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Abstract – Wireless telecommunication services are growing rapidly both in terms 
of the underlying technology as well as in the nature of the applications. The trends 
point to further growth in the foreseeable future. However, the dynamic nature of the 
wireless channel places fundamental limitations on the performance of wireless 
communication system. Unlike wired channels, which are by-and-large stationary 
and predictable, wireless channels are extremely random and do not offer easy 
analysis. Therefore, in order to gain better system performance it is of great 
importance to accurately and efficiently map the wireless channels. 

Existing wireless channel models are based on statistical impulse response 
methods derived from empirical analysis. Such models employ a lot of channel 
coefficients which affect the complexity of computation. In this context the theory of 
wavelets and wavelet packets, which have recently found applicability for signal 
processing applications, hold the promise for wireless channel modeling. Wavelet 
packets offer the important feature of localization in both frequency and time 
domains. This property can be exploited to model channels with reduced complexity. 

In this thesis report, the applicability of wireless channel representation based 
on wavelet packet algorithm is addressed. The possibility of one-dimensional and 
two-dimensional wavelet packet algorithm for time-invariant and time-varying 
representation, respectively, is investigated. The results illustrating the efficiency of 
one-dimensional and two-dimensional approach are presented. To improve the 
performance of the proposed system, two optimization methods, namely coefficient 
reduction and tree pruning are implemented. Furthermore, the impact of the number 
of decomposition levels and the type of mother wavelet employed are also 
investigated. To measure the system performance, first and second order stochastic 
metrics such as Mean-square Error (MSE), Level-Crossing Rate (LCR) and 
correlation were employed. 
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Introduction 
 

1.1 Background and Motivation 
Since Guiglielmo Marconi demonstrated the radio ability of continuous contact 

with ships sailing in 1897, the technology of communication has changed 

dramatically. Many applications and services have evolved towards the use of new 

wireless communication. Many wireless communication technologies have also 

emerged over the time. In this period, wireless communication is enjoying its fastest 

growth due to enabling technologies which permit wide spread deployment. The 

growth of mobile communication field has come slowly in the heels of Bell 

Laboratories development of the celluler concept in the 1960s and 1970s. 

Accordingly, with the incredible development in 1970s, the wireless communication 

era was born. 

The widely used of wireless communication technologies leads to the huge 

employment of radio resource which are in fact limited to be allocated to all of 

wireless communication technologies. This limitation usually affects to the 

performance of wireless communication services. Besides that, the dynamic nature of 

radio link is also limited the performance of wireless communication. Hence, 

communication system design becomes an important thing to guarantee the quality of 

services of each technology. 

In wireless communication design, modeling the wireless channel holds 

significant factor to make the system works efficiently. Due to the channel 

characteristic vary from one environment to another, having an accurate channel 

characterization for each frequency band, including key parameters and a detailed 

mathematical model of the channel, enables the designer or user of wireless system 
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to predict signal coverage, achievable data rate and the specific performance 

attributes of alternative signaling and reception schemes. 

Many channel models are developed and reported in literature. Many ways 

can be used to model wireless channel into mathematical fashion, such as empirical 

method which is derived statistically from measurement campaign at different 

location and condition. Another way to model a wireless channel is using the 

information of location geography to determine the Maxwell equation solution of the 

signal, which is then called deterministic method. Generally, most of such models 

require a lot of coefficients to map the channel and are often inaccurate which make 

the computation complexity is high. 

In another field, wavelet theory has been one of the powerful tools in signal 

processing to analyze many kind of data or signal. The property of wavelet transform 

allows analysis of signals at different resolution to gain more information on their 

characteristics in fields of image processing, data compression, radar, biomedical 

engineering and pure mathematics. 

Recently wavelet transform has also been used in the design of sophisticated 

digital wireless communication systems including channel modeling, transceiver 

design, data representation and compression, source/channel coding, interference 

mitigation, signal de-noising and energy efficient networking. 

Many works in the field of efficient channel model representation have been 

proposed by many kind of representation methods. Beside that, many methods of 

best basis selection of the signal have been proposed. However, no one of the 

channel representation methods employ the property of wavelet packet algorithm 

combined by best basis selection 

This thesis works is an attempt to employ the property of wavelet packet 

algorithm for efficient wireless channel representation. In order to obtain represent 

the channel efficiently, we need the information of the best basis of the channel to be 

chosen for the representation. Accordingly, the methods of best basis selection of the 

channel representation will be also proposed through this thesis works. 
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1.2 Research Objectives and Contribution 
Due to the fact that most of channel models require a lot of coefficient on their 

representation, the possibility of representation wireless channel model based on 

wavelet packet transform for sparse representation is investigated. The study is 

divided into two stages, 

1. One-dimensional wavelet packet algorithm to represent time-invariant 

wireless channel model. 

2. Two-dimensional wavelet packet algorithm to represent time-varying 

wireless channel model. 

 
Both the wavelet packet algorithms are evaluated and examined to give an 

insight on the performance of each algorithm to represent such wireless channel with 

less number of coefficients. 

Besides that, in order to select the best coefficients which are used to be 

reconstructed, the best basis selection algorithms are also proposed in this thesis, 

namely 

1. Coefficient reduction 

2. Tree-Pruning 

Those best basis selection algorithms will be evaluated and compared between 

each other to obtain the information of the performance of those algorithms to select 

the best coefficient to be reconstructed. 

 

1.3 Organization of Thesis Work 
The rest of the thesis report is organized as follows. Chapter 2 and Chapter 3 

provide the fundamental theory of channel modeling and wavelet packet, 

respectively. Chapter 4 describes the first contribution of this thesis works, namely, 

the representation of channel model using one-dimensional wavelet packet. This 

representation is developed by applying the novelty algorithm so called coefficient 

reduction which uses uniformly decomposition at the beginning of the algorithm and 

tree pruning which uses arbitrary wavelet packet tree structure to represent channel 

model. These algorithms are developed under the knowledge of entropy in 

information theory. 
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The representation method which is described in chapter 4 is applied for time-

invariant channel model. Unfortunately, many signals encountered in practice are 

varying in time. Hence, in order to deal with time-varying channel model, two-

dimensional wavelet packet for representing such channel model is investigated and 

reported in Chapter 5. This investigation is conducted under the knowledge of 

wavelet packet based image processing. The algorithm which has been developed in 

chapter 4 is also taken into account in this investigation, afterwards. 

Finally, chapter 6 concludes this thesis work and gives overview about possible 

future researches. 
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2  
 

Wireless Channel Model 
 

Wireless communication systems have been widely deployed to fulfill the need 

of consumer applications. To run these applications, wireless communication system 

employs radio link to transmit the information from a radio transmitter to radio 

receiver. The characteristics of radio link not only vary from one environment to 

another but also vary within the environment itself due to the effects of signal 

propagation. These conditions limit the performance of wireless communication. 

Hence, having an adequate knowledge of channel characteristic is required to 

guarantee good performance of wireless communication. 

An overview of channel model which represents the characteristic of wireless 

channel will be provided in this chapter. The discussion starts in section 2.1 which 

tells the mechanism of signal propagation which is affected to the characteristic of 

wireless channel is strongly influenced. Furthermore, in order to obtain good 

understanding of the channel behavior, mathematical channel model is explained in 

section 2.2. In designing the wireless communication system, there several 

parameters that have to be considered. These parameters will be described in Section 

2.3. Finally, due to the fact that channel characteristic is vary both in time and space, 

section 2.4 gives an overview on the statistical models which are related to the 

channel parameters. 

 

2.1 The Propagation Mechanisms 

The variation of wireless channel characteristic is caused by the multiplicity of 

signal propagation which travels from transmitter to receiver, called multipath 

propagation (see Figure 2.1). Line-of-sight (LOS) is the simplest propagation of 
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signal since such signal travels directly from the transmitter to the receiver without 

any obstruction. Meanwhile, Non-line-of-sight (NLOS) is a complex propagation of 

signal due to such signal is severely obstructed by some obstacles between 

transmitter and receiver, such as buildings, foliage, mountains and hill. These 

obstacles lead to different mechanism of signal propagation, namely reflection, 

diffraction, and scattering [1]. The examples of signal propagation between 

transmitter and receiver are depicted in Figure 2.2. 

 

 
Figure 2.1  Multipath Propagation 

 

Figure 2.2(a) represents a troposcatter radio communication link used in 

military applications for communication at long distances. The transmitted signal is 

directed toward the troposphere layer of the atmosphere, the incident wave is 

scattered, and some of the scattered signal energy reaches the receiver. 

Communication between the transmitter and the receiver can be modeled with 

several paths. Figure 2.2(b) represents a microwave radio link with line-of-sight 

(LOS) condition, which is widely used for terrestrial communications. However, 

occasionally, the reflected signal is also occurred from ground and atmosphere in 

such a way due to atmospheric conditions, creating a multipath condition. Figure 

2.2(c) represents a mobile radio scenario where the received signal arrives by several 

paths: bounced from large objects such as buildings and local paths scattered from 

objects close to the receiver, such as ground or trees. Figure 2.2(d) shows a simple 

multipath condition for an indoor area. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.2 Propagation Scenarios of a signal traveling in (a) Toposcatter 
Propagation, (b) LOS Condition, (c) Mobile radio communication, (d) Indoor 

Propagation. [2]  
 

The condition of each propagation mechanism can be explained, as follow [1], 

Reflection occurs when a propagating electromagnetic wave impinges upon an 

object which has very large dimensions when compared to the wavelength of the 

propagating wave. Reflections occur from the surface of the earth and from buildings 

and walls. 

Diffraction occurs when the radio path between the transmitter and receiver is 

obstructed obstructing surface are present throughout the space and even behind the 

obstacle, giving rise to a bending of waves around the obstacle, even when a line-of-

sight path does not exist between transmitter and receiver. At high frequencies, 

diffraction, like reflection, depends on the geometry of the object, as well as the 

amplitude, phase, and polarization of the incident wave at the point of diffraction. 

Scattering occurs when the medium through which the wave travels consists of 

objects with dimensions that are small compared to the wavelength, and where the 

number of obstacles per unit volume is large. Scattered waves are produced by rough 

surfaces, small objects, or by other irregularities in the channel. In practice, foliage, 

street signs, and lamp posts induce scattering in a mobile communications system. 
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2.2 Mathematical Modeling of Wireless Channel 

The phenomena of multipath propagation cause self-replicas of signal. Each 

replica travels over different distances and thus suffers from different amplitude 

attenuation, phase shift, and arrives with different time delay. The detail of these 

factors will be described in a separate section, subsequently. These factors influence 

the received power at receiver may add destructively or constructively. 

Consequently, no one can predict what the signal power will be at the receiver. 

In order to obtain accurate information about the characteristic of such channel, 

some researchers have derived mathematical model of wireless channel. These 

models can be classified into two domain, namely time domain and frequency 

domain. The main difference between time- and frequency- domain is that in the 

time domain use impulse response as a measure. Meanwhile, in the frequency 

domain, frequency domain is measured directly [2]. 

 

2.2.1 Time Domain Modeling 

The time domain is a traditional measurement systems used for broadband 

and urban areas. This technique was first used to measure a variety of wideband 

radio channel [3]. In [3], Turin suggested the time-variant impulse response version 

of the channel model. This model is expressed as follow, 

 ( ) ( )
1

0

k

N
j

k k
k

h t a t t e θδ
−

=

= −∑  (2.1) 

where the subscript k  indices the k-th path from N paths of propagation path. 

Meanwhile, t represents the time occurrence of related path. The variables a , θ   and 

δ represent path amplitude, phase and dirac-delta function, respectively. 

 Afterwards, due to the fact the nature of wireless channel is not stationary 

either in time of space, the equation (2.1) has to be expanded to meet time-varying 

wireless channel. To fulfill this circumstance, Hashemi in [4] proposed a time-

varying channel model as a linear time-varying filter with the impulse response given 

as, 

 ( ) ( ) ( ) ( )
( ) 1

0
, n

N
j t

n
n

h t a t t e
τ

θτ δ τ τ
−

=

= −  ∑  (2.2) 
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where t and τ are the observation time and application of the impulse, respectively. 

The function of ( )N τ  represents the number of multipath components. Meanwhile, 

( )na t , ( )n tτ  and ( )n tθ  are the random time-varying amplitude, arrival time, and 

phase sequences, respectively, of related path, and ( )δ   is the Dirac delta function. 

This mathematical model is a wideband model that can be used to obtain the 

response of the channel to the transmission of any signal [4]. 

Wideband model, usually, is used for the application which needs high data 

rates or inherently wideband transmission. Besides that, based on the application of 

communication system there are other systems which can be considered, that are 

narrowband and ultra-wideband communication. 

In case of narrowband communication system, a signal with small bandwidth 

centered around a single frequency is used to excite the channel. Such channel can be 

expressed as 

 
1

k

K
jj

k
k

Ae a e θθ

=

=∑  (2.3) 

Where A  and θ  are the amplitude and phase of the received signal. 

The equation (2.3) describes that the channel considered as narrowband only 

provide information on the power fluctuation caused by the signal arriving from a 

number of different paths. Whereas, equation (2.2) describes that if the channel 

considered as wideband then the multipath delay spread and phase of signal arrival 

can be extracted from the measurement. 

 

2.2.2 Frequency Domain Modeling 
In the preceding discussion, the time domain mathematical model has been 

described. However, there is a shortcoming in the implementation of time domain 

modeling due to the complexity of computation. Hence, another way to model the 

channel with simple method, namely frequency domain modeling which uses 

Autoregressive (AR) model. This model was first introduced by Howard et al. [5]. 

The basic idea of AR modeling is that the frequency response ( )nH f of the 

channel at frequency nf f=  can be modeled by an AR process. The AR model has 

the advantage that it can statistically represent the channel with a minimum number 
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of parameters. Accordingly, the measured frequency responses can be regenerated in 

an easier way, important for computer simulation. The model can be expressed as: 

 ( ) ( ) ( )
1

, ,
p

n i n i n
i

H f x a H f x V f−
=

= +∑  (2.4) 

where ( )iH f  is the n-th sample of the complex frequency domain measurement and 

( )nV f  is a complex white noise process representing the error between the actual 

frequency response value at frequency nf  and its estimate based on the last p 

samples of the frequency response [2]. Taking the z-transformation of equation (2.4), 

the AR process ( ),nH f x  can be viewed as the output of a linear filter with transfer 

function 

 ( ) ( )1

1

1 1
11

p

p i
i i i

i
i

G z
p za z

−
− =

=

= =
−−

∏
∑

 (2.5) 

excited by ( )nV f . With this method only p poles are required to characterize the 

frequency response of the channel. The geometry of the poles is important. The delay 

associated with a pole is determined by the angle of that pole and the distance of a 

pole to the unit circle represents the power at the corresponding delay. 

 

2.3 Channel Parameters for system design 

In the campaign of wireless channel design, the knowledge on the parameters 

which are affected to the system performance is important. This knowledge can lead 

to the reliability of the system against to the obstruction.  

 

2.3.1 Power Delay Profile 

When such channel is considered as multipath time-invariant channel, the 

average received signal power as function of excess time delay is called the power 

delay profile (PDP). Using the impulse response in (2.1), the profile can be obtained 

as  

 ( ) ( ){ } ( )
12 2

0

N

n n
n

P E h t aτ δ τ τ
−

=

= = −∑  (2.6) 
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 Usually later paths of the power delay profile experience more attenuation 

and accordingly the power delay profile are generally decreasing function of excess 

delay. 

 

2.3.2 Path Loss, shadowing and Fading 

As described in previous section that due to several obstacles between 

transmitter and receiver the average received power at the receiver will be vary. The 

variation of signal can be classified into three types, that are path loss, shadowing 

and multipath fading. Figure 2.3 illustrates the ratio of the received-to-transmit 

power in dB versus log-distance for the combined effects of path loss, shadowing, 

and multipath. 

Variation due to path loss occurs over very large distances (100-1000 

meters), whereas variation due to shadowing occurs over distances proportional to 

the length of the obstructing object (10-100 meters in outdoor environments and less 

in indoor environments). Since variations due to path loss and shadowing occur over 

relatively large distances, this variation is sometimes refered to as large-scale 

propagation effects. Variation due to multipath occurs over very short distances, on 

the order of the signal wavelength, so these variations are sometimes refered to as 

small-scale propagation effects [6]. 

 
Figure 2.3 Path loss, shadowing and Multipath [6] 
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Path loss is defined as the radio of the transmit signal power to the receiver 

signal power. Path loss is happened due to dissipation of the power radiated by the 

transmitter over certain distance as well as effects of the propagation channel. 

Generally, path loss model is assumed has same path loss value a given transmitter-

receiver distance 

Path loss model 

[1],[6]. Accordingly, path loss model is a function of distance 

which exponentially increases with the increasing of distance between transmitter 

and receiver. This function of path loss ( )PL d  can be express as 

 ( )
0

dPL d
d

α
 

∝  
 

 (2.7) 

Where d  and 0d  are distance between transmitter and receiver, and the reference 

distance (corresponding to a point located in the far-field of the antenna, usually 

0 1 md = ). Meanwhile, α  is the path loss exponent. The path loss exponent 

indicates how fast the signal power is decaying as function of distance and usually 

depends on the type of propagation environment. In logarithmic scale, equation (2.7) 

can be transformed as 

 [ ] ( ) [ ] ( )0 10
0

10 logdB dB
dPL d PL d
d

α
 

= +  
 

 (2.8) 

Besides that definition, according to Friss Free Space Equation, path loss can 

be also considered as the attenuation of RF energy between the transmitter and 

receiver according to an inverse-square law. The received power expressed in terms 

of transmitted power is attenuated by a factor ( )PL d , which can be also expressed 

as [1] 

 ( )
2

4
r

t r
t

PPL d G G
P d

λ
π

 = =  
 

 (2.9) 

where Pr and Pt is received and transmitted signal power, respectively, Gt and Gr is 

antenna gain of transmitter and receiver, respectively, λ is wavelength, and d is 

distance between transmitter and receiver. 
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Researchers have found that a good agreement of signal power variations 

around the average path-loss can be obtained with the lognormal distribution (i.e. 

Gaussian distribution in logarithmic scale) 

Shadowing 

In many cases, path loss model is often not valid if the users who have equal 

distance to the receiver but placed at different locations. The users in this condition 

do not always receive similar signal power as resulted from path loss model but vary 

significantly. This slow signal fluctuation is known as shadowing or shadow fading. 

Based on this condition, shadow fading can be also defined as the long-term average 

changes in the received signal strength caused by changes in the relative position of 

large objects between transmitter and receiver. 

[4]. So, the shadowing effect is usually 

modeled as a lognormal random process, meaning that the path-loss model can be 

described by: 

 [ ] ( ) [ ] ( )0 10
0

10 logdB dB
dPL d PL d X
d σα

 
= + + 

 
 (2.10) 

Where Xσ  is a zero-mean Gaussian random variable in logarithmic scale with 

standard deviation σ . 

