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5.1.1 Random graph of Erdős-Rényi . . . . . . . . . . . . . . . . . . . 28

5.1.2 Small-world graph of Watts-Strogatz . . . . . . . . . . . . . . . 30

5.1.3 Scale-free graph of Havel-Hakimi . . . . . . . . . . . . . . . . . 31

5.2 Laplacian spectrum of empirical networks . . . . . . . . . . . . . . . . . 32

5.3 Normalized Laplacian spectrum of empirical networks . . . . . . . . . . 34

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



ii CONTENTS

6 Algebraic Connectivity of Complex Networks 37

6.1 Algebraic connectivity in random graph of Erdős-Rényi . . . . . . . . . 38
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Summary

Recent advances in the science of complexity have revealed that complex networks exist
on many scales and in many different fields of science, as well as in nature. Such net-
works, it is now well established, share common properties in terms of their non-trivial
network structure, called the network topology. In this thesis we survey a particular line
of complex network research, mainly concerned with the characterization of non-trivial
topological properties of complex networks. We expand on this research by analyzing
those elementary graph measures, further classified into structural and spectral mea-
sures, that are of interest when quantifying topology-related aspects of the robustness
of complex networks.

This thesis makes the following contributions to the field of complex networks. In
the introductory part we present 1) a general consideration about complex networks
research through the mathematical techniques of graph theory, 2) a brief description
of the generic theoretical models used for modelling complex networks, and 3) a brief
overview of practically important graph measures. In the main part we address the four
research questions, which we summarize as follows:

1. Analysis of relations among a variety of proposed graph measures to propose
a definite set, capable of expressing the most relevant topological properties of
complex networks.

2. Study of the applicability of spectral measures to classify the qualitative topolog-
ical properties that characterize specific classes of complex networks.

3. Study of the applicability of spectral measures to quantify different topological
aspects of robustness of complex networks.

4. Practical application of spectral measures to quantify how the robustness to differ-
ent types of failures manifests itself in the underlying complex network structure.

At first, we analyze relations among a variety of existing graph measures so as to
make a first fundamental step in proposing a definite set, capable of expressing the
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vi SUMMARY

most relevant topological properties of complex networks. We extend this study by
focusing on the topological properties in relation to the eigenvalues of the network’s
characteristic matrix. In particular, we adopt spectral graph theory to analyze the
spectral properties of theoretical and empirical networks and show how this method
aims at qualitative characterization of different classes of networks. We further illus-
trate the use of spectral measures to the question of quantitative characterization of
different topological aspects of the robustness of complex networks: we introduce a
particular eigenvalue of the network’s characteristic matrix, referred to as the algebraic
connectivity, as a quantifier of the robustness to disconnection or component separation
in complex networks. Herewith we also introduce another particular eigenvalue of the
network’s characteristic matrix, referred to as the spectral radius, as a quantifier of the
robustness to virus propagation in complex networks. Having suggested possible quan-
tifiers of topology-related aspects of robustness, we analyze the relationship between the
algebraic connectivity, and the classical measures of the extent to which a network can
cope with its component failures. An immediate consequence of the relationship analy-
sis is presented in the last part of the thesis, where we study the practical application of
the algebraic connectivity to quantify how the robustness to different types of failures
manifests itself in the underlying complex network structure. At last, we recapitulate
the main results and provide a starting point for subsequent further learning in this
particular line of complex network research.



Chapter 1

Introduction

1.1 Why studying complex networks

Complex networks emerge in a wide range of disciplines in the natural and social sci-
ences as well as in nature. Frequently cited examples of complex networks include
the Internet, the World Wide Web, power grids, transportations systems, food webs,
ecosystems, genetic networks, neural networks, social networks, epidemiology networks,
etc. Complex networks, in fact, are all systems of either physical (real) and/or logical
(virtual) interconnected components where interactions between components give rise
to intricate networks. Networks that emerge within such different disciplines are thus
considered complex by virtue of their non-trivial network structure, called the network
topology. The strength of the complex network study lies in the possibility of repre-
senting virtually any natural or social structure, including those undergoing dynamic
changes of the network topology. Another strength of complex networks study lies
in the fact that a proper knowledge of networks’ structure is required to thoroughly
understand and predict the overall network performance. For example, in computer
networks, performance and scalability of protocols and applications, robustness to dif-
ferent types of perturbations (such as failures and attacks), all strongly depend on the
network topology.

1.2 Scope of complex networks research

Complex networks are studied by applying theories and methods originally developed
in the field of mathematical graph-theory and statistical physics. While origins of com-
plex network study can be traced back to Leonard Euler’s mathematical solution of the
Koningsberg bridge problem in 1735 [32], research in complex networks became only
recently a focus of attention. Supported by the availability of powerful computational
equipment and techniques, the analysis of large-scale networks in the real world has
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2 CHAPTER 1: Introduction

become possible. Consequently, complex networks research has received a tremendous
amount of attention in a wide range of disciplines, resulting in a large number of recent
related publications with a truly multidisciplinary nature. An example that was of
major importance for the increased interest in the area of complex networks was the
discovery of the network structure of the Internet [33]. Although coming from a wide
range of disciplines, recent studies altogether have been interested in examining the
structure of large-scale networks and have found that networks in real world exhibit
specific properties that give rise to the non-trivial topological structure. In particu-
lar, three findings have initiated a revival of complex networks research: Watts and
Strogatz’s observation of small diameter and larger clustering that leads to small-world
phenomenon in real-world networks [81], Barabási and Albert’s observation of hub
nodes that leads to scale-free phenomenon in real-world networks [6] and Newman’s
identification of community structures present in real-world networks [66].

Complex networks research is primarily divided into two major areas of network
modelling and network analysis. The topology of complex networks traditionally has
been modelled as the Erdős-Rényi random graph [29, 30, 31]. As mentioned earlier, the
growing observation that real-world networks do not follow the prediction of random
graphs has prompted many researchers to propose other models, such as small-world
[81] and scale-free graphs [6]. One area of complex networks research is thus mainly en-
gaged in presenting and discussing the complex network models and the corresponding
analytical tools, covering almost every known aspect of random graphs, small-world and
scale-free networks as well as variations of those models. Besides the modelling, much
attention has been directed at analysing non-trivial topological properties by means of
a definition of a variety of practically important measures, capable to quantitatively
characterize topological aspects of the studied large-scale networks. In several papers,
among which [2, 7, 22, 68], the authors have presented an extensive survey of such net-
work topology measures. Much of those research efforts, however, are posed within a
particular research interest, resulting in a characterization of complex networks from a
specific narrow perspective or domain. The outcome of such an approach has a serious
drawback: it does not ensure the mutual independence among a variety of proposed
measures. In this context, having an increasing number of measures complicates at-
tempts to find those properties that truly characterize complex networks.

1.3 Scope and contribution of thesis

In this thesis we focus on the question of quantitative characterization of non-trivial
topological properties and its application to the robustness analysis of different topolog-
ical aspects of complex networks. In particular, we aim to understand the relationship
among a variety of proposed network topology measures so as to make a first fundamen-
tal step in proposing a definite set that would form the basis for a concise description of
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a given complex network. Furthermore, we aim to analyze a method which allows qual-
itative characterization of different classes of networks. This classification is performed
by adapting the spectral graph theory tool, a method that is used to study properties
of a network through the eigenvalues of the network’s characteristic matrix. To this
part belongs also the application of two specific spectral measures, for which we aim to
understand whether and to what extent they can be used as quantifiers of robustness
to virus propagation and component failures in complex networks. Finally, we aim to
quantify how and to what extent the robustness to different types of failures manifests
itself in the underlying complex networks structure.

1.4 Thesis outline

The outline of the thesis is schematically depicted in Figure 1.1. The thesis consists of
ten chapters. The first three chapters are the introductory chapters. While Chapter
1 gives the scope of complex networks research and the contribution of this thesis,
Chapters 2 and 3 describe the essential tools for understanding the analysis presented
in subsequent chapters of the thesis. On the one hand they cover the aspect of complex
networks characterization, where the set of graph measures (being structural or spectral)
is presented. On the other hand they cover the aspect of complex networks modelling,
where various graphs are presented that are used nowadays for modelling the topology
of complex networks.

The main body of the thesis comprises seven chapters. Chapter 4 analyses the re-
lationships between graph measures and summarizes our main results on classification
of the set of measures that would serve in future characterization studies of complex
networks. Chapters 5, 6 and 7 study spectral measures, respectively referred to as
the spectrum of the (normalized) Laplacian matrix, the algebraic connectivity and the
spectral radius. The spectral measures are analyzed in generic complex network models
as well as in a number of real-world networks. This analysis supports the claim that
1) the spectrum of the (normalized) Laplacian matrix is a powerful tool for spectral
classification of different topological classes of networks, 2) the algebraic connectivity is
an important measure in the analysis of the robustness to disconnection in complex net-
works and 3) the spectral radius plays an important role in modelling virus propagation
in complex networks. Equipped with these results, we choose to focus on the algebraic
connectivity to study its application to the robustness analysis. Chapter 8 studies the
algebraic connectivity in relation to networks robustness to failures in generic complex
networks models. Finally, Chapter 9 relies on the algebraic connectivity to study the
influence of network structure on robustness to failures in complex networks.
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Figure 1.1: Schematic depiction of the outline of this thesis.



Chapter 2

Modeling of Complex Networks:

The Set of Graphs

Traditionally, complex networks have been modelled as random graphs. As complex
network science has continued to grow in importance and popularity, other models of
complex networks have been developed. The two most well-known examples of recently
introduced complex network models are those of small-world and scale-free graphs. This
chapter introduces those three commonly cited models, which will be used throughout
this thesis as a tool to facilitate the topological characterization of complex networks.
Before giving the formal description of models, we establish the standard graph theory
notation and complex networks terminology.

2.1 Notation

When studying complex networks we apply methods developed in a field of mathe-
matics referred to as the graph-theory. In the contest of graph-theory, mathematical
structures called graphs are used to model pairwise connections between components
of a network. A complex network is thus represented as graph G = (N ,L), where
N denotes the set of components and L the set of connections among them. The
components are called nodes (vertices) and the connections among them links (edges).
We only consider unweighted, undirected graphs, meaning that there is no distinction
how two components are connected, or in terms of the graph theory, how an link may
be directed from one node to another. In addition, a graph cannot contain self-loops
or connections beginning and ending at the same component. In this way a complex
network, as a system of nontrivial interconnected components, is modelled as a graph
G = (N ,L) with respectively N = |N | nodes and L = |L| links.

5



6 CHAPTER 2: Modeling of Complex Networks

2.2 Random graph of Erdős-Rényi

Figure 2.1: The random graph: increasing link probability p implies that we move from
a low link density for which there are few links and many small components to a high
link density for which an extensive fraction of all nodes are joined together in a single
giant component. The figure is taken from [82].

The random graph of Erdős and Rényi is one of the most studied models of a
network. We denote the random graph by Gp(N), where N is the number of nodes in
the graph and p is the probability of having a link between any two nodes (or shortly
the link probability). Gp(N) is the set of all such graphs in which a graph having L
links appears with probability pL(1 − p)Lmax−L, where Lmax is the maximum possible
number of links. Many properties of the random graph are known analytically in the
limit of large graph size N , as was shown by Erdős and Rényi in a series of papers in
the 1960s [29, 30, 31] and later by Bollobás [10]. The most important, though, is that it
possesses a phase transition: from a low link density or low p value for which there are
few links and many small components to a high link density or high p value for which
an extensive fraction of all nodes are joined together in a single giant component (see
Figure 2.1).

2.3 Small-World graph of Watts-Strogatz

The small-world model describes the fact that despite the large graph size in most
real-world networks there is a relatively short path between any two nodes. There are
different realizations of the small-world model but the original model as proposed by
Watts and Strogatz [81] is by far the most widely studied. It starts by building the
ring RN with N nodes and then joining each node to 2s neighbors (s on either side of
the ring). This results in the ring lattice RN,s with L = sN links. The small-world
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Figure 2.2: The small-world graph: increasing the rewiring probability pr implies that
we move from the completely ordered graph (pr = 0) to the completely random graph
(pr = 1). The figure is taken from [81].

graph is then created by moving, with probability pr, one end of each link (connected
to a clockwise neighbor) to a new node chosen uniformly in the ring lattice, except that
no double links or loops are allowed. This process introduces prNs long-range edges
and allows the small-world model to interpolate between a regular lattice (pr = 0) and
something which is similar, though not identical, to a random graph (pr = 1). For
already small pr the small-world becomes a locally clustered network in which two
arbitrary nodes are connected by a small number of intermediate links (see Figure 2.2).

2.4 Scale-Free graph of Barabási-Albert

Interest in scale-free networks began in the late 1990s with the apparent discovery
that in many real world networks some nodes act as ”highly connected hubs”, i.e. a
few nodes have a large number of neighbors that is orders of magnitude larger than the
average value. This is clearly in contrast to random and small-world graphs where every
node has roughly the same number of neighbors (see Figure 2.3). This has allowed the
identification of the class of scale-free networks in which a network is viewed as dynamic
system that evolves trough the subsequent addition and deletion of nodes and links.
Barabási [6] offered two important general concepts that create networks with this
characteristic feature: growth and preferential attachment of nodes. Consequently, the
Barabási-Albert model incorporates these two concepts in the following manner: the
model starts with a small number m0 of fully-meshed nodes, followed at every step by
a new node attached to m ≤ m0 = 2m + 1 nodes already present in the system. Each
new node is connected to m of the existing nodes with a probability that is biased so
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that it is proportional to the number of links that the existing node already has. This
implies that the nodes with larger degree more likely are candidates for attachment of
new nodes. After t steps this procedure results in a graph with N = t + m0 nodes and
L = m0(m0−1)

2
+ mt links.

Figure 2.3: Scale-free graph: characteristic feature of these structures is that some
nodes have a degree that is orders of magnitude larger than the average value. This
figure is taken from [74].



Chapter 3

Characterization of Complex

Networks: The Set of Graph

Measures

Besides the modelling, the analysis of relevant topological properties is one of the major
objectives that guide the research on complex networks. A topological property is
any inherently graph-theoretical property, i.e. a property preserved under all possible
topological changes of a graph. This means that networks with the same topological
property naturally define a certain family of graphs: the ones that have a given specified
topological property. Nevertheless, the term property usually refers only to descriptive
characterization of networks. For example, the statement ”a network does not have
nodes with only one neighbor” is a property while ”the number of nodes with more
than two neighbors in a network equals six” is an topological measure. Consequently,
over the past several years a variety of measures have been proposed to quantitatively
express relevant topological properties of complex networks. This chapter presents a
large set of measures that will be frequently used throughout this thesis more frequently
termed as graph than as network topology measures. As we mentioned in Chapter 2,
a complex network is represented as graph G = (N ,L), where N denotes the set of
components and L the set of connections among them.

3.1 Structural measures

Density

A density measures how complete a group is in terms of the relations among its
members. Accordingly, the link density q is defined as the proportion of the maximum
possible number of links that actually exist among all nodes.

9
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Degree

The node degree D describes the number of links or neighbors a node has. The node
degree distribution is the probability Pr[D] that the degree D of a randomly selected
node has a given value. The number of links that on average connect to a node is
called the average node degree. The average node degree can be easily obtained from
the degree distribution through E[D] =

∑Dmax

d=1 d Pr[D], where Dmax is the maximum
degree in a given graph.

The joint degree distribution Pr [D,D′] is the probability that degrees D and D′

of a randomly selected pair of nodes have a given values. A summary measure of the
joint degree distribution is the average neighbor degree of nodes with a given degree
value [57]. Another summary statistics that quantifies the correlation between pairs of
nodes is the assortativity coefficient r: assortative networks have r > 0 (disassortative,
i.e. r < 0 resp.) and tend to have nodes that are connected to nodes with similar
(dissimilar resp.) degree [67].

Distance

The shortest path H describes the number of hops between a given pair of nodes.
The distance distribution is the probability Pr [H] that the shortest path H between
a random pair of nodes has a given value. From the distance distribution, the average
node distance is derived as E[H] =

∑Hmax

h=1 h Pr [H], where Hmax is the longest among
the shortest paths between any pair of nodes. Hmax is also referred to as the diameter
diam of a graph. On the other hand, the eccentricity measures the largest distance
between a given node and any other node in a graph. The average node eccentricity is
the average of eccentricities of all nodes. Obviously, the maximum eccentricity equals
the diameter of a graph.

Clustering

The clustering coefficient ci of a node i is the proportion of the maximum possible
number of links that actually exist among nodes within the neighborhood of a node
i. For an undirected graph, a node i with degree Di has at most Di(Di−1)

2
links among

the nodes within its neighborhood. In other words, the clustering coefficient is the
ratio between the number of triangles that contain node i and the number of triangles
that could possibly exist if all neighbors of i were interconnected [81]. The clustering
coefficient for the entire graph cG is the average of clustering coefficients of all nodes.

The rich-club coefficient [19] is a measure that quantifies how close subgraphs,
spawned by the k largest-degree nodes, are to forming a clique. The rich-club coef-
ficient φx is the ratio of the number of links in the subgraph induced by nodes with
degrees larger than a given value x to the maximum possible links between them k(k−1)

2
.



CHAPTER 3: Characterization of Complex Networks 11

Centrality

Betweenness is a centrality measure of a node or link within a graph: nodes (links)
that occur on many shortest paths between other node pairs have higher node (link)
betweenness than those that do not [42]. Average node (link) betweenness is the average
value of the node (link) betweenness over all nodes (links).

Coreness

The k-core of a graph is a subgraph obtained from the original graph by the recursive
removal of all nodes of degree less then or equal to k [8]. The node coreness of a given
node is the maximum k such that this node is still present in the k-core but removed
from the (k + 1)-core. Hence, the k-core layer is the collection of all nodes having
coreness k. The average node coreness is the average value of the node coreness over
all nodes.

Connectivity

A graph is said to be connected if there exist a path between each pair of nodes.
Similarly, when there is no path between at least one pair of nodes, a network is said
to be disconnected. If in a graph there is an link between every pair of nodes, we say
that the graph is complete KN .

