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Summary

S afe and sustainable exploitation of geo-energy resources requires not only a
comprehensive evaluation of the performance and economics of the corres-

ponding projects but also the assessments of the associated risks, including the
risk of induced seismicity. Indeed, seismic events may arise from the reactivation
of natural faults and fractures due to subsurface engineering activities. Numerous
anthropogenic activities including geothermal energy production and CO2 geolo-
gical storage have been identified as potential triggers of these seismic events.
The risks associated with induced seismicity stem from the potential for surface
movement, structural damage, and negative impacts on both the environment and
human health.
The corresponding risk assessments highly rely on geomechanical modeling which

is progressively being integrated into the reservoir modeling workflows. This integ-
ration demands high levels of integrability, flexibility and performance from the
computational engines employed. These requirements, along with the complexities
of the underlying physical, numerical and implementation aspects severely constrain
the availability of suitable computational capabilities. Increasing societal concerns
about induced seismicity amplify the demand for such capabilities, highlighting a
lack of efficient and comprehensive solutions in both academia and industry.
This thesis contributes to bridging this gap through the development of an in-

novative modeling framework. Leveraging the ubiquity of Finite Volume Methods
(FVM) in traditional reservoir simulations, the newly proposed FVM schemes for
coupled fluid mass and momentum balance equations present an opportunity for
seamless integration of geomechanical modeling into existing reservoir modeling
frameworks. As a result, the proposed approach satisfies the aforementioned re-
quirements and presents an accurate and efficient framework for the investigation
of induced seismicity in geo-energy applications.
The core innovation of the thesis is represented by fully implicit schemes of FVM

for the coupled modeling of faulted poroelastic media implemented in the open-
source Delft Advanced Research Terra Simulator (DARTS). The schemes are based
on coupled multi-point flux and multi-point stress approximations derived from the
local conservation of fluid mass and forces. They support arbitrary material het-
erogeneity, anisotropy, boundary conditions, fluid properties, and friction laws. To
further improve the performance of coupled modeling, block-partitioned precondi-
tioning strategy has been implemented. Besides, first-of-its-kind nonlinear scheme
of FVM for the pure elasticity problem has been proposed and implemented in
DARTS.
An accurate representation of faults has been developed with the mixed-dimensional

conformal discrete fault model (DFM) which assumes the use of equidimensional
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x Summary

DFM in the integration of fluid mass fluxes and a lower-dimensional DFM for the in-
tegration of momentum balance. The incorporation of the stress approximations at
the cell interfaces into this model enables convenient integration of contact mech-
anics at those interfaces. The penalty method and a return-mapping algorithm have
been employed to enforce contact inequality constraints.
The proposed schemes of FVM and the numerical strategy for the resolving of

frictional contact have been thoroughly validated in a number of benchmarks, in-
cluding convergence studies, comparisons against analytical and semi-analytical
solutions, and comparisons against numerical solutions obtained by other numer-
ical frameworks. The efficiency of the employed solution strategy has been also
assessed.
Laboratory experiments provide valuable insights into the material properties and

frictional response of porous rocks. For convenient interpretation of these insights
and further examination of the capabilities of numerical solvers, the modeling of two
experimental setups has been conducted. This concerns the modeling of injection-
induced slip in core cross-cuts and the modeling of a large-scale setup with displaced
a fault configuration.
Even though the proposed framework demonstrated extended capabilities, the

modeling under the quasi-static (QS) assumption restricts the characterization of
seismicity. To overcome this limitation, fully dynamic (FD) modeling has been im-
plemented in the framework. As a result, we demonstrate the combined QS and FD
modeling of fault reactivation that allows aseismic slip, nucleation, rupture propaga-
tion and arrest to be resolved in one simulation run.



Samenvatting

H et veilig en duurzaam exploiteren van geo-energiebronnen vereist niet alleen
een uitgebreide evaluatie van de prestaties en economische aspecten van de

bijbehorende projecten, maar ook het beoordelen van de daarmee samenhangen-
de risico’s, inclusief het risico op geïnduceerde seismische activiteit. Seismische
gebeurtenissen kunnen ontstaan door de heractivatie van natuurlijke breuken als
gevolg van ondergrondse engineering activiteiten. Talrijke antropogene activiteiten,
waaronder de productie van geothermische energie en de geologische opslag van
CO2, zijn geïdentificeerd als potentiële veroorzakers van deze seismische gebeurte-
nissen. De risico’s verbonden aan geïnduceerde seismische activiteit komen voort
uit de potentie voor oppervlakte beweging, schade aan constructies en negatieve
gevolgen voor zowel het milieu als de menselijke gezondheid.
De bijbehorende risicobeoordelingen zijn sterk afhankelijk van geomechanische

