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Abstract
In AutoML, the search space of possible pipelines
is often large and multidimensional. This makes it
very important to use an efficient search algorithm.
We measure the effectiveness of the Metropolis-
Hastings algorithm (M-H) in a pipeline synthesis
framework, when the search space is described by
a context-free grammar. We also compare the per-
formance of the M-H algorithm to other search al-
gorithms. While AutoML frameworks use many
different search algorithms, and comparisons be-
tween AutoML frameworks exist, this is the first
paper that compares the performance of different
search algorithms in the context of pipeline synthe-
sis under equal conditions. We found that M-H is
slightly outperformed by BFS2, the simplest possi-
ble search algorithm. We conclude that the datasets
we use for evaluating the algorithms are too sim-
ple to meaningfully compare the performance of
different search algorithms. We also conclude that
for simple datasets, simple search algorithms work
best.

1 Introduction
Setting up a machine learning (ML) pipeline can take up a lot
of time. There are a myriad of ways to combine the prepro-
cessing and feature selection steps with a classifier, and if you
want to also consider ensembles of classifiers, the amount of
possible pipelines becomes even larger. It is not always clear
in advance which combinations of steps will work well to-
gether for a given problem, and sometimes different combi-
nations need to be tried out. The process of trying out differ-
ent pipelines and tweaking them can take a lot of time for data
engineers, and even more for novices. So if the generation of
ML pipelines could be done automatically, it could save ex-
perts some time and make machine learning more accessible
to beginners.

An important challenge for automatically generating ma-
chine learning pipelines is that the search space of possible
pipelines is huge. This means that having an efficient search
algorithm is crucial for automating the pipeline search. In
this paper we create an approach to program synthesis that
uses a context-free grammar (CFG) to describe the search
space of possible pipelines and measure the effectiveness of
the Metropolis-Hastings algorithm [1] for searching through
it. We also compare the effectiveness of the Metropolis-
Hastings algorithm to other search algorithms. Multiple tools
already exist for generating a machine learning pipeline for
a given problem using a CFG to describe the search space
[2][3], but no research has yet been done on which search
algorithm works best for traversing the search space under
equal conditions. In this paper we measure the performance
of the Metropolis-Hastings algorithm in a pipeline synthesis
framework, and compare it to other search algorithms.

The rest of this paper is structured as follows. First, sec-
tion 2 examines related literature and points out what this
paper aims to contribute to the literature. Then, section 3

describes the methodology. It contains a description of our
implementation of the M-H algorithm, how we represent the
search space, and how we evaluate and compare the perfor-
mance of different search algorithms. After that, section 4
discusses the details of how the grammar is set up, and shows
which parameters are used for the M-H algorithm. The results
are shown in section 5 and subsequently discussed in section
6. This is followed by a reflection on the reproducibility and
integrity of performed research in section 7. And finally, sec-
tion 8 summarizes the main findings and contains suggestions
for further work.

2 Literature overview
The field of automated machine learning (AutoML) has mul-
tiple problems, which include neural architecture search, hy-
perparameter optimization, Combined Algorithm Selection
and Hyperparameter tuning (CASH), and pipeline synthesis
[4]. In this section we focus only on pipeline synthesis and
the CASH problem, as those are most relevant to our research.

An important challenge in both of these problems is that
the search space of possible pipelines is very large and mul-
tidimensional [5], which makes it difficult to find a good so-
lution. AutoML frameworks have tried to solve this problem
with a number of different approaches.

First of all, many different search algorithms and optimisa-
tion techniques have been tried to traverse the search space
more efficiently. One of the earliest AutoML frameworks
was Auto-WEKA [3], which used Bayesian optimisation to
select the best pipeline for a given ML problem. Later, TPOT
achieved better performance by using an evolutionary algo-
rithm [6]. Auto-sklearn added meta-learning to Bayesian op-
timisation to achieve even better performance and win an in-
ternational AutoML competition [2]. SmartML also achieves
good performance, while using only meta-learning [7]. Au-
tostacker uses an evolutionary algorithm in combination with
hierarchical stacking to find the best pipeline. Monte Carlo
Tree Search (MCTS) was used by the Mosaic framework to
achieve state of the art results [8]. Another framework trans-
lates the problem into a classical planning model, and then
uses existing planners to search for the best pipeline [9]. And
finally, AlphaD3M coupled meta reinforcement learning with
MCTS to achieve a similar performance as TPOT and Au-
toSKLearn while being an order of magnitude faster [10].

