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Abstract

The motion of a freely floating or submerged body, which

is moving with a constant average forward speed and oscillating

arbitrarily in any of the six degrees of freedom, is formulated

as an initial-value problem. The seaway is assumed to be

arbitrary. The body is assumed to be 'smooth', but no symmetry

of the body is required. The fundamental assumption is that

both the free-surface disturbance due to forward motion of the

body and the oscillations are small enough so that the problem

may be linearized. By an approach similar to that of Wehausen

(1965), it is shown how the present treatment of the problem

leads also to Ogilvie's (1965) modified results of Cummins'

(1962) decomposition of the velocity potential for the case of

an oscillating body with a constant average forward speed. The

linearized equations of motion of the body are then derived as

a set of six integro-differential equations. Existence and

uniqueness theorems are not established either for the boundary-

value problem or for the integral equation which is constructed.



. Introduction

In the study of the problem of ship motions, it is desirable

to be able to write down equations of motion which are valid

whatever the nature of the seaway. This means that the validity

of these equations should not require the forcing functions to

depend sinusoidally upon time. Cummins (1962) made an important

advance toward this goal by considering a certain decomposition

of the velocity potential resulting from 'forced motion' with

no waves present. In the present work we shall consider an

initial-value problem for ship motions with forward velocity

and show how Cummins' (1962) results can also be derived from

this treatment of the problem.

We shall consider the motion of a freely floating or sub-

merged body which is moving with a constant forward speed and

oscillating arbitrarily (not necessarily periodically) in any

of the six degrees of freedom. The body is supposed to have

zero average translational and angular velocity in the oscilla-

tory motion in some appropriate sense of the word 'average'.

Essentially all that this means is that there is a definite

surface moving forward at a given speed such that the oscillatory

motion can be referred to this surface with only small error.

The precise meaning will be explained in Chapter II.

The position and velocity of both body and the free surface

are assumed to be known at some fixed instant of time which we

shall take to be t = O. Besides, we allow the possible presence



of waves which may diffract upon the body and cause it to move.

The incident waves are assumed to be 'known'. Otherwise, the

nature of the seaway is supposed to be arbitrary. Our funda-

mental assumption is that the problem can be linearized, in

the sense that the oscillations are small and that the dis-

turbance of the free surface due to the forward motion of body

is also small. In order to achieve the last requirement real-

istically, the body may be, for example, either thin slender,

flat, or deeply submerged. Aside from this, we require only

thatthe form of the body be 'smooth'; no symmetry of the body

is assumed.

As usual, we shall assume the fluid to be incompressible

and inviscid and the motion of the fluid to be irrotational.

The analytical method which is used in the present work was first

introduced by Volterra (1934) for solution of certain initial-

value problems for water waves and was later extended by

Finkelstein (1957). Wehausen (1965) later showed how such ,a

technique can be modified to solve a class of problems in ship

motions and, in particular, how the decomposition of the velicity

potential of Cummins' type may be convedently made by this

treatment. The present work is an extension of that of Wehausen

(1965) to include forward motion.

For the purpose of the linearization of the boundary con-

ditions at both the free surface and the hull-fluid interface,

we keep two perturbation parameters in mind: Es , measuring

the smallness of the free-surface disturbance caused by the

forward motion, and Em , measuring the smallness of the



oscillatory motion. However, in order to have a development

which is simultaneously applicable to thin or slender ships,

and to deeply submerged bodies, we do not follow the traditional

scheme of linearization of introducing separate boundary-value

problems for each of the order Es , am , 4Em etc., respec-

tively. The boundary condition at the wetted hull is linearized

by means of a Taylor's series expansion of the potential function,

in which all the terms of orders Es , Em and 447 are kept.

The result is the condition which is also called the Timman-

Newman boundary condition. A somewhat different derivation of

this boundary condition is presented in Chapter II of the present

work so that additional insight into the nature of the derivation

may be gained. As to the free-surface boundary condition, terms

of order higher than EsEm are discarded, so that the traditional

homogeneous free-surface boundary condition is obtained. For the

justification and limitation of the applicability of such a

development, we refer to the discussions in the following papers:

Timman and Newman (1962), Newman (1965), and Ogilvie (1964).

The problem is first formulated for the general case of un-

steady average forward speed and its appropriate integral equation

for the velocity potential is obtained. However, in order that

the decomposition of the velocity potential for the 'forced

motion' may be conveniently made, it is necessary to assume the

average forward speed to be constant. Cummins' (1962) develop-

ment for the 'case of constant.forward speed was later modified

by Ogilvie (1965) in order that it should satisfy the Timman-
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Newman boundary condition. Hence we refer often to Ogilvie's

(1965) work, and effort is also made to preserve the same

notation whenever it is convenient to do so, so that cross

reference between the two may be easily made.

Uniqueness is not established either for the boundary-

value problem or for the integral equation which is constructed.

This may be shown in both senses if there is no forward motion.

It would be desirable to establish this in the present case

also. Furthermore, no existence theorems have been established

for solutions of the integral equations. Thus in a certain

sense the work is purely formal. However, if one is willing

to concede that both uniqueness and existence should be provable,

the final equations show the proper form of the linearized

equations of motion and the nature of their ingredients. In

particular, one should note that they are a set of six coupled

integro-differential equations. We have not attempted to find

any solution corresponding to a special geometry. This would

be a reasonable next step.
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II. Mathematical Formulation

Coordinate systems. It will be convenient to consider

simultaneously three right-handed Cartesian coordinate systems.

Let Og7, be fixed in space in such a way that 0x is

in the direction of the forward motion of the body; 4 is

directed oppositely to the force of gravity and the (g,

plane coincides with the undisturbed free surface. The coor-

dinate system OicIT will be taken to be fixed in the body in
"

such a way that when the body is at rest, the axis C) is
directed oppositely to the force of gravity with the center of

gravity of the body lying on the line of 1-axis, 02 towards/

the bow and 63, to the starboard; and when the body is at rest

the (x,)-p1ane coincides with the undisturbed free surface.

Finally, we introduce the coordinate system Oxlj, , moving

at a speed equal to the average forward speed of the body such

that when the body is at rest the two systems, Glxj and Oxin

coincide with each other. Hence the two systems, 57(77 and

Oxre are always parallel to each other; Ox coincides with

(3-g and the (x,3,)-plane coincides with the ,

In particular, if we assume that at the initial instant the

two systems °xis,. and 6,17i; coincide, then at any later

instant f we have

t-

= X + C (-0 T
0

= ' (1)
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where C(i) is the average translatory speed of the body.

In conformity with the assumption of the small oscillatory

motion of the body, we shall assume that the displacements of

the coordinate system OM. from 0x* are small.

Let (xi, /,,J) and (0,, 02., ) describe the linear

and angular displacements of from OxIGT, , where

X = (±) y, = (f)) ' 63(t). Thus they describe,

respectively, the surging, heaving, sway, rolling, yawing

and pitching motions of a ship. Note that at any instant f

the position of the origin 0 is given by ( X1,7, ,j) in the

0 x system.

Suppose that es, e.2. and fl are the three unit coordinate

vectors of the Ox a -frame and , and gi are those of the

6-frame. If .p is a point in the body with coordinates
^

(X , , j, ) and ( X , , ) when referred to the OfTS.- and the

Ox S, -frames, respectively, then, since CiP o_E - o ,

we have

+ri = (x.-x0f + .

Suppose that at an instant t the body frame 16-'q,3, has angular

displacements ( 9,) Oa, c93) relative to the 0A1.31 -frame.

Then, without assuming smallness of the angular displacements,

one can establish the following transformation between the two.

coordinate systems:
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)c x1 = ;\(.; +

In (3a) we have used the usual cartesian tensor notations and

the repeated indices imply summation. If we now solve (3)
^

for 2 , y. and and assume that )(1 , 11 and 31 have the

same order of smallness as4,/ az and 6S , then one may

discard terms of the higher order and obtain

(3a)

/1

o

0 o

cos°, -s.,116)1

sin 01 c-os 01

cos131

s7'192,

o s 0,

i 0

0 us 021

C.oS

c ; 93

0

-S%

cos 613

0

0

0

.;.sc

1

(2)

If we now assume that 0, , (32_ and 0, are all small enough

so that one may assume cos 6, a , s.;11 tsLi , etc., then (2)

simplifies to

X X, = 2 4 (92 j, - 49.3

= 03 -9J-
(3)

.- - = -+ 6, - 02
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x - 931-,

- 93 X + 01 3-1

= - 19, 7. 4 02 X )

or = ; x - 61 X*

(4)

(4a)

Note that the unit coordinate vector el , for example, has

the coordinate ( x , , ) = (1,0,0) in the 0 j. -frame. If

following result which will be useful later:

e . 13 - 612 .

Similarly one may further obtain that ez = A ..e.2-= I ,

e2.1.3% e3 =-9 , e3. g)12 = and e3..6= j .

