixed by the
design of the multiple quantum wells, for organic LEDs this extra information can be used to
estimate the most effective light-emitting polymer layer thickness. Because the optimization
method always ensures that the most radiation occurs from the chosen active layer and its de-
pendence on the z-coordinate is mainly determined by the Fabry-Perot resonance of the incident
field in the semiconductor, we chose not to explicitly optimize with respect to the thickness of
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the active layer.
During the optimization, the grating surface is varied causing the radiated energy to be re-

distributed over the available resonant modes that can be excited in the structure. In Fig. 6, the
angular dependence of the radiated intensity is shown for the optimized structure in Fig. 5(a) as
a function of the normalized pitch, being in essence a photonic band diagram. While very sharp
resonances exist for all pitches, this does in general not lead to an enhanced extraction compared
to the optimal unpatterned geometry. For this geometry, only close to Λ/λ = 0.8 a substantial
enhancement occurs. Therefore, next to optimizing the grating surface, an appropriate choice
for the pitch is of paramount importance.

An efficient derivative of the radiated intensity with respect to parameters such as the grating
period or the angle of incidence is not practical with the method described in this paper. Often
an initial guess for the period can be made from fast band structure calculations of photonic
crystals. The optimization method is then used to obtain a surface that gives an optimal ex-
traction efficiency for that chosen period. From tests, it is found that optimizing for a slightly
perturbed period leads to a similar extraction efficiency for a slightly different surface. The lo-
cal maxima of radiated intensity are therefore weak in a parameter space that includes both the
surface and the period.

5. Conclusions

In conclusion, we have described a very efficient formalism to simulate the light extraction
from grating assisted LEDs and to compute an optimal grating surface, both based on the reci-
procity principle. To simulate the radiated intensity in a given direction due to the entire active
layer only two small-scale boundary value problems have to be solved. Then, only two ad-
ditional simulation are needed to find the Gateaux derivative with respect to the shape of the
LED surface. Using two-dimensional simulations, we have shown that the method can be ap-
plied to compute radiation patterns accurately and efficiently. In addition, the data immediately
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show at what positions in the LED the active region should be located. The calculated Gateaux
derivatives are accurate and are used to optimize the surface of the grating. We believe that by
applying this method to full three-dimensional LED geometries, better solutions can be found
than are currently available at much less computational costs.

6. Appendix

As stated, Eq. (25) is valid only when ε(Γ) is smooth in the neighborhood of Γ. We now con-
sider the case that the permittivity ε jumps across Γ, by taking the limit b → 0 in the previous
result of Eq. (25). This is rather tricky, because the electric fields E(Γ) and EJO

are discontin-
uous across Γ. We therefore first apply a partial integration with respect to z to the integral in
Eq. (25) for fixed b > 0:

∫ Λ

0
ε0ε2h(x)E(Γ)(x,Γ(x)+b) ·EJO

(x,Γ(x)+b)dx (28)

−
∫ Λ

0
ε0ε1h(x)E(Γ)(x,Γ(x)−b) ·EJO

(x,Γ(x)−b)dx (29)

−
∫ Λ

0

∫ Γ(x)+b

Γ(x)−b
ε(Γ)(x,z)h(x)

∂E(Γ)
∂ z

(x,z) ·EJO
(x,z)dxdz (30)

−
∫ Λ

0

∫ Γ(x)+b

Γ(x)−b
ε(Γ)(x,z)h(x)E(Γ)(x,z) · ∂EJO

∂ z
(x,z)dxdz. (31)

Before taking the limit b → 0, we split the electric field on the curve z = Γ(x) into a component
that is in every point of the curve tangential to the curve, and a component that is in every
point of the curve perpendicular to the curve: E(x,Γ(x)) = E‖(x,Γ(x))+E⊥(x,Γ(x)). Note that
E‖(x,Γ(x)) is continuous across the curve, but that in the limit b → 0, E⊥(x,Γ(x)) is discontin-
uous. Therefore, in the latter case, we have to distinguish between limiting values taken from
above and below the curve, therefore we will write E(x,Γ(x)±0) = E‖(x,Γ(x))+E⊥(x,Γ(x)±
0).