 

In statistical modeling, shadowing effect in a large area can be represented by 

log-normal distribution. While small-scale fading is usually called Rayleigh fading 

because if the multiple reflective paths are large in number and there is no line-of-

sight signal component, the envelope of the received signal is statistically described 

by a power density function of Rayleigh, when there is a dominant non-fading signal 

Multipath Fading 

Multipath fading is the rapid instantaneous changes in the received signal 

power caused by constructive and destructive interferences between replicas of the 

transmitted signal.  This condition can be happened since the wavelength of 

transmitted signal is very small compared to distance; hence small movement can 

produce phase shifts of each replica that result in large variation in their coherent 

sum. Consequently, after superposition of all path signals, it affects the resulting 

overall received signal. 
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component present, such as a line-of-sight propagation path, the small-scale fading 

envelope is described by a power density function of Rician [1]. 

  

2.3.3 RMS Delay spread 

Due to the multipath propagation of a signal over fading multipath channel, 

arrival time of each path in the receiver can be also varied of that to another path. 

The arrival time of each path is equal to the distance over signal velocity, in this case 

equal to the light velocity. The difference arrival time from the earliest to the latest 

path is called maximun excess delay, as shown in Figure 2.4. In some case, 

considering that parameter is not the best indicator of how any given system would 

perform on the channel. This is because the same excess delay spread in different 

channel can exhibit very different profiles of signal intensity. Therefore, a better 

measure of delay spread is the root mean square (rms) delay spread, rmsτ , which is 

the second central moment of the channel impulse response [2] or power delay 

profile [1]. It can be mathematically expressed as 

 ( )22
rmsτ τ τ= −  (2.11) 

with,  

 
( )

( )

2

2

n n
k k k k

n k k

k k
k k

a P

a P

τ τ τ
τ

τ
= =
∑ ∑
∑ ∑

 

where na , nP  and nτ  are the amplitude, power and delay characteristics, 
respectively. 

The first derivation of this parameter is coherence bandwidth. The coherence 

bandwidth, is a defined relation derived from the RMS delay spread, rmsτ . Coherence 

bandwidth is a statistical measure of the range of frequencies over which the channel 

can be considered "flat", which mean a channel which passes all spectral components 

with approximately equal gain and linear phase. In other words, coherence 

bandwidth is the range of frequencies over which two frequency components have a 

strong potential for amplitude correlation. Two sinusoids with frequency separation 

greater than are affected quite differently by the channel. If the coherence bandwidth 
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is defined as the bandwidth over which the frequency correlation function is above 

90%, then the coherence bandwidth is approximately [1]  

 1
50c

rms

B
τ

≈  

And if the definition is related to the frequency correlation function above 50%, then 

the coherence bandwidth is approximately [1] 

 1
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Figure 2.4 Delay Spread Profile 

 

From approximated value of the coherence bandwidth, we can classify the 

behaviours of channel based on that definition and is compared to the transmitted 

signal bandwidth, that are 

1. Frequency-selective fading, this behavior occurs when the transmitted signal 

bandwidth is larger than the coherence bandwidth. 

2. Flat fading, this behavior occurs when the transmitted signal bandwidth is 

smaller than the coherence bandwidth. 

 

2.3.4 Doppler Spectrum 

Beside the attenuated power in the receiver, there is another parameter which 

can be derived when transmitting a sine wave over a fading multipath channel, that is 
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Doppler frequency shift. This parameter comes from the fundamental of physics that 

whenever a transmitter and a receiver are in relative motion, the received carrier 

frequency is shifted relative to the transmitted carrier frequency. The shifting of the 

frequency carrier observed at the receiver can be expressed by 

 m
d c

vf f
c

=  

where mv  is the relative motion speed of the portable terminal toward or away to the 

fixed terminal and cf  is transmitted frequency carrier. The Doppler frequency shift 

df  is either positive or negative depending on whether the transmitter is moving 

toward or away from the receiver. 

In a realistic channel environment, due to the multipath propagation, the 

velocity of movement of each arriving path is different from that of another path. 

Thus, instead of being subjected to a simple Doppler shift, we refer to as the Doppler 

spectrum. This effect can be viewed as a spreading of the transmitted signal 

frequency, and can referred generally as Doppler spread of the channel. Beside the 

movement of transmitter and receiver, Doppler spread can also occur when person or 

objects moves within the propagation path between fixed transmitter and receiver. 

The behavior described above describes the channel in a local area, they do 

not provide information about time-varying nature of channel caused by by relative 

motion between a transmitter and receiver, or by movement of objects within the 

channel.  Since the channel characteristics are dependent on the positions of the 

transmitter and receiver, time variance in this case is equivalent to spatial variance. 

One of the parameters that can be used to describe this behavior is coherence time.  

In time-frequency domain analysis, the Coherence time, cT , is the time 

domain dual of Doppler spread in frequency domain and is used to characterize the 

time varying nature of the frequency dispersiveness of the channel in the time 

domain. The Doppler spread and coherence time are inversely proportional to one 

another. That is, 

 1
c

d
T f=  

where df  is maximum doppler spread given by df v λ= . 
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The coherence time is defined as a a statistical measure of the time duration 

over which the channel impulse response is essentially invariant, and quantifies the 

similarity of the channel response at different times. In other words, coherence time 

is the time duration over which two received signals have a strong potential for 

amplitude correlation. If the coherence time is defined as the time over which the 

time correlation function is above 50%, then the coherence time is approximately 

 9
16c

d

T
fπ

=  

A popular rule of thumb for modern digital communications is to define the 

coherence time as the geometric mean of the two equations above. That is, 

 2

9
16c

d

T
fπ

=  

 The coherence time parameter, cT , indicates the rate of the channel changes. 

If we compare that parameter to the transmitted signal duration, we can classify as 

follow 

1. Slow fading, this behavior occurs when the transmitted signal duration is 

smaller than the coherence time. In other word, the channel behaves in a 

correlated manner is long compared to the time duration of a transmission 

symbol. 

2. Fast fading, this behavior occurs when the transmitted signal duration is 

greater than the coherence time. In other word, the channel response impulse 

changes rapidly within the signal duration due to a correlated manner is short 

compared to the time duration of a symbol. 

 

2.3.5 Fading Rate and Fading Duration 

In wireless communication system, many mobile devices have a certain level 

of sensitivity to receive the signal from transmitter with good performance. In order 

to guarantee the quality of received signal in the receiver, level of sensitivity must be 

taken into account in designing a system due to the fact that multipath propagation 

cause signal power fluctuation in the receiver. Hence, two parameters of second-

order statistic are developed to measure the rate of fading signal below a given signal 
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level and duration of a fading signal below a given level. These parameters were first 

derived by Lee in [11]. 

 

Fading rate which is also referred as Level-Crossing Rate (LCR) is defined as 

the expected rate of fading, normalized to the local RMS signal level, crosses a 

specified level in a positive-going direction 

Fading Rate 

[1]. In case of Rayleigh fading, the 

number of level-crossing Nα  at a given signal level α  can be expressed as 

 
( )

( )
0

ˆ ˆ ˆ,

2 expd

LCR N Ap A A dA

f

α

π α α

∞
= =

= −

∫  (2.12) 

Where df  is the maximum Doppler shift and 
rms

A
Aα =  is the value of the specified 

A , normalized to the local rms amplitude of the fading envelope. Whereas, ( )ˆ,p A A  

is a joint probability density function of A  and its slope Â . A slope Â  is a time 

derivation of A  which can be expressed as 

 ˆ dAA
τ

=  

A

Fading Duration 

 The average fade duration is defined as the average period of time for which 

the received signal stays below a specified level . For Rayleigh fading, the average 

fade duration, AFD, is given as 

 
[ ]

( )2

1 Pr

exp 1

2 d

a A
LCR

f

τ

α

πα

= ≤

−
=

 (2.13) 

Where [ ]Pr a A≤  is the probability that the received signal a  is less than A  which 
given as 

 
[ ] ( )

( )
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a A p a
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2.4 Statistical Model for Channel Parameters 

The nature of wireless channel is completely random, not only in time but also 

in space. Modeling such channel mathematically is not sufficient, so that many 

researchers develop the channel model based on statistical method obtained from 

empirical analysis. This modeling is affected to the channel parameters which are 

also modeled statistically. In this subsection, the statistical model of each parameter 

will be described. 

2.4.1 Path amplitude 

( )
2

2 2exp
2

x xf x
σ σ

 
= − 

 

Rayleigh Distribution 

In mobile radio channels, the Rayleigh distribution is the most accepted 

model for small-scale rapid amplitude fluctuations in absence of the LOS 

component. The probability density function (PDF) is given by: 

  (2.14) 

Where σ  is the rms value of the received signal voltage, and 2σ  is the time-

averaged power of the received signal. The mean and variance of Rayleigh are 

2σ π  and ( )2 2σ π− , respectively. 

 

( )
2 2

02 2 2exp
2

x x A Axf x I
σ σ σ

 +  = −   
  

Rician Distribution 

Different to the Rayleigh Channel, in some cases, the line-of-sight (LOS) 

signal is involved in the amplitude fluctuation. In this case, Rayleigh distribution for 

modeling such amplitude is not valid; hence Rician distribution is proposed to model 

such amplitude which is also happened in small-scale propagation. The PDF of 

Rician distribution is given as 

  (2.15) 

where A  is the LOS component amplitude and 0I  is the zero-order modified Bessel 

function of the first kind expressed as: 

 cos
0

1
2

xI e d
π φ

π
φ

π
+

−
= ∫  (2.16) 
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Usually, a parameter riceK  which is called as Rice factor is introduced to describe the 

Rice distribution, and is defined as: 

 
2rice

A
K


  (2.17) 

In case of 0A  , the Rician distribution becomes the Rayleigh distribution. 

 
Log-normal Distribution 

 In multipath fading, not only small-scale propagation that has to be taken into 

account but also large-scale propagation. In large-scale propagation the distance 

between transmitter and receiver is much larger than signal wavelength. The 

fluctuation of received signal due to large-scale propagation can modeled as log-

normal distribution. The PDF of this distribution is given by 

    2

2

ln1
exp

22

x
f x

x


 

 
  

  
 (2.18) 

Where ln x  has a normal (Gaussian) distribution, and the parameters   and  2  are 

the mean and variance, respectively. 

 
Nakagami Distribution 

 In Rayleigh distribution, the length of scatter vectors are nearly equal and 

their phase are random. However, in real life, the length of scatter vector is actually 

random. So that, Rayleigh distribution is not quite suitable to model such fading. To 

fulfill this circumstance, the Nakagami distribution, which is also known as m-

distribution, is proposed. The PDF is given as [8] 

    
2 1 2

2

2
exp

m m

m

m x mx
f x

m

  
     

 (2.19) 

Where 2E x     ,    2
2 2var 0.5m E x x     and     is the Gamma function 

defines as 

    1

0
expmm t t dt

     (2.20) 

The Nakagami Distribution reduces to the Rayleigh distribution for 1.m   

 
 
 



Wireless Channel Model 

21 

 

( ) expx xf x
b b b
β β    = −        

Weibull Distribution 

 The probability density function (PDF) of Weibull Distribution is expressed 

as 

  (2.21) 

where β  and b  are the shape and scale factors, respectively. The distribution 

reduces to the exponential distribution for 1β = , and to the Rayleigh distribution for  

2.β =  

 

2.4.2 Path Arrival time model 

As described in the preceding section, the signal experiences multiple paths 

because of many obstacles. The multiplicity of propagation path causes different path 

lengths of each replica. Hence, arrival time of each replica in the receiver is also 

different. The sequence of arrival time, which is also called excess delay, in the 

receiver can be modeled as Poisson distribution [3][4]. In this distribution, the 

probability of l  arriving paths within an interval of T  seconds is given as [9] 

 ( )
!

l leP L l
l

µµ −

= =  (2.22) 

Where ( )
T

t dtµ λ= ∫  is the Poisson parameter, and ( )tλ  is the mean arrival rate at 

time t . Another distribution related to the arrival time sequence is the inter-arrival 

time sequence, defined as the difference between two successive arrival paths where 

1i i ix τ τ −= − . For a standard Poisson process, the differences are exponentially 

distributed: 

 ( ) xf x e λλ −=  (2.23) 

Analysis of time of arrival of multipath components of the indoor and mobile 

data base has shown that standard Poisson model does not provide a good fit [10]. 

This mismatch is probably due to the fact that scatterers inside a building (causing 

multipath dispersion) are not randomly located. Patterns in their location give rise to 

deviations from a standard Poisson model, which is based on purely random arrival 

times [10]. A more realistic model is the "modified Poisson" or K∆ − model. This 
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model which takes into account the clustering properties of multipath components 

was first suggested by G.L.Turin [3] and was successfully used in analysis [10].  

 
Figure 2.5 Modified Poisson Process 

 
The model tries to create the correlation between radio wave arrivals by 

means of two parameters, K  and ∆  [10]. As we can see in Figure 2.5, the model has 

two states: 1S  and 2S . The first is the initial state, where the mean arrival rate of the 

paths is ( )0 tλ . As soon as a path reaches the receiver, the process makes a transition 

to state 2S , where the mean arrival rate is ( )0K tλ . If no path arrives in the next ∆  

seconds, then the process comes back to 1S . However, if a path arrives at time t′  

before the interval is out, then it is restarted. The model can therefore be described by 

a series of transitions between the two states. If the parameter 0∆ =  or 1K = , the 

model reverts to the standard Poisson process. For 1K > , an incidence of a path at 

time t  increases the probability of receiving another path in the next ∆  interval (i.e., 

the process shows a clustering property). On the other hand, if 1K < , the probability 

of a path occurrence in the ∆  seconds after a path arrived at time t  is decreased (i.e., 

the paths arrive more evenly than in a standard Poisson process) [10]. 

 

2.4.3 Phase Model 

Besides the arrival time, multipath propagation is also affected to the phase of 

the transmitted signal. The signal phase is critically sensitive to path length and 

changes by a factor of 2π  as the path length changes by a wavelength. Small 

changes (in order of meters) in the position of receiver yields in a great change in 
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phase. When one considers an ensemble of points, therefore, it is reasonable to 

expect uniform distribution; i.e., on a global basis, nθ , has a Uniform [ )0,2π  

distribution. For small sampling distances, however, great deviations from 

uniformity may occur. Furthermore, phase values are strongly correlated if the 

channel's impulse response is sampled at the sampling rate (tens to hundreds of 

kilobits per second). Phase values at a fixed delay for a given site are therefore 

correlated [4]. Adjacent detectable multipath components of the same profile, on the 

other hand, have independent phases since their excess range (excess delay 

multiplied by speed of light) is longer than a wavelength, even for very high 

resolution (a few nanoseconds) measurements [4]. 

 

 
Figure 2.6 Power Delay Profile with double exponential model 

 

2.4.4 Power Delay Profile models 

The behavior of the averaged received power as function of excess time delay 

follows mostly an exponential decreasing function since the later paths of the profile 

experience more attenuation after traveling over larger distances [4]. However, for 

indoor environments another model is introduced based on measurements [12],[13]. 

This model refers to the double exponential model based on clustering, i.e., the 

received components arrive in clusters, in terms of arriving angles and delays. In 

Figure 2.6, a scheme showing the double exponential model is presented. lT  refers to 

the arrival time of the first path in the l-th cluster, ,n lτ  refers to the arrival time of the 

n-th path in the l-th cluster and Γ  and γ  are the ray and cluster time decay constants 

of the power delay profiles, respectively. 
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3  
 

Wavelet Theory 
 

 The wavelet transform is a powerful tool used to gain insight on a signal. It 

has been widely used in many applications of signal processing, such as image 

processing, data compression and the design of sophisticated digital wireless 

communication systems. The power of wavelet transform comes from the fact that 

the basis functions of the transform have compact support in time (or space) and are 

localized in frequency. Furthermore, the technique allows analysis of signals at 

different resolutions which often correspond to the natural behavior of the process 

one wants to understand. 

In this chapter, an overview of fundamental concepts of wavelet theory is 

provided. Section 3.1 describes the principle of signal representation and its 

progression. In this section, an overview on time-frequency localization is also 

described. Two types of wavelet transform, namely Continuous Wavelet Transform 

(CWT) and Discrete Wavelet Transform (DWT) are explained in section 3.2 and 

section 3.4, respectively. Meanwhile, section 3.3 presents the important basic of the 

wavelet theory, which is called multi-resolution analysis (MRA). The implementation 

of discrete wavelet transform in terms of filter banks is elaborated in section 3.5. An 

important variant of the wavelet transform known as Wavelet Packet Transform is 

presented in section 3.5.2. In section 3.5 and section 3.5.2, the signal reconstruction 

using filter banks is also described. Finally, a review on wavelet properties a few 

popular wavelet families are given in section 3.7. 
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3.1 Representation of Signals 

In real life, many signals are constituted by the series of linear function, 

which is usually called basis function. Mathematical signal representation is a way to 

describe information of such signal in term of their basis function. A mathematical 

transform is usually a linear expression where any given signal ( )f x  in space S  is 

expressed as a linear combination of a set of known signals { }i i
ϕ

∈Ζ
 as [13] 

 ( ) i i
i

f x α ϕ=∑  (3.1) 

In (3.1), iα  are the expansion coefficients (of weights) which tell how much of the 

component iϕ  is available in the original signal ( )f x . The space S  can be finite 

dimensional like (e.g. n
 , nC ) or infinite dimensional (e.g. 2l , 2L ) 

 In the case of all signals x∈  can be expanded as in (3.1), then there will 

also exist a dual set { }i i
ϕ

∈Ζ
 such that the expansion coefficient iα  in (3.1) can be 

computed as 

 ( ) ,i if xα ϕ=  (3.2) 

Where ,  represents an inner product operation. An important particular case is 

when the set { }i i
ϕ

∈Ζ
 is orthonormal and complete, since then we have an 

orthonormal basis for S  and the basis and its dual are the same, that is, i iϕ ϕ= . Then 

 [ ],i j i jϕ ϕ δ= −  (3.3) 

where [ ] 1iδ =  if 0i = , and 0 otherwise. If the set is complete and the vectors iϕ  are 

linearly independent but not orthonormal, then we have a biorthogonal basis, and the 

basis and its dual satisfy 

 [ ],i j i jϕ ϕ δ= −  (3.4) 

The choice on the right set of basis functions depends on the type of signal to 

be represented and the application in hand. 
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3.1.1 The Development on Signal Representation 

The most popular way to represent the signal is Fourier Transform. This 

transformation is a variant of Fourier series expansion, which was proposed by Jean 

Baptiste Joseph Fourier in the early 19th century and published in the Théorie 

Analytique de la Chaleur (The Analytical Theory of Heat) in the year 1822 [15]. 

