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Summary
Network materials, foams, and emulsions are ubiquitous in our daily life.
We have a good intuition about how they respond as we handle them, but
our theoretical understanding is poor. One of their most interesting fea-
tures is that they are unusually fragile and appear to switch between solid
and liquid state seamlessly.

In fact, foams and emulsions undergo a non-equilibrium phase transi-
tion as their packing fraction increases - this is the jamming transition.
Networks show a similar transition as their connectivity increases, where
the material switches from floppy to rigid.

The fact that these materials undergo a phase transition, opens up the
theoretical toolset of statistical mechanics. An important part of current
research is therefore dedicated to finding diverging length and time scales
and investigating the critical behavior of the systems in detail.

Because the systems in question are highly disordered, analytical mod-
eling is challenging. At the same time there are significant experimental
obstacles to approaching the critical point closely. For this reason, the
development of simulation software plays an important role - all data pre-
sented in this thesis is generated through simulations. As the subtitle of
this dissertation suggests, our findings concern length, strain, and time
scales.

In Chapter 3 the linear response of foams and emulsions on various
length scales is probed. Classical continuum mechanics is a long wave-
length theory - it is a local theory. This means that in order to determine
strain at a certain position x, it is sufficient to know the stress at the same
position. A method is introduced which enables to directly measure the
moduli on different length scales. The simulations show that the linear
response of soft sphere packings close to jamming becomes increasingly
nonlocal. Using the results a so-called nonlocal length scale is introduced,
which diverges at the transition. Additionally, a strain-stress-relation is de-
rived, which gives improved predictions of the linear response to a spatially
varying stress field.

Chapter 4 and 5 consider the nonlinear behavior of networks below and
above their critical connectivity.

Chapter 4 shows that sub-critical networks can be rigidified by a pre-
stress, and that the shear response has surprising similarities to networks
with bending interactions. In addition to shear response, the density of
states is measured. Variational arguments can explain its form, and show
how the density of states can be used to predict the response to shear.
This theoretical approach is quite general, suggesting that other systems
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x Summary

could be described with the same methods. An example for such a system
could be a soft sphere packing which consists of a mixture of soft and hard
particles.

Chapter 5 considers networks above their critical connectivity. In gen-
eral, when a shear strain is applied to a system it shows a build-up of
normal stresses. Equivalently, it contracts/expands as a shear stress is ap-
plied. This nonlinear effect is called the Poynting effect. Two network struc-
tures are tested for this effect, and both systems are found to feature a neg-
ative sign in the effect (systems build-up negative normal stresses/contract
when sheared). Furthermore, the results show that the amplitude of the
effect scales differently in both networks.

A theoretical framework is developed which explains the sign and the
amplitude. This framework relates these two quantities to the properties of
the linear response to shear stress. Finally, the Poynting effect is related to
the shear stiffening behavior of the networks.

Chapter 6 shows that the linear viscoelastic response of foams and emul-
sions depends strongly on the details of the force law of the viscous inter-
action. Soft sphere packings, in which transverse relative motion is not
damped, do not show critical behavior. Only if both tangential and normal
relative motion is damped, one captures the essential physics of soft sphere
packings close to jamming. The widely used Stokes drag model also cor-
rectly captures the shear response of the packings, but still has qualitative
influence on the two point correlation function of the linear response.



Samenvatting
Netwerkmaterialen, schuimen en emulsies zijn alom aanwezig in ons da-
gelijks leven. Wanneer we deze materialen gebruiken hebben we intuïtief
een gevoel hoe ze zullen reageren op hun gebruik, maar ons theoretisch
begrip hiervan is beperkt. Één van de belangrijkste kenmerken is dat deze
materialen ongewoon kwetsbaar zijn en naadloos lijken te veranderen van
een vaste naar een vloeibare toestand.

Schuim en emulsies ondergaan een uit-evenwicht faseovergang bij toe-
nemende pakkingsfractie. Dit wordt de jamming overgang genoemd. Net-
werken laten een vergelijkbare transitie zien als hun coördinatiegetal toe-
neemt – waar netwerken veranderen van slap naar stijf.

Het feit dat deze materialen een faseovergang laten zien betekent dat
statistische mechanica gebruikt kan worden. Een belangrijk deel van het
huidige onderzoek is daarom toegewijd aan het vinden van divergerende
lengte- en tijdschalen en het in detail onderzoeken van het kritische gedrag
van deze systemen.

Omdat de onderzochte systemen sterk ongeordend zijn is het een uit-
daging om deze systemen analytisch te modelleren. Tevens zijn er grote
experimentele obstakels om het kritieke punt te benaderen. Daarom speelt
het ontwikkelen van simulatie software een belangrijke rol – alle data ge-
presenteerd in dit proefschrift is gegenereerd door middel van computer
simulaties. Zoals de ondertitel van dit proefschrift suggereert, betreffen de
in dit proefschrift beschreven resultaten lengte-, vervormings- en tijdscha-
len.

Hoofdstuk 3 onderzoekt de lineaire reactie op een ruimtelijk variërend
spanningsveld van schuimen en emulsies voor verscheidene lengte scha-
len. Klassieke continuummechanica is een lange golflengte theorie, anders
gezegd het is een lokale theorie. Dit betekent dat voor het bepalen van de
vervorming op een zekere positie x in het materiaal, het voldoende is als
de mechanische spanning op deze positie bekend is. Een methode wordt
geintroduceerd om direct de modulus van verschillende lengteschalen te
bepalen. De simulaties laten zien dat de lineaire reactie van de zachte bol-
pakkingen dichtbij het jamming punt steeds meer niet-lokaal wordt. Door
de resultaten is het mogelijk om een zogenaamde niet-lokale lengteschaal te
definieren, welke divergeert bij de jamming overgang. Gebruikmakend van
de simulaties wordt een vervorming-spanningsrelatie voorgesteld die be-
tere voorspellingen geeft voor lineaire reacties op een ruimtelijk variërend
spanningsveld.

Hoofdstuk 4 en 5 betreffen het niet-lineaire gedrag van netwerken onder
en boven hun kritische coördinatiegetal.
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xii Samenvatting

Hoofdstuk 4 laat zien dat sub-kritische netwerken verstijfd kunnen wor-
den door een voorspanning en dat hun afschuifreactie verrassende overeen-
komsten heeft met netwerken met buigingsinteractie. Naast de afschuifre-
actie, wordt ook de toestandsdichtheid bepaald. Met hulp van argumenten
gebaseerd op het variatieprincipe, wordt de vorm verklaard en wordt laten
gezien hoe de toestandsdichtheid gebruikt kan worden voor het voorspellen
van de afschuifreactie. Onze theoretische aanpak is redelijk algemeen, het-
geen suggereert dat andere systemen mogelijk beschreven kunnen worden
met dezelfde methoden. Een voorbeeld voor zo een system is een bolpakking
die bestaat uit zachte en harde partikelen.

Hoofdstuk 5 behandelt netwerken boven hun kritische coördinatiege-
tal. Wanneer een systeem word blootgesteld aan een schuifvervorming laat
deze normaliter een opbouw van normaalspanningen zien. Deze zal sa-
mentrekken/uitzetten als er een schuifspanning wordt aangebracht. Dit
non-lineaire effect wordt het Poynting effect genoemd en wordt in twee
netwerkstructuren onderzoekt. De twee systemen laten zien dat het te-
ken van dit effect negatief is (systemen bouwen negatieve normaalspannin-
gen op/trekken zich samen wanneer er afschuiving plaatsvind). Daarnaast
wordt gevonden dat de amplitude van het effect verschillend schaalt voor
beide netwerken.

Een theoretisch kader wordt ontwikkeld die het teken en amplitude ver-
klaart door deze te verbinden met de eigenschappen van de lineaire reactie
op een afschuiving. Uiteindelijk wordt het Poynting effect gerelateerd aan
het afschuif verstijvend gedrag van netwerken.

Hoofdstuk 6 laat zien dat de lineaire viscoelastische reactie van schui-
men en emulsies sterk afhankelijk is van de details van de in het model
gebruikte dempingswet. De resultaten laten zien dat zachte bolpakkingen
waarin transversale relatieve bewegingen niet worden gedempt, geen kri-
tisch gedrag laten zien. Alleen wanneer tangentiële en normale relatieve
bewegingen worden gedempt is het mogelijk de essentiële fysica van zachte
bolpakkingen dichtbij het jamming punt te beschrijven. Het veelgebruikte
Stokes drag model beschrijft ook de afschuifreactie van pakkingen, maar
heeft nog steeds invloed op de two point correlation function van de lineaire
reactie.
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2 1. Introduction

When we are doing the dishes, shaving, eating mayonnaise or drinking
beer or cappuccino, it is natural for us to come in contact with foams and
emulsions in our every day life. In fact, we are quite used to handling them
and have a good intuition on how they react as we handle them. However,
often we do not appreciate that we have poor theoretical understanding of
them. For instance, is a foam a gas, a liquid, or a solid? Shaving foam
is made of gas and a small fraction of liquid but that does not bring us
anywhere closer to an answer. In fact the answer depends on the situation
in which the foam is considered. While we apply shaving foam to our skin it
behaves like a liquid. However, as soon as we stop applying a force with our
hands it ceases to flow and keeps its shape. Gravity is not enough to make
it flow. It behaves like a solid. Another situation in which both liquid and
solid behavior are found, occurs while doing the dishes. The foam flows as
long as it is mixed with enough water, but as the foam sits in the sink for
a while it will become drier and also forms a solid.

Similar behavior also occurs in other materials. Sand flows through our
hands like liquid, but at the same time it forms piles on a surface and acts
like a solid. Ketchup is stuck in its bottle but as we shake it, the ketchup
flows out rapidly leaving us with far more than we actually wanted. In some
materials we can use the sudden change between solid and liquid to our
advantage. If one wants to paint a wall it is handy if the paint flows nicely
so that it is easy to distribute, but it should act like a solid when we stop
painting, because it should stay on the wall where we left it.

Most of what we know about systems like shaving foam, sand, paint,
or mayonnaise is from experience and phenomenological considerations.
We lack a deep theoretical and predictive understanding comparable to our
knowledge of crystals. Such a deep understanding would be useful, be-
cause soft amorphous materials are not only ubiquitous in our daily life
but also in industry. It would be of great help to predict whether sand
will easily flow through a hopper or will get stuck regularily. When extin-
guishing a fire the foam needs to flow out of the hose easily but needs to
become solid when it hits a surface. Typically materials and their trans-
port processes are designed only through trial and error. A more theoretical
understanding would simplify the design.

The examples above are reminiscent of melting and freezing and are in
fact considered to be a phase transition - the jamming transition. However
the jamming transition takes place in systems which are not in thermo-
dynamic equilibrium so it has important properties which distinguishes it
from a classical equilibrium phase transition. We will comment on these
differences in the next section.

A similar non-equilibrium phase transition can be found in network ma-
terials. When the nodes in a network are highly connected the network
behaves like a solid while it can be deformed without energy cost when the
connectivity is low. Networks can be found in biological cells and materials
like wood and rubber have network structures. Furthermore, the structure
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Figure 1.1: Top view on two dimensional foams [1]. The three panels show a foam above
(right), below (left), and at the jamming transition.

of the contact network in foams and emulsions is of theoretical interest be-
cause its linear response is similar to linear response in jammed systems.
Additionally, it is a model that can be used to investigate the response of
solid foams where the contact network does not change even when applied
stresses are high.

1.1. The Jamming Transition
Figure 1.1 shows the top view of a quasi two-dimensional foam made of
two and three millimeter bubbles. It is constrained from below by a liquid
and trapped underneath a glass plate [1]. As the packing fraction ϕ of air
bubbles in the water is low, the water dominates the response to external
forces - the foam flows like a liquid. The bubbles are mechanically in a
vacuum state. If the foam contains a high fraction of air the bubbles are
pressed together and form a rigid network. This network can resist a defor-
mation - the foam behaves like an elastic solid. In between the two states
at a packing fraction of ϕc ≈ 0.84 in two dimensions and ϕ ≈ 0.64 [2] in three
dimensions, there are configurations in which the bubbles just touch but
do not exert a force on each other. This marginal state marks the jamming
transition.

Through an external pressure the particles in a system are jammed to-
gether and become stuck in a local energy minimum. Because the particles
are large enough so that thermal effects can be neglected [3], they are not
able to explore the phase space and find the global minimum of the energy
landscape. For that reason systems that undergo a jamming transition are
not in thermodynamic equilibrium. In this sense the jamming transition
is a non-equilibrium phase transition of second order and the full toolkit
of statistical mechanics cannot be applied. Nevertheless, it turns out that
many features of the phase transition resemble an equilibrium phase tran-
sition. Therefore, some of the theoretical tools used in equilibrium phase
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Figure 1.2: (a) The scaling of the mechanical pressure p. It vanishes continuously at the
transition. (b) The average number of contacts per particle z jumps to zc = 4. One finds a
similar situation for the shear G and bulk modulus K. While the shear modulus vanishes
continuously the bulk modulus shows a jump.

transitions can also be used to analyze the properties of systems close to
the jamming transition [3, 4].

One of those theoretical tools is the idea of universality. As the “distance”
to the critical point becomes smaller - here measured for example in terms
of the excess packing fraction ∆ϕ = ϕ− ϕc - the material property A scales
with this distance

A ∼ ∆ϕα (1.1)

with some exponent α. Furthermore, the dependence of the order parame-
ter on details of the system like interaction potential vanishes. The critical
point is then described by a set of critical exponents. It has been found
that a great variety of systems often share the same set of exponents. All
these systems are considered to be part of the same universality class.

In general the scaling exponents are also a function of the dimension of
the system, however, any phase transition becomes more mean field-like
in higher dimensions until the scaling exponents cease to change. This so
called “upper critical dimension” was argued and numerically found to be
2 in jammed systems [5, 6]. One can therefore run simulations in 2 dimen-
sions and make quantitative predictions for scaling exponents in higher
dimensions.

The value of ϕc is not sharp in finite systems. Each realisation has a
unique value which fluctuates around the value given above [3]. For that
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Figure 1.3: A soft sphere packing is turned into a network. The center of each disk is turned
into a node and the contacts into springs.

reason, it is easier to use the mechanical pressure p or the average number
of contacts per particle z as order parameters because the transition point
is sharp for these two properties of the system. These two quantities and
numerous other quantities [3, 7, 8] like moduli, length scales [9–12] and
time scales [3, 13] scale with ∆ϕ like stated above .

The scaling of p and z with ∆ϕ are shown in Figure 1.2a and 1.2b, re-
spectively. The mechanical pressure is zero below the ϕc and increases
linearly afterwards. The contact number z jumps to a critical value zc at
the transition. In two dimensions this critical value is zc = 4 and in three
dimensions it is zc = 6. Due to the jump it is common to define the access
contact number ∆z = z − zc which scales with the square root of ∆ϕ. Us-
ing ∆z as an order parameter is especially helpful in networks where the
packing fraction is not defined.

To determine whether a system is jammed or unjammed one can use the
shear or bulk modulus. If the packing fraction is ϕ < ϕc both moduli are
zero. At the jamming transition the shear modulus still remains zero but it
starts to increase with the square root of ∆ϕ (see Figure 1.2c). The behavior
of the bulk modulus is similar to the connectivity - it has a finite jump [14]
and then increases with ∆ϕ0.5 (see Figure 1.2d). If one measures a finite
bulk and shear modulus the system is jammed while it is unjammed when
both vanish.

1.2. Isostaticity and the Coordination Number
To get a better understanding why an average number of four contacts per
particle is necessary for a soft sphere packing to become solid it is helpful
to think of the system as a network. Figure 1.3 depicts how the packing
is mapped onto a network. The centers of the disks become the nodes of
the network while each contact is turned into a spring. While the resulting
network itself is used as a model, this section uses it to go into more detail
concerning the jamming transition. The section explains the threshold of
zc and describes the response of a floppy network to an external force.

The average number of contacts per particle, or coordination number,
z jumps at the jamming transition to a critical value. This value can be
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Figure 1.4: Networks with 3,4, and 5 nodes which have just enough contacts to become rigid

understood following arguments from Maxwell [15].
If a system is rigid it means that no particles are able to move without

energy cost - so all motion in the system is constrained. Such constraints
are contacts between particles becausemotion that stretches or compresses
springs changes the potential energy in the system. See Figure 1.4 for
a depiction of the problem. For a simple system just containing N = 3
particles in D = 2 dimensions there are DN degrees of freedom. However,
there are also D(D + 1)/2 solid body translations/rotations which do not
cost energy - translations in D spatial directions and D(D − 1)/2 rotations.
The remaining three degrees of freedom, which consist of relative motions
between the particles that do not shift the center of mass, are constrained
by three springs. The same arguments do not change for the larger systems
also depicted in Figure 1.4. As there are N particles in D dimensions there
are DN−D(D+1)/2 degrees of freedom that each have to be constrained by
one contact in order to obtain a rigid network. If the coordination number
of a packing is z there are Nz/2 contacts which means that a coordination
number of

z > zc = 2D − D(D + 1)

N
≈ 2D if N is large (1.2)

is necessary for a packing to be rigid. In general zc also depends on whether
there are other degrees of freedom. For instance, if the box containing the
system is not fixed, there can be shear or expansion/compression degrees
of freedom [16]. However the fraction of extra degrees of freedom, which are
not associated with particles, vanishes in case of large systems such that
the critical coordination number approaches z = 2D. Above this critical
coordination number any deformation applied costs energy because purely

Figure 1.5: Underconstrained network which can move without energy cost
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Figure 1.6: The density of states for a foam as depicted in 1.1. The curve has a plateau and
a crossover at a characteristic frequency ω∗. This frequency scales with the distance to the
jamming transition.

tangential motion is not possible - the system is a solid. A system that has
an average coordination number of exactly z = zc is at the isostatic point.

Note that the Maxwell stability criterion mentioned above is more re-
strictive than what one would assume from considering only one particle
locally. To keep a particle locally stable D+1 contacts are necessary if there
is no friction. If a particle has less contacts it is considered to be a “rattler”.
These particles do not participate in linear response of the system.

If a system is underconstrained the particles can move without energy
cost. A simple example is shown in 1.5. The nodes of the network move
without changing the length of any springs. That means that the relative
motion between particles, which are in contact, has to be perpendicular to
the direction of the contact. A rearrangement that fulfills this requirement
is a floppy mode.

In a solid there are no floppy modes that couple to compression or shear.
(The meaning of “coupling” will be made precise in Chapter 2.) However,
as the following section will show, they are still important to understand
the linear response of “marginal” systems which are close to isostaticity yet
still solid.

1.3. The Density of States
The density of states D(E) gives the number of states within a certain en-
ergy interval [E,E +∆E] and is frequently used in solid state physics [17].
In the jamming community the density of states is also refered to as the
density of vibrational states D(ω). It gives the number of eigenmodes with
an eigenfrequency within an interval [ω, ω +∆ω]. The density of states can
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Figure 1.7: Two normal modes of a soft sphere packing with 512 discs. Dashed circles indicate
particles which appear due to periodic boundary conditions. The size of the arrows indicates
the amplitude of the displacements. The normal mode in (a) has low eigenfrequency and in
(b) high eigenfrequency.

be calculated by linearizing the equation of motion (see Chapter 2).
An important feature of the disordered systems in this thesis is an ano-

malous behavior in the density of states [3]. Figure 1.6 shows that D is
constant for several orders of magnitude in the frequency ω. For low ω it
has a crossover. This crossover depends on the distance to the jamming
point. It defines a time scale τ∗ = 1/ω∗ ∼ ∆ϕ−0.5 which diverges at the
transition.

In a crystal the density of states looks different. Here one finds that
for low frequencies D ∼ ωD−1. That means that disordered systems like
foams and emulsions - close to the jamming transition - have an excess of
low frequency modes. Why are they present in disordered solids but not
crystals?

The answer lies in the linear response of networks below isostaticity. In
[10] the authors use variational arguments to approximate the energy and
the number of eigen modes of an isostatic system. The idea is to cut con-
tacts in an isostatic network of size L×L along a line spanning the system.
After the cutting, there is a number of floppy modes nf proportional to the
length of that line L. Based on these floppy modes the authors construct
nf ∼ L trial modes which have eigenfrequencies ω ∼ 1/L. According to the
variational principle that means that there are nf/2 normal modes with a
frequency lower than

√
2/L. Since the number of such normal modes in a

crystal is of order one and therefore significantly lower, one understands
the abundance of low energy modes in amorphous solids.

The cutting method to construct trial modes has recently been ques-
tioned by simulations [18]. The trial modes only show motion localized at
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the cutting line and do not penetrate into the bulk which was an assump-
tion that was made in [10]. However, recently in [19] a new way to construct
trial modes was introduced.

The previous section introduced floppy modes that only consist of tan-
gential relative motion between particles. For a marginal system close to the
isostatic point this characteristic of the response still persists. Even though
there has to be relative normal motion which costs energy and causes fi-
nite shear and bulk moduli, relative transverse motion still dominates the
response. The low frequency modes therefore consists mostly of sliding mo-
tion (see Figure 1.7a). Sliding has a low energy cost compared to parallel
motion which leads to low frequencies in D. For comparison, Figure 1.7b
shows a normal mode with high frequency. The displacements are spa-
tially less correlated and involve more relative normal motion. See [20] or
Chapter 6 for a scaling plot of relative tangential and normal motion.

1.4. This Thesis
This thesis considers soft sphere packings and networks which are derived
from it. However, soft sphere packings in which the contact network can
change are only considered in the linear regime, where such changes, by
construction, cannot occur (see Chapter 2). Strictly speaking that means
that this thesis is about the networks derived from soft sphere packings. We
also consider variations of these networks [14, 21, 22] and fibre networks
[23–25]. In all chapters the starting point is a packing/network close to zc.
We then investigate one of the following aspects.

Nonlocal Elasticity: In Chapter 3 we consider nonlocal effects in the linear
response of soft sphere packings close to jamming. Classical continuum
theory is a long wave length approximation where only the strain at a po-
sition x influences the stress at the same position x. We show that this
approximation is not sufficient for systems which are close to the jamming
transition. We directly measure the Fourier transform of a modulus of uni-
axial compression and the shear modulus. According to local theory these
measurements should yield a constant function. However, our results show
that the linear response of soft sphere packings is nonlocal.

Hypostatic Networks: In Chapter 4 we investigate the behavior of hypo-
static networks. While these networks are floppy according to Maxwell
counting they can be regidified by a “perturbing field”. Examples for such
a field are bending interactions or a pre-stress on the network. We investi-
gate how the perturbing field influences the density of states and the shear
modulus of hypostatic networks. We develop a mean field like description
and show that perturbing fields of different nature can have similar effect
on the shear modulus.
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Nonlinear Elasticity: In Chapter 5 we investigate the so called “Poynting ef-
fect” which is a nonlinear effect in which a system builds up normal stresses
as a response to an applied shear strain. We develop a microscopic theory
that describes the amplitude and sign of the effect. In a last step we also
connect the Poynting effect to the shear stiffening behavior which is found
in the networks.