The link κL and the node κN connectivity are two classical connectivity measures of
a graph. The link (edge) connectivity κL is the minimal number of links whose removal
would disconnect a graph. The node (vertex) connectivity κN is defined analogously
(nodes together with adjacent links are removed). For k ≥ 1, a graph is k-connected
if either a graph is a complete graph Kk+1 or it has at least k + 2 nodes and no set of
k − 1 nodes that separates it. Similarly, for k ≥ 1 a graph is k-link connected if it has
at least two nodes and no set of at most k − 1 links that separates it. The maximum
value of k for which a connected graph is k-connected equals the node connectivity κN .
The link-connectivity κL is defined analogously [9]. The minimum nodal degree Dmin

of an incomplete graph is an upper bound on both the node and the link connectivity
κN ≤ κL ≤ Dmin. If a graph is a complete graph KN , then κN = κL = Dmin. If
κN = κL = Dmin we also say that the connectivity of a graph is optimal.

3.2 Spectral measures

Graph matrix

Methods developed in the graph theory also offer another representation of a net-
work, i.e. the adjacency matrix, the Laplacian matrix or any other characteristic matrix
of a graph. The adjacency matrix Ω of an undirected graph on N nodes is the N × N
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matrix where the nondiagonal entry (i, j) is either zero or one, depending on whether
node i and node j are adjacent (connected). All diagonal entries (i, i) are zeros. In this
way the adjacency matrix is symmetric. A particular point to note is that the number
of nondiagonal entries in a row i equals the degree of i-node. A diagonal matrix, which
contains information about the degree of each node, is denoted a the degree matrix ∆.
It is used together with the adjacency matrix to construct the Laplacian matrix Λ of a
graph Λ = ∆ − Ω. The Laplacian matrix of an undirected graph on N vertices is the
N ×N matrix where the nondiagonal entry (i, j) is either zero or minus one, depending
on whether node i and node j are adjacent. The diagonal entry (i, i) equals the degree
of a node Di. Another matrix representation of a graph is the normalized Laplacian
matrix Π. The normalized Laplacian matrix of an undirected graph on N vertices is
the N ×N matrix where the nondiagonal entry (i, j) is either zero or minus the inverse
square root of the i- and j-node degree, depending on whether node i and node j are
adjacent. The diagonal entry (i, i) is either zero or one, depending on whether i-node
degree equals zero.

Graph spectrum

The relationship between a graph and the eigenvalues (and eigenvectors) of its char-
acteristic matrix is studied in the spectral graph theory. In the thesis we will considers
the adjacency, the Laplacian matrix and the normalized Laplacian matrix. For the ad-
jacency matrix all eigenvalues are real [21], while for the Laplacian [64] and normalized
Laplacian matrix [17] all eigenvalues are real but also nonnegative. The ordered set of
N eigenvalues of the adjacency matrix is called the spectrum of the adjacency matrix.
The same holds for the Laplacian or the normalized Laplacian eigevalues. There exists
a unique adjacency or (normalized) Laplacian matrix for each graph (up to permuting
rows and columns). The adjacency or (normalized) Laplacian matrix therefore depends
on the node labeling while their set of eigenvalues is almost certainly a graph invariant
[77]. Moreover, two graphs may be cospectral, i.e. they share the same eigenvalues
but are not isomorphic. However, studies have shown [77] that only a small fraction of
graphs are known to be uniquely determined by their spectra and that it is conceivable
that almost all graphs have this property. Then, that two graphs with the same set of
eigenvalues almost certainly lead to the same graph structure or a graph isomorphism.
The set of eigenvalues of a characteristic matrix of a graph is therefore a powerful tool
towards a qualitative classification of networks.

Graph eigenvalues

The largest eigenvalue of the adjacency matrix of a graph is denoted as the spectral
radius ρ. The spectral radius plays an important role in modelling virus propagation
in networks. In fact, the smaller the spectral radius, the larger the robustness of a
network against the spread of viruses [79]. For instance, in a complete graph KN the
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spectral radius has the maximum possible while in a path PN the spectral radius has
the minimum possible value.

The second smallest eigenvalue of the Laplacian matrix is denoted as the algebraic
connectivity λN−1. There are many problems in graph theory in which the algebraic
connectivity plays a special role [59, 64]. In particular, its importance was emphasized
by the fact that the value of the algebraic connectivity equals zero if and only if a graph is
diconnected or it has two connected components. Moreover, if λN−i+1 = 0 and λN−i 6= 0
then a graph has exactly i components. This also means that the multiplicity of zero as
an eigenvalue of the Laplacian matrix corresponds to the number of components of the
graph. Apart from the importance of the algebraic connectivity as the primary source
of the number of connected components, the algebraic connectivity measures how well
a graph is connected: the larger the algebraic connectivity is, the more difficult it is to
cut a graph into independent components [34].
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Chapter 4

Analyzing the Relationship

Between Graph Measures

Over the past several years, a number of graph measures have been introduced to char-
acterize the topology of complex networks. This chapter presents an analysis of the
relationships between graph measures, with the aim of classifying a subset that would
serve in future topological studies of complex networks [51, 50]. The classification of
measures is based on statistical analysis methods of real data sets, representing the
topology of different real-world networks. First, we relate pairs of measures by display-
ing their values as a collection of points, each having one coordinate on a horizontal
and one on a vertical axis. Second, we perform correlation analysis to find out which of
the measures are redundant. Finally, we apply principal components analysis (PCA) to
support the classification of correlated measures. The presented methods reveal a clear
relationship between graph measures, with many of the relationships not previously
reported as being trivial. It should be noted that the studied real-world networks stem
from as various as possible domains so as to avoid correlations that are due to structural
constrains of the systems under study.

4.1 Visual analysis

Many complex networks are characterized by a power-law node degree distribution and
a relatively short path between any two nodes. However, some complex networks may
lack both, the power-law as well as the small-world character. Among the considered
data sets, networks representing the topology of various transportation systems and
power-grids are those where the two characteristics were not entirely encountered. In
Figure 4.1 we show the node degree distribution of networks that do not obey a power-
law behavior.

The average node degree is the coarsest characteristic of node interconnections. In

15
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Figure 4.1: Real-world networks that do not obey a power-law degree distribution.

complex networks the average node degree is typically small and independent of the
network size N . In Figure 4.2 we show, respectively, the relationship between the link
density and the number of nodes, and number of links for various complex networks. As
expected, for increasing N , the link density tends to zero and closely follows a power-law
with exponent 1 (bottom of Figure 4.2). The link density is thus inversely proportional
to the number of nodes while being inversely proportional to the square root of the
number of links (top of Figure 4.2). From this it follows that the number of links is
proportional to the number of nodes (not shown). Hence, in most complex networks,
the classical assumption that L = O(N) holds.

Node correlations play an important role in the characterization of the topology of
complex networks. The most general approach to measure correlation among nodes is
by means of the assortativity coefficient. On the top left scatter diagram in Figure 4.3
we show that disassortative networks, where high-degree nodes preferentially attach to
other low-degree nodes, tend to be more clustered as their disassortativity increases.
One should also notice from the ellipse on the top left scatter diagram in Figure 4.3 that
those networks are typically assortative while having almost no clustering. The latter
group of networks is made of various transportation and power-grid infrastructures.
In addition, we observe that assortative networks, on average, have larger distances
between pairs of nodes. The relationship between the assortativity coefficient and the
average node distance is shown in the upper right scatter diagram of Figure 4.3.

Another interesting result that confirms these conclusions is found in [22]. Here, for
the scale-free graph of Barabási-Albert [6], a negative correlation is observed between
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Figure 4.2: The link density as a function of the number of nodes and the number of
links in real-world networks.

the assortativity coefficient and the clustering coefficient, and a positive between the
assortativity coefficient and the average node distance. Consequently, a strong negative
correlation is observed between the clustering coefficient and the average node distance.
A possible explanation is that growth and preferential attachment, i.e. the two basis
rules upon which the model is based, are responsible for additional links that tend to be
established with the hubs, creating a more connected core and therefore contributing
to higher clustering and smaller shortest paths.

Recently, it has been shown that complex networks are also characterized by the
so called rich-club phenomenon [19]. The average distance between pairs of nodes as a
function of the rich-club coefficient (lower left scatter diagram of Figure 4.3) yields that
networks with smaller distance are much more likely to have high-degree nodes that
form tight and well-interconnected subgraphs. As a result, one might expect that for
disassortative networks, having on average smaller distance between pairs of nodes, the
rich-club phenomenon would be evident as well. Nevertheless, on the lower right scatter
diagram of Figure 4.3, we observe that the rich-club phenomenon is not trivially related
to the mixing properties of networks. In other words, the rich-club phenomenon and
the mixing properties express different features that are not trivially related or derived
from each other.

On the other hand, topological measures associated with a certain feature, such
as the shortest path length, are clearly related to each other. For example, average
node betweenness increases as a function of average distance between pairs of nodes,
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Figure 4.3: The relationship among topological measures for various real-world net-
works: clustering coefficient, assortativity coefficient, rich-club coefficient and average
distance.

verifying that networks that have high average distance will also have nodes that occur
on many shortest paths between other node pairs, and consequently, on average, have
higher node betweenness. The Internet Service Provider network is a good example of a
network for which high average distance between pairs of nodes results in high average
node betweenness (see summary statistics presented in the Appendix A).

An important topological property, often ignored in the analysis of complex net-
works, is coreness. Node coreness refers to the degree of closeness of each node to a
core of densely connected nodes, observable in the network [12]. In Figure 4.4 we report
the relationship between average node coreness and the previously identified measures.
The average node coreness as a function of the assortativity coefficient yields that social
networks do not follow the generally observed trend of networks being disassortative but
having, on average, higher node coreness. All three social networks are shown within an
ellipse on the top left scatter diagram of Figure 4.4. At the same time, networks with
higher average node coreness are more likely to have higher rich-club and clustering.
Finally, we observe that the average node coreness is directly related to the average
node degree. The former relationships are not surprising since on average, higher av-
erage node degree means higher rich-club and clustering, both for which we already
perceived higher coreness.

Robustness to node and link failures is well captured by the algebraic connectivity.
In essence, the algebraic connectivity quantifies the extent to which a network can ac-
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Figure 4.4: The relationship among topological measures for various real-world net-
works: clustering coefficient, assortativity coefficient, rich-club coefficient, average core-
ness and average degree.

commodate an increasing number of node- and link-disjoint paths. Figure 4.5 shows
the relationships between the algebraic connectivity and the previously identified mea-
sures. The algebraic connectivity increases with the average node degree, as networks
with higher average degree are better connected and consequently, are likely to be more
robust. Note that in the literature [67] it is shown that assortative networks are less
vulnerable to both random failures and targeted attacks. Here, we observe that disas-
sortative networks have larger algebraic connectivity. This is not in contradiction with
the observed tendency because it is most likely to be related to the hardness to cut the
graph into independent components. Moreover, the larger the algebraic connectivity,
the more networks seem to have a large rich-club and hierarchical nature. This implies
that they have more well-interconnected and centrally-oriented nodes that occur on
many shortest paths. Still, the average node betweenness does not seem to be related
to the overall connectivity of a graph.

4.2 Correlation analysis

Correlation analysis aims at finding out linear relationships between variables. Variables
are in our case the topological measures. From the tables presented in the Appendix
A we derive a matrix whose columns are the different measures and the rows are the
different real-world networks, denoted by X. We then compute the correlation matrix
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Figure 4.5: The relationship among topological measures for various real-world net-
works: assortativity coefficient, rich-club coefficient, algebraic connectivity, average
node betweenness and average node degree.

of X, denoted by C. Matrix C is symmetric and has 1’s elements on the diagonal.
Each element (i, j) of C gives the correlation coefficient c(i, j) between measures i and
j (columns i and j of X). The correlation coefficient c varies between -1 and 1, and
indicates whether the two variables a linearly correlated: positively if c ∼ 1, negatively
if c ∼ −1, and uncorrelated if c ∼ 0.

We are not interested in whether the correlation between two measures is positive
or negative, but only how strongly two given measures are numerically related to each
other. To ease the visualization, we show on Table 4.1 a symbolic encoding version of
the correlation matrix. Table 4.1 displays the lower diagonal of the correlation matrix,
using the following range of values and coding characters:

• 0 ≤ |c| ≤ 0.3: ” ” (no correlation);

• 0.3 ≤ |c| ≤ 0.6: ”.” (mild correlation);

• 0.6 ≤ |c| ≤ 0.9: ”+” (significant correlation);

• 0.9 ≤ |c| ≤ 1: ”#” (strong correlation).

The measures on Table 4.1 are identified by their number at the top of each column,
and by the name and number on the left of each row. As the correlation matrix is
symmetric, we show only the lower diagonal. First to be noticed is that 58 among the
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Topological measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of nodes (1) 1
Number of links (2) . 1

Link density (3) . 1
Average degree (4) . 1

Average neighbour degree (5) 1
Assortativity coefficient (6) + 1

Rich-club coefficient (7) . + . 1
Clustering coefficient (8) . . + . 1
Average node distance (9) . 1

Average node eccentricity (10) . # 1
Average node coreness (11) . # . + 1

Average node betweenness (12) . # # 1
Average link betweenness (13) . # # # 1

Algebraic connectivity (14) . . . . . + . . 1

Table 4.1: Correlation between topological measures for 20 various real-world networks.

91 lower diagonal elements (not counting the diagonal) have a correlation coefficient
less than 0.3 in absolute value. Most measures are thus weakly correlated, indicating
that most of them indeed reveal different topological aspects of real-world networks. 21
among the 91 lower diagonal elements correspond to mild correlations, i.e. 0.3 ≤ |c| ≤
0.6. Only 12 among the 91 lower diagonal elements correspond to strong correlations.
Based on existing correlations between measures, we can identify the following clusters
(see also Figure 4.6):

• Distance cluster: average node distance, average node eccentricity, average node
and link betweenness.

• Degree cluster: average degree, average node coreness and clustering coefficient.

• Intra-connectedness cluster: link density, rich-club coefficient and algebraic
connectivity.

• Inter-connectedness cluster: average neighbor degree and assortativity coef-
ficient.

We labeled different measure clusters according to the type of topological infor-
mation the group of measures provides. Intra- and inter- connectedness refer to the
measures characterizing the observed connectivity, respectively, within and between a
(sub)set of nodes in the network. All measures within each cluster are highly or partly
topologically redundant. The 14 initial measures can thus be reduced to 6 (including the
number of nodes and the number of links) since 8 of them are redundant with those of
the same cluster. Besides the strength of the correlations within the groups, the correla-
tion analysis shows to what extent some measures capture several topological properties
of a network at once. For example, the number of nodes and the algebraic connectivity,
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both exhibit mild correlation to 8 other measures. The number of nodes is related to
the number of links and all measures within the distance and the intra-connectedness
clusters, while not related to measures within the degree or the inter-connectedness clus-
ters. The algebraic connectivity, on the other hand, is related to all measures within
the degree, intra-connectedness, and the inter-connectedness clusters, but not to any
measure in the distance cluster.

4.3 Principal component analysis

Correlation analysis measures the strength of correlation between variables. Under-
standing correlations, however, does not give insight about the number of independent
variables, possibly derived from the set of correlated variables. In this context, cor-
related variables are the topological measures. Principal component analysis (PCA)
[54] has proven to be useful for reducing the number of variables (dimensionality) while
retaining most of the original variability in the data. The number of transformed, un-
correlated variables are called principal components, which in decreasing order account
for as much of the variability in the data as possible.

We denote a given data set as a matrix X whose p columns are the variables to be
analyzed Xi, i = 1, . . . , p. Each column (variable) has N elements, hence X is a N × p
matrix. PCA performs a rotation of this matrix X such that

Y = A′X ′ (4.1)

where A′ is an orthogonal matrix1. Y is the matrix of the rotated data, it is a square
matrix of order N . A is found by constraining the covariance matrix of Y , CY =

1
N−1

Y Y ′, to be diagonalized. A symmetric matrix can be diagonalized by the orthogonal
matrix of its eigenvectors so that

CY =
1

N − 1
AQA′ (4.2)

where Q = XX ′. A is selected so that its columns are the eigenvectors of Q and the
principal components of X. The diagonal elements of CY give the variance of X along
each principal component.

The objective of PCA is to provide information about the minimal dimensionality,
necessary to describe the data variability. The percentage of the total data set variance
that is captured by a given number of principal components, is presented in Figure 4.7.
The first principal component alone captures 76%, the first two components 94% and
the first three components more than 99% of the total data set variance. PCA analysis
shows that only 3 dimensions are enough to retain most of the original variability in the

1A matrix is orthogonal if A
′
A = I, where I is the identity matrix.
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Figure 4.6: A graph in which nodes are topological measures and links the correla-
tions that emerged from the correlation analysis. The corresponding values display the
strength of the correlation between pairs of measures.

data. This, however, does not imply that the measures that are not important for the
main principal components are unnecessary, but rather that they provide very specific
topological information.

The reason why PCA was able to drastically reduce the dimensionality of the data set
is because the principal components are a linear combination of all the measures. The
first principal component is composed of two measures, i.e. the number of links and the
number of nodes. All other measures have a very small weight in the linear combination
of this principal component. In fact, the first principal component’s measures are those
missing from the four clusters we identified in the correlation analysis, presented in
Subsection 4.2. The second principal component, besides the average node distance
and the average node eccentricity, is also mostly made of the number of links and
number of nodes. The third principal component is similar to the second in terms
of which measures have the largest weights, but the sign of the weights differs as the
principal components form an orthogonal basis. The fourth principal component, that
captures a very small fraction of the total variance, is made almost exclusively from
the average neighbor degree. PCA reveals that important measures that characterize
the variations in the topological measures are the number of nodes and links and the
measures within the distance and inter-connectedness clusters. measures within the
degree and intra-connectedness clusters are redundant with the number of nodes and
the number of links, since both the average degree and the link density can be recovered
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Figure 4.7: Fraction of the variance captured by the principal components.

4.4 Conclusions

In this chapter we studied the correlation between topological measures in real-world
networks. The visual analysis revealed the following relationships among pairs of graph
measures:

• The clustering coefficient increases with the increasing disassortativity. For assor-
tative networks this relation is not trivial.