Or in tensor notation we write this result as

(5)

we let

that X

E., =R
i ,

4rel-qt, then from (4) one can easily find

t -63 and ci = , where we have set Xi=

Hence A = 4E6)3) ee 92 .?" , from which one obtains the
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Geometrical description of the ship. The surface of the

body will be given at all instants in the body coordinate

system55-q-f, by the equation

(6)

()717.,t)1 (8)

By the transformation (4) this function can be written as

r(R,Y)",fl = = F

Thus t" ' ' ) = 0 and /7 (X' i)= 0 , respectively, describe

the same body surface at its instantaneous position in the body

frame and the translating frame 0)(1,3. Let us denote

this body surface by S . Note that with reference to the

Ox n -frame there is an imaginary surface S0 given by

So : 01 (7)

which is stationary with respect to the C) x13, -frame and coin-

cides exactly with the body surface S when the latter is in

its undisturbed position. This imaginary surface So will be

called the "reference" surface.

Description of the sea. The form of the free-surface OJT;

will be described either in the space reference frame

by the equation



-10-

or in the translating reference frame Ox by by the equation

= (8a)

where we let

= (x4itcebr, 4.4.) y (x,;, 7L-)

Potential functions and their preliminary decompositions.

As usual we shall assume the fluid to be heavy, incompressible,

and inviscid, and the flow to be irrotational, so that a

potential function may be defined. Let 00-(1 Hi 1) be the

potential function such that its gradient equals the velocity

vector of a fluid particle with respect to the space reference

frame 55-cy; . This velocity will be referred to as 'the

absolute' velocity of a fluid particle. We shall also write

ct6 =0(xifotcd-r,l,s,t)

The relative velocity of a fluid particle with respect to the

translating reference frame Oxn, then should be given by

V = 17 (C x 4 0()(1,-)) = C , ?,7 , ) (9)

Note that 12. = , =- 07 , etc., but 96, = cc°,

0 still gives the absolute velocity but is expressed in

terms of the variables of the Ox(lj, system.



In the subsequent development we shall suppose that the

resultant fluid motion of our problem is composed of the

superposition of two parts: 1) the disturbance due to the

translation of the body fixed in its undisturbed position with

the forward speed C(t) into otherwise undisturbed fluid region,

and 2) the fluid motion due to the oscillatory motion of the

body and the oncoming waves. Hence we shall write

0,,H, = (xil,s,i-) ?, (k,H,7L) (10)

where and 91 , respectively, represent the fluid motions

due to the first and the second parts mentioned above.

The linearized kinematic and dynamical boundary conditions

on the free surface. A systematic linearization of the math-

ematical expressions for the fact that the free surface is a

material surface and the assumption that the pressure every-

where on the free-surface is constant will lead, respectively,

to the following conditions:

(zI,f) (-'O,) =

and

()-i, 04, t) = 0. (12)

They are, respectively, the kinematic and dynamical boundary

conditions on the free-surface and are to be satisfied at the
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undisturbed free surface V. = 0 . Elimination of Y from (11)

and (12) gives

Ott (17, 0j, t) 53-/ = 0 on O. (13)

The relationships 0(7, 74,t) = , ()7' 71- ) 21: it))

cbr etc. and Ot give us easily the counterparts

of (11), (12), and (13) in the Oxn system as follows:

(-k.-c17-3\ck,j,t) - co;i(x,o,j.,t) = 0, (14)

(7- y(x,J.ct) (?-f- -c iv) (x, J-/-1) = 01 (15)

2 /

- (x00,3,,f) = 0

which are to be satisfied on the undisturbed free surface 7= 0 .

Linearization of the boundary condition at the hull-fluid

interface. The boundary condition at the hull-fluid interface,

like the case of the free-surface boundary condition, can be

formulated either in the space reference frame 0,77-j," or in

the translating reference frame Ox*. It will be convenient

in the future if we work here with the translating reference

frame oxvep .

Let us first work out an expression for the velocity of

(16)
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the ship hull relative to the translating reference frame Ox*

according to the transformation (3) and (5) valid for the

small-oscillations approximation. Let Q be a typical point

on the surface of the body with coordinates ( ks, (1,1) in the

body reference frame Orand (x, 1, in the 6)x3..-frame.

n, ^
Then the vectors X x + -t j = og and

..§.)2 -I- j, = Q are the position vectors of Q in

Ox and Oxwj,, respectively. It is easily verified from (5)

that

e., -+ ..1

Hence we may write

)?
ez e3

2 ft -F f_z 4 + (02Y- 037 ) t (03;C - 64) e2

4 ( A 61z e3

Let us define 5( = -+ e 2 -+ e3 then we have

X 4 (OH S22, 03) (18)

^
Obviously X defined above is not a position vector of the

point Q with reference to any of the two reference frames

considered here. We may now write

A +2' X + 2 4 (9.0612, &3 ) X X (19)

(17)

4
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The formula (19) gives immediately the velocity of the

point Q relative to the 0)013-frame as follows:

V (Qi+) = (q;i) = .1C1(t) (611, 62, &3) k (20)

where we take X 0 since the body is to be assumed rigid.

If the vector V in (20) is resolved along the 0)W-frame

we may then write

(Q; 4) = ;(1,z + g.k (20a)

Let M be the unit normal vector to the hull surface point-

ing into the body. Let M be resolved along both reference

frames so that

3 3

n n e,; = I (21)

Suppose that the function g given in (6) which describes the

body surface is so chosen that the inward normal is given by

the formula

"
(ro 1. 13.) --

where represents the partial derivative of the function

F with respect to its i-th variable. Then from (21) and (5)

we obtain easily that

(22)
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ni (2, == aj(;,y, ) E1

-14 61* -F:.; /I f,* E.J.it
(23)

The boundary condition on the body is

n r7(cx-fo) =n. v

i.e., the normal component of the fluid velocity at a point

Q on the body surface equals that of the surface. In component

form this can be written as

4 Cf,(x'7,1,t)]

= [1;1;,(il 1)-1. E,,11,(9j hit] Diu (24)

Note that in (24) variables of both coordinate systems

are involved. Transformation (3) can now be used in writing

9(x,
= (R-4 xitaj- St3i, 4 15135?- 6)4 I 3 4 L+Ai-t9z)i

Since the quantities X1,; and are small compared to the

quantities , it is reasonable to assume that the following

Taylor's series expansion for the potential function Ce; is

possible:
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(e.:(x = Lx,t+&en, (9, -I- - (25)

This is now to be substituted back into (24). One may at this

point introduce several perturbation parameters, for example,

say, E. measuring the smallness of the free-surface disturbance

due to forward motion and Em measuring the smallness of the

oscillatory motion. Then by following usual scheme of lineari-

zation one can deduce from (25) and (24) linearized conditions

for separate boundary-value problems of the orders e , Em and

EsEm , etc., respectively. However, the goal of the present

work will be better served by following a slightly different

approach. We shall not be so specific about the introduction

of the perturbation parameters but rather shall discard what-

ever terms of order 6 or 61 appear in (24), for they
i A

are clearly terms of the order E. (Terms of order ErEpt

will always be retained.) If this is done then we have, from

(24) and (25),

(Se, 7, 1) ,7,;(2, 4 E,;jA Si [Xt+Etottn Ornii

+elitsj

= FPin) U(1; + EA1 k 4RA
^

where the expression (22) has been used for a.: . If we now

drop all the circumflexes over the variables in the last ex-

pression, we have
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f.; (X1Y4) (x14/ t) & 1"A

C6r1^ f)A 61:

= (x S-){ Xi, + t9i A . (26)

Obviously, (26) is now a condition for the potential function

qto be satisfied at a point on the surface defined by the

equation F(x,"011j.) = 0 which is precisely the imaginary sur-

face So defined by (7).

Although certain physical interpretations of the implication

of (26) are possible, we shall not do this but rather refer to

the original paper of Timman and Newman (1962) and to the dis-

cussion on p. 39 of Ogilvie (1964). However, we should like

to remark here that the fact that (26) is to be satisfied at

an imaginary boundary So comes out naturally as the result

of linearization and the way 40 is expanded into Taylor's

series in (25). The question of whether S. represents the

mean position of the oscillating surface S or not is immaterial.

In fact, So here will seldom be the mean position of 5

since we are considering an arbitrary oscillatory motion of

a body in forward motion.

Let us now put q cp, in (26) and assume that

and its derivatives have the same order of magnitudeCR ,

as 01. or XI; . Hence, terms like E i dPik, and

P(// Ef,,,n 6,X ) - 1),4 are to be discarded. Then from (26)



so that X,.; = 0, S,.0, and 0, a 0 , 0 = co

condition we have

f,;(X,V,j.) (x)y,1-, c

-18-

we have

((,1,3)[(fO,,;(x,7,j.,t)+ (x4, },t)] 4 1611. f 90,,;

+ E,;{)(1.1 xii C E 1^ili

0*.

JA (x.7 p3- ) 4 E,;;.k XA1 (27)

Suppose that there is no oscillatory motion (i.e., we set Em=o),

) + E.:a * (9):

c EAiit kit

1,4 90,;

Then from the last

fx,,Y1+ -X1,111

Hence /le; C no, on S0: 014)= 0 where we have

written naA (Q.) = (Q for a E SO Or we write

)1

fl.V(cx) . (28)
is.

With this result another condition for 64 can now be obtained

from (27). Thus we have, from (27) and (28),
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Let us again write h(x4)for /E:At; and

rearrange terms in the last expression. Then we have

no 4 E C91:)<*1 + 110{-[xit-i-E.t,St,xj cfo,;,4

- E. AO (--cS.-1- .)
* .

