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Fusion of Radar Data Domains
for Human Activity Recognition
in Assisted Living

Julien Le Kernec , Francesco Fioranelli , Olivier Romain ,
and Alexandre Bordat

Abstract Radar has long been considered an important technology for indoor
monitoring and assisted living. As ageing has become a worldwide problem, it
causes a huge burden on the government’s healthcare expenses and infrastructure.
Radar-based human activity recognition (HAR) is foreseen to become a widespread
sensing modality for health monitoring at home. Conventional radar-based HAR
task usually adopts the amplitude of spectrograms as input to a convolutional neural
network (CNN), which can limit the achieved performances. A hybrid fusion model
is here proposed, which can integrate multiple radar data domains. The result shows
that the proposed framework can achieve superior classification accuracy of 92.1%
(+2.5% higher than conventional CNN) and a lighter computational load than the
state-of-the-art techniques with 3D-CNN.

Keywords Radar · Human activity recognition · Fusion ·Machine learning

1 Introduction

The growing populationworldwide causes a huge burden on the government’s health-
care expenses and health infrastructure. Radar has long been considered an important
technology for indoormonitoring and fall detection in assisted living. Comparedwith
other competing technologies such as camera monitoring or ultrasonic sounding,
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radar has the advantages of non-intrusive sensing, insensitivity to lighting condi-
tions, privacy preservation [1], and safety. These make radar very attractive in fields
like human–machine interface, site surveillance and assisted living [2].

Radar data domains include but are not limited to raw data, range-time (RT),
range-Doppler (RD), Doppler-time (DT) [3]. Traditional radar-based human activity
recognition (HAR) focuses on a single radar domain, usually Doppler-time, and typi-
cally adopts a single-input network structure. Although this method can achieve a
good accuracy, when activities are close to each other in Doppler-time representa-
tions, such as falling and tying a shoe lace, or if the signatures are different with
elderly and young people in the training/testing data samples, the performance can
significantly be impacted. Furthermore, only the amplitude is exploited and not the
phase information, and other data domains can help distinguish activities with range
spread for example.

2 Literature Review

2.1 Radar-Based Human Activities Recognition

Radar can be used in indoor monitoring largely because of the progress of machine
learning technology and the speed of graphic processing units [3]. Based on those
technological advances, the use of deep neural networks (DNN) is now feasible for
radar-based HAR. Usually, a set of handcrafted features from the micro-Doppler
signature will be extracted from the radar signal, such as the Doppler bandwidth,
or the centroid (torso frequency) for the DT domain. Then, statistical learning tech-
niques, like support vector machine (SVM) [4] and random forest classifier [5] are
used for classification. The DT signature is commonly used in radar-based HAR.
In [4], the authors have classified human activities using SVM and a set of hand-
crafted features extracted form radar DT signatures. However, the effectiveness of
this approach is largely dependent on some operational and situational factors [6],
such as the transmit and pulse-repetition frequencies, dwell time and signal-to-noise
ratio.

Researchers gradually shifted their focus from statistical learning to deep learning,
which extracts features automatically and performs classification simultaneously. In
[7], the authors investigated the feasibility of using convolutional neural network
(CNN) to categorise the radar DT signatures. Considering that the training of deep
learning network requires a large amount of data samples, at the same time, radar
signal processing and computer image processing often have strong similarities.
Craley et al. [8] realised this problem and used transfer learning to pre-train the CNN
aquatic activity classification to improve accuracy. In [9] a sparse auto-encoder was
proposed to process the radar DT and RT signatures in parallel. Besides, [10, 11],
both developed a hybrid network structure (convolutional and recurrent) to achieve
a better recognition accuracy.
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However, all of the studies mentioned above have limited their scope to two-
dimensional domains and only combined the disjoint features inside the classifier.
There are two innovative methods [12, 13] which integrate radar data from 2Dmulti-
channels into a 3D single channel. Both of them intend to transform the radar echoes
into a 3D range-Doppler time (RDT) signature. But their RDT signatures lack suffi-
cient resolution to extract sufficient information frommicro-motions. To resolve this
limitation, a geometric deep learning method based on the points formed by micro-
motion signatures was proposed in [14]. This method obtained a higher performance
in both classification accuracy and noise robustness.

2.2 Multi-domain/Multi-modal Fusion

Our experience of the world is multimodal, we see objects, through our five senses
[15]. In general, “modal” refers to the way things happen or exist, and a research
problem is characterised as multimodal when it includes multiple modalities.