• The average node distance increases with the increasing assortativity coefficient
and decreases with the increasing rich-club coefficient. Consequently, the assor-
tativity coefficient decreases with the increasing rich-club coefficient.

• The average node coreness increases with the increasing rich-club and clustering
coefficient while it decreases with the increasing assortativity coefficient. Further-
more, it is directly related to the average node degree.

• The algebraic connectivity increases with the increasing average node degree and
the rich-club coefficient while it decreases with the increasing assortativity coeffi-
cient. The algebraic connectivity is not related to the average node betweenness.
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The correlation analysis revealed that some measures are highly correlated, resulting
in several clearly-defined clusters:

• Distance cluster: 1) the average node distance is strongly related to the average
node eccentricity, 2) the average node (link) betweenness to the average node
distance and hence 3) the average node (link) betweenness to the average node
eccentricity;

• Degree cluster: 1) the average node degree is strongly related to the average node
coreness and 2) the average node coreness to the clustering coefficient;

• Intra-connectedness cluster: 1) the rich-club coefficient is strongly related to the
link density and 2) the algebraic connectivity to the rich-club coefficient;

• Inter-connectedness cluster: 1) the assortativity coefficient is strongly related to
the average neighbor degree.

Overall, the analysis of the relationship between graph measures showed that some
measures are either fully related to other topological measures or that they are sig-
nificantly limited in the range of their possible values. Furthermore, the relationship
analysis proved that subsets of graph measures are highly correlated, indicating redun-
dancy among them. These observations further revealed that the set of commonly used
measures is too extensive to concisely characterize the topology of complex networks. In
this context this work is a first fundamental step towards classification and unification
of a definite set of measures that would serve in future topological studies of complex
networks.
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Chapter 5

Laplacian and Normalized Laplacian

Spectrum of Complex Networks

Eigenvalues are closely related to almost all critical properties of graphs [21, 17]. Re-
lationships between graph properties and eigenvalues of the corresponding adjacency
matrix have been much more studied in the past than relationships between graph
properties and eigenvalues of other characteristic matrices [20, 21, 26]. In this chapter
we show how the ordered set of eigenvalues of the Laplacian matrix is to be used as
a spectral measure for classifying the qualitative properties that characterize specific
classes of networks [46]. We perform an extensive set of experiments on theoretical
complex network models so as to identify factors influencing the qualitative characteri-
zation. The results are presented in the first part of this chapter. In the second part, we
expand on this work and perform a detailed Laplacian spectrum analysis of a number of
empirical networks. In addition, we perform a detailed analysis of a number of empirical
networks, though using the normalized Laplacian matrix. The empirical networks we
consider here include a number of observed Internet topologies, collected using different
methodologies from various locations in the world. Our results thus contribute to the
recently conducted research on the spectral analysis of the observed Internet topologies
[78, 36].

5.1 Laplacian spectrum of complex network models

We aim to identify factors influencing the classification of the qualitative properties that
characterize specific classes of networks. In this section, we therefore present simulation
results on theoretical complex network models.

27
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Figure 5.1: The spectrum of the Lapla-
cian matrix of Gp(N) with N = 50, 100,
200 and 400, and p = pc.
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5.1.1 Random graph of Erdős-Rényi

In Section 2.2 we have seen that in the Erdős-Rényi random graph, denoted as Gp(N),
parameters of interest are the number of nodes N and the probability p of having
a link between any two nodes. In this set of simulation we consider Gp(N) with
N = 50, 100, 200 and 400 nodes. The probability p of having a link between any
two nodes is equal to p = pcα, where α ranges from 1 to 10 and pc = log N

N
is the

critical threshold probability for which the Erdős-Rényi transforms to a graph with
an extensive fraction of nodes joined in a single giant component1. Then, for each
combination of N and p, we have simulated 104 independent realizations of a random
graph. For each independent realizations, the set of N eigenvalues of the Laplacian
matrix has been computed. By picking, for each realization, at random one out of N
eigenvalues, we collect 104 eigenvalues from which the Laplacian spectrum is plotted.
Figures 5.1, 5.2 show the Laplacian spectrum of Gp(N) for the link probability p = pc

and p = 10pc, and increasing number of nodes N . At the critical threshold probability
p = pc there exists random graphs that are not connected, therefore we consider only
connected Erdős-Rényi random graphs.

For p = pc the spectrum is skewed with the main bulk pointing towards the small
eigenvalues. Such behavior of a Laplacian spectrum is often found in cases where the
topology has a tree-like structure. An extreme case of such type of structure is the star
K1,N−1, where the eigenvalues are N , 0 and 1 (with multiplicity N − 2). In order to
examine this in more detail, we plot the spectrum of the minimum spanning tree (MST),

1The value of the link probability p above which a random graph almost surely becomes connected
tends, for large N , to p ∼ pc = log N

N
[10].
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Figure 5.3: The Laplacian spectrum of the MST in the Erdős-Rényi random graph,
the Watts-Strogatz small-world graph and the Havel-Hakimi scale-free graph, all with
N = 400 nodes.

found in each of 104 independent configurations of Gp(N). Figure 5.3 shows that the
spectrum of the MST in Gp(N) is indeed highly skewed with the main bulk pointing
towards the small eigenvalues. In particular, the underlying tree with degree 1 nodes
is responsible for the peak at λ = 1. The spectrum of sparse Gp(N) shows a similar
behavior at small eigenvalues (see Figure 5.1), what can be interpreted as the structure
that is mainly determined by the underlying tree. Such behavior is more obvious at
smaller N , since the larger graph size cause an increase in the link density. More
important is that the maximum λN−1 of a tree on N ≥ 3 is 1 and λN−1 = 1 if and only
if the underlying graph is the star K1,N−1. At the other extreme, the minimum λN−1

occurs at the path PN , namely λN−1 (PN) = 2
[

1 − cos
(

π
N

)]

. Thus, roughly speaking
λN−1 decreases as the diameter increases [38]: for the MST in Gpc

(N), λN−1 ≪ 1 while
for sparse Gp(N) λN−1 < 1, implying that the underlying tree-like structure of a sparse
Gp(N) has a small diameter.

For p = 10pc the spectrum has a bell shape (see Figure 5.2), centered around the
mean nodal degree E[D] = p(N − 1). Moreover, for fixed p = 10pc, the high peak
becomes smaller while the bell shape becomes wider, representing that, for increasing
N , the spectrum variance is in agreement with the Wigner’s Semicircle law [60]. In fact,
the spectrum is pointing to uncorrelated randomness that is a characteristic property
of an Erdős-Rényi random graph [60]. Hence, the Laplacian spectra of the Erdős-Rényi
random graph are indicating that, for increasing link density, the underlying structure
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of the Erdős-Rényi random graph transforms from a tree-like structure with a small
diameter into a more homogeneous graph where the degree is closely centered around
the mean degree.

5.1.2 Small-world graph of Watts-Strogatz

In this set of simulations we consider the Watts-Strogatz small-world graph built on
the ring lattice RN,s with N = 50, 100, 200 and 400 nodes. For each graph size N , every
node is connected to its first 2s neighbors (s on either side). In order to have a sparse but
connected graph we have considered N ≫ 2s ≫ ln N in the following ring lattice graphs:
C(50, 4), C(100, 8), C(200, 16), C(400, 32). The small-world model is then created by
moving, with probability pr, one end of each link to a new location chosen uniformly
in the ring lattice, except that no double links or self-edges are allowed. The rewiring
probability pr equals the link probability in the random graph Gp(N): it starts from pr =
log N

N
and ends with pr = 10 log N

N
. Furthermore, for each combination of the graph size N ,

the neighbor size s and the rewiring probability pr we have simulated 104 independent
realizations of the Watts-Strogatz small-work graph. For each independent realization,
the set of N eigenvalues of the Laplacian matrix has been computed. By picking, for
each realization at random one out of N eigenvalues, we collect 104 eigenvalues from
which the Laplacian spectrum is plotted.

For the small rewiring probability pr = 0, the Watts-Strogatz small-world graph is
regular and also periodical. Because of the highly ordered structure we see in Figure
5.4 that for small pr the spectrum is highly skewed with the bulk towards the high
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eigenvalues, distributed around the mean nodal degree, which irrespective of pr equals
E[D] = 2s. The spectrum of the two-dimensional lattice graph with N × N nodes
aims to illuminate this effect. The Laplacian spectrum of the two-dimensional lattice
is the sum of two path graphs PN whose eigenvalues are λi (PN) = 2− 2 cos(πi/N), i =
1, 2, ..., N . Consequently, the spectrum of the two-dimensional lattice converges to a
pointy shape with a peak centered around the mean nodal degree, which for N → ∞
converges to 4. The same tendency is observable in the Watts-Strogatz small-world
graph: in Figure 5.4, the bulk part centered around the mean nodal degree, alongside
the remaining peaks means that the graph is still highly regular and periodical. In
fact, the Laplacian spectrum of the ring lattice RN,s with N nodes and 2s neighbors

comprises the eigenvalues λi (RN,s) = 2s−
(

sin( π
N

(i−1)(2s+1))

sin( π
N

(i−1))
− 1
)

, i = 1, 2, ..., N . Hence,

upon increasing s-regularity, the bulk part of the spectrum shifts towards the mean
nodal degree, similar to the Laplacian spectrum of the Erdős-Rényi random graph. In
order to examine this in more detail we have calculated the fraction between the largest
and the second smallest Laplacian eigenvalue. The fraction in the small-world graph
with pr = log N

N
and N = 400 is approximately 4 times larger than the fraction in the

small-world with pr = 10 log N

N
, indicating that the entire Laplacian spectrum of the

small-world graph shifts towards λ1. This transition of the bulk spectrum is known as
the spectral phase transition phenomenon [69].

5.1.3 Scale-free graph of Havel-Hakimi

In this set of simulations we consider a scale-free graph, which for a given degree se-
quence constructs a graph with a power-law degree distribution. Havel [41] and Hakimi
[40] proposed an algorithm that allows us to determine which sequences of nonnegative
integers are degree sequences of graphs. Practically the same as the Barabási-Albert
model, this model will have degree distribution with a power-law tail Pr[D = k] ≈ ck−τ ,
where c ≈ (ζ (τ))−1 and the exponent τ typically lies in the interval between 2 and 3.
In order to have a graph which is in agreement with the real-world networks [68], we
have used the exponent τ = 2.4. The degree distribution with the exponent τ = 2.4 is
shown in Figure 5.6. Then, for each combination of the graph size N and the exponent
τ we have simulated 104 independent configurations of the power-law graph. For each
independent realization the set of N eigenvalues of the Laplacian matrix has been com-
puted. By picking, for each realization at random one out of N eigenvalues, we collect
104 eigenvalues from which the Laplacian spectrum is plotted.

As shown in Figure 5.7, the spectrum of the Havel-Hakimi scale-free graph is com-
pletely different from the spectra of the other two complex network models. Because
of the highly centralized structure the spectrum in Figure 5.7 is skewed with the bulk
towards the small eigenvalues. Recall that the Laplacian spectrum of the star K1,N−1 is
N , 0 and 1 (with multiplicity N − 2). Consequently, the spectrum is indicating that an
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underlying structure of this type of the scale-free graph is a star-like structure with few
highly connected nodes: although peaks at λ = 2 and λ = 3 have vanished, the MST
found in the Havel-Hakimi scale-free exhibits a visually similar spectrum (see Figure
5.3). This means that most likely peaks in a spectrum, exemplified here with the peak
at λ = 1, are due to the majority of nodes with the corresponding degrees. More-
over, for the connected graph the product of the non-zero Laplacian eigenvalues equals
N times the number of Spanning Trees (ST) found in the corresponding graph [64].
From the simulation results we have found that the number of ST in sparse Gp(N) is
much higher than the number found in the Havel-Hakimi scale-free graph. In addition,
we have found that the sum of the eigenvalues in Gp(N) that equals the sum of the

degrees, i.e.
∑N

i=1 λi =
∑

i Di, is about double the sum of the eigenvalues found in
the scale-free graph. Also, the largest Laplacian eigenvalue [64], which is bounded by
[

N
N−1

Dmax, 2dmax

]

, grows approximately with N . Hence, the structure of this type of a
scale-free graph is highly concentrated around nodes with very large nodal degrees.

5.2 Laplacian spectrum of empirical networks

We have calculated the spectrum of the Laplacian matrix of an observable part of
the Internet graph, extracted from the traceroute measurements performed both via
RIPE NCC [72] and PlanetLab [71]. The resulting graphs are an observed Internet
graphs at the IP-level because the traceroute utility returns the list of IP-addresses
of routers along the path from a source to a destination. In fact, a graph obtained
form traceroute measurements is an approximation of the Internet graph at the router-



CHAPTER 5: (Normalized) Laplacian Spectrum of Complex Networks 33

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

nodal degree

P
M

F

Planetlab IP−level graph

RIPE IP−level graph

Y(k) = 1/2.4 exp(−1/2.4k)

Figure 5.8: The degree distribution of
an observable part of the IP-level In-
ternet graph, performed via RIPE and
Planetlab.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Laplacian eigenvalue

P
D

F

PlanetLab Internet IP−level graph

RIPE  Internet IP−level graph

Figure 5.9: The Laplacian spectrum of
an observable part of the IP-level In-
ternet graph, performed via RIPE and
Planetlab.

level, which again is the union of shortest paths between each pair of a small group
of routers. This explains why such graph is denoted as the overlay graph on top of
the actual Internet topology. The RIPE NCC measurements, executed on September
18th 2004, have resulted in a graph consisting of 4058 nodes and 6151 links and the
PlanetLab experiments, executed on November 10th 2004, in a graph with 4214 nodes
and 6998 links.

Figure 5.8 shows the degree distribution and Figure 5.9 the Laplacian spectrum of
the observed graphs. In spite of two different sources of traceroute measurements, the
Laplacian spectrum stays almost the same: both Laplacian spectra contain a peak at
λ = 2, which most likely is due to the majority of nodes with degree 2, or repeated
duplication of nodes underlying the evolution of the observed graph. Besides, the
Laplacian spectra contain smaller peaks at λ = 1 and λ = 3, although the first one only
appears in the spectrum of the graph observed via RIPE. The peak at λ = 3 possibly also
originates from a significant amount of degrees, which were created through repeated
duplication of nodes, while the peak at λ = 1 surely does not, since the graph observed
via RIPE does not contain nodes with degree 1. Furthermore, we observe that the
two observed graphs differ substantially from the spectra of generic complex networks
models. Also, we find that the Erdős-Rényi random and the Watts-Strogatz small-
world graph show a similar spectral behavior, which differs considerably from that of
the scale-free graph derived from a Havel-Hakimi power-law degree sequence. Despite
this discrepancy, the spectrum of MST in the Erdős-Rényi random graph with uniformly
distributed link weights does bear resemblance to the spectra of the two observed graphs
(see Figure 5.3). The difference in spectra between empirical and synthetic graphs could
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be due to the fact that the observed part is a subgraph of the complete Internet graph,
where the observed part is mainly tree-like structured just as the MST is.

5.3 Normalized Laplacian spectrum of empirical net-

works

The adjacency or the Laplacian matrix both employ different normalization and there-
fore lead to different graph spectra. In this section we focus on the spectrum of the
normalized Laplacian matrix [17], where all eigenvalues lie between 0 and 2 allowing
easy comparison of networks of different sizes. Figure 5.10 displays the cumulative dis-
tribution function of the eigenvalues computed from the normalized Laplacian matrix
of four empirical networks. The empirical networks are an observed Internet graphs at
AS-level, extracted from four datasets: Chinese [83], Skitter [14], RouteViews [73] and
UCLA [70] dataset. The difference between the empirical networks is most easily ob-
served around the eigenvalues equal to 1. These eigenvalues play a special role as they
indicate repeated duplications of structural patterns within the network [4]. By dupli-
cation, we mean different nodes having the same set of neighbors giving their induced
subgraphs the same structure. Through repeated duplication one can create networks
with eigenvalue 1 of very high multiplicity. In addition, we observe that the spectra
have a high degree of symmetry around the eigenvalue 1. If a network is bipartite KN,N ,
i.e. it consists of two connected parts, each with N nodes and no links between nodes of
the same part, then its spectrum will be symmetric about eigenvalue 1. Consequently,
the observed Internet graphs at AS-level appear close in spectral terms to a bipartite
graph, another phenomenon that arises through repeated structure duplication. In the
AS-level Internet graph many ASes share a similar set of upstream ASes without being
directly connected to each other. In particular, although small ASes may tend to con-
nect to large upstream providers, they might not connect preferentially to the largest
ones, connecting instead to national or regional providers. In summary, these results
provide further evidence that the spectrum is a powerful tool express quantitatively
important network properties.

5.4 Conclusion

This chapter has evaluated the spectrum of the Laplacian matrix and the normalized
Laplacian matrix of theoretical complex network models and a number of empirical
networks. This study was motivated by the fact that eigenvalues are closely related
to almost all critical network properties. Both the empirical and theoretical network
analysis have indicated that the (normalized) Laplacian spectrum yields a set of char-
acteristic spectral properties that on one hand captures what it is specific about the
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topology of a network, and on the other hand simultaneously accounts for all its impor-
tant properties. The spectrum is therefore a powerful tool for classifying the qualitative
spectral properties that characterize specific classes of networks. The analysis of the
graph spectrum establishes a first step towards a systematic characterization of complex
networks.
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Chapter 6

Algebraic Connectivity of Complex

Networks

In this chapter we rely on the second smallest Laplacian eigenvalue to quantitatively
characterize the robustness of complex networks [47]. This particular eigenvalue is often
referred to as the algebraic connectivity [34] for the following reasons: 1) a graph is
disconnected if and only if the algebraic connectivity is zero, 2) the multiplicity of zero
as an eigenvalue of a graph is equal to the number of disconnected components. There
is a vast literature on the algebraic connectivity: see e.g. [58, 59, 62] for surveys and e.g.
[64, 63] for applications to several difficult problems in graph theory. For the purpose of
this work the most important is though its application to the robustness: 1) the larger
the algebraic connectivity is, the more difficult it is to cut a graph into independent
components, 2) its classical upper bound in terms of the node and the link connectivity
provides a worst case robustness to node and link failures [34].

