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Abstract

The motion of a freely floating or submerged body; which
is moving with a constant average forward speed and oscillating
arbitrarily in any of the six degrees of freedom, is formulated
as an initial-value problem. The seaway is assumed to be
arbitrary. The body is assumed to be 'smooth', but no symmetry
of the body is required. The fundamental assumption is that
both the free-surface disturbance due to forward motion of the
body and the oscillations are small enough so that the problem
may be linearized. By an approach similar to that of Wehausen
(1965), it is shown how the present treatment of the problem
leads also to Ogilvie's (1965) modified results of Cummins'
(1962) decomposition of the velocity potential for the case of
an oscillating body with a constant average forward speed. The
linearized equations of motion of the body are then derived as
a set of six integro-differential equations. Existence and
uniqueness theorems are not established either for the boundary-

value problem or for the integral equation which is constructed.




I. Introduction

In the study of the problem of .ship motions, it is desirable
to be able to write down equations of motion which are valid
whatever the nature of the seaway. This means that the validity
of these equations should not require the forcing functions to
depend sinusoidally upon time. Cummins (1962) made an important
advance toward this goal by considering a certain decomposition
of the velocity potential resulting from 'forced motion' with
no waves present. In the present work we shall consider an
initial-value problem for ship motions with forward velocity
and show how Cummins' (1962) results can also be derived from
this treatment of the problem.

We shall consider the motion of a freely floating or sub-
merged body which is moving with a constant forward speed and
oscillating arbitrarily (not necessarily periodically) in any
of the six degrees of freedom. The body is supposed to have
zero average translational and angular velocity in the oscilla-
tory motion in some appropriate sense of the word 'average'.
Essentially all that.ﬁhis means is that there is a definite
sufface moving'forward at a given spééd such that the oscillator&
motion can be referred to this surface with only small error.
The precise meaning will be explained in Chapter II;

The position and velocity of both body and the free surface
are assumed to be known at some fixed instant of time which we

shall take to be t = 0. Besides, we allow the possible presence
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of waves which may diffract upon the body and cause it to move.
The incident waves ére dassumed to be 'known'. -thérwise, the
nature of the seaway is supposed ‘to be arbitrary. Our funda--
mental assumption is that the problem can be linearized, in
the sense that the oscillations are small and that the dis-
turbance of the free surface due to the forward motion of body
is also small. In order to achieve the last réquirement real-
.istically, the body may be, for example, éithef thin, slender,
flat, or deéply submerged. Aside from this, we require only
‘thatthe form of the body be 'smboth';.no-symmetry'of'thé'body
is assumed. _ | |
As usual, we shall assumelthe fluid to be incompressible

and inviscid and the motion of the fluid to be irrotational.
The analytical method which is used in the present work was first
introduced by Volterra.(l934) for solution of cerfain‘initial-
value problems for water waves and was later extended by
Finkelstein (1957). Wehausen (1965) later showed how such .a
technique can be modified to solve a class of problems in ship
motions and, in particular, how the decomposition of the velocity
_potential of Cummins' type may be convaﬁehtly made. by this
treatment. The present work is an extensioh.of that of Wehausen
(1965) to include forward motion. |

~ For the pufpoée of the linearization of the bbundary con-
ditions at both the free surface and the hull-fluid interface,
we keep two perturbation parameters in mind: g , measuring
the smallness of the free-surface disturbance caused by the

forward motion, and &y > measuring the smallness of the
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oscillatory motion. However, in order to have a deVelopment
which is simultaneously applicable to thin or slender ships,

and to deeply submerged bodies, we do not follow the traditional
scheme of linearization of introducing separate boundary-value
problems for each of the order ¢, , v » Es€m etc., respec-

tively. The boundary condition at the wetted hull is linearized

by means of a Taylor's series expansion of the potential funétion,
Yy , y P P

in which all the terms of orders & , &, and &éum are kept.
The result is the condition which is also called the Timman-
Newman boundary condition. A somewhat different derivation of
this boundary'condition is presented in Chapter II of the pfesent
work so that additional insight into the'nature'of the dérivation
may be gained,' As to the free-surface boundary condition, terms
of 6rder higher than &;&»m are discarded, so that the traditional
homogeneous free-surface boundary condition is obtained. For the
justification and limitation of the applicability of such a
develdpment, we refer to the discussions in.the following papers:
Timman and . Newman (1962), Newman (1965), and Ogilvie (1964). |
The.problem is first formulated for the general case of un-
steady-avérage forward speed and its appropriate integral equation'
for the velodity potential is obtained. ‘Howevér, in order that |
thg decomposition of the velocity potential for the 'forced
motionf,may be conveniently méde, it is necessarywto assume the
avefage forward‘Speed to be constant. Cummins' (1962) develop;
ment for the Caée of constant forward speed was later modified J

by Ogilvie (1965) in order that it should satisfy the Timman-
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Newman boundary conditioh. Hence we refer often to Ogilvie's
(1965) work, and effort is also made to preserve the same
notation whenever it is convenient to do so, so that cross
reference between the two may be easily made.

Uniqueness is not established either for the boundary-
value problem or for the integral equation which is constructed.
This may be shown in both senses if there is no forward motion.
It would be desirable to establish this in the present case
also. Furthermore, no existence theorems have been established
for solutions of the integral equations. Thus in a certain
sense the work is purely formal. However, if one is willing
to concede that both uniqueness and existence should be provable,
the final equations show the proper form of the linearized
equations of motion and the nature of their ingredients. In
particular, one should note that they are a set of six coupled
integro-diffgrential equations. We have not attempted to find
any solution corresponding to a special geometry. This would

be a reasonable next step.



II. Mathematical Formulation

Coordinate systems. It will be convenient to consider

simuitaneously_threev:}ght-handed cartesian coordinate systems.
 Let 52?} be fixed in space in such a way that 5"" is
in the direction of the forward motion of the body; 5? is
directed oppositely to the force of gravity and the (X, 3)-
pla-ne coincides with the ﬁndisturbed free surface. The coor-
dinate system 5??}"? will be taken to be fixed in the.body in
such a way that when the body is at rest, the axis 6? is
directed oppositely to the force of gravity with the center of
gravity of the body lying on the line of gl\—axis, 5>< towards”’
the bow and 63\, to the starboard; and when the .body is at rest
the (>? s })-plane coincides with the undisturbed free surface.
Finally, we introduce the coordinate system Oxu, , moving

at a speed equal to the average forward speed of the body such
that when the body is at rest the two systems, 5§“>‘ and ()xu

coincide with each other. Hence the two systems, OX7 and

Aoy

Oxy3 are always parallel to each other; 0 x coincides with
0X and the ( x, })-plane coincides with the (X, 1)-plane.

In particular, if we assume that at the initial instant the

two systems Oxy3 and O—fj]';' coincide, then at any later

instant t we have

.
X +/C(r)a/7:

X =
I =% - [ (1)
I =3, )
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where C(#) is the average translatory speed of the body.

In conformity with the assumption of the small oscillatory
motion of the body, we shall assume that the displacements of
the coordinate system 62?3) from Ox%43 are small.

Let (Xi. %,3%) and (68,,68,, & ) describe the linear
and angular displacements of 6)?77‘3: from Oxjy3 , where
Xi= X (1), 7,"‘ $@, .-, @3=63(f). Thus they describe,
respecﬁively, the surging, heaving, sway, rolling, yawing
and pitching motions of a ship. Note that at any instant t
the position of the origin 0 'is given by ( X, ¢, » 3) in the
O0xt} system.

Suppose that €, €; and £3 are the three unit coordinate
vectors of the OX?}-frame and ,é, s _é_\z and __é}are those of the

5fﬁ§-frame. If ? is a point in the body with coordinates
(?,? ,3:) and (X, Y, 3 ) when referred to the 6)??3\«- and the
OX 43 -frames, respectively, then, since é\f= OP — C_J_é\ s

we have

X8+3 & +3 e = (x-X)8 +(4-%) €, +(3-1) & .

Suppose that at an instant t the body frame 5’??3 has angular
displacements ( 8, , 8,, ©; ) relative to the OX;} -frame.
Then, without assuming smallness of the angular displacements,
one can establish the following tra_nsformatibn between the.two . .

coordinate systems:



by

X=X, i o o \[cos8, o sing, ) [coss, -sing, ol
i-d.|=| 0o cosp, -sing, 0 { 0 |lsin8y cos®, o jf 2)
$-3.] \o sing cospf{-5"8. 0 eosp, /| 0 o 1} 3 ‘

If we now assume that 8 , &, and O, are all small enough
so that one may assume C¢S{={, sin4,= @ , etc., then (2)

simplifies to

X=X = X+ 6,3-6,7
1=t = F+68-63 | (3)
| ';_3,=;+&,3‘—@2£’
or N A '
X=Xz = Xt & 0 X v Argo k=423, (35

In (3a) we have used the usual cartesian tensor notations and
; the repeated indices imply summation. If we now solve (3)
for X , ? and 3\, and assume that X, , ¢ and } have the

same order of smallness as (9, , 8, and (9-3 , then one may

discard terms of the higher order and obtain
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X ;'x-x.—@,;+03;)
F=10-%.-6:x+ 83 ¢ (%)
5=}_}-‘$1?* 62 x,
y
or X T XamXiT &0 Xy (4a)

Note that the unit coordinate vector €& , for example, has
‘the coordinate (X, $,3) = (1,0,0) in the Oxy}-frame. 1f
we let & =X6& + ?.é\? -f;‘_é_\g , then from (4) one can easily find
that X = 4 > ?"'-193 and 3\= 8, , where we have set X;= §,=3,=0.
Hence & = & +(-6,)&, + 6,8,  , from which one obtains the

following result which will be useful later:

2 A

g-&=1, &-&=-4,, &&-=02,

w——

Similarly one may further obtain that §z'§ =_@3 , &8, = | ,

A ”\ -~
e:-é=-9, & €=-6,, & =06 amd g &=|

Or in tensor notation we write this result as

C.-gp = dif + &40 (5)



Geometrical description of the ship. The surface of the

body will be given at all instants in the body coordim te

system OX37 by the equation

F(x ¢.3) =0 S (6)
By the tranéformation (4) this function can be written as

_ /\’/\ PN _ . - .
FORTE) = F(x-Xim&ys0;%) = Flxid.t).
o . , .
Thus F(X’J’?)= 0 and. F(x . 3.t)=0 respectively, describe
the same body surface at its instantaneous position in the body
frame O?j} and the translating frame O-X;}, . Let 'us. denote
this body surface by S . Note that with reference to the
0)<g} -frame there is an imaginary surface S, giveﬁ by

-\

S, : Fxg,2) =0, | )

which is stationary with respect to the O'*7},¥frame and coin-
cides exactly with the. body surface S when the latter is in
its undisturbed position. This imaginary surface S. will be

called the '"reference' surface..