Another approach is to change the representation of the
search space. RECIPE uses a genetic algorithm and defines
the search space with a context-free grammar (CFG) [11].
This ensures that only valid pipelines can be generated, which
makes the search space smaller and improves performance.
Similarly, the performance of AlphaD3M was improved by
representing the search space as a CFG [5].

When the search space is defined with a grammar, the
shape of permitted pipelines can also be changed. On one
hand, some frameworks require the pipelines to consist of
a predefined amount pipeline steps put in parallel [12]. On
the other hand, the PIPER and RECIPE frameworks allow
pipelines to be in the shape of any Directed Acyclic Graph
(DAG) [13][11]. While this significantly increases the size
of the search space, it potentially also adds a lot of useful



pipelines that have a more complex structure.
Finally, the ML primitives that are used can also be

changed. Many popular frameworks use scikit-learn [14] or
weka [15], but even when frameworks use the same ML li-
brary, they often use a different subset of the ML operators.

A number of studies have compared the overall perfor-
mance of different AutoML frameworks [16][17]. But no
comparison has yet been done of the performance of different
search algorithms under equal conditions. This paper aims to
fill part of this gap by comparing the performance of seven
search algorithms on the task of pipeline synthesis by search-
ing through the same search space defined by a CFG.

3 Methodology
The methodology section consists of five parts. The first part
describes the benchmark of machine learning problems we
created to measure the performance of different search algo-
rithms. Then, the second part explains how the grammar that
describes the search space is implemented. The third part dis-
cusses how the quality of a pipeline is evaluated. After that,
the fourth part describes our implementation of the M-H al-
gorithm. And the final part explains how we compare the
performance of different search algorithms.

3.1 Dataset of ML problems
We first assemble a dataset of machine learning problems.
This dataset can be used as a benchmark to compare the
performance of different search algorithms on the task of
pipeline synthesis.

To limit the scope of this project, we focus solely on multi-
class classification problems where all features have binary,
numerical or categorical values. We gathered our datasets
from the OpenML repository [18].

The dataset contains a wide variety of ML datasets to en-
sure that different types of ML problems are represented in
the benchmark. The datasets are divided into three categories:
simple, complex and from related research [19][6][20]. The
datasets also have different sizes: the smallest has 150 en-
tries, and the largest 13.9k entries. More information about
the datasets in the benchmark can be found in Table 1.

Unfortunately, we could not utilize enough computational
resources to evaluate the search algorithms on the entire
benchmark, so the experiments are performed on five datasets
from the benchmark. According to AutoML best practices,
the datasets used for setting the parameters should be differ-
ent from those used for evaluation [21]. So two datasets are
used to select the best parameters for the M-H algorithm, and
three other datasets are used to compare the performance of
the different search algorithms. Both the parameter selection
datasets and evaluation datasets contain datasets of varying
sizes to ensure that the search algorithms are tested on differ-
ent amounts of data. The datasets that are used for parameter
selection and evaluation can be seen in Table 2.

Since accuracy is one of the most popular and straight-
forward metrics, we use it as our metric for the quality of
pipelines. And because none of the datasets are unbalanced,
accuracy can be used as metric [22].

(a) Simple datasets

Name ID Entries Features Target
classes

iris 61 150 4 3
seeds 1499 210 7 3
blood-transfusion 1464 748 4 2
diabetes 37 768 8 2
ilpd 1480 583 10 2
qsar-biodeg 1494 1.1k 41 2
monks-problems-2 334 601 6 2
tic-tac-toe 50 958 9 2

(b) Complex datasets

Name ID Entries Features Target
classes

gas-drift 1476 13.9k 128 6
musk 1116 6.6k 167 2
madelon 1485 2.6k 500 2
gisette 41026 7.0k 5.0k 2
har 1478 10.3k 561 6

(c) Datasets from related research

Name ID Entries Features Target
classes

glass 41 214 9 6
car-evaluation 40664 1.7k 21 4
wdbc 1510 569 30 2
spambase 44 4.6k 57 2
wine-quality-red 40691 1.6k 11 6
wine-quality-white 40498 4.9k 11 7

Table 1: Datasets included in our benchmark for measuring the per-
formance of AutoML tools.