For the purpose of enabling the artificial intelligence to understand the world
around it, we need to teach them to observe and to interpret the multimodal informa-
tion like a human being. Recent researchworks aremainly dealingwith sound, image
and text multi-modal learning in such applications as speech recognition (audio +
image) with challenges related to:

• Representation—to find some unified representation of multi-modal information,
• Translation [16]—mapping one typical modality to another modality,
• Alignment [17]—finding the relationships between the modal sub-components,
• Fusion—obtaining more cross-features by integrating the multi-modal informa-

tion,
• Co-learning—use information-rich modalities to assist information-poor modal-

ities.

To sum up, there are mainly two advantages for implementing multimodal fusion
into machine learning.

1. Information complementarity: Multi-modal fusion can complete the missing
information of single mode to ensure the integrity of information to improve
the model performance.

2. Information crossing: Multi-modal fusion can fully explore the informa-
tion interaction between different modalities, so even more abundant feature
information can be obtained through fusion.

Modal fusion can be divided into four categories. They occur at different stages
of the network training:

• Signal/Pixel level fusion is the most intuitive fusion method. The data is pre-
processed before entering the machine learning network and therefore, can fuse
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the smallest particle of data. Some related research that implement pixel level
fusion are [18–20].

• Feature level fusion, for instance [21, 22], includes Early and Late Fusion. These
two fusion types occurr at different stages consists in the fusion of features
extracted from the machine learning network. The difference is that early fusion
refers to the fusion of features through concatenation, element-wise sum, element-
wise average and then input to the full connection layer for processing, while late
fusion mainly occurs in the full connected layer. Two advantages of fusing data
at the feature level are that it can fully exploit the cross information between
different modalities and also improve the robustness of the network.

• Decision level, where the output of the classifier is combined to make a final
decision. Since the output of different classifiers corresponds to different modal-
ities, the results of different classifiers tend to have strong independence. There-
fore, some problems of misclassification caused by the shortcoming of a single
modality can be avoided. Common decision level fusion methods include max-
fusion, average-fusion, Bayes’ rule based fusion and ensemble learning, among
others [23].

• Hybrid combination of the three aforementioned fusionmethods, so as to combine
the advantages of different fusion methods.

Since each single 2D radar data domain can provide supplementary information
for other domains, recent studies have combined representationsin radar-basedHAR.
In [24], the authors have proposed an innovative architecture which implements a
stacked auto-encoder (SAE) to fuse the multi-dimensional data at the feature level.
In [15], the idea of pixel-level fusion to process the radar signal into a 3D point cloud
was adopted. Combined with the PointNet [25, 26], they have achieved enhanced
performance in HAR.

Despite those existing improvements in radar-based HAR, the recognition ability
can still be improved further by fully utilising the radar data domains. In this paper,
we propose a novel multimodal fusion framework fusing radar information during
network training and show improved performances compared to the state of the art.

3 Methodology

We used the University of Glasgow (UoG) Human Activities dataset [27, 28] to vali-
date our proposed network structure to benchmark performances against existing
research. All data samples were collected from 72 volunteers (23 females, 49 males)
aged between 25 and 98 years, and different locations from lab spaces to retirement
homes. Each volunteer was asked to perform six activities: walking back and forth
(A01), sitting down (A02), standing up (A03), picking up an object (A04), drinking
water (A05), and simulated frontal fall (A06). The data was captured with a FMCW
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radar operating at 5800 MHz with 400 MHz instantaneous bandwidth, a pulse repe-
tition frequency of 1 kHz, a transmitted power of 100 mW and Yagi antennas for
transmit and receive gain of 17 dBi.

Radar data domains include RT, DT, RD. Traditional radar-based HAR usually
only retains the magnitude information and discards the phase information, i.e. only
the magnitude of the information is finally used for the network training.

From the prospective of physics, any slight motion of the target will give the radar
echo a micro-Doppler shift. Taking the range-time phase information as a source
of network input will undoubtedly increase the computation burden and complexity
of our system, and therefore reduces the versatility. This is also one of the primary
reasons why few researchers have utilised the phase information of radar signals to
train the network.

Inspired by the mechanism of “Attention”, we put forward a method of magnitude
masking to combine the range information and phase information together. The core
steps of this algorithm can be summarized as follows:

Phase Unwrapping—One important thing that needs to be mentioned is that, during
the process of phase information extraction, all phase information is automatically
encapsulated in the range of [−π;π ], which greatly limits the information continuity
(as time is a continuous variable). With such a method, we can eliminate the phase
discontinuity and protect the time-varying phase information.

ThresholdFiltering—The threshold allows to only focus on strong signals of interest
and discard the noisy parts of the radar data domain representations below this
threshold by setting them to 0.

This attention-based magnitude masking is also used to identify the region of
interest in the phase data for the RT data domain.