For convenience let us introduce a vector A defined by

A A, 4 (OA, 93 ) X X

Or in component form, A = 4 610i From (30) we

have, then,

= 21(1 + (65,, biz )653) x

which is a vector evaluated at a point Q0 = (x14)on

Note that the difference between the vector given by (31) and

that of (20) is of the second order. Hence (31) may be re-

garded as the first-order approximation of the velocity vector

of a point Q on the actual body surface.

Condition (29) can be put into a compact form if the

following vector identity is used:

; A

t

7XL6xA]==(.. ..17)A.-(A.v).<\_4.A7.A-)d7A. (32)
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Let A (--cx4 co.) =-Cg.., +No, and A be as
defined by (30); then

VA =V.v(-cx4 =

X, (6,, 02,03) X }

k Si =

= 6-c(fit )Ix,;

= 6-64, ) E-0

C 4 ,9,i)LE ,/]

A (-6;4 4 c00,i

(y) = + (A,62,03)xXJ.77(c)(1)

= xi, + E,J.A191. Alt

3) (e\..v)A_ {[PY-cx-')]*[7[211 (6" 6)2, 61) )(



Note that 3) and 4) are precisely the same as the second and the

third term in the right-hand side of the equality in (29). Hence

with the use of the identity (32), (29) can now be written as

DA
a.7co 4 flo.7)(,

As was remarked before, to the first order approximation we

have DAA-ti = , the velocity of a point Q on the

instantaneous position of the hull surface relative to the

C)Xn-fraMe. We shall then rewrite (33) as

(A = (2i;f) -k (X) 8

f(2_(;4.))(Yo()-S.;i),
(34)

where (cx c0 ()Gy4,1)) , and

X =
)

Note that (34) is precisely the condition originally de-

rived by Timman and Newman (1962). It might be interesting to

note that in (34) an additional second term is needed in a

condition derived from the kinematic boundary condition on the

hull surface s . However, it should not be surprising that

this should be the case, since So , being an imaginary boundary,

is not a material surface. Therefore, even though
/°#'7

t--- Vp7

is the appropriate condition for a material surface, it need

not hold on S. , and, in fact, when a body is translating as

well as oscillating, it does not hold.

Finally, if the condition (34) is specialized to thin-,

-21-

A x7(-cx)} (33)
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flat- or slender-ship approximations, it is found that (34)

in fact represents a combination of several boundary conditions

for separate boundary-value problems. Moreover, in this case,

the additional second term contains terms of higher order in

perturbation parameters. Such terms should be discarded if a

strictly first-order expression of the boundary condition is

required. Nevertheless, the present form of the boundary

condition in (34) will be used in the present work because

there seems to be no harm in keeping some of these higher-

order terms, provided it is understood that the accuracy is

good only to the first-order approximation.
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III. Solution of the Initial-Value Problem by the Method of

Green's Function.

The initial-value problem. In the subsequent development

we shall need only the translating reference frame Oxn,.

Henceforth, the surface S.: PO/kn.= 0 will be restricted

to the part of the surface which is below /=o, i.e., S.

coincides with the wetted part of the hull surface when the

ship is in its undisturbed position. We shall be looking for

an unsteady velocity potential -t) satisfying the

following equations and boundary conditions:

) (f r.-- 0

on the undisturbed free surface y=0;

= (2.C:f)t V10 (21)vxA (21;1-)x V0(25.;-19 (37)
So 7

where 2.5 = (x, 4.) in S. , and V. 400(xl,kt is

already prescribed;

X I =
h (--

=0 < 0

(38)
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where B is the bottom. If the fluid is infinitely deep, the

last condition is replaced by

(x1,t)= . (38a)

In addition
' (At and their first derivatives are assumed

to be uniformly bounded at 00 .

The initial position and velocity of the ship are assumed

known. Moreover, at the initial instant both Y and \/;t on the

free surface are prescribed:

(Y4 0) r- (x3-)

Yit (63-0) = 12. (A,3-)

(39)

where and 41 are given functions of X and

From (39) and (14) we see that qiI(X)0,3.,0) is also

determined. Thus at 4=00, is given on all boundaries and

is bounded at infinity and therefore,9);(X,0) can be

obtained as the solution to a Neumann problem. We also know

from (15) that );('1-) , the free-surface elevation due to

the fluid motions associated with is given in linearized

theory by

)(x,j.,t).-_-!(-.1--c) 9't
(40)



Hence, from the initial values given in (39),
(14it

and ca,tt (x,o4,0) can also be found.

The time-dependent Green's function and use of Green's

theorem. The Green's function G //, z; ) in question

is required to be a solution of Laplace's equation in the

variables 1, 7, with a singularity like I/1 =
2-7-P2

= )24. (1-'04-fa--?)- at (x,y,(1..) but otherwise harmonic

in ?, in the region , zo Thus

(xl;g,/, ?;7L) = I/ (x ; ; -7) (41)

where/4(xl,J-, ,`/,?/-1) is harmonic everywhere in the domain

of definition. We shall suppose that G is a symmetric function

of I satisfying the following boundary and initial conditions:

)2co),Tr) 1, 0, ?; II) 4 0

-25-

or
Ii_co

(2-c ; 0,?; = o , Gt (s.; ?, 0)= 0

6'7 = = (R-3) as R Cb

o
7 '
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where I? ( X- T )24 (3,-nzr and

a_v r7,c.7)--)1 172 ?---?7

A method of construction of such Green's function can be found

either in Stoker [1957, pp. 188-1911 or in Wehausen and

Laitone [1960, pp. 491-4951. It is a property of this Green's

function that

os. ; , - (1) ; A (43)

where = (X374) and I =(7) is a point on the boundary

of the fluid region considered.

With Green's function described above we may proceed now

to set up an integral equation for the function col . To achieve

this goal we start, in the usual fashion, with applying Green's

theorem to the Green's function 6; and to in the fluid

region bounded by the undisturbed free surface F , the re-

ference surface So , the bottom 3 (if any), and a large

sphere fiL of radius Gt centered at the origin of the trans-

lating reference frame. Note that only parts of F ,B and

11- will serve as bounding surfaces and we shall call these

parts F', B' and _a'. Then

t4;4 G(, 1, i-T) c; I 31(44)

F't So+ 04AI
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where the normal vector is taken to be exterior to the fluid

region considered. The surface integral over ..1Z vanishes as

the sphere IL extends to infinity because of the boundedness

of qt, and and the behavior of at 00 The integral

over 8 also vanishes since both (ev and 6;-, are zero on 13 .

After letting G4---7 co , (44) then becomes

qit (2 *It) 1.-- 11 6; (2; //0,r; 0, (4,1 cif dr

tv(1;i) -11.}ds. (45)
s,

Interchanging t with 17 in (45) and observing the fact

that 6 (2.(;1;ir)=--- 6-; 01;1 ;1-- , let us now integrate

both sides of (45) with respect to T from 0 to f . Then

we have

471" ;o)

ft 8 r
d-r1116(0,r,-1--r);,7(to,?;T) 4671 dM

° F

-titST 11{6(1; ;ir) a/T-7/ (1' ; 7) c7.1,1 GIs
0 _a

F -t Iso
(46)



where

-28-

We may proceed further with (46) by making use of the

boundary conditions as follows. From (42a) we have now, on

the undisturbed free-surface F

2C? (2S ; 0, ; = - 1(2- -c (4- -r)

51
16-; /
) (21 51,0,r ;21-T)

Lay- (2_( ; :.-. (-V ; ; tf. _T)

is the derivative of G with respect to its seventh variable.

With further use of the free-surface boundary condition for

the potential function , it is not difficult to verify that

the following identity holds for 1 J'n on F

I(s, o, -t-T )(to,?, T)tAi

J'T (1,P, 7)] ÷ LI)67, ; to, ?; Tx]

HT (-1 T)EC(T)-+ C(4-7)7 ?,T1 ( ;

4 (D6 )j}

4 , 3, , "T) kic(,) 6 -[3 c(T)4 C(-r)7 5)-7106)4

tecr, - 7)J (b6- )+ C (T)LC(i-r)- C(Tij (7)6).}

(47)

(48)



[0(.1,0,? T)fzcer)(vG)-+ cer)Lc(-0-1-2coobi-06)

(T) (DG))]

_ 15),1 coit(1,o,?,-r)Le(T)C0)] (1,e),? T)ic(4-r) 4"),7

where

?,t) 5 (5).7--c 4)-4-) t)

and
; i; 4-- -0 - c (4--o -4) G- (is , ,

With the use of the identity (48), the integral over the

undisturbed free surface F in, (46) now, becomes

= -///61 1j) )1(v, r. a)] )11.1)(a; t13'r;i)ji cif 4

hoirto,r,o)Accom-c(4.)]-54f
DC(21413,r;f). ,h,iT

F

-29-

c (0) .p6 (A ; t;



where

and

4 IdT o, r, c(79 6(L( ;loan _

- [3 C(r ) C(- 7:-)] (.7)a)-f (7)- (4--o]()-p

4 C(T)LC
C(-1),1

4- (PG)) di dr

I dr q), # 0, r, r) 2- c(T) ;126 (4;1,0.r; 4---0
P.