modellering, die steeds meer geïntegreerd wordt in de workflows van reservoirmo-
dellering. Deze integratie vereist een hoog niveau van integreerbaarheid, flexibiliteit
en rekenkundige mogelijkheden van de gebruikte rekenmodellen. Deze vereisten,
samen met de complexiteit van de onderliggende fysische, numerieke en implemen-
tatieaspecten beperken de beschikbaarheid van geschikte berekenings capaciteiten.
Toenemende maatschappelijke zorgen over geinduceerde seismiciteit hebben de
vraag naar dergelijke berekenings capaciteiten versterkt, waarbij een gebrek aan
efficiënte en uitgebreide oplossingen in zowel de academische wereld als de indu-
strie aan het licht komt.
Dit proefschrift draagt bij aan het overbruggen van deze kloof door de ontwikke-

ling van een innovatief modelleerkader. Door gebruik te maken van de alomtegen-
woordigheid van Finite Volume Methoden (FVM) in traditionele reservoirsimulaties,
bieden de nieuw voorgestelde FVM-schema’s voor gekoppelde vloeistofmassa- en
impulsevergelijkingen een kans voor een naadloze integratie van geomechanische
modellering in bestaande reservoirmodelleringskaders. Als gevolg hiervan voldoet
de voorgestelde aanpak aan de bovengenoemde rekenkundige vereisten en presen-
teert het een nauwkeurig en efficiënt kader voor het onderzoek van geïnduceerde
seismische activiteit in geo-energietoepassingen.
De kerninnovatie van dit proefschrift worden gevormd door volledig implicie-

te FVM-schema’s voor een gekoppelde modellering van poroelastische media met
breuken, geïmplementeerd in de open-source Delft Advanced Research Terra Si-
mulator (DARTS). De schema’s zijn gebaseerd op gekoppelde meerpunts flux- en
meerpunts spanning benaderingen, afgeleid van het lokaal behoud van vloeistof-
massa en krachten. Ze ondersteunen willekeurige materiaal heterogeniteit, aniso-
tropie, randvoorwaarden, vloeistofeigenschappen en wrijvingswetten. Om de pres-
taties van gekoppelde modellering verder te verbeteren, is een blokgepartitioneer-
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xii Samenvatting

de preconditioneringsstrategie geïmplementeerd. Bovendien is het het eerste niet-
lineaire FVM-schema voor het zuivere elasticiteitsprobleem dat is voorgesteld en
geïmplementeerd in DARTS.
Een nauwkeurige weergave van breuken is ontwikkeld met het gemengd-dimensionale

conforme discrete breukmodel (DFM), dat het zelfde dimensionale DFM gebruikt bij
de integratie van vloeistofmassafluxen en een lager-dimensionale DFM voor de in-
tegratie van de krachten. De incorporatie van de spanningsbenaderingen op de
celoppervlakken in dit model maakt een gemakkelijke integratie van contactmecha-
nica op die celoppervlakken mogelijk. De penalty methode en een return-mapping-
algoritme zijn gebruikt om contactongelijkheidsbeperkingen af te dwingen.
De voorgestelde schema’s van FVM en de numerieke strategie voor de oplossing

van wrijvingscontact zijn grondig gevalideerd in een aantal referentieonderzoeken,
namelijk convergentieonderzoek, vergelijking met analytische en semi-analytische
oplossingen, en vergelijking met numerieke oplossingen verkregen met andere nu-
merieke methoden. De efficiëntie van de gebruikte preconditioneringsstrategie is
ook beoordeeld.
Laboratoriumexperimenten bieden waardevolle inzichten in de materiaaleigen-

schappen en het wrijvingsgedrag van poreuze gesteente. Om deze inzichten ge-
makkelijk te kunnen interpreteren en de mogelijkheden van numerieke oplossings-
methoden verder te onderzoeken, zijn twee experimentele opstellingen gemodel-
leerd. Dit betreft de modellering van injectie-geïnduceerde verschuiving in een door-
sneden kern, en de modellering van een grootschalige opstelling met verplaatste
breukconfiguratie.
Hoewel het voorgestelde modellerings kader aanzienlijke capaciteiten heeft aan-

getoond, beperkt de modellering onder de quasi-statische (QS) aanname de karak-
terisering van seismische activiteit. Om deze beperking te heffen, is een volledig
dynamische (FD) modellering geïmplementeerd in het kader. Als voorbeeld demon-
streren we de gecombineerde QS en FD modellering van breukreactivatie die aseis-
mische verschuiving, nucleatie, breukverspreiding en stilstand in één simulatierun
mogelijk maakt.