Description of the sea. The form of the free-surface 5?j}
will be described either in the space reference frame

by the equation

=YXy, | (8)
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or in the translating reference frame OX}} by the equation

§F =Y (x3.t), (8a)

where we let

Y (%.3.8) = Y (xt[edr p,t) = Y (xg.t).

Potential functions and their preliminary decompositions.

As usual we shall assume the fluid to be heavy, incompressible,
and inviscid, and the flow to be irrotational, so that a
potential function may be defined. Let t?(R”gnj'f)be the
potential function such that its gradient equals the velocity
vector of a fluid particle with respect to the space reference
frame 5533 . This velocity will be referred to as 'the

absolute' velocity of a fluid particle. We shall also write
45()?,5,;,7}):¢(x+/€cfr,;l.;f) = Q("';"}"/')
) ! .

The relative velocity of a fluid particle with respect to the

translating reference frame Clx;} then should be given by
Vv = V(-cx+ Puzat) = (-c+4, 4. 4,) . (9)
Note that ¢E=§ﬂ)‘,¢j—={ﬂ;,%=% etc., but %:(Iﬂr—c@x

V{ﬁ still gives the absolute velocity but is expressed in

terms of the variables of the C>Xg},system.




-

-11-

In the subsequent development we shall suppose that the
resultant fluid motion of our problem is composed of the
superposition of two parts: 1) the disturbance due to the
translation of the body fixed in its undisturbed position with
the forward speed C(?) into otherwise undisturbed fluid region,
and 2) the fluid motion due to the oscillatory motion of the

body and the oncoming waves. Hence we shall write

Glxggt) = Gloppt) + @lapgt), QO

where % and % , respectively, represent the fluid motions
due to the first and the second parts mentioned above.

The linearized kinematic and dynamical boundary conditions

on the free surface. A systematic linearization of the math-

ematical expressions for the fact that the free surface is a
material surface and the assumption that the pressure every-
where on the free-surface is constant will lead, respectively,

to the following conditions:

Yo (%7 ¢) - % (x.03,%) =0, (11)

and

aY(FREt) + ¢ (koft)=o0. (12)

They are, respectively, the kinematic and dynamical boundary

conditions on the free-surface and are to be satisfied at the
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undisturbed free surface §== O . Elimination of Y from (11)

and (12) giveé

6]5” ()7,0,};7‘)_ +j¢7- =0 on y—=0. (13)
The relationships 45(?'?:}',7‘) = ?(X';l'}:f‘) , ?(;’fo)=\f(x/},f))

4& = 4& etc. and 4@ ==4é'6i§ﬁ give us easily the counterparts
of (11), (12), and (13) in the Oxj} system as follows:

(F-c3x)Y(xit) - @, (x0pit) = 0, 16)
}Y(X’}’f) + (%—C%{) ?(X, 0'}/'[) =0, (15)

and

(%'.C%)z?(x'o,;;t) +ip, =0, (16)

which are to be satisfied on the undisturbed free surface %§=0 .

Linearization of the boundary condition at the hull-fluid

interface. The boundary condition at the hull-fluid interface,

1ike the case of the free-surface boundary condition; can be
formulated either in the space reference frame 577; or in
the translating reference frame 0X7;. It will be convenient
in the future if we work here with the translating reference
frame OX;'} .

Let us first work out an expression for the velocity of
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thg ship hull .relative to the translating reference frame Ox?}‘
according to the transformation (3) and (5) valid for the
small-oscillations approximation. Let Q be a typical point

on the surfaée of the body with coordinates ( ¥, 7, ?) in the

body reference frame 0;?; and (x, ¢, }) in the OXJ}-fra_me.

Then the vectors X = £ & +88+38=0Qad X =

X & + 7_@2 + 3 8= Q_Q are the position vectors of Q in
05??; and OX?J' respectively. It is easily_verified from (5)

that

€« = Eit &, b e . n

Hence we may write

AN -\ Pl

Xé&+78+38

-

>
]

=X ¢8+7 &+3 +(83-67)e+(8,5-83)e +

+(47-65)8 .

(o

>

Let us define X = X &+ FL:t ;3\_'23 ; then we have
Ny A A i
X =X+ (6,0,.8;)xX | (18)

?

Obviously X defined above is not a position vector of the
point Q with reference to any of the two reference frames

considered here. We may now write

X +X +(6,68,,68)%xX . (19)

X=x+X =
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The formula (19) gives immediately the velocity of the

point { relative to the Oxy}-frame as follows:

J{(Qi+)

]

X(Qit) = X1+ (6,6, 6)x X (20)

where we take __)S = 0 since the body is tc be assumed rigid.
If the vector L{ in (20) is resolved along the CJX;}-frame

we may then write

V,- (@:t) = Xu () + é"?'* (9.]- 5(\4 ) ' (20a)

Let N be the unit normal vector to the hull surface point-
ing into the body. Let }1 be resolved along both reference
frames so that

3

3 " A~
n=>ne =2 ”;‘é;- (21)

A=) i ;:,

)
Suppose that the function F given 'in (6) which describes the
body surface is so chosen that the inward normal is given by

the formula
ﬁfi.(?‘?'?) = IE:,: (Q’iii)/h/;mﬁﬁ ) (22)

,\ .
where f; represents the partial derivative of the function

~

F with respect to its i-th variable. Then from (21) and (5)

we obtain easily that
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N (£3:3) = 1; (03.3) + 2 64 A

- [F; 4 &80 B }/4//3,*/2 . (23)

The boundary condition on the body is
n - V(—Cx+<o)

i.e., the normal component of the fluid velocity at a point
Q on the body surface equals that of the surface. In component

form this can be written as

= [ﬁ, (’?'3‘?’)‘* Z;jk@ Vlﬁ] [X:.\ ‘;iéJ)?k] . (24)

Note that in (24) variables of both coordinate systems

are involved. Transformation (3) can now be used in writing
gﬂ(x,;,},f)_—. 4(9”#@2?‘&3?'?*;.*@39 j *}:HQ'J 8,5, 'l')

Since the quantities X,; and 0. are small compared to the

A .
quantities X, , it:is reasonable to assume that the following

Taylor's series expansion for the potential function C%;

possible:
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. (Z‘- (X'y'}'t = .(2‘?"}1’)—? Xll+é,€mu@,',,)(n %A_ oo (25)
JA 1 .

This ié now to be substituted back into (24). One may at this
point introduce several perturbation parameters, for example, -
say, &g measuring the smallness of the free-surface disturbance
due to forward motion and &, measuring the smallness of the
oscillatory m;tfgn. Then by following usual scheme of lineari-
zation one can deduce from (25) and (24) linearized cohditions
for separate boundary-value problems of the orders &, , &, and
&E&Em , etc., respectively. However, the goal of the present
work will be better served by following a slightly different
approach. We shall not be so specific abouf the introduction
of the perturbation parameters but rather shall discard what-
ever terms of order (% @k or X (% appear in (24), for they
are clearly terms of the order 8; . (Terms of order é&séum

will always be retained.) If this is done then we have, from

(24) and (25),

FiR23) G300 + £ Gh b + B [ Xt eam 0,5, -

.)A

-c4.[F. tEie by Pyl
= BRI [%, + &, 6%, ],

. oA
where the expression (22) has been used for /; . If we now

drop all the circumflexes over the variables in the last ex-

pression, we have
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Fri(x.3) 40,4 (x:4.3,2) 1455 O M" + F. [Xu‘*f-z»m@ X W,u’
-cé\A[/—'M+ L F,J

= Beleya)[%, 46546 XA] | (26)

Obviously, (26) is now a condition for the potential function
(? to be satisfied at a point on the surface defined by the
equation /?(x'y,}):= O which is precisely the imaginary sur-
face o defined by (7).

Although certain physical interpretations of the implication

of (26) are possible, we shall not do this but rather refer to

. the original paper of Timman and Newman (1962) and to the dis-

cussion on p. 39 of Ogilvie (1964). However, we should like
to remark here that the fact that (2€) is to be satisfied at

an imaginary boundary S, comes out naturally as the result

- of linearization and the way'q7 is expanded into Taylor's

series in (25). The question of whether :Sq represents the
mean position of the oscillating surface S or not is immaterial.
In fact, S. here will seldom be the mean position of S |,
since we are considering an arbitrary?osciliatory motion of
a body in forward motion. _ _

Let us now put C? =,4€ +7435 in (26) and assume that
(% > and its derivatives have the same order of magnitude

as (9 or X,;. Hence, terms like é"j* @]'ﬁﬁ %)4 and
(X, +£,,M BnXn) @ ., are to be discarded. Then from (26)
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IE,; (x';'j)[%,,; (x13.1)+ {e,,; (X'f'}ft)] -+ E»‘jk &f /E:,Q %,4 +

A

+F»;[X.ﬂézmn&mx..]%u—c3,\,. [’E:»'_*E"‘;‘i&j /E\’ﬁ]
= F,,; (x'?’})[xu‘ + 2;7:./( &'/ Xﬁ ] ) (27)
Suppose that there is no oscillatory motion (i.e., we set £,=0),

so that X,;= 0, f.=0, and §ﬂl O » 40 = % . Then from the last

condition we have

W

A

/Eu-‘ (X/ﬁ},},) %M. (X:;,j,,f) - Cé?; F e.

|

Hence /1, o) = CH,, on S, : F(X’y'})z'O , where we have
written e (Q,)=/:i- (Qa);/ﬁ,*,":.;,, for @o 13 S, . Or we write

¢, (xfy,;,f)/ = N (-¢x). (28)
Se
With this result another condition for [ﬁ can now be obtained

from (27). Thus we have, from (27) and (28),

//::A, (x:;,}/) @M_ (Xl},},t) + E.{}‘ﬁ (9} /E,\‘ %); t /E:,: [Xu * Z,an&,..xh] ée,:,( -

- i £.i4 0; Fig

= /E)\,{ [)Eu +‘s“'2:'¢"9'.$'xﬁ ]
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Let us again write M.;(x3})for ﬁ;("'?f})/,/ /E:ﬁ/é)\k and

rearrange terms in the last expression. Then we have

N, 6,0,,; = Ny [ X + Eiig By X4 1+ ”"‘.{_[X"*Elmn&'”x“] %M‘A—

- &-4/{ Oy (—cé\,}.+ {ﬂm;. ) } (29)

For convenience let us introduce a vector ﬁ defined by

A = ..)..<' + (&11@2, [ )X 2_( . (30)
Or in component form, /4; = X, 54# @4- Xy . From (30) we
have, then,
A - - ..
i_{ = _X_' + ({9,/@;,'(93)x2.( ) (31)

which is a vector evaluated at a point Qa== Cmy,})on S..
Note that the difference between the vector given by (31) and
that of (20) is of the second order. Hence (31) may be re-
garded as the first-order approximation of the velocity vector
of a point  on the actual body surface.