-+ c (-r) [c (-LH 2C -03 ,a-f- (D6)- (-1-.) (D6)1

_ dr (.f) ,T)ler-C)-D4(2(;1'4?;+-7.)ci?

dr (1,01t, T)IC(i-T)1,-1

.D4 (zs_/

(57.-=) - c (0) ,5).-f-) Q (2_( , of ,

_ c ( X , r; i)j

In deriving (49) we have made use of the condition (42c),

namely, 6 ; 0, ; 0) o , (2c. ; 0). 0 . It follows

from this condition that

P6 Of r0,. /0) zr- 't(1-g,,o,;())c(0)(iT(2., ;1,4?;0)=c` -

Note also that in obtaining (49), Gauss's theorem for the plane

region has been used. Since the undisturbed free surface F

may be considered as being bounded inwardly by ro , the contour

around the intersection of 50 with /7 , and outwardly by /740

(49)



at infinity, one of the integrals, for example, becomes

Pi.I c91(1, 0, s cz(r) ;6] 1

(to, , T) Lc2 (-r) d
pc,

where r0is oriented counterclockwise, and the integral around

rac, vanishes because of the behavior of 4 and the boundedness

of q'
at infinity. The other contour integrals appearing in

if

(49) are obtained in a similar fashion.

We shall next proceed with the integral over S. in (46)

by making use of the boundary condition of the function

on . Let us first introduce the following notations. Let

nok =



where

and

xi, y 0/3 = c<4 =i9, c<s- = g 0=3 .(50d)

Then the vector A defined in (30) can be written as

-+ (Ns2, tt2,):,1/4- X

-_-_- :2 sot/.4 62 (a)
.h=1

Thus .(37), the boundary condition for on S. can now be

written in the following form2

91h (21;i)1 o4() 1- 44(x;t) (52)

x v.

(50c)

n. (25-) Vx (f1-3 )(X) Vo(r+d-}, =4,3, 6,

x ()Z;t))Vo

Alt =

Taking the time derivative of (52), we have

(51)



where

6-f,f

I
r"- I dr /I (-)-( lii-r

So

r aA(A) 14, t) 0.<4(t)

OS; ILO 74

4

C<4
t=1

(53)

The condition (53) is now to be substituted into the:: integrand

of the integral over S. in (46). If this is done, we have then

p i r
/C-7(1sil;i--r)c?(1)-0

0

C7-7,

tick (1 (.)7t (T) (1 -r) 0.1t (7) -t-

ik 7) ,,s(r) s

(54)

f,,+dr (1%-r) 4vi-(L'il; 71-T) ds
...I 0

1I (fi (I; 0) 4; (4 I ) <YE ((f/(EOL. ) 1.1 0) cis

so so



Note that (54) and (49) together equal the right-hand side of

(46).

Define the operator 0( as follows:

If r_

-f d-r (1;19 ( ; ; --r) dS

S,

lo+disQ), (1,0, 1, 01 -

C(T) c ] (DG) _7), )4.

4 C(T)LC (4-0-C (-01 3-:-,(D6)?dve4

ft

d rf,O, 1co-4 t.o,r; d
0 /7

- 4 I m4 (0 (v T) 12 C(r) D2 OS; r;

C(T)Lc (T) -r 2 C(i-T)j-h (4)- e(-r)(7)4)1sci?
rt r /_

61-1- p f (T, 0;z. -r) c260 .Dq ; --r)}.
I- ro

With this definition of O( , the following integral

equation for 41 can be obtained from (46), (49) and (54):

> (55)



(f,} (2-( ce-) 4-77 -+ 11,(1,-40) 6,(2K t) ds
so

° /i9)] YILDC7(_x,i T,,4)71c1dc.

C(0) (-,o, ,o)11)670._,or ;1.)
ro '

i-
-t r 116; (25 ; ; - 7.) nok(.1).3(-r)

k.,
So

6 k(T) A ( T) (71)
k k=1 .

-35-

(56)ic(0)-1- c(t)] j
; 79}
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IV. Motions of a Ship with Steady Average Forward Speed.

So far our development has beeniperfectly general in the

sense that no restriction is imposed upon the average forward

speed. Henceforth we shall, however, assume that c = const.,

i.e., the average forward speed of the ship is a steady one.

As a consequence of this assumption we have now 99. = 490w

4 A(21) , and _14 =14(A) , i.e., they become independent

of time.'Thus the only time-dependent functions are the Green's

function 6(A; , the unsteady, velocity potential 9,(A.;1)

and the various displacements a(i) . The integral operator

defined in (55) and the integral equation (56) now become,

respectively,

0-(iCe,)(2s;+) 47r(2--(;.0.-i-h,(-1;-/J-7,(A;1;o)ds
so

tif
//4

o 41711 Y;(1;T)674-(=1( ;
ds

S,

I:17110,0,3 {Dzc.,(A ; _

)

(1, 0, 1?-1- ; 1,0,z; -01cl?
F

-c--, d---c (to, ,T){2 3'67 (Z ;1,0,;-1---r)
t ro

IL.3C 69 )

2

LITI(1,0,i,--r) 136 (2 ;i-- )1el_?

(57)



and

c)Z (-X ; 471 (2c; -+ I (.1 ; GI, ; z9ds

I ; + [];16 (A; 4.d.c

(-F 0, K., 0) .P (1( ; so,i;

d-r §G (y. ; ; -r) no,(1)4(79
0

K

We see that integrals over the undisturbed free-surface

/7 are involved in the expressions on both sides of the

equality in (58). The behavior of Green's function 6; at

infinity of our problem makes these integrals converge even

though the domain of integration F actually extends to in-

finity. In case of zero average forward speed, i.e., c = 0,

all the integrals over F and around [1., in the definition of

the integral operator t disappear. Hence equation (58)

in this particular case can be made to yield an integral

(58)



-38-

equation for a function defined only on the reference surface

Sa by letting the singular point 2C= (x,,;) converge to a

point of the surface So . However, with non-zero average

forward speed, we shall inevitably deal with an integral

operator involving both surfaces So and f . Therefore, a

considerably greater difficulty should be anticipated in

solving an integral equation obtained from (58).

The following identity may be established from (57):

[pa -I-)1= 0( { clt) ;

4 I I (.1_ ;0) ; ds
so

co7,ff (-F,0,T,0)

44- (DG

c (f, G (2._( ; o, r ;

- in, 0, 0) { 2 .1) z 3C()}dç

(1,0,1-,0)1.DG(2s ;11-) dç4

From (59) and (56) we find that qt must satisfy

(59)



cztjq?±}(-)-(If) = 16t[D);(1, ,o)]

yi DG(z; 1,0.r J-031.4 cir.

-I-ll, f D26 ; 1,0,5, (V6)2 (1.F

c l'7(I,o0)1* G(;I,o,r;#)).elfcls
F

ro

(0, r, 0)1DaG (2<.; 1,0,r; -71)-+ 3C4-(16)

(36) I

; ,51) it 11o k(1) c.).ct(4) I. ocv 0*(00 G s

so
4

41 r 116
c

; , 2 i4A(I) C3:4 (T) -1 (1) s<i(d)ds.
6

S,

It would be desirable to establish the uniqueness of
solution of the integral equations (58) and (60) and of
equations to appear later which are of the same form, namely,

ctffl =1.
That is, we hsould like to prove that .1(f4P) = 0 implies

that 40= 0 . Although this can be established for c = 0,
we have not been able to prove it for c 0. However, it

seems very likely that this is so and we shall assume hence-

(60)
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forth that it can be established.

From the physical situation we are considering here and

from the linearity of the problem, it seems to be clear that

the unsteady part of the velocity potential has the following

constitution:

where fr , , and represent, respectively, fluid

motions due to a) forced oscillation of the body, b) the

incoming waves and c) the diffracted waves. In order to

consider a general situation, we do not wish to assume that

the body starts oscillating from a state of rest relative to

Ox*at the initial instant 11=0 ; on the other hand, it is

desirable to do so for the convenience of the type of de-

composition which we shall consider in the next chapter. As

a possible approach to solving such a dilemma, we shall assume

that the velocity potential CfF may be further divided as

follows:

where 9Fo describes the fluid motion which would take place

as a result of only the given motion of the body at the initial

instant and 9;ii represents the fluid motion due to the

oscillation of a body which has started from a state of rest

and has achieved the given initial motion of the body instantly



at 2L.--=0 . Hence 9F0 and qlri , satisfy, respectively, the

following boundary conditions:

and

Fc,p,(2..(;0)1 so

= 0)
So

01'{oF,

-41-

(x;)1- 49F01,1()HI so,

(x;f)1 It1

i+()= C/T116(gil;
0

E0

= 0

For convenience, let us henceforth write

where qW 0

The twotwo functions q and o for 11,0 are then defined,
F1

respectively, by the following equations:

for

It

= dr /16(21 /I; -1-1-)f 141t)00(1);<0

E0

4 ,(1) c).<(T)
1

d s ,

for > 0 .

(61)

(62)



and

}(;)= 47T,(2c;o)-t Q),(1;0)67i(2.(;!,"1-) ds

iff [Li v(1, r,0)1 -f EDG(_f,-1,0,)-6dIç

/:/), 0,r,o) ; ,L)-}

(pH (2.1/4, ; 0) = 0

qr,r,(2_( ; oEso = 0,

(, 0,n 0) D6 (25 ; to, r;-i.)} .

qp/ , and 4v , respectively, satisfy the following initial

and boundary conditions:

(fFtt(x' 04, 0) = 0

qr.", Os ;-1-) iso =

nok(2-0S<A(-1-)-f 44(=t) OVI9
A=I

for

(63)

(64a)

(64h)

(64c)



;o)1
so

so
4 A

na k (20 C;<A(0) 2 A,(a)0(k(0), (65c)
fr=1 -

9,,v01; 0) = (65a)

9141- (x, o,s., 0) 9),(x,0,3,,o) , (65b)

qwn ()J;())

givn ;

so

=.--; 0 for > 0 (65d)

Thus, c9pv describes that unsteady part of fluid motion which

would take place with the given initial conditions and a body

fixed relative to the translating reference frame.