This chapter is organized as follows. In the first part we study the behavior of
algebraic connectivity in the Erdős-Rényi random graph. The Erdős-Rényi random
graph has been traditionally used to model the topology of complex networks. Besides,
for the Erdős-Rényi random graph most of the interesting properties can be analytically
expressed. This is in contrast to most other complex network graph models where
computations are hardly possible. In the first part, by using the basic approximation
that the algebraic connectivity equals the minimum nodal degree, we analytically derive
the estimation of the mean and the variance of the algebraic connectivity for the Erdős-
Rényi model. Hereby we improve an already existing theorem concerning its behavior
[55]. In the second part, we study the relationship between the algebraic connectivity
and the node, and the link connectivity. Then, the existing relations between the
three measures for the Erdős-Rényi graph are also refined. Finally, we conclude by
summarizing our main results on the role the algebraic connectivity has for robustness
of complex networks.

37
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6.1 Algebraic connectivity in random graph of Erdős-

Rényi

In this section we give an analytical estimate of the algebraic connectivity in the Erdős-
Rényi random graph. The analytical estimate relies on the equality with the minimum
nodal degree. This approximation is verified by a comprehensive set of simulations,
presented in Subsection 6.1.4. Prior to analyzing the minimum nodal degree in Subsec-
tion 6.1.2, we give some details on the asymptotic behavior in the Erdős-Rényi random
graph.

6.1.1 Asymptotic behavior in random graph of Erdős-Rényi

Many properties of the random graph can be determined asymptotically, as was shown
by Erdős-Rényi in a series of papers in the 1960s [29, 30, 31] and later by Bollobas in
[10]. Typically, for N → ∞ and constant mean nodal degree E[D], the binomial degree
distribution

Pr[Di = j] =

(

N − 1

j

)

pj(1 − p)N−1−j (6.1)

tends to a Poisson degree distribution [60]. On the other hand, for N → ∞ and
a constant link density p, the Central Limit Theorem states that the normalized i.i.d.
binomially distributed sequence {D∗

i }1≤i≤N of all degrees in Gp(N) tends to be Gaussian
distributed [60]

D∗
i =

Di − E[D]

σ[D]

d→ e−
x2

2√
2π

(6.2)

where E[D] is the mean and σ[D] =
√

V ar[D] is the standard deviation of the nodal
degree. In summary, the limit distribution of the degree Di of an arbitrary node i in
Gp(N) depends on how the probability p varies with the number of nodes N when N →
∞. Then, for a random graph to be connected there must hold that for large N , p ≥
log N

N
≡ pc. Moreover, in their classical paper [29], Erdős-Rényi have proved that for large

graph size N the probability that a random graph G(N,L) with Lx =
[

1
2
N log N + xN

]

is connected equals e−e−2x

or rewritten [60] in terms of L = 1
2
N log N + xN and then p,

Pr[Gp(N) = connected] ≃ e−Ne−p(N−1)

. (6.3)

Finally, the probability that the node connectivity κN equals the link κL connectiv-
ity, which in turn equals the minimum nodal degree Dmin, approaches 1 as N approaches
infinity or that

Pr[κN = κL = Dmin] → 1 as N → ∞ (6.4)

is also proved in [10] and holds without any restriction on p. This was also shown by
Bollobás and Thomason in [11]. On the other hand, the asymptotic behavior of the
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algebraic connectivity in the Erdős-Rényi random graph Gp(N) is proved by Juhāz in
[55]: For any ε > 0,

λN−1 = pN + o
(

N
1
2
+ε
)

(6.5)

where the algebraic connectivity converges in probability as N → ∞.

6.1.2 Minimum nodal degree in random graph of Erdős-Rényi

In Gp(N) each node i has a degree Di that is binomially distributed (6.1). Before
proceeding, we first need to show that degrees in the sequence {Di}1≤i≤N are almost

independent random variables. In any graph
∑N

i=1 Di = 2L holds, thus degrees in the
sequence {Di}1≤i≤N are not independent. However, if N is large enough, Di and Dj are
almost independent for i 6= j and we can assume that all Di are almost i.i.d. binomially
distributed (see also [10, p. 60]). The following Lemma quantifies this weak dependence

Lemma 1. The correlation coefficient of the degree Di and Dj of two random nodes
i and j in Gp (N) for 0 < p < 1 is

c (Di, Dj) =
Cov [Di, Dj]

√

V ar [Di]
√

V ar [Dj]
=

1

N − 1
.

Proof: see Appendix B. For large N and constant p, independent of N , the nor-
malized i.i.d. binomially distributed sequence {D∗

i }1≤i≤N of all degrees in Gp(N) tends
to be Gaussian distributed. The minimum of the sequence {D∗

i }1≤i≤N possesses the
distribution

Pr[ min
1≤i≤N

D∗
i ≤ x] = 1 −

N
∏

i=1

Pr[D∗
i > x] = 1 − (Pr[D∗

i > x])N .

After considering the limiting process of the minimum of a set {D∗
i }1≤i≤N when

N → ∞, we derive (see Appendix C) the appropriate solution

D∗
min =

−Y − 2 log N + log

(

√

2π log N2

2π

)

√
2 log N

where Y is a Gumbel random variable [60]. With Dmin = σ[D].D∗
min + E[D] =

√

(N − 1)p(1 − p).D∗
min + p(N − 1), we obtain

Dmin = p(N − 1) −
√

(N − 1)p(1 − p)









Y + 2 log N − log

(

√

2π log N2

2π

)

√
2 log N









.
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Finally, let Dmin (p) denote the minimum degree in Gp (N). Since the complement
of Gp (N) is G1−p (N), there holds that

Dmin (p) = N − 1 − Dmax (1 − p) .

The law of Dmax has been derived by Bollobas [10, Corollary 3.4 (p. 65)] via another
method. Using the above relation, Bollobas’ results precisely agrees with ours.

6.1.3 Analytical approximation for algebraic connectivity in

random graph of Erdős-Rényi

In [34], Fiedler proved the upper bound on the algebraic connectivity in terms of the
minimum nodal degree, i.e. for G 6= KN , λN−1 ≤ Dmin. From this bound, our basic ap-
proximation that λN−1 ≃ Dmin, for large N , follows. A comprehensive set of simulation
results, presented in Subsection 6.1.4, supports the validity of this assumption. With
this approximation we arrive, for large N , at

λN−1 ≃ p(N − 1) −
√

2p(1 − p)(N − 1) log N

+

√

(N − 1)p(1 − p)

2 log N
log

(
√

2π log
N2

2π

)

−
√

(N − 1)p(1 − p)

2 log N
Y . (6.6)

By taking the expectation on both sides and taking into account that the mean
of a Gumbel random variable E[Y ] = γ = 0.5772..., our estimate of the mean of the
algebraic connectivity in Gp(N) becomes, for large N and constant p,

E[λN−1] ≃ p(N − 1) −
√

2p(1 − p)(N − 1) log N

+

√

(N − 1)p(1 − p)

2 log N
log

(
√

2π log
N2

2π

)

−
√

(N − 1)p(1 − p)

2 log N
γ. (6.7)

Similarly, by taking into account that V ar[Y ] = π2

6
, the estimate of the variance of the

algebraic connectivity in Gp(N) is

V ar[λN−1] =
(N − 1)p(1 − p)

2 log N

π2

6
. (6.8)
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Figure 6.1: A comparison between the estimation of the mean (6.7) as well as the
standard deviation (6.9), plotted in lines and error bars, and the theorem of Juhāz
(6.5), plotted in markers, for the algebraic connectivity λN−1 as a function of α = p/pc

in the Erdős-Rényi random graph Gp(N) with N = 200, 400 and 800 nodes.

An interesting observation is that the standard deviation

σ [λN−1] =
√

V ar[λN−1] = O

(
√

N

log N

)

(6.9)

is much smaller than the mean (6.7). This implies that λN−1 tends to the mean rapidly,
or that, for large N , λN−1 behaves almost deterministically and is closely approximated
by the first three terms in (6.6). Hence, the relation (6.6) is more accurate than (6.5)
(see also Figure 6.1).

6.1.4 Verification of analytical approximation

In all simulations we consider exclusively the Erdős-Rényi random graph Gp(N) with
various combinations of the number of nodes N and the link probabilities p. N takes
the following values: 200, 400 and 800. The link probability is p = αpc = α log N

N
, where

α varies from 1 to 20. From each combination of N and p, we compute the algebraic
connectivity λN−1 and the minimum nodal degree Dmin. Then, we classify the simulated
graphs according to their value of α, as shown in Figures 6.2 and 6.3. Subsequently,
from generated graphs with a given α, we are interested in the extreme values, i.e.
min λN−1 and max λN−1, as shown in Figures 6.4 and 6.5.
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In Figures 6.2 and 6.3, we have plotted the simulated mean E[λN−1], the corre-
sponding standard deviation σ [λN−1], and our estimate for the mean, Eq. (6.7), and
the standard deviation, Eq. (6.9), of the algebraic connectivity as a function of α. As
illustrated in Figures in Figures 6.2 and 6.3 there is a remarkable correspondence be-
tween the simulations and our estimate: the standard deviation is much smaller than
the mean, implying that for N → ∞, λN−1 will rapidly approach E[λN−1]. Moreover,
our basic approximation that, for large N , λN−1 ≃ Dmin is verified by the simulations
shown in Figures 6.4 and 6.5. We found that minλN−1 or max λN−1 grows linearly
with Dmin. Note in Figure 6.4 that, in the probability range around the connectivity
threshold pc, the minimum algebraic connectivity is always equal to zero, indicating a
non-connected random graph (for details see Section 6.2).

From Figures 6.4 and 6.5 it is clear that if the value of the algebraic connectivity is
larger than zero, the random graph has nodes of minimum degree always larger than
zero too, referring to {λN−1 > 0} ⇐⇒ {Gp(N) is connected}. However, by scrutinizing
only degree-related simulation results, we see that the implication {Dmin ≥ 1} =⇒
{Gp(N) is connected} is not always true, i.e. for large N and certain p which depends
on N , the implication is almost surely (a.s.) correct [60]. For example, the percentage
of graphs with Dmin ≥ 1 that leads to a connected Gp(50) increases from 98% for p = pc

to 100% for 2pc, while the percentage for Gp(400) increases from 99% for p = pc to
100% for 2pc. Hence, the simulation results confirm that, for large N and rather small
p = log N

N
, the latter implication a.s. is equivalent.

Simulations demonstrate also that, for a particular fixed α = p

pc
, the mean of the

algebraic connectivity increases with the size of the random graph: a higher value of the
graph size N implies a higher mean of the algebraic connectivity, which in turn indicates
that the probability of having a more robust graph is approaching 1 as N → ∞. The
theorem given in Subsection 6.1.1, stating that Pr[κN = κL = Dmin] → 1 as N → ∞,
clarifies this observation in a slightly different way: given that N is approaching ∞,
the node and the link connectivity will become as high as possible, i.e. equal to the
minimum nodal degree, and therefore the graph will become optimally connected.

6.2 Relationship between algebraic, node and link

connectivity in random graph of Erdős-Rényi

It is well-known that, for any graph, the algebraic connectivity is at most equal to the
node connectivity. In this section we therefore analyze the relationship among the three
connectivity measures: the algebraic connectivity, the node connectivity and the link
connectivity.

We have used the polynomial time algorithm, explained in [35], to find the node
and the link connectivity by solving the maximum-flow problem. The maximum-flow
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problem can be solved with several algorithms, e.g. Dinic, Edmonds & Karp, Goldberg,
etc. If Goldberg’s push-relabel algorithm is utilized, as performed in our simulations,
the link connectivity algorithm has O(N3

√
L)-complexity, while the node connectivity

algorithm has O(N2L
√

L)-complexity. We have used the LAPACK (Linear Algebra
PACKage) implementation of the QR-algorithm for computing all the eigenvalues of
the Laplacian matrix. For linear algebra problems involving the computation of a
few extreme eigenvalues of large symmetric matrices, algorithms (e.g. Lanczos) whose
run-time and storage cost is lower compared to the algorithms for calculation of all
eigenvalues (QR algorithm has O (N3)-complexity) are known [3].

We simulate for each combination of N and p, 104 independent Gp(N) graphs. N
is 50, 100, 200 and 400 nodes and the link probability p = αpc, where α varies from
1 to 10. From each combination of N and p, we compute the minimum nodal degree
Dmin, the algebraic, the node and the link connectivity, denoted respectively by λN−1,,
κN and κL. Then, we order graphs according to their value of α.

Figure 6.6 shows the mean value of the algebraic connectivity E [λN−1] as a function
of α = p

pc
. In addition, Figure 6.6 shows the mean of the node connectivity E[κN ], the

link connectivity E[κL] and the minimum nodal degree E[Dmin].
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The first conclusion we can draw after analyzing simulation data is that for all
generated random graphs from p = pc to p = 10pc the convergence to a surely connected
random graph, i.e. λN−1 > 0, is surprisingly rapid. Results concerning connectivity
percentages are plotted in Figure 6.7. For example, the percentage of connected random
graphs with 50 nodes increases from about 39% and 98% for pc and p = 2pc, respectively,
to 99% for p = 3pc, where for p = 4pc the graph is connected. These results are
consistent with the Erdős-Rényi asymptotic expression. For N → ∞, as observable in
Figure 6.7, the simulated data as well as the Erdős-Rényi formula confirm a well known
result [53] that the random graph Gp(N) is a.s. disconnected if the link probability p
is below the connectivity threshold pc ∼ log N

N
and connected for p > pc.

The second conclusion is that our results, regarding the distribution range of the
algebraic connectivity and the minimum nodal degree for G 6= KN , indeed comply with
the bounds 0 ≤ λN−1 ≤ Dmin: the distribution of the algebraic connectivity λN−1 is
contained in the closed interval [0, N ], or to be more precise λN−1 is 0 for a disconnected
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graph and above bounded by N
N−1

Dmin for all those link probabilities p for which the
graph is connected but not complete1. Then, obviously E[λN−1] ≤ E[Dmin].

The third conclusion is that the distribution range of the algebraic connectivity also
complies with the bounds λN−1 ≤ κN . Moreover, in Figure 6.6, for p > pc and all
simulated N , the distributions of the node κN and the link κL connectivity are equal to
the distribution of the minimum nodal degree Dmin (recall that in Figure 6.6 for p = pc,
the distributions of κN , κL and Dmin are almost equal but not the same). Convergence
here to a graph where κN = κL = Dmin is surprisingly rapid. For example, from the
simulation results plotted in Figure 6.8 with p = pc and size of the random graph
ranging from N = 5 to N = 400, we found that with probability approaching 1, the
random graph becomes optimally connected at rather small graph sizes. For all other
link probabilities, p > pc, the convergence to κN = κL = Dmin is faster (see Figure 6.8
for p = 2pc).

Overall, the simulation results show that the random graph Gp(N) a.s. is con-
structed in such a way that deleting all the neighbors (or the links to its neighbors)
of a minimum nodal degree node will lead to the minimum number of nodes (links)
whose deletion from a graph will result into a disconnected random graph. Hence, the

1If a graph G is a complete graph KN then λN−1 = N > Dmin = N − 1.
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minimum nodal degree is a valuable estimate of the number of nodes or links whose
deletion results into a disconnected graph.

6.3 Conclusion

In this chapter we have improved an already existing theorem concerning the behavior
of the algebraic connectivity in the Erdős-Rényi random graph. Through extensive
simulations we have verified the accuracy of the analytical estimation, also for networks
having small sizes. Simulations have also shown that for large graph size, the distri-
bution of the algebraic connectivity grows linearly with the minimum nodal degree. In
fact, the larger the graph size, the more the Erdős-Rényi random graph is constructed
in such a way that deleting all the neighbors (or the links to its neighbors) of a minimum
nodal degree node leads to the minimum number of nodes (links) whose deletion dis-
connects the graph. Moreover, simulation results have shown that the equality between
the minimum nodal degree, on one hand, and the node and the link connectivity, on
the other hand, occurs regardless of the link probability at already small graph sizes.
This, so called optimal connectivity, directly implies that a larger value of the algebraic
connectivity quantifies a higher robustness to node and link failures.



Chapter 7

Spectral Radius of Complex

Networks

In this chapter we rely on the largest eigenvalue of the adjacency matrix to quantita-
tively characterize the robustness to virus propagation in complex networks [45]. The
largest eigenvalue of the adjacency matrix is often referred to as the spectral radius.
Recently it has been shown [79] that the spectral radius plays an important role in
modelling virus propagation in networks. In fact, in [79] it was shown that the exis-
tence of an epidemic threshold [23] is inversely proportional to the spectral radius of
the adjacency matrix. If follows from this result that the smaller the spectral radius,
the higher the robustness of a network against the spread of viruses. The contribution
of the study presented in this chapter is twofold. First, we study how well-known upper
bounds for the spectral radius of graphs match the spectral radii of a number of real-
world networks. Second, we compare the spectral radius of these real-world networks
with those of commonly used network models.

7.1 Upper bounds for spectral radius

An upper bound for the spectral radius of a graph [79] gives a lower bound for the
epidemic threshold for virus propagation in networks. If the effective spreading rate is
below this lower bound, then the virus contamination dies out. The sharper the upper
bound for the spectral radius, the less effort we need to spend in reducing the effective
spreading rate below the lower bound. The effective spreading rate can be lowered by
either decreasing the spreading rate β (e.g. by implementing more or better intrusion
detection/prevention software) or by increasing the cure rate δ (e.g. by installing more
virus scanning software).

The most common graphs for which an explicit expression for the spectral radius is
known, are [21]: the complete graph KN , the path PN , the ring graph RN , the k-regular
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graph, the k-dimensional lattice and the complete bipartite graph KN,N . Since no closed
expression is known for the spectral radius of a general graph, we will discuss a number
of upper bounds. Although many more bounds are known, the most important ones
are presented. The bounds differ both in form as in the parameters that are used. The
more information about a graph is used, the better the bounds can be. Since different
parameters of graphs are used in the bounds, it seems computationally intensive to
compare them in general.

