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Generation of Time-Limited Signals
in the Nonlinear Fourier Domain via b-Modulation

Sander Wahls

Delft Center for Systems and Control, TU Delft, Delft, The Netherlands. s.wahls@tudelft.nl

Abstract Current modulation techniques for the nonlinear Fourier spectrum do not offer explicit control
over the pulse duration in the time domain. To address this issue, it is proposed to modulate the b-
coefficient instead of the reflection coefficient.

Introduction

The normalized nonlinear Schrödinger equation

j∂xq + ∂2t q + 2q2q∗ = 0 (1)

describes the propagation of a complex envelope
q(x, t) in an ideal focusing single-mode fiber with-
out losses or noiseFn. 1. Here, x denotes the loca-
tion in the fiber, t is retarded time, j is the imagi-
nary number and the ∗ denotes complex conjuga-
tion. The propagation of a fiber input q(0, t), which
is complicated in the time domain, becomes triv-
ial when a suitable nonlinear Fourier transform
(NFT) is applied. The nonlinear Fourier spectrum
evolves in a amazingly simple way that is rem-
iniscent of propagation in linear channels when
described in the conventional frequency domain.
There is currently much interest in utilizing the
NFT for fiber-optic information transmission, and
the principal feasibility of the concept has by now
been demonstrated in many experiments. The
reader is referred to1 for a recent survey.

One of the open problems when data is modu-
lated in the nonlinear Fourier domain (NFD) is that
the effective duration of the corresponding time
domain pulse, which has to fit into the processing
window of the transmitter, is difficult to control2,3.
In order to address this problem in a principled
way, it has been proposed in4 to use the NFT for
periodic signals instead of the usual NFT for van-
ishing signals. A practical demonstration of this
concept has been presented in5 based on a spe-
cial family of pulses. However, no general way
to generate signals with a fixed desired period is
known at the moment. The recent proposal6 also
does not offer exact control over the pulse dura-
tion. In this paper, we propose another approach
to modulation in the NFD that allows us to control
the duration of the fiber input exactly.

1The proposed modulator also applies in the defocusing
case, but in the interest of brevity we do not discuss this case.

The Nonlinear Fourier Transform
The NFT of a time domain signal q(t) is now de-
fined following7. First, the scattering problem

∂tφ1 = −jξφ1 + qφ2, ∂tφ2 = −q∗φ1 + jξφ2, (2)

lim
t→−∞

ejξtφ1(t, ξ) = 1, lim
t→−∞

φ2(t, ξ) = 0 (3)

is introduced, where ξ ∈ R. Second, one de-
fines a(ξ) := limt→∞ ejξtφ1(t, ξ) and b(ξ) :=

limt→∞ e−jξtφ2(t, ξ). These functions satisfy

|a(ξ)|2 + |b(ξ)|2 = 1 ∀ξ ∈ R. (4)

Under suitable decay assumptions on q(t), a(ξ)

and b(ξ) extend into functions a(λ) and b(λ) that
are analytic in the upper half plane, =λ > 0. The
NFT of q(t) consists of the reflection coefficient
r(ξ) = b(ξ)

/
a(ξ), ξ ∈ R, and the discrete spec-

trum (λk, ρk), k = 1, . . . ,K. Here, the bound
states λk are given by the roots a(λk) = 0 of a(λ)

in the upper half plane =λ > 0. Assuming that all
zeros of a(λ) in =λ > 0 are simple, the residues
are given by ρk := b(λk)

/
da
dλ (λk). It may happen

that there are no bound states at all, K = 0.
In this paper, we are concerned with time-

limited signals, i.e., signals that satisfy

q(t) = 0 ∀t /∈
[
−T

2
,
T

2

]
, 0 < T <∞. (5)

A known necessary condition for (5) is that the
inverse Fourier transform of b(ξ) satisfies8–10,Fn. 2

B(τ) :=

∫ ∞
−∞

b(ξ)ejξτ
dτ

2π
= 0 ∀τ /∈ [−T, T ]. (6)

Since our goal is to generate time-limited sig-
nals, the question arises whether this condition
is also sufficient. For the NFT that corresponds
to the Korteweg-de Vries equation (instead of the
nonlinear Schrödinger equation considered here),

2Note that the condition is given for φ2(T2 , ξ) instead of b(ξ)
in the references, which is why the interval in (6) is different.



this is known to be true in the absence of bound
states11. The arguments in11 also seem to ap-
ply in the case considered hereFn. 3, but a thor-
ough investigation still needs to be carried out.
Similarly, for the discrete-time version of the NFT
considered here, a condition analog to (6) is also
known to be sufficient in the absence of bound
statesFn. 4. We hence assume that (6) implies (5)
in the absence of bound states also in our case,
and later justify this assumption numerically.

The b-Modulator
The b-modulator embeds 2N + 1 complex sym-
bols in the coefficient b(ξ) of a time-limited signal
that satisfies (5). We remark that it was recently
proposed14 to embed information in the analytic
extension b(λ) of b(ξ), but the methods in14 do not
lead to time-limited signals. Our b-modulator con-
sists of three blocks, which will now be discussed.

The Mapper: The input of the mapper is a finite
sequence s−N , . . . , sN of complex data symbols.
The task of the mapper is to embed these data
symbols in the coefficient b(ξ), where ξ ∈ R. Aim-
ing at a fiber input q(t) that satisfies (5), the map-
per generates a b(ξ) that satisfies (6). This can
be achieved with a series expansion of the form

b(ξ) = As(ξ), s(ξ) :=

N∑
n=−N

snwn(ξ), (7)

where the inverse Fourier transform Wn(τ) of
each carrier wn(ξ) satisfies Wn(τ) = 0 for τ /∈
[−T, T ]. As an example, we consider shifted
raised cosine pulses wn(ξ) = φ( ξ

2π −Bn), where

φ(f) =
cos(πβf/B)

1− (2βf/B)2
sin(πf/B)

πf/B
,

β ∈ [0, 1]

B > 0
.