Viscoelasticity: In Chapter 6 we calculate the dynamical shear modulus
G∗(ω). We test different models for viscous damping. We investigate contact
damping in which only the relative normal motion of particles is considered
while relative transverse motion is not damped. This damping law is often
used because it does not apply an angular momentum to the particles which
simplifies the simulations because rotational degrees of freedom can be
omitted. However, we find that systems with only normal damping do not
show critical scaling close to jamming. As a numerically cheap alternative
to contact damping we test Stokes drag. However, while Stokes drag does
not influence the shape of G∗ it has qualitative influence on the two-point
correlation function of the linear response.



2
Numerical Methods

The algorithms which are used in this thesis are primarily concerned with
applying homogeneous deformations to systems. While we use the Hessian
matrix to apply deformations in the linear regime, we implement FIRE (Fast
Inertial Relaxation Engine) to apply quasistatic nonlinear deformations. How-
ever, the FIRE algorithm is also used to generate soft sphere packings.
This chapter explains the algorithms and gives details about how they are
implemented.

11
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Figure 2.1: (a) Two soft disks overlapping. They have radii Ri, Rj , and distance rij . The force
they exert on each other is proportional to the overlap δij . (b) Soft sphere packing in a po-
tential energy minimum. The dashed particles indicate interactions due to periodic boundary
conditions.

2.1. Model and Notation
Notation: A vector xi which denotes any quantity refererring to an individ-
ual particle (e.g. positions, displacements, velocities, ...) is written in bold.
The elements of these vectors are xiα where Greek indices refer to Cartesian
coordinates and Latin letters indicate the index of the particle. If such a
vector has two Latin indices it denotes relative quantities between two par-
ticles. A vector that characterizes the state of the whole system is written
in bra-ket notation |x⟩ ..= |x1,x2,x3, ...,xN ⟩. In some cases degrees of free-
dom of the simulation cell are also included. In that case the cell degrees
of freedom are explicitely mentioned in the state vector |x,γ⟩. Matrices M̂
are indicated by a hat. In case of a unit vector n̂ we also use a hat.

Soft sphere packings: We consider systems in two spatial dimensions D
which consist ofN particles. The rectangular systems have volume V , edges
Lx and Ly, with periodic boundary conditions in both the x and y direction
(as indicated by dashed particles in figure 2.1b). The particles are disks,
half of which have radius r and the other half 1.4r to prevent them from
crystallizing. Two disks only interact if they overlap (see figure 2.1a). The
force that they then exert on each other is

fij =

{
−kδij

rij

rij
if δij > 0

0 otherwise
(2.1)

where the vector rij = rj − ri points from the center of particle i to the
center of particle j and the overlap δij is given by the difference between
their distance and the sum of their radii δij = Ri +Rj − rij. The interaction
is a one-sided harmonic spring with rest length Ri+Rj and spring constant
k. Results are reported in units which are constructed from the spring
constant and the diameter of the smaller particles.
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Figure 2.2: Creation protocol of PD and RC networks. PD networks with connectivity z are
created from a packing with the same connectivity. An RC network is created from a highly
connected packing and a desired contact number is reached by randomly cutting springs.

The process of numerically creating a soft sphere packing is started by
placing the disks in the simulation cell with their coordinates x ∈ [0, Lx) and
y ∈ [0, Ly) drawn from a uniform probability distribution. The next step is to
use the energy minimization algorithm FIRE (Fast Inertial Relaxation En-
gine [26], see Section 2.7.1) to minimize the potential energy of the system
at fixed volume and shape

U =
1

2
k
∑
i

∑
⟨ij⟩

δ2ij (2.2)

where ⟨ij⟩ denotes all the particles j which are in contact with particle i. The
result of such an energy minimization is shown in figure 2.1b. Especially for
low packing fractions it often happens that so called “rattlers” are present in
the system. These particles have no contacts and are therefore not part of
the network that spans the simulation box. They do not influence the linear
response of the system and are ignored during linear response calculations.

The equilibrated condition of soft sphere packings is in general under
stress - all elements of the stress tensor σ̂0 are non-zero. Stress in the
initial condition is called pre-stress.

The dynamics are overdamped which means that there is no inertia in
the system - all masses are set to zero. In Chapters 3, 4, and 5 the dynam-
ics are quasistatic, corresponding to vanishingly slow deformation rates. In
Chapter 6 we consider finite rate deformations in the overdamped limit. De-
tails of the overdamped dynamics are discussed in Section 2.6 and Chapter
6.

Elastic spring networks: There are two types of random spring networks
which are considered throughout this thesis.
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First, there are packing-derived (PD) networks, which are created start-
ing from a soft sphere packing. To create a PD network with a certain
connectivity z the particle centers in a packing with the desired connectiv-
ity are replaced with nodes. The contacts are turned into springs with their
rest length set to the separation of the particle centers in the equilibrated
configuration.

The second type of networks are randomly cut (RC) networks, which are
created starting from a highly connected packing with z ≈ 6 (see figure 2.2).
After turning this packing into a packing derived network a connectivity
z < 6 is reached by cutting springs. We use a cutting protocol which cuts
springs belonging to highly connected nodes first [21].

2.2. Linear Response - The Hessian Matrix
The linear response in a packing of soft spheres consists of two regimes: the
strictly linear regime and the weak linear response regime. In the strictly
linear regime the contact network stays unchanged and the weak linear
response regime follows after the first contact change has occured. The
stress-strain curve of a single system has a kink or jumps at this point,
but if an ensemble is considered the relation between stress and strain
(see Section 2.3) remain linear long after the first contact change. The
strain that can be applied until the first contact change occurs vanishes
for inifinitely large systems [27]. However, the extent of the weak linear
response regime depends on the confining pressure p but not on the system
size [28].

To describe the response in the strictly linear regime it is only neces-
sary to consider the linear part of the equations of motion. In this case the
algorithms are faster and the applied strain is, by construction, asymptot-
ically small. For nonlinear algorithms one has to test that the resulting
stress-strain curve is indeed linear.

Let |X⟩ be a vector containing 2N elements which are the positions of all
particles in mechanical equilibrium. Starting from this equilibrium config-
uration, we expand the change in energy∆U in terms of |u⟩, which contains
the linear displacements of the particles from the initial condition. (The
simulation box is held fixed - see Section 2.4 for linear response including
box degrees of freedom.) The energy change caused by the displacements
until quadratic order is:

∆U(|u⟩) = 1

2

∑
iα,jβ

∂2U

∂uiα∂ujβ

∣∣∣∣
|X⟩︸ ︷︷ ︸

Kiα,jβ

uiαujβ =
1

2
⟨u| K̂ |u⟩ . (2.3)

Since the system is in mechanical equilibrium the gradient, which means
the linear term, vanishes. The first non-vanishing term in the energy change
is therefore quadratic in the displacements. This term is proportional to the
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second derivatives of the energy in the equilibrium condition, which form
the Hessian or stiffness matrix K̂. It is also equivalent to the dynamical
matrix if all masses are set to one. If a displacement field |u⟩ is applied to
the system, the particles experience a body force |F ⟩, which is:

K̂ |u⟩ = |F ⟩ . (2.4)

On the other hand the case in which a body force is applied the linear set
of equations above is solved for the displacements |u⟩.

The Hessian matrix also yields the normal modes (eigenvectors) |ωi⟩ and
the corresponding eigenvalues ω2

i of the response. The eigenvectors have
norm one and are orthogonal because K̂ is a real symmetric matrix. Con-
sidering the eigenvalue equation:

K̂ |ωi⟩ = ω2
i |ωi⟩ ⇔ ⟨ωi| K̂ |ωi⟩ = ω2

i . (2.5)

and comparing it to (2.3) we find that ω2
i /2 is the energy cost of deforming

the system along an eigenmode |ωi⟩ with an amplitude of one. The full
response |u⟩ is a superposition of all eigenmodes |u⟩ =

∑
i ai |ωi⟩. Inserting

this into equation (2.4) it is possible to derive the ai and therefore the linear
response in terms of the eigenvalues and eigenvectors

|u⟩ =
∑
i

⟨F |ωi⟩
ω2
i

|ωi⟩ =
∑
i

Ξi

ω2
i

|ωi⟩ . (2.6)

The contribution of a normal mode to the overall response is linear in
Ξi = ⟨F |ωi⟩. We therefore refer to it as coupling between an eigenmode and
the applied force. Equation (2.6) shows that if two modes have the same
coupling the one with lower eigenfrequency has greater influence on the
linear response. In the Chapters 4 and 5 we will show that the coupling
is well approximated by a constant Ξ(ω) = Ξ for the systems and forces we
are considering. This means that we are able to draw a direct connection
between the energy cost of a normal mode and its contribution to the linear
response.

The solid body translations of the system do not cost energy. Upon solv-
ing equation (2.4) one finds a two-dimensional space of solutions for |u⟩.
However, if there is no net force acting on the system there is no coupling
between the solid body translations and the force. In that case the trans-
lations do not participate in the response and there is a unique solution
to equation (2.4). Rattlers also contribute an eigenmode with zero eigenfre-
quency but their coupling to an arbitrary body force vector is non-zero. This
would cause the linear response to only consist of the displacement of the
rattlers. For that reason all rattler are excluded from the linear response
calculations.

So far we only considered how to calculate the linear response to a vector
of body forces. However, ultimately, the goal is to calculate the response
to any type of homogeneous deformation, such as shear and compression
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Figure 2.3: Three possible deformations: uniaxial compression in x direction ϵxx and uniaxial
compression in y direction ϵyy together with a pure shear deformations ϵxy.

of the simulation cell. Before showing how this realized using the Hessian
matrix, we present background about the elasticity tensor.

2.3. The Elasticity Tensor

We seek to calculate the elasticity tensor Ĉ which is a linear connection
between an applied strain ϵαβ and the resulting stress σαβ

σαβ = Cαβγλ ϵγλ . (2.7)

The Cαβγλ are called moduli or coupling parameters. ϵαβ, σαβ and Cαβ,γλ
are all symmetric. Usually these quantities are presented in Voigt notation
[29] to reduce their order to two and one, respectively. The elasticity tensor
becomes a matrix

Ĉ =

Cxxxx Cxxyy Cxxxy
Cyyxx Cyyyy Cyyxy
Cxyxx Cxyyy Cxyxy

 (2.8)

while stress and strain are now represented as vectors

|σ⟩ =
(
σxx σyy σxy

)T and |ϵ⟩ =
(
ϵxx ϵyy 2ϵxy

)T
. (2.9)

Because of symmetry the elements ϵyx and σyx are omitted and the amount
of coupling parameters is reduced to six (Cαβγλ = Cγλαβ).

It is useful to represent |ϵ⟩ as a superposition of three basis vectors
êxx, êyy and êxy which all have norm one. êxx and êyy represent uniaxial
compressions in x and y directions while êxy denotes a pure shear defor-
mation (see figure 2.3). The vector |ϵ⟩ gives the amplitudes with which the
individual deformations are applied. The above mentioned set of deforma-
tions is the canonical choice when choosing a basis set of deformations that
spans the whole space of possible homogeneous deformations. It was also
chosen for the implementation of the Hessian matrix presented in the next
section. However, other choices are possible, because the elasticity tensor
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can be expressed in any other basis via a transformation. For instance, the
basis

êp =
1√
2
(êxx + êyy) , êq =

1√
2
(êxx − êyy) , and êxy (2.10)

includes two pure shear deformations (last two deformations) together with
a compression/expansion (see figure 2.4). The original basis |ϵ⟩ in terms of
the one above with amplitudes |ϵ′⟩ is

|ϵ⟩ = Q̂ |ϵ′⟩ with Q̂ =

1/
√
2 1/

√
2 0

1/
√
2 −1/

√
2 0

0 0 1 .

 (2.11)

Q̂ is an orthogonal matrix, which keeps the length of the basis vectors and
their relative orientation unchanged. It ensures that the elasticity tensor Ĉ′

represented in the new basis |ϵ′⟩ is still symmetric:

|σ′⟩ = Q̂T ĈQ̂ |ϵ′⟩ = Ĉ′ |ϵ′⟩ . (2.12)

Consequently, it is only necessary to choose one set of deformations when
implementing the Hessian matrix. All other moduli which are originally not
included can be deduced as shown above.

The networks or packings we are considering are each individually aniso-
tropic and all elements in Ĉ are in general non-zero. In an ensemble sense,
however, the systems are isotropic, so the number of independent param-
eters can be further reduced. First, all elements of Ĉ which couple com-
pression and shear have to vanish. This stems from the fact that there is
no preferred direction of shear in isotropic systems - therefore compression
cannot cause a shear. Additionally, the response to a uniaxial compression
has to be independent of whether it is applied in the x or y direction. This
reduces Ĉ and Ĉ′ to

Ĉ =

Cxxxx Cxxyy 0
Cxxyy Cxxxx 0
0 0 Cxyxy

 Ĉ′ =

Cxxxx + Cxxyy 0 0
0 Cxxxx − Cxxyy 0
0 0 Cxyxy .

 (2.13)

The fact that Ĉ′ is diagonal shows that the strains (2.10) are “eigenstrains”
of an isotropic system. If any of the three strains ϵp, ϵq, or 2ϵxy are applied
there is only a change in the corresponding stress. This is different in the
basis |ϵ⟩ where, for instance, applying ϵxx causes σyy to change.

The diagonal form of Ĉ′ is helpful. We can immediately identify the bulk
modulus Cxxxx + Cxxyy = 2K (see Landau and Lifschitz [30]). The other two
elements are both the shear moduli of pure shear deformations which are
the same in an isotropic medium Cxxxx − Cxxyy = 2G and Cxyxy = G. The
factor of two is caused by the factor of two in the strain tensor definition.
In this thesis we most commonly show data for the shear modulus G, the



2

18 2. Numerical Methods

Figure 2.4: Three deformations forming a full basis of all possible homogeneous deformations:
Compression, and two pure shear deformations.

bulk modulus K, and the mixed modulus C = K +G. Back in the basis |ϵ⟩
the elasticity tensor is therefore shown in the following two forms:

Ĉ =

K +G K −G 0
K −G K +G 0

0 0 G

 and Ĉ =

 C C − 2G 0
C − 2G C 0

0 0 G .

 (2.14)

2.4. Applying Homogeneous Deformations
Figure 2.3 illustrates that it is necessary to have degrees of freedom that
control the shape of the simulation cell in order to apply a homogeneous
deformation with which we can measure the individual elements of Ĉ. A
deformation is described by a deformation gradient F̂ which consists of the
derivatives of the the coordinates after the deformation X ′

i with respect to
their values Xi before the deformation. A general form is:

X ′
i = F̂Xi with Fαβ =

∂X ′
iα

∂Xiβ
= δαβ + ϵαβ (2.15)

with ϵαβ = ϵβα. The last expression on the right gives an explicit form of
the deformation gradient in the linear regime where it is an affine (homoge-
neous) deformation. In that case F̂ is the same everywhere in the system.

If the response of a system is purely affine all particles follow the defor-
mation gradient as stated in (2.15), which means that the displacements
are uaiα =

∑
β ϵαβXiβ. In case of a disordered system the deformation also

causes non-affine displacements u, which are displacements deviating from
the affine displacements described by the homogeneous deformation gra-
dient in equation (2.15). The total displacement utot is given by the super-
position of the non-affine with the affine part [31]:

utotiα = uiα + uaiα = uiα +
∑
β

ϵαβXiβ . (2.16)

Similar to equation (2.3), we expand the change of the energy in powers
of the displacements, which are a function of the non-affine displacements
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and the applied strain:

∆U(|utot⟩) =
∑
iα

∂U

∂uiα

∣∣∣∣
|X⟩︸ ︷︷ ︸

0

uiα +
∑
αβ

∂U

∂ϵαβ

∣∣∣∣
|X⟩︸ ︷︷ ︸

σαβ,0V

ϵαβ +
1

2

∑
iα,jβ

∂2U

∂uiα∂ujβ

∣∣∣∣∣
|X⟩︸ ︷︷ ︸

Kpp
iα,jβ

uiαujβ

+
∑
iα,βγ

∂2U

∂uiα∂ϵβγ

∣∣∣∣
|X⟩︸ ︷︷ ︸

Kbp
iα,βγ

uiαϵβγ +
1

2

∑
αβγλ

∂2U

∂ϵαβ∂ϵγλ

∣∣∣∣
|X⟩︸ ︷︷ ︸

Kbb
αβγλ

ϵαβϵγλ . (2.17)

This expansion contains the familiar gradient of the energy, which vanishes
in the equilibrium condition but now has another contribution associated
with the box degrees of freedom. The contribution does not vanish if the
system is under pre-stress, σαβ,0 ̸= 0, and adds a term linear in the ap-
plied strain. Furthermore, there is the term that forms the Hessian matrix
which was already mentioned in Section 2.2. In this expression we give
the Hessian the superscript “pp” to emphasize that it contains the particle-
particle-interactions. K̂pp is identical to K̂ in equation (2.3). Aside from the
familiar terms that denote particle interactions, there is also a term that
couples the box deformation and the particle positions and a term that
only couples box degrees of freedom.

The next step is to alter equation (2.17) into an equation similar to (2.3),
which consists only of one matrix. First, all stress and strain elements are
gathered in two vectors, see equation (2.9). Now equation (2.17) can be
written in a more succinct way:

∆U(|u, ϵ⟩) = V ⟨σ0|ϵ⟩+
1

2
⟨u| K̂pp |u⟩ + ⟨ϵ| K̂bp |u⟩+ 1

2
⟨ϵ| K̂bb |ϵ⟩ (2.18)

K̂bp is a 3×2N matrix and K̂bb is a 3×3matrix. Now if all degrees of freedom
are gathered in one state vector |u, ϵ⟩, all four terms in the equation above
can be combined into one matrix

K̂ϵ =

(
K̂pp K̂pb

K̂bp K̂bb

)
with K̂pb =

(
K̂bp

)T
(2.19)

containing both particle and box degrees of freedom. Finally it is possible
to write the change in energy in a similar manner to equation (2.3):

∆U(|u, ϵ⟩) = V ⟨0,σ0|u, ϵ⟩+
1

2
⟨u, ϵ| K̂ϵ |u, ϵ⟩ . (2.20)

Applying an arbitrary deformation |u, ϵ⟩ causes the body forces and the
stress to be |F ,σV ⟩ = |0,σ0V ⟩ + K̂ϵ |u, ϵ⟩. However, if only the boundaries
are forced, all body forces are zero. The field of nonaffine displacements and
the strain in response to a stress can be obtained by solving the equation

K̂ϵ |u, ϵ⟩ = |0, (σ − σ0)V ⟩ = |0,∆σV ⟩ . (2.21)
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The equation above represents a “stress-controlled” deformation. If a sys-
tem is deformed through stress control, a specific stress is applied at the
boundaries. The resulting strain can then be measured. In such a stress-
controlled simulation one measures a compliance tensor Ŝ instead of the
elasticity tensor. The two are connected simply by inversion Ĉ = Ŝ−1. To
calculate the whole 3 × 3 compliance tensor it is necessary to solve (2.21)
three times, applying each of the three deformations shown in figure 2.3
separately. Each solution consists of a vector with three elements, two of
which yield information about the coupling between deformations. All three
vectors combined finally yield the complete compliance tensor.

It is also possible to implement the deformation in a “strain-controlled”
manner - a strain is applied to the system and the resulting stress is mea-
sured. Here K̂ϵ is decomposed back into the four matrices

K̂pp |u⟩+ K̂pb |ϵ⟩ = |0⟩
K̂bp |u⟩+ K̂bb |ϵ⟩ = |∆σ⟩ .

(2.22)

This set of linear equations can be solved by solving the upper equation
|u⟩ = −(K̂pp)−1K̂pb |ϵ⟩ and inserting the result into the lower equation:

|∆σ⟩ =
(
K̂bb − K̂bp(K̂pp)−1K̂pb

)
︸ ︷︷ ︸

Ĉ

|ϵ⟩ . (2.23)

The elements of K̂bb are also called Born or affine moduli. If nonaffine
displacements are absent Ĉ = K̂bb. This applies to perfect crystals.

In practice it is numerically inefficient to compute the inverse of K̂pp

directly. It is better to solve the first of the two equations in (2.22) for three
different deformations separately, similarily as in the calculation of Ŝ , and
then combining the result to obtain Ĉ.

Calculating the moduli in a strain controlled fashion has numerical ad-
vantages. The matrix which has to be inverted is K̂ and not K̂ϵ. The conver-
gence rate and the accuracy of the solution of linear solvers is determined
by the condition number which is, in case of the Hessian matrix, given by
the ratio of the largest and smallest eigenvalue κ(K̂) = λmax/λmin. For both
K̂ and K̂ϵ the smallest eigenvalues are approximately the same. However,
the eigenvalue in K̂ϵ which corresponds to the deformation of the box is of
order N , while the largest eigenvalue in K̂ is of order one. This means that
the linear system of equations which has to be solved in strain control is
numerically more stable.

The results for the linear response presented throughout this thesis were
obtained with direct solvers from the Eigen C++ library [32]. In case of
real linear equations we used a sparse LDLT decomposition which is a
variant of the Cholesky decomposition. For complex equations a sparse LU
decomposition was used. Decompositions are useful if it is necessary to
solve for several force vectors, because the decomposition can simply be
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Figure 2.5: (a) Three disks overlapping in a soft sphere packing. (b) Purely affine pure shear
deformation of a soft sphere packing.

reused. This is beneficial if more than one deformation is applied to the
system. For example, in Chapter 3 the same system of linear equations is
solved for more than one hundred force vectors.

While the idea of adding box degrees of freedom was introduced here in
a general way, the following sections only focus on shear to simplify the
notation.

The following section gives the Hessian in the specific case of soft sphere
packings. It also gives details how the Hessian is implemented in the code
for one box degree of freedom. Section 2.6 focuses on an extension of the
method described here in which dynamics are also considered.

2.5. The Hessian Matrix for Soft Sphere Packings
This section derives concrete expressions for the Hessian matrix in the case
of soft sphere packings undergoing a pure shear deformation, as depicted in
figure 2.5b. While it is possible to calculate K̂ϵ straightforwardly using the
expression given in the expansion of the energy (2.17), we follow a different
approach in this section that is flexible and easier to implement. The idea
is to split the calculation of the Hessian into two steps: First a Hessian is
calculated which only depends on the interaction potential and does not
contain information about the contact network. This information is added
in a second step in which the box degrees of freedom are considered.

First, the interaction potential is rewritten using small relative displace-
ments ∆uij = uj − ui:

∆U(|∆u⟩) = k

2

∑
i

∑
⟨ij⟩

(Ri +Rj − |rj − ri +∆uij |)2 . (2.24)

⟨ij⟩ denotes the sum over all particles j which particle i is in contact with.
Note that this expression is in terms of the change in the relative distance
between any two particles i and j. The vector |∆u⟩ has Nz elements. Taking
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the second derivatives of the energy in this relative basis gives a matrix K̂∆

with dimension Nz×Nz which only has 2×2matrices K̂∆
ij along its diagonal

∂2∆U(|∆u⟩)
∂2∆uij

∣∣∣∣
|0⟩

= K̂∆
ij = k

[
1̂ +

(Ri +Rj)

r3ij

(
−y2ij xijyij
xijyij −x2

ij

)]
(2.25)

and is zero otherwise. xij and yij are the elements of rij. Each contact is
uniquely identified by ij with i > j so that contacts are not counted twice.

