Exploring plausible futures of automated vehicles in the Netherlands: results from a scenario analysis

Dimitris Milakis1, Maaike Sleiderink2, Bart van Arem3, Bart van Wee4, Gonçalo Homem de Almeida Correia5

1 Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology
2 TNO Netherlands Organization for Applied Scientific Research.
3 Transport and Logistics Group, Faculty of Technology, Policy and Management, Delft University of Technology

Introduction

- The introduction to the market, the development and the implications of automated driving are among the main uncertainties of the future transport system.
- The design of robust long-term transport policies and investments needs to take into account these uncertainties.
- Our study aimed to identify plausible future development paths of automated vehicles (AV) in the Netherlands and to estimate potential implications for traffic, travel behavior and transport planning on a time horizon up to 2030 and 2050.
- We conducted a scenario analysis that involved experts from various planning, technology, and research organizations in the Netherlands and was completed in three workshops.

Methods

- Identification of key factors and driving forces of development of automated vehicles
- Assessment of impact and uncertainty of driving forces
- Construction of the scenario matrix
- Estimation of penetration rates and potential implications of automated vehicles in each scenario
- Review of the scenarios and assessment of the likelihood and overall impact of each scenario

Results

Scenario Matrix

AV ...in standby

- High technological development
- AV ...in bloom

Restrictive AV policies

- Fully automated in 2045.
- Limited legislation for AV integration. No AV trials allowed.
- Recessionary economy, high unemployment.
- Negative customers’ attitude, almost no demand for AVs.
- Important environmental problems. Very slow transition to low-carbon economy.

Supportive AV policies

- Fully automated & cooperative vehicles (V2V) in 2030.
- Legislation inflexibility for AV. Transport policies restraining use of AV. High regulation of AV trials.
- Modest economic growth.
- “Wait and see…” customers’ attitude, mid-low demand for AVs.
- No major environmental problems, but still low penetration of electric vehicles.

AV ...in doubt

- Low technological development
- AV ...in demand

AV in vehicles fleet (%) & AV VKT in total travel (%)

Value of time (% decrease)

Likelihood (0%-impossible … 100%-certain)

*Each bar represents the average value of five experts’ (or for perception of likelihood) experts’ responses collected in three workshops and the error bar depicts standard deviation.

Conclusions

- Fully automated vehicles are expected to be commercially available between 2025 and 2045, and penetrate the market rapidly after their introduction.
- Complexity of urban environment and unexpected incidents may influence development path of automated vehicles.
- Certain implications on mobility are expected in all scenarios, although there is great variation on the impacts among the scenarios.
- It is expected that measures to curb growth of travel and subsequent externalities will be necessary in three out of the four scenarios.

This research was funded by the PBL Netherlands Environmental Assessment Agency.