Lastly, let us state in the following an important

property of the integral operator defined in (57): Let

and 1.0;i) be any integrable functions and OC be the in-

tegral operator defined in (57); then

d ; - Lo) = (q) - L-1 . (66)

To prove this, let the following substitutions be made

in (57):



f-t-

/804) (2_(

7(.6 (I; =_---- 1(1,1) OS; T-d-t) dt( etc.

Then from (57) we have

J
(t4)11-(1;1--,4)clui E_-- fi(u)-1-1-(4-u)dk

t
-r de-ve (Go -W-1; 4_bo G.7,(s ; I; 0)

0
Sc,

4.1(IT 1143 irdiAP-0-14'0; -C-(4)61,t0E ; 4-7-)
0

0

_ I iTja dt jj alocri T- 14) -37 1 1)(.7

4?F[D6(2`-') 0

it ir
d-rildfdr clt.t (urit? (T, 0, , La (a)-1, ar; --01

Id% P4)-1-t .1)2 -#3 (DC;)1

2 -t

CI-JoJrrldkp111/ T--(4)1310.;
0



u
= cle.t (L.4) ) ell-0(q)li 1(1. ; -'-i-1)-7/(2.5;1;0)c/S/

S,

41:;-riTdt-1 g(14 )11V.1-; L-1) 6(z..; 1; i--T) ds
1

c

cd-riTclt-( 04)111(c.,0,u-r-14).?-1A(2s;-,0, ; +--c) -

/74- T

-CJ de-1 (14)11-2-1- (1, 0/ T

d- dup( ) 7.1-(-7,0,r;7-_012 Pz6 C?-.T (D6) ciT
10 10

e ft T

d71 el" le(o

clT

)

-45-

Note that in obtaining the last expression the integral
fT

Jac/Li/do-0 has been moved outside of the surface- and contour-

integral signs. This operation is justified since the domains

of integration E, F and r: are independent of the parameters

and W . Recall the following formula from analysis, some-

times called Dirichlet Is formula: If I(Ti k) is continuous
in the domain 0 T r , 0 - , then

"t- t
ci T (T, 14)

-r (ri+ 1,1, 14)

-A



With the tise of this formula, the last expression becomes

where we have put -"ri-e--- -r--14.

1id tA A (13) 4 it -It ( ; -I - LA) 41 d up (14 )1114-(1 ; 4- u) G,(?5...; i ; 0) ds
.

so

±

4L,toctoi1 0

-i--
1'046,12N/-1

) d ..,,,,,,
t -,4li

( 0

lqi-(1)6)1 ci. d

F

citd4(14)14-dir'llLI-
(-5., 0,.-c .,-1-') {-1---1 67 ; I' °'s' ;

4-'1-191e164
0 i

0 7

d 0
0

"14'(- ,0,T i-r ) PLC-7 +3c* ( 01,,i-c

F

a 1 tel(Jr ( IA) 1 cf"_r

C 1i)

T'),1)67'

-

ctAp(u)I
Po

fdu ia(u) 0-4(; -tA)
0 1

completes the proof of the propositiwhich on.
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V. Decomposition of the Velocity Potential 99F/

Recall that in (62) we wrote down an integral equation to

be satisfied by which can also be written as

0(140,, / I: I) 1(1)6(2( ; cls

>0 ; (67c)

4 > 0 . (67d)

0,

.(2)

LtFin

(2C ;

; 4

sb

s.

= 11,4 ()ckfi for

For

A-,

/A(A)'*U)

4 i

12: ').<k(T)11.11h 01;1: (67a)

so

Let us next consider in the following two boundary-value

problems. Suppose that 9F/
and /n (" are two potential

functions which, in addition to conditions similar to those

satisfied by the potential function co, on the undisturbed

free-surface )5, on the bottom 8 and at infinity (i.e., those

stated in (35), (36), and (38) or (38a)), satisfy the following

initial and boundary conditions:

(k)

Lri-1 (?__(;0)=-: 0 , (frit (x,o, ,o)==o 1=-1, z ; (67b)



By precisely the same analysis used in deriving (58), the

integral equation for the function 40, , we may obtain the

following two equations satisfied by 461 and

respectively:

and

g t

,
I-)f dr ,;(i(7111/7,*(1) (a ;1! 4-1-}

k.) 0
so

12)
t

2 0<,(-)11f,k(i)C-)(z ,I,i-T)ds. (67f)
k , 0

Since the operator e4 is linear, adding (67e) and (67f) together

gives the equation

F1 ( 1)

(2)

(1 (2)
6PFI (1)171 -1 71 I

(2)

YIFI

--t 2 ch- c;c/t(T)11 _; )6 01;1; 4 - T)ds .

i=t

If, as we have assumed, integral equations of the form

ctM =

have unique solutions, then we can conclude that

(67e)

d A1.411. (1)C-7 ; ;

so
(67g)

(67h)



(2)

4 to be the

solutions of the following integral equations, respectively:

01)

(L';f) li,A(1) (e-Y;I:i)ds, (68a)

so

and
2,- 6,

4'1 ( Az_ ; -I-) 11 4(1) C7 (A; ; cis , (68b)

So

= /. 2, 4 .

With the assumption of the uniqueness of the solutions of the

equations (68a) and (68b) it can be shown easily that Ko7 and

`K(2) satisfy, respectively, the following conditions:

cR'(2_< ; 1-4 n 0k(x) , for 0 (69a)

and
(2)

= AA (?-5) for > (69b)

..(II
Define the two functions JC and

Besides, they satisfy also the same free-surface condition,

conditions on the bottom and at infinity, as those of

We now claim that the following decompositions of the
0, (2)

potential functions WI and (6/ satisfy, respectively, the

integral equations (67e) and (67f):



and

, (,)

YFt (-x.,1""
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4. f

(T) .4)(A;
0

(2) (.2)

(fri (4 4)- (54 (-1--).ei
0

To verify this statement, let us apply the operator d( to both

sides of, say, (70a). Then we have

G5 14(I
I

F/ 1(x-- f) IL c<k(T)61(:)(2(-/i T) cid

5( (7) 14 d-c

11-

=- PIT5<fr(T) II' I k(1)6(z-;-1;-/--Ods
I( 0 sp

where we have made use of the property of cl stated in (66) and

equation (68a). From (67h), (70a), and (70b) it is clear now

that the function (fF/ has the following decomposition:

6 t (I)..
al< ;+) -

*--.1 0

-4. /1-0*( (-0 e}((2)(2i; 1-T) dr .

-10
A

We now show that the decomposition (70c) toegether with

the boundary conditions (69a), (69h) and those satisfied by

,(2)

and e( on the undisturbed free surface, the bottom

(70a)

(70b)

(70c)



and at infinity in fact is essentially that of Cummins (1962)

as it was later modified by Ogilvie (1964). Henceforth,

reference will be made to Ogilvie's (1964) paper.

After integrating by parts, the decomposition (70c) takes

the form

4(A;t)

order, with
(2)

e(ft (<,-t)

(A ; t) = 6),4(1-)

A=-7

(2.(-;+0) ovi)Jci (x,.4o)

4 1- 6 f# (2) 1(71)
4 2.k (I' (X ; 7LT) 0.q(7) di- -1- I i 6)-(i (../Y; 71-- 7-)04(-r) drJ

A:--, 0

6 . W 6

- 2 6)\/ ( ) (..;-ts-) - 2 oc,(0)(2)(2( ;
i:---,

On the other hand, Ogilvie introduced two sets of functions

and proposed the following decomposition:

6;k/A (I) (2) -+ oCA (+) )
Pi

It
-zJ- ; 4-7) (-E

A./ /A

-t / , ( A ; C<A(T) .

Thus the decomposition (71) differs from

in only inessential ways.

data at /L 7-mo , Ogilvie's

rest at In fact,

that of Ogilvie

Instead of starting with initial

decomposition starts from a state of

the functions /1(1)
can be identified, in that, and 2 h (A ;

(.L40 , 0;40 , Kit(A,4) and

, respectively. If this is done, then according

to the conditions imposed upon the functions
Ji

2-( ) and

(72)
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/ .