The second step is to transform K̂∆ into the Hessian, which acts on the
set of all absolute displacements |u, γ⟩. Consequently, we are looking for a
transformation Â such that

Â |u, γ⟩ = |∆u⟩ (2.26)

where Â is a 2N + 1 × Nz matrix that implements the connectivty of the
network and also adds the box degree of freedom. The Hessian K̂ϵ can be
calculated with

K̂ϵ = ÂT K̂∆Â . (2.27)
While we are focusing here on the case of pure shear, the choice of which
deformation to apply does not influence the first step of the calculation.
The box degrees have to be considered for the calculation of Â because the
relation between relative and absolute displacements depends on the exact
choice. For the pure shear depicted in figure 2.5b, we have the relation

∆uij,x = uj,x − ui,x + γyij

∆uij,y = uj,y − ui,y + γxij .
(2.28)

between relative and absolute coordinates. Â can be rewritten in terms of
the derivatives of ∆uij,α with respect to ukα

∆uij,α =
∑
k

∂(∆uij,α)

∂ukα
ukα +

∂(∆uij,α)

∂γ
γ

⇒ |∆uij⟩ = Âpp |u⟩+Apbγ .

(2.29)

Âpp is aNz×2N matrix which does not depend on the box degree of freedom.
Apb is a vector of size Nz (or a matrix in the case that more than one box
degree of freedom is used).

For a small assembly of particles shown in 2.5a with three particles
having three contacts 31, 32, and 21 one gets the following transformation
matrix:

Â =
(
Âpp Apb

)
=



u1,x u1,y u2,x u2,y u3,x u3,y γ

∆u32,x 0 0 1 0 −1 0 y32
∆u32,y 0 0 0 1 0 −1 x32

∆u31,x 1 0 0 0 −1 0 y31
∆u31,y 0 1 0 0 0 −1 x31

∆u21,x 1 0 −1 0 0 0 y21
∆u21,y 0 1 0 −1 0 0 x21 .


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It is easy to add and remove box degrees of freedom by simply adding and
removing columns accordingly. The rest of the calculation of K̂ϵ does not
depend on which box degrees of freedom are used.

One disadvantage of the method presented here is that instead of initial-
izing elements of the final Hessian directly, one has to initialize two addi-
tional temporary matrices. Consequently, the method presented above has
higher memory demands compared to a direct calculation of the Hessian.
However, for all matrices involved a large fraction of the elements are zero.
In fact, the number of nonzero elements is proportional to the number of
contacts Nz/2 in the system, which is proportional to N . The size of the
matrices increases as N2, which means that the fraction of nonzero ele-
ments is 1/N in all matrices and therefore vanishes in large systems. For
this reason it is beneficial to store all matrices in a sparse matrix format, for
which the memory demand increases only linearly with the system size. In
that context storing two additional matrices does not cause any problems
even for the larger systems discussed in the course of this thesis, for which
N = 65536.

2.6. Adding Dynamics - Oscillatory Rheology
To probe the viscoelastic response of materials it is common to perform
oscillatory rheology measurements. In these experiments a sample is de-
formed with a periodic force eiωt |0, σxy⟩ and one measures the frequency
dependent shear modulus G∗. This so called dynamical modulus is a com-
plex numberG∗ = G′+iG′′, where the real part is called the storage modulus
and is proportional to the energy stored elastically. The imaginary part is
proportional to the energy which is dissipated during one deformation cycle
and is therefore also refered to as the loss modulus. The fact that the mod-
ulus is a complex number reflects that there is a phase difference between
shear stress σxy and strain γ (see figure 2.6). The phase angle θ is given by
θ = arctan(G′′/G′).

Figure 2.6: The damping causes a phase difference between stress and strain. As the loss
modulus becomes much larger than the storage modulus this phase angle approaches π/2.
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The Hessian matrix approach mentioned above describes quasistatic re-
sponse. It is therefore insufficient to calculate G∗ at finite frequencies. To
add information about time scales it is necessary to add damping to the
equations of motion. In the linear regime this adds another term to (2.21)
that is linear in the velocity of the particles

K̂ϵ |u, γ⟩+ B̂ϵ |u̇, γ̇⟩ = eiωt |0, γ⟩ . (2.30)

The equation above is an overdamped driven oscillator with driving fre-
quency ω. The damping matrix B̂ϵ is derived from Rayleigh’s dissipation
function R which can be used in Lagrangian mechanics to implement dis-
sipation [33]. R is constructed such that the negative gradient with respect
to the velocity gives the dissipative force

|F ⟩diss = − ∂R
∂ |u̇, γ̇⟩

. (2.31)

Note that box degrees of freedom are also included. The exact form of R
depends on the damping law - see Chapter 6 for explicit expression of R for
a variety of damping laws. The damping matrix is defined similarily to the
Hessian by the second derivatives of the Rayleigh dissipation function:

Bpp
iαjβ =

∂2R
∂u̇iα∂u̇jβ

∣∣∣∣
|0⟩

, Bpb
iα =

∂2R
∂u̇iα∂γ̇

∣∣∣∣
|0⟩

, and Bbb =
∂2R
∂2γ̇

∣∣∣∣
|0⟩

. (2.32)

Because we are dealing with a driven oscillator, the differential equation
can be solved with the ansatz

|u, γ⟩ = |A, Aγ⟩ eiωt , (2.33)

with complex amplitudes |A, Aγ⟩ that depend on the driving frequency. A
more general ansatz would be with a frequency Ω not necessarily equal to
the driving frequency. However, the system will eventually oscillate with
the driving frequency after an intial transient period. The ansatz therefore
describes the response after the system has reached a stable oscillation.
Inserting the ansatz into equation (2.30) and canceling the exponential gives(

K̂ϵ + iωB̂ϵ
)
|A, Aγ⟩ = |0, σxyV ⟩ . (2.34)

This complex linear set of equations can be solved with any driving fre-
quency for the amplitudes of the resulting oscillation. Finally, the shear
modulus is G∗ = 1/Aγ.

Another important experimental setup is the application of a sudden
stress. The system starts in mechanical equilibrium and at t = 0 a stress
|σxyV ⟩ is applied infinitely fast - the stress is a step funtion in time. The
differential equation which describes this setup after the stress was applied
is

K̂ϵ |u, γ⟩+ B̂ϵ |u̇, γ̇⟩ = |0, σxyV ⟩ (2.35)
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which is a first order inhomogeneous differential equation. The solution
of such an equation is the superposition of the general solution of the ho-
mogeneous equation and a particular solution of the inhomogeneous equa-
tion. The latter can be constucted by setting |u̇, γ̇⟩ = |0, 0⟩, which recovers
equation (2.21). The homogeneous part can be solved with an exponential
ansatz

|u, γ⟩ =
∑
i

e−sit |si, s
γ
i ⟩ . (2.36)

This ansatz and the particular solution of the inhomogeneous equation give
a clear picture of the dynamics. Subjecting the initial equilibrium configu-
ration to a sudden stress change causes it to relax into a new equilibrium
condition which is given by the quasistatic solution (after waiting an in-
ifinitely long time), which can be calculated by solving (2.21). The relaxation
process can be decomposed into exponential functions that each have an
associated relaxation rate si. The relaxation rates and the associated mode
|si, s

γ
i ⟩ can be calculated by inserting (2.36) into the homogeneous equation:∑

i

(
K̂ϵ − siB̂ϵ

)
e−sit |si, s

γ
i ⟩ = 0 . (2.37)

For a set of linearly independent modes |si, s
γ
i ⟩ this equation can only have

a solution if all parts of the sum vanish independently. This yields the
following generalized eigenvalue equation

K̂ϵ |si, s
γ
i ⟩ = si B̂ϵ |si, s

γ
i ⟩ . (2.38)

The eigenvalues si are the relaxation constants and |si, s
γ
i ⟩ are the eigen-

modes which are B̂ϵ-orthogonal, ⟨si, s
γ
i |B̂ϵ|sj , s

γ
j ⟩ = 0 if i ̸= j. The eigenvalues

give time scales on which a certain eigenmode relaxes and the eigenvector
gives the displacement field of the eigenmode. This is helpful for describing
the linear response on different time scales (see Chapter 6).

Furthermore, the eigenvalues and eigenvector obtained from equation
(2.38) can be used to solve equation (2.34). We know that the solution can
be decomposed into the relaxation modes |A, Aγ⟩ =

∑
i ai |si, s

γ
i ⟩. Inserting

this decomposition into equation (2.34), using the generalized eigenvalue
equation (2.38) and the fact that the eigenmodes are B̂-orthogonal, one can
derive that

|A, Aγ⟩ = V
∑
i

1

(si + iω)

⟨0, σxy|si, s
γ
i ⟩

⟨si, s
γ
i |B̂ϵ|si, s

γ
i ⟩

|si, s
γ
i ⟩ . (2.39)

This result can be used to compute the shear modulus 1/G∗ = ⟨0, 1|A, Aγ⟩
for all possible driving frequencies at once. However, numerically solving
the generalized eigenvalue equation for both eigenvalues and eigenvectors
is expensive and scales with the cube of the linear size of the matrices K̂ϵ

and B̂ϵ. Another challenge is that the resulting set of eigenvectors forms a
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dense matrix which takes large amount of memory to store if the systems
are large. For the system sizes used here it is faster and more memory
efficient to solve equation (2.34) directly with a linear solver even though it
is necessary to repeatedly solve the equation for all required values of ω.

2.7. Finite Deformations
While the strictly linear regime can be probed efficiently with the Hessian
approach, it is not fit to investigate nonlinear phenomena like strain stiffen-
ing or the Poynting effect (see Chapter 5). On the one hand this is because
soft sphere packings change their contact network as one deforms the sys-
tem. On the other hand even the force (2.1) is nonlinear in the particle
positions when D > 1, because of the square root in the norm of the sep-
aration vector rij. It is therefore also necessary to implement nonlinear
algorithms to investigate finite amplitude deformations in networks, which
do not have contact changes.

In the following we present a strain- and a stress-controlled manner to
apply a quasistatic finite deformation using the FIRE algorithm [26]. After
giving an introduction to the algorithm, we focus on two modes of defor-
mations used in Chapter 5: the strain-controlled application of pure shear
strain ϵq (Section 2.7.2) and the stress-controlled application of a combina-
tion of a pure shear stress q and pressure p (Section 2.7.3). The implemen-
tation described here was used for random elastic networks and has not
been tested extensively for soft sphere packings. The FIRE algorithm itself
is not influence by the type of system we use. However, certain parameters
may have to be chosen differently.

2.7.1. The FIRE algorithm
The FIRE (Fast Inertial Relaxation Engine) algorithm was first introduced
in [26]. The authors use the picture of a blindfolded skier in a mountainous
area, which resembles the energy landscape of the system in question. The
skier starts in an elevated position in the mountains and tries to find his
way down into the valley without seeing. The algorithm suggests three rules
that the skier should follow to arrive in the valley efficiently:

1. He should steer such that he slowly turns into the steepest direction
pointing downhill

2. If he goes uphill he should stop and turn back downhill into the di-
rection of steepest decent

3. The longer he goes downhill without stopping the more he should in-
crease his velocity

The algorithm is implemented with an MD scheme based on the equation

|v̇(t)⟩ = 1

m
|F ⟩ − g(t)v(t)

(
|v(t)⟩
v(t)

− |F ⟩
F

)
(2.40)
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with the mass of the skier m, the gradient of the energy |F ⟩ = −∇U , and the
velocity |v(t)⟩. The function g(t) implements the three rules. The right part
of the equation proportional to the velocity is discretized using the Euler
method:

|vt⟩ → |vt⟩ − α |vt⟩+ α
|F ⟩
F

|vt⟩ (2.41)

where α = g∆t. The FIRE algorithm consists of the following steps:

1. The first part of equation (2.40) |v̇(t)⟩ = |F ⟩ /m (with m = 1) is inte-
grated using any common integrator. We choose a leapfrog integrator
[34, 35]. Starting from the velocities |vt⟩ and positions |Xt⟩ this yields
new velocities and positions |vt+1⟩ and |Xt+1⟩.

2. The new velocities and positions are used to calculate the scalar prod-
uct P = ⟨vt+1|F (|Xt+1⟩)⟩. The gradient is also used to check for con-
vergence.

3. The new velocities are updated according to (2.41).

4. Depending on the sign of P one of the following steps is carried out
afterwards:

• P < 0: The velocities are set to zero |vt+1⟩ = |0⟩, the timestep is
decreased ∆t → fdec∆t, and α is reset to its initial value α → α0.

• P > 0 and the number of timesteps Nt since the last time P < 0
is Nt > Nmin: The timestep is increased ∆t → min (finc∆t,∆tmax)
and α is decreased α → fαα.

In the first case (P < 0) the skier is going uphill. He stops and turns into
the direction of steepest decent. Decreasing the timestep has the effect that
the skier is moving slower directly after stopping - in fact the algorithm
progresses slower because it takes smaller steps during each iteration. In
the second case (P > 0) the skier turns more into the direction of steepest
decent (α is decreased) and increases movement speed (∆t is increased).

The steps above are repeated until no element in the gradient is larger
than a threshold T which we choose to be T = 10−10. The parameters above
were chosen as suggested in [26]: Nmin = 5, finc = 1.1, fdec = 0.5, α0 = 0.1,
fα = 0.99, and ∆tmax = 10∆t0 where we choose ∆t0 = 0.1.

We found that FIRE is easy to implement and its parameters do not need
extensive problem-specific tuning. We use the same set of parameters for
the deformation of quasistatic spring networks and the generation of soft
sphere packings.

2.7.2. Strain Control
The application of a finite strain-controlled deformation is composed of two
steps. First, an affine deformation is applied to the particle positions Xi
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and the lattice vectors Lx and Ly:

X ′
i = F̂Xi and L′

α = F̂Lα with F̂ =

(
1 ϵq
ϵq 1 .

)
(2.42)

After this affine deformation the particles are displaced out of their energy
minimum. The gradient |F ⟩ does not vanish anymore. In the second step
the energy of the system is minimized keeping the shape of the box fixed.

After successful minimization the shear modulus can be calculated with
the stress tensor

σαβ =
1

2V

∑
ij

fij,α
rij,β
rij

with q = −1

2
· (σxx − σyy) p = −1

2
(σxx + σyy)

(2.43)

The shear modulus can be calculated with G = q/ϵq. Alternatively, it is
possible to calculate the shear modulus of the new configuration using the
Hessianmatrix. The calculation of the shear modulus with the stress tensor
yields the secant modulus, while one calculates the tangent modulus with
the Hessian.

When deforming soft sphere packings quasistatically it is necessary to
keep the strain steps ∆γ small, otherwise the outcome of the minimization
depends on its value. In the appendix of [36] it is shown that for packings
the result of a shear deformation becomes independent of ∆γ if ∆γ < 10−4

if N ≤ 2048. For the case of elastic networks, the choice of ∆γ is not as
important because these materials are well approximated as hyperelastic.
That means that the stress and the strain are not history dependent - they
are state variables.

2.7.3. Stress Control
For the case of stress control, we target a certain shear stress q and pressure
p. The potential energy of the system is minimized under the constraint that
the pressure and shear stress in the final configuration are

q(Xfinal) = qt and p(Xfinal) = pt . (2.44)

qt and pt are the target shear stress and pressure. The deformation gradient
is

F̂ =

(
1 + ϵq 0

0 1/(1 + ϵq)

)
·
(
1 + ϵp 0

0 1 + ϵp .

)
(2.45)

The minimization problem has 2N +2 degrees of freedom, which we choose
to present here in a deformed simulation cell C ′ with coordinates |X ′⟩ and
strain ϵq and ϵp. The coordinates |X⟩ refer to a reference simulation cell C
with volume V , which is defined to have zero strain. Also here we have the
relation |X ′⟩ = F̂ |X⟩
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If a system changes shape or volume, it has to perform work against the
external stresses qt and pt. A system that is inflated to a volume V ′ has to
perform the work Wp = ptV

′. If a system starts as a square with volume V ′

and is deformed into a rectangle with the same volume, the work against
the external shear stress is

Wq = 2qtV
′ ln(1 + ϵq) . (2.46)

Including these two additional energy terms into the total energy of the
system we get

H(X ′) = U(X ′) + ptV
′ + 2qtV

′ ln(1 + ϵq) (2.47)

which is an enthalpy. From this enthalpy we can derive the forces which
are associated with the particle degrees of freedom, as well as the forces
associated with the degrees of freedom of the box:

Fi = −
(
∂H(X ′)

∂X ′
i

)
ϵp=0,ϵq=0

= −k
∑
j

δij
rij
rij

Fp = −
(
∂H(X ′)

∂ϵp

)
|X⟩,ϵq=0

= 2V
(
p(X)− pt

)
Fq = −

(
∂H(X ′)

∂ϵq

)
|X⟩,ϵp=0

= 2V
(
q(X)− qt

)
.

The gradient is evaluated at zero because each step in the minimization
algorithm starts in C and deforms the system into a new shape C′. For the
next step in the minimization that new shape serves as the reference shape
C with zero strain.

The box degrees of freedom displace all particles at once and therefore
have higher inertia than the particle degrees of freedom - their masses,
mp and mq, are higher than the masses of the particle degrees of freedom.
During the equilibration process we are only interested in the new equi-
librium configuration - the configuration of the network after waiting an
infinitely long time after the stress was applied. Here it is not important
to correctly model the dynamics of the networks during a shear deforma-
tion. Consequently, we have freedom to choose mp and mq in order to reach
the equilibrium configuration efficiently. In elastic networks we found that
setting mp = mq = N2 significantly speeds up the minimization.

During the FIRE minimization the box degrees of freedom are treated
separate from the particles. While all parameters mentioned in Section
2.7.1 - T , Nmin, finc, fdec, α0, fα, ∆tmax, and ∆t0 - are the same, ∆t, α, Nt, P
are computed separately. We found this to be beneficial because box and
particles converge with different speeds. For instance, as the pressure in
the simulation cell is already close to the target value it starts to fluctuate
around that value frequently setting velocities to zero. If this stopping also
applies to the particles that are not yet equilibrated, the algorithm only
follows the gradient in each time step, which is inefficient.
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Furthermore, the velocities of the box degrees of freedom are limited
so that they do not exceed a value of 0.1, which is most important in the
beginning of the minimization if the difference to the target stresses are
high.



3
Nonlocal Elasticity near

Jamming in Frictionless Soft
Spheres

We use simuations of frictionless soft sphere packings to identify novel con-
stitutive relations for linear elasticity near the jamming transition. By forcing
packings at varying wavelength, we directly access their transverse and lon-
gitudinal compliances. These are found to be wavelength dependent, in vio-
lation of conventional (local) linear elasticity. Crossovers in the compliances
select characteristic length scales, which signify the appearance of nonlo-
cal effects. Two of these length scales diverge as the pressure vanishes,
indicating that critical effects near jamming control the breakdown of local
elasticity. We expect these nonlocal constitutive relations to be applicable
to a wide range of weakly jammed solids, including emulsions, foams, and
granulates.

This chapter is based on the following publication:
Karsten Baumgarten, Daniel Vågberg, Brian P. Tighe, Phys. Rev. Lett. 118, 098001 (2017)
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Figure 3.1: (a) Sinusoidal forcing applied to a soft sphere packing, and (b) the resulting dis-
placements. (c) A parametric plot of the constitutive relation is linear with a slope that in-
creases with wavenumber q, violating classical elasticity (dashed line).

3.1. Introduction
Classical linear elastic continuum theory is blind to structure: it contains
no length scale(s) characteristic of, e.g., interparticle interactions or struc-
tural correlations [30]. As a result, the theory is only valid at asymptoti-
cally long wavelengths. While predicted displacement fields can be accurate
down to a few lattice constants in ordered solids, deviations in amorphous
materials are apparent over much longer distances [37, 38]. Soft sphere
packings, a standard model for emulsions, foams, and granular materials,
provide an important example of this effect. Response functions in sim-
ulated packings depart significantly from elasticity [11, 12, 39] when the
packings are close to the (un)jamming transition at zero confining pressure
p [3, 8].

Jammed solids are anomalously soft: while their shear modulus G0 ∼
p1/2 vanishes continuously, the bulk modulus K0 jumps discontinuously
to zero at the jamming point. The vibrational density of states also dis-
plays excess low frequency modes with a characteristic scale ω∗ ∼ p1/2.
Together with a linear dispersion relation, these features imply that longi-
tudinal and transverse sound are characterized by diverging length scales
l∗ ∼ K

1/2
0 /ω∗ ∼ 1/p1/2 and lc ∼ G

1/2
0 /ω∗ ∼ 1/p1/4, respectively [9, 10]. De-

tails remain controversial, but there is consensus that the break down of
classical elasticity near jamming is governed by l∗ [11], lc [12], or both [39].

In order to determine the response of jammed solids at short wave-
lengths, one typically gives up on continuum descriptions and turns to
computationally expensive methods that resolve discrete particles, such
as molecular dynamics, with resulting restrictions on accessible system
sizes. Here we show that, close to jamming, continuum elasticity can be
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extended to short wavelengths and the considerable computational advan-
tages of continuum methods can be retained by using nonlocal constitutive
relations, which “know about” microstructure by incorporating at least one
length scale ℓ [40–43]. Our work is inspired by recent demonstrations that
nonlocal effects play a central role in rheology near jamming [44–56], and
in particular by the successful application of nonlocal models to predict
unusual phenomena such as flow below the nominal yield stress [48, 57]
and wide shear bands in split-bottomed Couette cells [58, 59].

Nonlocal linear elastic constitutive relations replace the usual moduli
with kernels in an integral relation [41]. This can be illustrated with a
classical scalar constitutive relation σ = C0ϵ in one dimension, which relates
the stress σ to the strain ϵ via a modulus C0 and holds at each position x in
a volume Ω. Its nonlocal counterpart σ(x) =

∫
Ω
C(x− x′)ϵ(x′)dx′ introduces

a kernel C(x). The kernel is a priori unknown, though it must vanish as
x → ∞ and must be an even-valued function in isotropic systems. The
integral constitutive relation can be approximated with a weakly nonlocal
or stress gradient form (1 − ℓ2∂2)σ = C0ϵ. (Strain gradient variations are
also possible.) In this simpler form all nonlocal effects are quantified by
the coefficient ℓ, which has units of length. To characterize and quantify
nonlocal effects in a material, one must determine ℓ, or more generally its
full kernel. We do so by measuring the wavenumber-dependent compliance
S̃(q) = 1/C̃(q), where C̃(q) is the Fourier transform of C(x). In a tensorial
theory for isotropic materials the kernel is not a scalar but a rank 4 tensor
with two independent elements, which can be determined by measuring
two separate compliances.

In the typical approach to nonlocal modeling, one uses data fitting to
determine free parameters in a particular model. This can make it difficult
to discriminate between the many available models [40–45, 47–49, 52, 54–
59]. Our method more closely resembles oscillatory rheology, which gives
direct access to frequency-dependent viscoelastic moduli without fitting to
a model. Here we apply forcing that is periodic in space, rather than time,
thereby measuring wavelength-dependent compliances [60, 61] without in-
voking the fluctuation-dissipation relation [62]. On the basis of our mea-
surements, we identify two diverging length scales, growing fluctuations,
and new nonlocal constitutive relations.