Condition (29) can be put into a compact form if the

following vector identity is used:

Vx[AxA] = (AV)A-(AVIA+AVA-AVA. (32)




-

Let _’/_\_: V(-cx+ {’;) ==-C¢, + ]7{&0 ~ and _/_] be as
defined by (30); then

-20-

1 VA =p-Vlextf) = ViCcx+g)=0,

2) VA =V{X+(8.6.6)xx)

= X,A-)A- "' é"#k&& é;,\' —4 E

A'J‘,{ @; = 0)

»n (A4 = {[Veearg)] v &+ (8.6.8)xX]
= (<, .+ 73 1)[)(,,. fEa 0 % ],
B NI
- e wt Go) (€510 6]

:—é__‘-g\/( ‘94( (—CJ,‘; 4 %)j) ,

5 - ( - {[x + (8.6, 8) }V(—»H %)

|)>
\_/

- {X,; + Za'jk @j Xk}[-CJ;,g + a,z],;

= —{x,,. &4 0 Xy } %ux .
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~Note that 3) and 4) are precisely the same as the second and the
third term in the right-hand side of the equality in (29). Hence

with the use of the identity (32), (29) can now be written as

e

QV% Ao+ M —'+£,-Vx§ﬁxl\7(‘“’+§”o)}. (33)

As was remarked before, to the first order approximation we
have 3_/9/91‘: V , the velocity of a point & on the
instantaneous position of the hull surface relative to the

()Xy}-frame.' We shall then rewrite (33) as

G, t)| = Vo (it + e Vx{ﬁr xit) oV (258))

| | (34)
where - _\_/0 = V(f‘C'X'f{O')()(,y,},-[)) -, and

= (x4,2) ¢

Note that (34) is precisely the condition originally de-
rived by Timman and Newman (1962). It might be interesting to
- note that in (34) an additional second term is needed in a
condition derived from the kinematic boundary cOnditionlpn the
hullvsurface S . However, it should not be surprising that
tﬁis should be the case, since S, , being an imaginary boundary,
is not a material surface. Therefore, even though %,., = Vn
is the appropriate condition for a material surface, it need
not hold on S. , and, in fact, when a body is translating as

well as oscillating, it does not hold.

Finally, if the condition (34) is specialized to thin-,




-22-

flat- or slender-ship approximations, it is found that (34)

in fact represents a combination of several boundary conditions
for separate boundary-value problems. Moreover, in this case,
the additional second term contains terms of higher order in
perturbation parameters. Such terms should be discarded if a
strictly first-order expression of the boundary condition is
required. Nevertheless, the present form of the boundary
condition in (34) will be used in the present work because
there seems to be no harm in keeping some of these higher-
order terms, provided it is understood that the accuracy is

good only to the first-order approximation.
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IITI. Solution of the Initial-Value Problem by the Method of
Green's Function.

The initial-value problem. In the subsequent development

we shall need only the translating reference frame (Qxy}.
Henceforth, the surface S,: fofyu;)= 0 will be restricted
to the part of the surface which is below f=0, i.e., Se
coincides with the wetted part of the hull surface when the
ship is in its undisturbed position. We shall be looking for
an unsteady velocity potential ‘% (x 4,3, t) satisfying the

following equations'and,boundary conditions:

B +§€H *Q” =0, {<o; (35)

2 _c2_)? -
(37 Cax) 40, + ?%7 = 0 (36)
on the undisturbed free surface [=0;

@, (ﬁh‘)(s = Vo (x:t)+ no)- Vx{ﬁ(.&;%)*_\_/o(ﬁ;ﬂ} NERY

where X= (x43) in S, , and W (Xi1)= V(-cﬁ%(x';,},f))is

already prescribed;

(ﬂh(ﬁ;%)IB =0 (38)
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where [ is the bottom. If the fluid is infinitely deep, the

last condition is replaced by

"/&;‘-1\ %} (X,'l'}"t): 0 - S . (383)

{==

In addition,(% R QH, and their first derivatives are assumed
to be uniformly bounded at <0

The initial position and velocity of the ship are assumed
known. Moreover, at the initial instant both ﬁf and 7@. on the

free surface are prescribed:

Y (v3.0) = F (x3)

(39)
Yie (63.0) = 42 (03)

where -[, and .)l; are given functions of X and [ .

From (39) and (14) we see that gﬂ,?(x:o,},b) is also
determined. Thus at #=0, %n‘ is given on all boundaries and
is bounded at infinity and- therefore, % ()07:}, ©0) can be
obtained as the solution to a Neumann problem. We also know
from (15) that Y/ (¥3:1) , the free-surface elevation due to
the fluid motions associated with 4; , is given in linearized

theory by

y(x.},t)z_}i 2-c2) b (xop.t). (40)



Hence, from the initial values given in (39), éef(XID,},O)
and {ﬂ,” (x,o,},o) can also be found.

The time-dependent Green's function and use of Green's

theorem. The Green's function C7 (X'?'} i3 (e 71) in question
is required to be a solution of Laplace's equation in the

variables ¥, 7. { with a singularity like 1/F =

. -4
= [(x=¥)*+(§-1)4(3-2)*] * at (x#.3) but otherwise harmonic

in %, 7. s in the region }[<o , 140 - Thus

G(x33is.024)= Vet Hcpz:5.0.0:4) (1)

where H(X¢3,%.7.2,%) is harmonic everywhere in the domain
of definition. We shall suppose that & is a symmetric function

of 7 satisfying the following boundary and initial conditions:

Z-andr) G(Xi%00:4)+ 96 =0 (42a)

c;ﬂ,(z;_z;f)IB =0 or o 67 =0, (42b)
N—>-oo

G(X;%02,0)=0, Gulxi$p2:0)=0, (42c) ‘

G =0, G =0(F) a Roo, (429
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where K= [(X“ ¥)+ (}"?)z]yz ) and

2 _ p) b)
32 2 M(E) 55 + M + M5y

A method of construction of such Green's function can be found
either in Stoker [1957, pp. 188-191] or in Wehausen and
Laitone [1960, pp. 491-495]. 1t is a property of this Green's

function that

G(x;$;t)=6G(f;x;+) (43)

where X= (¥%3) and %= (?'7’,?) is a point on the boundary
of the fluid region considered.

With Green's function described above we may proceed now
to set up an integral equation for the function % . To achieve
this goal we start, in the usual fashion, with applying Green's
theorem to the Green's function (G and to %t in the fluid
region bounded by the undisturbed free surface F , the re-
ference surface S, , the bottom B (if any), and a large
sphere L of radius 4 centered at the origin of the trans-
lating reference frame. Note that only parts of F , B and
Ll will serve as bounding surfaces and we shall call these

parts F', B’ and f1'. Then

b, (xit) = 4;f,-,// { Gxitit-t)f, (%)~ Py Gv}' 4, a4

F1So+ 8440/
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where the normal vector is taken to be exterior to the fluid
region considered. The surface integral over /)  vanishes as
the sphere /0 extends to infinity because of the boundedness
of {f,, and’ %t and the behavior of G at < . The integral
over B’ also vanishes since both (ﬁy and &, are zero on f3

After letting 44— < , (44) then becomes

G (230) = a1 {6 Ct03 4y s.00.0)- 0,6, g

—fﬁ//fGZK;ii{-T)%tv(i,'f)-%téy}cls, (45)
Se

Interchanging t with T in (45) and observing the fact
that G (X;%; t-7)= G(X:%; - t) , let us now integrate

both sides of (45) with respect to T from 0 to # . Then

we have

47 G (xit)- 47 G (x;0)

=[2;/TF///6(£;§,0,?;1‘—T) %T,/(f,o,?;r)— 4/01, 67 } J; c/;

t[enff{6tet= b (1) 46, ] ds

. (46)
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We may proceed further with (46) by making use of the
boundary conditions as follows. From (42a) we have now, on

the undisturbed free-surface £ ,

Gy (5503, 4-1) = =4[ (Fr-c-0F) G (x5 5,004-0)] @)
where

5;76(-)-('2 / 1‘—1’) = (71-(51'-. /‘1“‘7'):‘527-" 6(..’.‘/?;7‘—‘[)

is the derivative of & with respect to its seventh variable.

With further use of the free-surface boundary condition for

the potential function ¢ , it is not difficult to verify that

the following identity holds for £ = (%2.7) on F .
\;((5(5 ’ ?,O‘. )}‘- "[:--[) (f‘lf‘/ (E/Or‘/, T) - %.’.t’.;// (?
= 26 pY )]+ W [DE (2itonit-T)] |
) r e . _ D - ', . . - ‘
-4 & {4{(;.4,2.1)[cm+c(f 1.')]5?_0(7(3‘.'?:0'?:1’ r)}
222 |
‘7, OT J% 1 % (‘E’é’ZIT)[C(T)(DG)]} \ (48)
+ j;zL G(,5,7,7) 53— {C(T) DG - [3cmcon] H06G) +

+[C(x1-C 1) (26 )+ c)cii-n)-c) )—)?— (7)(7)} +
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sl i
-¢) (06)} |
- 4% G o m[c @D6)]} + + §, (or9fetngg)

g,

where

DY (2rt) = (s5-caids) v (11.4)

and

DG (it 47)= (—-cr+—r)?g)6(_,-u

With the use of the identity (48), the integral over the

undisturbed free surface F in. (46) now. becomes

_ )
I, =-[[{6[D¥(sro]+ Y [DG@isor 4)] | deds
F

| .fj//{;;(*s,o, ;,o){[cwwcm];% DIG(!!??!"'T#)}J;?JI .
F .

..é. Sé, (ﬁ(?'?'?-‘” fczo) }5(5;:;"’,:).?;%)} ij +




I
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4 -?L/:{T//% (f,o,?,—[);%{C(T)Dzé(z;flo’zif'f)_
F

~ 3¢+ ct-0] & (D) +[E-¢ 40 (D6)+
+emfct-n-co) & (p6) | 4543 -
+ :?L/,,fhff. AL IR /’2 c0D’6 (%03 4-7)+
| 0 + C(T)[C('L?TZC@’T)J-;—?- (DG )- i) (DG)} J§
_jiL/oZT ;ﬁ G, (503,7) [ €0 DG (51027 +7) | 4

. AUTF//Q&(?'O/C T){C({'T)éa'_gG(X;f’o'?/'*-r)}c{fdf,}

where
. A = [2 2 X - :
DG (Xi5.08;0) = (55-c%) G (xi%ari0)

and

-D‘G(i/?'o’f" t) = (327-‘ -czﬁj%)(;()_(;s,o,;/f) .

In deriving (49) we have made use of the condition (42c),
namely, 6(3 ; 3/ 0, K;O) =0, Gf- -)i}f,ff,‘ 0)=0 . It follows

from this condition that
DG (xi50,2;0) = Gs(%,%,03,0)-ClaG, (X :302;0)=0 .

Note also that in obtaining (49), Gauss's theorem for the plane
‘region has been used. Since the undisturbed free surface F
may be considered as being bounded inwardly by [, , the contour

around the intersection of S, with F , and outwardly by [
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at infinity, one of the integrals, for example, becomes

[/"aaf { ﬁg (£,93,7)[c(n DG] } s dy

] ?f" ¢.Gos0) [ D6 dy

where fL is oriented couterclockwise, and the integral aroﬁnd
[= vanishes because of the behavior of & and the boundedness
of Q& at infinity. The other contour integrals appearing in
(49) are obtained in a similar fashion.