Now, let G be a graph on N nodes and L links, with minimum degree Dmin, maxi-
mum degree Dmax, and spectral radius ρ (G). The oldest and simplest bound, that can
be found in any book on spectral graph theory, is

ρ(G) ≤ Dmax . (7.1)

A bound in terms of the numbers of nodes and links only is found by Hong [43]: if G
is connected, then

ρ(G) ≤
√

2L − N + 1 . (7.2)

Cao [16] improved this bound at the cost of using more parameters: if Dmin ≥ 1, then

ρ(G) ≤
√

2L − (N − 1)Dmin + (Dmin − 1)Dmax . (7.3)

Hong, Shu, and Fang [44] obtained a bound that indicates the relation of the spectral
radius to the minimal degree: if G is connected, then

ρ(G) ≤ 1

2

[

Dmin − 1 +
√

(Dmin + 1)2 + 4(2L − Ndmin)
]

. (7.4)

Das and Kumar [24] obtained a bound that uses very local information of the graph: if
G is connected, and Di is the average degree of the nodes adjacent to node i, then

ρ(G) ≤ max
{

√

DiDj : i ∼ j
}

. (7.5)

Here i ∼ j indicates that nodes i and j are linked. Finally, Cioabă, Gregory, and
Nikiforov [18] obtained an upper bound that also uses the diameter diam of the graph:
if G is connected and nonregular, then

ρ(G) < Dmax −
Ndmax − 2L

N(diam(Ndmax − 2L) + 1)
. (7.6)
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topological
characteristics

A B C D

N 685 14098 4058 18121
L 10271 18689 6151 59507
Dmax 117 6 107 2404
Dmin 9 1 2 1
E[D] 30 2.7 3 6.2
diam 11 255 34 8
ρ 50.7 3.5 14.2 110.8

Table 7.1: Topological characteristics of the real-world network of Dutch soccer team
players (A), Dutch roadmap (B), IP-level (C) and AS-level (D) Internet graph. The
notation was introduced in the previous section, with the exception of E[D] which
denotes average nodal degree.

upper bound A B C D

ρ 50.7 3.5 14.2 110.8
7.1 117 6 107 2404
7.2 140.9 152.6 90.8 317.6
7.3 123.8 152.6 65.5 317.6
7.2 120.0 152.6 65.2 317.6
7.5 66.6 4.2 17.1 1252.5
7.6 117 6 107 2404

Table 7.2: Upper bounds on the spectral radius of the real-world network of Dutch
soccer team players (A), Dutch roadmap network (B), IP-level (C) and AS-level (D)
Internet graph.

7.2 Spectral radius of empirical networks

In this section, we give the spectral radius ρ for the following real-world networks: the
social network that is formed by all soccer players that have played an international
match for the Dutch soccer team (A) [27], the Dutch roadmap network (B) [52], the
network of the observable part of the Internet graph at the IP-level (C) [46] and the
Autonomous System level (D) [65]. In this social network of Dutch soccer team players
every node corresponds to a soccer player that has played a game for the Dutch national
team. A node is connected with another node if both players have appeared in the same
match.

For the considered real-world networks, we show in Table 7.1, a set of graph mea-
sures. Furthermore, Table 7.2 illustrates the tightness of the upper bounds introduced
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soccer team players and the spectral radius of networks models: the random graph
of Erdös-Rényi, the small-world graph of Watts-Strogatz and the scale-free graph of
Barabási-Albert.

in Section 7.1. We conclude from Table 7.2 that for networks A, B and C the upper
bound 7.5 of Das and Kumar exhibits the best match with the real spectral radius. The
overestimation of this upper bound for networks A, B and C is 31%, 20% and 20%,
respectively. For network D, the upper bounds 7.2, 7.3 and 7.4 provide the best match.
However, in this case, the overestimation is as high as 187%. In addition, the following
observations can be made from Table 7.2:

• The upper bounds 7.2, 7.3 and 7.4 are of the same order.

• The upper bound 7.6 does not give an improvement of upper bound 7.1.

• For networks A and B, the simple upper bound 7.1 outperforms the upper bounds
7.2, 7.3 and 7.4.

Next, we explore the spectral radius of generic models (see e.g. [2] and [68]), used
for modelling the evolution and the topology of real-world networks, i.e. the random
graph of Erdős-Rényi (ER) [10], the small-world graph of Watts-Strogatz (WS) [80]
and the scale-free graph of Barabási-Albert (BA) [5].

The main parameters of the Erdős-Rényi graph Gp(N), as explained in Section 2.2,
are the number of nodes N and the existence of a link with the probability p, which is
independent from the existence of other links. Then, the total number of links in Gp(N)
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spectral radius A B C D

ρ 50.7 3.5 14.2 110.8
ρER 30.9 4.1 4.4 7.7
ρWS 32.9 5.8 5.2 10.3
ρBA 52.9 14.2 14.3 15.1

Table 7.3: The spectral radius of network models: the random graph of Erdös-Rényi,
the small-world of Watts-Strogatz and the scale-free graph of Barabási-Albert. For the
simulations of the spectral radius the same number of nodes and links is used as in the
real-world networks under consideration.

is on average equal to pLmax, where Lmax =
(

N

2

)

is the maximum possible number of
links. Hence, the link density q = L

Lmax
equals p.

The Watts-Strogatz graph captures the fact that, despite the large size of the topol-
ogy, in most real-world networks, there is a relatively short path between any two
nodes. The diameter diam, presented in Table 7.1, aims to illustrate this effect. The
main parameters of the small-world graph of Watts-Strogatz, as seen in Section 2.3,
are the number of nodes N , the number of clockwise neighbors a node has s, and the
probability pr a link is rewired to a new location chosen uniformly in the ring lattice
RN,s. The number of links L in the Watts-Strogatz graph, irrespective of pr, is always
equal to L = Nk. Hence, the link density is q = 2k

N−1
.

The Barabási-Albert graph gives rise to a class of graphs with a power-law degree
distribution. The Barabási-Albert graph is based on the following parameters: the
number of fully-meshed nodes m0 at the beginning of the construction of a graph, the
number of new attached nodes t and the number of links m a newly attached node has.
Then, the number of nodes N in the Barabási-Albert graph is N = t + m0 and the
number of links L is L = m0(m0−1)

2
+ mt. Hence, the link density is q = m0(m0−1)+2mt

N(N−1)
.

Figure 7.1 compares ρ(A) and the average value of ρ for generic network models.
Furthermore, in Table 7.3 we consider ρ, calculated for a graph of identical link density
as the one in real-world networks under consideration. Figure 7.1 illustrates that the
value of ρBA is closest to ρ(A). Moreover, as shown in Table 7.3, the same tendency
is observed for network C, whereas for network D the value of ρ(D) is not consistent
with any of the examined models. Finally, the Dutch road infrastructure (network B)
is most likely a subgraph of a two-dimensional1 lattice graph, as found in [52].

1The spectral radius of the 2D-lattice with sizes z1 and z2 such that N = (z1 + 1)(z2 + 1) and
L = 2z1z2 + (z1 + z2) is

ρ2D-Lattice = 2 cos

(

π

z1 + 2

)

+ 2 cos

(

π

z2 + 2

)

< 4
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Figure 7.2: The spectral radius of the small-world graph of Watts-Strogatz after, for
every node, each link connected to a clockwise neighbor (i.e. here k = 5 links) is rewired
to a randomly chosen node with the probability pr = 1.0. At the end of N steps, which
correspond to the N nodes, the spectral radius is compared with the one of the random
graph of Erdös-Rényi, both for the link density q = 0.5.

From the simulation results, we saw for small and medium rewiring probabilities pr

that the spectral radius ρWS virtually corresponds to ρER. For example, the difference
in ρ between the Watts-Strogatz graph with pr = 0.5 and the Erdős-Rényi graph,
in the complete q-range, is hardly noticeable (not shown). However, for high rewiring
probabilities pr (close to 1), ρWS has the tendency not to converge to ρER, see Figure 7.1.
Thus, the spectral properties of the Watts-Strogatz graph with pr = 1 are not identical
to those of the Erdős-Rényi graph. In order to examine this unexpected behavior in
more detail, we have conducted some additional simulations on graphs with a small
number of nodes, i.e. N = 21 nodes.

To obtain the Watts-Strogatz graph with the link density q = 0.5 and pr = 1, we
move k = 5 links of a given node to a new location chosen randomly in the ring lattice.
The resulting spectral radius, after each rewiring step, is depicted in Figure 7.2. In
addition, Figure 7.2 contains the spectral radius of the Erdős-Rényi graph with the
same link density. The depicted values are obtained by averaging over 100 simulation
runs. It is obvious that ρWS of the Watts-Strogatz graph (obtained after 21 rewiring
steps) is larger than ρER of the Erdős-Rényi graph. A possible explanation lies in the
fact that for pr = 1.0, the Watts-Strogatz graph is an approximation of the random
graph with the constraint that each node has a minimum of Dmin = k links. This
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Figure 7.3: The degree distribution of the small-world graph of Watts-Strogatz and the
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implies that the degree distribution of the Watts-Strogatz graph is skewed. Figure 7.3
shows clearly that the degree distribution of the Erdős-Rényi graph is not identical to
the one of the Watts-Strogatz graph, where indeed Dmin = k.

7.3 Conclusions

In this chapter we have introduced the spectral radius as a quantifier of the robustness
to virus propagation in complex networks. We have modelled the topology of a complex
network as a graph and studied how well-known upper bounds for the spectral radius
match the spectral radii of a number of empirical networks. In this context, our main
conclusions are:

• For the Dutch soccer team network, the Dutch road map network and the Internet
graph at router level, the upper bound given in [24] is reasonably tight.

• For the Internet graph on AS-level, all considered upper bounds seriously overes-
timate the spectral radius.
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Furthermore, we have compared the spectral radius of a number of empirical net-
works to commonly used theoretical graph models. Conclusion regarding this research
question are the following:

• The spectral radii of the Dutch soccer team network and the Internet graph at
the router level match well those obtained from scale-free Barabási-Albert graphs
with the same link density.

• The spectral radius of the Dutch road map network matches well that of a two
dimensional lattice.

• All considered network models, i.e. the random graph, small-world and scale-free
graph give spectral radii that are much smaller than that of the Internet graph
at AS-level.



Chapter 8

Relationship Between Algebraic

Connectivity and Robustness of

Complex Networks to Node and

Link Failures

In this chapter we study the algebraic connectivity in relation to the network’s ro-
bustness to node and link failures [49]. Network’s robustness to failures is quantified
with the node and the link connectivity, two graph measures that give the number of
nodes and links that have to be removed in order to disconnect a graph. From [34] it
is known that the algebraic connectivity is a lower bound on both the node and the
link connectivity. As mentioned in [10], for every node or link connectivity there are
infinitely many graphs for which the algebraic connectivity is not a sharp lower bound.
It is thus worth looking into the relationship between the proposed measures. The
chapter is organized as follows. The first section gives the theoretical background of
Fiedler’s algebraic connectivity and the two connectivity measures, the node and the
link connectivity. The second section provides a comprehensive set of simulation results
on the relation between the algebraic connectivity and the node and link connectivity
in three well-known complex network models: the random graph of Erdős-Rényi, the
small-world graph of Watts-Strogats, the scale-free graph of Barabási-Albert. Through
extensive simulations with the three complex network models, we show that the alge-
braic connectivity is not trivially connected to networks’s robustness to node and link
failures. Furthermore, we show that the tightness of this lower bound is very dependent
on the considered complex network model.
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Figure 8.1: A graph with N = 8 nodes and L = 13 links. The graph’s connectivity
characteristics are: the node connectivity is 1 (removal of node H), the link connectivity
is 2 (removal of links connecting node H to nodes B and D), the algebraic connectivity
is 0.6277 and the minimum nodal degree is 3 (minimum number of links a node has).

8.1 Relationship between algebraic connectivity and

classical connectivity measures

The second smallest Laplacian eigenvalue λN−1, as mentioned earlier, is an important
measure in the analysis of the robustness of complex networks: 1) the algebraic connec-
tivity is only equal to zero if a graph G is disconnected, 2) the multiplicity of zero as
an second smallest Laplacian eigenvalue is equal to the number of disconnected com-
ponents of G. Then, the node connectivity of an incomplete graph G is at least as
large as the algebraic connectivity λN−1 ≤ κN [34]. If G = KN then λN−1(KN) = N >
κN(KN) = N − 1. The minimum nodal degree Dmin of an incomplete graph G is an
upper bound on both the node and the link connectivity κN ≤ κL ≤ Dmin. If G is a
complete graph KN then κN = κL = Dmin.

As shown in Figure 8.1, the relationship between the introduced measures is not
trivial: λN−1 = 0.6277 ≤ κN = 1 ≤ κL = 2 ≤ Dmin = 3. Accordingly, the minimal
number of nodes κN and the minimal number of links κL to be removed such that no
path between any two pairs of nodes remains, in this graph is respectively 1 and 2.
Hence, the graph has 1 node-disjoint and 2 link-disjoint paths. This also means that
the depicted graph is 1-node and 2-link connected.

We have used the polynomial time algorithm, explained in [35], to find the node
and the link connectivity by solving the maximum-flow problem. The maximum-flow
problem can be solved with several algorithms, e.g. Edmonds & Karp [28], Dinic [25],
Goldberg [37], etc. If Goldberg’s push-relabel algorithm is utilized, as performed in
our simulations, the link connectivity algorithm has O(N3

√
L)-complexity, while the

node connectivity algorithm has O(N2L
√

L)-complexity. We have used the LAPACK
implementation of the QR-algorithm for computing all the eigenvalues of the Laplacian
matrix. For linear algebra problems involving computation of few extreme eigenvalues
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Figure 8.2: The mean as well as the standard deviation (error bars) of the algebraic
connectivity µN−1 as a function of the node connectivity κN and the link connectivity
κN in the random graph of Erdős-Rényi with N = 50, 500 and 1000 nodes.

of large symmetric matrices, algorithms (e.g. Lanczos) whose run-time and storage cost
is lower compared to the algorithms for calculation of all eigenvalues (QR algorithm
has O (N3)-complexity) are known [3].

8.2 Relationship between algebraic connectivity and

classical connectivity measures in complex net-

work models

In this section, we present a comprehensive set of simulation results on the relation be-
tween the algebraic connectivity and the two connectivity measures in generic complex
network models: the random graph of Erdős-Rényi, the small-world of Watts-Strogatz
and scale-free graph of Barabási-Albert. Prior to relationship analysis, we define and
briefly discuss the models.

8.2.1 Random graph of Erdős-Rényi

In Section 2.2 we have seen that in the Erdős-Rényi random graph Gp(N) the parameters
of interest are the number of nodes N and the probability p of having a link between
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Figure 8.3: Percentage of the Erdős-Rényi random graphs with p = pc and p = 2pc

for which the node connectivity κN , the link connectivity κL and the minimum nodal
degree Dmin converge to κN = κN = Dmin.

any two nodes. We simulate for each combination of N and p, 103 independent Gp(N)
graphs. N is 50, 500 and 1000 nodes and the link probability p = αpc, where pc = log N

N

and α varies from 1 to 10. From each combination of N and p, we compute the node
connectivity κN , the link connectivity κL and the algebraic connectivity λN−1. Then,
we classify the simulated graphs according to their value of the node and the link
connectivity, which for most graphs have the same value κN = κL. Thus, in Figure 8.2,
the mean value (and standard deviation) of the algebraic connectivity is given as a
function of both the node and the link connectivity.

The first observation from Figure 8.2 is that there seems to be a linear relationship
between the mean of the algebraic connectivity and the node and the link connectivity.
However, from this linear behavior alone it is not clear whether and how fast the
algebraic connectivity converges towards the node and the link connectivity.

In [9] Bollobás proved that, irrespective of the link probability p, the probability that
κN = κL = Dmin approaches 1 as N → ∞. Recall that Dmin is an upper bound on both
κN and κL. From Figure 8.3 we observe that the convergence of Gp(N) to a graph where
κN = κL = Dmin is fast. For example, from the simulation results plotted in Figure
8.3 with p = pc and a size of the random graph ranging from N = 50 to N = 1000,
we observe that with probability approaching 1, Gp(N) has κN = κL = Dmin for rather
small graph sizes. For all other link probabilities, i.e. p > pc, the convergence to
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Figure 8.4: The mean of the node connectivity κN , the link connectivity κL and the
algebraic connectivity µN−1 as a function of the number of nodes N in the Erdős-Rényi
random graph with a given link density q = L

Lmax
= p, i.e. p = pc and p = 2pc. Also,

the minimum nodal degree Dmin is depicted as a function of N .

κN = κL = Dmin occurs for even smaller values of N (see Figure 8.3 for p = 2pc).
This makes Dmin a valuable estimate of the minimum number of nodes or links whose
deletion results into a disconnected Erdős-Rényi random graph.

Contrary to the convergence of Dmin, Figure 8.4 shows that as N tends to large
values, the value of λN−1 does not converge towards κN or κL, and obviously not to
Dmin. Furthermore, for a given link density q, the difference between λN−1 and κN or
κL is considerable and becomes even more evident if we consider higher values1 of the
link density q (see Figure 8.4 for q = pc and q = 2pc). This behavior is at odds with
the one of Dmin.

8.2.2 Small-World graph of Watts-Strogatz

In Section 2.3 we have seen that in the small-world graph of Watts-Strogatz the pa-
rameters of interest are the number of nodes N , the number of clockwise neighbors a
node has s and the probability pr a link is rewired to a new location chosen uniformly
in the ring lattice RN,s. We simulate for each combination of N and s, 103 independent
Watts-Strogatz small-world graphs. N is 50, 100 and 500 nodes and s varies from 1 to

1In the Erdős-Rényi random graph, the link density q equals the link probability p.
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Figure 8.5: The mean as well as the standard deviation (error bars) of the algebraic
connectivity as a function of the node and the link connectivity in the small-world graph
of Watts-Strogatz with N = 50, 100 and 500 nodes.