(a) Datasets for parameter selection

Name ID Entries Features Samples per
class

diabetes 37 768 2 268-500
spambase 44 4.6k 2 1813-2788

(b) Datasets for evaluation

Name ID Entries Features Samples per
class

seeds 1499 210 3 70-70
wdbc 1510 569 2 212-357
har 1478 10.3k 6 1.4k-1.9k

Table 2: Datasets for parameter selection and evaluation. The last
column shows the size of the smallest and largest class. Since in
none of the datasets the largest class is significantly larger than the
smallest class, accuracy can be used as a metric for performance.



3.2 Defining the search space
This section describes the grammar we use for representing
the search space. A good grammar needs to find a balance
between being expressive enough to contain useful pipelines,
and being restrictive enough to allow for efficient search [23].

As a starting point for the grammar, we take the grammar
proposed by a related research paper [9]. Unlike many other
AutoML frameworks, it allows pipelines to be in the form
of a directed acyclic graph (DAG). This means that pipelines
elements can be placed in sequence or in parallel in any com-
bination, which increases the amount of useful pipelines that
can be made.

The structure of this grammar has three rules. The first rule
states that every pipeline ends with a classifier. The second
rule states that two steps can be put in sequence one after an-
other. And the third rule states that two steps can be put in
parallel. When two operations are put in parallel, the out-
puts of the steps are concatenated and used as input for the
step that comes afterwards. Figure 1 shows the rules as well
as a more complex example of a pipeline generated by the
grammar. To fill in the grammar, we use three types of ter-
minals: preprocessing operators, feature selection operators,
and classifiers. These are described in section 4.2.

Figure 1: Examples of pipelines that the grammar allows. (1) is
a pipeline with only a classifier. (2) shows two pipeline steps in
sequence. (3) shows two steps in parallel. The input is copied for
the parallel steps, and the output of both steps is concatenated and
given as input for the next step. Finally, (4) shows a more complex
pipeline that can be generated by the grammar. In these examples
all preprocessing steps can be replaced with a feature selection step
and vice versa.

Setting up the structure of the grammar as shown in Figure
1 gives us a lot of flexibility in how to combine the pipeline
steps. But it also allows for pipelines that we know in ad-
vance are not going to work. Thus, we change the structure
of the grammar in two ways to eliminate some of the useless
pipelines and reduce the search space.

First, we remove the NoOp() operation, which is one of the
terminals in the original grammar [9]. This operation does

nothing and passes the input it gets on to the next operation
without changing it. The new grammar does not have NoOp()
and is equally expressive, but has a smaller search space, al-
lowing for faster search.

Secondly, the original grammar allows classifiers to be put
in such a way that their prediction is the only input for the next
pipeline step. These pipelines do not make sense because the
second part of the pipeline only gets one prediction as input
and no other information to improve that prediction. This
means that the second part of such a pipeline is useless. To
combat this, our grammar does not allow classifiers in such
compositions that their output is the only input for the next
pipeline step. This reduces the search space and does not
eliminate any reasonable pipelines.

3.3 Evaluating pipelines
To ensure that the results are representative, we split the
datasets into a train, validation and test set in a 70-15-15 split.
When a search algorithm selects a candidate pipeline, the
pipeline is trained on the train set. Then, the performance of
the pipeline is tested on the validation set. After considering
many pipelines, the search algorithm selects the pipeline that
scored best on the validation test. Next, we measure the per-
formance of the pipeline on the test set. The test set is never
seen before by the search algorithm and provides an unbiased
indication of the quality of a pipeline. This approach is in
line with ML best practices and mirrors what many AutoML
frameworks do [2][6].

But since we do could not utilize larger computational re-
sources, we speed up the evaluation by training each pipeline
on only a part of the train set. We do this by randomly select-
ing 300 pipelines from the train set and training a pipeline on
those. This significantly speeds up the evaluation process, as
training a pipeline on 70 percent of a large dataset can take
a long time. We still test the pipelines on the full test set, to
reduce variability in the results we find.