4e0C'
x

by Ogilvie, our present functions

must satisfy the following conditions:

, m a'
(x, 0, p) =_- 0 d\ (X/0/ S., +0) = 0 on

0)

X0(21; 0)1 4(2)
s,

(x, 0,,p;)-f .6).(k(it_1 = 0, 2 ;

(z)

4\tt VI OS ; i so = , (2-(

(21

(l(f (A1* o) o ekt 1-0) "7" o;

0
so

and

F (73a)

(73h)

KA it (X,
0,1e) -+ 0) =

1,4

(2)

(X/0,3,, +0)= (73f)

Let us show in the following that these conditions are

indeed satisfied. We see that (73b) and (73c) are already

satisfied, for they are the same as those conditions originally

, ,o) .(2)

satisfied by j("A and AA in (69a) through (69c). The

conditions (73d) follow immediately from (69a) and (69h) since

both and 4, are independent of time here. In order to
0).

verify (73a), we need the equations to be satisfied by (L` ; -to)

and Xit(z) ; 0) . They may be obtained from (68a) and (68b)

by setting z=-t0 .
Thus from (68a), (68b), and from the
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operator 6( defined in (57) we have

(I)

47r Xi (2e_ ; 4 0) + d(it(-to) 67,(S; ;
so

)d s I noA(1) C21(z ;I' ; 0) d s

so (74a)

4 c(2)(2-' 0) + ikk(2)(1; to) C27,(2s ; ; 0)ds = GY4K ; ; d s.
s,

Recall that in (42b) and (43) we had G (L<; n 0) and

; t) .= 6 (1; ;) so that, for X= (x,o,j,) we have

(x, 0,j,; 1., 7r; = ) (75)

for all,'r . But then also
,

C-;
7

0 for X on F.76)

Hence

1'7 1; 0) no, G? --t- 1-203 0. (77)

Therefore, for (x, o 3,1) on F , the equations for d.c --tol

and ch'(2
)

( X ' 0)
A - '

, i.e., (74a) and (74b) reduce to

d(.4 (x,0,;_; _to) 0 and Ki(2)(x,o,S.; = 0 . Thus (73a) is also

satisfied. There remain the last two conditions to be verified,

namely, (73e) and (73f). For this purpose, we need equations

to be satisfied by Akt (x ; 0) and act (AL, -t o) . They may be

obtained by differentiating both sides of the equations (68a)

and (68b) with respect to and the identity (59). For

(Nib)



J4instance, the equation for 4*.i.

(eY;)I I hp 6,4-(1;1,- ds
st,
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is obtained as follows:

//kAw(I ; 10) 67,7. Os.; 1; ds
se

lla(4`"(1, 0, r, f Di 6 (LY ; 0, 4)2i: 0)6)1(4 el-

f
e).(0) 0,r , f)-?-1. Cx; 1,0,r ; d dC

F

N
d'ci( (I, ,-to) f 2 P2-6 -i- 3 (1)(7) cl

, M
But we have just shown that Jfk (1, o (thee also (73a)).

Hence the last equation simplifies to

ot{ figt-) (2_( ;1-) 11noi (I) 6,-CA; ; crs

S,

- //<) *(1)(f ; #0) 67,1. ( ; d s
so

C ilkA(71)(1,0, -t 0) f-h GCE. ;

F
1,/ (2)

Similarly, for we have



and

42,) (A)1)
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11-4 (21; ; els
*

s.

,11 kh'"(1 +0) 67,7, (; ; -t) ds
so

,o) ,

47T Kit (2_< ; to) -t (-1;.÷0)6) (2i ;-1;o) d

so

1 (79)

_(2)
) t) I dTdr.

it7

For = 0 , since (2_< ;1,0, ; 0) (2g ; ,7, r;0)= 0,

(78) and (79) reduce to

= 0 , (80)

(2)(2)
47a<ht. (L.( ; -to) a(ot (1;10)6_7)(25;1; d s = 0. (81)

so

vA) 1,(2) ,

Obviously, el,kt ( ;40) = 0 and d\ki. ( -+0)= 0 are

solutions of (80) and (81), respectively. That they are also

the only solutions is shown in Appendix II of Wehausen (1965).

The last condition of (73), i.e., (73f), follows easily

from the free-surface boundary condition. Since the free-

surface condition holds for all 71" , at , in particular,

we have



Thus tY*° and

through (73f).
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where I tr_i z and h 2, . But for 744. 40 , we hate

j<*tx (X,0,3 0 and 0 which follow

immediately from (73e) and (73a), respectively. Hence, from

the free-surface condition we have

I (2) 1,..(2)

dkit- (A'04,+0) 4441, 4)=1,2 ; --, 6 .

, (2)
et* satisfy all the conditions (73a)
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VI. The Forces andlloments Acting on the Ship Hull.

In the following we Shall first derive expressions for

the forces and moments acting on the ship hull in terms of the

steady and unsteady velocity. potential, And . The

various typesof_decomposition which were_made_previously for

the potential will then be substituted for

In principle, the only correct way of calculating the

forces and moments acting on the ship hull is to integrate the

pressure around the actual wetted surface. However, by an

approach similar to that used in obtaining the linearized

boundary condition on the hull-fluid interface, it is found

that one may, in practice, integrate the pressure around the

steady reference surface S, provided a proper correction is

made.

The present calculation of forces and moments is similar

to that of Appendix A of Ogilvie (1964) in the following

senses: a) the same assumption is made about the wall-

sidedness of the ship hull in the vicinity of the equilibrium

water line where the undisturbed free-surface intersects with

the undisturbed ship hull; b) the same criterion is used in

discarding terms of higher order. An effort will also be made

to preserve the same use of notation so that any cross

reference between the present work and that of Ogilvie (1964)

may be eaSily made.

To begin with, we shall consider simultaneously the body

reference frame
Y%P-\

and the steadily translating
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reference frame Ow . Toward the end, however, only the

Ox. - system will be needed.

As before, let S: '(R4:1)=-0 , in the body reference

frame &is , describe the actual ship surface which is below

the equilibrium water line. Then the equation fr%(x,;,j.)==

in the steadily translating reference frame Ox* describes

the reference surface S. which coincides exactly with S

when the latter is in its undisturbed position. Note that

both S and So are defined by the same function r but in

two different reference frames.

For convenience, we shall define the following term:

a point Q/0 is the 'image point' of a point q on the ship

surface S if the coordinates of go in the Oky,p-frame

have precisely the same values as those of Q in the oiu
frame. Thus (R coincides precisely with go when S coincides

with So . Suppose that n is the unit inward normal to the

ship surface S and

pi, (21, 3,) = F()74,1)/wF,*F*
A, 4 = /, 2 , 3.

If hp is the unit inward normal to Sc, then due to the

way Sc, is related to S we have

no;(x14) =--- Po ;74) 11-F*T.*

.; 2, 3.



Thus /1; and no,- are in fact given by the same function.

Hence if qES has the coordinates (a,b,c) in the 65w,
frame and Qoz So is the image point of Q , i.e., q has

the same coordinates (a,b,c) but in a different reference

frame, ())(j, , then, clearly,

(Qo) = (Q) =

-59-

; c= I. 2.3.

The force on the ship hull is given by

pads, (83)

and the moment with respect to the point a , the origin of

the body reference frame 6w is given by

)6 x n ds

where = X _2 J. e3 is the position vector of a pointR ' 4 ^

6p= (i,i) on the ship hull with reference to the body

reference frame oW and Sw is the actual wetted surface

of the ship hull.

In order to use the results of the present calculation of

force and moment to write down equations of motion, we shall

resolve the force and moment along the steadily translating

reference frame Oxry< . For convenience, let us consider

(82)

(84)



first the decomposition of the force vector along. From (N8))

we have
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---- (f.
s,

=IIII /1 clS

SW

e.) ds

where Sky S US, , and S, Spv S.

Note that in obtaining (85) we have used the result from (5),

namely, -+

Let ,P0E S.0 be the image point of Q S . Suppose that

Qt, go has the coordinates ( x) in the 0/Y1,p-frame;

then Q has the same coordinates (x/H) in the a)7rj-frame.

The coordinates of E S in the OxYcp -frame are then given

according to the transformation (3) as Q= ( 4 ZIA X*)

(85)
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We shall assume that the function P can be expanded into

Taylor's series as follows:

(X4 Xi 4 62 j.-6)3 /,j, 0, y- x, t)

= (x, Lx,,t, 4 A2(X/1,3t) 0-(E4

which means precisely that

(Q ;4) = 6(Q.; t) + At(Q;1-) 0-(E). (86)

Thus from (86) and (82) we may write the integrand of (85)

as follows:

[g61-(0)4EJ A ii.-(Q)) ((0)

= 1101(Q0)-f OA -No)} /%6 No

4 141 (p6) [XII 4 On, Xn] Ae(Qo;IL ) 4 (u)

(87)

Although the expression obtained on the right-hand side of the

equality in (87) is a more complicated one, it has the advan-

tage of being evaluated on a prescribed reference surface S.

which is stationary with respect to the Oxis, -frame. It

follows immediately from (87) that



JI [fi (6)-frE0. 111(0)1 16(Q,1) ds

= aim) 4 E ñ041)(6?,;1-) ds

go

4 //Poi (4)0) Xit 4 &e n 60, 4] (6? ; 19 ds 4 Or(EA),_
so
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(88)

which shows how an integral over the surface S may be

approximated by integrals over the stationary (relative to

the 0)W-frame) reference surface S.

We need next an appropriate expression for j6 . From

Bernoulli's equation we have

p j ..f. (14)
const

where we let

x -t coo (z) -t (2( ; (89)

Assuming /fr = 0 , V and 0 at X = oo

t=o , we have
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16 ()(4,,t) = - f(v)z 4 1- /DCz

f PC 4x -f fc C'tx -

- f(0-v(l,)- Nye- f(ve.
We shall follow the usual practice of linearized theory of

discarding the last two quadratic terms in (90). However,

one should realize that omission of the term f f(9. 032 may

not be proper for the case of a deeply submerged body. Let

us then write

(x,i) = -1°1 (6

(q;-) 041'),(Q) ds

fll Wnoa-- E,4;sino;7- lnoiLz+s3x- 6U, -
so

(90)

_t cgt 4 v(10,. v(toi (91)

This is now to be substituted into (88) in place of )1(0 If

this is done, then we have from (88) and (91) that

- noi[(T.- c-6) 79, li(92)

-f CC nod -f n0i(x,+E,ith)i9n,X0)c°0x),tilCiE.