We consider first the limit b → 0 of the integrals in Eqs. (28) and (29) for the tangential
component. Since this component is continuous across the interface we can take the limit b→ 0
to get

∫ Λ

0
ε0ε2h(x)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))dx

−
∫ Λ

0
ε0ε1h(x)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))dx

=
∫ Λ

0
ε0(ε2 − ε1)h(x)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))dx. (32)

The perpendicular component of the electric field is discontinuous across the interface, but the
displacement field D⊥ = εE⊥ is continuous. We therefore have

E⊥(x,Γ(x)+0)−E⊥(x,Γ(x)−0) = (1− ε2

ε1
)E⊥(x,Γ(x)+0). (33)

Using this, the sum of the integrals in Eqs. (28) and (29) become for the perpendicular compo-
nent in the limit b → 0:

∫ Λ

0
ε0ε2(1− ε2

ε1
)h(x)E⊥(Γ)(x,Γ(x)+0) ·EJO ,⊥(x,Γ(x)+0)dx. (34)
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One can alternatively also express the limit b → 0 of integrals in Eqs. (28) and (29) in terms of
the limiting value of the electric fields from below the curve. We omit the details.

Consider now the integrals in Eqs. (30) and (31) for the tangential field components. Since

E‖ and EJO ,‖ are continuous as function of z,
∂E‖(Γ)

∂ z (x,z) and
∂EJO ,‖

∂ z (x,z) are possibly discon-
tinuous across Γ but bounded. It can be shown that the bound is uniform in b → 0, hence the
integrals vanish in the limit b → 0.

Next, we consider the case of the normal components. Since

lim
b→0

∂E⊥(Γ)
∂ z

= [E⊥(Γ+0)−E⊥(Γ−0)]δΓ, (35)

we can write Eq. (30) in the limit b → 0, using Eq. (33), as:

−
∫ Λ

0
h(x)ε0ε2(1− ε2

ε1
)E⊥(Γ)(x,Γ(x)+0) ·EJO ,⊥(x,Γ(x)+0)dx. (36)

The integral in Eq. (31) for b → 0 also equals Eq. (36). Summing up, the Gateaux derivative
δ I(Γ;h) in Eq. (25) for a surface with a sharp material transition is given by

δ I(Γ;h) =−2ωε0 Im
∫ Λ

0
h(x)

[
(ε2 − ε1)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))

−ε2(1− ε2

ε1
) E⊥(Γ)(x,Γ(x)+0) ·EJO ,⊥(x,Γ(x)+0)

]
dx. (37)

Hence for a given perturbation h of the curve Γ, the Gateaux derivative δ I(Γ;h) of the radiated
intensity in a given direction k̂ is obtained by computing the fields E(Γ) of a unit amplitude
incident plane wave with wave vector k, either S- or P-polarized, and the field EJO

radiated by
the current density JO inside the active region O . Hence, only two boundary value problems
(per polarization) have to be solved on the unit cell to compute δ I(Γ;h).

For a surface function Γ(x) defined by n parameters, the gradient of the intensity can be
calculated using only one additional numerical simulation. Using standard finite differencing
to compute the gradient from function values directly, n function evaluations are needed, i.e. 2n
boundary value problems have to be solved.

Analogous to Eq. (26), the direction of steepest ascent h̃(x) is now given by

h̃(x) =−C Im
[
(ε2 − ε1)E‖(Γ)(x,Γ(x)) ·EJO ,‖(x,Γ(x))

−ε2(1− ε2

ε1
) E⊥(Γ)(x,Γ(x)+0) ·EJO ,⊥(x,Γ(x)+0)

]
, (38)

where C is such that
∫ Λ

0 h̃(x)2 dx = 1.
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