3.4 Metropolis-Hastings algorithm
Our implementation of the M-H algorithm works as follows.
We start with a random pipeline. Then, for each iteration t,
we choose a candidate pipeline from the neighborhood of the
current pipeline. If the candidate pipeline produces a better
accuracy than the current pipeline, the candidate pipeline be-
comes the new current pipeline. If the accuracy of the candi-
date pipeline is lower than the current pipeline, there is still a
chance that the candidate pipeline will become the new cur-
rent pipeline. This chance is proportional to the accuracies of
the two pipelines. During each iteration, we also keep track
of the best pipeline and return it at the end. The pseudocode
for our implementation of the algorithm is given below.

We use Herb.jl1 to get the neighborhood of a pipeline, and
choose a random neighbor in line 4. In line 6, rand(0,1) re-
turns a uniform random number between 0 and 1.

3.5 Evaluating the search algorithm
To make the comparison between search algorithms fair, we
evaluate each search algorithm on the same problems, use the

1https://github.com/Herb-AI



Algorithm 1 Metropolis-Hastings algorithm

1: current← random pipeline
2: best← current
3: while iteration t < max iterations do
4: candidate← random neighbor of current
5: a← accuracy(candidate)/accuracy(current)
6: if a > rand(0, 1) then
7: current← candidate
8: if accuracy(current) > accuracy(best) then
9: best← current

10: end if
11: end if
12: end while
13: return best

same grammar, and allow each search algorithm to consider
only 100 pipelines.

We compare the results of the Metropolis-Hastings algo-
rithm (M-H) to the results of the following search algorithms:
very large-scale neighborhood search (VLSN) [24], a genetic
algorithm (GA) [25], Monte Carlo tree search (MCTS) [26],
A* [27], and two versions of breadth-first search (BFS2 and
BFS4).

BFS2 is breadth-first search with enumeration depth 2, and
BFS4 has enumeration depth 4. The enumeration depth deter-
mines the maximal amount of steps that may be taken in the
grammar to arrive at a derivation. With enumeration depth
2, BFS2 can only construct the five pipelines consisting of
a classifier and nothing else. BFS4 can derive many more
pipelines, but for the comparison we only look at the first
100.

Like many of the search algorithms that are compared in
this paper, the M-H algorithm is stochastic and does not find
the same pipelines every time. Because of this, the algo-
rithm sometimes finds much better solutions than other times.
To combat this variability, we run each search algorithm ten
times on each problem and calculate the mean accuracy and
the sample variance for each algorithm.

4 Experimental setup
This section discusses how the grammar is implemented, the
exact machine learning operators that are used, and which
parameters are selected for the M-H algorithm.

4.1 Context-free grammar
We use the library Herb.jl2 to define the grammar. The re-
sulting pipelines are made in scikit-learn [14], which makes
it very easy to create the pipelines, since scikit-learn already
has functions for putting two pipeline steps in sequence or
in parallel. All of the pipeline steps are also operators from
scikit-learn. The structure of the grammar is shown in Figure
2. Section 4.2 describes the machine learning operators we
use as terminals for the grammar.

To make our grammar work with Pipeline and Feature-
Union from scikit-learn, each terminal is a tuple of a name

2https://github.com/Herb-AI

<start> ->
Pipeline([<classif>]) |
Pipeline([<pre>, <classif>])

<pre> ->
<preproc> | <fselect> |
("seq", Pipeline([<pre>, <pre>])) |
("par", FeatureUnion([<branch>, <branch>]))

<branch> ->
<pre> | <classif> |
("seq", Pipeline([<pre>, <classif>]))

Figure 2: Our CFG describing the search space of possible pipelines.
The variables <preproc>, <fselect> and <classif> evalu-
ate to one preprocessing step, feature selection step, or classifier re-
spectively. Section 4.2 describes which pipeline operators we use as
terminals for the grammar.

and a function, and we append an increasing number to each
of the pipeline step names. For example, when the following
pipeline is generated by the grammar,
Pipeline([("PCA", PCA()), ("XGBoost", XGBoost())])

it is changed into the pipeline below to guarantee that each
pipeline step has a different name.
Pipeline([("PCA1", PCA()), ("XGBoost2", XGBoost())])

This is especially relevant for combining two Pipelines or
FeatureUnions, as otherwise they would both have the name
“seq” or “par”, and the resulting pipeline would fail.