3.2. Model system
We study mixtures of N soft disks in D = 2 dimensions with equal numbers
of large and small disks having a 1.4:1 ratio of their radii, a commonly stud-
ied model system [3, 63]. Unless noted otherwise, N = 65,536 prior to remov-
ing non-load bearing “rattlers”. Contacting disks labeled i and j interact via
a pair potential Vij = (1/2)kδ2ij, where δij is the difference between the sum
of the disks’ radii and their center-to-center distance. Non-contacting disks
do not interact. All results are reported in units where the spring constant
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k and the small particle diameter d are equal to 1. Packings are prepared in
a bi-periodic L×L cell via instantaneous quench from infinite to zero tem-
perature using a nonlinear conjugate gradient method [36], followed by a
series of small volume changes to reach a target pressure. Particle displace-
ments are determined by inverting DN coupled linear equations involving
the Hessian, the matrix of second derivatives of the potential energy with
respect to the particle positions [13, 31]. The response is calculated for
vanishing perturbation amplitude, so contact changes and other nonlinear
effects are absent. However, recent work has shown that the Hessian accu-
rately predicts average stress-strain curves over finite strain intervals with
an extensive number of contact changes [27, 28, 64–66]. We employ the
standard technique of “removing the pre-stress”, which is equivalent to re-
placing each contact with a spring at its rest length [14, 67]. Data with the
pre-stress are qualitatively similar but noisier. While all our simulations
are in D = 2 dimensions, we expect no qualitative differences for D ≥ 3,
because the upper critical dimension for jamming is 2 [65].

3.3. Measuring nonlocal constitutive relations
We adapt a method developed independently by several authors – see Refs.
[39, 68] and especially [60, 61], which explicitly make the connection to
nonlocality. Packings are subjected to longitudinal and transverse force
densities

f∥(y) = (0, f∥)
T sin qy (3.1)

f⊥(y) = (f⊥, 0)
T sin qy (3.2)

with wavenumber q. These establish changes in the stress tensor with
Fourier amplitudes δσ̃yy(q) ≡ σ̃∥(q) = f∥/q and δσ̃xy(q) ≡ σ̃⊥(q) = f⊥/q, re-
spectively. We then measure the average displacement fields u∥ = (0, u∥)

T

and u⊥ = (u⊥, 0)
T . Longitudinal forcing and response are illustrated in Fig-

ure 3.1a and b. We restrict ourselves to linear response [28, 66], though
application to nonlinear response and flow is possible.

In a classical and isotropic elastic continuum, a sinusoidal force density
establishes a sinusoidal displacement field in phase with the forcing. Hence
we can reproduce the constitutive relation by noting that a parametric plot
of, e.g., the y-components of qu∥(y) and q−1 f∥(y) sweeps out the same curve
as a conventional plot of strain ϵ∥ versus stress σ∥. (This is simplest to see in
a scalar 1D model, where the force density f = −∂σ and the strain ϵ = ∂u.)
Classical elasticity predicts the curve will be linear with a constant slope
K0+G0 in two dimensions. The slope is independent of q because the theory
is insensitive to gradients. In Figure 3.1c we demonstrate that the second
prediction fails near jamming: the slope varies with q and approaches the
classical prediction (dashed line) only as q → 0, when spatial gradients are
weakest. This is our first main result: the elasticity of jammed packings is
indeed nonlocal.
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Figure 3.2: (a) Longitudinal compliance S̃∥(q) versus inverse wavelength λ for pressures
10−5.5 ≤ p ≤ 10−2 in half decade steps. (inset) Nonlocal length scale determined from
S̃∥(2π/ℓ∥)/S̃∥(0) = 2. (b) Data collapse of the excess compliance ∆s̃∥(q) for mixed (main panel)
and pure power law rescaling (inset).

To quantify nonlocality, we measure the longitudinal compliance S̃∥(q) =

q2ũ∥(q)/f∥ and transverse compliance S̃⊥(q) = q2ũ⊥(q)/f⊥ for each packing
via direct Fourier transform of the displacement field. These two compli-
ances fully determine the linear nonlocal constitutive relation [41], which
in Fourier space reads σ̃αβ(q) = C̃αβγδ(q) ϵ̃γδ(q) (summation implied). Due
to several symmetries, in isotropic materials the tensor C̃ has just two in-
dependent elements [30]; these are fixed by S̃∥ and S̃⊥. Full expressions
are given in the Supplementary Material. Because local elasticity must be
recovered for spatially uniform strains, the compliances at q = 0 encode the
bulk and shear modulus, S̃∥(0) = 1/[K0 +G0] and S̃⊥(0) = 1/G0. Continuity
of the q = 0 limit is not required, but will be verified numerically.

3.4. Mean response
We first consider the response to longitudinal forcing. Figure 3.2 depicts
S∥(q) for a range of pressures close to jamming and wavenumbers 2π/L ≤
q ≤ π/d. Data are averaged over approximately 1,000 configurations per
condition.

Each curve approaches a pressure-dependent plateau S̃∥(0
+) as q tends

to zero. To determine whether the limit is continuous, we measure the
local compliance S̃∥(0) by subjecting each packing to a uniform stress in
an independent test [13]. As shown in Figure 3.2b, the excess compliance
∆s̃∥(q) ≡ ⟨S̃∥(q)/S̃∥(0)⟩−1 vanishes continuously with q, indicating a contin-
uous limit.
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Figure 3.3: (a) The transverse compliance shows no pressure-dependent crossover for 10−5.5 ≤
p ≤ 10−2. (b) The excess compliance at low p is non-monotonic, even at large system size
N . Here: p = 10−4 and 210 ≤ N ≤ 216. (inset) Nonlocal length scale determined from
S̃⊥(2π/ℓ⊥)/S̃⊥(0) = 2.

As q increases the compliance shows a clear pressure-dependent cross-
over, which selects a nonlocal length scale ℓ∥. We now show that this length
diverges with pressure. To do so we demonstrate that the excess compli-
ance ∆s̃∥ collapses to a master curve when plotted versus the rescaled co-
ordinate qℓ∥. We first consider a simple power law ansatz ℓ∥ ∼ 1/pα, which
gives excellent data collapse for α = 0.33 and pressures 10−5.5 ≤ p ≤ 10−3

(Figure 3.2b, inset). The value of α is surprising insofar as it differs from
the exponents 1/2 and 1/4 of the previously identified length scales l∗ and
lc, respectively. Indeed, we show below that l∗ and lc can be identified in
the fluctuations about the mean response. If one insists that ℓ∥ should ap-
proach l∗ or lc near jamming, it is also possible to obtain good data collapse
of ∆s̃∥ by making the alternative ansatz 1/ℓ∥ ∼ 1/l∗ + β/lc ∼ p1/2 + β p1/4 –
see Figure 3.2b (main panel). For β = 0.15 and 10−5.5 ≤ p ≤ 10−2, the ansatz
is nearly indistinguishable from pure power law scaling (dashed and solid
lines in Figure 3.2a, inset). Hence it is plausible ℓ∥ → lc (α approaches
1/4) as p → 0. We stress that a diverging nonlocal length implies signifi-
cant nonlocal corrections to classical elasticity, regardless of the value of
its exponent.

We now consider transverse forcing. Figure 3.3 plots the transverse
compliance S̃⊥(q) for a range of pressures. While the general shape of
the compliance curves echoes the longitudinal case, there are several dif-
ferences. First, the crossover scale 1/ℓ⊥ is a constant on the order of
the inverse particle size, independent of pressure. Hence the transverse
length ℓ⊥ does not diverge near jamming, unlike ℓ∥. A similar p-independent
crossover was noted in Ref. [39] without making the connection to nonlo-
cality. The transverse compliance is non-monotonic, with an initial dip that
appears to survive in the infinite system size limit (Figure 3.3b). Despite the
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dip, the q → 0 limit is again continuous, S̃⊥(0
+) = S̃⊥(0). Finite size effects

are stronger than in the longitudinal forcing case (not shown); they are also
more dramatic than finite size effects under uniform strain [69], which can
be neglected when p ≫ 1/N2 – which holds for all data in Figure 3.3.

3.5. Constitutive relations
For analytical modeling, it is often desirable to assign a functional form to
the compliances. While one would like to have an accurate description of
the nonlocal compliances over the whole range of q, no currently available
nonlocal model correctly predicts the data of Figs 3.2 and 3.3. Fitting func-
tions are an option, though they lack physical insight. Micromechanical
models such as effective medium theory (EMT) would be preferable [70].
While we expect that EMT can predict the nonlocal transverse compliance,
it fails to capture the longitudinal compliance even for spatially uniform
forcing [71]. Approaches based on spatially fluctuating moduli may pro-
vide an alternative [62, 72–74].

Even in the absence of a more detailed model, it is possible to write down
constitutive relations that capture essential nonlocal features of the mean
response. As isotropy of the material requires S̃∥ and S̃⊥ to be even in q,
the leading term in an expansion of the excess compliance is quadratic, as
verified in Figure 3.2b. Truncating the expansion leads to weakly nonlocal,
or stress gradient, constitutive relations, with a particularly simple form
when the wave vector has fixed orientation:

(1− ℓ2⊥ ∂2)σ⊥ = 2G0 ϵ⊥ (3.3)
(1− ℓ2∥ ∂

2)σ∥ = (K0 +G0) ϵ∥ . (3.4)

Full expressions are available in the Supplementary Material. These re-
lations represent a qualitative improvement over classical elasticity near
jamming. Eq. (3.3) provides a good description of the transverse response
over a wide range of q; note the minus sign neglects the dip in S̃⊥. Eq. (3.4)
introduces the diverging length scale ℓ∥, though it misses the slow bending
over of ∆s̃∥ apparent in Figure 3.2b.

3.6. Fluctuations
It is apparent from Figure 3.1b that individual particle displacements devi-
ate from perfect sinusoidal response. These non-affine fluctuations can be
quantified by the ensemble average of the ratio

F◦(q
′; q) =

∣∣∣∣ ⟨u◦(q)|q′◦⟩
⟨u◦(q)|q◦⟩

∣∣∣∣ , (3.5)

where ◦ refers to ∥ or ⊥. F◦ compares the projections of the DN-component
displacement vector |u◦(q)⟩ = {(u◦)i}i=1...N on sinusoids with wavenum-
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Figure 3.4: (a) Transverse Fourier transform of the response for a range of driving wavenum-
bers q. (b) The data shows a good collapse when the argument is rescaled linearly with the
driving wavenumber. (c) The transverse Fourier transform shows a crossover wavenumber
which scales with the pressure (10−5.5 ≤ p ≤ 10−2).

bers q′ ̸= q and q. The sinusoids’ polarization matches the forcing. We
first consider transverse forcing. We restrict our focus to long wavelengths
q ≤ 30(2π/L), where S⊥ is approximately flat, and consider only q′ < q, where
fluctuation amplitudes are largest. Figure 3.4a shows F⊥ for a given pres-
sure and different wavenumbers. All curves collapse when plotted versus
q′/q (Figure 3.4b). The curves for different pressures in Figure 3.4c present
a pressure-dependent crossover from steep to shallow decay. The data can
be collapsed further still by plotting pa⊥F⊥ versus (q′/q)/p1/4, with a⊥ ≈ 0.52
(Figure 3.5a). We conclude that transverse fluctuations are governed by
the length scale lc.

Analyzing low-q fluctuations under longitudinal forcing is more difficult
due to the vanishing crossover near jamming. As a compromise we vary q′

and q for q′ < q ≤ 10(2π/L), where the excess compliance ∆s̃∥ is approxi-
mately quadratic for all accessed pressures. These fluctuations have amore
complex dependence on q, as evidenced by slight but systematic spread in
the data when plotted versus q′/q – see Figure 3.5b (inset). Nevertheless,
there is again a clear p-dependent crossover, which can be collapsed by
plotting pa∥F∥ versus (q′/q)/p1/2, with a∥ ≈ 0.57 (main panel). While the col-
lapse is less convincing than F⊥, it suggests that longitudinal fluctuations
are governed by the length scale l∗.

For both types of forcing, we observe data collapse only for sufficiently
low q′. The restriction to q′ < q is strictly necessary in the longitudinal
case; data fall off the master curve rapidly for larger q′. In the transverse
case the fall off comes later and more gradually. We note that prior work
has related l∗ [11], lc [12], or both [39] to (deviations from) classical elastic
Green’s functions [11, 12, 39].
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Figure 3.5: (a) Data collapse of the transverse Fourier transform after rescaling with q′ with
p−0.25. (b) The longitudinal Fourier spectrum shows similar collapse before (inset) and after
(main panel) rescaling q′ with p−0.5.

3.7. Conclusions
We have demonstrated novel constitutive relations that improve on clas-
sical elasticity near jamming by capturing the appearance of a diverging
length scale within a continuum description. The divergence scales with
the distance to jamming, indicating that critical effects enhance deviations
from local elasticity. Nonlocal effects are stronger in deformations involving
compression, as reflected in the distinct length scales ℓ⊥ and ℓ∥; the former
remains finite, while the latter diverges. Fluctuations about the mean non-
local response are governed by two distinct diverging length scales.

The sinusoidal forcing technique used here is not restricted to soft
spheres – it can be used to test for nonlocal effects in a wide range of ma-
terials. It is straightforward to implement numerically and can also be im-
plemented in experimental systems that allow for forcing in the bulk, such
as thermoresponsive microgels and granular monolayers. In the jamming
context, obvious extensions include acoustic dispersion relations [67], non-
linear forcing [28], and steady flow [75, 76].





4
Rigidity of Hypostatic Random

Spring Networks
Networks below a critical connectivity of four contacts per node are hypo-
static, and according to Maxwell counting they do not resist a shear defor-
mations. Their shear modulus is zero. We show examples in which these
systems are rigidified by pre-stress and bending interactions in two different
network models. We find striking similarities in the density of states for both
“perturbing fields” and systems. We explain the most outstanding feature of
the density of states using variational arguments and connect it to the shear
response.
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4.1. Introduction
Here we focus on the rigidfication of hypostatic networks. Following the
Maxwell counting, a network with an average connectivity below the iso-
static connectivity zc = 4 in 2D or zc = 6 in 3D is floppy. The shear/bulk
modulus therefore vanishes, because the system can accomodate bulk or
shear deformations by displacing along floppy modes. These floppy modes
consist of tangential relative motion of nodes in contact, which keeps their
bond length unchanged. As a result no springs in the networks are com-
pressed/stretched so the floppy mode does not cost energy.

The isostatic state at zc acts as a non-equilibrium critical state that de-
termines the elastic response in its vicinity. Above the isostatic point the re-
sponse is dominated by an abundance of anomalous low-frequency modes
that resemble floppy-modes. Below the isostatic point the system has a
number of floppy modes proportional to −∆z, the average number of bonds
per particle below zc. The key observation in this chapter is that constrain-
ing these floppy modes, so that they now cost energy, can make the system
rigid even when it is hypostatic. We will discuss several ways to constrain
floppy motion.

An energetic cost of tangential motion is common in nature. In a net-
work bonds usually cannot freely rotate around the nodes they are attached
to, or the whole network is under tension due to external stresses. These

(a) (b)

Figure 4.1: (a) Shear modulus of a system subjected to a perturbing field. If z < 4 for an
unperturbed system then G = 0 - the system is floppy. The networks become rigid under the
influence of a perturbing field. P is the control parameter. The dashed line shows the shear
modulus for zero perturbation. (b) (Left column) Hyperstatic and hypostatic network without
tension. While the hypostatic network is initially floppy it becomes rigid as tension is applied
(right column).
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additional interactions that constrain the system act as “perturbing” fields
that drive the system away from the critical point. This process is illus-
trated in Figure 4.1a with the shear modulus of a randomly cut network
above and below the critical point. The dashed line shows the system with-
out perturbation. If the system is peturbed, here in the form of a stretching
of the whole network, the vanishing of G is avoided. The shear modulus
increases with perturbation strength P, and below and at the transition it
is now finite - the system remains rigid below zc.

In this chapter we investigate three cases in which networks are rigidi-
fied by a perturbing field. First, we consider RC networks below and above
isostaticity and investigate their behavior as they are set under tension t.
The second part also consists of RC networks, but we add bond bending
interactions whose strength is tuned by the bending stiffness κ. The last
example consists of a model for networks consisting of semiflexible rods -
the Mikado model. Here the networks are also rigid because of the presence
of bending interactions, while the network geometry and topology is more
complex.

4.2. RC Networks under Tension
In this section networks initially without tension are stretched such that a
certain target tension t is reached. We start from an RC network with N =
1024 nodes and connectivity z. We then minimize the potential energy under
the constraint that the pressure is p = −t while the normal stress difference
vanishes, q = 0. The stress tensor of the systems that are generated has
the form

σ̂ =

(
σxx σxy

σxy σyy

)
≈
(
−t 0
0 −t .

)
(4.1)

The off-diagonal element σxy vanishes in large systems or in an ensemble.
For each system we first target a high tension of t =

√
10 · 10−1 and then

decrease it until we reach t = 10−5. Figure 4.1b shows two snapshots of
the simulations for two connectivities above and below the isostatic point.
The left column contains the two systems without tension. The network
above isostaticity is rigid while the hypostatic counterpart is floppy. When
the network is expanded (the expansion itself is not shown) the springs are
set under tension. The tangential motion that initially did not cost energy
is now constrained - the initially floppy network becomes rigid.

4.2.1. Shear Response
From hyperstatic unstressed networks we know that the shear modulus is
finite and scales with the contact number, G ∼ ∆zµ. In PD networks and
in effective medium theory for bond diluted triangular networks, one finds
µ = 1 [77]. In the case of RC networks, previous numerical studies [77, 78]
found µ ≈ 1.4. In this section we find µ = 1. In [21] the authors argue that
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Figure 4.2: (a) The shear modulus of RC networks above (full symbols) and below (open sym-
bols) the isostatic point. While the shear modulus has a plateau for z > zc it vanishes below
isostaticity. The collapse in (b) shows a critical length tension scale which vanishes with ∆z2.
The graph also shows usual scaling G ∼ ∆z above the isostatic point. In both figures the solid
line has slope one and the dashed line slope 1/2.

the cutting protocol introduced in Chapter 2 promotes mean field behavior
by supressing fluctuations in the local coordination number.

Hypostatic networks have a zero shear modulus G = 0. We therefore
know that

G+(t → 0) → G0 ∼ ∆zµ and G−(t → 0) → 0 (4.2)

where G+ and G− denote the shear modulus of hyperstatic and hypostatic
networks, respectively. Figure 4.2a shows the shear modulus for finite
tensions. For small enough tensions G− increases linearly with a pre-factor
that depends on |∆z|, while G+ has a plateau. Above some connectivity-
dependent tension threshold both become comparable and increase with
the square root of the tension. This situation is summarized in Figure 4.3,
which depicts the typical behavior of a system close to a critical point.

The response can be split into three regimes. As the tension is small and
the system is still close the critical point, G shows critical scaling and its two
branches are separated into two regimes (regime I and II). At a characteristic
tension, the two branches merge, lose their dependence on the connectivity,
and show a square root dependence on the tension (regime III).

Inspired by these observations, we make a scaling ansatz using the dis-
tance to isostaticity |∆z| and the tension:

G± = |∆z|µG±

(
t

|∆z|λ

)
. (4.3)

Both branches of the shear modulus have to fulfill the zero tension limit
shown in equation (4.2). With the perturbing field (t ̸= 0) the shear modulus
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Figure 4.3: The shear response can be devided into three regimes separated by the isostatic
point (red dot) and a characteristic tension (shown as solid black line). The dashed red line
indicates where the system is floppy.

has to be finite at ∆z = 0 (see Figure 4.1a, 4.3). These requirements are
fulfilled if the branches take the following form:

G+(τ) ∼
{

const τ ≪ 1
τµ/λ τ ≫ 1

(4.4)

and
G−(τ) ∼

{
τα τ ≪ 1
τµ/λ τ ≫ 1

(4.5)

where τ = t/|∆z|λ. Figure 4.2b shows a collapse of the data in 4.2a. A crit-
ical scaling collapse of these sorts gives precise meaning to the assertion in
the Introduction that proximity to the isostatic point governs the response
in its vicinity. The plot shows that the data best collapses for λ = 2 and
µ = 1. This implies that α = 1 in the hypostatic branch if τ ≪ 1 and that G
goes as τ0.5 for τ ≫ 1. The hyperstatic branch is the same as the hypostatic
for large τ but approaches a plateau for τ → 0.

The fact that the exponent µ = 1 is expected from the behavior of hyper-
static networks at τ = 0. We measure that the crossover exponent λ = 2
which, the exponent α and together with the scaling analysis above, ex-
plains the behavior of G for all values of t on both branches of the scaling
function. The last missing piece is to understand the values of the expo-
nents α and λ. In order to do this, we recall that in Chapter 2 we introduced
an expression forG in terms of eigenvalues and eigenvectors of the extended
Hessian:

1

G
=
∑
i

Λ2
i

ω2
i

≈
∫ ∞

0

D(ω)Λ2(ω)

ω2
dω . (4.6)

By introducing the density of statesD(ω), we approximate the sum as an in-
tegral, which is an approximation for large systems. In the following section
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we measure the product of the density of states and the coupling factor Λ2.
We rationalize the shape of the density of states and show how it explains
the scaling of G. If not stated otherwise we assume that Λ2 is constant and
does not scale with ∆z. This assumption is based on the numerical results
from 5.

4.2.2. Density of States
In standard solids one finds Debye behavior for low eigenfrequencies - the
density of states D(ω) has an intial form of ωd−1 (d the dimension of the
system). In the case of high coordination numbers one also observes this
behavior in RC networks. However, as one reduces z, the frequency win-
dow in which one can observe Debye scaling vanishes and one observes
instead a sudden increase in the density of states followed by a plateau.
This sudden increase happens at a characteristic frequency ω∗ that van-
ishes linearly with the excess connectivity ∆z on both sides of the isostatic
point [3, 79]. However, hypostatic networks also have a delta peak at zero
frequency containing the floppy modes of the system. The integrated weight
of this peak vanishes linearly with decreasing |∆z|.

In Figures 4.4 and 4.5 we report - to our knowledge for the first time -
the density of states of RC networks under tension. For constant tension
and varying connectivity, the peak in the density of states does not shift
but changes height. Figure 4.4b shows that the height of the peak is pro-
portional to |∆z|, as evidenced by the data collapse when plotting DΛ2/|∆z|
vs. ω. Figure 4.5a shows the density of states for connectivity z = 3.7 and
a range of applied tension. It has a dominant peak that shifts to higher
frequencies and becomes broader as the tension grows, while the high fre-
quency regime is only weakly influenced. Figure 4.5b shows that the low
frequency peak can be collapsed by plotting DΛ2 · t0.5 vs. ω/t0.5.

The peak in the density of states is connected to the δ-peak at ω = 0 in the
density of states of the unstressed network. Floppy modes consist purely of
tangential motion, which neither stretches nor compresses springs. With
an applied tension, however, tangential motion is constrained and acquires
an energy cost. Consequently, the modes, which are floppy in the un-
stressed system, are “pulled out” and form a peak at finite frequency. The
area below the peak in Figure 4.4 is therefore expected to be proportional
to the number of these modes, which is proportional to |∆z|. To under-
stand why the peak shifts as shown in Figure 4.5, we make a variational
argument in which we construct trial modes for the modes which form the
peak.