We shall next proceed with the integral over S. in (46)
by making use of the boundary condition of the function %

on §, . Let us first introduce the following notations. Let

Cy, t*=y/, 2,3,
€y = (50a)

_6_715-3)()_( ) k=45, 6,

(50b)
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ﬂ.(li'{ VX[§4X\_/,(5;1‘)]}, k=123,

(50c)
n. (%) { Vx| (Et3xX) > y,,o;:ﬁ]}, t=4.5¢,
where |
Vo(xit) = V (cex +4, (x;n)
and
X=X, =4, =% ;%=8 ., %=6., %=6 . (504)

Tﬁén the vector fﬂ defined in (30) can be writfen as

Alx,t) = X (t)+ (8,8,,8)% X

A_Z, X () €4 (%) . (51)

\

Thus (37), the boundary condition for % on §, , can now be

written in the following form:

£ . - ‘. .
% 5;75)15 = % Plog (%) X, (h fg_é(x;f),%(*) . (52)

Taking the time derivative of (52), we have
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%, (Xit) . = g Nag(%) %ﬁ)v‘g fi(x.:t) X (H) +

-]

where

Z; (x;4) = Dh(x4)/3F -

The condition (53) is now to be substituted into the: integrand

of the integral over S, in (46). If this is done, we have then

[jf//}(é(a;z;{--c) ggw(z/.f) _ %T 67,} Js
S,

= [ 4= [543 ngte) %01+ 2 taim) e+
S

+2 (211 g (o) } ds
> (54)

- /;ff//(ﬁ (2i7) Gup (2757 4-1) ds

[ 402596, (512,01 ds - [ (4162212509 ds
S, , s

=:'I§a .




-

Note that (54) and (49) together equal the right-hand side of

2342

(46).
Define the operator 0( as follows:

1{4}}(55*) Z 47 4’,(5;*)+//{”,(ii+)6v(5f§f0) ds +
So
+/DZT//%(ZIT)G-,¢(¥;§;%-T) ds
So

-4 [ sl Dot o
F

~[3cr)+ 0] 25 (06) + [¢)- ¢0)] (DG )+
+C(‘C)[C({‘T)"C('C)]%(Dg)}Jfalf > (55)

~

[ //4,? (5.017) [Ct0ds G (5201 1-0)) dg s

- jL//cﬁTsﬁy gb(f¢9? T){ZCV%)I)G;(X 5,03, 4- T)+
Crem[cmtzcnn)2 (DG) c(T)(pg)}Jz

+=;/Dzr§é ?ig. (30%,7T) {C’H)DG(&?'D'!; *-T)} d3 ’

With this definition of d( , the following integral

equation for ge can be obtained from (46), (49) and (54)
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-

L{4 Yxit) = a7 @ (x:0) +S//% (£:0) 6, (X% 4) ds
—F//{é’ [DY (x03,0] » [Dé(.&;f,o.r;+)]}</$c/f
* g [corew] {/(ﬁ(f,o, £,0)js 6 (x5 801 +)} el \ (569
—;Lcw)yi (2020 D6(xi5.03:4) | 3y

7 ¢ .
+/ J—r//é (2 %:4-7) {kz Mg (1) X ) +
So N

¢ . 4 ﬂf '
+g ﬁt(EIT) X, () T éZ' /;k(é,r)qk(r)}c/s

P
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IV. Motions of a Ship with Steady Average Forward Speed.

So far our development has been.perfectly general in the.
sense that no restriction is imposed upon the average forward
speed. Henceforth we shall, however, assume that c = const.,
i.e., the average forward speed of the ship is a steady one.

As a consequence of this assumption we have now 9’ 4’( )

ﬁ,(X) ,and W =V(X) | i.e., they become 1ndependeﬁt
of time. 'Thus the only time-dependent functions are the Green}s
function G (X; § ;7) , the unsteady velocity pdté_ntial %(5; t)
and the various displacements (%) . The integral operator
defined in (55) and the integral equation (56) now become,

respectively,

5
114 }()_w) = 47 ?ﬁ(ﬂfﬁ+//é;(z,-+)g7,(g,-g;o)c/s
+/ JT//Q(E,T)GW(- 35 4-7) ds

;/41//4;(;0,;1)2?{73 G(x:%0.1:4-7) -
-44(26) ]c/fd’r
(

—c/ofz-f//%?(f,o,rr)f% G

__,/415[7 éﬂ(foz-r){ZD (X 50,0/4-1) +
[,
+3C?§ (DG)} dy

+§—1ij/{ (ﬁs(f'”'?'ﬂ {-—Dé (it O'I;{_t)} ‘s

- . > (57)
X; %07, %-r)}J‘zq'g

)
~
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and

of{%}(-’fi” = 47 (x;0) +//§f(§i0)6’,(£;§;z‘)a/s
| 4
-F//{G [P V(5 xi0) ]+ Y [ DG (x; ?’,a,y,-f)]} 4/'£c/§

| .,L%C //%(i@?;@{% DG(Xis0%; 1‘)} c/}"c/;
F

> (58)
- ?{é & (5.01,0) {JD(-;'(z;s’,o,r;%)} J§ |
.f/ZT //G(A’;E;-[—T){i //lak(i)o.{é(‘r) +
S e .
+ % A, (£) OQ(T)} ds
/

We see that integrals over the undisturbed free-surface
F are involved in the expressions on both sides of the
equality in (58). The behavior of Green's function G at
infinity of our problem makes these integrals converge e&en
though the domain of integration F actually‘extends to in-
finity. 1In case of zero.average forward speed, i.e., c = 0,
all the integrals over [ and around [ in the definition of
the integral operator Qf disappear. Hence equation (58)

in this particular case can be made to yield an integral
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equation for a function defined only on the reference surface

S, by letting the singular point X = ('\";l,}) converge to a

point of the surface S, . However, with non-zero average

forward speed, we shall inevitably deal with an integral

operator involving both surfaces S, and £ .

Therefore, a

considerably greater difficulty should be anticipated in

solving an integral equation obtained from (58).

The following identity may be established from (57):

[of (x: f)/ L{G, ) (x:4)

* //4”,(270) Gop(272i4) ds
S,

//(f( %03, O)Q?»ZP G(Xi%0.%;4)—
—492‘('D6) }c/f‘c/r

— C//%%ia&o}f%@(ﬁ; £0% ;f)} dedy
F

_?c ﬁw %(;,0,;,0){2 DG +3 Cz%;(%)} dt

> (59)

-f?—&/é % (?,o,r,o){DG(ﬁ;?,aI;zL)}J(.J

From (59) and (56) we find that <%t must satisfy
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{0 (50 = - //féf[pw-z;,o)]

4\, [Z D6 tori0)] e de
+?CF//4, (f,o,r,o)j% {ng(l;?,as,f)‘zg% (DG); ds d

te /{/%(30&0) e G(isoxit) ) dedy
_}f_z#o Q?(f,a,r,o) {DG(_)_(;-f,O,r;f)}Jr > (60)

+? ﬁp(ﬁ(ﬁ,ar, o)szé(ﬁif,O/f;%)-r 3C%(96)‘
-3 (26) } 4
é . 6
+J6@izi0) {2 Mur) &+ 2 1 (1% ) ds
S

+ [ fJGuteis )] E Nt #3400 &yt
/ y

It would be desirable to establish the uniqueness of
solution of the integral equations (58) and (60) and of

equations to appear later which are of the same form, namely,

Li¢) =4

That is, we hsould like to prove that 6([90} =0 implies
that (= 0. Although this can be established for c¢ = 0,

we have not been able to prove it for c¢ # 0. However, it

seems very likely that this is so and we shall assume hence-
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forth that it can be established.

From the physical situation we are considering here and
from the linearity of the problem, it seems to be clear that
the unsteady part of the velocity potential has the following

constitution:
' qe - 4; * <?; i é% J

where 4} R 4@ R aﬁd 4; represent, respectively, fluid
motions due to a) forced oscillation of the body, b) the
incoming waves and c) ;he diffracted waves. In order to
consider a general situation, we do not wish to assume that
the body starts oscillating froﬁ a state of rest relative to
Oxyj,at the initial instant =0 ; on the other hand, it is
desirable to do so for the convenience of the type of de-
composition which we shall consider in the next chapter. As

a poésible approach to solving'such a dilemma, we shall assume
that the vélocity potential 4} may be further divided as

follows:

[/F'—'%Co‘/'/-’f ,

where g&odescribes the fluid motion which would take place

as a result of only the. given motion of the body at the initial
instant and 4},:represents the fluid motion due to the
oscillation of a body which has started from a state of rest

and has achieved the given initial motion of the body instantly



. .
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at t=o0 . Hence ?Fo and %‘/ , satisfy, respectively, the

following boundary conditions:

(/}an(l;o)lsp= 40’“(5;0),3,,' %Dn(x;t)Iso =0 fc;r t>o0;

and

fo/h()—“O)/sa: 0, (fFM({;%))SD = %”(X;HIS, for 7>0.

For convenience, let us henceforth write

éﬂ: = QF/ * ¢w , (61)
where Qw = éfo +¢I +4pD-

The two functions (/F' and QN for 7>0 are then defined,

respectively, by the following equations:

0_{{%:/}(5i‘l‘)=Z§T//G(£(;'_$;{—r) %W(E;T) ds

= / t/‘r/ G (ﬁ)fi{-‘t‘) {kZi' /70,2('_5.)&# (1)+

So

; .
‘fg ﬁ,&(f) (1) } ds (62)
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and

X{(fw}(ﬂ*}: 474{(5:0) +//4’,(§:0)5-,/(Z;§;+) ds

,//{ GIDY (zro)]+ Y [DG(x:%0x; z‘)]}‘/‘?‘ls‘

> (63)
+27f /Q,(fv ?0){ DG(x;%07%; I‘)}Jﬁ
F
jg—yﬁ(f(ww)fbé}( %,07;4)) 4 J

(ﬁ-, -, and ?W , respectively, satisfy the following initial

and boundary conditions:
G, (x;0)=0,  rpu(xop 0)=0, (64a)
QFIH(Z;O)/SO =0, (64b)

P (5;%)’50 = 4”,,,(5;7,‘)/50
=Z Ny (%) 5<g(+)+é ho(x) (4 (64c)

for £>0,
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Pw(x:0) = ¢ (x;0), (65a)

%/f(xf 0.%) 0) = %f (x.0.4,0), (65b)

40“4 ()_(;c))’So
é . 6
PANCENORP h (x)%4(0), (65¢)

=y

%vn (570)

i

Se

i

for t>o0 . (65d)

I
o

Q%Vn (5; 7L)ls

Thus, Q%V describes that unsteady part of fluid motion which
would take place with the given initial conditions and a body
fixed relative to the translating reference frame.