Fourier transform is used to decompose non-periodic functions with finite energy, 

which can be expressed in terms of trigonometric basis function as 

 ( ) ( ) ,∫
∞

∞−

−= dtetfF tjωω   (3.5) 

And the reverse Fourier Transform can be expressed as 

 ( ) ( ) ,
2
1
∫
∞

∞−
= ωω

π
ω deFtf tj  (3.6) 

Where t  stands for time, fπω 2= stands for frequency, and ( )f   denotes the signal 

in time domain and the ( )F  denotes the transformed signal in frequency domain. 

Since the Fourier transform analyses time-based signal to provide frequency 

information, the operation is regarded as frequency-amplitude decomposition. 

 Eventhough, the Fourier Transform offers excellent frequency resolution, but 

do not provide an information concerning the frequency content locally in time, 

which means when one frequency is occurred and when for others are known. The 

Fourier analysis only tells whether a certain frequencies occur or not, it does not tell 

when that frequency is occurred [16]. 

It is therefore important to have a representation that gives both time and 

frequency information of the signal studied. Due to this drawback, Dennis Gabor 

adapted the Fourier transform to analyze a signal in certain only a small section of 

the signal at a time, which is then called the Short-Time Fourier Transform (STFT). 

In STFT, the signal is windowed into small segments (taken to be stationary) which 

are then studied independently [17]. For a window function ( ) ,w t  the STFT 

operation maps a signal or function ( )f t  into a two-dimensional function of time τ  

and frequency f  and can be defined as [18]: 

 ( ){ } ( ) ( ) ( ) 2, ft

t

STFT x t X f x t w t e dtπτ τ −= −  ∫  (3.7) 
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        The STFT is a compromise between time and frequency-based views of a 

signal [19]. A trade off between the time and frequency resolution is enabled in 

STFT by altering the dimensions of the window function. Smaller windows offer 

better time resolution but poorer frequency resolution. On the other hand if the size 

of the window is enlarged to allow better frequency resolution, the time resolution is 

compromised. These conditions are illustrated in Figure 3.1 in terms of time-

frequency plane. 

 
Figure 3.1 Problem encountered in Short Time Fourier Transform (STFT) (a) the same window 
size is applied to signal with difference frequency (b) the same resolution at all locations in time 

frequency plane caused by the use of single window [20] 
 

From Figure 3.1, the drawback of STFT can be seen due to STFT suggests 

the use of same window for each collection samples, so the frequency resolution for 

the whole frequency range is uniform. Many signals require a more flexible 

approach, one where the window size can be varied to accurately determine both 

time and frequency. 
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One of the alternatives that can be used to solve this circumstance is wavelet 

analysis. In wavelet analysis, the window which will be used to transform the signal  

depends on the detail contained in the information [21]. Besides that, the use of 

irregular shape wavelet offers better tool to represent sharp changes and local 

features [22]. 

 
Figure 3.2 Dynamic resolution in time-frequency plane offered by Wavelet Transform (a) the 
basis functions and corresponding time-frequency resolution (b) time-frequency resolution in 

time-frequency plane [23] 
 

The wavelet transform is a multi-resolution analysis (MRA) mechanism 

where an input signal is decomposed into different frequency components, and then 

each component is studied with resolutions matched to its time-scales, as shown in 

Figure 3.1 (a). Figure 3.1 (b) illustrates the time-frequency tiling concept that is 

employed by wavelet transform. Each block Figure 3.1 (b) covers one coefficient of 

the wavelet transform in the time-frequency plane. It is clear from this figure that for 

higher frequencies, the blocks have narrow width but long height illustrating good 

time resolution but poor frequency resolution. On the other hand, the blocks at low 
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frequencies have broad width but short height illustrating poor time resolution but 

good frequency resolution. 

 

3.2 Continuous Wavelet Transform 

The First wavelet based transform which is similar to STFT in time-

frequency localization is Continuous Wavelet Transform (CWT). Different to STFT 

which has a constant resolution at all times and frequencies, CWT has a good time 

and poor frequency resolution at high frequencies, and good frequency and poor time 

resolution at low frequency. The CWT can be defined as an expansion of continuous 

function in terms of two variables; scale, j  and shift, k , called wavelets ( ).tψ  This 

expansion was firstly introduced by Mortlet and Grossman [24], [25]. They showed 

that a continuous-time function ( )f t  in space ( )2L   can be represented by a set of 

function ( ){ },k s tψ  obtained by shifting k  and scaling s  of function ( )tψ , known as 

mother wavelets. The CWT of any signal ( )f t  can be expressed as [26],  

  ( ) ( ) ( ) ( ),
1, , . *x x j kCWT j k j k f t t d t
j

ψ ψγ ψ
∞

−∞
= ∫  (3.8) 

Where 

 ( ),
1

j k
t kt

jj
ψ ψ

 −
=  

 
 (3.9) 

In equation (3.8), ( ),f j kψγ  can be referred as the CWT coefficients of the 

continuous signal which are obtained from the sum of various scaled and shifted 

version of mother wavelets, as shown in equation (3.9). Scaling parameter j  

describes how a wavelet basis function is stretched or contracted. While, the shifting 

variable, also known as translation parameter, represents the location of the wavelet 

in time.  

The relation shows in (3.9) underlines an enormous advantage offered by 

wavelet transform by allowing it to provide dynamic resolution capability through 

the use of short basis function (contracted version) to obtain good time domain 

analysis and long basis function to get fine frequency domain analysis. 
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Furthermore, after analyze the signal of interest, the original signal wants to 

be reconstructed or synthesized. Such original signal can be reconstructed using 

inverse CWT (ICWT) given as, 

  ( ) ( ) 2

1,f
j k

t kf t k s dkds
j j

ψγ ψ
 −

=  
 

∫ ∫   (3.10) 

In (3.10), ( ) ( )1t c tψψ ψ−= , where 

 
( ) 2

c dψ

ω
ω

ω

∞

−∞

Ψ
= ∫  (3.11) 

In (3.11), ( )ωΨ  is defined as the Fourier Transform of ( ).tψ  

 

3.3 Multi-resolution Analysis 

An important fundamental in the field of wavelets was Multi-resolution 

Analysis (MRA) framework develop by Mallat [24] and Meyer [27]. According to 

Burrus, in [28], there are two main components in the multi-resolution formulation of 

wavelet analysis, namely scaling and wavelet functions. The MRA allows 

characterization of ( ) ( )2t Lψ ∈   that result in an orthonormal basis. The scaling 

function can be defined as 

 ( ) ( ) 2,t t k k Lϕ ϕ ϕ= − ∈ ∈  (3.12) 

In (3.12), the subspace ( )2L   represents square integrable functions in Hilbert 

space while k  implies discrete step translation. The subspace that is spanned by 

linear combination of the scaling function in (3.12) and its translated version is 

imaginable. However, it can be easily found that the size of the subspace can be 

increased by manipulating the scale of the scaling function. This manipulation results 

in two dimensional functions that are generated by basic scaling function through 

both scaling s  and translation k  as follows 

 ( ) ( )/2 2
, 2 2 , ,j j

j k t t k j k Lϕ ϕ ϕ= − ∈ ∈  (3.13) 

 From (3.13) it is clear that the scaling function can be expressed as a linear 

combination of the half scale scaling function and its shifted versions which are 

orthogonal to each other. In this case, the space spanned by the scaling function with 
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larger scale is included in the space spanned by the scaling function with smaller 

scale. In other word, the space spanned by the scaling function with larger scale is a 

subspace of the space spanned by the scaling function with smaller scale. In order to 

clarify this idea we can define 0V  as a subspace spanned by the set of basis functions 

in (3.12). 

Then we can also construct  k t  for 0k   via the following way, 

      2 2 ,
k

n h i n i n      (3.14) 

Since  t  in (3.14) is expressed as linear combination of its shifted half scale 

versions,  h i  defines the weight of each half scale component. If 1V  is a subspace 

spanned by set of scaling functions  2n i  , it is clear that 0 1V V . In general, the 

subspace jV  can be defined as 

      ,2 j
j j kV span t span t    (3.15) 

Therefore, the multiresolution analysis can be defined as a nesting of closed 

subspaces as follows [29] 

   2
2 1 0 1 20 V V V V V L           (3.16) 

It is obvious that as j  goes to infinity jV  enlarges to cover all energy signals. 

On the other hand, as j  goes to minus infinity jV  shrinks down to cover only the 

zero signal. The difference between space spanned by scaling function and its half 

scale version is expressed as the orthogonal complement. This orthogonal 

complement is spanned by the corresponding wavelet function. This means, if we 

have a certain scaling function with particular scale, the space spanned by that 

scaling function can be decomposed into a subspace and its orthogonal complement. 

The subspace is spanned by the scaling function with double scale of the previous 

scaling function while the orthogonal complement is spanned by the corresponding 

wavelet function. Therefore we can define the space spanned by wavelet jW  as 

 1j j jV V W    (3.17) 

By performing repetition on (3.17), we may formulate: 
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( )
( )
( )
( )

1 1 1

2 2 1

3 3 2 1

0 0 1 2 1

0 0 1 2 1with :

j j j j

j j j j

j j j j j

j j j

j j j

V V W W

V W W W

V W W W W

V W W W W W
V W W W W W

+ − −

− − −

− − − −

− −

− −

= ⊕ ⊕

= ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊥ ⊥ ⊥ ⊥ ⊥ ⊥





 (3.18) 

As a consequence of (3.18), the entire square integrable functions in Hilbert space 

can later be represented as 

 ( )2
0 0 1 2L V W W W= ⊕ ⊕ ⊕ ⊕   (3.19) 

The visualization of space jV  and jW  described by (3.17)-(3.18) are illustrated in 
Figure 3.3. 

 
Figure 3.3  Illustration of MRA concepts and nested subspaced 

 
The next step would be to express the wavelet function ( )tψ in multi-

resolution concept. Since it is clear from (3.17) that 0 1W V⊂  and by taking (3.14) 

into consideration, the wavelet function ( )tψ  can be expressed as: 

 [ ] [ ] ( )2 2 ,
k

n g i n i nψ ϕ= − ∈∑   (3.20) 

Function [ ]g i  in (3.20) defines the weight of each half scale component. Since 

0V and 0W  are orthogonal to each other, ( )tψ  is orthogonal to ( )tϕ . This means 
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there should be special relationship between weight coefficients [ ]h i  in (3.14) and 

[ ]g i  in (3.20) to ensure the orthogonality. This relationship is given by [26]: 

 [ ] ( ) [ ] [ ]1 1 , for with length ofng i h L i h i L= − − −  (3.21) 

As for the case of scaling function in(3.13), the wavelet functions can be manipulated 

through scaling and translation as follows, 

 ( ) ( )/2 2
, 2 2 , ,j j

j k t t k j k Lψ ψ ψ= − ∈ ∈  (3.22) 

Finally, based on the philosophy illustrated above, we can give visual illustration of 

signal decomposition. Given signal ( ) 0 ,f t V∈  we can apply signal decomposition on 

( )f t  as follows [29], 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

1 2 2

1 2 3 3

1 2 3 4 4

where andj j j j

f t D t A t

D t D t A t

D t D t D t A t

D t D t D t D t A t

D t W A t V− −

= +

= + +

= + + +

= + + +

∈ ⊂

 (3.23) 

In(3.23), ( )jD t  is the detail at level j  while ( )jD t  is recognized as the 

approximation at level j . Hence, the scaling function corresponds to the 

approximation of a signal while the wavelet function describes the detail version of 

the signal at particular level of decomposition. 

 

3.4 Discrete Wavelet Transform 

In practical, processing a signal to obtain more data using the Continuous 

wavalet tranform and its synthesis is not efficient because many redundancies exist. 

This condition also affects to the performance of computation which is limited by 

processing rate and memory capacity. 

Therefore, the discrete wavelet transform (DWT) which will be discussed in 

this section is preferred. DWT is developed based on multi-resolution analysis and it 

basically can be used to decompose any function ( ) ( )2f t L∈   into scaling and 

wavelet basis function spanning the entire ( )2L  . Assuming an orthogonal 
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transform, the forward discrete wavelet transform (DWT) of a discrete signal or 

function [ ]{ }0,1,2, ,f n n M=  belonging to ( )2L   is defined as 

 

[ ] [ ] [ ]
[ ] [ ]

[ ]

,

,

/2
,

, ,

2 2

j k

j k
n

j j
j k

n

A j k f n n

f n n

f n n k

ϕ

ϕ

ϕ

=

=

 = − 

∑

∑

 (3.24) 

 

[ ] [ ] [ ]
[ ] [ ]

[ ]

,

,

/2
,

, ,

2 2

j k

j k
n

j j
j k

n

D j k f n n

f n n

f n n k

ψ

ψ

ψ

=

=

 = − 

∑

∑

 (3.25) 

Notation ,  denotes the inner product between two functions. [ ],A j k  and 

[ ],D j k  in equation (3.24) and (3.25) are approximation and details coefficients of 

which denote the weight of scaling function [ ],j k nϕ  and wavelet function [ ],j k nψ , 

respectively. 

 After analyzing such discrete signal, the original signal can be also 

reconstructed or synthesized using inverse DWT (IDWT) given as 

 [ ] [ ] [ ]0 0

0

/2 /2
0 , 2 2 , 2 2j j j j

k j j k
f n A j k n k D j k n kϕ ϕ

∞ ∞ ∞

=−∞ = =−∞

   = − + −  ∑ ∑ ∑  (3.26) 

The parameter 0j  in (3.26) is an integer which sets the coarsest level of 

approximation of the function f[n]. The details of the which are filled by its 

projection onto the wavelet spaces jW .  

 

3.5 Filter Banks Representation 

The possibility of implementing DWT algorithm using a set of filter banks 

was firstly studied by Mallat in [24]. In his work, Mallat showed that it is possible to 

perform DWT decomposition and reconstruction using 2-channel filter banks 

through a hierarchical algorithm known as the pyramidal algorithm. The algorithm 

meant that results of wavelet theory could be developed entirely using filter banks. 
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3.5.1 Analysis Filter Banks 

To analyze DWT using a set of filter banks, firstly consider two basis discrete 

functions which are used in multi-resolution analysis (MRA), namely scaling 

function [ ]nϕ and wavelet function [ ]nψ . The scaling function [ ]nϕ  basically can 

be expressed as a linear combination of [ ]2nϕ , meanwhile the wavelet function 

[ ]nψ , as the orthogonal complement of [ ]nϕ , can be also expressed as [ ]2nψ , 

which reside in the upper half band. 

From the description above, it is logical to associate coarse version of a signal 

with low frequency component and the detail version with high frequency 

component. Projection of signal with respect to scaling and wavelet basis function 

can logically be actualized through low pass and high pass filtering. Since multiple-

level signal analysis based on DWT is nothing but signal decomposition into 

different frequency bands, successive high pass and low pass filtering of the time 

domain signal can be employed. These successive filtering should be implemented 

based on (3.14) and (3.20) famously recognized as two-scale equation. In order to 

find the exact relationship between DWT and the filtering process, we modify two 

equation (3.14) and (3.20) by replacing 2 jn n k→ −  in order to obtain more general 

form of two scale equation. The general form of two-scale equation for scaling 

function with scale j  and translation k  is represented as: 

 

[ ] ( )
[ ]

[ ]

1

1

2 2 2 2

2 2 2

2 2 2 , , and 2

j j

i

j

i

j

m

n k h i n k i

h i n k i

h m k n m m n m k i

ϕ ϕ

ϕ

ϕ

+

+

  − = − −   

 = − − 

 = − − ∈ = + 

∑

∑

∑ 

 (3.27) 

Similarly, considering wavelet function in (3.20), can be also represented in two 

scale equation as 

 

[ ] ( )
[ ]

[ ]

1

1

2 2 2 2

2 2 2

2 2 2 , , and 2

j j

i

j

i

j

m

n k h i n k i

h i n k i

h m k n m m n m k i

ψ ψ

ψ

ψ

+

+

  − = − −   

 = − − 

 = − − ∈ = + 

∑

∑

∑ 

 (3.28) 
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 Based on equations (3.27) and (3.28), the DWT coefficients,  ,A j k  and 

 ,D j k , in equation (3.24) and (3.25) can redefined as, 
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 (3.30) 

 Equations (3.29) and (3.30) show that the DWT coefficient for scaling and 

wavelet function at particular scale j  can be calculated from linear combination of 

DWT coefficient from higher scale, 1j  . These equations also inform us that a 

convolution between DWT coefficients at scale 1j   with filter having impulse 

response  h i  and  g i  followed by down sampling each output with factor 2 will 

produce new scaling and wavelet DWT coefficients at scale j . As a result, the 

filtering representation of DWT is realized by developing half-band low pass filter 

H  and high pass filter G . The low pass filter H  and high pass filter G  have weight 

values  h i  in (3.14) and  g i  in (3.20), respectively, as their impulse responses. 

The term half-band is used here since  h i  in (3.14) and  g i  in (3.20) are related 

according to (3.21) which ensures the orthogonality between scaling and wavelet 
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function. The filters satisfying (3.21) are also commonly known as the Quadrature 

Mirror Filters (QMF). 

2↓ 2↓

2↓ 2↓

1,j kA +1,j kA +

hh

gg

,j kA ,j kA

,j kD ,j kD
 

Figure 3.4 2-channel Analysis Filter Bank 

 
Figure 3.4 illustrates a representation of equation (3.24) and (3.25) by a 2-

channel filter banks. The 2-channel filter bank first splits the input signal in two parts 

and filters one part with filter h  and other with filter g . Both filtered signals are then 

subsampled by 2 and resulting signals are forwarded to the output of the 2-channel 

filter bank. Each output signal will therefore contain half the number of samples and 

will span half of the frequency band compared to the input signal. It should be 

noticed that the number of samples at the input of the filter bank equals the number 

of samples at the output. 

2↓

2↓
[ ]f n

h

g 3W

2↓

2↓h

g

2↓

2↓h

g

2↓

2↓h
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2W

1W

0W

0V

Level-1 DWT
Coefficients

Level-2 DWT
Coefficients

Level-3 DWT
Coefficients

Level-4 DWT
Coefficients

 
Figure 3.5 The implementation of 4 stages Analysis Filter Banks 

 

The complete representation of the DWT can be obtained by iteration of the 

2-channel filter bank and taking repeatedly scaling DWT coefficients A  as input. 

The number of stages in iteration process will determine the DWT resolution and 

therefore the number of channels. 
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The example of a two band analysis tree with four stages is graphically 

shown by Figure 3.5. The input signal f  has 512 samples and contains frequencies 

that lie between 0 and π . The resulting decompositions together will still contain 

512 samples and span the same frequency band as the original signal but these will 

be decomposed in different DWT coefficients. 

 
Figure 3.6 Frequency Bands for the 4-stage Analysis Tree 

 

The subband structure of wavelet decomposition in frequency domain can be 

calculated using Fourier transformation. For the previous example of 4-stage analysis 

tree the corresponding subband structure is illustrated in Figure 3.6. 