Nomenclature

V ectors, rank-two tensors and matrices, and the tensors of rank higher than two
are denoted with bold lowercase letters, bold capital letters, and script font

respectively. The pore fluid and rock matrix are specified with f and s subscripts
correspondingly.

Operators

symbol description
⋅ inner (dot) product
∶ double inner (dot) product
⊗ Kronecker product

Roman Letters
symbol units description

A PaK−1 rank-two tensor of thermal dilation coefficients
B 1 rank-two tensor of Biot coefficients
𝑏 1 Biot coefficient
ℂ Pa rank-four drained stiffness tensor
C Pa 6 × 6 stiffness matrix in Voigt notation
𝑐 Pa contact cohesion
𝐷𝑐 m critical slip distance
𝑑 m distance
E 1 Almansi strain tensor
𝐸 Pa Young’s modulus
𝐺 Pa shear modulus
𝑔 ms−2 gravitational acceleration
g m gap vector
ℎ J enthalpy
f Pa traction vector
f′ Pa effective (Biot) traction vector
f″ Pa effective (Terzaghi) traction vector

f𝑁 , f𝑇 Pa normal and tangential components of traction vector
I 1 identity matrix
K m2 rank-two tensor of permeability

xiii



xiv Nomenclature

symbol units description
𝐾 Pa bulk modulus
𝑘 D scalar permeability
𝑀 Pa Biot modulus
n 1 unit normal to interface
𝑝 Pa pore pressure
𝑡 s time
𝑞f ms−1 fluid flux
𝑟 kgm−3 s−1 the source of fluid mass
𝑈 J internal energy
u m vector of displacements
𝑉 m3 volume
v ms−1 vector of velocities
v∗ ms−1 reference velocity in rate-dependent friction laws
w ms−1 vector of Darcy velocities
x𝑖 m 𝑖th cell center
x𝛿 m center of the interface 𝛿
y𝑖 m projection of the 𝑖th cell center on interface
𝑧 m depth

Greek Letters
symbol units description
𝛼𝜙 K−1 volumetric thermal dilation coefficient related to porosity
Δ𝑡 s time step
𝛿 m2 surface area
𝜂 JK−1 kg−1 specific (mass) entropy
𝜃 K temperature

𝜉𝑝, 𝜉𝜉𝜉𝑝𝜏 Pam−1 normal and 3 × 1 tangential components of pressure gradients
𝜉𝜉𝜉𝑢 , 𝜉𝜉𝜉𝑢𝜏 1 3 × 1 normal and 9 × 1 tangential components of displacement gradients
ΛΛΛ Wm−1 K−1 thermal conductivity tensor
𝜇 1 friction coefficient
𝜇𝑓 Pas fluid dynamic viscosity
𝜈 1 Poisson’s ratio
𝜌 kgm−3 mass density
ΣΣΣ Pa Cauchy stress tensor
ΣΣΣ′ Pa effective (Biot) Cauchy stress tensor
ΣΣΣ″ Pa effective (Terzaghi) Cauchy stress tensor
𝜎𝜎𝜎 Pa Cauchy stress tensor in Voigt notation
𝜎𝜎𝜎′ Pa effective (Biot) Cauchy stress tensor in Voigt notation
𝜎𝜎𝜎″ Pa effective (Terzaghi) Cauchy stress tensor in Voigt notation
Φ Pa sliding surface
𝜙 1 porosity
𝜓 1 one-third of the trace of tensor B
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2 1. Introduction