Lastly, let us state in the following an important
property of the integral operator defined in (57): Let ﬁ(f)
and ‘1%(!:%) be any integrable functions and 5{ be the in-

tegral operator defined in (57); then

j {ZZH/}(H)%L(:\:;{—H)} =‘[2:5(0l) o/)'(/'%} (i(,' 7./-44) C/H . (66)

To prove this, let the following substitutions be made

in (57):




e

“lly=

: t
G (cit) = [ B (i t-wdu

G (50 = [ p FE ) du, ere.

Then from (57) we hav.e
¢ {/Df@(u)ﬂzf(&;f—u) Ju} = 4#[%(“)#(2_(;1‘-(4)5{(4
t //Js/oi’“/@(“)V(E;%—u) G (x:%:0)
So

+ZZT//</S/:M%(L«)’L//(£; T-u) Gop(2i5i4-7)

;/d’[ //JfJI/ du/\?(u)y'(?a T; T—u)D? EDG
2 [D6(x i 207:4-7]

—C/O.ZT//GI?‘/?[TC/"%(“)% (307, T_L(){)—gé(&;?a;‘;%-'r)}
_?ZZT?{ /du/a’(u)’lf(for -r—u){z])5+3c)§,(pc7}

+ %}-Z/Dﬁ/r# JY/JMﬁ(H)% (f,o,r,T—u){DG(ﬁ;?'O'Y;’r-T)}

w——
—
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/a’uﬂ(u) 47 (% 4- u)+/4u/(w//”¢(s f-u)G, (% 5:0)ds
+/</T/ c/u/f(u)///b/(s: T Gy (X1 1) ds

j/f/'f c/t(/,?(ﬂ)// %(g 0(,'[—14)9${_D G(X 30,0,4-T) -
(.Dél }c/ﬁ /I

[t ol
° F
$if o e ofov oo

+£/D z Lt o
7/ T{JM,@(H)% 1//’?($,0,§;T.L..)}’pc,(x;f,o,r,-,z_-[)} J( '
J
‘Note that in obtaining the last expression the integral
_l;h/HW) has been moved outside of the surface- and contour-
integral signs. This operation is justified since the domains
of integration §, , F and /, are independent of the parameters
T and Y . Recall the following formula from analysis, some-
times called -Dirichlet's formula: If %Yt,u) is continuous

in the domain O T <1 , 0O u=z } , then

/JT/JH 7[(7,”) /d“ ffT 7/‘(‘“%)
/ u/ d~' £ (T u, u)
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' /
where we have put T Z T-d,

With the use of this formula, the last expression becomes

/c/u,?(u/ 47 - y(zs f-u) +/du/0(u)//’17&(-,f-u) X;%;0) ds

+/Ju (u)/ c/-c//lf(“? ') Gop (2 ‘?:%—u—r’)c/g

_.§_/°JLL/?(H) JT//V(S 0. ‘(,1)75 {.-D 6(..,5,0‘; i- u—--[)_
- 455 (26) | d5 dg

"
—C/oJu/J(u)/ JT/#(,J,T T) [7(X 50,3 4-u- T)}ffgcrl;
__/Ju/{?(u)/- ﬁb Lf(fOI T){ +3C;%(Dr‘,)}<[§

- u

z t
5 [npin] e § w3 )
+
_ /o"“/@(“’ Y} (242w

which completes the proof of the proposition.
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V. Decomposition of the Velocity Potential 9}/_

Recall that in (62) we wrote down an integral equation to

be satisfied by 9%1 which can also be written as

NGy f e - >é'/°< (ﬂ//mé(s)é(x £:4-7) ds

#=1

%,Z/ HT)///( ) G(xit4-7)ds  (67a)

Let us next consider in the following two boundary-value
problemé. Suppose that Fs’ and Q&f’are two potential
functions which, in addition to conditions similar to those
satisfied by the potential function 9@ on the undisturbed

free-surface F, on the bottom B and at infinity (i.e., those

stated in (35), (36), and (38) or (38a)),satisfy the following

initial and boundary conditions:
) ( (f) ,
& (xi0) =0, ey (x02,0)=0, L7012 ; (67b)

Nog(x) & ()  foxr 1207 (67¢)

M

)
. (L‘HLD =

=
1]

v .(z) _é ; .
Gein (i(f*)ls = g Ai(ﬁ)“k(“ for 170. (674)
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By precisely the same analysis used in deriving (58), the

integral equation for the function Q’ , we may obtain the

following two equations satisfied by q%u, and FT»’

respectively:

IWF(,"}(X Z dx “ﬁ(ﬁ//ﬂ,,,,(vé/!;z: ¢-vjds, (67e)
S
and
21 ot . ‘
J{ QF/L }()_(,‘f')=kzé' /aJT OQ(T)// {:k(f)é/(i( ' ¥ ;f—T)C{S_ (§7.f)
So 1

Since:the operator cl is linear, adding (67e) and (67f) together

gives the equation

{éfm * (ﬂm}(i‘w k--l(h u\/é(f//// (s)G(x:%;4- r)a’s

(67g)

+§/JT og,(ﬂ///( )G (x: 834 T)c/S

”

-

If, as we have assumed, integral equations of the form
have unique solutions, then we can conclude that

@)

éﬂ = gﬂr/ —f Ii . (67h)
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a)
@)
Define the two functions 9(} and 3(; to be the

solutions of the following integral equations, respectively:

oﬂka} (x;t) = // h,ﬁfﬁ)é(z\’fiff)cls, (68a)
So

b= b2, -, ¢,
and

J{X:'} (Xi4) =//f1£(5)6(5:2;+) ds | (68b)
> R =12,--.6.

With the assumption of the uniqueness of the solutions of the
)
equations (6&a) and (68b) it can be shown easily that *Q and

@)
)(; satisfy, respectively, the following conditions:

()
K (5’+)ls = N, (%) for 170, (69a)
and |
@)
oap (Xi) ,S = lfk(i‘) , for T >0, (69b)
k=124,

Besides, they satisfy also the same free-surface condition,
conditions on the bottom and at infinity, as those of %

We now claim that the following decompositions of the
potentiallfunctions 4%f”and F;” satisfy, respectively, the

integral equations (67e) and (67f):
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) ¢ st )
., (x-,f):g[ Xy lr) Ky (25 t-1) dT (70a)

~and

- () .. ¢ '[', @)
G (x:4) g/ &, (0 ¢, (x:t-1)dT (700)

To verify this statement, let us apply the operator <I to both

sides of, say, (70a). Then we have

X{ F;”}(i;f) =2 { {r/ofa-ik('t)c)(/fu(zﬂ—r)c/s}

%

= %/o%ik(ﬂ J‘{Xiw}(ﬁ:{-r) dT

r ¥ / ~,
= % Jté(ﬁ (T)//Hoﬁ(f)ﬁ (XI'EI'/'T)JS’
o 5,

where we have made use of the property of cZ stated in (66) and

equation (68a). From (67h), (70a), and (70b) it is clear now

that the function Q;, has the following decomposition:

-

-t—,, ()
%/(57” = gf/ 0(1{(1)9(,,( (2, t-7)dT

0

} (70¢)

6 t . @)
+Z O(ﬁ(T) ‘)(ﬁ (-’X;*‘T) C/T.
k=1 4, J
We now show that the decomposition (70c) toegether with
the boundary conditions (69a), (69b) and those satisfied by

m )
A(; and J(% on the undisturbed free surface, the bottom,
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and at infinity in fact is essentially that of Cummins (1962)

as it was later modified by Ogilvie (1964). Henceforth,

reference will be made to Ogilvie's (1964) paper.

After integrating by parts, the decomposition (70c) takes

the form
é - (] [ [¢3
Gy (x:t) = kZ Wﬁ(ﬂxﬁ(,(i‘i*o) + 12 Xy (1) ¢, (X:+0)
=/ =1

EYIR

¢ 7 ) . 4 * @) r
+ g/m, (Xit-T) & (1) dT +ﬁZ/Jq (X; 4-1)o, ) dT

é . ) & 2
- 2 K, (000, (x:¢) -2 AOPANECTESN

(71)

On the other hand, Ogilvie introduced two sets of functions

and proposed the following decomposition:

6 . p n
Go(xit) = 22 XA, (x) + 2 oG8 o (X)

,
+ZA//%M((£;'/'—T)O-</{(T)JT
+Z/*-)(2ﬁ(5;f-r)o<k(m/r.

4= Yo

> (72)

Thus, the decomposition (71) differs from that of Ogilvie

in ‘only inessential ways. Instead of starting with initial

data at *t =o , Ogilvie's decomposition starts from a state of

resE at7f;=—ﬂo. In fact, the functions 77%k(5) s /Eéi(l),
,;?(1,( Xit) | and ;kzﬁ(—/\:;i—) can be identified, in that
order, with c){k(”(ﬁ;—fo) R )(:)(5;7‘0), )'(ﬁ_(;)_)fzf) and
J(%iﬂ(lif) , respectively. If this is done, then according

to the conditions imposed upon the functions ‘%éﬁ.(ﬁ) and
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. o ' a) ,
j{;‘ﬁ (—)i; 1") by Ogilvie:-, our present functions J'Cﬁ and JQ‘”

- must satisfy the followi’.ﬁg conditions:
) l @ |
Xﬁ (x,a,j,/+0) =0 , Xi‘(xfol}/+0)=o on [ (73a)

th
&K (X +0)

@)
= M4 (2), X, (£;+0)15 = lfk(é); (73b)

Se

3 3V W) 74

(§?'C7x’) Ky (x0pit)+ 73(/:;; =0, 4=12; (73¢)
) | 2) .
'ttn(i(I'?L)ISD: o, Q'an (i("*)JS‘OJ - (73d)
a (z) |

w (Xito) =0, 0 (X;t0)=0 ; (73e)

a)

Q] @ , ()
it (X.’D'}:*O)=—;Ld\(f<} ) JQH(X’O'}'M):’?JQ;- (73£)

Let us show in the following that these conditions are
indeed satisfied. We see that (73b) and (73c) are already
satisfied, for they are the same as those conditions originally
satisfied by 3(;0) and 3(2” in (69a) through (69c). The
conditions (73d) follow immediately from (69a) and (69b) since
both K& and A, are independent of time here. In order to
verify (73a), we need the equations to be satisfied by J(;)(55+Q)
and <k2a)(5;'+0) . Théy may be obtained from (68a) and (68b)

by setting 7#=+0 . Thus from (68a), (68b), and from the
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operator d{ ‘defined in (57) we have

AT X (x; +o)+//)( (£:+0) G (x:1:0)ds = //nak(ﬁ) 2:0)ds,
(74a)

47 d %5 40)+ //JQ (5;t0) G (%5 % O)c/S = /%4(5)5(* £:0)ds.