 

3.5.2 Synthesis Filter Banks 

The reconstruction formula is derived by considering a signal in the 1j +  

scaling space [ ] 1jf n V +∈  as [28]: 

 [ ] [ ] [ ] [ ] 1 1
1,1, 1, 2 2j j

j
k k

f n A j k n A j k n kβϕ ψ
∞ ∞

+ +
+

=−∞ =−∞

 = + = + − ∑ ∑  (3.31) 

This can be expressed in terms of the next scale as [28]: 

 [ ] [ ] [ ], 2 2 , 2 2j j j j

k k
f n A j k n k D j k n kϕ ϕ

∞ ∞

=−∞ =−∞

   = − + −   ∑ ∑  (3.32) 

Substituting the 2-scale equations (3.27) and (3.28) into (3.32), we get 

 
[ ] [ ] [ ] ( )

[ ] [ ] ( )

1 /2 1

1 /2 1

, 2 2 2

, 2 2 2

j j

k m

j j

k m

f n A j k h m n m

D j k g m n m

β ϕ

β ϕ

∞
+ +

=−∞

∞
+ +

=−∞

 = − − 

 + − − 

∑ ∑

∑ ∑
 (3.33) 
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Multiplying both sides of equation (3.33) by 12 j n kϕ + ′ −   and taking the summation 

allows us to describe the DWT coefficients at higher scales by those of the lower 

scale [28]: 

 ( ) ( ) [ ] ( ) [ ]1, , 2 , 2
m m

A j k A j k h k m D j k g k m+ = − + −∑ ∑  (3.34) 

The equation (3.34) shows that the DWT coefficient for scaling and wavelet function 

at particular scale 1j +  can be reconstructed from linear combination of DWT 

coefficient from higher scale, j . 

Introducing, two new variables [ ]ĥ i  and [ ]ĝ i  which are time-reversed 

versions of [ ]h i  and [ ]g i . The relations between those notation are [ ] [ ]ĥ i h i= −  and 

[ ] [ ]ĝ i g i= − . Figure 3.7 2-channel Synthesis Filter Bank illustrates a representation 

of equation (2.37) by a 2-channel synthesis filter banks.  

2↑ 2↑

2↑ 2↑

1,j kA +1,j kA +

ĥ̂h

ĝ̂g

,j kA ,j kA

,j kD ,j kD

+

 
Figure 3.7 2-channel Synthesis Filter Bank 

 

The 2-channel synthesis filter bank performs operations which are exactly 

opposite to those of analysis filter bank discussed in the previous section. The 

wavelet and scaling DWT coefficients are first upsampled by factor 2 and after that 

the wavelet function DWT coefficients are filtered with HPF [ ]ĝ i while scaling 

function DWT coefficients are filtered with LPF [ ]ĥ i . The two filtered signals are 

then added to each other to construct DWT coefficients at higher scale.  

The decomposition of a signal in terms of coefficients is called discrete 

wavelet transform. In order to reconstruct the original signal from coefficients we 

can apply inverse wavelet transform, abbreviated IDWT. The IDWT can be 

efficiently implemented by iterating the 2-channel synthesis filter bank in the same 
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manner like we have done in the previous paragraph for the 2-channel analysis filter 

bank. The example of 4-stages synthesis tree is illustrated in figure Figure 3.1. 
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+
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+
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1,j kA +1,j kA +

 
Figure 3.8 4-stages Syntehesis Tree 

 

3.6 Wavelet Packet Transform 

The implementation of wavelet transform in terms of filter banks is usually 

non-uniform, which means that only the output of low pass filters that are 

decomposed iteratively. On the other side, decomposition on both low and high 

frequencies component is also possible. This process is then referred as wavelet 

packet transform. The original investigation on the topic was carried out by Coifman 

and Meyer [30]. And it was followed by Wickerhauser [31]-[32] who constructed 

uniform wavelet packet trees and demonstrated its operation for acoustic signal 

compression. Since low and high frequencies component are decomposed in the 

same way, the wavelet packet transform has uniform frequency resolution. Figure 3.9 

shows the frequency bands for 3-stage wavelet packet tree. 

The filter bank structure for wavelet packet transform usually expands to a 

full binary tree, yields a set of wavelet packet coefficients. These wavelet packet 

coefficient is notated as p
lχ  which refer to the certain level l  of the node in the tree 

structure and the current position p  of the node at a given level. Wavelet packet 

decomposition recursively splits each parent node in two orthogonal subspaces p
lW  

located at the next level [33]: 

 2 2 1
1 1

p p p
l l lW W W +

+ += ⊕  (3.35) 
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The subspaces given in equation (3.35) are those spanned by the basis functions of 
wavelet packets: 

 ( ){ }/22 2p l p l
l lW span t kχ= −  (3.36) 

 
Figure 3.9 Frequency Bands for 3-stages Wavelet Packet Tree 

 

In order to obtain wavelet packet coefficients χ  at a certain level of tree, the 

wavelet and scaling filter are convolved with wavelet packets coefficients from a 

previous level. This process is perform repeatedly for all wavelet packets until the 

full binary tree is obtained to desired depth. The wavelet packets coefficients 

( )2
1
p

l kχ +  are generated using the scaling filter and coefficients ( )2 1
1
p

l kχ +
+  are created 

using the wavelet filter [33][34]: 

 
( ) [ ]

( ) [ ]

2
1

2 1
1

2

2

p p
l l

m
p p

l l
m

k h m k

k g m k

χ χ

χ χ

+

+
+

= −

= −

∑

∑
 (3.37) 

The equation (3.37) shows the recursive equation for wavelet packets 

generation. In the regular DWT decomposition for each additional level we need 

only to perform single iteration of 2-channel filter bank while in wavelet packet 

transform the number of iterations is exponentially proportional to the number of 

levels. Therefore, the wavelet packet transform has higher computational complexity 

when compared to regular DWT. By utilization of fast filter bank algorithm wavelet 

packet transform requires O(Nlog(N)) operation, similar to FFT while DWT  needs 

only O(N) calculation [35]. Figure 3.10 illustrates the full binary tree for the 3-stages 

wavelet packet analysis. 
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Figure 3.10 3-Stages Wavelet Packet Analysis Tree 
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ĝ̂g

+

2↑ 2↑

2↑ 2↑ ĥ̂h
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Figure 3.11 3-Stages Wavelet Packets Synthesis Tree. 
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The reconstruction of wavelet packets is also performed in an iterative 

method. For each pair of wavelet packets coefficients at level l of the tree we can 

calculate wavelet packets coefficients at the previous level l-1 by: 

 ( ) ( ) [ ] ( ) [ ]2 2 1
1 12 2p p p

l l l
m m

k k h m k k g m kχ χ χ +
+ += − + −∑ ∑  (3.38) 

An example of 3-stages Wavelet Packet Synthesis Tree is depicted in Figure 3.11 

 

3.7 Wavelet Properties 

Each wavelet has specific characteristics that make it more suitable for one 

application than other. Therefore during design a system, a system designer should 

consider the different wavelet properties to meet the system requirements. There are 

several properties that have to be taken into account for designing a wavelet system, 

such as orthogonality, compact support, symmetry, and smoothness.  Here we shall 

discuss a few important ones. 

 
A. Orthogonality 

Orthogonality holds an important characteristic that can be used to ensure 

perfect reconstruction. For communication system, the orthogonality of 

wavelet is required. 

 
B. Compact support 

Compact support is defined by the length of the filter. In order to reduce the 

complexity of computational, shorter filters are preferred to be chosen. 

However, when determine the length of filter, we have also to consider 

another wavelet property which is related to the filter length, such as 

orthogonality or regularity. 

 
C. Symmetry 

Symmetrical wavelets have as feature that transform of the mirror of an 

image is the same to the mirror of the wavelet transform. None of the 

orthogonal wavelets except Haar wavelet is symmetric. Although, requiring 

symmetric wavelets involuntarily means that wavelets are not orthogonal 

there are some applications that prefer symmetric wavelets above orthogonal 
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ones. For instance image compression techniques like JPEG2000 uses 

biorthogonal symmetric wavelets. Because by compression of an image we 

discard one part of the wavelet coefficients containing high detail, the perfect 

reconstruction has become impossible anyhow. The fulfillment of symmetry 

property in JPEG2000 on the other hand results in more natural, smooth 

images. 

 
D. Regularity 

The regularity is a measure of smoothness of the wavelet that can helps to 

reduce the number of non-zero coefficient in the high-pass sub-bands and it is 

one of the easiest ways to determine if a scaling function is fractal. The 

smoothness is actually defined by the continuous differentiability of the 

scaling function. There are two ways in which smoothness can be defined: 

local by the Hölder measure and global by the Sobolev measure. 

 

3.8 Wavelet Families 

Haar 
It is the first and simplest of all wavelets. Haar wavelet is discontinuous, and 

resembles a step function. 

 
Daubechies 

These compactly supported orthonormal wavelets that are popularly used in 

discrete wavelet analysis. The names of the Daubechies family wavelets are 

written dbN, where N is the order, and db the “surname” of the wavelet. The 

db1 wavelet is the same as Haar wavelet. 
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Coiflets 

Coiflets are another variation on Daubechies wavelets. They have 

orthonormal wavelet basis with vanishing moments. Built by I. Daubechies at the 

request of R. Coifman. The wavelet function has 2N moments equal to 0 and the 

scaling function has 2N-1 moments equal to 0. The two functions have a support of 

length 6N-1. 

 
Biorthogonal 

This family of wavelets exhibits the property of linear phase, which is needed 

for signal and image reconstruction. By using two wavelets, one for decomposition 

and the other for reconstruction instead of the same single one, interesting properties 

are derived. 
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Mexican Hat 
This wavelet has no scaling function and is derived from a function that is 

proportional to the second derivative function of the Gaussian probability 

density function. 
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Symlets 
The symlets are nearly symmetrical wavelets and are modifications to the db 

family. The properties of the two wavelet families are similar. 

 

 
Morlet 

This wavelet has no scaling function, but is explicit. 
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4   
 

Wavelet Packet Based Algorithm for  

Representation of Time-Invariant Wireless Channel 

 
The representation of wireless channel using one-dimensional wavelet packet 

algorithm will be elaborated in this chapter. All of algorithms, which will be 

discussed in this chapter, are developed based on the theory of entropy. The contents 

of the chapter are organized as follows: The discussion on current development of 

wireless channel representation will be elaborated in section 4.1. In section 4.2, a 

discussion on how a wireless channel can be represented using algorithm based on 

wavelet packet is presented. The proposed algorithms are divided into two 

mechanisms, namely coefficient reduction and tree pruning. These proposed 

algorithms for wireless channel representation are entirely based on entropy value. 

Section 4.3 talks about the simulation setup used. The performance of each those 

algorithms is analyzed in Section 4.4. Finally, section 4.5 summarizes the entire 

discussion on one-dimensional wavelet packet algorithm to represent wireless 

channel efficiently. 

 

4.1 Channel Model Representation 

Many applications rely on wireless communication technology. This 

technology uses radio link as wireless channels to transmit the information. 

However, no one can completely predict the performance of the wireless channels 

due to the dynamic nature of radio link which are extremely random and 

unpredictable. This condition is affected by channel effects such as reflection, 

refraction, scattering and motion of objects. Therefore, in order to achieve better 

system performance, the channel has to be mapped into simple form to understand its 



Chapter 4 

50 

 

behavior. There are many models in literature to represent the behavior of wireless 

channel such as reported in [36]-[38]. Most of these methods rely on statistical 

impulse response of the channel obtained from empirical analysis. Such models 

require a lot of coefficients to map the channel which also influence the complexity 

of computation. 

Numerous alternative methods to represent channel models efficiently have 

been proposed. For example, in [39], Nikookar proposed a method to represent a 

channel model using Karhunen-Loeve (K-L) decomposition. This method relies on 

the correlation of the received signal to select the best basis of the signal. However, 

the price paid in terms computational complexity is still high, thereby making it 

unviable. 

In this context the theory of wavelets and wavelet packets, which have recently 

found applicability for signal processing applications, hold immense promise for 

wireless channel modeling. Wavelet packets offer localization of information in both 

frequency and time domains. This property can be exploited to model channels with 

reduced the complexity by selecting the best basis of the signal. 

Best basis selection based on wavelet packet was first introduced by Coifman 

in [40] for data compression and widely used in many applications [41]-[43]. The 

application of wavelet packet based on channel modeling has also been reported in 

[44]-[46]. In [44] and [45], Zhang suggested a method to represent a time-varying 

channel using two sets of wavelet packet. However, the use-cases considered in this 

work are preliminary. In [46], Sadough and Jaffrot use Mean Square Error (MSE) 

and Entropy as performance metrics to evaluate a Wavelet Packet model for UWB 

channels. They also compare the performance of wavelet packet based approach to 

Karhunen-Loeve (K-L) decomposition method. 

 

4.2 Wavelet Packet Based Channel Representation 

This section describes the system which will be applied to represent the 

wireless channel efficiently. The idea behind the proposed system is to represent an 

unknown wireless channel in terms of a set of known wavelet packet bases. Since the 

wavelet packet decomposition offers a high degree of time-frequency localization, 

the method guarantees an excellent approximation of the channel conditions. Once 
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the channel is mapped onto the WP bases, those WP components which contain 

significant information alone can be retained. This provides for sparse representation 

and accurate reconstruction of information. The proposed system is evaluated using 

performance metrics, such as correlation and level crossing rate, which have hitherto 

not been considered in the literature thus. 

The proposed system primarily performs three major tasks, namely, wavelet 

packet (WP) decomposition, selection of best WP representation and WP 

reconstruction. WP Decomposition and WP reconstruction are implemented using 

filter banks. To select the best WP representation, two methods are employed – 

a) Coefficient-reduction, where the channel is uniformly decomposed using 

WP transform and the best components are selected based on their entropy 

values, 

b) Tree-pruning, where an arbitrary decomposition of the input is conducted 

to arrive at the WP tree structure with lowest entropy [33]. 

 

A. 
The theory of wavelet packet allows for sparse representation of information. 

This is done by decomposition of signal into orthogonal WP bases. These WP bases 

are obtained from multistage tree structure of Quadrature Mirror Filter (QMF) banks 

[18], [26] . The starting stage of the WP decomposition is to consider a two-channel 

filter bank consisting of a low-high pass filter pair {h[n], g[n]}. These filters have 

finite impulse responses (FIR) and share a tight relationship given as [18], [26]: 

 

Wavelet Packet Decomposition 

[ ] ( ) [ ]1 1 mg L m h m− − = −  (4.1) 

Furthermore, they also have adjoints or duals which are their complex conjugate 

time reversed variants given by [26]: 

 [ ] [ ] [ ] [ ]' * and ' *h m h m g m g m= − = −  (4.2) 

The filter-pair {h’[m], g’[m]} are called the analysis filters and are used to generate 

the wavelet packet carriers for modulation of data at the transmitter end. On the other 

hand the combination {h[m], g[m]} is called the synthesis filters and is used to derive 

the wavelet packet carrier duals for demodulation of data at the receiver end. The 
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wavelet packet bases { p
lξ } from these QMF filters can be derived recursively 

through a Multi Rate Analysis as [26]: 

 

2
1

2 1
1

( ) 2 [ ] (2 )

( ) 2 [ ] (2 )

p p
l l

m

p p
l l

m

t h m t m

t g m t m

ξ ξ

ξ ξ

+

+
+

= −

= −

∑

∑
 (4.3) 

In (4.3) the superscript p stands for coefficient index at any given tree depth l. The 

number of WP components M that can be derived from l iterations is given 

by 2lM = .The decomposition level can be chosen according to the desired resolution. 

It has been shown that the WP algorithm can be implemented in O(Nlog(N)) 

operations [35]. 

 

B. 
The main task of the system for representing wireless channel using wavelet 

packet algorithm is to know how to utilize wavelet packet bases to represent the 

input signal efficiently. This task is necessary because not all of bases, which are 

obtained from WP Decomposition, contain valid information on the signal. The 

information about the significance of those bases can be evaluated by using entropy 

of each base. Based on this value, one can identify whether each of these bases can 

be selected for reconstructing such signal or ignored. Consequently, only few WP 

bases are needed to represent the input signal. 

Best Wavelet Packet Representation Selection 

Entropy1

 

 which is used in the theory of information is measure of an uncertainty 

condition associated with a random variable which quantifies the expected value of 

the average information contained in a message. To represent the value of entropy, 

Shannon formulates the equation which is given as follow [50], 

2
1

log
n

i i
i

H K p p
=

= − ∑  (4.4) 

where K is a positive constant and ip  is the probability of a certain state i . 

The quantity H  has a number of interesting properties which further 

substantiate it as a reasonable measure of choice or information [50]. 

                                                 
1 The terms of entropy has been known before the invention of Shannon in information theory and 
widely used in thermodynamics to represent an irreversible energy in the system. 
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1. 0H =  occurs if and only if all the ip  but one are zero, this one having 

the value unity. Thus only when we are certain of the outcome does H  

vanish. Otherwise H  is positive. 

2. For a given n , H  is a maximum and equal to log n  when all the ip  are 

equal (i.e., 1
n ). This is also intuitively the most uncertain situation. 

 

From the definition which is given in (4.4) (see Figure 4.1), one can say when 

the probability of an event is likely to be equal to another, then the entropy of this 

event is high. For instance, a series of coin tosses with a fair coin has maximum 

entropy. On the other hand, a string of coin tosses with a two-headed coin has zero 

entropy, since the coin will always come up heads. From this description, one can 

conclude that when the uncertainty is high, the entropy will also be high. 

This concept of entropy will be considered as the basis of development of 

Wavelet Packet Algorithm for representing wireless channel. 

 

Figure 4.1  Entropy in the case of two possibilities p  and ( )1 p−  
 

As mentioned above that there are two methods which will be proposed for 

selecting the best wavelet packet representation. 
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1. 

Following the knowledge that not all of wavelet packet bases are necessary to 

reconstruct an input signal, the coefficient-reduction method becomes one of 

alternative method for selecting the best wavelet bases to be reconstructed. 

Coefficient Reduction 

 
Figure 4.2 Coefficient Reduction Block Diagram. 

 

This method begins with a uniform decomposition of input signal to obtain a set 

of WP bases. After a set of WP Bases are obtained, the entropy of each bases are 

measured to determine which bases has significant information for reconstruction. 

Furthermore, only WP bases which have significant information are selected to be 

reconstructed for representing such input signal. The selection of WP bases is 

conducted by choosing a set of WP bases which have lower value of entropy related 

to the desired resolution. The block diagram of this method is depicted in Figure 4.2. 