1.1. Induced Seismicity

S eismicity, or the occurrence and behavior of earthquakes, is among the widely
studied areas in geoscience. Earthquakes occur when strain energy stored in

the Earth’s crust is released with a sudden movement of rocks typically along faults
or boundaries of tectonic plates. These events can range in magnitude from very
small tremors (Mw < 2) to massive earthquakes (Mw > 6) that cause widespread
damage and loss of life. Seismicity can be broadly classified into two categories:
tectonic or natural and induced or anthropogenic. Tectonic earthquakes result from
the movement of tectonic plates, while induced earthquakes are caused by human
activities.
The study of tectonic seismicity remains an active research field for a long period

of time, and much progress has been made in recent years. The development of
new monitoring technologies, such as GPS and satellite imagery, has enabled re-
searchers to understand better the dynamics of tectonic plates and the mechanisms
that drive earthquakes (Scholz 2019). Additionally, advances in computational mod-
eling have allowed researchers to simulate the behavior of faults and better predict
the likelihood of earthquakes (Aagaard et al. 2010).
Induced seismicity has received increasing attention in recent years. An abrupt

rise in the rate of induced earthquakes has been observed since 2008 (Keranen et al.
2018). Induced earthquakes have been recorded in many parts of the world, includ-
ing the United States, Europe, and Asia (Ellsworth 2013; Foulger et al. 2018; Grigoli
et al. 2017; Keranen et al. 2018; Muntendam-Bos et al. 2022; Shapiro 2015). These
induced earthquakes are typically of smaller magnitudes than natural earthquakes
but can still cause damage to infrastructure and lead to public safety concerns (Mc-
Garr et al. 2002; van der Voort et al. 2015).
Various kinds of anthropogenic activity have been proven to be potential causes

of induced seismicity. The impoundment of reservoirs (Carder 1945; Gupta 2002;
Simpson 1976), fluid withdrawal (Pratt et al. 1926; Segall 1989; Van Thienen-Visser
et al. 2015), fluid injection (Davis et al. 1989; Healy et al. 1968; Kim 2013), hydraulic
fracturing (Atkinson et al. 2016; Schultz et al. 2017), mining (McGarr 1984; Riemer
et al. 2012), geothermal energy production (Buijze et al. 2020; Ellsworth et al.
2019; Majer et al. 2007) and CO2 geological storage (Cheng et al. 2023) can cause
seismicity. A growing number of induced earthquakes has inspired the development
of dedicated global databases (Chen et al. 2023; Wilson et al. 2017).
The development of geo-energy resources in the subsurface motivated special

attention to the seismicity induced by pore pressure and temperature variations.
Poroelastic effect can play a significant role in the mechanics of induced earth-
quakes. Pore pressure redistribution caused by a major earthquake was observed
by water level change in wells (Jónsson et al. 2003) and may lead to delayed af-
tershocks (Nur et al. 1972; Segall et al. 1995). On the other hand, pore pressure
may stabilize a weakening fault zone leading to precursory creep (Rice et al. 1979;
Rudnicki 2001; Veltmeijer et al. 2022).
Another essential feature of induced seismicity is the localization of events in

space. In this case, a microseismic monitoring network can be installed for gain-
ing a deeper comprehension of the physical processes that control induced seis-
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mic activity. To assess the hazard of induced seismicity companies involved in
resource extraction are obligated by governments to establish suitable infrastruc-
ture for microseismic monitoring in Italy, Netherlands, and Switzerland (Dost et al.
2012). Well-designed microseismic monitoring networks allow seismic events to be
evaluated in terms of their magnitude and location, identifying even weak events
(Mw < 0) in the presence of noise contamination (Grigoli et al. 2017).
A bulk of knowledge about induced seismicity is obtained from laboratory ex-

periments. The design of these experiments allows the relationship between the
state of stress and observed rupture response to be investigated in a controlled set-
ting. In particular, friction experiments showed that the rate-and-state (Dieterich
1979; Ruina 1983) and more sophisticated friction laws (Chen et al. 2022; Chen
et al. 2016; Niemeijer et al. 2007) are essential for descriptive modeling of induced
seismicity. The parameters of these laws control the areas of contact prone to
frictional instabilities (Hunfeld et al. 2017). Core loading experiments show the
significant role of inelastic deformation observed in seismically active formations
(Pijnenburg et al. 2019), the effect of loading rate (Naderloo et al. 2023) and time-
dependent deformation on estimated subsidence (Shinohara et al. 2022). Core
injection experiments demonstrate how frictional response varies under different
injection strategies (Hutka et al. 2023; Ji et al. 2022; Wang et al. 2020a). The use
of passive and active acoustic monitoring in a laboratory environment can be es-
pecially gainful, so it provides insights on earthquake precursors that may improve
the prediction of seismicity (Bolton et al. 2020).
Although field and laboratory studies contribute to reservoir characterization and

understanding of the underlying mechanisms of seismic events, they, by them-
selves, are not capable to develop a specific operational strategy for the mitigation
of induced seismicity or safe field management. In addition to field and laboratory
studies, numerical modeling based on reservoir geomechanics and contact mech-
anics can achieve this. A numerical model constrained to the accumulated field and
laboratory data represents a digital twin of the reservoir that can resolve physical
processes relevant to the triggering of seismic events.