(74Db)

Recall that in (42b) and (43) we had G(Xi%03,0)=0 and
G(x:3it)= G(j;g;f); so that, for Z(z(x,o,})'we have

G (x0p;%, 72.7;0)= G(f,'zr;x,o,};o)

i
<

(75)

for all f,f T - But then also

Gy(xopi5.y1:0) =Gy =Gy =0 for X on f.(79)

" . Hence

V(La};ﬁz;”ﬂzzﬁwéf+ qu7+/n3é§=CW (77)

Therefore, for X=(x0,2) on F , the equations for )ﬂ:?ﬁ;+0)
and J{Zn(g;+0) ~, i.e., (74a) and (74b) reduce to
q (2 o ]

3(* (x,a,};.,o) = and JQ (x0.2;+0)=0 . Thus (73a) is also
satisfied. There remain the last two conditions to be verified,
namely, (73e) and (73f). For this purpose, we need equations
. : VLG : @)

to be satisfied by <k;;(g;+0) and JQ,(&;+0) . They may be

obtained by differentiating both sides of the equations (68a)

and (68b) with respect to # and the identity (59). For




-
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instance, the equation for J(H is obtained as follows:

' ®

LK) (xi4) = S//not(z)éf(x;z; #) ds
- Z/Jq("(z 110) Goy (X535 %) ds
+ ? IZ/?}Q("(f,o,r, +o)%€ {DZG(K:‘?%/' =452 (06) ) de d;
e fligtcor. 356G o0} dr s

+

<ol

NN
?é Ki (r05.40) {2 %6 +3¢8 (96)] d¢

_ ?9& J(k(;' (1.0.%,40) {DG (x:5,0754) ) dy |

o
But we have just shown that J¢; (%00, +0)=0 (see also (73a)).

Hence the last equation simplifies to

¥ 2it) = [, Gexg;60ds
So

-//J(k(/)(g;.,o) Goy (X355 t) ds > (78)
S

+C //)Q;’(f,o, ¥i+0) }*}% G(Kff'o'ﬁf)} ds Iz
F -

Similarly, for )(k(;_) we have
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d{}(ﬁ} (2;¢) = //f*(z)ét(z;f_;f)cls.
_ S,

X500 Gup a1 1) 4 &
Ss

+CF//J(£(7Z'(?,0,‘(,+0) g% é(—)i/'f.lo'?'} f)} JFJI.J

For 7 =+0, since & (x:%0.7:0)= Gt(_)ii"¥'77(,'0)=0,
(78) and (79) reduce to

4TI, (x:0) //G‘Q(Z(f;wo)év(iiﬁ"@ ds=0,  (80)
. So

and

47 (£:40)+ [ dir (3310) G (x5%:0)ds = 0. (81)
So

Obviously, 3(:; (xi+0)=0  and J(f; (x,+0)=0 are

solutions of (80) and (81l), respectively. That they are also

the only solutions is shown in Appendix II of Wehausen (1965).
The last éondition of (73), i.e., (73f), follows easily

from the free-surface boundary condition. Since the free-

surface condition holds for all 7 , at f=+40 , in particular,

we have

()

W @ @)
J(ﬁff (X'a'j"+0)— Zcmfx +)(kxx + j'}('k} =0

)
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ay

where f=/ 2 and % =126 . vBut for 1=+0 , we have
W

thx (x.03,+0)=0 and J(*Q:x (x.0}3,+0) =0 which follow

immediately from (73e) and (73a), respectively. Hence, from

the free-surface condition we have

)

W |
J(fiff (x0,3.+0) = - ?‘}‘2} , A=r12; k=12 ¢.
@
Thus " and s satisfy all the conditions (73a)
- through (73f).
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VI. The Forces and Moménts Acting on the Ship Hull.

In the following we shall first derive expressions for
the forces and moments actingIOn the ship hull in terms Of the
steady and unsteady velocity potential, Qo and 47_. The
various..types of decomposition which were made. previously. for
the potential Q@ will then be substituted for - 4@

In principle, the only correct way of calculating the
fofces and moments acting on the ship hull is to integrate the
pressure around the actuél wetted surface. However, by an
approach similar to that used in obtaining the linearized
boundary condition on the hull-fluid interface, it is found
that one may, in practice; integrate the pressure around the
steady reference surface S, provided a proper correction is
made.

The‘presént calculation of forces and moments is similar
to that of Appendix A of Ogilvie (1964) in the following
senses: a) the same assumption is made about the wall-
sidedness of the ship hull in the vicinity of the equilibrium
water line where the undisturbed free-surface intersects with
the undisturbed ship hull; b) the same criterion is used in
discarding terms of higher order. An effort will also be made
to préserve‘the‘same use of notation so that any cross
reference between the present work and that of Ogilvie (1964)
may be easily made. | |

To begin with, we shall consider simultaneously the body

reference frame 0??}\ and the steadily translating
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reference frame CJXJ},. Toward the end, however, only the
Ox }J - system will be needed.

As before, let S: /E(?' 77)=0 , in the body reference
frame ¢6r5; , describe the actual ship surface which is below
the equilibrium water line. Then the equation /E (X'}:J—)=0
in the steadily translating reference frame Oxyp describes
the réference surface S, which coincides exactly with §
when the latter is in its undisturbed position. Note that
both S and S, are defined by the same function ﬁ\ but in
two different reference frames.

For convenience, we shall define the following term:

a point Qo is the 'image point' of a point Q& on the ship
surface S if the coordinates of Q. in the O¥y} -frame
have precisely the same values as those of ( 1in the 59?;
frame. Thus Q coincides precisely with Q, when S coincides
with S, . Suppose that [l is the unit inward normal to the

—

ship surface S and

- A D A

N: (*3)

W

ﬂ'_.é\,\' = /E:,: (y’?'i)/dﬁ‘fﬁﬁ )
Ak = 12,3.

If /o 1is the unit inward normal to S, , then due to the

way S, is related to S we have

no;(X'J,}) = _/_7o'§.- = /Z::‘ (X':J'})//HE:*E )

J,fe=/-2..3.
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Thus ii; and /,; are.in faét given by the same function.

| Hence if Q= S has the coordinates (a.b.c) in the <5?j§

" frame and (), % S,. _is.the image point of Q i.e., Q@ has
the same coordinates (é,b,c) but in a different reference

frame, Ox;}h , then, clearly,

hi (8) = N (q) = Filabo) JEE, | (82)

‘ ‘ ‘ A.,'k=/42z3.
The force on the ship hull is given by

‘ _g_]=////ﬂ/_7a’s, (83)
S,

~
and the moment with respect to the point O , the origin of

-~ A

the body reference frame axg} is given by
W= [+ X ds e
S

where X/ = X \_’3* ?é\z + 3: é; .is the position vector of a point
§=(x37) on the ship hull with reference to the body
reference frame 6?%@ and S, is the actual wetted surface
of the ship hull. |

| In order to use the resﬁlts of the presént calculation of
force éhd momeﬁt to write down eduations of'ﬁotion, we shall
resolve ﬁhe foréé and moment along the steadily tranélating

reference frame Ox;.} . For convenience, let us consider
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first the decomposition of the force vector along. From (§3)

we have

1]
§
~os
—

'Mw
=)
I)(b)

qgh
o
w

* //71’ {’7; +&ipi O fAL-}c/S (85)

where S,, = SUS,, and S, =S,-6S.

Note that in obtaining (85) we have used the result from (5),

namely, &:-& = 0i; +& 6,
Let Q,s S, be the image point of {$ S . . Suppose that
{»s S, has the coordinates (*'%.}) in the OXjy} -frame;
then Q has the same coordinates (X/¢,3) in the 5f‘f}\-frame.
The coordinates of Q s S in the 0*3} -frame are then given

according to the transformation (3) as Q= (X:# X, Eist 8; Xt ) .
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We shall asgume that the function f’ can be expanded into

' Taylor's series as follows:

f(xHAX+6:3-8,1, 1+1+6%-80,3, 243+ 0,4-8,%, 1)
= P00+ [ Xy + Epun On¥e] o (Xi0:3.%) + O(d)

which means precisely that

P Q= P (Qit) + [ Xy +E4my B X, 14, (@it)+0CL). (s6)

Thus from (86) and (82) we may write the integrand of (85)

as follows:

{000+ 5. 8, 7@ (0 )

= { ha;‘ (Qo) +ij" &ﬁ /7.,;(@0)} //,A(Qo;*) * > (87)

+ /704' (Q,) [Xll * Epmn Om Xn ] ﬁl(@""{) * ﬁ(fé) '

Although the expression obtained on the right-hand side of the
equality in (87) is a more complicated one, it has the advan-
tage of being evaluated on a prescribed reference surface Se
which is stationary with respect to the OX;}-frame. It

follows immediately from (87) that
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)/ ’7; (@) + &4 B4 B (@)} (8:4) s
s .

= //{/70;-(@0) + 5}.1’.‘, @*ﬁa;}¢(@oif) ds | & (88)
So .

] ngter[5at om0 ] b, ity s+ 06e3),
S | J

o

which shows how an integral over the surface S may be
approximated by integrals over the stationary (relative to

the Oxy}mframe) reference surface S, .

We need next an appropriate expression for 'f .

From
Bernoulli's equation we have |
P, (xit) “L’/é tddt EL(V@)Z# const.,
where we let
é(li*)=-CX+Q(1)+Q(z;+). . - (89)
Assuming =0 , VP> —-C and @, >0 at X =+

b
}=0 , we have
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pOoas) =38 P8, (xit)-1 (VE)' + 4 pet

=PI tre Gt feh - OO
SPOVRVE) - 0TR - f v

P

We shall follow the usual practice of linearized theory of
discarding the last two quadratic terms in (90). However,
one should realize that omission of the term -ZL f(V{ﬂc)z may
not be proper for the case of a deeply submerged body. Let

us then write
plt) = <121 feh -

—f{%(a;%)-c%ﬂtr/(ﬂ.wﬁ}. (91)

This is now to be substituted into (88) in place offﬁ . If

this is done, then we have from (88) and (91) that

//%(42#) ;fq;.(ae)ﬂuzg.h @4@(4)} ds
\)

= pf {aslng e snal- gnl g+ 6,5-6.31-
So

gl -cdx) G (xit) + 747G ] (92

+C [(noj +E/k4 @ﬁ ﬁa,‘_) %k + ﬂp;i (Xu+ Ehmn @mX'i)%X),(]}C/S'

-



-
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} | - In (92) we have discarded terms like 2}%". @k No.: [40”_
-CcY, V%'V{ﬁ,], etc., which are of the order Olsl).
Next, let us consider the integral over S, in (85).
Similar to the relationship between S, and § , let So be
' the aréa on the undisturbed position of the ship h.ull which
has the éame size and form as §; . The area Sey can be
determined from S, in the same manner as finding the point
Qa on S, after a point Q on S 1is assigned. The free-
surface elevation ; = \//(X} 7) can bé expressed in terms of

the ship coordinate system 65??;{ as follows:

A

§+1,16%-03 = Y(R+x+6,3-67, 3+2,+6,3-62 )

= YEI )+ [ x460.3-4,F 1V (33 1)+ [2+6.3-6R] V(R 2. )+
+ h.o.t.,
where we have used the transformation (3) aﬁd expanded the
function Y into Taylor's series. Thus from the last expression

we have

-

T=Y((®24+)-1.-6%+6F +[%+83-67]% +

+[},+&,i-(92§]Y}+ h.o.t. o (933)

—"’—? % %0t). J

Thus, in the O%47 system S, is defined as that part of the

hull surface £ (% 7-)=0 bounded by the equilibrium water

N

line 7 =0 and the free-surface elevation dfl\= Y (R} t)
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according o (93a). Hence, in the 0*;}-system, Soi is
obtained as that part of the reference surface /E\(X';l,ﬂt).= o

bounded by the undisturbed free-surface Z:=0 and the wavy

surface

Y

\

¥ (x2t)

= Y 0t)- t-0x+8 3+ [x+83-6,7] Y

o (93b)
+[3.+6.7-6,3]Y; + h.o.t.