Consider a network with applied tension t. The length of the springs
is not equal to their rest length and we measure that there are no floppy
modes. We can construct trial modes for the low frequency regime by taking
away the tension in this network. This can be achieved by setting the rest
length of the springs equal to their current length, so the positions of the
nodes are not changed in the process. Now the “tension-free network” has
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Figure 4.4: (a) The density of states for varying z below isostaticity and a tension of t = 10−5.
The curves feature a peak which becomes more dominant when |∆z| is increased. The collapse
in (b) shows that the peak height is proportional to ∆z.

floppy modes that we employ as trial modes. These n = N |∆z|/2 trial modes
consist only of tangential motion ∆u⊥. The energy cost of such a mode in
terms of ∆u∥ and ∆u⊥ has the following form

∆U =
1

2

∑
⟨ij⟩

(
k∆u2

∥,ij +
fij
ℓij

∆u2
⊥,ij

)
. (4.7)

ℓij is the spring length and fij the force on the contact. Because our trial
modes do not have parallel motion, the first term in parenthesis vanishes.
We write

∆U =
∑
⟨ij⟩

fij
ℓij

∆u2
⊥,ij ∼

f

ℓ
∆u2

⊥ (4.8)

where f , ℓ, and ∆u⊥ are average values. The average force is proportional
to the applied tension. Furthermore, we know that ∆u⊥ is independent of
∆z, which was rationalized in [10, 80] and numerically confirmed in [20].
Consequently, the trial modes we have constructed have a typical energy
that scales as

∆U ∼ f

ℓ
∆u2

⊥ ∼ t . (4.9)

We assume there exists a pre-factor a for which ∆U ≤ E = at is satisfied. As
described in [10] we now invoke a generalization of the variational priniciple
familiar from quantum mechanics [81]. If we have a set of n trial modes
with energy ∆U ≤ E, then there are at least n/2 eigenmodes with energy
∆U ′ ≤ 2E.

Following the considerations above we can conclude that there are at
least N |∆z|/4 eigenmodes which have eigenfrequencies of

ωp ≤
√
2E =

√
2a · t0.5 ∼ t0.5 . (4.10)
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Figure 4.5: (a) The density of states for random spring networks below isostaticity for z = 3.7
and varying tension. The peak shifts to higher frequencies as the tension is increased. (b) The
same curves as in (a) but collapsed onto a master curve.

Inspired by the findings above, we approximate the density of states with a
window function for ω∗ < ω < ω0 ∼ O(

√
k) plus a δ-peak with height equal to

the area below the peak in the density of states, |∆z|. The shear modulus
can now be expressed as

1

G
∼
∫ ∞

0

D(ω)Λ2(ω)

ω2
dω

∼ |∆z|Θ(−∆z)

∫ ∞

0

δ(ω − ωp)

ω2
dω +

∫ 1

ω∗

1

ω2
dω

1

G
∼ |∆z|Θ(−∆z)

ω2
p

+
1

ω∗ ⇔ G ∼ tω∗

|∆z|ω∗Θ(−∆z) + t
.

(4.11)

The Heaviside function Θ was introduced to distinguish between the hyper-
static and hypostatic case. If −∆z > 0 the peak is “switched on” and not
present when −∆z < 0. For hypostatic networks we find G− ∼ t/|∆z| as t →
0, which explains the value α = 1. For hyperstatic networks G+ ∼ ω∗ ∼ ∆z.
The two branches meet when

G−

G+
∼ t

|∆z|2
∼ O(1) → t∗ ∼ |∆z|2 . (4.12)

The crossover tension t∗ ∼ ∆zλ with λ = 2 is the same as in the scaling
functions (4.4) and (4.5). Now with the variational argument above we un-
derstand the origin of the exponent λ. As the tension is small enough there
are modes with a typical frequency of ωp ∼ t0.5, which can be approximated
by floppy modes. As the tension increases other modes with typical fre-
quency ω∗ dominate - we see that the peak in the density of states merges
with the high frequency plateau (see Figure 4.5). We find that the behavior



4.3. RC Networks with Bending Interaction

4

49

Figure 4.6: (a) Two contacts ij and ik which are adjacent on node i interact via bending
interactions. (b) Shear response of RC networks with bending interactions above and below
isostaticity. The solid line has slope one and the dashed line slope 1/2.

of the shear modulus can be understood by considering the two outstand-
ing features in the density of states, the peak and the plateau. These two
features, in turn, can be understood by variational arguments.

4.3. RC Networks with Bending Interaction
Another example of rigid networks below isostaticity are networks which
also include three body interactions such as bending. At first glance these
systems seem unrelated, since the interaction potentials are dissimilar.
However, as we will show, rigidification by tension and bending have many
similarities.

Bending interactions add an extra term to the elastic energy proportional
to the bending stiffness κ

U =
k

2

∑
⟨ij⟩

(δℓij)
2 +

κ

2

∑
⟨ijk⟩

(δθijk)
2 . (4.13)

δθijk is the change in the angle between two contacts ij and ik that are
adjacent on node i (see Figure 4.6a).

In Figure 4.6b we show the shear modulus as a function of κ for net-
works with N = 32768 nodes above and below isostaticity. The ensemble
consists of 50 systems per condition. The plot shows that there is striking
similarity to the shear response in networks under tension. Following the
same arguments that were used to derive the scaling function for networks
under tension (equation (4.4) and (4.5)) we collapse the shear response us-
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Figure 4.7: (a) Density of states for bending stiffness κ = 10−6 and varying connectivity. (b)
Density of states for connectivity z = 3.9 and varying κ.

ing the scaling function

G+(κ) ∼
{

∆zµ κ′ ≪ 1
κ′µ/λ κ′ ≫ 1

G−(κ) ∼
{

κ′/∆zµ κ′ ≪ 1
κ′µ/λ κ′ ≫ 1

(4.14)

where κ′ = κ/∆zλ. We find the exponents µ = 1.1, which stems from the
limit κ → 0, and λ = 2.2. To understand the exponent λ we consider the
density of states as we did in Section 4.2.2.

Figure 4.7a and b show the density of states for an ensemble of 1000 per
condition. The networks consist of 1024 nodes. The data is again collapsed
with connectivity |∆z| (a) and bending stiffness (b). We find also here a
dominant peak followed by a plateau. The peak can be described with the
same exponents that govern the case of tension. The area below the peak
is proportional to the number of floppy modes of the hypostatic network if
κ = 0. To understand the shift in the peak (Figure 4.7b) we construct trial
modes in the same way as in the previous section. The energy cost of these
trial modes for finite bending stiffness scales as

∆U ∼ κ(δθ)2 . (4.15)

If we assume that the relative displacements of two nodes that interact via
bending are not correlated, we can write δθ ∼ ∆u⊥/ℓ and therefore

∆U ∼ κ

(
∆u⊥

ℓ

)2

∼ κ

ℓ2
. (4.16)

Note that this expression is equivalent to (4.9) under the exchange t ↔ κ/ℓ2.
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Figure 4.8: (a) One filament in a Mikado network intersected by three other filaments (dashed
lines). Mikado networks with average distance between crosslinks ℓs ≈ 7.84 · 10−2 (b) and
ℓs ≈ 3.65 · 10−2 (c).

The average length of the springs does not scale with connectivity, so the
shift in the peak is independent of |∆z|.

We see that bending interactions and tension in hypostatic networks
have similar effects on their shear response. In both cases we find an initial
linear increase of G with the perturbation strength and the two exponents
µ and λ are similar. The scaling function (4.14) has previously been de-
rived in [77, 82] using effective medium theory. The derivation presented
here needs less mathematical effort, is based on variational arguments, and
illuminates the connection between moduli and modes.

4.4. Mikado Networks
Mikado networks [23, 25, 83, 84] are a simple model for semiflexible fiber
networks. These networks are present in nature, they constitute the cy-
tosceleton of cells or the extracellular matrix and are found in materials
like wood. They also play an important role in technology, where they can
be used to model polymers. Semiflexible networks consist of elongated fil-
aments, which have a bending stiffness that is high enough to withstand
thermal fluctuations [25] that would otherwise cause the filament to crum-
ple into a coil.
Mikado networks consist ofN monodisperse filaments of length ℓ, which are
deposited randomly in a biperiodic square system of linear size L. Their po-
sition r with components rx, ry ∈ [0, L) and orientation ϕ ∈ [0, π) are both
drawn from a uniform probability distribution. If, during the deposition
process, two filaments intersect, they form a crosslink around which the
rods can freely rotate. The crosslinks cannot be broken. In the initial con-
dition just after deposition, the rods are all straight lines divided by the
crosslinks into segments of length ℓi. If a force or displacement is applied
these segments store energy via stretching and bending. The total energy
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of the system is

U =
µ

2

∑
i

(δℓi)
2

ℓi
+

κ

2

∑
ij

(δθij)
2

ℓij
(4.17)

with the stretching stiffness µ (not to be confused with the exponent µ used
elsewhere), bending stiffness κ, the angle θij between two neighboring sec-
tions on the same rod (see Figure 4.8), and the average length of the two
segments ℓij. The average length of all line segments in the system is ℓs.
The filament length ℓ serves as the unit of length. The crosslink density
ρ = Nℓf/V is inversely proportional to the average segment length, ρ ∼ 1/ℓs.
The average number of crosslinks per rod is n = ℓfρ − 1. For very low
crosslink densities, the networks do not percolate, they only start to span
the whole system at the conductivity percolation transition with a crosslink
density of ρ ≈ 5.42 [85]. However, at this density the networks still cannot
resist any deformation because of rotation at the crosslinks. This changes
at the rigidity percolation transition at ρ ≈ 5.93 [86]. Here the networks can
resist deformations provided the rods have a finite bending stiffness κ.

The following section shows that the rigidity of Mikado networks, al-
though superficially very different, can be described with the same tools
that were introduced in the sections above. After giving background on the
shear response, which has already been discussed extensively in the lit-
erature [23, 84, 87, 88], we show novel data for the density of states and
connect it to the shear response in the same manner as in the previous
sections.

4.4.1. Connection to Random Spring Networks
By construction aMikado network is composed of rods that form crosslinks.
In the following we want to leave this picture and return to a picture closer
to random spring networks. We consider the crosslinks as nodes and the
filament segments as springs. Most nodes have four segments - two on
each of the rods that originally formed the crosslink. If a crosslink is lying
at the end of a rod or even at the ends of both rods that form it, the corre-
sponding node has three or two contacts, respectively. Consequently, the
coordination number of a Mikado network is always below zc. With vanish-
ing bending stiffness, the network is therfore not able to resist a shear or
bulk deformation. Simple counting reveals that there is a number of floppy
modes equal to the number of rods [88].

Note that in spring networks we focus on the distance to the isostatic
point |∆z|, which is equal to the fraction of vibrational modes which are
floppy. We construct |∆z| in the same way for Mikado networks. The to-
tal number of modes is equal to the number of degrees of freedom in the
system. That is

Ndof = 2N(ℓfρ− 1) = 2N

(
Nℓ2f
V

− 1

)
, (4.18)
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Figure 4.9: (a) For high ∆z or low κ the networks respond non-affine and G ∼ κ (the solid
line has slope one). The curves eventually crossover into the affine regime where the modulus
becomes independent of κ. (b) Collapse of the curves from (a) with |∆z|. The inset shows the
collapse in the non-affine regime in detail.

the number of crosslinks per rod times the number of rods. The factor of
two stems from the dimensionality of the system. The fraction of floppy
modes is

N

Ndof
=

1

2
(
Nℓ2f/V − 1

) ≈ 1

ρℓf
∼ ℓs

ℓf
= −∆z . (4.19)

We applied an approximation for the limit of large N to simplify the def-
inition of ∆z. In the vicinity of the isostatic point Nℓ2f/V becomes large,
so ∆z does still approach the fraction of floppy modes. Expression (4.19)
shows that the Mikado network can, by construction, not reach the iso-
static point. It approaches −∆z → 0 as the average distance between two
crosslinks vanishes, ℓs → 0.

Our simulations are performed in two-dimensional square cells of linear
length L = 3ℓf . We vary the crosslink density with the number of rods - we
report the average crosslink densities of systems with the same number of
rods. The second parameter that we tune is the bending stiffness.

4.4.2. Shear Response
Figure 4.9a and b show the shear modulus of Mikado networks with |∆z| ∈
[7.84·10−2, 3.21·10−2] and κ ranging over 13 orders of magnitude. The ensem-
ble consists of 100 systems per condition. The figures show that the shear
response can be divided into two regimes. For high |∆z| and low bending
stiffness the shear modulus grows linearly with κ. In the vicinity of the
isostatic point or as κ is increased the response eventually approaches a
plateau where the shear modulus becomes independent of κ. In [84] the
authors derive an expression for the modulus under the assumption that



4

54 4. Rigidity of Hypostatic Random Spring Networks

the response is affine:

Gaff ≈
π

16

µ

ℓf

(
ℓf
ℓs

+
ℓs
ℓf

− 3

)
(4.20)

The expression is independent of κ and, for high crosslink densities 1/ℓs →
∞, proportional to the crosslink density. It diverges at the isostatic point:

Gaff ≈
π

16

µ

ℓf
· ℓf
ℓs

∼ π

16

µ

ℓf∆z
. (4.21)

4.9b shows the shear modulus in units of the affine modulus (4.20) as a
function of κ/|∆z|λ, which makes all graphs in 4.9a collapse, in agreement
with previous results [84]. Since the plateau collapses with the affine mod-
ulus, the regime where κ ≫ 10|∆z|λ is identified as the affine regime [84].
If κ ≪ 10|∆z|λ, the response of the network is non-affine. Here the bending
interactions dominate the response. The crossover exponent is λ = 7.2.

We can see that the shear response is similar to the two previous exam-
ples. With no perturbing field, κ = 0, the shear modulus vanishes. With a
finite bending stiffness, which is small enough so that the response is dom-
inated by bending, we find a linear relation between G and κ. In case of RC
networks we find a crossover strain λ at whichG goes with the square root of
the perturbation strength. We do not measure such a regime in the Mikado
model, however, we also find a crossover strain in the shear response. The
shear response crosses over into an affine regime where the shear modu-
lus does not depend on the strength of the perturbing field. Furthermore,
compared to RC networks, the value of λ is significantly larger.

4.4.3. Density of States
In the following we focus on the non-affine regime. We present the density
of states and Λ2 and explain why the shear modulus scales asG ∼ κ. We will
also motivate the crossover exponent λ. To our knowledge this is the first
time that the density of states for the Mikado network has been reported.
The graphs are generated from an ensemble of 1000 networks per condition.

Figure 4.10a shows the density of states for one value of |∆z| and varying
bending stiffness. Again, as we already saw in the previous two examples
concerned with RC networks, there is a pronounced peak in the density
of states, which shifts to higher frequencies as the bending stiffness is in-
creased. The high frequency regime is not significantly influenced by a
change in κ.

If the system is considered in the bending-dominated regime, the poten-
tial energy w stored in one line segment of length ℓ can be approximated
by

w(ℓ) ∼ κ
(δθ)2

ℓ
∼ κ

(∆u⊥)
2

ℓ3
∼ κ

ℓ2f
ℓ3

. (4.22)

Here we assumed that typical non-affine deformations are not correlated
and on the order of the filament length ℓf [87, 89]. In [89] the authors argue
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Figure 4.10: (a) The density of states for one value of |∆z|. Again we find a dominant peak
which shifts to higher frequencies if κ increases. (b) Collapse of the graphs in (a) with the
bending stiffness.

that, since a segment’s stiffness increases strongly with decreasing length
ℓ, there is a single length scale ℓmin with which the response of the system
can be approximated. The idea is that segments with a length ℓ < ℓmin
deform their surroundings rather than being deformed themselves. If the
segment length ℓ > ℓmin, it is soft such that it is deformed itself and does
not deform the surrounding area. Consequently, the short segments of
length ℓmin increase the energy of the surrounding rods by w(ℓmin) (and
are not deformed themselves). The authors in [89] argue that this energy
contribution is dominant so that it is possible to equate the average energy
in a fiber W with the energy stored in a short segment:

W =
ℓf
|∆z|

∫ ∞

ℓmin

w(ℓ)P (ℓ)dℓ = w(ℓmin) . (4.23)

The probability distribution of the length of the segments is exponential
P (ℓ) = 1/ℓs exp(−ℓ/ℓs). Equation (4.23) can be solved, which yields ℓmin =
ℓf |∆z|2. Finally, one finds an average energy per rod of:

W ∼ ω2
p ∼ κ

ℓf

(
1

|∆z|

)6

. (4.24)

The energy is linear in κ and one finds a high scaling exponent in |∆z|. The
linear behavior in κ implies (similar to the two cases earlier this chapter)
that there are typical frequencies that scale with κ0.5. In Figure 4.10 we plot
a collapse of the peak in the density of states, which matches the mean field
prediction.

Different behavior in the shear modulus, compared to the two previous
examples, arises in the dependence on the distance from the isostatic point.
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Figure 4.11: (a) Density of states collapsed as shown in 4.10b for varying |∆z| (see the x-axis
in (b)). The peak in the density of states shifts to lower frequencies as one moves away from
the isostatic point. (b) Area below the peak and its position.

In RC networks |∆z| only controls the number of soft modes and therefore
the height of the peak in the density of states. However, in the Mikado
model the rods become stiffer towards bending when ℓs is decreased. Con-
sequently, as |∆z| is decreased, the area below the peak decreases and in
addition the peak shifts to higher frequencies. From equation (4.24) we
expect to find a typical peak frequency in the density of states that scales
with the distance to isostaticity as ωp ∼ |∆z|−3. The area below the peak
Ap is expected to decrease with the distance to jamming as Ap ∼ ∆z, as
determined in Section 4.4.1.

Figure 4.11a shows the density of states for varying κ and |∆z|. The
graphs are collapsed using the bending stiffness. The peak of graphs with
smaller |∆z| clearly moves to higher frequencies. To probe the scaling of the
peak position we determine the peak value of the density of states, rescale
it with the bending stiffness, and average over all bending stiffnesses from
κ = 10−13 to κ = 10−9. The result for ⟨ωp/κ

0.5⟩κ in Figure 4.11b confirms the
prediction in 4.24.

The area below the peak is probed by integrating over the peak. However,
for low∆z and high κ the peak is not clearly defined, because it merges with
the high frequency plateau. For that reason we only use the two lowest
values of the bending stiffness, κ = 10−13 and κ = 10−12. For these two
values the peak is always well separated from the high frequency plateau
for all |∆z|. We integrate from the lowest frequency available to the local
minimum that separates the peak from the plateau. The results for the two
values of κ are averaged and reported in 4.11b. We find that the area scales
as Ap ∼ |∆z|2.3, which differs significantly from our prediction Ap ∼ |∆z|. To
understand the origin of this discrepancy, we now investigate the coupling
Λ2 separately.
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Figure 4.12: (a) Λ2 for three bending stiffnesses: κ = 10−13, 10−11 and 10−9. The data is
plotted for the same ω-range as in 4.11a. (b) The shift in the plateau value can be collapsed
with |∆z|.

The assumption that Ap ∼ |∆z| is based on the assumption that the
coupling Λ2 is a constant which does not depend on |∆z|. Figure 4.12a
shows Λ2 for three values of κ and varying |∆z|. We plot the data for the
same range of ω as in Figure 4.11a and shift it with the peak position. The
data confirms that Λ2 does not depend strongly on ω in the regime where
the density of states has a peak. However, the value of the plateau depends
on |∆z|, contrary to our assumption. This is qualitatively different from the
random spring networks discussed in the previous sections, where there
is no such dependence. Figure 4.12b shows that the plateau value can be
collapsed with |∆z|−1.3. That shows that the origin of the discrepancy of the
expected scaling of Ap and the one we measure (Figure 4.11b) is buried in
the coupling Λ2.

Finally, we can connect the density of states and Λ2 to the shear modulus
in the bending dominated regime:

1

G
∼
∫ ∞

0

DΛ2

ω2
dω ≈ ℓ2f

∫ ∞

0

|∆z||∆z|1.3

ω2
δ(ω − ωp)dω . (4.25)

With the scaling of ωp introduced in equation 4.24 we get the scaling for the
shear modulus

G ∼ κ

ℓ3f

1

|∆z|8.3
⇔ G

Gaff
∼ κ

µℓ2f

1

|∆z|7.3
. (4.26)

This scaling of G derived from the area below the peak and its position is
close to the scaling we observe from directly measuring the shear modulus
(see Figure 4.9) where we find that G/Gaff ∼ 1/|∆z|7.2. The discrepancy be-
tween the two exponents is small considering its high value. Furthermore,
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the integration over the peak in Figure 4.11 is erroneous for the smallest
values of |∆z|. Here the peak does not seperate well from the high frequency
regime.

The features of the density of states can be rationalized by mean field
arguments, however, there are no such arguments for the behavior of Λ2,
yet. Our numerical measurments clearly show that the shear response
is dominated by soft modes that would be floppy if the bending stiffness
were κ = 0. As a result the shear modulus of Mikado networks increases
linearly with the perturbation strength κ - the same behavior that we found
in RC networks with tension and bending interactions. Different than in
RC spring networks, the bending stiffness is a function of the spring length.
As a result, trial modes which consist of floppy modes are not enough to
capture the response. The integral in equation (4.23) has to be regularized
by a minimum segment length below which no floppy response can occur.

4.5. Conclusions
We have shown three examples in which hypostatic randomly cut networks
are rigidified by a perturbing field. We showed networks and perturbing
fields that are qualitatively different. However, the shear response could be
described by basic mean field assumptions that were shared by all three
systems.

The most important common feature is that the shear response for small
perturbations is linear in the perturbation strength and dominated by flop-
py-like soft modes. The number of these soft modes is proportional to the
fraction of floppy modes in the unperturbed system.

We are able to use the mean behavior of these modes to predict the den-
sity of states. In all three examples we find that the density of states feature
a dominant peak which has a characteristic peak frequency that shifts with
the square root of the amplitude of the perturbation. The area below the
peak is proportional to |∆z|. The Mikado model forms an exception - the
coupling of the eigenmodes to the shear degree of freedom depends on the
distance to isostaticity. In case of RC networks this is not the case which
makes it possible to restrict all considerations to the density of states. To
get a better understanding of the response of Mikado networks it is there-
fore necessary to gain better insight into the scaling of Λ2.

The considerations in this chapter are not limited to the three systems
discussed. Other systems like networks with a mixture of hard and soft
springs [21] or packings of hard and soft particles are expected to show
similar behavior.



5
Normal stresses, contraction,

and stiffening in sheared
elastic networks

When elastic solids are sheared, a nonlinear effect named after Poynting
gives rise to normal stresses or changes in volume. We provide a novel rela-
tion between the Poynting effect and the microscopic Grüneisen parameter,
which quantifies how stretching shifts vibrational modes. By applying this
relation to random spring networks, a minimal model for, e.g., biopolymer
gels and solid foams, we find that networks contract or develop tension be-
cause they vibrate faster when stretched. The amplitude of the Poynting ef-
fect is sensitive to the network’s linear elastic moduli, which can be tuned via
its preparation protocol and connectivity. Finally, we show that the Poynting
effect can be used to predict the finite strain scale where the material stiffens
under shear.