The process of this method can be formulated as follow. Assuming the WP 

Bases coefficient is ( )
max

( )p
k lC t tξ=  and the entropy value of each base is 

( )logk n n
n

I p p= − ×∑  with k indicates the k-th bases coefficient and n indicate the n-th 

component of k-th bases coefficient in maximum depth of decomposition lmax, while 

p  is the probability of component n-th occurred in bases k-th. Then, based on the 

desired accuracy and scarcity of signal/channel representation, the best bases can be 

chosen as 

 
, if k desired accuracy

'
0 ,otherwise

k
k

C
C

∈
= 


 (4.5) 
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2. 

Another method to represent the signal efficiently is called tree pruning. This 

method was first introduced by Coifman in [40] and expanded by Ramchandran in 

[51]. Both of these works have similar objective that is to represent the input 

efficiently by using less coefficient with a small error. Lately, Lindsay in [33] also 

followed this path to optimize wavelet packet signal in noise environment. The 

method for efficient wireless channel representation will also follow these works. 

Different from the coefficient reduction algorithm, instead of decomposing the 

input uniformly and evaluate the entropy at the end of decomposition, tree pruning 

algorithm decompose input signal arbitrarily to obtain WP tree structure and measure 

the entropy value of each node which is obtained from WP decomposition at each 

level of decomposition.  

Besides that, in tree pruning algorithm the selection of best basis is conducted 

from the beginning of WP decomposition until certain level of decomposition. In this 

process, there are two conditions that have to be considered, that are [33] 

Tree Pruning 

a. Forward-lock, means that such node is not decomposed anymore and keep 

at such node. 

b. Forward-tuning, means that the decomposition of such node is continued to 

next level of decomposition. 

 
Figure 4.3  Tree Pruning Block Diagram 

 
The complete process of this algorithm as follow. The signal is passed through 

the QMF to be decomposed into WP Bases and calculate the entropy value of each 

base at every level of decomposition. Consider each node N, at every stage of 

decomposition. A node N is split into two nodes N1 and N2 if and only if the sum of 

the entropy of N1 and N2 is lower than the entropy of N, otherwise if the sum of the 

entropy of N1 and N2 is larger than the entropy of N, the node N1 and N2 are rejoined 
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to be node N. This process is repeated until none of the nodes can be split anyfurther 

and locked for further spliting [33], [40]. This process can be expressed as, 

 
{ }2 2 1 1

1 1 1 1
1 1

1 1

, ,

,

p p p p
l l l l l

l p p
l l l l

N N if I I I
N

N if I I I

+ +
+ + + +

+ +
+ +

 + <= 
+ >

 (4.6) 

Here the superscripts p and l indicate the index and the level of node N, while I 

indicates the entropy value of node with index p and l. 

 

C. 
The reconstruction of wavelet packets is also performed in an iterative method. 

After up sampling each pair of wavelet packets coefficients at level l of the tree by 

two, we can calculate wavelet packets coefficients at the previous level l-1 by: 

 

Wavelet Packet Reconstruction 

[ ] [ ] [ ] [ ] [ ]2 2 1
1 12 2p p p

l l l
m m

m h m m g mξ β ξ β ξ β+
+ += − + −∑ ∑  (4.7) 

The complete procedure for the wavelet packet based channel representation is 

described in Algorithm 1. 

Algorithm 1: Wavelet Packet algorithm for signal representation.  
1. Choose type of channel to be represented, such as 

a. Rayleigh Distribution Data 
b. Rician Distribution Data 
c. Real Process Analysis 

2. Wavelet Packet Algorithm Setup 
a. Set Type of Wavelet Filter 
b. Set Levels of Decomposition 

3. Calculate entropy value of each wavelet packet branches 
4. Set number of wavelet packet coefficient which will be reduced 
5. Choose number of the lowest branches which will be eliminated proportionally to 

point 4. 
6. Set eliminated branches to zero 
7. Reconstruct the rest of wavelet packet coefficient to be considered as 

reconstructed signal for the representation. 
8. Comparing the reconstructed signal to the original signal. 
 

4.3 Simulation Setup 

To evaluate the ability of the proposed wavelet packet algorithms to accurately 

represent channels stochastic metrics such as Normalized Mean Square Error 

(NMSE), Correlation and Level Crossing Rate (LCR) value are employed. Each of 

those parameters can be defined as follow 
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(a) Mean Square Error (MSE) 

MSE is a second order of error, which quantifies the difference between 

values implied by an estimator and the true values of the quantity being 

estimated [52]. The equation of MSE is given as 

     2

1 ˆDMSE E y n y n  
 

 (4.8) 

where y  and ŷ  are the function of original and reconstructed signal, 

respectively. For comparing all of performance in this simulation with 

equal standard, all of MSE values are normalized to the maximum one, 

which then called Normalized Mean Square Error (NMSE). 

(b) Correlation 

Correlation ratio is a measure of the relationship between two sets of data. 

This parameter is referred to first statistical moment to quantify the 

dependence of a data to another [53]. In term of two dimensional data, 

correlation can be defined as follow 
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 (4.9) 

where y and ŷ  are the mean value of two-dimensional original and 

reconstructed signal, respectively. For comparing all of performance in this 

simulation with equal standard, all of correlation values are normalized to 

the maximum one. 

(c) Level crossing rate (LCR) is defined as the expected number of a given 

signal crosses certain level of signal threshold [11]. The threshold levels 

considered in these comparisons are defined from the minimum to the 

maximum value of original signal amplitude. 

 

Some of the scenarios which will be tested to measure all of performance 

paramaters above with all of the possible number of coefficient reduction. Such 

scenarios are, 

(a) different level characteristic for constant wavelet filter 

(b) different wavelet filter characteristic for constant decomposition. 



Chapter 4 

58 

 

While, especially for LCR parameter, the simulation is conducted with only 

one number of coefficient reduction, and will be compared the performance of 

several number of coefficient reduction, afterwards. Besides that, we will also use 

cumulative distribution function (CDF) as a metric to learn about the characteristics of 

the signal. 

 The description above is conducted for coefficient reduction method. The 

scenario which will be used for tree pruning method is similar to the initial method 

but added with comparing the performance in term of NMSE between coefficient 

reduction and tree pruning with same number of reconstructed branches. 

 

4.4 Numerical Results 

4.4.1 Coefficient Reduction Algorithm 

In this subsection, the results of channel representation based on wavelet 

packet algorithm with coefficient reduction technique will be described. The 

explanation are classified based on the type of input and scenarios in each type of 

input. 

4.4.1.1  Rayleigh Distribution Data Input 

The behavior of nature cannot be predicted by anyone and is usually 

modeled statistically due to their randomness. This condition implies to the wireless 

channel which is influenced by the nature. Hence, modeling such channel can be also 

represented statistically. One of the randomness in the channel is amplitude that can 

be represented using Rayleigh Distribution. In order to evaluate the ability of the 

proposed algorithm to represent the time-invariant wireless channel, Rayleigh 

Distribution is considered as an input to the algorithm with the data length of 512, as 

show in Figure 4.4. 

There are several variables which have to be determined in the proposed 

algorithm to yield efficient wireless channel representation, i.e. level of 

decomposition and mother of wavelet. Hence, in the subsequent parts, these variables 

will be observed over different number of coefficient which are used to be 

reconstructed. 
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Figure 4.4  Rayleigh Distribution as an input of 1D Wavelet Packet Based Algorithm 

 
A. Level of Decomposition 

In this part, the effect of decomposition level to the performance of signal 

reconstruction through the proposed algorithm are observed over the number of 

coefficients which are used to be reconstructed. Mother of wavelet which is used in 

this simulation is Daubechies10. The reason of choosing Daubechies10 as a mother 

wavelet is that Daubechies10 has a support of minimum size for a given vanishing 

moment [40]. This simulation uses NMSE and correlation as a metric of 

performance evaluation. Figure 4.5 and Figure 4.7 show the results of performance 

evaluation of the proposed algorithm for different level of decomposition in terms 

of these parameters, respectively. The numerical representative of some such 

values are shown in Table 4.1 and Table 4.2. 

Figure 4.5 shows the error value between original and reconstructed signal. 

From this figure, generally, we can see that there is no significant effect of different 

decomposition level to the reconstructed signal. However, if consider the zoomed 

version of this figure as depicted in Figure 4.6(a), there is still small differences on the 

effect of decomposition level. Besides that, Figure 4.7 shows the dependence between 

original and reconstructed signal. From this figure, we see that 6-level of 
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decomposition gives high correlation which means that still there is similarity 

between original and reconstructed signal, but the complexity is also high. 
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Figure 4.5  Normalized Mean Square Error (NMSE) for Rayleigh Distribution data with 

different level of decomposition on 1D Wavelet Packet Algorithm 
 

Table 4.1 Representative of some values NMSE for Rayleigh Distribution data with different 
level of decomposition on 1D Wavelet Packet Algorithm 

Level 40% 45% 50% 55% 60% 
4 0.124926 0.111765 0.097765 0.082712 0.066312 
5 0.116088 0.110295 0.096623 0.089702 0.082537 
6 0.097134 0.089174 0.081958 0.072889 0.063545 
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Figure 4.6  Zoomed version of (a) NMSE and (b) correlation for Rayelgih distribution data 
with different level of decomposition on 1D Wavelet Packet Algorithm 
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Figure 4.7 Correlation for Rayleigh Distribution Data with different level of decomposition 

on 1D Wavelet Packet Algorithm 
 

Table 4.2  Representative of some values Correlation for Rayleigh Distribution data with 
different level of decomposition on 1D Wavelet Packet Algorithm 

Level 40%  45% 50% 55% 60% 
4 0.632786 0.68083 0.728352 0.776392 0.825563 
5 0.665458 0.685991 0.732251 0.754583 0.777055 
6 0.730575 0.756276 0.778847 0.806296 0.833658 

 

B. Wavelet Filter 

Besides the level of decomposition which affects the performance of the 

proposed algorithm, as mentioned in the preceding part, there is also another variable 

that has to be considered, namely the mother wavelet. In order to have adequate 

knowledge for getting the best signal reconstruction, we also need to analyze the 

behavior of the reconstructed signal for different type of wavelet and different length 

of filter. The analysis is obtained through the simulation. 

Different from previous part, in this part several types of mother wavelet are 

used over different number of coefficients which are used at constant decomposition 

level of 5. The type of mother wavelets and its filter length are shown in Table 4.3. 

The reason of choosing 5 as level of decomposition is that (see Figure 4.5 and Figure 
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4.7) 5 levels of decomposition gives optimum performance in terms of complexity 

and accuracy than 6 or 4 levels. It is reasonable since the complexity of computation 

increase align with the increasing of decomposition level. 

 
Table 4.3 Filter length of certain wavelet filter 

Wavelet Type Filter Length 
Daubechis 10 20 
Daubechis 20 40 

Symlet 10 20 
Symlet 20 40 
Coiflet 2 12 
Coiflet 3 18 

Bi-ortoghonal 3.5 12 
Bi-orthogonal 6.8 18 

 

This simulation also uses NMSE and correlation as a metric of performance 

evaluation. Figure 4.8 and Figure 4.10 show the results of performance evaluation of 

the proposed algorithm for different type of mother wavelet in terms of these 

parameters, respectively. The numerical representative of some such values are shown 

in Table 4.4 and Table 4.5, respectively. 
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Figure 4.8  Normalized Mean Square Error (NMSE) for Rayleigh Distribution data with 

different type of wavelet filter on 1D Wavelet Packet Algorithm 
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Figure 4.8 shows the error value between original and reconstructed signal. 

From this figure, generally, the results for different type of wavelets and filter length 

are still quite similar. Even if the zoomed version of NMSE in Figure 4.9(a) is 

considered, the results is almost similar except for mother wavelet of 

Biorthogonal3.5. In this context, there is a difference when Biorthogonal3.5 and  

Biorthogonal6.8 are applied to the system as mother wavelet in the decomposition 

process. The differences are also seen when coiflets wavelet mothers are applied and 

compared to others. For example, if we consider coiflet2 which has filter length of 

12, the accuracy of reconstruction is quite similar to the two initial wavelet mothers 

but different with bi-orthogonal 3.5 which also has same length of filter. These 

differences can be also clearly seen in figure Figure 4.10, and its zoomed version in 

Figure 4.9(b). 

 

Table 4.4 Representative of some values NMSE for Rayleigh Distribution data with 
different type of wavelet filter on 1D Wavelet Packet Algorithm 

Wavelet 40% 45% 50% 55% 60% 
Daubhecies10 0.116088 0.110295 0.096623 0.089702 0.082537 
Daubhecies20 0.1163 0.110994 0.097921 0.085965 0.078446 
Symlett10 0.107342 0.10031 0.084275 0.069087 0.064776 
Symlett20 0.108126 0.103046 0.092526 0.080602 0.068693 
Coiflet2 0.111637 0.10391 0.088841 0.076311 0.070872 
Coiflet3 0.112935 0.106689 0.091842 0.076788 0.070213 
Bi-orthogonal3.5 0.137032 0.12942 0.121907 0.105645 0.09676 
Bi-orthogonal6.8 0.112012 0.106687 0.094466 0.085193 0.078761 
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(b) 

Figure 4.9  Zoomed version of (a) NMSE and (b) correlation for Rayelgih distribution data 
with type of wavelet filter on 1D Wavelet Packet Algorithm 
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Figure 4.10 Correlation for Rayleigh Distribution data with different type of wavelet filter 

on 1D Wavelet Packet Algorithm 
 

Table 4.5 Representative of some values Correlation for Rayleigh Distribution data with 
different type of wavelet filter on 1D Wavelet Packet Algorithm 

Wavelet 40% 45% 50% 55% 60% 
Daubhecies10 0.665458 0.685991 0.732251 0.754583 0.777055 
Daubhecies20 0.664552 0.683457 0.727938 0.766357 0.789566 
Symlett10 0.696163 0.720019 0.771562 0.817461 0.830024 
Symlett20 0.693593 0.710922 0.745549 0.782987 0.818705 
Coiflet2 0.681119 0.707824 0.757203 0.795947 0.812202 
Coiflet3 0.676545 0.698373 0.747648 0.794524 0.814157 
Bi-orthogonal3.5 0.589243 0.619979 0.647937 0.704123 0.733452 
Bi-orthogonal6.8 0.679871 0.698386 0.739179 0.768692 0.788524 
 

C. LCR Parameter 

Beside the accuracy of signal reconstruction, we also have to know the 

characteristic of reconstructed signal against to the certain level of signal power 

thresholds which is considered as level crossing rate, as shown in Figure 4.11, Figure 

4.12 and Figure 4.13 for different level of decomposition, type and length of wavelet 

filter, and the number of coefficient which are used, respectively. 

Figure 4.11 shows the characteristic of reconstructed signal which use LCR as 

a consideration parameter for different level of decomposition with wavelet mother 

of Daubechis10 and 75% of significant coefficient are used in reconstruction process. 
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Meanwhile, the characteristic of different wavelet type which are applied in 

decomposition process can also be seen in Figure 4.12. This process considers 

decomposition level of 5 and 75% of significant coefficient are used in 

reconstruction process. From the results which are shown in Figure 4.11 and Figure 

4.12, we can see that there are not significant influences of decomposition level and 

type of wavelet in decomposition process to the behavior of level crossing rate of 

reconstructed signal. The LCR parameter is chosen to be considered in this thesis 

since this parameter gives us the information about the rate of signal fluctuation 

against to the certain power threshold level. In the system design, this information 

are very useful on determining the received power sensitivity at the receiver. 
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Figure 4.11 LCR for Rayleigh Distribution Data with different level of decomposition on 

1D Wavelet Packet Algorithm 
 

Finally, the original and reconstructed is depicted in Figure 4.14. This comparison 

is conducted under the simulation of 75% significant coefficients which are used 

with daubechies10 as mother wavelet and 5 levels of decomposition. We can see that 

the reconstructed signal is quite similar to the original with normalized mean square 

error (NMSE) is 0.0903.  
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To ensure that the reconstructed signal still has similar data distribution with the 

original, the cumulative distribution function (CDF) is considered and depicted in 

Figure 4.15. 
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Figure 4.12  LCR for Rayleigh Distribution Data with different type of wavelet filter on 1D 

Wavelet Packet Algorithm 
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Figure 4.13   LCR for Rayleigh Distribution Data with different number of coefficient which 

are used on 1D Wavelet Packet Algorithm 
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Figure 4.14 Comparsion between original and reconstructed signal for Rayleigh 

distribution data. 
 

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random Value

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

Cumulative Distribution Function of Signals

 

 

Original CDF
Theorytical CDF
Reconstructed CDF

 
Figure 4.15  CDF for Rayleigh Distribution Data on 1D Wavelet Packet Algorithm 
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4.4.1.2  Rician Distribution Data Input 

The signal representation which is considered in the preceding sub-section 

assumes that the direct signal is totally blocked by the obstacle. However, in real 

nature, the direct signal is occasionally received by the receiver which cannot be 

represented by Rayleigh distribution. In order to give proper representation, Ricean 

Distribution becomes an alternative to represent the received signal which has not 

only reflected signal but also direct signal. Consequently, this kind distribution is 

also used as an input to the proposed algorithm with data length of 512 as shown in 

Figure 4.16. 

Similar to the preceding sub-section, there are several variables which have 

to be determined in the proposed algorithm to yield efficient wireless channel 

representation, i.e. level of decomposition and mother of wavelet. Hence, in the 

subsequent parts, these variables will be observed over different number of 

coefficient which are used to be reconstructed. All of scenario which are used in this 

simulation are totally to the previous one. 
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Figure 4.16 Ricean Distribution as an input of 1D Wavelet Packet Based Algorithm 
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A. Level of Decomposition 

In this part, the effect of decomposition level to the performance of signal 

reconstruction through the proposed algorithm are observed over the number of 

coefficients which are used to be reconstructed. Mother of wavelet which is used in 

this simulation is Daubechies10. The reason of choosing Daubechies10 as a mother 

wavelet is that Daubechies10 has a support of minimum size for a given vanishing 

moment [40]. This simulation uses NMSE and correlation as a metric of 

performance evaluation. Figure 4.17 and Figure 4.19 show the results of performance 

evaluation of the proposed algorithm for different level of decomposition in terms 

of these parameters, respectively. The numerical representative of some such 

values are shown in Table 4.6 and Table 4.7. 
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Figure 4.17  Normalized Mean Square Error (NMSE) for Ricean Distribution data with 

different level of decomposition on 1D Wavelet Packet Algorithm 
 

Figure 4.17 shows the error value between original and reconstructed signal. 

From this figure, generally, we can see that the performance reconstructed signal is 

almost same for different level of decomposition. Even if the zommed version of this 

figure in Figure 4.18(a) is considered, the differences are still not significant to the 

performance of the proposed system. Besides that, Figure 4.19 shows the dependence 

between original and reconstructed signal. From this figure, we see that 6-level of 
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decomposition gives high correlation which means that still there is similarity 

between original and reconstructed signal, but the complexity is also high. 