The relationship (87) permits us, as in (88),; to replace the

integral over S, Dby integrals over S, as follows:

[ hrpar § 3 o
:/j -/4(@,-%) f P (R)H &y, 8, /11.(62)} ds

= // /J (Qﬂ;"f) { /),,J-(Qo)-f gj_k‘_‘_ 8, /704-(620)3 Je |

e . (94)
-+ ﬂ na}-(Qo)[X/,( + élmm&;,., X“] %I(Q“‘f) C{S -+ 0 (EP/!) ]

Sog

For simplicity, let us further assume that the ship hull
is wall-sided near the equilibrium water line so that the
integrals over So¢ in (94) can be written as the following

iterated integrals. The first integral on the right-hand side

of the equality in (94) then becomes
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S/{ P Cit) [Ny Cod)+ 84400, 0; | s

¥ (x4.4)

— /rc{d {/)Dj(x,o,})-l' Ejfﬂ'@ﬁ /70;}[ f’“’?&’” ‘/47

”~

-_—./ da {/;104-(»0,;,)+£ﬂ;0,4/la..-}[?‘lo?? t e, (xnd)-

—f[(%_ —c;%)lﬁ (2:¢)+ V%(ﬁ)‘VQ]}J},_

where Fo is. the contour where the undisturbed free-surface

L (95)

P

intersects with the reference surface S, , and Y 1is given

by (93b). Also, in (95) we have used the expression for 75
from (91) and set /79}' (x3.3)= /77.(,\/, 2:4) due to the wall-
sidedness of the ship hull near the equilibrium waterline.
The integration with respect to the variable J in the last

expression of (95) may be carried out as follows:

v
[ 16+ petuten)- Pl ) 4 xean+ 76741} dy
= L PV ert) # FCY P (o pT}) -

-

- f?[(%’cj%)%(x/u/?},f)] + 0(2:’) \ (96a)

where 05/1-4,/14’51_

Since

YOL )= V) 4y, (i) = 5§, 000)- $6-) Plxog.),
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we have from (93b) that

Y(x3t)= S0, (v02)- 7 (Fr-c )G (vast) - 1.~ 0,x4 63

| | - (96b)
+ ?C[X +0,1-84]%, (x02)+ —a-;—[},m,;z- &zx]%} * 0w ).

We may further expand those functions, q%*(X7“YC}) ,
%r (x,/u’\?, } -[—) , and %‘ (X//w/);, & 2"), et‘c;‘, into Taylor's series
as follows: "

b (xpu¥ 3) = Glxoy) M ?(ff&*) %x;(_*’o'})ﬁ‘g@f), (96c)
G, (7. 3,1) = G+ (x03,1) +/q'?(x,},f)-{e,z(x,o,w)wtO(sﬁ), \

etc.
Substituting (96c) and (96b) into (96a) we have

L33+ 02 - HlGr-cF)h st 7474 ] )

= -7 fe b tap|G-eg) ftoo )] + 00,

This result is now to be substituted back into the last

"expression of (95). Then we have

I #ersn [y (204 E5acbgni ) s

”1

_ ],,C/ h. 20, (X(,})?(_}L (F-c2 )Q(x,o,}f)}ch + 008,
(97)
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Following the same. procedure as.above, one may obtain the

- following result. from the second integral in (94):

// h,;' (X'?'}) [X'l + élmnlgmxn] %’l (X,;,},{-) C/S

Soy
= - IDC/ ”loj(x""}) %x("'o'}) [ 148, x-8,3] c[& + 0(6,3) . (98)

The appropriate first- order expression for the force
component is now obtained by adding together (98), (97), and
(92) as follows:

= fs//{-?'z[noj'+£}'/“‘ @'é /79;]_ ?nov{[?"*&-?x—@';]—
~hoi [Gr-<30) % Corp ) + VHo(o22)- V]
+ C[(no}'f'aiﬁ,‘ @k”o,,‘) %X + r)aj(x,( 7L££,,,,1 0,”)(")%)01]} dS> '(99)

-fc/r loj (%0:2) %x(x'o';)fj;i (f-c) @ (vo},4)+
11t G863 |da,

A’I}./é = /I Z, 3.

'Note that (99) corresponds to the expreseion for X;_on P- 9§
,of Ogilvie (1964) except that 'Xi in (99) is now resolved
vdlrectly along the steadlly translatlng reference frame Oxyp .
Eor interpretation of terms appearlng in (99) and remarks about
fhe cdtfeCtion term, i.e., the contour integral afound [, in
(Q9)3'we ﬁefer to Ogilvie's (1964) discussion following imme-

N . . . / .
diately his expression for 'Xj . However, we call attention
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Her_e to the. fact that the ,cor.reé.tion term is of order not lower
than & &, and vanishes entirely when the bo‘dy is completely
submerged. |

We may proceed in the same manner to obtain an expression
for the moment components 77/¢ .  As before, let () be a typical

point on S and ¢, be its image point on S, . Define

M

/{oz_A_/XQD:

P /70;43 € o (100)

where X = X& + § €&+ 2€ is the position vector of the
point Qo e S, in the Oxo‘l}-frameg Then the position vector

of the image point Q ¢ $ in the 0}\7\; -frame is given by

X = x &+ ) g, + p2 é} . Let us define also that

e

100)

A 3 A ’ :
L =Xxn=2n,¢€. (101)
= |

Thus from (101), (100) and the fact that Q» ¢ S, is the image

point of § ¢S we may again establish the relationship

Nis2 (&) = Nla 43 (Qo) , =123, | (102)

We shall again decompose the moment acting on the ship hull

about the origin of the ship coordinate system Oxy"j, directly

along the steadily translating frame OX'“, as follows:




-70-

l
§
~~
P~y
W
Y
&
~
)("b
0
q-‘\./
—
N
N

il
%
N\
~—
S
&
+
™
LAY
N~
2
~
hy
—_———
)

= ////’" {hjﬁn‘ &4 Oy /"-LJ ds +///,'ﬁ {ﬁﬂﬁzﬂ;@k /1,3}43,

o Si (103)
Agd k=123,

Note that (103)‘is éséentially the same expression as (85)

except that the index ? is now replaced by j+ 3. Wilth the

relationsﬁip'established in_ (102), namely, /,'}443,(5?) = /}oj-*;i (q.)

where Qé $ and &,¢ S, , the same analysis used in obtaining

the final expression for XJ' hqids also for WZ; . For

convenience let us write 7/[1. = X;‘.;_g ; then (103) will lead to

an expfé'ssion precisely the same as (99) except that Xz- R

/7,}- , and /70A- are now replaced by Xj+3 s _/704-,«3 , and
o sias Thus from (103) we have

-

Lisa=f // { -4l ’7;:';43 & 1a B Noies |- ?’i?/"‘j'+3[ 3% Ox-8,3]-
S,

= hojes [(Frc%) 4 (270) V-7 ] 4 L (104)
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ot c [ (ﬁojt? +€;‘k4‘ (9* _/704'4».3) %x ™ /70;“*3 (X"(+E»€‘h7n (9/'7 Xn) %"JL ]} L/S

- Pe [ Auges (x0) By lo03) | 4 (Fome5s) G 0.3.) +
[,
+4, 16, %8¢ }a//\l

A, ;', k=12 3.

Note that from (100) we ha_ve

/70}43 (*171 y)= 54'-;44 Xk Hoi (x4.3), A k=1,2,3. (105)

Since /L;(Xdu})=/%;(XwZ})lJ#123,follows from the wall-sidedness
of the ship hull,and in the region S, we have [¢] < /§>(X4,tﬂ ,
the difference between /7”}'*3 (x.3.3) and /7,J'+3 (x0.})is of order

Es of &, - Thus the contour integral in (104) is the only
contribution to the first-order expression for the moment com-
ponent from the correction term, i.e., the integral over Soy
which is similar to (94). Furthermdre, the wall-sidedness of
the ship hull iﬁlﬁlies that Moz (x0.3)= 0 for (x4.3)s Se;, SO
_thét- /k4(x’a;) = ﬁog(x’“§7 = 0. Thus the contour iﬁtégral
in (104) vanishes except for f.= 2. Hence, it contributes to

the yawing moment alone.
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Lastly let us substitute into the expressions (92) and

(104) the various types of decomposition we made for %’,

namely,

s o,
b xit) = G (xit) + 2 | St xi-0) dn
(106)

JA {-. ‘ 12)
PN AT ARV

Note that to be consistent with the use of the notation & for
the displacements, we should also write " @ﬁ = 0Q+3', ﬁ=? 1,2,3,"
and 7,= &, - _

With the substitution for 91 from (106) and use of the
boundary condition /7,,}- (x) = )(:}n (x; +o) for X = S, from
(69a), the equations (99) and (104) lead to the same‘equations'

in the following form:

‘ y ‘ _ 6 '
2. M & (#) = 2 by (1) = 2 Cryylt)-

X = X, -

oo (107)

‘ e |
-Z [ Ly iz - L[ 5o My (o de Xy,
where - fﬁ:i =1, 2,..., 6,
a“ , ' :
X,}-osf//)(jn (5;1&0)?—?}-!— C%X(ﬁ)}cls,. (108a)
S, :

Sk = f//}(;.:'(z;w) )(,:}(i’;fo) ds (108b)
So '
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bie = f//)(}::(z;w)'a(f)(z;w) ds, ~ (108c)
S, .
-L}km -7 //x Y (510 {BE)K, (5300 + 0K} s
_ ' - (1084)
/”C/c)( (x03 +o)¢ (xo}){(% 2x)4\(§ (xa}t)}cl
Mio(t) = P // K (£170) {(-;‘zrcff)«)dz’(x;ﬂ + VY- VJ(:'} s |
S ' ' : r (108e)
-+ -;}Lfc4 J(;;’ (X:»O,},-fo)%x (x,o,}){ézzz-Cj?;))(:)(x,o,},f)}d4’J
e oL sl e
S h (108£)