10. The rewiring probability is set to be pr = 1. From each combination of N and s, we
compute the node connectivity κN , the link connectivity κL and the algebraic connec-
tivity λN−1. Then, we classify the simulated graphs according to their value of κN and
κL. Similarly to Figure 8.2, we plot in Figure 8.5 the mean (and standard deviation) of
the algebraic connectivity as a function of the node and the link connectivity. In most
simulated small-world graphs, we observe that κN = κL. Hence, the curve depicting
the mean (and standard deviation) as a function of the node connectivity turns out to
be indistinguishable from the curve for the link connectivity.

From Figure 8.5 we observe that the algebraic connectivity is a very loose lower
bound on the node or the link connectivity. Moreover, the larger the graph size N , the
looser the bound becomes. This means that for a given value of the node or the link
connectivity, the mean value of the algebraic connectivity is a decreasing function of the
graph size N , opposite to Erdős-Rényi random graph (see Figure 8.2). Furthermore,
the larger the graph size N , the smaller the standard deviation (see error bars in Figure
8.5).

In Figure 8.5, for a given value of the node or the link connectivity, the algebraic
connectivity λN−1 seemed to be a decreasing function of N . However, Figure 8.6 shows
that for small-world graphs with a given link density2 q, λN−1 is an increasing function

2In the Watts-Strogatz small-world graph the link density is q = L

Lmax

= sN

Lmax

= 2s

(N−1) .
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Lmax
= sN

Lmax
= 0.04. The

minimum nodal degree Dmin equals the number of neighbors s in the ring lattice.

of N . Figure 8.6 also shows that κN and κL approach Dmin for already small N .
Thus, similarly to Erdős-Rényi random graph, the minimum number of nodes is a
valuable estimate of the minimum number of nodes or links whose deletion results into
a disconnected Watts-Strogatz small-world graph. Moreover, the larger the number
of neighbors s in the ring lattice (on which the small-world graph is built), the larger
the difference between λN−1 and κN or κL. Recall that in the Watts-Strogatz small-
world, each node has a minimum of Dmin = s links. Hence, the algebraic connectivity
is indicating that as the graph size N increases, the underlying topology of this small–
world graph converges to a more robust structure: by expanding N and reducing the
link density q, it might be possible to increase the number of nodes or link failures and
still get the same value of the algebraic connectivity.

8.2.3 Scale-Free graph of Barabási-Albert

In Section 2.4 we have seen that in the scale-free graph of Barabási-Albert the param-
eters of interest are the number of nodes N and the number of links a newly attached
node has m. We simulate for each combination of N and m, 103 independent Barabási-
Albert scale-free graphs. N is 50, 100 and 500 nodes and m varying from 1 to 10. In
the same way as in the simulations for the Erdős-Rényi random graph and the Watts-
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Figure 8.7: The mean as well as the standard deviation (error bars) of the algebraic
connectivity as a function of the node and the link connectivity in the scale-free graph
of Barabási-Albert with N = 50, 100 and 500 nodes.

Strogatz small-world, we compute for each combination of N and m, the algebraic
connectivity and the two connectivity metrics. Figure 8.7 shows the mean of the al-
gebraic connectivity λN−1, obtained by classifying the generated graphs according to
their value of the node connectivity κN and the link connectivity κL. The scale-free
graph is constructed in such a way that deleting m links or m nodes to which a new
node (in the last time step) is attached, leads to m = κN = κL. The convergence to
a graph where κN = Dmin is observed for all combinations of N and m. Hence, the
mean (and standard deviation) of the algebraic connectivity as a function of the node
connectivity is identical to the mean obtained for the link connectivity.

Similarly to the Watts-Strogatz small-world graph, Figure 8.7 shows that the mean
value of the algebraic connectivity is a decreasing function of the graph size N . However,
the algebraic connectivity of scale-free graphs with a given link density q, is an increasing
function of N . Recall that for all combinations of N and m, m = κN = Dmin. Hence,

the link density q, for each N and m, equals q = L
Lmax

≈ m2
0+2mt

N2 . For example, in Figure
8.7, the following combinations of N and m have approximately the same value of q
while the algebraic connectivity is an increasing function of N : for N = 50 and m = 9,
q = 0.37 and for N = 500 and m = 10, q = 0.4. Thus, the algebraic connectivity
indicates that as the link density q increases, the underlying topology of this scale-free
graph converges to a more robust structure. It also indicates that by expanding N and
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Figure 8.8: The mean as well as the standard deviation (error bars) of the algebraic
connectivity as a function of the node and the link connectivity in the random graph of
Erdős-Rényi, the small-world of Watts-Strogatz and scale-free graph of Barabási-Albert.
All graphs have N = 500 nodes.

reducing the link density q, it might be possible to increase the number of nodes or link
failures and still get the same value of the algebraic connectivity.

8.2.4 Comparison between complex network models

Figure 8.8 shows the mean as well as the standard deviation (error bars) of the algebraic
connectivity as a function of the node and the link connectivity in the considered
complex network models. Although the scale-free graph of Barabási-Albert has different
topological properties, at least in terms of the degree distribution, Figure 8.8 shows
that the relation between the algebraic connectivity and graph’s robustness to node
and link failures is similar to that in the Erdős-Rényi random graph. This similarity
most probably comes from the fact that for both complex network models, the minimum
nodal degree is a tight upper bound on the algebraic connectivity, explaining the almost
linear relationship between the two connectivity metrics. Recall that we choose the
network model parameters so as to perform the simulations within a link density range,
which on average results in graphs with a comparable number of links. As shown in
Figure 8.9 the small-world and the scale-free graph, both with a given node or link
connectivity, on average have the same number of links. However, having the same
number of nodes and links the Barabási-Albert scale-free graph seems to be more robust
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Figure 8.9: The average number of links L a considered complex network model has as
a function of the node and the link connectivity. For the random graph of Erdős-Rényi,
the number of links in a graph with a given node or link connectivity is on average
equal to L = pLmax, for the small-world graph of Watts-Strogatz L = 2s

(N−1)
Lmax and

for the scale-free graph of Barabási-Albert L =
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0+2mt

N2 Lmax.

than the Watts-Strogatz small-world graph. For the Erdős-Rényi random graph, the
simulations (within a higher link density range than what is used for the other two
models) give rise to the larger number of links and therefore possibly the larger value of
the algebraic connectivity. Consequently, from the viewpoint of the node and the link
connectivity, the robustness of the Erdős-Rényi random graph is worse than the one of
the other two complex network models.

8.3 Conclusions

In this chapter we have studied the algebraic connectivity in relation to the graph’s
robustness to node and link failures in the main complex network models: random graph
of Erdős-Rényi, the small-world of Watts-Strogatz and scale-free graph of Barabási-
Albert. Based on a comprehensive set of simulations the following conclusions are
drawn:

• The algebraic connectivity increases with the increasing node and the link con-
nectivity. This means that the larger the algebraic connectivity, the larger the
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number of node- or link-disjoint paths. The algebraic connectivity measures the
extent to which it is difficult to cut the network into independent components and
is therefore a quantifier of the robustness in complex networks.

• In the three complex network models, the minimum nodal degree is a tight upper
bound on both the node and the link connectivity. Hence, the minimum nodal
degree is a valuable estimate of the minimum number of nodes or links whose
deletion results into a disconnected graph.

• We observe that the relationship between the algebraic connectivity and network’s
robustness to node and link failures is not trivial. Even with the network models
that have the same density of links and where the same number of nodes (or
links) have to be removed in order to disconnect them, the relationship between
analyzed measures is not trivial. This points to explicit influence of the network
structure on the robustness of complex networks.



66 CHAPTER 8: Relationship Between Algebraic Connectivity and Robustness



Chapter 9

Influence of Network Structure on

Robustness of Complex Networks

The problem of constructing networks whose robustness to failures is as high as possible
has attracted a lot of attention. For example, in a recent paper [76] it has been shown
that the optimal network configuration, under a classical measure of robustness, has
a homogenous degree distribution or a degree distribution with no more than three
distinct node connectivities. In this chapter we rely on the algebraic connectivity [48],
a spectral measures that has been proven to be a distinguishable parameter in many
robustness related problems [63]. The first part of this chapter presents the theoretical
background on the algebraic connectivity, followed by an analytical result linking the
classical connectivity to the algebraic connectivity. Subsequently, by considering the
algebraic connectivity as a measure of the network robustness, we show that for a
thorough understanding of robustness a proper knowledge of the topological structure
of certain classes of networks is extremely important. Furthermore, we show that the
type of random failure is highly predictable since the robustness to random node and
link failures differs significantly between certain classes of networks. To prove this
statement we consider network classes that have two structurally opposite underlying
mechanisms: the homogeneous structure of the random graph of Erdős-Rényi versus
the heterogeneous structure of the scale-free graph of Barabási-Albert. In addition, we
consider the small-world graph of Watts-Strogatz as its exhibits the properties of both
the random graph and the scale-free model. The second part of this chapter presents
the simulation results on the distribution of the algebraic connectivity in the three
complex network models subject to random failures. The homogeneous structure of the
random graph of Erdős-Rényi implies an invariant robustness under random node and
link failures. The heterogeneous structure of the scale-free graph of Barabási-Albert,
on the other hand, implies a non trivial robustness to random node and link failures.
Such a theoretically explained behavior was also confirmed for the small-world graph
of Watts-Strogatz.

67
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9.1 Bounds for algebraic connectivity

The second smallest eigenvalue of the standard Laplacian matrix of an undirected graph
G, as proposed by Fiedler [34], is called the algebraic connectivity. There are several
bounds for the algebraic connectivity related to other parameters and metrics of a
graph. The following are important for our analysis [34]:

1. If G 6= KN , then 0 ≤ λN−1 ≤ κN ≤ κL ≤ Dmin. If G = KN , then λN−1 = N >
κN = N − 1.

2. If G1 = (N ,L1) is a subgraph of G = (N ,L), then λN−1(G1) ≤ λN−1(G).

9.2 Relationship between classical connectivity and

probability distribution of algebraic connectiv-

ity

In this section, we calculate for the random graph of Erdős-Rényi, the values of network
model parameters for which the identical distribution of the algebraic connectivity is
attained. As a result, we succeed to explain the relationship between the classical
connectivity and the algebraic connectivity.

The random graph model is denoted by Gp(N), where N is the number of nodes in
the graph and p is the probability of having a link between any two nodes. For large
graph size N , the degree distribution of the random graph model, which is a binomial
distribution, can be replaced by a Poisson distribution, i.e.

Pr[D = k] =

(

N − 1

k

)

pk(1 − p)N−1−k ≃ E[D]ke−E[D]

k!
(9.1)

where E[D] = p(N − 1) equals the mean nodal degree. For large graph size N , the
fundamental result [29] can be deduced that the probability of a random graph being
connected is about the probability that it has no node of degree zero. In other words, for
large graph size N , the following relation between the k-connectivity to the minimum
nodal degree Dmin holds [10]

Pr[Gp(N) is k-connected] = Pr[Dmin ≥ k]. (9.2)

From the above theorems, we have that the probability of k-connectivity in Gp(N)
equals

Pr[Gp(N) is k-connected] = (1 −
k−1
∑

l=0

(p(N − 1))le−(p(N−1))

l!
)N . (9.3)
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Figure 9.1: The probability of being 1-connected and 10-connected as a function of the
link probability p in Gp(N) with N = 50 and 400. Black markers indicate the values of
the link probability p for wich the probability of being 1-connected and 10-connected
equals 0.5. These values are also presented in 9.1.

Solving the above equation for a given probability of being k-connected and a given
number of nodes N , one can easily find the probability p of the presence of a link
between any two nodes in Gp(N). We use here two arbitrary probabilities, i.e. 0.5
and 0.9, of a graph being k-connected to deduce p. The deduced probabilities of being
k-connected are listed in Table 9.1. Figure 9.1 relates, for different values of N , the
probabilities of 1-connectivity and 10-connectivity to the link probability p. We observe
on Figure 9.1 that larger graph sizes require smaller link probabilities p to have a given
probability of being k-connected.

Pr[k-connectivity] N = 50 N = 100 N = 200 N = 400
Pr[1-connectivity] = 0.5 p = 0.0875 p = 0.0503 p = 0.0285 p = 0.0159
Pr[1-connectivity] = 0.9 p = 0.1258 p = 0.0693 p = 0.0379 p = 0.0207
Pr[10-connectivity] = 0.5 p = 0.3715 p = 0.1963 p = 0.1036 p = 0.0546
Pr[10-connectivity] = 0.9 p = 0.4378 p = 0.2280 p = 0.1189 p = 0.0620

Table 9.1: The link probability p in Gp(N) with N = 50, 100, 200 and 400, for values
of the probability of being 1-connected and 10-connected of 0.5 and 0.9.



70 CHAPTER 9: Influence of Network Structure on Robustness

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Pr[10−conn] = 0.9

0 5 10 15
0

0.2

0.4

0.6

0.8

1
Pr[10−conn] = 0.5

0 1 2 3
0

1

2

3

4

5

Pr[1−conn] = 0.9

0 0.5 1 1.5
0

2

4

6

8

10
Pr[1−conn] = 0.5

Figure 9.2: The probability density function of the algebraic connectivity λN−1 in Gp(N)
with N = 50 (dotted black line), 400 (full black line) and the link probability p, which
is deduced from the probability of Gp(N) beeing k-connected.

Figure 9.2 includes the simulation results on Gp(N) with N = 50 and 400 and the
corresponding link probabilities p (equation 4). From this Figure, we can observe that,
for a given probability of the graph’s k-connectivity, the algebraic connectivity λN−1

has the same probability distribution for different graph sizes N . Figure 9.2 suggests
that the probability of being k-connected might define robustness classes, as they seem
to correspond to a particular density of the algebraic connectivity. Although in pre-
vious chapter we have shown that the relationship between the algebraic connectivity
and network’s node and link connectivity is not trivial, here we see that, at least in
distributional terms, the algebraic connectivity provides a signature of the probability
of being k-connected. This result supports a direct relationship between the algebraic
connectivity and graph’s robustness to node and link failures and points towards the
possibility of defining robustness classes based on the algebraic connectivity.

9.3 Behavior of algebraic connectivity under ran-

dom failures

In this section we present simulation results on the distribution of the algebraic con-
nectivity. We first discuss the considered network models. Then we analyze simulation
results where we apply topological changes in the form of random node removal.
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Figure 9.3: Distribution of the algebraic connectivity for the random graph of Erdős-
Rényi with 250 nodes and a link probability p = 0.008. The distribution of the algebraic
connectivity is also measured when the model is subject to topological changes in the
form of random node removal.

9.3.1 Random graph of Erdős-Rényi

In the previous section we have seen that in the Erdős-Rényi random graph, the pa-
rameters of interest are N and p. We simulate for each combination of N and p, 103

independent Gp(N) graphs. The number of nodes is 250 and the link probability takes
one of the following two values, p = 0.008 and p = 0.016. From each combination of
N and p, we compute the algebraic connectivity λN−1 and sort the 103 values in in-
creasing order. We plot them so that the ith smallest algebraic connectivity value λi

N−1,

1 ≤ i ≤ 103, is drawn at (x, y) with x = (i−1)
(103−1)

and y = λi
N−1. In this way all values in

the x-axis are in the [0, 1] range. In Figure 9.3, the distribution of the algebraic connec-
tivity is given for the Erdős-Rényi random graph with N = 250 and p = 0.008. Note
that the considered values of the link probability p are smaller than the value for which
a random graph with N = 250 almost surely becomes connected (equation 2). For that
reason, we compute the algebraic connectivity of the largest connected component. We
also compute the distribution when the random graph is affected by random node fail-
ures: in two consecutive steps, we randomly remove a node and all its connections and
compute the algebraic connectivity from the remaining largest connected component.

Figure 9.3 shows that the random graph subject to random node removal, exhibits
a slight decrease in the distribution of the algebraic connectivity. A similar behavior
has been observed for the random graph with twice the number of links (not shown).
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Figure 9.4: The ratio of the number of nodes to the number of links after the random
graph of Erdős-Rényi with 250 nodes and p = 0.008 is subject to the topological changes
in the form of random node removal.

The analytical results presented in Section 9.1 explain the decrease in the algebraic
connectivity under the condition that removal of links would negatively affect the link
density of the resulting graph (third result on the algebraic connectivity). Taking this
result into account, it seems that the random removal of nodes leaves a subgraph that
has approximately the same (or a slightly smaller) proportion of nodes to links as the
original graph. Figure 9.4 supports this observation by showing that nodes to links
ratios after one or two node removals are the same. Consequently, the removal of
random nodes results in a subgraph that has approximately the same structure as the
random graph upon which the changes were applied.

9.3.2 Small-World graph of Watts-Strogatz

The parameters of interest in the small-world graph of Watts-Strogatz are N , s and pr.
N stands for the number of nodes, s for the number of clockwise neighbors a node is
connected to, and pr for the probability at which each link (connected to a clockwise
neighbor) is rewired to a new node chosen uniformly in the ring lattice. The rewiring
process allows the small-world model to interpolate between a regular lattice (pr = 0)
and something which is similar, though not identical, to a random graph (pr = 1).
For already small pr the small-world becomes a locally clustered network in which two
arbitrary nodes are connected by a small number of intermediate links [81].
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Figure 9.5: Distribution of the algebraic connectivity for the small-world of Watts-
Strogatz with 250 nodes and 250 links. The distribution of the algebraic connectivity is
also measured when the model is subject to topological changes in the form of random
node removal.

We simulate, for N and s, 103 independent Watts-Strogatz small-world graphs. The
number of nodes N is 250 and s takes one of the following two values, s = 1 and s = 2.
The rewiring probability is set to be pr = 0.008. Similarly to results for the Erdős-
Rényi random graph, we plot in Figures 9.5 and 9.6 the distribution of the algebraic
connectivity as a function of the normalized graph rank. We also compute and plot the
distribution when the small-world network is affected by random node failures: in two
consecutive steps, we randomly remove a node and all its connections and compute the
algebraic connectivity from the remaining largest connected component.