In (92) we have discarded terms like 6)0

C V'on7,etc., which are of the order C)(4).

Next, let us consider the integral over SI in (85).

Similar to the relationship between So and C , let Se/ be

the area on the undisturbed position of the ship hull which

has the same size and form as SI . The area Sel can be

determined from S,

Q0 on Se after a point Q on S is assigned. The free-

surface elevation

in the same manner as finding the point

-64-

= y(x4,i) can be expressed in terms of

the ship coordinate system -(5)7VI. as follows:

- -41,f,935?-193 Y(R4x1+92i,-6?-?fis,

= L &di y,0?,-s, t) + i---622)77 yj,ozi.,i) 4

hoo.t.,

where we have used the transformation (3) and expanded the

function Y into Taylor's series. Thus from the last expression

we have

Y(244)- -J+ +L x, (92-f- -63 ] 4

h.o.t.
(93a)

Thus, in the OSTr: system S, is defined as that part of the

hull surface /(2,Y,n= 0 bounded by the equilibrium water

line y 0 and the free-surface elevation = Y(R,1--1-)
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according to (93a). Hence, in the 0),/j. -system, S0, is

obtained as that part of the reference surface f(x,y4)----- 0

bounded by the undisturbed free-surface o and the wavy

surface

<11 x , )

y ( x , - 7, X -÷ b, -I- X 4 0, - ,j1-]

(93b)

+ 04- (92;\ Ys, h.o.t.

The relationship (87) permits us, as in (88), to replace the

integral over Si by integrals over S01 as follows:

,

h t(ci)1 (g)--1- ds

= .1)(Q0;i) '1111(40)4 Ej.k..;624h0,;(Q0)1 c
(94)

/f h0. (44 [Xlt xn] ; t ) ds 0 ()

For simplicity, let us further assume that the ship hull

is wall-sided near the equilibrium water line so that the

integrals over Sof in (94) can be written as the following

iterated integrals. The first integral on the right-hand side

of the equality in (94) then becomes
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/1 (k1 (14,1-) x'N) Eik; cl S
so,

19 (x4.-t)
I d noi Oc, 0, Eih;

ro
0

d4 1h0 0,34 -+ Eih.; 2/[- [- PI- 7- pc 00x (xq,3,) _

ro

f [(.?1- c5;5-c),(z 14°.(a)-fid

where P. is the contour where the undisturbed free-surface

intersects with the reference surface S and C? is given

by (93b). Also, in (95) we have used the expression for

from (91) and set II,/ (x, noi(x,o,<P) due to the wall-

sidedness of the ship hull near the equilibrium waterline.

The integration with respect to the variable y in the last

expression of (95) may be carried out as follows:

f(71+ fc f [(h -c?r() (,,,N,19 4 vavc°,1 dy.

= f Pc 90x(xyq,,)

cr% [4- c 0y4/5?,,P,-01 a())

where 0 1

Since

(95)

(96a)

-- (x,0,3)-1(t--cL)r(x,o.j.0, t ' ,



(41-(x )/i-t?, ct,,t)

as follows:

# Y4,1-) f (x'1-4-) EiA; (9k 17,..;)
sol

023--194]oxx("S-)i f[J, e)4-6,12)(7qax

We may further expand those functions, (fox( yuY,j-)

(xi/4 s)

91t.( _Fri/ 0 (Eb.,)

etc.

Substituting (96c) and (96h) into (96a) we have

Lc fC C°0x(x) fUh-c4) (x/N,79 1)

= fcox (X60, J-)[(h c-h) (xì°,)] 4 0(424 ).

This result is now to be substituted back into the last

expression of (95). Then we have

fci
r,
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we have from (93h) that

5)(ki.S-,t)
01, l?-t- 2x 1

y,- (93x-t

g)ox (x, 04)

, and
;')( (x'/4Y JO) etc into Taylor's series.;

(A, x (2-F a?7c) 0"4-,

(96b)

(96c)

al,4 O(E).

(97)
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Following_ the same procedure as above, one may obtain the

following result from the second integral in (94):

tioioc, ,,0[)<,1-F4.,.,6), d s
SO'

= _ ci oc,,t(x,o,14 [ A d 4 0(6'4) . (98)

The appropriate first-order expression for the force

component is now obtained by adding together (98), (97), and

(92) as follows:

xi ffif-11[1114ei,;61411,;]-,lhatI. (9-3 td-
So

C- k) 91 (X/74,1) 4 k () r79,

(9Ano,;) x noi(xit-t E.1, 6.4)(4)() 1} d

- fcino. ()00,;)-c
r, g

, k 1, 2, 3.

Note that (99) corresponds to the expression for )1; on p. 99

of Ogilvie (1964) except that in (99) is now resolved

directly along the steadily translating reference frame Ox7j. .

'or interpretation of terms appearing in (99) and remarks about

the correction term, i.e., the contour integral around in

(99), we refer to Ogilvie's (1964) discussion following imme-
/

diately his expression for 1. . However, we call attention

elx

'(99)
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here to the fact that the correction term is of order not lower

than Es Em and vanishes entirely when the body is completely

submerged-

We mayproceed in the same manner to obtain an expression

for the moment components . As before, let q be a typical

point on S and Q, be its image point on So . Define

3

x . e._ 0143 (100)

where 2C = X 4 y 4 S-e3 is the position vector of the

point Qo So in the (30W-frame0 Then the position vector

of the image point E S in the 5)W," -frame is given by

X'= F2 es . Let us define also that

3

x n = I/')3 (101)
jl

Thus from (101), (100) and the fact that Q,E So is the image

point of QE Ss we may again establish the relationship

i43(Q) 43 ( 0 ) 2 3. (102)

We shall again decompose the moment acting on the ship hull

about the origin of the ship coordinate system xn, directly

along the steadily translating frame ()XN. as follows:
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=

=s nA-1.3 (e.; )/

-+ E14,; (Pk ciS

/fr R1+3 fi; 61A ilA'e)

s,

Note that (103) is essentially the same expression as (85)

except that the index 1. is now replaced by 1+ 3. With the

relationship established in (102), namely, i1i43(q) = 1164-4,1%)

where QiS and QOE So , the same analysis used in obtaining

the final expression for holds also for 27. . For

convenience let us write 7/1. te , then (103) will lead to

an expression precisely the same as (99) except that Z1.

, and /lac; are now replaced by , hoi÷, , and//

no,;43 Thus from (103) we have

4-3 t!i1- 1/+3L 4. 6 x14-3 / 3 _

So

noi43 [(5)7 ) 9/ (25 10° 171 t

(103)

(104)
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4 C [ noi+3 EiA4 otk n4.43) 9'oic 14- no143 )(1.1"t E,einn(9,,Xt1)x 7}Js

- Pc hpi+3 (X, 0,.) cj270 (x, 0, S.,t)

°

4 -± 9,3 A 1 (14 ,

, 4 I, 2, 3.
--+

Note that from (100) we have

110i+30( pz k=1, 2, 3. (105)

Since 110;(Xi,j. ) = 1/1 o, .i*. 2,3, follows from the wall-sidednes s

of the ship hull, and in the region Sci we have iyi ly(x4,191 ,

the difference between 111.03(x,14) and n143(x,04)is of order

Es or En . Thus the contour integral in (104) is the only

contribution to the first-order expression for the moment com-

ponent from the correction term, i.e., the integral over Sof

which is similar to (94). Furthermore, the wall-sidedness of

the ship hull implies that hoz(x'°';-)= 0 for (x, ,3-)z Sof, so

that /7041-()'0,;) = nod(x'64) = 0. Thus the contour integral

in (104) vanishes except for = 2. Hence, it contributes to

the yawing moment alone.
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Lastly let us substitute into the expressions (92) and

(104) the various types of decomposition we made for

namely,

cI

6 f
(A;f) ft,(21;1-) +2 (T) "(X

A

gf
2. I
6.