The essence of this operation is to perform a pixel-level fusion on the phase and
magnitude of RT domain. In addition, through threshold filtering, we only retain
the most critical information in the RT representation. Therefore, during the fusion,
we can give more weight to the important information in the phase map, so that
our network can pay more “attention” in learning the information of the emphasised
part during network training. Figure 1 summarizes the flow chart of the data pre-
processing for the RT and DT domains as discussed in this section.

4 Network Training

4.1 Overall Network Structure

Our network can be divided into 3 parts as shown in Fig. 2.
It is composed of:
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Fig. 1 The extraction process of the network input from the radar data

Fig. 2 Overall network structure

• A convolutional layer—this CNN consists of three structures, which are convolu-
tion, activation, and pooling. Together, they can automatically extract the feature
map from the input data.

• A fusion layer—it implements a feature-level fusion with typical modal fusion
element (e.g. element_wise sum, element_wise multiplication, concatenation) as
shown in Fig. 3.

• A fully connected layer—it completes the mapping from feature information to
label set (e.g. traditional fully connected layer, weight-shared fully connected
layer).

Our network has two inputs, each connected to a series of symmetric and identical
convolution layers. In the actual operation, the processed RT and DT signatures are
taken as the two inputs of the network respectively. Since high data resolution will
burden our network and cause unnecessary waste of computation resources, both our
input data are down-sampled to a 224 × 224 input image.



Fusion of Radar Data Domains for Human Activity … 93

Fig. 3 Four Fusion Elements

Firstly, the feature information is extracted by a series of 2D convolution and
max-pooling layers. The output are the global features (with a size of 1× 1024) each
for RT and DT signatures. The next step is fusion.

4.2 Fusion Layer

After obtaining the global features, we implement 4 different feature-level fusion
elements to fully explore the capabilities of modal fusion, for instance, element-wise
sum, element-wise product, element-wise average and concatenation as shown in
Fig. 3.

In most cases, multimodal feature-level fusion occurs just after the convolution
layer. But in this project, we also tried to propose a fusion mechanism in the full
connection layer (FCL), called deep fusion.

As shown in Fig. 4, deep fusion is combined by three pairs of shared-weight fully
connected layers and four fusion elements. In practice, those two structures alternate
in the FCL of deep fusion, which enable more interactions among two sets of features
by feeding back the average error in the fusion network to both branches of our fusion
network.
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Fig. 4 Two FCL structures

5 Results

In this section, the experiment parameter settings and results of our proposed
methodologies will be presented.

5.1 Dataset Separation

The UoG dataset contains over 1700 radar signatures of six human activities. Among
them, 1736 data sample were randomly picked to form two training sets and 192
samples divided into three separate validation sets. What needs to be stated here, is
that those three validation sets will not participate in the network training, that is to
say, we can use them to verify the effectiveness of the network we have trained.

Young/Old Separation—Our dataset is relatively small compared to the huge data
sets adopted in other deep learning tasks. Besides, the data set implemented in this
project also contains a certain number of data samples collected from older people.
Typically, there are certain differences between the elderly and the young participants
in motion, posture and speed. For example, some elderly people need to use crutches,
a cane or a walker for assistance in walking, which resulted in a few abnormal data
samples for the elderly in our dataset.

Based on the above situation, we infer that comparedwith the data set of the young
volunteers, the data set of the elderly is more likely to have anomalies. Therefore, if
we simplymix the data sets of the elderly and the young together, and then pack them
randomly to form a validation set and a training set, we will not be able to guarantee
that those abnormal data samples can be evenly distributed for the validation and
training sets.
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Fig. 5 The data separation procedure

Once these abnormal data samples are concentrated in a certain set, the stability
and robustness of our proposed model will be inevitably affected. To solve such
a problem, we manually divided the UoG dataset into Young (below 65) and Old
(above 65) groups according to the samples’ annotation. After that, we can randomly
pick data from those two sets of data and compose a new data set. This separation
process can be visualised as shown in Fig. 5.

The proportion of people in the two age stages is evenly distributed in every one
of the data sets. That is to say, in any training set or validation set, the proportion of
samples of the elderly and the young is the same. This approach not only avoids the
problems of system instability, but also allows our network to have a more compre-
hensive understanding of the movement characteristics of the elderly and the young
people.

5.2 Data Preparation

The signal processing consists of a 128-point Fast Fourier Transform (FFT) per sweep
(1 ms) to obtain the range profiles from the raw I/Q data with a Hamming window.
A 4th order Butterworth moving target indicator is implemented to remove static
clutter. Then, 300 range profiles are accumulated to perform a zero-padded 1200-
point FFT for every range bin in the slow-time direction to obtain a range-Doppler
map with an overlap factor of 0.90.