From Figures 9.5 and 9.6 we observe that the value of the algebraic connectivity is
constant for nearly all simulated small-world graphs. We also observe that the higher
value of the algebraic connectivity is a consequence of a graph with a higher value of
the link density: for N = 250 and s = 2, the small-world graph has twice as many links,
i.e. L = 500, as the small-world with N = 250 and s = 1. The constant behavior of
the algebraic connectivity comes from the fact that the small-world process introduces
prNs non-lattice links, which for pr = 0.008 results in only few rewired links. Therefore,
the resulting small-world graphs are almost regular ring lattices so that their values of
the algebraic connectivity are constant for almost all simulated graphs.
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Figure 9.6: Distribution of the algebraic connectivity for the small-world of Watts-
Strogatz with 250 nodes and 500 links. The distribution of the algebraic connectivity is
also measured when the model is subject to topological changes in the form of random
node removal.

Furthermore, the removal of random nodes in a non sparse small-wold graph (see
dashed lines in Figure 9.6) results in a slight decrease in the distribution of the alge-
braic connectivity. Then, the remaining largest connected component have the same
proportion of nodes to links, i.e. N

L
= 0.5, as the initial small-world graph (not shown).

On the other hand, for the sparse small-world graph, i.e. L = N , the distribution of
the algebraic connectivity is surprisingly different. After random removal of one node,
there seems to be a substantial decrease in the robustness of the remaining largest
connected component. However, after random removal of two nodes, the distribution
of the algebraic connectivity is likely to be increasing. Take notice of an unchanged
ratio between the number of nodes and the number of links, i.e. the ratio after random
removal of one or two nodes is equal to the ratio in a given small-world graph with
N = L. As evident from the figure, this does not mean that remaining largest con-
nected components after random removal of nodes will have the same robustness as the
original graph. While this may appear inconsistent with prior results, it can be easily
understood: random removal of nodes in a practically regular graph, i.e. here the ring
graph with small number of rewired links, most likely fragments the small-world so that
in the remaining largest connected component a highly regular structure is observed
again. This process is repeated until the network is fragmented in such a way that the
regularity is hardly perceptible.
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Figure 9.7: Distribution of the algebraic connectivity for the scale-free graph of
Barabási-Albert with 250 nodes and 250 links, with and without random nodes re-
moval.

9.3.3 Scale-Free graph of Barabási-Albert

The parameters of interest in the scale-free graph of Barabási-Albert are N , m0 and
t. The Barabási-Albert model starts with a small number m0 of fully-meshed nodes,
followed at every step by a new node attached to m ≤ m0 = 2m + 1 nodes already
present in the system. After t steps this procedure results in a graph with N = t + m0

nodes and L = m0(m0−1)
2

+ mt links.

We simulate, for N and m, 103 independent Barabási-Albert scale-free graphs. The
number of nodes is 250 and the parameter m takes one of the following two values,
m = 1 and m = 2. For each combination of N and m, we compute the algebraic
connectivity λN−1, and sort the 103 independent values in increasing order. We plot
them in the same way as in the simulations for the Erdős-Rényi and Watts-Strogatz
graph.

In Figures 9.7 and 9.9, the distribution of the algebraic connectivity is given, re-
spectively for the Barabási-Albert scale-free graph with m = 1 and with m = 2. Note
that for the Barabási-Albert scale-free with m = 2, the number of links, i.e. L = 500,
is twice as large as for the Barabási-Albert scale-free with m = 1, i.e. L = 250. Along
with the standard behavior of the algebraic connectivity, we also show the distribution
when the model is exposed to the random node removal: in two consecutive steps, we
randomly remove a node and all its connections and calculate the algebraic connectivity
from the remaining largest connected component.
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Figure 9.8: The ratio of the number of nodes to the number of links after the scale-free
graph of Barabási-Albert with 250 nodes and 250 links is exposed to the topological
changes in the form of random node removal.

The first observation from Figure 9.7 is that there seems to be a slight increase
in the value of the algebraic connectivity due to the random removal of nodes. On
the contrary, from Figure 9.9 we observe that the value of the algebraic connectivity
decreases due to the random removal of nodes. To illustrate how different link densities
influence the robustness, we show in Figures 9.8 and 9.10 the ratio of the number of
nodes to the number of links after the scale-free graph of Barabási-Albert undergoes
random node removals. We also see on Figures 9.9 and 9.10 that the gap between the
algebraic connectivity before and after the removals reflects the decreasing degrees of
the removed nodes. This illustrates the effect of the centrality of a node on network
robustness.

From the figures showing the ratio between the number of nodes and the number
of links, we observe that for the scale-free graph of Barabási-Albert with N = L, the
random removal of nodes results in a similar topological structure, i.e. it results in a
graph where the number of nodes approximately equals the number of links N ≈ L. On
the other hand, for the scale-free graph of Barabási-Albert with N ≪ L, the random
removal of nodes results in a graph where the ratio of nodes to links increases compared
to the original graph (where the ratio is 0.5). Note that for the scale-free graph of
Barabási-Albert with N = 250 and L = 500, the random removal of i nodes results in
a connected component with a number of nodes always equals to N − i.
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Figure 9.9: Distribution of the algebraic connectivity for the scale-free graph of
Barabási-Albert with 250 nodes and 500 links, with and without random nodes re-
moval.

The analysis of the random node failures allow us to conjecture the existence of
networks belonging to two different robustness classes:

• The value of the algebraic connectivity slightly increases or remains the same:
a graph has approximately the same number of nodes and links. After random
node or link removal, a graph has on average the same number of nodes and
links. This is either due to random nodes or random links whose removal results
in a subgraph with the proportional number of nodes and links as in the original
graph.

• The value of the algebraic connectivity decreases: a graph has more links than
nodes. After random node or link removal, a graph has still on average more
nodes than links. This decreasing algebraic connectivity is either due to

1. random nodes whose removal results in a subgraph with the node set that
spans almost all nodes and consequently much less links than in the given
graph.

2. random links whose removal results in a subgraph with the same node set as
in the given graph.

Sparse and dense graphs hence will exhibit different behaviors of the algebraic con-
nectivity under topological changes in the form of random node and link removal.
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Figure 9.10: The ratio of the number of nodes to the number of links after the scale-free
graph of Barabási-Albert with 250 nodes and 500 links is exposed to the topological
changes in the form of random node removal.

9.4 Conclusion

In this chapter we have studied how the algebraic connectivity is affected by topological
changes in the form of random node removal. For the Erdős-Rényi random graph, our
findings have confirmed its well-know property: random removal of nodes results in a
distribution similar to the distribution of the original random graph. Consequently, the
remaining largest connected component has a similar structure and hence is equally
robust to random removal of nodes. With regard to this observation, we deduce that
the random link removal strategy most probably results in a decreasing distribution of
the algebraic connectivity: the remaining largest connected component most probably
has unchanged set of nodes but a subset of the original links. Similar behaviour has
been found for the small-world graph of Watts-Strogatz, though only for graphs with
higher link densities than their sparse counterparts (where a non-trivial robustness to
random node failures is observed).
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For the scale-free graph of Barabási-Albert, we have obsreved that the distribution
of the algebraic connectivity provides information on the type of failure the considered
network has undergone: random node or link removal will increase the value of the
algebraic connectivity only if the resulting subgraphs have approximately the same
number of nodes and links. On the other hand, we have observed that the random
node or link removal results in a decreased value of the algebraic connectivity only if
the resulting subgraphs have a larger number of nodes than links.
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Chapter 10

Conclusions

In this concluding chapter we summarize the main findings of the research performed
on the subject of characterization of complex networks and its application to robustness
analysis. As our findings may have implications for future work, we strive to include
remarks regarding possible extensions on the subject matter.

In the thesis we exemplified that the study of complex networks has a highly in-
terdisciplinary character where methods from a wide range of disciplines are employed
to contribute to better understanding of complex networks. Furthermore, we described
that recent work on the subject matter has been mainly concerned with the development
of graph theoretical models and graph theoretical measures. Both seek to capture some
of the relevant topological properties observed in large-scale network data. Founded on
these guiding principles, in this thesis we gained new insights in the form of quantita-
tive measures that may be applied to capture, more tightly, the qualitative topological
properties that characterize technological, or any other type of complex networks. In
particular, we gained new insights in the form of quantitative measures that may be
applied to the problem of analyzing different topological aspects of the robustness of
complex networks. In the end, we provided theoretical and empirical basis for novel re-
sults and illustrated that in this thesis followed line of research will continue to deepen
into a rich and informative complex networks theory. With reference to the in this
thesis addressed research questions, the main findings may be summarized as follows:

1. Concise characterization of complex networks

Over the past several years, a number of graph measures have been introduced to
characterize the topology of complex networks. We performed a statistical analysis of
large-scale network data sets, representing the topology of different empirical networks.
We showed that some graph measures are either fully related to other measures or
that they are significantly limited in the range of their possible values. In addition, we
observed that subsets of graph measures are highly correlated, indicating redundancy
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among them. This study implies that the set of commonly used graph measures is too
extensive to concisely characterize the topology of complex networks. It also provides
an important basis for classification and unification of a definite set of graph measures
that would serve in future topological studies of complex networks.

2. Spectral classification of topological properties

In this thesis we studied the structural properties of both generic complex network
models and empirical networks troughout the spectrum of the Laplacian matrix and
the normalized Laplacian matrix. We found that among considered generic complex
network models, random graph and small-world graph show a similar Laplacian spectral
behavior, which differs considerably from that of the scale-free graphs. This discrep-
ancy in the Laplacian spectrum points to explicit difference between homogenous and
heterogenous network structures. We also found that both Laplacian and normalized
Laplacian spectra of empirical networks provide evidence of unique spectral properties
that are shared by networks within similar domains of application. Those uniquely
shared spectral properties emerge as a result of the characteristic structure of specific
classes of networks. This study thus implies that the (normalized) Laplacian is a qual-
itative spectral method that may serve towards a classification of network properties
that uniquely characterize specific classes of networks.

3. Spectral measures as quantifiers of topological aspects of robustness

In this thesis we introduced the algebraic connectivity as a quantifier of the ro-
bustness to disconnection or component separation in complex networks. We studied
the behavior of the algebraic connectivity in a random graph model and estimated
analytically the mean and the variance of the algebraic connectivity. We used simula-
tions to emphasize the accuracy of the analytical estimation, also for networks having
small sizes. Hereby we improved a known expression for the asymptotic behavior of the
algebraic connectivity.

Furthermore, we studied the algebraic connectivity in relation to the node and the
link connectivity, two classical graph measures that quantify the number of nodes and
links that have to be removed in order to disconnect a graph. We showed the alge-
braic connectivity at all times increases with the increasing node and link connectivity,
implying that the larger the algebraic connectivity the more it is difficult to cut the
network into independent components. In other words, we showed that the larger the
algebraic connectivity, the larger number of node- of link-disjoint paths or the more
nodes and links will have to be removed in order to disconnect a graph. This study
implies thus that the algebraic connectivity quantifies the extent to which a network is
strong and unlikely to break or have failures. Despite what has just been referred to,
we proved that finding the exact relationship between the algebraic connectivity and
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the node and the link connectivity is not a trivial problem. In fact, we proved that
this relationship is very dependent on network structures related to different classes of
complex networks.

In this thesis we also introduced the spectral radius as a quantifier of robustness to
virus propagation in complex networks. We studied how well-known upper bounds for
the spectral radius of graphs match the spectral radii of a number of empirical networks.
This study was motivated by the fact that an sharper upper bound for the spectral
radius gives a tighter lower bound for the epidemic threshold for virus propagation in
networks. In addition, we explored the spectral radius of both generic complex network
models as well as empirical networks. We found that the spectral radius of empirical
networks with homogeneous structure in value is closest to the spectral radius of random
graph models. For empirical networks with heterogeneous structure, we found that the
value of the spectral radius is closest to that of scale-free graphs. This study implies
that a smaller value for the spectral radius is more likely to occur for networks with
homogeneous structure.

4. Spectral measures to quantify influence of network structure on robustness to
different types of failures

Finaly, in the this thesis we relied on the algebraic connectivity to study the influ-
ence of the network structure on the robustness of complex networks. To provide the
answer to this research question we considered the behavior of the algebraic connectiv-
ity for two structurally opposite network classes that are subject to topological changes
in the form of different types of failures. The results from this study demonstrated
that the robustness to a given number component failures significantly differs between
generic complex network models. This points to an explicit influence of the network
structure on the robustness to different types of failures. For example, we found that
the homogeneous structure of random graphs implies an invariant robustness under
random node failures. On the other hand, we found that the heterogeneous structure
of small-world and scale-free graphs implies a non-trivial robustness to random node
and link failures.
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Appendix A

Summary Statistics of Graph

Measures for Number of Empirical

Networks

What follows in this appendix are summary statistics of a set of graph measures for a
number empirical complex networks. We have mostly used publicly available data sets,
representing the topology of complex networks from a wide range of systems in nature
and society, i.e. technological, social, biological and linguistic. A detailed description of
graph measures is presented in Chapter 3. Technological system we considered include
the following empirical networks:

• the Dutch road infrastructure [52];

• a European national railway infrastructure;

• a European Internet Service Provider (ISP);

• a European city area power grid;

• the western states power grid of the United States [81];

• the air transportation network representing the world wide airport connections,
documented at the Bureau of Transportation Statistics database [13], and the
connection between United States airports [75];

• the Internet network at the autonomous system [14] and the router level [15].
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Social systems include the following empirical networks:

• the network representing soccer players association from the Dutch soccer team
[45];

• the network representing actor appearance in movies [6];

• the network representing collaboration among scientists [66].

Biological systems include the following empirical networks:

• the network representing frequent associations between dolphins [56];

• the network representing protein interaction of the yeast Saccharomyces cerevisae
[19, 39].

Linguistic systems include the following real-world networks:

• the network representing common adjacencies among words in English, French
and Spanish [61].
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Topological measures Road Rail1 Rail2 Air1 Air2
Number of nodes 14098 8710 689 500 2179
Number of links 18687 11332 778 2980 31326

Link density 0,0002 0,0003 0,0033 0,0239 0,0132
Average degree 2,7 2,6 2,3 11,9 28,8

Average neighbor degree 2,9 2,8 2,5 53,8 140,5
Assortativity coefficient 0,093 -0,022 0,098 -0,268 -0,046

Rich-club coefficient 0,0005 0,0008 0,0172 0,0621 0,3395
Clustering coefficient 0,0912 0,0212 0,0731 0,6175 0,4849
Average node distance 80,6 79,0 34,1 2,9 3,0

Average node eccentricity 177,4 158,6 65,0 5,2 5,9
Average node coreness 2,4 2,4 2,0 8,2 19,1

Average node betweenness 0,0560 0,0090 0,0481 0,0040 0,0090
Average link betweenness 0,00220 0,00350 0,02190 0,00050 0,00005

Algebraic connectivity 0,0001 0,0695 0,0008 0,1186 0,2082

Topological measures Power1 Power2 Power3 Power4 ISP
Number of nodes 4940 3419 1713 1205 29902
Number of links 6594 3953 2043 1385 32707

Link density 0,0005 0,0007 0,0014 0,0019 0,0001
Average degree 2,7 2,3 2,4 2,3 2,2

Average neighbor degree 3,9 3,8 2,9 3,1 45,7
Assortativity coefficient 0,004 -0,128 0,022 0,108 -0,036

Rich-club coefficient 0,0026 0,0042 0,0056 0,0204 0,0085
Clustering coefficient 0,0801 0,0120 0,0145 0,0171 0,0306
Average node distance 18,5 21,1 38,0 12,3 7109,9

Average node eccentricity 34,1 38,9 71,8 22,6 14250,0
Average node coreness 2,2 2,0 2,1 2,1 2,1

Average node betweenness 0,0036 0,0059 0,0216 0,0094 0,2377
Average link betweenness 0,00140 0,00270 0,00930 0,00450 0,10870

Algebraic connectivity 0,0009 0,0003 0,0001 0,0022 0,0440
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Topological measures AS-level Router Protein Soccer Dolphins
Number of nodes 20906 29064 4626 685 62
Number of links 42994 62260 14801 10310 159

Link density 0,0002 0,0001 0,0014 0,0440 0,0841
Average degree 4,1 4,3 6,4 30,1 5,1

Average neighbor degree 230,9 21,0 24,2 45,0 6,8
Assortativity coefficient -0,201 -0,039 -0,137 -0,063 -0,044

Rich-club coefficient 0,0101 0,0037 0,0196 0,2605 0,4127
Clustering coefficient 0,2114 0,0232 0,0912 0,7507 0,2589

Average node distance 3,9 7,1 4,2 4,5 3,4
Average node eccentricity 8,0 14,7 8,1 8,6 6,5

Average node coreness 2,9 3,0 4,4 20,2 4,5
Average node betweenness 0,0001 0,0002 0,0007 0,0050 0,0380
Average link betweenness 0,00005 0,00006 0,00014 0,00022 0,01060

Algebraic connectivity 0,0152 0,0059 0,1173 0,1612 0,1730

Topological measures Actor Scientific English French Spanish
Number of nodes 10143 13861 7377 8308 11558
Number of links 147907 44619 44205 23832 43050

Link density 0,0029 0,0005 0,0016 0,0007 0,0006
Average degree 29,2 6,4 11,9 5,7 7,4

Average neighbor degree 83,6 13,5 320,7 218,0 457,6
Assortativity coefficient 0,026 0,157 -0,237 -0,233 -0,282

Rich-club coefficient 0,0399 0,0042 0,0588 0,0240 0,0340
Clustering coefficient 0,7551 0,6514 0,4085 0,2138 0,3764
Average node distance 3,7 6,6 2,8 3,2 2,9

Average node eccentricity 9,6 12,4 5,6 6,7 7,6
Average node coreness 21,4 4,9 7,5 3,9 4,9

Average node betweenness 0,0003 0,0004 0,0002 0,0003 0,0002
Average link betweenness 0,00040 0,00007 0,00003 0,00007 0,00003

Algebraic connectivity 0,0004 0,0292 0,1875 0,1197 0,0782



Appendix B

Dependence of Two Arbitrary

Degrees in Random Graph of

Erdős-Rényi

We first compute the joint probability Pr [Di = k,Dj = l], where node i and node j are
random nodes in Gp (N). The dependence lies in the possible direct link between node
i and j. By the law of total probability [60], we have

Pr [Di (N) = k,Dj (N) = l] = Pr [Di (N) = k,Dj (N) = l|aij = 1] Pr [aij = 1]

+ Pr [Di (N) = k,Dj (N) = l|aij = 0] Pr [aij = 0]

where aij is the matrix element of the adjacency matrix. Since Pr [aij = 1] = p, and, in
absence of the direct link, Di and Dj are independent, we obtain

Pr [Di (N) = k,Dj (N) = l] = p Pr [Di (N) = k,Dj (N) = l|aij = 1]

+ (1 − p) Pr [Di (N − 1) = k] Pr [Dj (N − 1) = l] .