 

40 42 44 46 48 50 52 54 56 58 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Coefficient Used (%)

N
or

m
al

iz
e 

M
ea

n 
S

qu
ar

e 
E

rro
r

Error Performances

 

 
4 Levels
5 Levels
6 Levels

 
(a) 

40 45 50 55 60 65

0.65

0.7

0.75

0.8

0.85

0.9

Number of Coefficient Used (%)

C
or

re
la

tio
n

Correlation Performance

 

 

4 Levels
5 Levels
6 Levels

 
(b) 

Figure 4.18  Zoomed version of (a) NMSE and (b) correlation for Ricean distribution data 
with different level of decomposition on 1D Wavelet Packet Algorithm 

 
Table 4.6 Representative of some values NMSE for Ricean Distribution data with different 

level of decomposition on 1D Wavelet Packet Algorithm 

Level 40% 45% 50% 55% 60% 
4 0.120408 0.107559 0.096858 0.083701 0.069241 
5 0.112289 0.10496 0.090531 0.081392 0.074724 
6 0.100011 0.090728 0.081094 0.073871 0.064194 
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Figure 4.19 Correlation for Ricean Distribution data with different level of 

decomposition on 1D Wavelet Packet Algorithm 
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Table 4.7 Representative of some values Correlation for Ricean Distribution data with 
different level of decomposition on 1D Wavelet Packet Algorithm 

Level 40% 45% 50% 55% 60% 
4 0.625296 0.675254 0.714162 0.759352 0.806095 
5 0.657545 0.685036 0.736388 0.767147 0.788855 
6 0.703169 0.73582 0.768042 0.791468 0.821806 

 
 

B. Wavelet Filter 

Besides the level of decomposition which affects the performance of the 

proposed algorithm, as mentioned in the preceding part, there is also another variable 

that has to be considered, namely the mother wavelet. In order to have sufficient 

knowledge to obtain the best signal reconstruction, we also have to analyze the 

behavior of the reconstructed signal for different type of wavelet and different length 

of filter. The analysis is obtained through the simulation. 
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Figure 4.20  Normalized Mean Square Error (NMSE) for Ricean Distribution data with 

different type of wavelet filter on 1D Wavelet Packet Algorithm 
 

Different from previous part, in this part several types of mother wavelet are 

used over different number of coefficients which are used at constant decomposition 

level of 5. The type of mother wavelets and its filter length are shown in Table 4.3. 

The reason of choosing 5 as level of decomposition is that (see Figure 4.5 and Figure 
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4.7) 5 levels of decomposition gives optimum performance in terms of complexity 

and accuracy than 6 or 4 levels. 

This simulation also uses NMSE and correlation as a metric of performance 

evaluation. Figure 4.20 and Figure 4.22 show the results of performance evaluation of 

the proposed algorithm for different type of mother wavelet in terms of these 

parameters, respectively. The numerical representative of some such values are 

shown in Table 4.8 and Table 4.9, respectively.  

Figure 4.20 shows the error value between original and reconstructed signal. 

From this figure, generally, the results for different type of wavelets and filter length 

are still quite similar. Even if the zoomed version of NMSE in Figure 4.21(a) is 

considered, the results are almost similar except for mother wavelet of 

Biorthogonal3.5. In this context, there is a difference when Biorthogonal3.5 and 

Biorthogonal6.8 are applied to the system as mother wavelet in the decomposition 

process. The differences are also seen when coiflets wavelet mothers are applied and 

compared to others. For example, if we consider coiflet2 which has filter length of 

12, the accuracy of reconstruction is quite similar to the two initial wavelet mothers 

but different with bi-orthogonal 3.5 which also has same length of filter. These 

differences can be also clearly seen in Figure 4.22, and its zoomed version in Figure 

4.21 (b). 

 
Table 4.8 Representative of some values NMSE for Ricean Distribution data with different 

type of wavelet filter on 1D Wavelet Packet Algorithm 

Wavelet 40% 45% 50% 55% 60% 
Daubhecies10 0.112289 0.10496 0.090531 0.081392 0.074724 
Daubhecies20 0.098491 0.093601 0.079625 0.069174 0.066004 
Symlett10 0.104744 0.099478 0.085716 0.073993 0.064877 
Symlett20 0.104162 0.096416 0.08322 0.065046 0.059023 
Coiflet2 0.100007 0.093711 0.083892 0.072635 0.066269 
Coiflet3 0.108316 0.102024 0.088952 0.070929 0.06687 
Bi-orthogonal3.5 0.13011 0.118513 0.106091 0.093251 0.083954 
Bi-orthogonal6.8 0.099913 0.096575 0.082434 0.069776 0.065112 
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(b) 

Figure 4.21  Zoomed version of (a) NMSE and (b) correlation for Ricean distribution data 
with different type of wavelet filter on 1D Wavelet Packet Algorithm 
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Figure 4.22 Correlation for Ricean Distribution data with different type of wavelet on 1D 

Wavelet Packet Algorithm 
 

C. LCR Parameter 

Beside the accuracy of signal reconstruction, we also have to know the 

characteristic of reconstructed signal against to the certain level of signal power 

thresholds which is considered as level crossing rate, as shown in Figure 4.23, Figure 

4.24 and Figure 4.25 for different level of decomposition, type and length of wavelet 

filter, and the number of coefficient which are used, respectively. 
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Table 4.9 Representative of some values NMSE for Ricean Distribution data with different 
type of wavelet filter on 1D Wavelet Packet Algorithm 

Wavelet 40 45 50 55 60 
Daubhecies10 0.657545 0.685036 0.736388 0.767147 0.788855 
Daubhecies20 0.70834 0.725602 0.772847 0.806285 0.816171 
Symlett10 0.685569 0.704737 0.752522 0.790942 0.819587 
Symlett20 0.687747 0.715675 0.760889 0.819088 0.837496 
Coiflet2 0.702842 0.725141 0.75864 0.795295 0.815297 
Coiflet3 0.67225 0.695522 0.741552 0.800689 0.813411 
Bi-orthogonal3.5 0.587423 0.634905 0.681938 0.727504 0.759033 
Bi-orthogonal6.8 0.703213 0.715122 0.763467 0.804323 0.818864 
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Figure 4.23  LCR for Ricean Distribution Data with different level of decomposition on 1D 

Wavelet Packet Algorithm 
 

Figure 4.23 shows the characteristic of reconstructed signal which use LCR as 

a consideration parameter for different level of decomposition with wavelet mother 

of Daubechis10 and 75% of significant coefficient are used in reconstruction process. 

Meanwhile, the characteristic of different wavelet type which are applied in 

decomposition process can also be seen in Figure 4.24. This process considers 

decomposition level of 5 and 75% of significant coefficient are used in 

reconstruction process. From the results which are shown in Figure 4.23 and Figure 

4.24, we can see that there are not significant influences of decomposition level and 
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type of wavelet in decomposition process to the behavior of level crossing rate of 

reconstructed signal. 
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Figure 4.24 LCR for Ricean Distribution Data with different type of wavelet filter on 1D 

Wavelet Packet Algorithm 
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Figure 4.25  LCR for Ricean Distribution Data with different number of coefficient which are 

used on 1D Wavelet Packet Algorithm 
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Figure 4.26 Comparsion between original and reconstructed signal for Ricean 

distribution data on 1D Wavelet Packet Algorithm 
 

Finally, the original and reconstructed is depicted in Figure 4.26. This 

comparison is conducted under the simulation of 75% significant coefficients which 

are used with daubechies10 as mother wavelet and 5 levels of decomposition. We 

can see that the reconstructed signal is not much different from the original signal 

with normalized mean square error (NMSE) is 0.1262. 

 

4.4.1.3 Real Process Analysis 

This simulation is conducted to observe the capability of wavelet packet 

algorithm to represent the signal as a combination of Rayleigh and Poisson 

Distributions. This kind of signal is observed due to the fact that the fluctuated signal 

at receiver is influenced by the delay of signal arrival time (arrival time, sometimes, 

can be modeled as Poisson Distribution). 

The scheme which are used to produce such signal as depicted beside as 

follow, 
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Figure 4.27 The Real Process Input for 1D Wavelet Packet Algorithm 

 

In equation (4.10), ( )1x t  represents the arrival signal follows the Rayleigh 

Distribution, meanwhile ( )2x t  represents the second arrival signal follows Rayleigh 

Distribution which is delayed at τ  follow Poisson Distribution. The sequential 

process of ( )x t  is depicted in Figure 4.28. 
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Figure 4.28 The sequential process 
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A. Level of Decomposition 

In this part, the effect of decomposition level to the performance of signal 

reconstruction through the proposed algorithm are observed over the number of 

coefficients which are used to be reconstructed. Mother of wavelet which is used in 

this simulation is Daubechies10. The reason of choosing Daubechies10 as a mother 

wavelet is that Daubechies10 has a support of minimum size for a given vanishing 

moment [40]. This simulation uses NMSE and correlation as a metric of 

performance evaluation. Figure 4.29 and Figure 4.30 show the results of 

performance evaluation of the proposed algorithm for different level of 

decomposition in terms of NMSE and correlation, respectively. 

Figure 4.29 shows the error value between original and reconstructed signal. 

From this figure, generally, we can see that there is no significant effect of different 

decomposition level to the reconstructed signal. Besides that, Figure 4.30 shows the 

dependence between original and reconstructed signal which not much different for 

every level of decomposition. 
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Figure 4.29 Normalized Mean Square Error (NMSE) for Real Process data with different 

level of decomposition on 1D Wavelet Packet Algorithm 
 



 Wavelet Packet Based Algorithm for Representation of Time-Invariant Wireless Channel 

79 

 

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Coefficient Used (%)

C
or

re
la

tio
n

Correlation Performance

 

 

4 Levels
5 Levels
6 Levels

 
Figure 4.30 Correlation for Real Process data with different level of decomposition on 1D 

Wavelet Packet Algorithm 
 

B. Wavelet Filter 

Besides the level of decomposition which affects the performance of the 

proposed algorithm, as mentioned in the preceding part, there is also another variable 

that has to be considered, namely the mother wavelet. In order to have sufficient 

knowledge to achieve the best signal reconstruction, we also must analyze the 

behavior of the reconstructed signal for different type of wavelet and different length 

of filter. 

In this simulation, several types of mother wavelet are used over different 

number of coefficients which are used at constant decomposition level of 5. This 

simulation also uses NMSE and correlation as a metric of performance evaluation. 

Figure 4.31 and Figure 4.32 show the results of performance evaluation of the 

proposed algorithm for different type of mother wavelet in terms of these parameters, 

respectively. 

Figure 4.31 shows the error value between original and reconstructed signal. 

From this figure, generally, the results for different type of wavelets and filter length 

are still quite similar.  
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Figure 4.31 Normalized Mean Square Error (NMSE) for Real Process data with different 

type for wavelet filter on 1D Wavelet Packet Algorithm 
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Figure 4.32 Correlation for Real Process data with different type of wavelet filter on 1D 

Wavelet Packet Algorithm 
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 Beside the result of different level of decomposition, type of mother wavelet 

and its filter length, we want also to observe the effect of different rate of arrival time 

which is shown in Figure 4.33 and Figure 4.34. From those results, we can see that 

although the trend is almost similar, but the exact value of each observation point is 

different. 
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Figure 4.33 Performance comparison of real process with  different level of decomposition 

on 1D Wavelet Packet Algorithm. 
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Figure 4.34 Performance comparison of real process with  different type of wavelet filter on 

1D Wavelet Packet Algorithm. 
 

4.4.2 Tree Pruning Algorithm 

In this section, the results of channel representation based on wavelet packet 

with tree pruning technique are presented. As described in section 4.2, that the 

process of tree pruning is splitting all of nodes iteratively until all of child nodes 

cannot be split anymore until certain level of decomposition which is determined at 

the beginning of process. The node splitting is done by considering the entropy value 

summation of two child nodes compared to entropy value of their mother node. If the 

summation is less than the entropy value of the mother node, then the node is split. 

Contrary, if summation is more than the entropy value of mother node, the node is 

rejoined. The wavelet packet tree structure as a result of this process is depicted in 

Figure 4.35, by using daubhecies10 as a mother wavelet and 5 levels of 

decomposition. The comparison of the reconstructed signal to the original signal is 

shown in Figure 4.36 with NMSE = 1.0550e-022. Due to the comparison yields 

similar results, we then plot the statistical characteristic of this signal by analyzing 
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cumulative distribution function (CDF) as shown in Figure 4.37. With reducing some 

WP Coefficient, this method produce 18 terminal nodes indicate the number of WP 

Coefficient. 

 
Figure 4.35  Wavelet Packet Tree for Tree Pruning 
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Figure 4.36 Comparison between original and reconstructed signal for Rayleigh 

Distribution Data using Tree Pruning Method 



Chapter 4 

84 

 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF Curves for Tree Prunning Process

Random Value

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 

Fu
nc

tio
n

 

 

Original CDF
Theorytical CDF
Reconstructed CDF

 
Figure 4.37  CDF for Rayleigh Distribution Data using Tree Pruning Method 

 

4.4.3 Performance Comparison 

The performance of two candidate methods, presented in subsection 4.4.1 and 

4.4.2, are now compared in this subsection. We have known that tree pruning method 

can represent the channel or signal more efficient than coefficient reduction. This 

condition can be considered in term of WP Coefficients which are used for 

representing kind of input. 

For fairness of comparison the same system parameters have been used for 

both methods – Daubechies-10 is the mother wavelet of choice; the levels of 

decomposition is fixed at 5; 100% of significant coefficients to reconstruct kind of 

input, resulting different number of terminal nodes which indicating the number of 

coefficient which are used to represent the input. In this scenario, the coefficient 

reduction method produce 32 terminal nodes due to decomposing the input uniformly 

which is yielded by 25, while tree pruning method produces 18 terminal nodes. This 

representation yields similar NMSE is around 1.0550e-022 
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Figure 4.38 Comparison between original and reconstructed signal for Rayleigh 

Distribution Data using Tree Pruning Method with removing several 
coefficients 
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Figure 4.39 CDF for Rayleigh Distribution Data using Tree Pruning Method with 

removing several coefficients 
 

Another way to analyze the property of the two proposed methods, we can 

consider same number of terminal nodes as a result of decomposition which are 
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yielded by both of methods. For tree pruning method, we apply daubechies10 as 

mother wavelet, 5 levels of decomposition and 75% of significant coefficients to be 

used for reconstructing the input. By this method, the number of branches which are 

used is 13. This method yield the value of MSE is 0.0992. To ensure the similar 

behavior which is depicted in Figure 4.38, we consider statistical data in term of 

cumulative distribution function (CDF) as shown in Figure 4.39. Although the CDF 

curve of original and reconstructed signal is slightly different, but the trend of curve 

is still reasonable to be considered as Rayleigh distribution. 

After we know the performance of tree pruning method for such scenario, we 

then apply same scenario to coefficient reduction method. But in this scenario, we 

use 40% of significant coefficients instead of using 75% of significant coefficients 

which are used in tree pruning. This modification is done in order to use same 

number of significant coefficient to be reconstructed. 
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Figure 4.40 Comparison between original and reconstructed signal for Rayleigh 

Distribution Data Coefficients reduction compare to tree pruning method 
 

This method resulting MSE of 0.1845 which is almost twice that of the 

previous method. We show the cumulative distribution function (CDF) in Figure 

4.41. We can see from the figure that the CDFs of the original and reconstructed 

signal is more different if we compare to the same previous figure. This can be 
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understood that the different results is caused that the coefficient reduction loss more 

information regarding the component of original signal when remove a lot of 

coefficient. 
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Figure 4.41 CDF for Rayleigh Distribution Data using Tree Pruning Method with 

removing several coefficients 
 

4.5 Summary 

In this chapter, the application of wavelet packet based algorithms for 

representing channels is described. The possibility of using wavelet packet transform 

for sparse representation of channels was studied. Preliminary results illustrating the 

efficacy of the WP approach were shown. To improve the performance of the 

proposed system two optimizations, namely, coefficient-reduction and tree-pruning 

were implemented. The proposed methods were compared and contrasted. It was 

shown that the tree-pruning algorithm performed better in accurate and sparse 

representation of channels. Furthermore, the impact of the number of levels of WP 

decomposition and the type of mother wavelet employed were also investigated. To 

gauge the system performance first and second order stochastic metrics such as MSE, 

LCR and correlation were employed. The results of the study demonstrated the 

efficacy of the proposed WP method in efficient representation of radio channels. 
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5  
 

Wavelet Packet Based Algorithm for 

Representation of Time-Varying Wireless Channel 

 

 In the fourth chapter, the advantages of one-dimensional wavelet packet to 

represent wireless channel have been studied. The description in that chapter is 

focused on time-invariant wireless channel. Unfortunately, many signals encountered 

in real life are non-stationary, which are varying in time. In this chapter, the 

possibility of two-dimensional wavelet packet to represent time-varying wireless 

model is investigated and described. 

 We start with the description of time-varying wireless channel as well as two-

dimensional wavelet packet, in section 5.1 and 5.2, respectively. In section 5.3, the 

discussion on how the properties of two-dimensional wavelet can be used for 

representation of time-varying wireless channel is presented. This implementation 

uses similar methods which are described in chapter 4, namely Coefficient-Reduction 

and Tree-Pruning algorithm based on entropy theory. The simulation setup of this 

implementation is elaborated in section 5.4. The performance of each those 

algorithms are analyzed in Section 5.5. Finally, section 5.6 summarizes the entire 

discussion on two-dimensional wavelet packet algorithm for efficient representation 

of time-varying wireless channel. 

 



Chapter 5 

90 

 

5.1 Time-Varying Wireless Channel 

Before representing wireless channel model varying in time, an engineer has to 

have an adequate knowledge on the characteristic of time-varying wireless channel 

model. We may recall the basic knowledge of time-variant wireless channel model 

from chapter 2 to give an overview about it. 

The nature of wireless channel is not stationary either in space or time. Many 

signals are encountered varying in time due to reasons such as [2], 

1. The position of transmitter and/or receiver may be varied in space, time-by-

time. For instance, in mobile wireless communication, the receiver is not 

standing in one position but also moving following the movement of user. 

2. The motion of objects within propagation path between transmitter and 

receiver. For example, if one standing beside the road with heavy traffic, 

the motion of car on the road influences the propagation of signal to be 

received at receiver. 

 
Such time-varying wireless channels are usually modeled using two-

dimensional representation. One of these dimensions represents the time delay of 

signal due to the existence of multipath propagation and the other represents the 

variation of channel behavior during the observation time. In [4], Hashemi derived 

the impulse response for time-varying wireless channel, which can be represented as 

 ( ) ( ) ( ) ( )
( ) 1

0
, .n

N
j t

n
n

h t a t t e
τ

θτ δ τ τ
−

=

= −  ∑  (5.1) 

Variables ( )na t  and ( )nj te θ  represents the magnitude and phase of the 

contribution from scatterer n , and iτ  is its associated propagation time (delay). 