4.2 Machine learning operators
The terminals in our grammar consist of three kinds of ma-
chine learning operators: preprocessing steps, feature selec-
tion steps, and classifiers. For the terminals, we use the same
17 ML operations that are used by TPOT [6], with the excep-
tion that we use GradientBoostingClassifier instead of XG-
Boost. Because of this change, all ML operators are from
scikit-learn. The exact operators used in the grammar are
shown below.

Preprocessing steps: StandardScaler, RobustScaler, Min-
MaxScaler, MaxAbsScaler, PCA, Binarizer and Polynomi-
alFeatures.

Feature selection steps: VarianceThreshold, SelectKBest,
SelectPercentile, SelectFWE and RFE.

Classifiers: DecisionTreeClassifier, RandomForestClas-
sifier, GradientBoostingClassifier, LogisticRegression and
KNeighborsClassifier.

Hyperparameter optimization is not in the scope of this pa-
per, so we use the default parameters for all operators ex-
cept SelectKBest and RFE, which don’t have default param-
eters. For SelectKBest we use k=4, and for RFE we use a
LinearSVC as optimizer, since scikit-learn recommends this
optimizer for the type of datasets we are using.3

4.3 Parameter selection
The algorithm has two parameters that can be optimized: enu-
meration depth and max pipeline depth. Which parameters

3https://scikit-learn.org/stable/tutorial/machine learning map



work best partly depends on the size of the dataset. To ac-
count for this, we test the parameters on two datasets of dif-
ferent sizes.

The enumeration depth determines the maximal depth of
the pipeline part that is generated to replace part of the current
pipeline. If this depth is too small, all candidate pipelines will
be very close to the current pipeline, and the algorithm may
get stuck in a local maximum. If the enumeration depth is too
large, the search algorithm may become very slow and the
candidate pipelines may be very different from the current
pipeline, because of which the search algorithm may fail to
converge.

The maximal pipeline depth determines the maximal depth
of any candidate pipeline. If the max pipeline depth is too
small, only simple pipelines are considered and the algorithm
may not find a good pipeline. If it is too large, the algorithm
may find an unnecessarily complex pipeline or keep increas-
ing the complexity of a pipeline instead of trying other simple
pipelines.

Figure 3 shows the performance of the algorithm with dif-
ferent parameters on the diabetes and spambase datasets.

Figure 3: The two upper plots show the average accuracy of the
pipelines found by the M-H algorithm with different parameters.
The two middle plots show the sample variance in the accuracy.
And the lowest plot shows the average runtime of the algorithm
in seconds. The algorithm performs significantly better with enu-
meration depth=2 than with other enumeration depths. enumera-
tion depth=2 with max pipeline depth=4 provides the best accuracy.
Although, all settings with enumeration depth=2 work well and the
difference between them is small. Also, the runtime greatly in-
creases when the values for the parameters become large.

(a) Average accuracy
Algorithm seeds wdbc har

BFS2 0.931 0.969 0.980
BFS4 0.925 0.949 0.982
M-H 0.919 0.959 0.969

VLSN 0.906 0.949 0.980
GA 0.847 0.912 0.760

MCTS 0.928 0.970 0.981
A* 0.919 0.965 0.970

(b) Sample variance
Algorithm seeds wdbc har

BFS2 0.00147 0.00027 0.00002
BFS4 0.00221 0.00091 0.00002
M-H 0.00265 0.00052 0.00045

VLSN 0.00239 0.00043 0.00003
GA 0.03352 0.01569 0.16150

MCTS 0.00110 0.00034 0.00001
A* 0.00178 0.00054 0.00054

Table 3: Average accuracy and sample variance of the different
search algorithms on the evaluation datasets. The differences in the
accuracies are very small. BFS2 and MCTS have the best perfor-
mance, GA the worst, and the rest perform similiarly to each other.