1.2. Societal Relevance

T he increasing attention towards induced seismicity requires a deeper under-
standing of the mechanisms governing these events, and the potential risks

and benefits they entail. Numerical modeling of induced seismicity has become an
essential research area, with significant social relevance, primarily due to the need
for accurate predictions, early warning systems, and risk assessments associated
with human activities in the subsurface.
The risks associated with induced seismicity stem from the potential for surface

movement, structural damage, and adverse effects on the environment and human
health. These concerns have been documented in several studies that highlight the
importance of risk assessment and management for subsurface activities (McGarr
et al. 2002; van der Voort et al. 2015). Induced seismic events, while typically
smaller in magnitude than natural earthquakes, can still cause considerable damage
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to infrastructure, particularly in densely populated areas or regions with vulnerable
structures. Furthermore, induced seismicity can lead to public safety concerns and
anxiety, as well as economic losses due to property damage, compensation claims,
and reduced property values (van der Voort et al. 2015).
These concerns are increased by the growing demand for energy and commodit-

ies (International Energy Agency 2022), which has led to increased human activity
in the subsurface. The extraction of natural gas, oil, and geothermal energy can of-
fer economic growth, job creation, and increased energy security. However, these
benefits must be carefully weighted against the risks posed by the associated in-
duced seismic events.
The role of subsurface energy resources in the green transition further emphas-

izes the importance of research in the numerical modeling of induced seismicity.
Geothermal energy, for example, offers a clean, reliable, and renewable energy
source, which can contribute to the global effort to reduce greenhouse gas emis-
sions and mitigate climate change. Additionally, carbon capture and storage tech-
nology can help reduce the carbon footprint of fossil fuel-based energy production,
thereby complementing the green transition.
To ensure the safe and sustainable utilization of subsurface resources, it is cru-

cial to develop and implement robust regulatory frameworks, best practices, and
technological innovations that mitigate the risks of induced seismicity. Numerical
modeling of induced seismicity plays a pivotal role in this process, enabling scientists
and policymakers to better understand, predict, and manage the risks associated
with subsurface activities. Accurate numerical models can help guide the develop-
ment of effective monitoring networks, as well as inform the design of laboratory
experiments that investigate the relationships between stress states, pore pressure
variations, and rupture responses in controlled settings.
One prominent example of induced seismicity is the case of the Groningen gas

field in the Netherlands (Dost et al. 2017). The extraction of natural gas from the
field has led to a series of induced earthquakes, causing significant damage to build-
ings, infrastructure, and the environment. These events have raised public concern
and prompted the need for a more stringent management approach to minimize the
adverse impacts of induced seismicity (Perlaviciute et al. 2017; van der Voort et al.
2015). Numerical modeling of induced seismicity in Groningen can provide valuable
insights into the relationship between gas extraction activities and seismic events,
enabling the development of more effective monitoring and mitigation strategies.
Furthermore, this case illustrates the importance of interdisciplinary research and
collaboration among geoscientists, engineers, policymakers, and local communities
to ensure the safe and sustainable management of subsurface resources.

1.3. Numerical Modeling

T he success in reservoir characterization and monitoring of seismic events set
the stage for the development of geomechanical models of various complexit-

ies (Jansen et al. 2022; Novikov et al. 2022b; Pampillón et al. 2018; Ruan et al.
2023; Shokrollahzadeh Behbahani et al. 2022b; Van Wees et al. 2017; Van Wees
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et al. 2019) capable to reproduce the conditions at which seismicity occurs. Nu-
merical modeling, e.g. geostatistical and flow modeling, constrained to field meas-
urements, has been successfully developed and used in reservoir management for
decades (Jansen et al. 2009; K. Aziz 1979; Michael J. Pyrcz 2014). At the same time,
geomechanical modeling, extensively applied in geotechnics and civil engineering,
also has been employed in reservoir engineering for the planning of fracking and
drilling operations, and wellbore stability analysis (Zoback 2007). Land subsidence,
induced seismicity, and the stability of underground storage have attracted addi-
tional attention to geomechanical and coupled poromechanical modeling in recent
years.