The inverse Fourier transform Φ(τ) of φ( ξ
2π ) is

known to be compactly supported on the inter-
val [− 1+β

2B , 1+β2B ], so that we need to choose B =

(1 + β)/(2T ). The roll-off factor β remains as a
free parameter. The real constant A > 0 in (7) is
chosen such that the energy E :=

∫∞
−∞ |q(t)|

2dt

of the generated fiber input is equal to a desired
value Ed. To find the A that leads to E = Ed, a

3Note that the transmission coefficient is given by t = 1/a,
so that the ratio r/t considered is 11 is equal to b. The Paley-
Wiener theoremp. 375 in 12 provides the presentation (6) for the
entire exponential type functions considered in 11.

4The discrete-time (DT) analog of b(ξ) for a DT signal Q[n]
is of the form β(w) =

∑∞
k=−∞ β[k]wk, where |w| = 1. Note

that β(w) is the DT Fourier transform of the DT signal β[k]. It
is known (see 13) that, in the absence of bound states, Q[n] =
0 for n /∈ [0, N ] if and only if β[k] = 0 for k /∈ [0, N ].

binary search based on the formulaFn. 5

E = − 1

π

∫ ∞
−∞

log
(
1−A2|s(ξ)|2

)
dξ (8)

can be performed. A trivial lower bound for start-
ing the binary search is A ≥ 0. For an upper
bound, we use that (4) implies |b(ξ)| ≤ 1 and thus
A ≤ 1/ supξ |s(ξ)| =: u. We observed that E con-
verges towards a finite value in the limit A → u−

even though signals without bound states can
have arbitrarily large energiesFn. 6. The choice of
the carrier filters wn(ξ) in (7) influences the max-
imum energy that the b-modulator can achieve.
To achieve arbitrary energies, other carrier filters
need to be investigated in the future. Also note
that the receiver needs to infer A from b(ξ). This
can be achieved e.g. using training symbols.

Recovery of a(ξ): Next, a(ξ) is recov-
ered from b(ξ). In the absence of bound
states, it is given by the formulap. 50 in 8 a(ξ) =

exp
{

1
2πj

∫∞
−∞ log(1− |b(ξ′)|2)/(ξ′ − ξ)dξ′

}
.

Inverse Scattering: This block recovers q(t)

from a(ξ) and b(ξ), which are now both known
(the discrete spectrum is empty by construction).
In principle, any inverse NFT algorithm can be
used for this step because the reflection coeffi-
cient r(ξ) = b(ξ)/a(ξ) is now known. See, e.g.,15

and the references therein for algorithms.

Practical Implementation
We utilize the framework in15. In order to be able
to compute D samples of a signal q(t) that sat-
isfies (5) from a given b(ξ), a polynomial B(z) =∑D−1
k=0 Bkz−k, where z = e2jξε and ε = T/D, has

to be found such that b(ξ) ≈ z
D+1

2 B(z). This is
not always possible because not every b(ξ) cor-
responds to a time-limited signal with support (5).
In our case, however, it is always possible to find
such a polynomial since (6) holds. We write

b(ξ)
(6)
=

∫ T

−T
B(τ)e−jξτdτ ≈ z

D+1
2 B(z). (9)

By applying a rectangular discretization to the in-
tegral in (9), one can show that the choice Bk =

2εB(τk), where τk = −T + (2k+ 1)ε, satisfies (9);
it is of course possible to use better discretiza-
tions. The corresponding polynomial approxima-
tion of a(ξ) and finally the samples of q(t) are then

5Eq. 8 follows by combining the definition r = b/a with (4)
and the nonlinear Parseval relationp. 38 and 54f in 8, and finally
using that log(1+x/(1−x)) = log(1/(1−x)) = − log(1−x).

6Choose, e.g., s(ξ) in (8) to be a rectangle and letA→ u−.
The corresponding q(t) however is no longer time-limited.
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Fig. 1: Numerical example.

found as in the first algorithm in15.

Numerical Example
We now validate the b-modulator numerically. We
consider blocks of 2N + 1 = 9 symbols that are
chosen randomly from the alphabet A = {1 ±
i,−1 ± i}. These symbols modulate fiber inputs
q(t) that are time-limited to [−T2 ,

T
2 ] and have a

desired energy of Ed = 3.5. The series (7) was
implemented using raised cosines as discussed
earlier, with a roll-off factor of β = 0.05. In order
to determine the scaling factor A in (7), 20 steps
of the binary search with lower bound zero and
upper bound one were performed, where the inte-
gral in (8) was computed using Matlab’s integral

command. We generated 4096 samples in the in-
terval [−T2 ,

T
2 ] as described earlier.

Fig. 1(a) shows the generated fiber inputs for
different values of T , where new symbols were
chosen in each run. Since the samples were
generated inside the intervals [−T2 ,

T
2 ], the sig-

nals have been extended with zeros. Fig. 1(b)
shows the magnitude of b(ξ) for T = 2 that has
been computed numerically from the correspond-
ing signal in Fig. 1(a) together with the specified,
analytically known value. The numerically com-
puted b(ξ) matches its specification well, with an
relative error ‖bspec−bnum‖2/‖bspec‖2 of 0.001. Fig.
1(c) also shows the linear Fourier transform in or-
der to illustrate that we are no longer in the linear
regime, where both curves would be very close.

Conclusions
A simple modulation scheme operating in the
nonlinear Fourier domain that generates time-
limited signals has been proposed and validated
numerically. The design of carrier filters for high-
power transmission and the inclusion of bound
states are open topics for future research.
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