This chapter has been published as:
Karsten Baumgarten, Brian P. Tighe, Phys. Rev. Lett. 120, 148004 (2018)
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Figure 5.1: (a) Pure shear strain γ applied to an unstressed spring network. Each node’s area
is proportional to its contribution to the pressure p; circles (squares) are tensile (compressive).
(b) The initial growth of the shear stress q is linear in γ, while p is quadratic and negative
(tensile).

5.1. Introduction
The Poynting effect refers to the tendency of a sheared elastic solid to ex-
pand or contract in the direction normal to a shearing surface, or to develop
normal stress if the surface is held fixed [90, 91]. A similar phenomenon
known as Reynolds dilatancy occurs during plastic (versus elastic) defor-
mation of granular media [92, 93]. The “positive” Poynting effect was first
observed in metal wires, which lengthen or push outwards at their ends
when twisted [91]. More recently, the negative Poynting effect (contraction
or tension) was seen in semiflexible polymers from the cytoskeleton and
extracellular matrix [94].

Models of the Poynting effect contain phenomenological elements or
strong approximations [94–100]. Suggested causes in fiber networks in-
clude asymmetry (hence nonlinearity) in the fibers’ force extension curve
[94, 96], fiber alignment in the initial condition [100], and non-affinity in
networks stabilized by bending [89, 101]. While these ingredients may be
sufficient to induce the Poynting effect, we find that they are not neces-
sary. This point is made by Figure 6.1a, which depicts an isotropic spring
network in 2D subjected to pure shear at constant volumetric strain ϵ = 0.
The springs are purely harmonic and initially isotropic, and there are no
bending interactions. Nodes that develop tension, labeled with a circle,
greatly outnumber nodes under compression (squares), suggesting a nega-
tive Poynting effect. And indeed a plot of the pressure change ∆p is negative
(Figure 6.1b). While the shear stress q grows linearly with the shear strain
γ, ∆p grows quadratically due to isotropy, which requires pressure or vol-
ume changes to be even in γ.
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In this Letter we introduce a new micromechanical approach to the
Poynting effect, applicable for any elastic interaction between network ele-
ments. We focus on the initial growth of ∆p and ϵ through the coefficients

χϵ =

[(
∂2p

∂γ2

)
ϵ

]
0

and χp =

[(
∂2ϵ

∂γ2

)
p

]
0

. (5.1)

χϵ and χp are evaluated in the initial condition (“0”). Their subscript distin-
guishes strain control (fixed ϵ = 0) from stress control (fixed ∆p = p − p0 =
0). We derive exact expressions for the coefficients in hyperelastic solids
(e.g. rubbers, solid foams, and tissue), which have reversible stress-strain
relations. Note that particulate media are generally not hyperelastic due
to shear-induced rearrangements. We relate χϵ and χp to a network’s vi-
brational modes and the microscopic Grüneisen parameter Γn [102], which
quantifies how volumetric strain shifts the frequency ωn of the nth mode,

Γn = −

[(
1

ωn

∂ωn

∂ϵ

)
γ

]
0

. (5.2)

We validate our predictions numerically in random networks of linear
springs (Figure 1), which are widely studied as minimal models of, e.g.,
polymer networks, foams, and glasses [12, 21, 22, 71, 103–107]. We show
that the sign of the Poynting effect in spring networks is negative and set
by the Grüneisen parameter, which can be motivated theoretically. We
focus on marginally rigid spring networks close to the isostatic state (mean
coordination z = zc +∆z, with zc ≈ 4 in 2D), and study scaling with ∆z.

5.2. Spring networks
For concreteness, we first illustrate the Poynting effect in random spring
networks.

We consider networks of N = 1024 harmonic springs in a periodic unit
cell with initial side lengths L1 = L2 = L. Networks are prepared in two
ways. Packing derived (PD) networks are prepared by generating bidisperse
packings of soft repulsive disks close to the jamming transition [8, 63, 108].
Each contact between disks is then replaced by a spring with stiffness k and
a rest length ℓ0ij equal to its initial length ℓij, so p0 = 0 [20, 102, 107, 109,
110]. To prepare randomly cut (RC) networks, we start from a PD network
with mean coordination z ≈ 6 and randomly remove springs, with a bias
towards highly connected nodes [21, 22, 71]. All numerical results are
presented in dimensionless units by setting k and the average disk size in
the initial packing to unity. PD and RC networks are indistinguishable by
eye, but their shear modulus G ∼ ∆zµ and bulk modulus K ∼ ∆zµ

′
have

qualitatively different dependence on excess connectivity ∆z (Figure 5.2,
open symbols). In PD networks, G vanishes continuously with µPD = 1,
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Figure 5.2: The shear modulus G, bulk modulus K, and Poynting coefficients χϵ and χp

as a function of excess coordination ∆z for (a) packing derived and (b) randomly cut spring
networks.

while K jumps discontinuously to zero (µ′
PD = 0) [3]. In contrast, in RC

networks both G and K vanish continuously, with µRC = µ′
RC ≈ 1.1 [21, 22,

71]. We will exploit these differences to test our predictions for the Poynting
coefficients.

We consider deformations combining pure shear strain and volumetric
expansion, such that lattice vectors of the unit cell are transformed by the
deformation gradient

F̂ = (1 + ϵ)

[
1 + γ 0
0 (1 + γ)−1

]
. (5.3)

The corresponding Cauchy stress tensor is

σ̂ =

[
−p− q 0

0 −p+ q

]
. (5.4)

When networks are sheared using strain control, ϵ is held fixed at zero
while γ is increased incrementally. At each step the elastic energy

∑
ij Vij =

(k/2)
∑

ij(ℓij − ℓ0ij)
2 is minimized with respect to the node positions using

FIRE [26]. The resulting p and q are determined from

σαβ = 1/(L1L2)
∑
ij

fij ℓij(n̂ij,αn̂ij,β) , (5.5)

where fij = −∂Vij/∂ℓij and n̂ij is a unit vector pointing from node i to j.
For stress controlled simulations, γ and ϵ are also allowed to vary while
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the energy is minimized subject to p = 0 and a prescribed q [16]. Because
finite-sized systems are never perfectly isotropic, plots of p or ϵ versus γ
contain a linear contribution with a prefactor that vanishes as N → ∞ [69].
To estimate the Poynting coefficients, we symmetrize p and ϵ by averaging
the response to shearing both “forward” (γ > 0) and “backward” (γ < 0).

Figure 5.2 presents our first main result, the Poynting coefficients for
PD and RC networks over a range of ∆z. In all cases the Poynting effect
is negative. There is an apparent equality between χϵ and Kχp (motivated
below), albeit with fluctuations at the lowest z. There is a notable difference
in how the PD and RC Poynting coefficients scale with with ∆z. In PD
networks χϵ and Kχp diverge, with an empirical fit to 1/∆zλPD giving λPD ≈
0.85. In contrast, in RC networks χϵ and Kχp are flat (λRC = 0). Hence the
Poynting coefficients depend on both preparation and shearing protocols,
and in three out of four cases they diverge at the isostatic point.

5.3. Microscopic theory
We now develop exact expressions for the Poynting coefficients, beginning
with the relation between χϵ and χp. In a hyperelastic material, the pres-
sure ∆p = (1/2)χϵγ

2 due to shearing at fixed ϵmust be equal to the pressure
from a two-step process: first shearing to γ at constant p, followed by a vol-
umetric strain ϵ = −(1/2)χpγ

2 that reverses the volume change induced in
the first leg. The second step changes pressure by ∆p = −Kϵ = (1/2)Kχpγ

2,
and therefore χϵ = Kχp.

We next relate χϵ to the shear modulus G(ϵ) = (1/2)[(∂q/∂γ)ϵ]γ=0 after
a volumetric strain. The total differential of the strain energy density is
dW = Ŝ : dÊ, where Ê = (F̂T F̂ − 1)/2 is the Green-Lagrange strain. The
second Piola-Kirchoff stress Ŝ is related to the more experimentally-relevant
Cauchy stress via σ̂ = F̂ ŜF̂T /J , where J = det F̂ . Hence

dW = 2(1 + ϵ)2
[
− pdϵ
1 + ϵ

+
q dγ
1 + γ

]
. (5.6)

Using the Maxwell relation of Eq. (5.6), one finds

χϵ = −2G′(0)− 4G(0), (5.7)

where the prime indicates differentiation with respect to ϵ. Earlier work
neglected the difference between the various stress and strain measures in
nonlinear elasticity, but still arrived at the same result [95, 97]. Numerical
evaluation of Eq. (5.7) is in good agreement with direct measurements of χϵ

and Kχp, as shown in Figure 5.2.
We now relate χϵ to discrete degrees of freedom. Network elasticity is

encoded in the the extended Hessian Ĥ = ∂2U/∂ |q⟩2, where the the 2N + 1-
component vector |q⟩ contains the node positions and shear strain γ [13].
The shear modulus can be written as a sum over the non-rigid body eigen-
modes of Ĥ, 1/G = (v/N)

∑
n Λ

2
n/ω

2
n, where v = JL2/N , ω2

n is the squared
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Figure 5.3: The product DΛ2 versus eigenfrequency ω in PD and RC networks at varying
coordination z. D is the density of states and Λ2 is a measure of modes’ coupling to shear.

eigenfrequency of the nth eigenvector, and Λn/N is its component along the
strain coordinate [13]. Letting D(ω), Λ2(ω) and Γ(ω) denote the density of
states and averages of Λ2

n and the Grüneisen parameter Γn in the interval
[ω, ω + dω), and replacing sums with integrals, we find

1

G
= v

∫ ∞

0

DΛ2

ω2
dω , (5.8)

and, from Eq. (5.7),

χϵ = 2vG2

∫ ∞

0

Γ

ω2

[
2− ∂ lnΛ2D

∂ lnω

]
Λ2D dω . (5.9)

Eq. (5.9) is a central result: it explicitly relates the Poynting effect to vibra-
tional modes. Note that the sign of χϵ is controlled by Γ and the logarithmic
derivative of Λ2D.

5.4. Application to networks
We now evaluate Eq. (5.9) in the context of spring networks, focusing on
the scaling of χϵ with ∆z. Close to the isostatic state, both PD and RC
networks display an anomalous abundance of “soft modes” that dominate
the response to forcing [9, 13, 21, 80]. The modes appear above a charac-
teristic frequency ω∗, and for scaling analysis the density of states is well
approximated by a window function between ω∗ and ω0 ∼ O(k1/2) [9, 19, 80].
Following Ref. [13], we assume that all soft modes couple similarly to shear,
so Λ2 ∼ const. Hence Eqs. (5.8) and (5.9) give ω∗ ∼ G and

χϵ ∼ G2

∫ ω0

ω∗

Γ

ω2
dω . (5.10)
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The sign and form of Γ can be rationalized with scaling arguments. Per-
turbing a network along mode n carries an energetic cost ∆U ∝ ω2

n, so
Γ ∼ −ω−2(∂∆U/∂ϵ). ∆U can be expanded in u

∥
ij and u⊥

ij, the relative nor-
mal and transverse motions, respectively, between connected nodes. The
well-known result is ∆U = (1/2)

∑
ij [k(u

∥
ij)

2 − (fij/ℓij)(u
⊥
ij)

2], where the force
fij and length ℓij are evaluated prior to the perturbation [111]. In a net-
work that has previously undergone a small volumetric strain ϵ from its un-
stressed state, the typical force will be proportional to the pressure p = −Kϵ,
and so ∂∆U/∂ϵ ∼ K(u⊥)2N . Soft modes strongly resemble floppy motions
(which neither stretch nor compress springs), with typical transverse mo-
tions u⊥ ∼ 1/N1/2, independent of ω [20, 80]. Therefore

Γ ∼ −K/ω2 , (5.11)

and, by Eq. (5.10),
χϵ ∼ −K/G . (5.12)

This remarkably simple expression for χϵ correctly predicts the sign of the
Poynting effect and captures all of the phenomenology in Figure 5.2. It
relates the qualitatively different behavior of χϵ in PD and RC networks
to the differences in their shear and bulk moduli, predicting λRC = 0 and
λPD = µPD = 1. On a qualitative level, it explains that the Poynting effect
in spring networks is negative because tension is stabilizing. Finally, the
strength of the Poynting effect grows near isostaticity because tension cou-
ples to transverse motions, which dominate soft modes and cause strong
non-affine fluctuations [21, 80, 110].

The above scaling arguments rely on two essential approximations,
namely that DΛ2 ∼ const and Γ ∼ −K/ω2 above ω∗ ∼ G. We now vali-
date them by direct numerical evaluation. In Figure 5.3, DΛ2 is plotted
as a function of ω/G for both PD and RC networks. As expected, in both
cases there is a broad plateau above ω∗. In Figure 5.4 we plot the ratio of
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Figure 5.5: Master curves for shear stress q and pressure p of PD and RC networks sheared
to finite strain γ at fixed ϵ = 0. The dashed lines on the left have slopes 0.74 and −0.63. On
the right the slopes are one and zero.

Γ to −K/ω2; Γ is estimated from a linear fit of ωn versus ϵ after a series of
small volumetric strain steps. In PD networks the ratio approaches a pos-
itive constant as ∆z → 0, indicating that Eq. (5.11) becomes increasingly
accurate as the isostatic point is approached. At finite ∆z there is a slow
upturn with increasing ω. We attribute this to a subdominant correction to
scaling, consistent with the observation that a power law fit to χϵ and Kχp

in PD networks gives a somewhat smaller value of λPD than 1. The same
ratio has a more complex form in RC networks, including a sign change for
the lowest z, but it also approaches a low frequency plateau in the isostatic
limit.

5.5. Finite strain
The Poynting coefficients quantify the leading order dependence of ∆p and
ϵ on γ. We now show that the Poynting coefficient χϵ predicts the onset of
strain stiffening when a network is sheared at fixed volume.

There has been no prior study of PD networks at finite strain, while
studies of RC networks did not report normal stresses. RC shear stresses
were shown to stiffen beyond some vanishing strain scale γ∗ [21] (unlike
sphere packings, which soften [28, 112]). The secant modulus q/γ in RC
networks satisfies q/(Gγ) = Q(γ/γ∗), with Q ∼ 1 for x ≪ 1 and Q ∼ |x|θ with
θ > 0 for x ≫ 1 [21]. It is natural to make a similar ansatz for the pressure,

2p

χϵγ2
= P(γ/γ∗) , (5.13)

where P ∼ 1 for x ≪ 1 and P ∼ |x|ϕ for x ≫ 1.
The scaling functions Q and P are plotted in Figure 5.5. In Ref. [21]

it was argued that γ∗ ∼ ∆z, which agrees with our RC network data but
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fails for PD networks. Instead, we find that data from both network types
collapses with

γ∗ ∼
√
GK

|χϵ|
∼ ∆zν , (5.14)

with ν = λ+(µ+µ′)/2. In order for shear stress and pressure to remain finite
when ∆z → 0, we must have θ = µ/ν and ϕ = −λ/ν. These give θPD ≈ 0.74
and ϕPD ≈ −0.63 (using λPD = 0.85), as well as θRC ≈ 1 and ϕRC ≈ 0. These
are all in good agreement with numerics (dashed lines in Figure 5.5).

To motivate γ∗, we expand the secant modulus in p(γ) to find

q

2Gγ
∼ 1 +

χ2
ϵγ

2

GK
+O

(
γ4
)
. (5.15)

Here we have neglected numerical prefactors and used Eq. (5.7), assuming
G′(0) ≫ G(0) (appropriate near isostaticity). Balancing terms on the right-
hand side yields Eq. (5.14), an extrapolated strain scale where the initial
linear form of the stress-strain curve breaks down. A link between normal
stresses and stiffening was also evidenced in [113].

5.6. Conclusions
We have derived exact expressions for the Poynting coefficients in hyper-
elastic materials, and validated them numerically in two classes of spring
networks. Both display a negative Poynting effect, whose origin can be
traced to the stabilizing influence of tension on a network’s vibrational
modes. The amplitude of the effect is controlled by the coupling between
tension and relative transverse motions, which explains the correlation be-
tween normal stress and non-affinity [101], and results macroscopically
in a coefficient χϵ that scales with the ratio K/G. Eq. (5.9) is applica-
ble in any 2D hyperelastic material – hence our results can lend insight
to the Poynting effect in other elastic networks, including fiber networks
(e.g. [23, 24, 82, 89, 101, 114]). The scaling arguments for DΛ2 and Γ
presented here are specific to spring networks; they must be modeled or
evaluated anew for each material. Our calculations and numerics are all
in 2D, but extension to 3D is straightforward and we do not expect the
underlying physics to change.

We have shown that Poynting coefficients and stiffening behavior are
highly sensitive to the linear elastic moduli. Recent work has demonstrated
how to prepare spring networks using a biased cutting protocol to target es-
sentially any positive value of K/G [115, 116]. Our results indicate that the
same techniques could be used to select for desirable nonlinear mechanical
properties.

One can ask whether the elastic Poynting effect gives insight into
Reynolds dilatancy. As noted above, our approach does not apply to irre-
versible deformations. More heuristically, we note that whereas volumetric
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expansion stabilizes elastic systems, it destabilizes particulate matter by
opening contacts. This suggests a sign difference, and indeed materials
like sand generally dilate under shear unless prepared in a loose state.



6
Viscous forces and bulk

viscoelasticity near jamming
When weakly jammed packings of soft, viscous, non-Brownian spheres are
probed mechanically, they respond with a complex admixture of elastic and
viscous effects. While many of these effects are understood for specific, ap-
proximate models of the particles’ interactions, there are a number of pro-
posed force laws in the literature, especially for viscous interactions. We
numerically measure the complex shear modulus G∗ of jammed packings for
various viscous force laws that damp relative velocities between pairs of con-
tacting particles or between a particle and the continuous fluid phase. We
find a surprising sensitive dependence of G∗ on the viscous force law: the
system may or may not display dynamic critical scaling, and the exponents
describing how G∗ scales with frequency can change. We show that this
sensitivity is closely linked to manner in which viscous damping couples to
floppy-like, non-affine motion, which is prominent near jamming.

This chapter has been published as:
Karsten Baumgarten, Brian P. Tighe, Soft Matter, 2017,13, 8368-8378
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6.1. Introduction
Dense packings of soft, viscous, non-Brownian spheres are widely stud-
ied as a minimal model for emulsions, aqueous foams, and soft suspen-
sions [7, 28, 75, 76, 117–120]. When compressed, soft spheres “jam” into a
marginally solid state with a shear modulus that grows continuously above
a critical packing fraction ϕc ≈ 0.84 in 2D and 0.64 in 3D [3]. Close to
the jamming point, structural and mechanical properties display features
reminiscent of a critical point, including diverging time and length scales
[3, 7, 9, 11–13, 39, 75, 76, 109, 121, 122]. Mechanically probing the sys-
tem on finite time scales reveals a mixture of elastic and viscous response
[7, 13, 28, 119, 120, 122]. However numerical studies typically represent
particles’ viscous interactions with their neighbors and/or the continuous
fluid phase using approximate, computationally inexpensive force laws.
Here we use simulations and theory to demonstrate that viscoelastic prop-
erties of jammed solids are surprisingly sensitive to the form of the viscous
force law. Linear viscoelasticity is characterized by the frequency depen-
dent complex shear modulus G∗(ω) = G′(ω)+ ıG′′(ω); its real and imaginary
parts are known as the storage and loss modulus, respectively, and quan-
tify the amount of energy stored elastically and dissipated viscously during
one cycle of oscillatory driving at angular frequency ω [123]. The form of the
complex shear modulus near jamming was first described by Tighe [13] for a
system of soft spheres interacting via “one-sided” (purely repulsive) springs
and linear viscous contact forces; details of the model are presented below.
Characteristic features can be seen in Figure 6.1, which plots the average
G∗ for states prepared close to jamming. At both low and high frequencies,
the storage modulus (filled symbols) and loss modulus (open symbols) re-
semble a simple Kelvin-Voigt solid (a spring and dashpot in parallel) [123],
with G′ ∼ const and G′′ ∼ ω. There is also a critical regime at intermediate
frequencies, in which both G′ and G′′ scale as ω1/2. Similar square root
scaling has been observed experimentally in foams, emulsions, and other
complex fluids,[4, 124–127] and has been linked theoretically to strongly
non-affine motion [4]. Plots of the particles’ displacements from a static ini-
tial condition, evaluated at zero and peak shear stress (Figure 6.1, bottom
six panels) show that the critical regime represents a broad crossover from
highly non-affine motion in the quasistatic limit at vanishing ω, to strongly
affine motion at high frequencies.

The square root scaling is anomalous, in the sense that simple linear in-
teractions at the particle scale give rise to nonlinear frequency dependence
in the bulk. In contrast, the frequency dependence of G∗ in a Kelvin-Voigt
solid is consistent with a direct extrapolation from the elastic forces (linear
in the particle displacements) and viscous forces (linear in the velocities).
Moreover, in soft spheres the critical regime broadens on approach to the
jamming transition, with its lower bound approaching zero as the confining
pressure p goes to zero and the system unjams [13]. This strongly suggests
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Figure 6.1: (left) Storage modulus G′ and loss modulus G′′ of a packing of viscous soft disks
(inset) prepared at pressure p = 10−4 and sheared at driving frequency ω. (right) Particle
displacements evaluated at zero and peak stress amplitude for ω = 10−10, 10−3, and 104.

that critical effects lie at the origin of the square root scaling near jamming.
While spring-like forces are standard in numerical models of foams and

emulsions [3, 7, 13, 28, 75, 76, 118, 119, 128], a number of alternate
proposals for viscous interactions can be found in the literature [7, 129–
132]. This variety is largely due to authors’ efforts to strike a balance be-
tween physical accuracy and computational complexity. What influence
does the viscous force law have on bulk viscoelastic response near jam-
ming? In equilibrium systems near a critical point, growing correlations
wash out particle-scale details, so that similar scaling in bulk properties
can be found for different interparticle interactions [133]. Here we show
that the nonequilibrium jamming transition is different: the complex shear
modulus near jamming is surprisingly sensitive to the form of the viscous
force law. Seemingly similar choices can alter the apparent scaling ex-
ponents or eliminate dynamic critical scaling entirely. Still others lead to
subtler changes in the form of correlation functions.

To probe the role of viscous damping in viscoelasticity near jamming, we
implement computer simulations of Durian’s bubble model, a widely stud-
ied numerical model for foams and emulsions near ϕc. We investigate linear
contact damping for varying ratios of the drag coefficients for normal and
transverse motion, Stokes-like drag laws, and finally nonlinear damping of
the relative velocities. One of our main conclusions will be to relate floppy-
like, non-affine motion in the quasistatic limit to the form of the storage
and loss moduli at finite frequency. We further study the role of two-point
velocity correlations and effect of pre-stress on the dynamic viscosity.

6.2. The bubble model
Durian’s bubble model treats individual bubbles as non-Brownian particles
interacting via elastic and viscous forces [7]. The equations of motion are
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overdamped, so that at all times the net elastic and viscous forces on a
particle i balance,

F el
i + F visc

i = 0 . (6.1)

For contact forces fij, the corresponding net force Fi =
∑

j(i) fij can be
found by summing over all particles j in contact with i.

We consider ensembles of packings ofN particles inD = 2 spatial dimen-
sions prepared at a target pressure p. N = 32768 unless indicated otherwise.
Initial conditions are generated by minimizing the total elastic potential en-
ergy using a nonlinear conjugate gradient algorithm, starting from particle
positions placed randomly via a Poisson point process. As is typical in
studies of jamming [63], the packings are bidisperse to avoid crystalliza-
tion, with equal numbers of large and small particles and a radius ratio
1.4:1. The systems are bi-periodic, and shear is imposed via Lees-Edwards
boundary conditions.