The algorithm performs best for enumeration depth=2, and
worst when both parameters have large values. On both
datasets, the algorithm gets the best results with enumera-
tion depth=2 and max pipeline depth=4, so we use these val-
ues when we compare the M-H algorithm to other search al-
gorithms.

The value of the parameters also influences the runtime of
the algorithm. When the values are small, the algorithm runs
fast. When the values become large, the runtime increases
greatly. This can be relevant for practical applications, as a
faster runtime can be important to users.

5 Results
We evaluate the performance of each search algorithm by run-
ning it on three evaluation datasets and allowing each algo-
rithm to train only 100 pipelines. We measure the perfor-
mance of each search algorithm ten times on each dataset and
calculate the mean and the sample variation. The results are
shown in Table 3.

The most noticeable result is that none of the complicated
search algorithms significantly outperform the simple BFS2.
Also, the accuracy is quite high on all datasets. On the seeds
dataset most algorithms achieve an accuracy over 0.9. On
the wdbc dataset, an accuracy of 0.95 is achieved by most
algorithms. And on the har dataset, most algorithms achieve
0.97 accuracy.

We can also see that the accuracy of an algorithm is related
to its sample variance. The GA has the worst accuracy on
all of the datasets, and its sample variance is also the highest.
MCTS achieves the highest accuracy on the wdbc and har
datasets, and has the lowest sample variance. But this relation
is not perfect, as MCTS also has the lowest sample variance



on the seeds dataset, but BFS2 has a better accuracy.
When we look at the average accuracy, the best algorithm

seems to be either BFS2 or MCTS, as MCTS has 0.001 better
accuracy on the wdbc and har datasets, while BFS2 has 0.003
better accuracy on the seeds dataset. It should be noted how-
ever that the differences are very small, and may just be due
to random variation.

We also see that BFS2 gets better results than all other al-
gorithms except for MCTS, which achieves very similar re-
sults. An interesting observation is that BFS2 also scores bet-
ter than BFS4, even though all pipelines considered by BFS2
are also considered by BFS4.

The average accuracy of the M-H algorithm is about 0.01
lower than BFS2 and MCTS on all three datasets. When we
compare M-H with BFS4, BFS4 scores 0.006 better on the
seeds dataset, M-H scores 0.01 better on wdbc, and BFS4
scores 0.013 better on the har dataset. M-H achieves an accu-
racy that is about 0.01 higher than VLSN on the two smaller
datasets, and on the larger dataset, but on the larger dataset it
is the other way around. M-H and A* have very similar av-
erage accuracies, but A* performs 0.006 and 0.001 better on
the two larger datasets. And like all other search algorithms,
M-H significantly outperforms GA.

The only two algorithms that seem to perform better than
the rest are BFS2 and MCTS. GA scores much worse than
the other algorithms on all three datasets. The difference be-
tween the other algorithms is very small, and random varia-
tion probably contributed to these differences. So we can say
that BFS2 and MCTS perform best, GA performs worst, and
the rest have approximately the same performance. And sur-
prisingly, none of the more complex algorithms achieve better
results than the simple BFS2.

6 Discussion
The most striking result is that none of the search algorithms
outperform BFS2, since BFS2 only tries the five classifiers on
their own and nothing else. This section examines possible
explanations for why no search algorithm outperforms BFS2,
and specifically for why M-H does not outperform BFS2.

BFS2 is most easily comparable to BFS4, since BFS4 not
only tries the five pipelines BFS2 tries, but also many more.
It may therefore seem counterintuitive that BFS4 performs
worse than BFS2, while trying more pipelines. But we be-
lieve that the difference in performance can be explained by
random variation in results on the validation and test sets.

Evaluating a search algorithm happens as follows. Each
search algorithm goes through the pipelines in some order,
trains them, and selects the pipeline that performs best on the
validation set. Then, the accuracy of that pipeline is evaluated
on the test set. This is done ten times, and an average of the
results on the test set is taken.

After BFS4 tries the five simple pipelines from BFS2, it
tries 95 more complex pipelines. Even if these complex
pipelines would be slightly worse than the simple pipelines,
there would still be a chance that one of the complex pipelines
would happen to do well on the validation set and get chosen
for evaluation. Since the complex pipeline is slightly worse
than the simple pipelines (but happens to do better on the val-

idation set), it gets slightly worse results on the test set on
average. This is one possible explanation for why the algo-
rithm that tries more pipelines produces worse results.