After getting the RT and DT signatures, the threshold filtering and attention-based
magnitude masking is applied with thresholding factor set at 0.6 of the maximum
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value of the signatures. And finally, those processed data were resized to 224× 224
and packed into 5 independent data sets which include three validation sets and two
training sets.

5.3 Training Detail

In the following sub-sections we will cover the details of network training, which
includes the network parameter settings, comparison between different fusion
elements, analysis toward the classification result and robustness analysis.

Network Parameter Settings: Our network was trained with a batch size of 32 for 50
epochs. To make our network converge faster in the early stage and be more stable in
the later training stage, we have introduced a dynamic learning rate into the training
process. This dynamic learning rate will decay exponentially from 0.01 to 0.00001,
and has a decay rate of 0.7 and decay step of 200,000.

Fusion Element Analysis: In order to fully explore the influence of different fusion
methods on the final classification accuracy of our network, we have implemented
the four different fusion elements and demonstrate the evaluation results and the
confusion matrices in Table 1 and Fig. 6.

Similarity—The four fusion models have high recognition accuracy for A01, A02,
A03 and A06. However, for A05 and A06, although our model improves the recog-
nition accuracy of A05 and A06 compared with ordinary CNN networks, there is

Table 1 Human activity classification accuracy using different fusion models

Avg acc
(%)

Avg
class acc
(%)

A01 (%) A02
(%)

A03
(%)

A04
(%)

A05 (%) A06 (%)

Element-wise
average

92.1 91.6 100.0 94.6 96.9 85.7 72.1 100.0

Element-wise
product

88.5 90.5 100.0 91.9 96.8 85.2 69.6 100.0

Element-wise
sum

91.4 91.3 100.0 97.3 96.8 67.8 86.0 100.0

Concatenation 89.1 87.8 94.7 96.9 91.8 74.2 81.25 100.0

Element-wise
Average +
Deep Fusion

92.2 92.7 100.0 97.1 91.7 75.8 91.4 100.0

PointNet [24] 92.2 92.8 96.6 96.7 86.7 83.3 83.3 100.0

CNN (no
fusion applied)

89.6 90.4 97.2 97.1 88.9 93.3 65.7 100.0
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Fig. 6 Confusion matrices using four different fusion models

still an obvious confusion. This is probably caused by the high similarity between
the picking up objects and drinking water activities.

Difference Analysis—By comparing the above four basic fusion methods,
element-wise average and element-wise sum have relatively higher classification
accuracy compared to element-wise product and concatenation. On the one hand,
this is because the two methods are very similar, and on the other hand, the two
methods allow for deeper integration of radar multimodal data, and therefore can
achieve higher recognition accuracy. But for method like concatenation, which leads
to a high dimension intermediate layer. Such operation will not only increase the
computation complexity but also decrease the interactions between two independent
radar modalities. That is why it has the worst recognition accuracy.

Since element-wise average has the best performance (92.1%),wehave introduced
a hybrid fusion model which can combine the element-wise average and deep fusion
(Fig. 4) together. This method, as illustrated, yields quite good results, especially for
identifying A01, A02, and A06. However, this method has a drawback, the weight
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sharing of the fully connected layer will increase the computational load for network
training (twice the computation complexity). Element-wise average seems to be
a better choice as the performance decrease is only 0.1% with half the required
computation. In addition, we also tried the method of extracting point clouds from
RD sequence inspired from [15], and then do the classification on the point cloud
using PointNet [25] and reported in [26]. We use the results of this experiment as
a benchmark to compare with our proposed method. Compared with PointNet, our
multimodal fusion method achieves similar recognition accuracy with element-wise
average with fewer calculations.

6 Conclusion

This paper investigated a method of radar multimodal fusion, which can enable CNN
to improve the recognition of six kinds of human activities.

In the data pre-processing stage, we put forward a data pre-processing pipeline,
which can integrate the phase and range information at the pixel level and reduce
the unwanted noise in the raw radar data to a certain extent. We believe that this
method can effectively reduce the computing burden of the system and improve the
robustness of the system at the same time.

During the network training, we adopted four different fusion elements and two
different FCL structures. Compared to traditional single-input CNN (89.6%), our
fusion network has stronger HAR capability, especially when using element-wise
averagemethod (92%accuracy) to do the feature-level fusion.Wehave shown thatwe
can achieve similar performances to more complex deep learning methods [26] with
a lighter implementation by exploiting element-wise average feature-level fusion.
The light implementation is in part achieved thanks to the reduced the number of
network inputs through’Attention’ fusion.

The next level of classification algorithms will need to integrate the complex form
as a native data format as input as exemplified in [29] for example. The exploitation
of the phase information has been shown in [26] to accelerate convergence in training
as well as improving performances.
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