Units are set by the mean particle size d, the particle stiffness k, and a
microscopic time scale τ1 (the latter two being introduced below). In sim-
ulations all three are set to one. However, in some cases we include the
microscopic time scale in scaling relations in order to emphasize the di-
mensionful or dimensionless character of a relation.

All our simulations are performed in D = 2 spatial dimensions, which is
the upper critical dimension for the jamming transition.[65] We therefore
expect the critical behavior we describe here, and in particular the values
of critical exponents, to remain unchanged for D > 2.

6.2.1. Elastic interactions
Elastic forces are modeled via “one-sided springs,” i.e. a harmonic repul-
sion that acts only when particles overlap. Linear springs are a widely
accepted[6, 8] approximate[134–139] description of the elastic repulsion
that arises due to surface tension when spherical bubbles or droplets are
deformed. The elastic force on particle i due to particle j is

f el
ij =

{
−k δij n̂ij for δij ≥ 0

0 for δij < 0 .
(6.2)

Here we have introduced the contact stiffness k, the overlap δij = ρi + ρj −
∆rij, and the normal vector n̂ij = (rj − ri)/∆rij. The latter two quantities
are defined in terms of the particle radii ρi and ρj, center positions ri and
rj, and center-to-center distance ∆rij = |ri − rj |. The contact stiffness k
is proportional to the surface tension and encodes the energetic cost of
deforming a particle and thereby increasing its surface area.

For later convenience we note that the elastic energy corresponding to
Eq. (6.2) is U =

∑
⟨ij⟩ Uij, where

Uij =

{
1
2kδ

2
ij δij ≥ 0

0 δij < 0 .
(6.3)
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Figure 6.2: (a) Relative velocities in the rest frame of particle i. (b) Motion with respect to an
affine flow field.

The energy change ∆U due to small perturbations away from an initial
condition in mechanical equilibrium is

∆U ≈ σ0γV +
1

2

∑
⟨ij⟩

[
k
(
∆u

∥
ij

)2
−

f0
ij

∆r0ij

(
∆u⊥

ij

)2]
, (6.4)

where ∆uij = uj − ui is the relative displacement vector, ∆u
∥
ij = (∆uij ·

n̂ij) n̂ij is its component along n̂ij, ∆u⊥
ij = ∆uij − ∆u

∥
ij is the transverse

component, γ the shear strain, and V the volume of the packing (area in
2D). The shear stress σ0 in the reference state is small with a mean value
equal to zero, because the preparation protocol is isotropic. f0

ij and ∆r0ij
are the contact force and center-to-center distance in the reference packing,
respectively. The term proportional to f0

ij captures the influence of stress in
the reference packing, i.e. the confining pressure p. It is referred to as pre-
stress, to distinguish it from stresses induced by the shear deformation. At
several points below we present data calculated “without pre-stress,” which
is achieved by setting f0

ij to zero in Eq. (6.4). This is equivalent to replacing
the packing with a network of springs, each with a rest length equal to ∆r0ij
from the corresponding contact.

6.2.2. Viscous interactions
Here we describe the several viscous force laws considered below. These
can be divided in three classes: linear contact forces, linear body forces,
and nonlinear contact forces.

Linear contact damping: We will explore a class of linear viscous contact
force laws that damp relative velocities at the point of contact,

f visc
ij = −kτ1

[
∆u̇

∥
ij + β∆u̇⊥,c

ij

]
. (6.5)

See Figure 6.2a for an illustration. The quantity ∆ ˙uij
⊥,c = (∆u̇⊥

ij − ρiθ̇i −
ρj θ̇j) (n̂ij × ẑ) is the tangential velocity at the contact and ẑ is the out-of-
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plane unit vector. θi is the angular displacement of particle i from its orien-
tation in the initial condition. Dots indicate differentiation with respect to
time. The coefficient kτ1 controls the damping of relative normal motions.
It is defined in terms of a microscopic time scale τ1, which describes the
exponential relaxation of two overlapping disks and sets the natural unit of
time. The damping coefficient for relative transverse motion βkτ1 is defined
by its ratio β to the damping coefficient for normal motion.

The case β = 1 describes equal damping of normal and transverse mo-
tion. For brevity we refer to this case as “balanced” contact damping.
Examples of prior studies employing balanced contact damping include
Refs. [13, 28, 76, 117, 118, 120, 140, 141]. Note that some of these studies
apply damping to the relative motion of the particles’ centers, neglecting
particle rotations. We include rotations, as this seems more physical –
however, we have also implemented balanced damping without rotations
and find the form of G∗ qualitatively unchanged from the results presented
below.

We also separately consider the case β = 0, in which transverse mo-
tion goes undamped. This is not a physically realistic scenario for densely
packed foams and emulsions. Nevertheless, this damping law is found in
the literature, presumably because it exerts no torque, eliminating the need
to keep track of rotational degrees of freedom.[142–145] In dilute systems
with volume fractions outside the range considered here, this same force
law is also a means to implement inelastic collisions.

Finally, we also treat the case of arbitrary β. We are not aware of any
prior work that has systematically varied this coefficient.

Again for later convenience, we note that the Rayleigh dissipation func-
tion corresponding to Eq. (6.5) is

R =
1

2
kτ1

∑
⟨ij⟩

[(
∆u̇

∥
ij

)2
+ β

(
∆u̇⊥,c

ij

)2]
. (6.6)

The Rayleigh dissipation function is used to implement linear damping
forces in a Lagrangian formalism. Just as conservative forces are propor-
tional to gradients of the potential energy, dissipative forces are propor-
tional to gradients of the dissipation function.

Stokes-like drag forces: In addition to linear contact drag, we also consider
a class of linear viscous force laws in which drag enters as a body force
reminiscent of Stokes drag.[7, 146] These can be motivated in two ways.

In the first interpretation, drag between particles is neglected entirely.
Instead drag is assumed to result from the motion of individual particles
with respect to the continuous fluid phase, which itself is assumed to flow
with an affine velocity profile vaff(x) = γ̇y x̂ set by the shear rate γ̇. A particle
at position ri then experiences a drag force proportional to the difference
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between its velocity vi and the affine profile (see Figure 6.2b),

F visc
i = −kτ1 [u̇i − vaff(ri)] . (6.7)

In this interpretation, the damping coefficient kτ1 should be proportional to
the fluid viscosity ηF , as specified in Stokes’ law. The dissipation function
is

R =
1

2
kτ1

∑
i

[
(u̇i,x − r0i,yγ̇)

2 + u̇2
i,y

]
+

1

2
ηF γ̇

2V . (6.8)

The second term accounts for dissipation due to shearing of the continuous
fluid phase.

An alternative interpretation of Eq. (6.7) known as “mean field drag” was
introduced by Durian.[7] In this view the body force is an approximation to
balanced contact damping. One assumes that the velocity of each con-
tacting particle j can be replaced with its average value at that position,
which coincides with the affine velocity field. Angular velocities are set to
zero. The resulting viscous force law and dissipation function are identi-
cal to Eqs. (6.7) and (6.8), with the caveat that kτ1 no longer has a fixed
proportion to the fluid viscosity. Retaining the fluid viscosity term in the
dissipation function is advisable, however, as otherwise the system could
deform affinely without dissipating energy.

Regardless of how the Stokes-like drag force is motivated, its advantage
is again computational. As the equations of motion in the bubble model are
overdamped, they are first order linear differential equations. Generally,
these must be solved using matrix inversion (see below). However in the
special case of Eq. (6.7), the relevant inversion can be performed by hand.
Prior studies using Stokes or mean field drag include Refs. [7, 22, 75, 117,
119, 122, 132, 141, 147, 148]

Nonlinear contact forces: The viscous contact force law of Eq. 6.5 is lin-
ear in the particle velocities. However, viscous friction laws in real foams
are actually nonlinear in the relative velocities. There are two classes of
interactions, associated with so-called mobile and immobile surfactants,
which give rise to different flow profiles within the thin films of the flow,
and therefore dissipate energy differently. The case of immobile surfac-
tants was treated by Bretherton,[129] whose drag law proportional to the
2/3 power of velocity was subsequently verified experimentally.[149] More
recently, Denkov and co-workers have argued for an exponent 1/2 in the
case of mobile surfactants.[130] Seth et al.[131] have also suggested a non-
linear force law with exponent 1/2 to account for elastohydrodynamic in-
teractions between deformable particles in soft glassy matter. We therefore
consider force laws of the form

f visc
ij = −kτ1

(
∆vcij
ρ0/τ1

)α−1

∆v c
ij , (6.9)
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where ∆v c
ij = ∆u̇

∥
ij +∆u̇⊥,c

ij is the relative velocity at the contact.
The constant ρ0 has units of length and is required for dimensional con-

sistency. We set it to 1. We will consider a range of exponents α, including
the physically relevant values of 2/3 and 1/2.

6.2.3. Equations of motion
To solve for the complex shear modulus, it is useful to rewrite the equations
of motion, Eq. (6.1), in matrix form. Following Ref. [13], the equations of
motion can be expressed as

K̂ |Q(t)⟩+ B̂ |Q̇(t)⟩ = |F (t)⟩ . (6.10)

The Hessian matrix K̂ and the damping matrix B̂ are defined in terms of the
elastic potential energy U and the Rayleigh dissipation function R,

Kmn =
∂2U

∂Qm∂Qn

∣∣∣∣
|Q⟩=|0⟩

Bmn =
∂2R

∂Q̇m∂Q̇n

∣∣∣∣
|Q̇⟩=|0⟩

. (6.11)

The 3N + 1-component vector |Q⟩ = (u1x, u1y, . . . , θ1, θ2, . . . , γ) contains all
degrees of freedom, including the amplitude γ of the pure shear strain ex-
perienced by the box. The reference packing is defined as the state |Q⟩ = |0⟩.
The vector |F ⟩ contains the generalized forces conjugate to each of the com-
ponents of |Q⟩. The component conjugate to γ is equal to δσ V = (σ − σ0)V ,
where σ is the shear stress.

The Fourier transform of Eq. (6.11) gives(
K̂ + ıωB̂

)
|Q∗(ω)⟩ = δσ V |γ̂⟩ (6.12)

where ω is the angular frequency. Note that |Q∗(ω)⟩ is complex. We impose
a generalized forcing term pointing along the γ-coordinate, i.e. |F ⟩ ∝ |γ̂⟩ =
(0, 0, . . . , 1). All other generalized forces are zero (body forces and torques are
balanced). The equations of motion are therefore reduced to a a set of com-
plex linear equations which can be solved numerically for each frequency
ω.

The complex shear modulus can be determined by solving Eq. (6.12)
for the complex vector |Q∗(ω)⟩ using standard linear algebra routines. The
resulting shear strain is γ∗(ω) = ⟨γ̂|Q∗(ω)⟩. The complex shear modulus is
then

G∗(ω) ≡ G′(ω) + ıG′′(ω) =
γ∗(ω)

δσ
. (6.13)

6.3. Linear contact damping
We now consider the complex shear modulus in the presence of linear con-
tact damping. We begin with balanced damping, i.e. Eq. (6.5) for β = 1. This
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Figure 6.3: (a) The storage and loss moduli, G′ and G′′, for balanced contact damping (β = 1).
The dashed line has slope 1. (b) Collapse of the same data to two critical scaling functions.
The short- and long-dashed lines have slopes of 1 and 1/2, respectively.

scenario was already extensively studied in Ref. [13], and provides a useful
point of comparison for alternative viscous force laws. Here we highlight
the main results.

6.3.1. Balanced damping
Balanced linear contact damping was discussed above for the case p = 10−4

– see Figure 6.1. We can gain further insight by varying the distance to
jamming. In Figure 6.3a we plot the complex shear modulus as a function
of frequency for a range of pressures p = 10−5 . . . 10−2. In all cases the
same quasistatic, critical, and affine regimes identified in Figure 6.1 are
evident. However the crossover frequency ω∗ ≡ 1/τ∗ from the quasistatic
to the critical regime shifts to lower values as p → 0, indicating that the
time scale τ∗ diverges at the jamming point. The crossover from critical to
high frequencies, on the other hand, is insensitive to pressure; it occurs for
ω ∼ O(1) in all cases. We can infer that the quasistatic and critical regimes
are intimately related to the jamming transition, while the high frequency
response does not have a critical character.

Inspired by the above observation, we now restrict our focus to frequen-
cies ω < 1. A more rigorous derivation of the following results is found in
Ref. [13]. Our approach here is more heuristic and begins with the scaling
ansatz

G∗

G0
= G∗ (ωτ∗) for ω < O(1) , (6.14)

which relates the dimensionless ratio G∗/G0 to the dimensionless product
ωτ∗. As discussed below, the quasistatic shear modulus scales as G0 ∼ pµ
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with µ = 1/2. Similarly, we assume that τ∗ diverges at the jamming point,

τ∗ ∼ 1

pλ
(6.15)

for some positive exponent λ. The real and imaginary parts of the scaling
function G∗ = G′ + ıG′′ satisfy

G′(x) ∼
{

1 x < 1
x∆ x > 1

(6.16)

and

G′′(x) ∼
{

x x < 1
x∆ x > 1 .

(6.17)

The forms G′ ∼ 1 and G′′ ∼ x for small x are the simplest choices respecting
the symmetry properties of the storage and loss moduli, which are even and
odd functions, respectively. The power laws G′ ∼ x∆ and G′′ ∼ x∆ represent
non-trivial assumptions. The same exponent ∆ must appear in both the
real and imaginary parts to satisfy the Kramers-Kronig relations.

The scaling ansatz of Eqs. (6.14-6.17) is tested in Figure 6.3b, which
plots G′/pµ and G′′/pµ with µ = 1/2 versus ω/pλ with λ = 1. The result-
ing collapse is excellent. As expected, the real and imaginary parts of the
scaling function are constant and linear, respectively, for low values of the
rescaled frequency. There is a crossover around ω/p ∼ O(1) to a power law
with exponent ∆ ≈ 0.5 (long dashed line). This is the ω1/2 scaling discussed
above.

The scaling collapse in Figure 6.3 empirically determines the values of
the critical exponents; they are µ = 1/2, λ = 1, and ∆ = 1/2. The value of µ
is fixed by the known scaling of G0. The exponent∆ is related to µ and λ. To
see this, note that one generally expects the moduli to remain finite except
possibly at the critical point, where both p and ω go to zero. In the case
where p = 0 and ω > 0, Eqs. (6.14-6.17) predict that both moduli scale as
pµ−λ∆ω∆, which remains finite only if ∆ = µ/λ = 1/2. It remains to motivate
λ = 1, which we do in Section 6.3.3.

6.3.2. “Imbalanced” contact damping (β ̸= 1)
In this section we probe the effects of undamped sliding motion, with em-
phasis on the limit β = 0. Our main result is to show that imbalanced
damping “kills” dynamic critical scaling near jamming.

It is useful first to consider response in the absence of the pre-stress
term, i.e. by setting f0

ij = 0 in Eq. (6.4). The Hessian and damping matrices
are then directly proportional, K̂ = τ1B̂, allowing Eq. (6.12) to be solved
exactly in terms of G0,

G∗ = G0(1 + ıτ0ω) . (6.18)
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Figure 6.4: (a) Storage and loss modulus for a system without transverse damping (β = 0).
(b) G′ and G′′ for systems at pressure p = 10−4 and varying transverse damping β. (inset)
Dynamic viscosity η0 and affine viscosity η∞ for the same data, denoting the low and high
frequency limits of G′′/ω. In both figures the dashed line has slope 1.

The resulting complex shear modulus is that of a Kelvin-Voigt element, the
simplest viscoelastic solid – the storage modulus is flat, while the loss mod-
ulus is linear over the entire range of ω. Re-introducing the pre-stress term
breaks the direct proportionality between K̂ and B̂, but produces only mild
changes in the moduli, as shown in Figure 6.4a (open and filled squares).
Moreover, data for a range of pressures close to the jamming point can all
be collapsed by rescaling the storage and loss moduli by p0.5. Note that the
frequency axis does not need to be rescaled, indicating the absence of a
diverging time scale.

We emphasize that a seemingly simple change to the viscous force law,
namely setting the damping coefficient for sliding motion to zero, has pro-
duced a dramatic and qualitative shift in the viscoelastic response. More
precisely, the intermediate regime, identified above when β = 1, has com-
pletely vanished. Recall that this regime is a manifestation of dynamic
critical scaling and dominates the response for a wide range of frequencies
near jamming. In this sense setting β = 0 kills dynamic critical scaling.

What happens for intermediate values of β? In Figure 6.4b we plot G∗

for fixed p and a range of β over seven decades. One sees that the critical
regime gradually appears, and for sufficiently large β the moduli resemble
their form for β = 1. This suggests that it is reasonable to speak of weakly
and strongly damped sliding motion. We quantify this distinction more
precisely below.

6.3.3. Relation to floppiness in quasistatic response
The dynamic critical scaling of Eq. (6.14), and the critical exponent λ in
particular, can be related to the scaling relations for normal, transverse,
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and non-affine motion in quasistatic response. This link is motivated by the
observation that for asymptotically low driving frequencies, the particles’
trajectories must approach their quasistatic (ω → 0) form.

Packings at the jamming point are isostatic, meaning they have just
enough contacts to constrain all particle motions (except for a few individ-
ual “rattlers”, which can be removed from the analysis). Consider breaking
a contact in a packing at the jamming transition, where all contacting parti-
cles are “kissing” and f0

ij = 0. The broken contact removes a constraint and
therefore introduces a floppy mode, an infinitesimal motion of the particles
that can be performed without work. By considering the energy expansion
of Eq. (6.4), one sees that all relative normal motions in a floppy mode must
be zero – floppy motions are sliding motions, in which all relative motion
between particles is transverse to the contact. Jammed packings do not
have floppy modes, but the eigenmodes of the Hessian remain “floppy-like,”
i.e. transverse/sliding motion dominates.[11, 14] This feature is also found
in the response to shear, which is dominated by low frequency modes [13].
Through careful analysis of the modes, it is possible to show that the shear
modulus scales as G0 ∼ p1/2.[13? ] Here we take this scaling relation as a
given and, following Ref. [14], infer its consequences for the typical relative
normal and transverse displacement amplitudes, ∆u∥ and ∆u⊥, as well as
the typical amplitude of non-affine displacements una.

By definition, the change in elastic energy ∆U ≡ U − U0 due to an in-
finitesimal shear strain γ is ∆U = (1/2)G0V γ2. Momentarily neglecting the
pre-stress term in Eq. (6.4), which should be small as p → 0, we anticipate
that the typical relative normal motion scales as (∆u∥)2 ∼ G0γ

2, or

∆u∥

γ
∼ p1/4 . (6.19)

This scaling relation is consistent with our expectation that relative nor-
mal motion vanishes at the jamming point. We now re-introduce the non-
positive pre-stress term in Eq. (6.4) in order to determine ∆u⊥. The first
and second terms in brackets in Eq. (6.4) have typical values (∆u∥)2 and
p(∆u⊥)2, respectively; in the latter case we have used the face that the typ-
ical force in the reference packing is proportional to the pressure. While
mechanical stability requires the total energy change ∆U to be positive,[16]
the system can minimize its deformation energy by organizing its motion to
make the magnitude of the pre-stress term as large as possible – in other
words, if the bound p(∆u⊥)2 ≲ (∆u∥)2 is saturated. This gives

∆u⊥

γ
∼ 1

p1/4
. (6.20)

This relation relies on the (reasonable) assumption that the typical con-
tact force scales linearly with the pressure. As expected, the amount of
sliding motion grows dramatically and ultimately diverges as the system
approaches the jamming point.
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Figure 6.5: Scaling of the relative normal, relative transverse, and non-affine motion as a
function of pressure. Dashed lines have slopes of ±1/4.

Finally, we consider the typical amplitude of non-affine displacements
una. Bond vectors ∆r 0

ij in the reference packing are randomly oriented, so
there is a local competition between energetically favorable sliding at the
particle scale, and globally imposed affine motion. Therefore we expect
the typical non-affine amplitude to be comparable to the typical relative
displacement amplitude, which is dominated by transverse motion, i.e.

una
γ

∼ 1

p1/4
. (6.21)

Hence non-affine motion is the natural consequence of floppy-like motion
near jamming.

Eqs. (6.19-6.21) have previously been derived and tested numerically
by Ellenbroek et al. and Wyart et al.[14, 21] For completeness we verify
them again in Figure 6.5, which plots the median of the probability density
function of |∆u∥|, |∆u⊥|, and |una| for varying p while neglecting the pre-
stress term. Results including pre-stress show compatible trends, albeit
with more noise; we revisit the role of pre-stress below. Plots of the means
show the same trend for ∆u⊥ and una, but ∆u∥ develops a plateau at low
p due to a long tail of the PDF.We now use the quasistatic relations (6.19-
6.21) to determine the critical exponent λ. The ω → 0 limit of the dissipation
function is proportional to the dynamic viscosity, R = η0(ωγ0)

2V /2, where
γ0 is the maximum strain amplitude. At the same time, from the viscous
force law one anticipates R ∼ f visc · ∆v ∼ ω2[(∆u∥)2 + β(∆u⊥)2]. Invoking
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Figure 6.6: (a) Critical scaling collapse of the storage and loss moduli for Stokes drag and fluid
viscosity ηF = 1. (b) Storage and loss moduli for p = 10−4 and varying ηF .

Eqs. (6.19) and (6.20) gives

η0 ∼
(
∆u∥

γ0

)2

+ β

(
∆u⊥

γ0

)2

∼ (p/k)1/2 +
β

(p/k)1/2
. (6.22)

For balanced damping and p ≪ 1, the second term dominates and η0 ∼
1/p1/2. Comparing to Eqs. (6.14-6.17), which require η0 = G0 τ

∗ ∼ pµ−λ, it
follows that λ = 1 and ∆ = 1/2. Hence we can motivate the exponents in
the scaling functions (6.16) and (6.17).

Eq. (6.22) is compatible with our numerical results for undamped sliding
(β = 0), as well. Then only the first term is present and η0 ∼ p1/2 – it vanishes
rather than diverges.

One can also consider the case of arbitrary β. The second term will
always dominate for sufficiently low pressure; hence the dynamic viscosity
diverges for any finite damping of sliding motion. In this sense the case
β = 0 is singular. For arbitrary β > 0 the crossover frequency where the
quasistatic regime ends and the linear regime begins scales as ω∗ ∼ p/β.
We have seen above that the critical regime ends at a frequency ωτ1 ∼ O(1).
Hence the critical regime, with its ω1/2 scaling in G′ and G′′, is avoided
entirely whenever ω∗ ≫ 1, or β ≪ β∗ ∼ p. This crossover is evident in
Figure 6.4b. The scale β∗ provides a convenient dividing line between cases
of strong and weak damping of transverse motion.
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Figure 6.7: (a) Two-point correlation function C of the transverse (hence non-affine) particle
displacements with balanced contact damping. (b) The same correlation function C for Stokes
drag. (c) Length scale l corresponding to roots of the curves in (b). (d) Data collapse of l.