Another possible explanation would be that (part of) the
difference between BFS2 and the other search algorithms is
due to BFS2 having gotten lucky. There is a slight variation
in the results of a pipeline on the test set. If a search algorithm
selects the same pipeline multiple times on the same dataset,
it may get slightly different results. This is partly because
each time a pipeline is evaluated, it sees a different part of the
dataset and thus achieves a slightly different accuracy. So the
results may also be (partly) explained by that BFS2 just got
lucky with how it evaluated on the test set.

It is difficult to tell how much of the difference in perfor-
mance is due to random variation, and how much due to some
other explanation. The difference in average accuracy is 0.02
on the wdbc dataset and less than 0.006 on the other datasets,
so it seems like random variation may be the most important
reason for why BFS2 performed better than BFS4.

The other search algorithms (except GA) perform approx-
imately equally well as BFS4. So if the difference in per-
formance is because of random variation, we could conclude
that there is no significant difference in performance between
any of the search algorithms (except GA). And if the differ-
ence in performance between BFS2 and BFS4 is not fully
explained by random variation, we could conclude that lim-
iting the search to only very simple pipelines improves the
performance on the evaluation datasets.

So the possible conclusions are either that for the eval-
uation datasets, very simple pipelines perform better than
more complex pipelines, or that the complexity of a pipeline
doesn’t really matter, and that the better performance of BFS2
is due to random variation and nothing else.

In any case, the main conclusion is that the evaluation
datasets are too simple to correctly assess the performance
of the search algorithms. As stated in the introduction, one of
the challenges in AutoML is that the search space of possi-
ble pipelines can be huge, which makes it important to have
a good search algorithm. But for the evaluation datasets,
the five classifiers on their own performed as good as any
complex pipeline, and therefore the search space of useful
pipelines has size five. With a search space this small, the
best approach is obviously to just try all options (which is
what BFS2 does). And any search algorithm that is more
complicated than this is unnecessary. To truly measure the
performance of the different search algorithms, we need to
compare them on more complicated datasets.

This conclusion is the key to answering most of our re-
search questions. The first research question is about how to
create a dataset that is representative of general ML problems.
We cannot say whether the benchmark proposed in section
3.1 is representative, since it is not used in the experiment,
but we can conclude that the evaluation datasets are not repre-
sentative of general ML problems, because they only include
simple datasets.

The second question is about how to create a grammar for
assembling ML pipelines that strikes the right balance be-
tween expressiveness and restrictiveness. The results show
that which grammar is optimal depends on the datasets. If



as is the case in our experiment, the datasets are very simple,
a very simple grammar will do best. A grammar that only
allows one classifier and nothing else would have produced
the same results as BFS2, and it would not have allowed a
search algorithm to waste time on more complex pipelines.
But when the datasets are more complicated, we believe a
grammar that also allows preprocessing and feature selection
steps will do better, because for many real datasets pipelines
that include preprocessing and feature selection steps do bet-
ter than a classifier on its own. Since the grammar was not
tested on complex datasets, we cannot conclude anything
about whether a grammar should generate only pipelines with
a fixed number of steps in sequence, or whether grammars
should allow pipelines of many different forms.

The next research question asks how to measure the quality
of a pipeline. This also depends on the datasets used, since
accuracy is a good metric for balanced datasets, but for un-
balanced datasets another metric is needed.

The final research question asks which search algorithms
perform well under which circumstances. The results show
that on very simple datasets BFS2 performs best. And since
all evaluation datasets are simple, we cannot conclude any-
thing about which algorithms do well on complex datasets.
Similarly, we know that for very simple datasets it is better
to use BFS2 than M-H, but we cannot say anything about the
performance of M-H on more complex datasets.

To conclude the discussion, we would like to note that this
paper uses a simple implementation of the M-H algorithm.
Improving the implementation of the algorithm may lead to
an increase in performance. Although, we doubt an improved
version of the M-H algorithm would do much better on the
evaluation datasets, as on those datasets none of the more
complex search algorithms outperforms the simple BFS2.