Further, given the existence of the direct link, the direct link is counted both in Di

and in Dj such that

Pr [Di (N) = k,Dj (N) = l|aij = 1] = Pr [Di (N − 1) = k − 1] Pr [Dj (N − 1) = l − 1] .

Combining the contributions and introducing the binomial density Pr [Di (N) = k] =
(

N−1
k

)

pk (1 − p)N−1−k, we obtain

Pr [Di (N) = k,Dj (N) = l] = p

(

N − 2

k − 1

)

pk−1 (1 − p)N−1−k

(

N − 2

l − 1

)

pl−1 (1 − p)N−1−k

+ (1 − p)

(

N − 2

k

)

pk (1 − p)N−2−k

(

N − 2

l

)

pl (1 − p)N−2−l .
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The joint expectation is

E [Di (N) , Dj (N)] =
N−1
∑

k=0

N−1
∑

l=0

lk Pr [Di (N) = k,Dj (N) = l]

= p − 2Np2 + N2p2 .

The covariance is

Cov [Di (N) , Dj (N)] = E [Di (N) , Dj (N)] − E [Di (N)] E [Dj (N)]

= p (1 − p)

Since the variance V ar[Di (N)] = V ar[Dj (N)] = (N − 1)p(1 − p), we find that the
correlation coefficient [60] is

c (Di (N) , Dj (N)) =
Cov[Di (N) , Dj (N)]

√

V ar[Di (N)]
√

V ar[Dj (N)]
=

1

N − 1

which shows that, although arbitrary degrees Di (N) and Dj (N) are not independent,
their degree of correlation decreases with N . Hence, for large N , both Di (N) and
Dj (N) can be regarded as almost independent.



Appendix C

Minimum of Normalized i.i.d.

Binomially Distributed Sequence of

Degrees in Random Graph of

Erdős-Rényi

For large N and constant p, independent of N , the normalized i.i.d. binomially dis-
tributed sequence {D∗

i }1≤i≤N of all degrees in Gp(N) tends to be Gaussian distributed,
as specified in (6.2). The minimum of the sequence {D∗

i }1≤i≤N possesses the distribution

Pr[ min
1≤i≤N

D∗
i ≤ x] = 1 −

N
∏

i=1

Pr[D∗
i > x] = 1 − (Pr[D∗

i > x])N

or simplified

Pr[ min
1≤i≤N

D∗
i > x] =

(

1 − FD∗
i
(x)
)N

where FD∗
i
(x) = Pr[D∗

i ≤ x].
Consider now the limiting process of the minimum of a set {D∗

i }1≤i≤N when N → ∞.
By choosing an appropriate sequence {xN} such that ζ is finite, a scaling law for the
minimum of a sequence can be obtained as

lim
N→∞

Pr[ min
1≤i≤N

D∗
i > xN ] = e−ζ

where lim
N→∞

NFD∗
i
(xN) = ζ. Hence, we have to find the appropriate xN in such a way

that the limit is independent of N but equal to ζ. For a Gaussian random variable D∗
i

the condition lim
N→∞

NFD∗
i
(xN) = ζ becomes

lim
N→∞

N√
2π

∫ xN

−∞

e
−u2

2 du = ζ . (C.1)
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After substitution of u = −
√

2t, the finite integral is rewritten in term of the erfc(x)
function as

∫ xN

−∞

e
−u2

2 du =
√

2

∫ ∞

−xN√
2

e−t2dt =
√

2

√
π

2
erfc

(−xN√
2

)

and using the asymptotic expansion of the erfc(x) function [1, Section 7.1.23],

∫ xN

−∞

e
−u2

2 du =
e

−x2
N

2

−xN

(

1 + O

(

1

x2
N

))

.

In order to have a finite limit in (C.1), xN must be negative and tending to minus
infinity for large N . Substituting the asymptotic expansion into (C.1), we have for
large N ,

N√
2π

e
−x2

N
2

−xN

∼ ζ

or

−xN ∼ N

ζ
√

2π
e−

x2
N
2 .

After squaring and taking the logarithm of both sides, we obtain with y = − log ζ

log (−xN)2 = log
N2

2π
+ 2y − (−xN)2

or

−xN =
√

2 log N − log 2π + 2y − 2 log (−xN) . (C.2)

This is a non-linear equation in −xN > 0. An order estimate for large N of the solution
(−xN) is obtained as follows. Substitution of the right-hand side of (C.2) into (C.2)
gives

−xN =
√

2 log N − log 2π + 2y − log (2 log N − log 2π + 2y − 2 log (−xN))

=
√

2 log N

√

1 +
2y − log 2π − log

(

log N2

2π
+ 2y − 2 log (−xN)

)

2 log N
.

Furthermore,

log

(

log
N2

2π
+ 2y − 2 log (−xN)

)

= log

(

log
N2

2π

(

1 +
2y − 2 log (−xN)

log N2

2π

))

= log

(

log
N2

2π

)

+ log

(

1 +
2y − 2 log (−xN)

log N2

2π

)

.
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With (C.2) we obtain 2y−2 log(−xN )

log N2

2π

= O
(

log log N

log N

)

and log

(

1 + 2y−2 log(−xN )

log N2

2π

)

= O
(

log log N

log N

)

,

where the Taylor expansion of log (1 + x) = x+O (x2) for small x has been used. Hence,
for large N ,

log

(

log
N2

2π
+ 2y − 2 log (−xN)

)

= log

(

log
N2

2π

)

+ O

(

log log N

log N

)

and

−xN =
√

2 log N

√

√

√

√

1 +
2y − log 2π − log

(

log N2

2π

)

+ O
(

log log N

log N

)

2 log N
.

Using the Taylor expansion (1 − x)α = 1 + αx + O (x2) for small x gives

−xN =
√

2 log N



1 +
2y − log 2π − log

(

log N2

2π

)

+ O
(

1
log N

)

4 log N
+ O

(

log log N

log2 N

)





from which (C.3) follows. The appropriate solution thus yields

xN = −
√

2 log N − y√
2 log N

+

log

(

√

2π log N2

2π

)

√
2 log N

+ O

(

log log N

log
3
2 N

)

(C.3)

from which we finally arrive at

lim
N→∞

Pr









min
1≤k≤N

D∗
i > −

√

2 log N − y√
2 log N

+

log

(

√

2π log N2

2π

)

√
2 log N









= e−e−y

or

lim
N→∞

Pr

[

−
√

2 log N min
1≤i≤N

D∗
i − 2 log N + log

(
√

2π log
N2

2π

)

< y

]

= e−e−y

. (C.4)

Thus,

Y = −
√

2 log N min
1≤i≤N

D∗
i − 2 log N + log

(
√

2π log
N2

2π

)

is a Gumbel random variable such that

D∗
min =

−Y − 2 log N + log

(

√

2π log N2

2π

)

√
2 log N

.
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Appendix D

Symbols and Acronyms

Ω adjacency matrix
∆ degree matrix
Λ Laplacian matrix
Π normalized Laplacian matrix
α value of variable
κN node connectivity
κL link connectivity
λN−1 algebraic connectivity
ρ spectral radius
ρER spectral radius of Erdös and Rény random graph
ρWS spectral radius of Watts and Strogatz small-world graph
ρBA spectral radius of Barabási and Albert scale-free graph
σ[X] standard deviation of random variable X
φx rich-club coefficient induced by nodes with degrees larger than given value x

L set of links
N set of nodes
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aij (i, j) entry of adjacency matrix
Cov[X,X ′] covariance of two random variables X and X ′

c correlation coefficient
ci clustering coefficient of node i
cG average of clustering coefficients of graph
diam diameter
Di degree of node i
Dmax maximum degree
Dmin minimum degree
E[X] mean of random variable X
E[X,X ′] joint mean of two random variables X and X ′

G graph
Gp(N) random graph with parameters p and N
Hi hopcount or shortest path length of a node i
Hmax maximum hopcount
Hmin minimum hopcount
(i, j) entry of a matrix that lies in the i-th row and the j-th column
KN complete graph with N nodes
K1,N−1 star graph with N nodes
KN,N complete bipartite graph with N + N nodes
L number of links
m number of links a newly attached node has in scale-free graph

m0
number of fully-meshed nodes at beginning of construction
of scale-free graph

N number of nodes

O
big O notation used either to characterize residual term of
asymptotic series or to characterize complexity of algorithms

PN path graph with N nodes
Pr[X] probability of random variable X
Pr[X,X ′] joint probability of two random variables X and X ′

p probability of having link between any two nodes in random graph
pc probability at which in random graph a giant component is formed
pr rewiring probability in small-world graph
q link density
RN ring with N nodes
RN,s ring lattice with N nodes and Ns links
r assortativity coefficient
Sdev[X] standard deviation of random variable X
s number of clockwise neighbor node has in small-world graph
t number of new attached nodes in the scale-free graph
V ar[X] variance of random variable X
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AS Autonomous System
BA scale-free graph of Barabási and Albert
ER random graph of Erdös and Rényi
IP Internet Protocol
ISP Internet service provider
MST minimum spanning tree
PCA principal component analysis
ST spanning tree
WS small-world graph of Watts and Strogatz
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Samenvatting

Karakterisering van complexe netwerken: Toepass-

ing op robuustheids analyse

De recente vooruitgangen in complexiteitswetenschap hebben onthuld dat complexe
netwerken op vele schalen en in vele verschillende onderzoeksdomeinen, evenals natuur
voorkomen. Dergelijke netwerken, het is nu reeds wel gevestigd, bezitten gemeenschap-
pelijke eigenschappen in termen van hun niet alledaagse netwerk structuur, de netwerk
topologie genoemd.

In deze thesis wordt een bepaalde onderzoekslijn van complexe netwerken gevolgd
welke hoofdzakelijk betrekking heeft op de karakterisering van niet alledaagse topologis-
che eigenschappen van complexe netwerken. Dit onderzoekslijn van complexe netwerken
wordt uitgebreid door die elementaire graafmetrieken te analyseren, nader geclassi-
ficeerd in stucturele- en spectrale- metrieken, die van belang zijn tijdens het kwantifi-
ceren van verschillende topologie-gerelateerde aspecten van de robuustheid van complexe
netwerken. Deze thesis maakt de volgende contributies bij het onderzoeksdomain van
complexe netwerken. In het eerste inleidende deel van de thesis presenteren wij 1) een
algemene beschouwing van het onderzoek naar complexe netwerken door de toepassing
van grafentheorie, 2) een korte beschrijving van de generieke modellen die gebruikt wor-
den voor de modellering van complexe netwerken, en 3) een kort overzicht van praktisch
belangrijke graafmetrieken. In het hoofddeel van deze thesis beantwoorden wij de vier
onderzoeksvragen, welke als volgt zijn samengevat:

1. Analyse van relaties tussen een verscheidenheid van bestaande structurele en spec-
trale metrieken om een definitieve set te introduceren, geschikt voor het weegeven
van de meest relevante topologische eigenschappen van complexe netwerken.

2. Studie naar de toepasbaarheid van spectrale metrieken voor het classificeren van
de kwalitatieve topologische eigenschappen die specifieke klassen van complexe
netwerken kenmerken.

3. Studie naar de toepasbaarheid van spectrale metrieken voor het kwantificeren
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van de verschillende topologische aspecten van de robuustheid van complexe
netwerken.

4. Praktische toepassing van spectrale metrieken om te kwantificeren hoe de robuus-
theid van verschillende soorten storingen in het onderliggende complexe netwerken
structuur tot uiting komt.

Als eerste analyseren wij de relaties onder een verscheidenheid van de bestaande
graafmetrieken om een eerste fundamentele stap te maken in het introduceren van een
definitieve set, geschikt voor het weergeven van de meest relevante topologische eigen-
schappen van complexe netwerken. Wij bouwen deze studie uit door verder te focussen
op de topologische eigenschappen die betrekking hebben op de eigenwaarden van een
karakteristieke matrix van het netwerk. In het bijzonder passen wij de spectrale grafen-
theorie toe om de spectrale eigenschappen van generieke en empirische netwerken te
analyseren en laten wij zien hoe deze methode beoogt de kwalitatieve karakterisering
van verschillende klassen van netwerken weer te geven. Wij illustreren verder het ge-
bruik van spectrale metrieken bij de onderzoeksvraag van kwantitatieve karakterisering
van verschillende topologische aspecten van de robuustheid van complexe netwerken: wij
introduceren een bepaalde eigenwaarde van een karakteristieke matrix van het netwerk,
nader aangeduid als de algebräısche connectiviteit, als een maatstaaf van de robuus-
theid tegen disconnectiviteit of opsplitsing in complexe netwerken. Wij introduceren
hierbij ook een andere eigenwaarde van een karakteristieke matrix van het netwerk,
nader aangeduidt als de spectrale radius, als een maatstaf van de robuustheid tegen
viruspropagatie in complexe netwerken. Na de introductie van mogelijke maatstaaven
van de topologie-gerelateerde aspecten van de robuustheid, analyseren wij het verband
tussen de algebräısche connectiviteit en de klassieke metrieken die de mate weergeven
waarin een netwerk zich kan aanpassen aan het falen van zijn componenten. In het
laatste deel van de thesis bestuderen wij een praktische toepassing van de algebräısche
connectiviteit om te kwantificeren hoe de robuustheid tegen verschillende soorten storin-
gen in de onderliggende complexe netwerken structuur tot uiting komt. Deze studie is
een directe consequentie van de analyse van de relaties tussen de algebräısche connec-
tiviteit en de klassieke metrieken die de mate weergeven waarin een netwerk zich kan
aanpassen aan zijn componentenstoringen. Uiteindelijk recapituleren wij de belangri-
jkste resultaten en verstrekken een uitgangspunt voor het verder leren in deze bepaalde
onderzoekslijn van complexe netwerken.
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Title MSc
Date of Birth 14 August 1977
Place of Birth Sarajevo, Bosnia and Herzegovina
Gender Female
Nationalities: Dutch, Bosnian

Almerima Jamakovic was born in Sarajevo, Bosnia and Herzegovina. She obtained a
Bachelor of Science (BSc) degree in Electrical Engineering at Breda Institute of Tech-
nology, the Netherlands, in the year 2001. Subsequently, she obtained a Master of
Science (MSc) degree in Electrical Engineering at Delft University of Technology, the
Netherlands, in the year 2004. After finishing her study she joined the Network Ar-
chitectures and Services (NAS) Group to work towards a Ph.D. degree. Under the
supervision of the NAS group chair Prof. Van Mieghem she performed research in the
field of complex networks, focusing on the robustness of such ”real-world” structures.

During her PhD studies at Delft University of Technology she assisted in lectur-
ing the Telecommunication Networks and the Performance Analysis, as well as guided
two students in their efforts towards a MSc degree in Electrical Engineering. She also
served as a reviewer for various international conferences and journals in the field of
telecommunications. In the period January - May 2007, she visited CAIDA, the Co-
operative Association for Internet Data Analysis, San Diego Supercomputer Center at
University of California in San Diego. For this working visit, she has been awarded a
full scholarship from the Netherlands Organization for Scientific Research (NWO).

Scientific publications:

1. D. Fay, H. Haddadi, A. Thomason, A. Moore, R. Mortier, A. Jamakovic, S. Uhlig
and M. Rio, 2008, Weighted spectral distribution for Internet topology analysis:
Theory and applications, IEEE/ACM Transactions on Networking Journal.

109



110 CURRICULUM VITAE

2. H. Haddadi, D. Fay, A. Thomason, S. Uhlig, A. Jamakovic, A.W. Moore, R.
Mortier and M. Rio, 2008, A brief history of the Internet topology: Inconsistent
views of a consistent evolution, Proceedings of the ACM CoNEXT Conference.

3. H. Haddadi, D. Fay, S. Uhlig, A.W. Moore, R. Mortier, A. Jamakovic and M. Rio,
2008, Tunning topology generators using spectral distribution, Proceedings of the
SPEC International Performance Evaluation Workshop, Darmstadt, Germany.

4. R.E. Kooij, A. Jamakovic, F. van Kesteren, T.C.M. de Koning, I. Theisler and P.
Veldhoven, 2008, The Dutch soccer team as a social network, Connections Journal.

5. R.E. Kooij, A. Jamakovic, F. van Kesteren, T.C.M. de Koning, I. Theisler and P.
Veldhoven, 2008, Het Nederlands elftal als complex netwerk, Nieuw Archief voor
Wiskunde Journal.

6. A. Jamakovic and S. Uhlig, 2008, On the relationships between topological mea-
sures in real-world networks, Networks and Heterogeneous Media Journal.

7. A. Jamakovic and P. Van Mieghem, 2008, On the robustness of complex networks
by using the algebraic connectivity, Proceedings of the IFIP Networking Confer-
ence, Singapore City, Singapore.

8. A. Jamakovic and S. Uhlig, 2007, Influence of network structure on robustness,
Proceedings of the 15th IEEE International Conference on Networks, Adelaide,
Australia.

9. A. Jamakovic, S. Uhlig and I. Theisler, 2007, On the relationships between topo-
logical metrics in real-world networks, Proceedings of the European Conference
on Complex Systems, Dresden, Germany.

10. A. Jamakovic and S. Uhlig, 2007, On the relationship between the algebraic con-
nectivity and graph’s robustness to node and link failures, Proceedings of the 3rd
EURO-NGI Conference on Next Generation Internet Network, Trondheim, Nor-
way.

11. A. Jamakovic, R.E. Kooij, P. Van Mieghem and E.R. van Dam, 2006, Robustness
of networks against viruses: the role of the spectral radius, Proceedings of the
13th Annual Symposium of the IEEE/CVT Benelux, Liège, Belgium.
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