(2)olA(2)( ; d-r-
A., 0

(106)

Note that to be consistent with the use of the notation a for

the displacements, we should also writeOfi = '04,3 , -4= 1,2,3,

and

With the substitution for

boundary con4ition(2)

6r, from (106) and use of the
(I)

A n (x ; -t 0) for ex_ L So from

(69a), the equations (99) and (104) lead to the same equations

in the following form:

i
_, _g. frf j;<40-)- i it c). (t) - 2 C ex 0.)-io

4 -t 6 f i

- Z ./(3. (T) L.; 0---0 dr sc,(T)frt (
A fi-,, 0 - ;0

where i 1 = 1, 2,..., 6,

xor IIK. (A; -t 0)pl
S 0

/AA= f(; +o) (,z; +
1'7

so

Cceox(2) ds (108a)

) ds

'
d

(107)

(.108b)



La,(4) = f 1)(i0r: 0.1;-to)p7--52"'oc;t) -f ds

f
4 t fC1 e)5q (XI °';') +a)c°6,1f (X1°44 CMJ<14")(X'°41i)jd4,

r,

f 4c:01 )+0)1(527----c)ic)4(1( i-) 17XA(2)1 d

so

4 fC/ kic;
P.

where
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a(;2) (;o) d s,

x04140)00
(2)

0G0#;

}c;* ---- ffika:: a ; iob L f,- fA(21)_1 c(f.A.r7).1 GIs
se,

fc.1 k.`"(x,o,0)1Lfz eA (A)] (xi 0, J- ) d4,,
PD

6

oe,[ (A)] = 63
0.1

fo = f, 2, 2,

x

(108c)

(108d)

(108e)

(108f)

facial 21 ; +

So



C./ IL C."ik

-74-

r `," (z) to)1(k- ) m .q,),)61s.

pc IK. (x, ,-1-0))((x, 0, s,){(*- c
r, 1-1
10

d4

(108h)

(108i)

Cik -

0

0

0

0

0

oo
0

0

0

0

0 0

Z30

0 X20

0 0

0 X60

0-I50

X-30

0

-x,0

240

0

240

120

-1 10

0

50

-140

0 I

(108g)
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It may be worth mentioning again that X given by (107)

represents the force and moment (about 6, the origin of the ship

coordinate system) acting on the instantaneous position of the

ship. One can see from the definitions for the various quan-

tities given in (108a) through (1080 that Xi° represents

steady force and moment components, //t-I(ik is a constant

depending only on ship geometry, 6i and are constants

depending upon the ship geometry and the constant average

forward speed, and kik and Nik are functions of time, geometry

and the constant average forward speed. None of these quantities

depends upon the unsteady oscillatory motion of the ship. (We

note that Ljk , Lik , 1-6k, and Qk do not have the same

meanings here as in Ogilvie's paper.) Iiincludes: a) the

static buoyancy and wave resistance of the ship moving with a

constant forward speed in its equilibrium position; b) the total

hydrostatic and hydrodynamic force and moment acting on the

ship due to its own motion; and c) the force and moment resulting

from the action of the incident and diffracted waves upon the

ship.

We remark in passing that the quantitiesh .Li defined by

(108g) arise only if the force and moment vectors are resolved

along the steadily translating reference frame Ox,lj, . Thus,

,

if we set CkO for Y, = 17 27 °7 63 then the expression

(107) will give the components of force and moment resolved

along the ship coordinate system Crils,
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VII. The Equations of Motion.

Without the loss of generality, we shall suppose that the

center of gravity of the ship is located at a point with the

coordinates ( 0 , , 0 ) referred to the ship coordinate

system 0\)']-1_. We shall also assume that the propeller

thrust 17 is directed parallel to 62 along a line of

action which is ir units below the center of gravity and

lies in the (')-plane.

In writing down the equations of motion for the ship the

following result of Euler in rigid-body dynamics may be used:

The motion of a rigid body can be determined by treating

separately the motion of the center of gravity and the rotational

motion about the center of gravity. Moreover, the motion of

the center of gravity can be determined as the motion of a

particle of the total mass 117 of the body subjected to the

total. force F applied to the body, and the rotational motion

of the body about its center of gravity can be determined as

if this point were fixed and the body were subject to the

moment of the applied force about this point. If we use the

steadily translating coordinate system Oxy; as our inertial

reference frame, then the motion of the center of gravity is

given by

t) ,2
(109)

= ,3



where F = f2 -r 63 is the total external force

acting on the ship and , , and j, are the three com-

ponents of the rectilinear acceleration of the center, of

gravity in the Ok and 0-directions, respectively. In

our present generalized notation we may write these quantities

as X, =c , y, = 0<z , and = . The motion of the

ship about the center of gravity is, then determined by Euler's

equations of motion:

I/ (47), -T/z 632. 1/3 C33 CA-)2L 1/3 (4), 123 Gt-)2 + -13 3}
-- (131 12.6°I 4 12 7Z-23 iti3 = 714 )

1,2 6j), -t (A5, - 1-23a)3 (A)31IICOI Liz t-02 I/dLt)3i-

4)1 L-3 6-Ot 2 (-k-) 12 = '7162

where

C-dz1 13 6k)3 -#6t)IL" I/26k), 4- Z.-02 1,3

-()z I I, (.4), - (4J, -J, (.33

== f -f 2/4z __,

is the moment of the total external force F about the center

of gravity and
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(110)

-

(112)



If =III fsf(H6t-fj,N21 ,

= f (-y-i1)2

123 L)1, dv,
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is the angular velocity of the ship as a rotating rigid body.

In order to define the quantities , let us introduce

the function , the density of the material of the

ship. Then evidently

---- is(R,Y4)dv
V

and the I are given by

_T, .11ifs.13;z+5PPv ,

1/2 fc ?(CF:14)61V,

V

131 = fs3: e/ V
V

(113)

where V is the total volume of the ship, including the part

above the waterplane.

Let us now show that the quantities (A.); may be identi-

fied, to the first order of approximation, with the quantities

69; which we have introduced in the previous chapters. It is

a well-known result in the kinematics of a rotating reference

frame that

(114)
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for an arbitrary rotational motion of the coordinate system

On the other hand, for small angular, displacements

of the coordinate system ai-cf, we have the relationships

-t E. -AO* e -i- (E4
and

e.
E.614 6'; O(E))

which can be derived easily from the transformation (4).

Thus we have

d eAjd L= (Ef",) = &,-/4614 -+

Let us now write the equations of motion for the center

of gravity of the ship according to (109). To obtain the

total external force acting on the ship, we must add to .2

the other forces acting on the ship, for example, the gravity

force, propeller thrust, forces due to wind gusts and arti-

ficial restraints, etc. Thus the equations for the ship

corresponding to (109) may be written as

In c;:(/. (t) = Ii(t) - /1-1 S2 1,2,3, (117)

r
)-14

(115)

where we have assumed that the (Vs are also of the order

. Hence from (114) and (115) we have

60k = 4-f ox,L,,) °e< +3 O(E/2-1)
(116)
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where represents the three components of the propeller

thrust resolved along the Ox 64-, and 0j, -directions,

respectively, and by our assumption about the line of action

of the propeller thrust we have

= e,)- = T(14E, );

= h 2, ,

represent.s all other external forces besides the force

the propeller thrust
3.

, and the gravity force

The expression (117) can be further put into the

following form if (107) is substituted for

() LiAC*A(1) 11 Cifr oCA (1)

it

LiA(4--r)d-r () (i----r)d-r
h=,

, Ti (+) cr21- C71(-0 Zvi(*) ,

7=- /, 2, 3,

0 kv)

j= /, 2 3 = I, 2, - -,

(118)

(119)

0

=

fpii

0

0

hi

0

0

0 .0 0

000
0 0 0

1-0(4,

0(5-

(120)



We shall next write Euler's equations for the rotational

motion of the ship about its center of gravity according to

(110). Let be the vector directed from the center of

gravity of the ship to a point on the wetted ship hull.

Then the moment about the center of gravity of the ship due

to the pressure distribution around the wetted ship hull is

given by

But by the assumption about the location of the center of

gravity we have

where, as before, is the position vector of the point

on a ship hull. Hence

lliffx
sw

-81-

2). S

sty

(121)

43 112 e.. ) (122)

i)) /, 2,3,

where the repeated indices imply summation and

I. 2,

n) . ds = /, 2, 3
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Clearly, Ii43. and_ 2. are, respectively., the components of

the moment (about ) and the forte .due to the pressure diS-

tribution when those two vectors are resolved along the ship

coordinate system. As it was remarked at the end of the last,
'chapter that the 11435 and the 1y may_still be given

by the expression (107) if we put Cji E 0 , lih = 1,

in (108g). This is, in fact, equivalent to replacing Co

by elk in the expression (107). Let us denote by 73(t)the

three components of the moment about the center of gravity due

to the propeller thrust 7- and by 6i43(*) that due to all the

other external forces besides the pressure distribution and

the thrust. Then, by neglecting higher-order terms, we may

write the equations corresponding to (110) in the following

form:

6

k=4 P3,A
c;( '' ' = id 1-J ( 117 )

11)----1 or
I In2

-+ 6113(4),

Or, with the use of (107) this last equation may be further

written in a form parallel to (119):



44-3,0

and

Tp3 = (0, 0, T4)

it ,21-4,k) (1)

3 3

ji2iii) 6(4(19 (C

it=1

3

L (1-0+t1-3,A
Pl=1

17L

1434- - Id (1-9 H ( - T

6 Z3

t ?TA CC:111t5 -21/%;))
1

1112 LniA (4-r)) c

imz11,11,4 T) d T

73 (7) -r+3 (7L)
1+

= I,1, 3

=-- /, 2, 3

-k = /, 2,

Note that (119) And (123) together form a set of six

integro-differential equations for c .(+) , h= 1, 2, ... 6.

Such equations are generally solved by method of the Laplace

transforms. Thus the information about the position and

(123)

where

tn. A 0

0

o

0

o

II

-Iu

- Its

-III

i.

123

-.113

-123

13
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velocity of both ship and fluid at the initial instant o

i.e., c; (0) Z4(0) y(x4, o) , and )..(x,o) , together

with the integral equations for Vw(1.; -/-) eK4(;t) , and

(a ; , and the above set of integro-differential

equations uniquely determitte the behavior of both ship and

fluid at later instants of time, provided one grants

uniqueness of solution of the integral equations.
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