Delays can be interchanged with path lengths using id
ciτ = . 

 

5.2 Two-Dimensional Wavelet Transforms 

Many applications encountered not only in one dimension (e.g. data stream or 

signal) but also in two dimensions (e.g. Image). Wavelet Transform as a linear tool to 

analyze data has been widely used for such application. However, conventional 

wavelet transforms, which are derived in one-dimensional manner, are not quite 
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suitable to be applied for two-dimensional application. To cope with this 

circumstance, in [27], Meyer generalized the wavelet model to any dimension 0.n >  

This work was also used by Mallat in [24] for Multiresolution Signal Decomposition. 

More applications based on two-dimensional wavelet are reported in [55]-[59]. 

In wavelet transform, beside one-dimensional wavelet transform there is 

another kind of process called two-dimensional wavelet transform. Such 

transformation gives more flexibility but has more complexity in term of analysis. 

Basically, two-dimensional wavelet transform is similar to one-dimensional wavelet 

transform, but there is a minor modification in the decomposition process which 

leads to quaternary tree structure instead of binary tree structure. The example of this 

process, the quaternary tree structure and frequency plan for 2 levels decomposition 

are depicted in Figure 5.1 and Figure 5.2, respectively 

 
Figure 5.1  Quartenary tree structure of depth 2 [59] 
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Figure 5.2 Frequency Plan of two-dimensional wavelet 

 

 Figure 5.1 shows that in every level of decomposition, each branch yields 

four child-branches, which is then called two-dimensional wavelet coefficient. 

These two-dimensional wavelet coefficients are obtained from multistage tree 

structure of two-dimensional filter banks [24]. Figure 5.3 shows one level of two-
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dimensional filter banks for decomposition a two-dimensional input. Instead of 

decompose one side of input as in one-dimensional decomposition, two-

dimensional decomposition is applied into two sides of two-dimensional input; 

rows and columns. In the first step, the rows of such input is convolved with one-

dimensional filter banks to obtain low and high frequencies of row components 

which is then represented in two row-branches, and then each branch of rows 

representation are convolved again in columns side of input by using another one-

dimensional filter banks to acquire low and high frequencies of column 

components. Each branch of rows representation results two branches of column 

representation. So that, at the end of this decomposition resulting four branches 

which then refer as wavelet coefficient. An example of this decomposition is 

shown in Figure 5.4. The two-dimensional input (Figure 5.4 (a)) is passed to the 

one level of two-dimensional wavelet decomposition in Figure 5.3. The result of 

such decomposition is depicted in Figure 5.4 (b). Each index in the frequency plan 

(Figure 5.4 (b)) refers to the coefficient indexes in Figure 5.3. 

hh

gg

hh

gg

2 ↓2 ↓

2 ↓2 ↓

2 ↓2 ↓

2 ↓2 ↓ [ ]1
0 nχ [ ]1
0 nχ

[ ]1
1 nχ [ ]1
1 nχ

[ ]1
2 nχ [ ]1
2 nχ

[ ]1
3 nχ [ ]1
3 nχ

2 ↓2 ↓

2 ↓2 ↓

[ ]x n[ ]x n

hh

gg

In rows
In columns

 
Figure 5.3  Decomposition Step in 1 Level of Decomposition 

 
 In order to obtain mathematical approach of the two-dimensional wavelet 

transform for either two-dimensional discrete wavelet transform (2D-DWT) or two-

dimensional wavelet packet transform (2D-WPT), the one-dimensional (1D) version 

of each wavelet transform in chapter 3 has to be recalled. 

Due to the two-dimensional input (e.g. image) can be modeled as finite energy 

function ( ) ( )2 2,f x y L∈   [57], [24], an obvious way to get two-dimensional 

wavelet transform from one-dimensional is to use separable wavelets [57] which are 
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obtain from scaling function  x  and its associated wavelet  x  in one-

dimensional. These functions are modified that satisfies to the orthonormal basis of 

 2 2L  . The two-dimensional scaling and its associated wavelet function are given 

as follow [24] 

 
           
           

1

2 3

, , , ,

, , , .

x y x y x y x y

x y x y x y x y

   

   

   

   
 (5.2) 

The function of   and i   are orthogonal to each other with respect to integer 

shifts. The function   is a separable two-dimensional scaling function, and the set 

of wavelet i  such that   2 2 ,2j j j
i x k y l      is an orthonormal basis of 

 2 2L  , where 1,2,3i   and   3, ,j k l  .  
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Figure 5.4 Frequency Plan (b) at one Level of Decomposition of input in (a) 

 
For the case of 2D-DWT, the approximation jA f  and details j

iD f  of the 

signal  ,f x y  at resolution 22 j  is characterized by the set of inner products as 

follow 

     
  2,

, , 2 2 , 2j j j j

k l
A f f x y x k y l  
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 An example of two-level tree structure for 2D-DWT in term of two-dimensional 

filter banks and its frequency plan are depicted in Figure 5.5 and Figure 5.6, respectively. 
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Figure 5.5 Two Level of Filter Banks for 2D-DWT 

 

 
Figure 5.6 Frequency plan of two levels 2D-DWT 
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For the purpose of representing an input using wavelet packet transform, we 

must extend two-dimensional discrete wavelet transform to two-dimensional wavelet 

packet transform. The extension of two-dimensional wavelet packet transform is 

derived from one-dimensional wavelet packet transform. Considering the wavelet 

packet basis  m m



 which can be generated from a given function 0  according to 

 

     

     

2

2 1

2 2

2 2

m m
n

m m
n

x h n x n

x g n x n

 

 

 

 




 

Where the function 0  can be identified with the scaling function   and 1  with the 

mother wavelet  . Then, the WP bases can be defined to be the collection of 

orthonormal bases of  2 2L   composed of functions of the form 

   /2
, , 2 2j j

j k m mx x k     with 2, ,j k m  . Each element of the bases is 

determined by a subset of the indexes j, k and m (for instance, a conventional wavelet 

basis corresponds to the collection of indexes     2, ,1 , ,j k j k  ). The set 

  , ,j k m k
x


 is an orthonormal basis of a subspace ,j mV  of  2L   such that ,2 1j mV   

is the orthogonal complement of ,2j mV  in 1,j mV  , where ,0jV  can be identified with 

closed subspace jV  and ,1jV  with jW . 

 By analogy with (5.2), one can construct the set of functions as follow [57] 

         2, ,
,m n m n m n

x y x y  


  (5.5) 

Where 0,0   , 0,1 1   , 1,0 2    and 1,1 3    stand as particular cases. A two-

dimensional wavelet packet basis is then composed of function of the form 

    , , , , ,, 2 2 ,2j j j
j k l m n m nx y x k y l       (5.6) 

Where the collection of indexes   3 2, , , ,j k l m n    is such that the intervals 

   2 ,2 1 2 ,2 1j j j jm m n n         form a disjoint cover of    0, 0,    and 

,k l  range over all the integers. Hence, any triplet      , , , , 0,0j m n m n   thus 

defined gives rise to a detail image 

     
  2, , , , ,

,
, , 2 ,j j

m n j k l m n
k l

D f f x y x y





 (5.7) 
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An example of two-level tree structure for 2D-WPT in term of two-dimensional 

filter banks and its frequency plan are depicted in Figure 5.7 and Figure 5.8, 

respectively. 
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Figure 5.7 2-Levels Two Dimensional Wavelet Packet Tree Structure 
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Figure 5.8 Frequency plan of two levels 2D-WPT 

 

5.3 Two-Dimensional Wavelet Packet Based Wireless Channel 

Representation 

In section 4.2, the representation of time-invariant wireless channel based on 

wavelet packet algorithm has been successfully implemented. In this section, the 

algorithm will be extended to the two-dimensional form in such a way that the 

algorithm is able to represent time-varying wireless channel efficiently. Such 

algorithm is then called two-dimensional wavelet packet algorithm which is 

developed based on two-dimensional wavelet packet transform (2D-WPT). 

Due to the fact that the 2D-WPT is widely used in image representation, hence 

the representation of time-varying wireless channel based on wavelet packet 

algorithm can be treated as image representation. Analogous to an image, time-

varying wireless channel representation ( ),h t τ  usually has two dimensions; τ  in x -
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axes which represent the time delay of each received radio propagation and t  in y -

axes which represents the time observation of channel behavior. 

As with the representation of time-invariant wireless channel, the idea behind 

the proposed system is to represent an unknown time-varying wireless channel in 

term of a set of known two-dimensional wavelet packet (2D-WP) bases. Once such 

channel is mapped onto 2D-WP bases, only those bases which contain significant 

information are retained. The proposed system is then evaluated using performance 

metrics, such as correlation and level crossing rate, which have hitherto not been 

considered in the literature. 

The proposed system primarily performs three major tasks, namely, 2D-WP 

decomposition, selection of best 2D-WP representation and 2D-WP reconstruction. 

2D-WP Decomposition and 2D-WP reconstruction are implemented using two-

dimensional filter banks which has been described in the section 5.2. The methods of 

selecting the best 2D-WP representation are similar to the methods which are used 

for selecting the best one-dimensional WP representation. The details of these 

methods are described in section 4.2 – 

a) Coefficient-reduction, where the channel is uniformly decomposed using 

WP transform and the best components are selected based on their entropy 

values, 

b) Tree-pruning, where an arbitrary decomposition of the input is conducted 

to arrive at the WP tree structure with lowest entropy [33]. 

 
The complete procedure for the two-dimensional wavelet packet based wireless 

channel representation is described in Algorithm 2. 

Algorithm 2: Wavelet Packet algorithm for signal representation.  
1. Choose type of channel to be represented, such as 

a. Rayleigh Distribution Data 
b. Sine function 

2. Wavelet Packet Algorithm Setup 
a. Set Type of Wavelet Filter 
b. Set Levels of Decomposition 

3. Calculating entropy value of each wavelet packet branches 
4. Set number of wavelet packet coefficient which will be reduced 
5. Choose number of the lowest branches which will be eliminated proportionally to 

point 4. 
6. Set eliminated branches to zero 
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7. Reconstruct the rest of wavelet packet coefficient to be considered as 
reconstructed signal for the representation. 

8. Comparing the reconstructed signal to the original signal. 
 

5.4 Simulation Setup 

To evaluate the ability of the proposed two-dimensional wavelet packet based 

algorithm for representation of time-varying wireless channel, different kind of 

inputs are chosen- 

1. Image, this input is used in order to obtain a fundamental insight on two-

dimensional wavelet packet for processing data.  

2. Rayleigh Distribution, this input is used as a further input to represent 

channel model varying in time. 

3. Sine Function, this input is used to exploit and analyze the advantages of 

time-frequency localization for time-varying channel representation. 

 
To evaluate the ability of the proposed wavelet packet algorithms to accurately 

represent channels stochastic metrics such as Normalize Mean Square Error, Level 

Crossing Rate and correlation value are employed. Each of those parameters can be 

defined as follow 

(a) Mean Square Error (MSE) 

MSE is a second order of error, which quantifies the difference between 

values implied by an estimator and the true values of the quantity being 

estimated [52]. The equation of MSE in term of two-dimensional 

representation is given as [60] 

     2

2 ˆ, ,DMSE E y m n y m n  
 

 (5.8) 

where y  and ŷ  are the function of original and reconstructed signal, 

respectively. For comparing all of performance in this simulation with 

equal standard, all of MSE values are normalized to the maximum one, 

which then called Normalized Mean Square Error (NMSE). 

(b) Correlation 

Correlation ratio is a measure of the relationship between two sets of data. 

This parameter is referred to first statistical moment to quantify the 



Chapter 5 

100 

 

dependence of a data to another [53]. In term of two dimensional data, 

correlation can be defined as follow 

 
( )( )

( ) ( )22

ˆ ˆ

ˆ ˆ

mn mn
m n

mn mn
m n m n

y y y y
r

y y y y

− −
=

  − −  
  

∑∑

∑∑ ∑∑
 (5.9) 

where y and ŷ  are the mean value of two-dimensional original and 

reconstructed signal, respectively. For comparing all of performance in this 

simulation with equal standard, all of correlation values are normalized to 

the maximum one. 

 
Some of scenarios will be used to measure all of performance parameters 

above with all of the possible number of coefficient reduction. Such scenarios are, 

(a) Different level characteristic for constant wavelet filter 

(b) Different wavelet filter characteristic for constant decomposition. 

 

5.5 Numerical results 

5.5.1 Coefficients Reduction Algorithm 

In this subsection, the results of channel representation based on wavelet 

packet with coefficient reduction technique will be described. The explanation are 

classified based on the type of input and scenarios in each type. 

5.5.1.1   Image 

In order to obtain an insight in channel model representation, we first apply 

an image to two-dimensional wavelet packet. An image can be modeled as finite 

energy function ( ),f x y , channel models which have function ( ),h tτ  can then be 

intrepreted has similar behavior to an image. The image which is used for this 

process is shown in Figure 5.9. The dimension of this image is 256x256. In practical, 

we must define the level of decomposition, mother of wavelet, and the number of 

coefficient which are retained. Consequently, we must know the effect of these 

system parameters to the performance of signal reconstruction. 
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Image Data to be processed with 2D Wavelet Packet

50 100 150 200 250

50

100

150

200

250

 
Figure 5.9 An image input for 2D Wavelet Packet Based Algorithm 

 
A. Level of Decomposition 

In order to know the effect of decomposition level to the performance, 

various level of decomposition is simulated with constant mother wavelet of 

Daubechies10, compared to different number of coefficients which are used to be 

reconstructed. The reason of choosing Daubechies10 as a mother wavelet is that 

Daubechies10 has a support of minimum size for a given vanishing moment [40]. 

The results of these scenarios are depicted in Figure 5.10 and Figure 5.11 for NMSE 

and correlation evaluation parameter, respectively. 

 From both figures, we can understand immediately that there are slightly 

differences of the reconstructed signal performance. To assists us understanding the 

differences, we can refer to Figure 5.12. The numerical representative of some such 

values are shown in Table 5.1 and Table 5.2, respectively, for NMSE and correlation. 

A significant difference can be observed from the curve of 2 level of decomposition. 
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This can be occurred caused by limited number 2D-WP Bases in such a way if some 

bases are removed, many information are lost. 
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Figure 5.10 Normalize Mean Square Error (NMSE) for Image data with different level of 

decomposition on 2D Wavelet Packet Algorithm 
 
 

Table 5.1  Representative of some values of NMSE for Image data with different level of 
decomposition on 2D Wavelet Packet Algorithm 

Level 0% 1% 2% 3% 4% 5% 6% 
2 1 1 1 1 0.017785 0.017785 0.017785 
3 1 0.031476 0.031476 0.027698 0.026505 0.026505 0.018057 
4 1 0.03443 0.027809 0.026663 0.023285 0.020702 0.018527 
5 1 0.036964 0.027498 0.024349 0.020946 0.019523 0.018206 
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Figure 5.11 Correlation for Image data with different level of 

decomposition on 2D Wavelet Packet Algorithm. 
 

Table 5.2 Representative of some values of Correlation for Image data with different level of 
decomposition on 2D Wavelet Packet Algorithm 

Level 4% 10% 20% 30% 40% 50% 
2 0.95 0.951847 0.958889 0.974868 0.980379 0.988041 
3 0.92 0.950567 0.969918 0.97571 0.982776 0.989278 
4 0.93 0.956599 0.970179 0.977664 0.985043 0.989303 
5 0.94 0.956217 0.970377 0.978658 0.985077 0.989552 

 

10 20 30 40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Coefficient Used (%)

N
or

m
al

iz
e 

M
ea

n 
S

qu
ar

e 
E

rro
r

Error Performances

 

 

 
(a) 

10 20 30 40 50 60
0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

Number of Coefficient Used (%)

C
or

re
la

tio
n

Correlation Performance

 

 

2 levels
3 levels
4 levels
5 levels

 
(b) 

Figure 5.12 Zoom version of (a) NMSE and (b) correlation for Image data with different level of 
decomposition on 2D Wavelet Packet Algorithm 
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B. Wavelet Filter 

Moreover, in order to have adequate knowledge to ensure the best signal 

reconstruction, we also have to analyze the behavior of the reconstructed signal for 

different type of wavelet and different length of filter. This scenario is simulated by 

using constant decomposition level of 4. The reason of choosing 4 as level of 

decomposition is that, refer to Figure 5.10 and Figure 5.11, 4 levels of decomposition 

gives better result than others in term of NMSE and correlation. If consider the zoom 

version of these version in Figure 5.12, we see that there is another value of 

decomposition level which has similar performance, namely 5. However, compared 

to the 4 levels, 5 levels of decomposition has more complexity in term of whole 

process, especially for bases selection algorithm. 
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Figure 5.13 Normalize Mean Square Error (NMSE) for Image data with different mother of 

wavelet on 2D Wavelet Packet Algorithm 
 

Generally, the results for different type of wavelets and filters length are quite 

similar as depicted in Figure 5.13 and Figure 5.14, respectively, for NMSE and 

correlation value. The zoom version of these figures which are shown in Figure 5.15 

give more impression about the similarity of these results. The numerical 

representative of some such values are shown in Table 5.3 and Table 5.5, 
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respectively, for NMSE and correlation. The performance differences between each 

mother of wavelet are around 0.7%, a small value which can be neglected. 

 
Table 5.3 Representative of some values of NMSE for Image data with different level of 

decomposition on 2D Wavelet Packet Algorithm 

Wavelet 48% 49% 50% 51% 52% 
Daubhecies10 0.00388 0.003796 0.003647 0.003521 0.003413 
Daubhecies20 0.003859 0.003768 0.003653 0.003496 0.003431 
Symlett10 0.004492 0.004192 0.004046 0.003923 0.003816 
Symlett20 0.00481 0.004712 0.004552 0.00433 0.004229 
Coiflet2 0.004341 0.004093 0.003941 0.003812 0.003719 
Coiflet3 0.004257 0.004146 0.003931 0.003784 0.003659 
Bi-orthogonal3.5 0.007203 0.007088 0.006885 0.0065 0.006407 
Bi-orthogonal6.8 0.004642 0.004528 0.004338 0.004151 0.004059 
 

Nevertheless, if we consider Figure 5.14, there is a difference of channel 

behavior when Bi-orthogonal 3.5 and 6.8 are applied as mother wavelet in the 

decomposition process. These differences are due to the different lengths of filter to 

the two initial type of wavelet (see Table 5.4) 

However, the differences are also seen when wavelet mothers of coiflets are 

applied and compared to others. For example, if we consider coiflet2 which has filter 

length of 12, the accuracy of reconstruction is quite similar to the two initial wavelet 

mothers but different with bi-orthogonal 6.8 which also has same length of filter. 

These descriptions can be also supported by considering Figure 5.14. 