+ fc/k“'(w}w) (e euw] i} L

where 12 Xy [fz €4 (x)] = <7 *0:x-6,},
€ ) = 71,2, 3
e, . | & k=123,

‘_e_f’.?x_)_.(l %=4i$/é/ o
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0 0 0o 0 X X\
0 o o0 X% 0 =X,
0 o) o) "Xzo ‘Xaa O |
., ‘ (108g)
Cjk =| 0. 0 0] o) -Xeo X 50
lo} 0 o Xceo -0 -Xa0
0 0 0 -Xso X4 O ,
/ /”
S = Gt G | o)
_ w )
= Pl o) G- cd)uteit)e o7, s
S | (1081)

J'ﬁ/x (03.90) 00,1 | o= F)uleat
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It may be worth mentioning again that lij given by (107)
represents the force and moment (abbut 53 the ofigin of the ship
coordinate system) acting on the instantaneous position of the
ship. One can see from the definitions for the various quan-
tities given in (108a) through (108i) that 21;0 represents
steadyrforce and moment components, ‘/bgk is a constant
depending only on ship geometry, bﬂ and Cik are constants
depending upon the ship geometry and the constant average
'forwafd speed, and Ljé and ﬁﬂf are functions of time, geometry
and the constant average forward speed. None of these quantities
depends upon the unsteady oscillatory motion of the ship. (We
note that ka , Llf , /L/M, and Cj;é do not have the same
meanings here as in Ogilvie's paper.) 2% includes: a) the
static buoyancy and wave resistance of the ship moving with a
constant forward speed in its equilibrium position; b) the total
hydrostatic and hydrodynamic force and moment acting on the
ship due to its own motion; and c) the force and momént resulting
from the action of the incident and,diffracted waves upon the
ship. _

We remark in passing that the quantities C}; defined by
(108g) arise only if the force and moment véctors are resolved
along the.steadily translating reference frame OX;} . Thus,
if we set C%szo for.j.é =1, 2, ..., 6, then the expression
(107) will give the components of force and moment resolved

along the ship coordinate system CVQ?; .
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VII. The Equations of Motion.

Without the loss of generality, we shall suppose that the
center of gravity of the ship is located at a point with the
coordinates ( O , Zs’ O ) referred to the ship coordinate
system Ziiji,. . We shall also assume that the propeller
thrust T 1is directed parallel to .5§‘ along a line of
action which is A+ units below the center of gravity and
lies in the (?/?)-plane.

In writing'down the equations of motion for the ship the
following -result of Euler in rigid-body dynamics may be used:
The motion of a rigid body can be determined by freatiﬁg
separately the motion of the center of gravity and the rotational
motion about the center of gravity. Moreover, the motion of
the center of gravity can be determined és the motion of a
particle of the total mass /#7 of the body subjected to the .
total‘fbfce F applied to the body, and the rotational motion
of the body about its center of gravity can be determined as
if this point were fixed and the body were subject to the
moment of the applied force about this point. If we use the
steadily translating cobrdinate system C%xy} as our.inertial
reference frame, then the motion of the center of gravity is

given by

mx, = F,

/H?:':'/C2>
ne = F

- (109)

A
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.where F = F &+ fz 1 2 & is the total external force

acting on the ship. and )?, 'y j , and 2, are the three com-

'
ponents of the rectilinear. acceleration of the center of
gravity in the Ox -,Og-, and.O}-directions,_respeCtively. In
our present generalized notation we may.write these quantities
as X, = &, , §, = %, , and ¢ = &, . The motion of the

ship about the center of gravity is, then determined by Euler's

equations of motion:

~
I,¢0— I, . -1, 4&3 + W, [_Lz W, - I, 0, +1; ]' ,
- &)3[—1,26&), +IZ OL)Z —123 Lk)3] = 7//6/ )
—'I/z (';)l +Iz “.Jz - Izgd)j +CL)3 [ I, wl —I/z Wy — I/.}(A)J,]—
. » (110)
~w, [0 L0, 1 L = My |
1w, - Iy d)z 11 4)3 +¢, ["I/zw/ t1, 402 - I, (’“)3]'
N
0 [ 1,00, - 1,00, - 1,0, | = Wlgg
where o ")
- DA A A : '
275 = 7//6/ & + 7//52 & +7//63 & | (111)

is the moment of the total external force _/L: about the center

of gravity and

W o= W g+, e +w & (112)




(.—— f

is the angular velocity of the ship as a rotating rigid body.

In order to define the quantities L. , let us introduce

the function /’}(55'73:) , the density of the material of the

ship. Then evidently

m= [l p(x23)dv
4
and the I,,-;- s are given bj

I =/ {G-ar5Ydv, 1= [fn{ewldv,
v v

-

Lo el i e, I = JRRGdy, [ O
"4 v

I23 =///f;(3‘\—?\5)3: JV; 131 =///}D.SEX\JV;
v 14

where V is the total volume of the ship, including the part
above the waterplane.

Let us now show that the quantities &J); may be identi-
fied, to the first order of approximation, with the quantities.
é,; which we have introduced in the previous chapters. It is
a wéll-known result in the kinematics of a rotating reference

frame that

d _é\a' /C/ZL = E,;oié_ w,ﬁ _EJ , (114)
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for an arbitrary rotational motion of the coordinate system
5;?3;, . .On the other hand, for small angular. displacements

of the coordinate system C)?ﬁ; we have the relationships

Ei= LitE4 0, + O(en)
and _

N\

i = _81 + E‘}'ka’&( é,,- + 0 (&;)

10

which can be derived easily from the transformation (4).

Thué wé have
JEfdt = E44 6 & 10(n) = £ Gl 8,,.6.8.]406i)
= 3':.-“ @k C:/ + J(5,,) | (115).

where we have assumed that the ®'s are also of the order

é, . Hence from (114) and (115) we have

Wy = (9/< U 0(6,;) = 0.<;€+3 _'LO(E':) ’

ﬁ=/:413.

(116)

Let us now write the equations of motion for the center
of gravity of the ship according to (109). To obtain the
total external force acting on the ship, we must add to Xj

.the other forces acting on the ship, for'example, the gravity
force, prOpeiler thrust, forces due to windvgusts and arti;
ficial restr#ints, etc.' Thus thé7éqdétioné for the ship-

- corresponding to (109) may be written as

m 0(;- (#) = Xj (1) + 7;,-(f) - /777'3\2}, ‘*G;,I- (¢), $=12,3, (117)
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where 7} represents the three components of the propeller
thrust resolved along the Ox -, 07-, and. Q} -directions,
respectively, and by our assumption about the line of action

of the propeller thrust we have

To= 1.2 =(T8)¢=T(4;%646) s

F=102 3,

Cy(f) represents all other external forces besides the force
Xy(f), the propeller thrust 7} , and the gravity force
—/ugé#. The expression (117) can be further put into the

following form if (107) is substituted for X 4)

f
A : ¢ . 6
é (/7?/',-4 +/L"g'k) Xy (t) +é A/.ko(ﬂ(,«) -+ﬁ;’ Cjk 0<1<(f)

-~

2

A ' r .
13 | Rl Lyt dr 2 [ S My (dr b i)

= X. 7. — e . : - .‘
Xpo + T (1) = g cﬁ; + G (H) = Xy (1)

$° )
;'= /s 2’ 31
where
m 0 0 C o o T
. |0 b 0 ' =
Mg = " © 0o To=| T (120)
0 0 m 0 0 -TXs
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WemshallﬁnextwwfiteQEuler{smeQuations.for‘thg rotational

-motion.of the ship about .its center of gravity according to

(110). Let l;, bé,the‘veqtor[directed from the center of

‘gravity of the ship to a point . { on the wetted éhip hull. :

Then the moment about the center of gravity of the ship due

to the pressure distribution around the wetted ship hull is :

given by |
J#Exnds. | o
Sw

But by the assumption about the location of the center of

gravity we have

N, oA A 121
P (121)

where, as before,‘ X is the position vector of the point

on a ship hull. Hence
//7é Exn dv = //79_)_?’)(17 ds = 1 ////L € xh1 ds
Sw S Sw
= {XJ-“ t & g, X}_é; . (122)

G na,

where the repeated iﬁdices-imply summation and
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~

Clearly, j%+3, andw.X} are, respectively, the components of
the moment (about O ) and the force .due to the pressure dis-
" tribution when those two vectors are resolved along .the ship
coordinate system. As it was remarked at the end of the last

-~ -\

‘chapter that the _2;43/5 and the -Xj{3 may. still be given
by the expression (107) if we put Cj; =0, k=1, 2,;;.; 6
in (108g). This is, in fact, equivalent to replacing C#ﬁ‘
by C%% in the expression (107). Let us dgnote by 7g#ywthev
three components of the moment about the center of gravity due
to the propeller thrust ]j and by Gfa(+)'that due to all the
other external forces besides the pressure distribution and
the thrust. Then, by neglecting higher-order terms, we may
write the equations corresponding to (110) in the following
form:

o ~ 3

é s
’% /}'-]}-ﬂ'ﬁ @(ﬁ(fl = X‘,l't? (+) + y@ Z

=1

5(7‘ "m.2 X\,n (+)

+ 7;.+36t)—+ GJ.” (+), f=02 3.

Or, with the use of (107) this last equation may be further

written in a form. parallel to (119):
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) - -~

¢ 2
5, (/77}-”,,{, * Miusig * ¥, 3 15/,,,4 EACE
¢ 3 . &
+'g‘(é;l’+3:ﬁ * ;5 %, éj’mz Ah:/;) «A({-) +/; ( +3 4 /,_C,Z sz mﬁ)o((ﬁ
¢ /L 3 ‘ '
+Z /Cxﬁ (T){ L'J'ﬁ,;e (t-7)+ 76”2_ Ejmz Lmk(+-f)} dt
/a o(ﬁ(T) { %ﬂ k(‘f T) + yg Z ]mz MH( (IL’T)} JT

~ 3 ,
( é’+3’ -+ :[GZ EJ“")'X'HO) + 70,-'-4-3 (IL)_'L Gj-}j(*)

—(XN/-»‘.S * 75 ,,P,—, Cg““ A”"");
where
©c o o I L, -I,
/;%.Mz © o o -1, I, -Is $=123,
O O O ’Ixs ‘123 I3 /f<=/:2,"':é,‘
and

=(0, o, 7'-,(7)} 4 =123,

Note that (119) and (123) together form a set of six
integro- d1fferent1a1 equatlons for O(ﬁh‘) s k= 1, 2,...:, 6.
Such equations are generally solved by method of the Lapiabe

transforms. Thus the information about the pbsition and

J
(123)
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Qelocity bf Both'shipeahd fluid at the initial instant f==é‘;’
. e., & (o) , o’(%(b)?, Y(x4,0) , and Y;(x3,0), together
with the integral equations for %L(i,{j, J(:YL,fJ , -and
)( "(x; f) ', ‘and the above set: of integro-different1a1
equatlons uniquely determine the behavior of both sh1p and |

fluid at later 1nstants of time, provided one grants

~ uniqueness of solution of the integral equations.
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