SPIN-GLASS DYNAMICS IN THE TWO-DIMENSIONAL ISING SYSTEM
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In the dynamics of random magnetic systems, the dimensionality of the
magnetic lattice plays a crucial role. Two-dimensional (d=2) Ising spin
glasses do mot order until T=0 K, and accordingly the dynamics at long
length scales is anticipated to be dominated by thermal activation over
enexrgy barriers.l™® Upon approaching the transition, this activated dynamical
behavior involves a much faster divergence of relaxation times than ordinary
critical slowing down at a conventional phase transition., The present study
provides an experimental verification of these predictions in an actual d=2
system.

The experiments are performed on a single crystal of RbyCuy.,Co.F,, with
x=0,218, which provides an excellent example of a random-bond d=2 spin
glass with competing Ising-like ferromagnetic and antiferromagnetic
interactions.* Results for the real and imaginary parts of the magnetic
susceptibility in the frequency range 0.3-50 kHz are shown versus the
temperature in Fig. 1. The data have been obtained by use of conventional
mutual-inductance techniques. Noteworthy features are the strong frequency
dependence of the maximum of x'(T'), the extremely weak frequency variation of
x"(T) above the freezing temperature, and the crossing near 4 K of the x"(T)
curves at various frequencies,

To analyze the data, we assume a specific time dependence for the decay
of the spin-autocorrelation function q(t) ={S,(0)S,(t)), and subsequently
caleculate the frequency dependence of the susceptibility by numerical
integration from the relation

x(w) = -Xofo (e'iwt—&%q(t))dt . (L

in which xy; 1s the isothermal susceptibility. First, we consider the
stretched-exponential decay

g(t) = exp[~(t/r)P] | (2)

with g a temperature-dependent exponent, and r, a characteristic relaxation
time. Fits of Eqs.(l) and (2) to the data, with x,, B, and r, as adjustable
parameters, turn out to be of good quality in the temperature range from 7
down to 3.4 K. The value of the exponent f, presented in Fig. 2 versus the
temperature, is found to increase gradually from B=0.06 at 7 K to a
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Fig.1l. (a) Real part x'(w,T) of the linear susceptibility vs the temperature
for Rb,Cuy 782C00.218F4; (b) Same as (a), but imaginary part x"(w,T).

constant value f=0,096 below 4 K. These very small values evidence an
extremely slow decay of g(t), much slower than in the case of short-range
d=3 spin glasses, for which numerical simulations® and experiments® both
give f=0.3 just above the spin-glass transition. As to the time parameter
in Eq.(2), 7, is found to increase from 10%s at 7 K to 10*3s at 3.4 K, an
extremely fast increase covering many more decades than the experimental time
window of 3x10®<w'<0.5s. Accordingly, measurements at low and high
temperatures probe, respectively, the short-time (w!<r,) and long-time
(w'1>rc) behavior of q(t). The cross-over occurs near 4 K, where r;1 falls
in the middle of the experimental frequency window.. As it appears from
Fig. (2), the short-time decay of q(t) can be quite well represented by
Eq.(2), yith a temperature-independent exponent Am=0,096.
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Fig.2. Exponents B and §, occurring in Eqs.(2) and (3), vs the temperature,
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The smallness of f as well as its anomalous temperature dependence above
4 K suggest a slower decay at long times than given by Eq.(2). Therefore, we
have also considered the exponential-logarithmic time decay

In(t/ry) \6
q(t) = eXp[_(ln(rc/:o)> ] ) (3)

with 7y a microscopic relaxation time, for which we take the single-spin flip
time 1073 g, Equation (3) is an empirical relation found to describe’ the
long-time tail of the decay in d=3 random-field Ising systems, for which
the dynamics is expected to be closely similar to d=2 Ising spin glasses.
Fits to the data of Eq.(l) with Eq.(3) substituted indeed turn out to be
better than those of the stretched-exponential decay above 4.6 K (x®=~0.3
compared to x®=0.6), but worse below this temperature (x*=2 compared to
x*=1). In the range 5-7 K, the exponent §, presented in Fig. 2 versus the
temperature, appears to be constant (§=1.15%0.05), implying an almost
algebraic (§=1) decay of q(t). Thus, the long-time tail of q(t) is well
described by Eq.(3) with a constant 6. At lower temperatures, the fits
gradually deteriorate, and the value of § steadily increases. It is of
interest to compare the present results with those for d=3 Ising spin
glasses, where the decay q(t) is found®7 to be adequately described by a
combination of algebraic and stretched-exponential decays, however in a
reversed order compared to the d=2 case and with different temperature-
dependent exponents.

As to the temperature dependence of the characteristic relaxation time
7., results for 1n(r./r,) are plotted double-logarithmically as a function of
the temperature in Fig. 3. Relaxation times derived from the stretched-
exponential fit have also been included. A very rapid increase is observed
with decreasing temperature, In the temperature range where § and B are
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Fig.3. Double-logarithmic plot of ln(r./ry) vs the temperature, with r,
derived from Eq.(2) (squares) and Eq.(3) (circles).
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Constants, straight lines have been drawn through the respective data sets,
corresponding to the dependence

In(ry/ro) « T ¥ | (4)

This behavior has been predicted® to occur in d=2 spin glasses on the
Brounds that the dynamics is governed by thermally activated relaxation over
energy barriers whose height B scales as Bog¥=TW, with ¢ the spin-glass
correlation length, and % and v critical exponents. From the slope of the
solid lines in Fig. 3, we find yw=1.9+0.2 for the stretched-exponential
decay, and yw=1.6+0.2 for the exponential- logarithmic case. An analysis
in terms of the Cole-Cole formalism yields Yr=2,2%0.2,° while a
dyna.mic-scaling analysis of all x"(w,T) data results in Yv=2,2%0,3.°
Thus, irrespective of the particular analysis, compelling evidence for
activated dynamics according to Eq.(4) is found. Averaging, somewhat
arbitrarily, over the yv values from the various methods, we find
Y =2,0+40.3, Taking v=2.4%0.3, as derived from static susceptibility
measurements, we then arrive at ¢$=0.8+0.2, which is within the
theoretical limits 0s¥=<d-1,° and, within errors, equals %=1 from a
Yecent numerical calculation.?®

Finally, we calculate the distribution of relaxation times g(r) from the
inverse Laplace transform of g(t). For very small values of 8, i.e.,
Bl1in(t/r,) | €1, g(r) can be written as a series expansion in g,

g(1) = (B/e) exp[-4p%1n(r/r) | [1+0(FH)] , (3)

with r, the median relaxation time. To leading order, Eq.(5) represents a
Gaussian distribution on a lnr scale, Because of the smallness of B, the
distribution is extremely broad, spanning over 9 decades in time (full width
at half maximum), even far above the freezing temperature.
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