 
Table 5.4  Filter length of certain wavelet filter 

Wavelet Type Filter Length 
Daubechis 10 20 
Daubechis 20 40 

Symlet 10 20 
Symlet 20 40 
Coiflet 2 12 
Coiflet 3 18 

Bi-ortoghonal 3.5 12 
Bi-orthogonal 6.8 18 
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Figure 5.14 Correlation for Image data with different mother of wavelet on 2D Wavelet Packet 

Algorithm 
 
Table 5.5 Representative of some values of Correlation for Image data with different mother of 

wavele  on 2D Wavelet Packet Algorithm 

Wavelet 48 49 50 51 52 
Daubhecies10 0.988615 0.988864 0.989303 0.989673 0.989991 
Daubhecies20 0.988677 0.988947 0.989285 0.989748 0.989938 
Symlett10 0.986808 0.987694 0.988124 0.988489 0.988804 
Symlett20 0.985868 0.986156 0.986629 0.987285 0.987585 
Coiflet2 0.987254 0.987987 0.988435 0.988815 0.98909 
Coiflet3 0.987503 0.98783 0.988465 0.988898 0.989266 
Bi-orthogonal3.5 0.978762 0.979104 0.979707 0.980855 0.981131 
Bi-orthogonal6.8 0.986364 0.9867 0.987264 0.987814 0.988087 

 

5.5.1.2 Rayleigh Distribution 

The behavior of nature cannot be predicted by anyone and is usually 

assumed as random behavior. Hence, this condition implies to the model of channel 

which is also has to be assumed as a random process. Due to the random process in 

such channel, the model of channel is usually represented statistically. One of that 

randomness is amplitude of channel which is represented using Rayleigh 
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Distribution. And because of the nature of channel is changing in time, that 

distribution is also represented in time-variant as shown in Figure 5.16. This input is 

generated randomly both in x − axes and y − axes, based on Rayleigh distribution 

with length of 256 at both of side. For this type of input, the similar scenarios in the 

previous subsection will be used, and analyze the behavior of the results afterwards. 
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Figure 5.15 Zoom version of (a) NMSE and (b) correlation for Image data with different mother 
wavelet on 2D Wavelet Packet Algorithm 

 

 
Figure 5.16 Rayleigh Distribution as an input 2D Wavelet Packet Based Algorithm 

 



Chapter 5 

108 

 

A. Level of Decomposition 

In this part, the effect of decomposition level to the performance of signal 

reconstruction are observed over various number of coefficients which are used to be 

reconstructed, with the mother of wavelet is keep constant, i.e. Daubechies10. The 

results of these scenarios are depicted in Figure 5.17 and Figure 5.18 for NMSE and 

correlation evaluation parameter, respectively. The numerical representative of some 

such values are shown in Table 5.6 and Table 5.7, respectively, for NMSE and 

correlation. From these figures and tables, we can see that there is no significant 

difference between various levels of decomposition over various numbers of 

coefficients which are used to be reconstructed. The differences in term of NMSE 

and correlation are around 0.22% and 1.3%, respectively. From Figure 5.18, we can 

see that the trend is similar to Figure 5.11 where the performance is better as big as 

the level of decomposition. 
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Figure 5.17 Normalize Mean Square Error (NMSE) for Raykeigh Distribution data with 

different level of decomposition on 2D Wavelet Packet Algorithm 
 

Table 5.6 Representative of some values NMSE for Raykeigh Distribution data with different 
level of decomposition  on 2D Wavelet Packet Algorithm 

Level 48% 49% 50% 51% 52% 53% 54% 
2 0.004074 0.004074 0.004074 0.004074 0.004074 0.004074 0.003127 
3 0.003911 0.003911 0.003655 0.003624 0.003624 0.003362 0.003147 
4 0.00388 0.003796 0.003647 0.003521 0.003413 0.003228 0.003163 
5 0.003855 0.003693 0.003562 0.003415 0.003274 0.003139 0.003038 
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Figure 5.18 Correlaytion for Rayleigh Distribution Data with different level of decomposition on 

2D Wavelet Packet Algorithm 
 

Table 5.7 Representative of some values Correlation for Raykeigh Distribution data with 
different level of decomposition on 2D Wavelet Packet Algorithm 

Level 48% 49% 50% 51% 52% 53% 54% 
2 0.710266168 0.710266 0.710266 0.710266 0.710266 0.710266 0.7535 
3 0.702374247 0.702374 0.713642 0.724771 0.724771 0.735581 0.746303 
4 0.706285485 0.711633 0.719843 0.727552 0.73311 0.741419 0.746448 
5 0.718519332 0.725391 0.732339 0.739417 0.746264 0.75381 0.759946 
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(b) 

Figure 5.19 Zoom version of (a) NMSE and (b) correlation for rayelgih distribution data with 
different level of decomposition on 2D Wavelet Packet Algorithm 
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B. Wavelet Filter 

Furthermore, in this part, the effect of various mother of wavelet and its 

length to the performance of signal reconstruction are observed over various number 

of coefficients which are used to be reconstructed, with the level of decomposition is 

keep constant at 4 levels. The reason of choosing 4 as level of decomposition is that 

(refer to Figure 5.17 and Figure 5.18) 4 levels of decomposition gives better result 

than others in term of NMSE and correlation. If we consider the zoomed version of 

these version in Figure 5.19, we can see that there is another value of decomposition 

level which has similar performance, namely 5. However, compared to the 4 levels, 5 

levels of decomposition has more complexity in term of whole process, especially for 

bases selection algorithm. 
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Figure 5.20 Normalize Mean Square Error (NMSE) for Rayleigh Distribution Data with 

different mother of wavelet on 2D Wavelet Packet Algorithm 
 

Generally, the results for different type of wavelets and filters length are quite 

similar as depicted in Figure 5.20 and Figure 5.21, respectively, for NMSE and 

correlation value. The zoomed version of these figures which are shown in Figure 

5.22 emphasize about the similarity of these results. The numerical representative of 
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some such values are shown in Table 5.8 and Table 5.9, respectively, for NMSE and 

correlation. The performance differences between each mother of wavelet in term of 

NMSE and correlation are around 0.47% and 0.4%, respectively. 

 
Table 5.8 Representative of some values of NMSEfor Rayleigh Distribution data with different 

mother of wavele  on 2D Wavelet Packet Algorithm 

Wavelet 48 49 50 51 52 
Daubhecies10 0.106891 0.105273 0.102765 0.100385 0.098653 
Daubhecies20 0.106766 0.105107 0.102517 0.09999 0.098237 
Symlett10 0.107207 0.105554 0.103002 0.100527 0.098817 
Symlett20 0.108148 0.106578 0.104078 0.101515 0.099928 
Coiflet2 0.106783 0.105138 0.102717 0.100272 0.09853 
Coiflet3 0.10753 0.105935 0.103194 0.100789 0.099169 
Bi-orthogonal3.5 0.116207 0.11448 0.112106 0.109711 0.108018 
Bi-orthogonal6.8 0.108297 0.106646 0.104299 0.101847 0.100104 
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Figure 5.21 Correlation for Rayleigh Distribution Data with different mother of wavelet on 2D 

Wavelet Packet Algorithm 
 
Nevertheless, if we consider Figure 5.21 and its zoomed version in Figure 

5.22, there is a difference of channel behavior when Bi-orthogonal 3.5 and 6.8 are 

applied as mother wavelet in the decomposition process. These differences can be 
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occurred due to the different length of filter to the two initial type of wavelet (see 

Table 5.4) 

However, the differences are also seen when wavelet mothers of coiflets are 

applied and compared to others. For example, if we consider coiflet2 which has filter 

length of 12, the accuracy of reconstruction is quite similar to the two initial wavelet 

mothers but different with bi-orthogonal 6.8 which also has same length of filter. 

These descriptions can be also supported by considering Figure 5.21. 

Table 5.9 Representative of some values of Correlation for Rayleigh Distribution data with 
different mother of wavele  on 2D Wavelet Packet Algorithm 

Wavelet 48% 49% 50% 51% 52% 
Daubhecies10 0.706285 0.711633 0.719843 0.727552 0.73311 
Daubhecies20 0.706618 0.712105 0.720583 0.728756 0.734376 
Symlett10 0.705159 0.710634 0.719006 0.727031 0.732525 
Symlett20 0.702012 0.707237 0.715477 0.723827 0.728949 
Coiflet2 0.706571 0.712005 0.719936 0.727854 0.733442 
Coiflet3 0.704073 0.709365 0.71837 0.726176 0.731391 
Bi-orthogonal3.5 0.675961 0.6818 0.689905 0.697983 0.703634 
Bi-orthogonal6.8 0.701517 0.707015 0.714754 0.722753 0.728388 
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Figure 5.22 Zoom version of (a) NMSE and (b) correlation for Rayleigh Distribution data with 
different mother of wavelet on 2D Wavelet Packet Algorithm 

 

5.5.1.3  Sine Function 

The last kind of input considered in this chapter is the mixed sine functions 

which contains different frequency. The idea behind generating this input is that in 
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real life, beside the random behavior, the signals are also contained different 

information of frequency which has to be considered. 

This sine function used in the study is given as follows: 
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A plot of the studied signal is given in Figure 5.23. 
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Figure 5.23 Sine Functions as input for 2D Wavelet Packet Based Algorithm 

 This input is passed through the algorithm to be decomposed with wavelet 

mother of Daubechies10 and decomposition level of 1. The reason of choosing 

daubechies10 has been described in the preceding part and the reason of choosing 1 

level is due to the limitation of input data length. Actually, the level of 

decomposition can be increased by enlarging the input data length. However, due to 

the objectives of this part is to only observing the frequency information of the 

signal, hence the length of data is remain. After decomposing such signal, the 1 level 

2D-WP bases is presented in Figure 5.24. 
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Figure 5.24 1 Level 2D-WP Bases of sine functions for 2D Wavelet Packet Algorithm 
 

The result of these representations are depicted in Figure 5.25.  From these 

figures, we can see that if the approximation which is situated in branch 1 is 

excluded in the signal reconstruction, the reconstructed signal is different to the 

original with NMSE of 0.9117. This condition occurs because the approximation 

branch contains all the information on the signal. Different to the rest of results 

which have almost similar shape with the original signal, the reconstruction which 

removed one of detail branch yields almost similar shape of signal due to less 

information about the signal is contained in the detail of 2D-WP bases. 

5.6 Summary 

In this chapter, the application of wavelet packet based algorithms for 

representing time-varying wireless channels is addressed. The possibility of using 

two-dimensional wavelet packet (2D-WP) transform for sparse representation of 

time-varying wireless channels was studied. Preliminary results illustrating the 
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efficacy of the 2D-WP approach were presented. Improving the performance of the 

proposed system an optimizations, namely, coefficient-reduction was implemented. 

Furthermore, the impact of the number of levels of 2D-WP decomposition and the 

type of mother wavelet employed were also investigated. To gauge the system 

performance first and second order stochastic metrics such as MSE, LCR and 

correlation were employed. The results of the study demonstrated the efficacy of the 

proposed 2D-WP method in efficient representation of radio channels. 

 

0

50

100

150

1

2

3

4
-1.5

-1

-0.5

0

0.5

1

1.5

 
MSE = 1.8053 

(Branch 1) 

0

50

100

150

1

2

3

4
-4

-2

0

2

4

 
MSE = 0.1733 

(Branch 2) 

0

50

100

150

1

2

3

4
-4

-2

0

2

4

 
MSE = 5.2206e-04 

(Branch 3) 

0

50

100

150

1

2

3

4
-4

-2

0

2

4

 
MSE = 4.4253e-07 

(Branch 4) 
Figure 5.25 2D-WP Reconstruction with one 2D-WP Bases removed 
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6  
 

Conclusions and 

Recommendations 

 
6.1 Conclusions 

In this thesis report, the applicability of wireless channel representation based 

on wavelet packet algorithm is addressed. The possibility of one-dimensional and 

two-dimensional wavelet packet algorithm for time-invariant and time-varying 

representation, respectively, is investigated. The results illustrating the efficiency of 

one-dimensional and two-dimensional approach were presented. To improve the 

performance of the proposed system, two optimization methods, namely coefficient 

reduction and tree pruning were implemented. Furthermore, the impact of the 

number of decomposition level and the type of mother wavelet employed were also 

investigated. To measure the system performance, first and second order stochastic 

metrics such as MSE, LCR and correlation were employed. 

From the whole study, represent the wireless channel using wavelet packet 

based algorithm is applicable and shows promising results on the efficiency and 

accuracy. Besides that, two optimization methods which are implemented in this 

algorithm also show promising result. 

Through the simulation, time-invariant wireless channel can be well modeled 

using one-dimensional wavelet packet algorithm with implement either coefficient 

reduction methods or tree pruning. The accuracy and dependence between original 

and reconstructed signal over different number of coefficient reduction are similar 

when different level of decomposition and different type of mother wavelet are 
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employed. Hence, there is no significant impact on the performance from the use of 

different level of decomposition, the type of mother wavelet and different length of 

wavelet. The performance of the two methods is shown that when same number of 

coefficients which are used in the signal reconstruction, tree pruning yields better 

performance than coefficient reduction. 

On the other side, two-dimensional wavelet packet algorithm can also represent 

the time-varying wireless channel, efficiently. Similar to the one-dimensional 

algorithm to represent time-invariant, the results of representations using two-

dimensional algorithm show no significant effects on the performance by applying 

different level of decomposition and type of mother wavelet. 

 

6.2 Future Research 
1. Exploit the property of time-frequency tiling to obtain more information 

about the characteristic or behavior of the wireless channel. 

In this context, the information of frequency selectivity on the wireless 

channel is very important to guarantee a good quality of wireless 

communication. On the other side, time-frequency tiling offers the flexibility 

to obtain more information on the channel. 

2. Develop an algorithm to determine the best level of decomposition based on 

the length of wireless channel response impulse. 

From the study in this thesis report, there is a big relation between length of 

data and level of decomposition. When length of data is longer, then the level 

of decomposition is also high. The increasing of decomposition level leads to 

the increasing of the number of coefficients which are obtained and also 

increase the load of computation. However, if the decomposition level is too 

low, it brings on the bad performance of representation. Hence, having a 

knowledge on the best level of decomposition is very important. 
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3. Develop an algorithm to represent different type of wireless channel by 

removing the redundant coefficient on their representation. 

On the data compression, there are to terms that are always considered to be 

taken into account, namely reducing the insignificant coefficient and reducing 

the redundancy of data. In this report, removal the insignificant coefficient 

has been well conducted. However, reducing the redundancy is not 

considered, whereas the duplicity of coefficient always occurs. Combining 

these two terms into the algorithm perhaps will give better performance in the 

representation. 

4. Investigate the performance of wavelet based wireless communication system 

by implementation wavelet based channel modeling together with other 

related results. 

Wavelet transform holds prominent characteristic that can be used to obtain 

the information on the signal. On the other side, wavelet transform has been 

also widely used in other fields of wireless communication systems, such as 

wavelet packet based multicarrier modulation, wavelet packet based 

synchronization, and wavelet packet based equalization. Investigating the 

performance of those applications together with wireless channel modeling 

based wavelet packet will leads to incredible knowledge on the possible 

future system of communication. 

5. Validation of proposed algorithm with real-time data analysis. 

Many channel models are derived from the empirical method which comes 

from the channel measurements at several locations. The results of this thesis 

only consider the behavior of characteristic certain parameters of the channel 

which haven proposed. In order to know the quality of the proposed 

algorithm, we have to change the input with the real-time measured data. For 

example, the measurement at TU Delft by Dr. Zoubir Irahhauten for his 

dissertation.  
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Appendix 
  

One of the important things in the modeling is validation, undeniable for 

wireless channel modeling. It needs also validation to ensure that the model stands in 

the right manner. Accordingly, while finishing this thesis, an effort towards 

validating the proposed algorithm to represent wireless channel model is also 

considered. The brief description in this appendix, hopefully, can be used to enrich 

the coverage of this research. 

Firstly, the author has prescribed the data which will be used to validate the 

proposed algorithm in this thesis. The measurement data presented by Zoubir 

Irrahauten in his dissertation2

1. A Coridor which has LOS condition 

 is chosen to be used for validating the proposed 

algorithm. The measurement is conducted at EWI Building of Technische 

Universiteit Delft. The measurement data which are used in this thesis located at, 

2. An Office which has LOS condition 

3. NLOS Condition between coridor and office 

4. NLOS Condition inside an office with 1 wall of obstacle. 

 
Each of measured data has 49 point of observation which refer to the number 

of channel impulse response and data length of 8000. 

 

To evaluate the perfomance of the proposed algorithm, some variables are 

determined in this validation as follow, 

1. Using 7 levels of decomposition 

2. Iterate in 0-100% of significant coefficient with 8 types of mother wavelet 

3. Represent the behavior of coefficient reduction in term of NMSE, Correlation 

and Time Delay Spread. 

 

                                                 
2 Z. Irrahauten, “Ultra-Wideband Wireless Channel : Measurements, Analysis, and Modeling,” Ph.D 
Dissertation. TU Delft. 2009 
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Besides that, several scenario are also considered in this validation to ensure 

that the proposed algorithm is working well. These scenarios are, 

1. Using the theoritical distribution which are used in the measurement 

campaign as an input to the proposed algorithm, such as log-normal 

distribution, Gamma Distribution and Poisson distribution. 

2. Using the statiscal distribution data of the measurement with the 

parameters which are obtained from the measurement. 

3. Using the measured data directly as an input of algorithm. 

All of the scenarios are measured their performnace in term of NMSE, Correlation 

dan RMS Delay Spread. 

 
For initial validation, the author only consider one of the measured data 

which is located at a coridor with LOS condition. This measured data is directly 

passed to the proposed algorithm. From the simulation, it is shown that the proposed 

algorithm can be also used to represent the real measurement data.  The result of this 

scenario is classified based on the variables of the proposed algorithm in terms of 

NMSE, Correlation and RMS Delay Spread, as follow. 
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Figure 26 The Normalized Mean-Square Error for different level of decomposition 
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Figure 27 The Correlation for different level of decomposition 
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Figure 28 The RMS Delay Spread for different level of decomposition 
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B. Wavelet Filter 
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Figure 29 The Normalized Mean-Square Error for different type of Wavelet Filter 
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Figure 30 The Correlation for different type of Wavelet Filter 
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Figure 31 The RMS Delay Spread for different type of Wavelet Filter 

 

From the results above, we can see that the proposed algorithm can be used to 

represent the real condition of the channel (in this case obtained from the 

measurement). Almost all of the figures show that the realible performance is started 

around 10% coefficient which are used to be reconstructed. Pleaseto be noted that it 

is only preliminary results to see the effect of input to the algorithm. The main 

challenges in this validation campaign which want to be achieved is that represent 

the statistical model obtained from the measurement. Besides that, the validation 

must also consider all of locations which are used to conduct the meaurement. 
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