7 Responsible research
For this project, we use publicly available datasets that do
not have personal information. The datasets are taken from
the OpenML4 repository. We believe this is a good choice,
as this is a reputable repository and many papers that com-
pare AutoML frameworks get their datasets from OpenML.
The topics we are working on are also not related to crimi-
nal or unethical topics. So reproducibility and credibility are
the most important parts of the discussion about responsible
research for this project. They are covered in the following
sections.

7.1 Reproducibility
To ensure our results are reproducible, we host the full code-
base on the TU Delft repository5. The code is extensively
documented and can easily be cloned and executed to check
our results. The experiment can be replicated using a normal
laptop, as the runtime should not exceed a couple of hours
per algorithm. To evaluate a search algorithm on the full
benchmark provided in section 3.1, access to larger compute
resources might be needed. The datastets are also publicly

4https://www.openml.org
5https://repository.tudelft.nl

available on OpenML6 and our code includes a function to
download the relevant datasets. To allow fellow researchers
to further check our results, we also host the logs of all of the
runs of the experiment. Each of these logs shows information
about one run the the experiment. It shows which search al-
gorithm was used on which datasets, and which accuracy it
achieved. The exact parameters, runtimes and results are also
documented in the logs. This allows anyone to see not only
the aggregate statistics, but also the exact results of each run.

7.2 Credibility
Unfortunately, we could not utilize larger computational re-
sources during this experiment. Because of that, only three
datasets were used for testing the datasets. As was said in
the discussion, this causes potential issues with the credibil-
ity and generalisability of the results.

First of all, the sample size is very small. Secondly, the
evaluation datasets themselves are relatively small; the largest
evaluation dataset has 10k features, while in real life some
datasets have multiple millions of entries. Thirdly, all eval-
uation datasets are balanced (each target class has approxi-
mately the same size). This is not the case in many datasets in
the real world, as often some target classes have much fewer
entries than other target classes. And finally, as stated in the
discussion, the evaluation datasets turned out to be very sim-
ple. These factors make the evaluation datasets less represen-
tative of general ML problems, and if the experiment is done
on different datasets, different results may be found.

A potential solution to improve the credibility of the results
would be to run the same experiment on the whole benchmark
provided in section 3.1. This would make the results more
generalisable, as the benchmark contains more datasets, some
of which are large, unbalanced or difficult.

And finally, as mentioned in the discussion, this paper com-
pares specific implementations of each algorithm. It does not
say anything definitive about which search algorithm is bet-
ter for program synthesis. If one of the algorithms is imple-
mented in a different way or if a different version of the same
algorithm is implemented, we might find different results.

8 Conclusions and Future Work
The goal of this paper is to compare the performance of the
Metropolis-Hastings algorithm to other search algorithms on
the task of finding good pipelines in a CFG for a given ML
problem. We find that for the evaluation datasets the best ap-
proach is to only try the five classifiers on their own and to
avoid trying anything more complicated. This leads to both
optimal accuracy and a much shorter runtime. We also con-
clude that to test the effectiveness of different search algo-
rithms, we need to use datasets that are more difficult, so that
the search space of good solutions is large.

An obvious direction for further research would be to re-
peat our experiment on the full dataset of ML problems we
provided in section 3.1 and perhaps on even larger and more
difficult benchmarks. It could also be interesting to research
for which types of datasets complex pipelines work well, and
for which very simple ones perform better.

6https://www.openml.org/



Another direction for further research could be to add more
ML operators to the grammar. Our grammar covers a variety
of basic ML operators, but there are many operators that are
not included in the grammar, such as XGBoost. Including
these operators in the grammar may improve the performance
on certain types of datasets.

During the evaluation of the search algorithms, we noticed
that some ML operators take much longer to train. On the har
dataset pipelines with Recursive Feature Elimination or the
Gradient Boosting Classifier take more than twenty times as
long to train as pipelines without these operators. We think
it would be interesting to compare the effectiveness of dif-
ferent search algorithms when they are not bounded by the
amount of pipelines they can evaluate, but by their runtime.
This would mean that the search algorithms would also have
to consider the expected runtime of each pipeline step. Fur-
ther research in this direction may be useful for practical ap-
plications because it could lead to significant decreases in the
runtime of AutoML tools.
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