6.4. Stokes Drag
We now turn to the case of linear viscous body forces, i.e. the mean field
or Stokes-like drag of Eq. (6.7). In Figure 6.6a we plot the complex shear
modulus for Stokes drag for varying pressure and a fluid viscosity ηF =
1. We find dynamic critical scaling with the same critical exponents µ =
1/2, λ = 1, and ∆ = 1/2 as for balanced contact drag. Hence it appears
that Stokes drag falls into the same universality class as strongly damped
relative transverse motion.

As in the previous section, the above result can be rationalized on the
basis of quasistatic scaling relations. The key observation is that the typical
non-affine motion una and the relative transverse motion ∆u⊥ diverge in the
same way as the pressure tends to zero; cf. Eqs. (6.20) and Eq. (6.21). For
Stokes drag the dissipation function scales as R ∼ (unaω)

2, again giving
η0 ∼ (p/k)−1/2.

Recall that if one considers the Stokes drag term to be a mean field



6

84 6. Viscous forces and bulk viscoelasticity near jamming

approximation for balanced contact damping, then the fluid viscosity ηF can
vary independently of the damping coefficient kτ1. We probe the dependence
of G∗ on ηF in Figure 6.6b by varying ηF over ten decades. We observe that
the fluid viscosity contributes a linear term ηFω to the loss modulus, which
is always dominant at sufficiently high frequencies. For large ηF and/or
low pressures satisfying ηF ≫ 1/p1/2, the loss modulus becomes linear for
all frequencies. In this event the critical properties of the loss modulus are
obscured, but criticality is still apparent in the storage modulus.

6.4.1. Correlations
Despite the similarity in their viscoelastic response, we find a striking dif-
ference in the spatial correlations of non-affine displacements between the
cases of linear viscous body forces and balanced contact damping.

For a system undergoing simple shear in the x-direction, correlations
of the non-affine displacements between particles separated by a distance
δij = |xi − xj | can be quantified with the two-point correlation function
C = ⟨u′

i,y(xi)u
′
j,y(xi + δij)⟩/⟨(u′

i,y)
2⟩. Here u′

i,y is the y-component of the real
part of the complex displacement vector of particle i with x-coordinate xi.
The average ⟨·⟩ runs over all particle pairs within a narrow “lane”, hence
C is a function of |δij |. We have verified that C becomes independent of
the lane width for sufficiently small values. We have also confirmed that
results using the imaginary part u′′

i,y are indistinguishable.
Non-affine correlation functions in weakly jammed solids have been stud-

ied previously for three cases. DiDonna and Lubensky[150] andMaloney[31]
showed there is no characteristic length scale in quasistatic linear elastic
response; instead C collapses when distances are rescaled by the box size L.
Heussinger and Barrat found compatible results for quasistatic shear flow.
Olsson and Teitel[75] found that the same correlation function does select
a growing length scale, independent of L, in shear flow at finite rate using
Stokes drag. However Tighe et al.[151] showed that the form of C resembles
quasistatic linear response when one uses balanced contact damping in-
stead of Stokes drag. Hence there remain important open questions about
correlations at finite driving rate and the role of the viscous force law. Here
we fill a gap in the literature, namely linear response at finite rates.

In Figure 6.7a we plot C for balanced contact damping at a single pres-
sure, two system sizes, and three values of the frequency ω separated by
twelve decades. There is a monotonic decay of the correlations, with little
dependence on the frequency. The shape is also independent of the pres-
sure (not shown). The data collapse when plotted as a function of δ/L.
Hence two-point displacement correlations provide no evidence of a grow-
ing length scale near jamming; snapshots of the velocities display “swirls”
with a characteristic radius of approximately one quarter of the box size.

Correlations for Stokes-like drag display a strikingly different shape, as
shown in Figure 6.7b. C possesses a minimum that shifts to larger dis-
tances with decreasing ω. For the lowest plotted frequencies, ω = 10−5.5
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Figure 6.8: Finite size scaling collapse of the dynamic viscosity η0 for (a) balanced contact
damping and (b) Stokes drag. Filled/open data points are calculated with/without pre-stress.
Dashed curves have a slope of −a/2, with a indicated in the plot.

and 10−6.5, the minimum is no longer clearly identifiable and the shape of
C begins to resemble the form for balanced contact damping. One can de-
fine a correlation length l from the point where C crosses the x-axis, plotted
in Figure 6.7c. We find a length scale that grows with decreasing frequency,
before reaching a plateau with a height of approximately L/4. Focusing on
length scales below this plateau, we find empirically that a reasonable data
collapse is achieved by plotting l/(− ln p)0.65 versus ω/p0.5, implying that the
length scale would diverge at the jamming point (p → 0 and ω → 0) in ther-
modynamically large systems. We note that log corrections are typical in
systems at their upper critical dimension, which is indeed D = 2 for the
jamming transition.[65, 69].

The takeaway is that the form of the correlation function at finite rate is
strongly sensitive to the viscous force law. For balanced contact damping
there is no evidence of a diverging length scale. For Stokes drag there is a
growing correlation length that is cut off by the box size as the frequency is
sent to zero.

6.4.2. Finite Size Effects
Elastic moduli and the mean coordination number of marginally jammed
matter are known to be influenced by finite size effects.[16, 28, 65, 69,
152] In quasistatic systems they become important when the pressure p is
comparable to the pressure increment p∗ ∼ 1/N2 required to add a contact
to, or remove a contact from, the packing. Here we show that the same
pressure scale governs finite size effects in the dynamic viscosity η0.

In Figure 6.8 the dynamic viscosities for both balanced contact damp-
ing and Stokes drag (ηF = 1) are plotted for a wide range of pressures and
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system sizes, both with pre-stress (open symbols) and without pre-stress
(filled symbols). In all cases, we find that the data collapse to a master
curve when η0/N

a is plotted versus p/p∗ ∼ pN2, implying η0 ∼ 1/pa/2. For
balanced contact damping, we find the best collapse when a = 1.0, consis-
tent with the scaling η0 ∼ 1/p1/2 determined above. For Stokes drag we find
better collapse for the somewhat higher value a = 1.09. For comparison, we
also plot curves with slope −a/2. Provided that η0 is an intensive material
property, as is typically the case, the master curves must approach this
slope for large system sizes. This condition is met for the contact damping
data, but for Stokes drag the collapsed data have a slightly shallower slope,
particularly for the data with pre-stress. Using a lower value of α brings
−a/2 closer to the observed slope, but the data collapse is somewhat worse.
Given the small difference in these values and the scatter in our data, we
consider it likely that α is in fact equal to 1 for Stokes drag. However, on
the basis of present data we cannot exclude the possibility that a > 1 for
Stokes drag, or that η0 has a weak system size dependence.

For both contact damping and Stokes drag, pre-stress plays a role in
the onset of finite size effects. Whereas the data without pre-stress show
a sharp crossover around pN2 ∼ O(1), the crossover in the data with pre-
stress is much more gradual. Even for pN2 > 103, a naïve power-law fit
to η0 versus p would yield a slope that is too shallow. Therefore studying
the results of simulations with and without pre-stress, side-by-side, can
potentially improve the assessment of critical exponents near jamming at
modest system sizes.

6.5. Nonlinear Damping
The drag forces considered in the previous sections are all linear in the par-
ticle velocities. Compared to nonlinear drag laws, linear forces are easier
and cheaper to simulate. However, theory [129–131] and experiments [149]
indicate that the bubble-bubble viscous force in foams (and so likely emul-
sions, as well) is in fact nonlinear in the relative velocity, as in Eq. (6.9).
We now probe the influence of an exponent α ̸= 1 on the complex shear
modulus. Our main result is that the time scale τ1 must be generalized to
account for a nontrivial frequency dependence. As a result, the frequency
dependence of both the storage and the loss modulus changes.

Nonlinear equations of motion cannot be written as a matrix equation in
terms of K̂ and B̂. Molecular dynamics simulations are an option,[132] but
beyond the scope of the present work. Instead, we turn to an approxima-
tion known as the method of equivalent damping. The central idea of the
approximation is to replace the nonlinear force law with an “equivalent”
linear force law with a frequency dependent effective damping coefficient
kτα,

f eff
α = −kτα ∆v c . (6.23)
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The effective damping coefficient is expressed in terms of a microscopic
time scale τα that depends on the frequency and amplitude of the forcing,
as described below. τα generalizes τ1, the constant time scale for α = 1.

We now apply the method of equivalent damping to a single degree of
freedom system, namely an overdamped oscillator driven by a sinusoidal
force with amplitude F0 and frequency ω. For the effective damping law of
Eq. (6.23), the resulting oscillations have an amplitude

u0 =
F0

k

[
1

1 + (ωτα)2

]1/2
. (6.24)

To fix τα, we require that the energy dissipated by f eff
α during one period

is equal to the energy dissipated by the nonlinear force law (6.9) when the
particle is constrained to follow the same trajectory through phase space.
One finds

τα(ω) =
2τα1√
π

(
u0ω

ρ0

)α−1 Γ
(
1 + α

2

)
Γ
(
3
2 + α

2

) . (6.25)

This is an implicit relation, as u0 depends on τα. Separately considering the
low and high frequency limits gives

τα =

{
1/(F0ω)

1−α ω < ω×

1/F
(1−α)/α
0 ω > ω× ,

(6.26)

with a crossover frequency ω× ∼ F
(1−α)/α
0 .

To extend the above insights to soft sphere packings, we make an ad-
ditional but reasonable assumption that the typical induced force on each
contact is proportional to the applied stress, F0 ∼ δσ. Under this assump-
tion, the scaling ansatz (6.14-6.17) remains valid, provided that one takes
τ∗ ∼ τα/p, instead of τ1/p. Because τα is a function of frequency and the
applied stress, the “bare” storage and loss moduli G′ and G′′ (as opposed to
G′ and G′′) inherit new dependences on ω and δσ. For systems near jamming
and the physically relevant case α < 1, 1/τ∗ is always smaller than ω× and
hence τα ∼ (δσ ω)α−1 in the quasistatic and critical regimes. In the qua-
sistatic regime one finds that the storage modulus G′ ≃ G0 is unchanged,
while the loss modulus becomes

G′′ ∼ 1

δσ1−α

ωα

p1/2
. (6.27)

As in the linear case, the loss modulus in the quasistatic regime “trivially”
reflects the form of the viscous force law, i.e. both scale as ωα. G′′ also no
longer displays linear response, as it depends on the applied stress. In the
critical regime one finds

G′ ∼ ωα/2

δσ(1−α)/2
(6.28)
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and likewise

G′′ ∼ ωα/2

δσ(1−α)/2
. (6.29)

We emphasize that the ω1/2 scaling of the linear case has been generalized
to ωα/2. Hence within the method of equivalent damping, the nonlinear
frequency dependence of G∗ in viscous soft spheres contains a nontrivial
dependence on the exponent α of the nonlinear viscous force law.

6.6. Conclusions
We have shown that the viscoelastic response of viscous soft sphere pack-
ings close to jamming depends qualitatively on the damping law. The extent
to which damping couples to floppy-like, and hence non-affine, motion is a
key determinant of the resulting response. When the coupling is strong, as
for balanced linear contact damping or Stokes-like drag with ηF = 1, the vis-
coelastic response displays dynamic critical scaling, including square root
scaling of the storage and loss moduli over a broadening range of frequen-
cies. When the coupling is weak, as when 0 < β < β∗ for contact damping
or when ηF > 1/p1/2 for Stokes-like drag, aspects of the critical response
are obscured. And when floppy-like motion is completely undamped, as for
β = 0, dynamic critical scaling vanishes entirely. We demonstrated a subtle
interplay between the force law and non-affine correlations. For systems
with contact damping, the only length scale identified by two-point corre-
lation functions is the box size. However, in systems with Stokes drag, we
observe a correlation length that diverges with vanishing ω, with a cutoff
at the box size. Finally, we presented numerical evidence that pre-stress
increases the strength of finite size effects.

We have also made predictions for the viscoelastic response in the pres-
ence of nonlinear drag laws. Within the context of the method of equivalent
damping, we find that dynamic critical scaling survives; however the scal-
ing of the bare storage and loss moduli now depends on the microscopic
exponent α. This provides a novel way to infer properties of the dominant
dissipative mechanism at the particle scale from the frequency dependence
of G∗. As the method of equivalent damping is an approximation, these pre-
dictions require further testing. As a basic check, we have verified Eq. (6.27-
6.29) by directly inserting the effective damping coefficient from Eq. (6.26)
in the linear equations of motion. Of course this does not constitute an in-
dependent test of the method of equivalent damping, which would require,
e.g., molecular dynamics simulations of Durian’s bubble model. We leave
this as an important task for future work.

Our results suggest that, when performing numerical studies of jammed
matter, one must take care to match the form of the viscous force law to
the physics of whatever particular material one wishes to model – growing
correlations do not wash out this detail. In particular, the linear contact
damping law with β = 0 should be avoided, as it significantly alters the
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viscoelastic response and is difficult to justify on physical grounds, at least
in the context of foams, emulsions, and soft colloidal particles.
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In this thesis we investigated the mechanics of marginal solids and can
group our findings in terms of length, strain, and time scales. For each of
these we investigated how they scale with the distance to the isostatic point
and related this scaling to what we know about the linear response of pack-
ings/networks close to isostaticity. The most important key feature is the
fact that the linear response is dominated by transverse relative motion as
well as the scaling of shear and bulk moduli. Our main findings regarding
length, strain, and time scales follow.

Length Scales: In Chapter 3 we measured diverging length scales in the
linear response of soft sphere packings close to isostaticity. In these sys-
tems it is not straightforward to measure diverging length scales in the
linear response. Pair correlation functions only yield length scales which
directly scale with the size of the system [153]. While many other groups
succeeded in measuring ℓc or ℓ∗ separately with distinct methods [9, 11, 12],
we were able to find both length scales in the fluctuations of the linear re-
sponse. In this sense Chapter 3 gives a thorough characterization of length
scales which can be found in the linear response of soft sphere packings.
Furthermore, it is important to note that the method which we presented
is model-free. It does not rely on fitting and therefore the assumption of
an empirical constitutive relation. We directly measure the Fourier trans-
form of the moduli which gives information about their spatial dependence.
So far in most applications one assumes a stress strain relation with a set
of parameters (which often lack physical insight) and determines them by
fitting to experimental or simulation data. With the method introduced in
Chapter 3 this is not necessary. In addition, it is straightforward to apply
the method to consider other materials.

Noteworthy in the context of this thesis is the application of the method
to RC networks. For these networks it would be interesting to do the same
simulations as we did for PD networks. The interesting difference between
the two systems is the scaling in the bulk modulus. Because the bulk mod-
ulus in RC networks vanishes continuously [71] like the shear modulus, we
expect differences in the modulus Ŝ∥ which is connected to compression.
For the same reason the length scale found in the fluctuations in the linear
response to sinusoidal compression is also expected to behave differently.

The application to Mikado networks is also of potential interest because
one could numerically test the assumptions made in [87]. If the bending
stiffness and the density of the filaments is low, the system’s response is
strongly non-affine. In this case measurements of the wavenumber depen-
dent moduli are expected to show signs of a nonlocal length scale of the
order of a filament length. In the case of high bending stiffness one would
expect to find a nonlocal length scale which is of the order of the segment
size.
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Strain Scales: The Chapter 4 and 5 are about the nonlinear behavior of the
response of networks to shear deformations. In Chapter 4 we investigated
how the shear response of hypostatic random spring networks develops as
an external perturbing field is applied. We tested two different network
models, RC networks and Mikado networks and two types of perturbing
fields, bending interactions and pre-stress. We measured the shear mod-
ulus as a function of the distance to the isostatic point and as a function
of the amplitude of the perturbing field. Our findings show that although
the network models and perturbing fields we considered seem very different
at first, the shear response shows surprising similarities in all cases. We
explain these similarities with the density of states and variational argu-
ments.

In Chapter 5 we considered the shear response of hyperstatic PD and RC
networks. We investigated the Poynting effect which is a nonlinear effect
that describes the build-up of normal stresses as a shear strain is applied.
(Or the volume change of the system as a shear stress is applied.) We
successfully predicted the sign and the scaling of the Poynting effect using
only properties of the linear response regime. As a final step we numerically
measured the scaling of characteristic strain scales on which shear stiffen-
ing occurs and connected this stiffening behavior to the Poynting effect.

The theoretical framework we presented in Chapter 5 can be used to con-
sider any hyperelastic medium. While we checked two network models in
this thesis the framework could be adapted to Mikado networks. The scal-
ing of Λ2 and the shape of the density of states are determined in Chapter 4
which are already two important ingredients to determine the scaling of the
amplitude of the Poynting effect. The only part missing is the Grüneisen
parameter.

In fact, consideringMikado networks in the nonlinear shear regime would
also involve ideas developed in Chapter 4 since we are then dealing with a
hypostatic network which is rigidified by a perturbing field. One of the main
differences is the shape of the density of states, which also features a sharp
peak for low eigenfrequencies. While we focused on the nonlinear elasticity
of systems which are approximated well by a hyperelastic medium, it would
be interesting to also investigate the Poynting effect for particulate matter
(where it is usually referred to as dilatancy). When soft sphere packings
are sheared hyperelasticity is violated because of the change in the con-
tact network - which means that the theoretical methods used in Chapter
5 cannot be applied. However, it is still possible to consider the packings
with simulations.

Furthermore, it would be interesting to test more systems for the behav-
ior we find in Chapter 4. Candidates would be hypostatic networks which
are rigidified by a population of weak springs [21] or soft sphere packings
in which a fraction of the particles is softer.
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Time Scales: Chapter 6 is about the linear viscoelastic response of soft
sphere packings. Here we found that the critical scaling in the dynamical
modulus G∗ depends on the details of the damping law used. In the case
of a viscous force law which damps only normal relative motion the critical
scaling regime does not exist and therefore no diverging time scale in the
linear shear response can be found. In the case of Stokes drag and con-
tact damping which damps both normal and transverse relative motion we
found the expected critical scaling regime in G∗. However, we showed that
the damping law also influences the two point correlation function of the
linear response. With Stokes drag we found a diverging length scale in the
linear response while we could only measure length scales of the order of
the system size if contact damping is used.

Our findings show that it is important to bear in mind that damping
has strong qualitative influence on the linear response of soft sphere pack-
ings. It is therefore important to adjust the simulation model such that
it captures the essential physics of the system in question. Especially in
foams where the exact form of the damping law depends on what kind of
surfactants are used [130, 154, 155] the exponent of the damping law is
influenced. Here it can be important to consider simulations with non-
linear damping laws. Our results for the nonlinear damping laws rely on
approximations, however. It would be of benefit to also test our findings
with molecular dynamics simulations.



A
Nonlocal Elasticity -

Green’s Function
In the main text we studied the case where forcing is restricted to a single
wave vector qŷ. Here we generalize to arbitrary wave vector q = (qx, qy)

T ≡
q(nx, ny)

T and derive expressions for the fourth order compliance tensor S̃ijkl(q)
that connects strain ϵ̃ij(q) and stress σ̃kl(q),

ϵ̃ij(q) = S̃ijkl(q) σ̃kl(q) , (A.1)

with summation implied. The strain in response to arbitrary stress can then
be given by the inverse Fourier transform of S̃ijkl(q) σ̃kl(q).

We first consider relations between the force density field f̃(q) and displace-
ment field ũ(q), i.e. the Green’s function G̃(q). We then turn to strain-stress
relations.
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A.1. Green’s function

As shown in the main text, S̃∥(q) and S̃⊥(q) characterize the response to
forcing parallel and transverse to q, respectively. In an isotropic material
the microstructure does not select any particular directions in space, hence
for arbitrary q we have

q2ũ∥(q) = S̃∥(q)f̃∥(q)

q2ũ⊥(q) = S̃⊥(q)f̃⊥(q) .
(A.2)

Note that the compliances depend on q but not the orientation of the wave
vector. In the remainder we suppress dependences on q, nx, and ny in order
to keep expressions compact.

The displacement-force relation is

q2
(
ũ∥ + ũ⊥

)
= q2ũ = S̃∥f̃∥ + S̃⊥f̃⊥ . (A.3)

The above can be rewritten by introducing the matrices

M̂∥ =

(
n2
x nxny

nxny n2
y

)
(A.4)

and
M̂⊥ = 1̂ − M̂∥ =

(
n2
y −nxny

−nxny n2
x

)
(A.5)

to give
q2ũ =

(
S̃∥M̂∥ + S̃⊥M̂⊥

)
f̃(q) ≡ G̃f̃ . (A.6)

Here
G̃ij

q2
=

1

q2

[
S̃⊥δij + (S̃∥ − S̃⊥)ninj

]
(A.7)

is the Green’s function. Note that the Green’s function of a classical elastic
continuum is recovered when S̃∥ = 1/(K + G) and S̃⊥ = 1/G, independent
of q, where G and K are the shear and bulk modulus, respectively.

A.2. Strain-stress relation
The Green’s function prescribes the nonlocal strain-stress relation. The
strain tensor and displacement field are connected by:

ϵij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(A.8)

or, in Fourier space,
ϵ̃ij =

ıq

2
(niũj + nj ũi) . (A.9)
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Similarly, the equilibrium condition

∂σij

∂xi
= −fj , (A.10)

or equivalently
f̃j = −ıqniσ̃ij , (A.11)

relates the stress tensor and the force density. The two above relations,
together with (A.6), allow the compliance tensor S̃ijkl to be written in terms
of the elements of the Green’s function:

ϵ̃ij =
1

2

(
niG̃jknl + njG̃ilnk

)
︸ ︷︷ ︸

S̃ijkl

σ̃kl (A.12)

0 The constitutive relation can be (re-)written compactly using Voigt nota-
tion. Defining

f̃ =

(
nx 0 ny

0 ny nx

)
σ̃ ≡ D̂σ̃ and ϵ̃ = D̂T ũ (A.13)

with σ̃ = (σ̃xx, σ̃yy, σ̃xy)
T and ϵ̃ = (ϵ̃xx, ϵ̃yy, 2ϵ̃xy)

T , the constitutive relation
becomes ϵ̃ =

ˆ̃
S · σ̃, with the compliance matrix

ˆ̃
S ≡ D̂T ˆ̃

GD̂ = (S̃∥n
2
x + S̃⊥n2

y)n
2
x (S̃∥ − S̃⊥)n2

xn
2
y 2(S̃∥ − S̃⊥)n3

xny + S⊥nxny

(S̃∥ − S̃⊥)n2
xn

2
y (S̃∥n

2
y + S̃⊥n2

x)n
2
y 2(S̃∥ − S̃⊥)nxn3

y + S⊥nxny

2(S̃∥ − S̃⊥)n3
xny + S⊥nxny 2(S̃∥ − S̃⊥)nxn3

y + S⊥nxny 4(S̃∥ − S̃⊥)n2
xn

2
y + S̃⊥

 .

(A.14)

The q-dependence of S̃∥ and S̃⊥ is that given in Figs. 2 and 3 of the main
text. To recover the stress gradient expansion discussed in the text, one
Taylor expands the compliances,

S̃∥(q) = S̃∥(0)[1 + (ℓ∥q)
2 + . . .]

S̃⊥(q) = S̃⊥(0)[1 + (ℓ⊥q)
2 + . . .]

(A.15)

truncates after the quadratic term in q, and considers q = qŷ.
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