Several studies have been developed in the literature for simulation of geomech-
anics and induced seismicity. More precisely, Biot’s consolidation model has been
simulated with a finite difference method using staggered 1D (Gaspar et al. 2003)
and 2D (Gaspar et al. 2006) grids. Galerkin Finite Element Methods (FEM) have
been also employed by many researchers to investigate induced seismicity in dif-
ferent geoscience applications (Garipov et al. 2019; Garipov et al. 2016; Jha et
al. 2014). Mixed FEM was also extensively developed to allow for more accurate
treatment of geomechanics (Arbogast et al. 1997; Phillips et al. 2007). To en-
hance convergence properties of the underlying linear systems, weakly-imposed
symmetry of the stress tensor in the mixed FEM has been also suggested (Arnold
et al. 2007) and employed in combination with a multi-point stress approximation
(Ambartsumyan et al. 2020). Recently, the extended FEM method has been utilized
for the fully dynamic modeling of induced rupture propagation (Han et al. 2023).

A number of research and community-driven geodynamic codes have been in-
troduced to address the modeling of earthquakes. The finite difference method for
the staggered spatially adaptive rectilinear grids has been implemented in GARNET
(Pranger 2020). PyLith (Aagaard et al. 2022), an open-source FEM code for the
quasi-static and fully-dynamic modeling of crustal deformation, earthquakes and
volcanoes has recently been extended to poroelastic media (Walker et al. 2023).
Despite the higher computational cost, Discontinuous Galerkin (DG) methods have
become an increasingly popular choice for accurate modeling of both wave propaga-
tion and earthquake rupture simulations as they combine the advantages of Finite
Volume Methods (FVM) and FEM: flux-based formulation which allows nonlinear
interface conditions to be naturally incorporated (Tago et al. 2012), provide ar-
bitrary order of accuracy in space and time (Dumbser et al. 2006; Wolf et al.
2022), support unstructured curvilinear meshes of different topologies (Uphoff et al.
2023), and demonstrate low numerical dispersion. The examples of DG-based high-
performance codes are SeisSol (Uphoff et al. n.d.), Tandem (Uphoff et al. 2023),
and ExaHyPE (Reinarz et al. 2020). The appearance of multiple simulation codes
with different underlying numerical schemes has caused the development of com-
munity benchmarks including the SCEC/USGS Spontaneous Rupture Code Verifica-
tion Project (Day et al. 2005; Harris et al. 2009), and the Sequences of Earthquakes
and Aseismic Slip (SEAS) comparison study (Erickson et al. 2023; Jiang et al. 2022).
Realistic earthquake modeling workflows require these computational engines to be
optimized for high-performance systems, including the emerging exascale systems
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(Folch et al. 2023).
Recently, FVM has gained considerable interest in the computational geomech-

anics community. This is despite the fact that a locally conservative stress field for
geomechanics does not seem to be as crucial as the locally conservative mass flux
typically required in multiphase flow simulations. Nonetheless, the schemes of FVM
are still attractive choices because they respect the balance of fluxes on both local
and global scales, admit a seamless integration with the FVM-based fluid dynamics
solvers widely used in reservoir engineering, can easily incorporate nonlinearity,
and support a wide range of cell topologies. Overshadowed by the success of FEM
in structural and soil mechanics, FVM has been developed only over the past three
decades (Cardiff et al. 2021). Recent literature includes the development of the FVM
for geomechanical simulations with both staggered (Deb et al. 2017a; Sokolova et
al. 2019) and collocated grids (Berge et al. 2020; Keilegavlen et al. 2017a; Nord-
botten 2014; Terekhov 2020a; Terekhov et al. 2020). In this study, we employ the
existing collocated cell-centered FVM for continuous poroelastic media (Terekhov
2020a; Terekhov et al. 2020) and extend it to faulted poroelastic media (Novikov
et al. 2022a; Novikov et al. 2022b).
Most of the of FVM-based schemes rely on various flux approximations that de-

termine the consistency, accuracy and stability of the method. In reservoir engin-
eering applications, Two-Point Flux Approximation (TPFA) has been widely recog-
nized as a reasonable trade-off that ensures numerical stability with an acceptable
level of accuracy. Even though TPFA loses consistency on non-K-orthogonal grids
(Wu et al. 2009), the more accurate and consistent alternative, i.e., Multi-Point Flux
Approximation (MPFA) (Aavatsmark et al. 1996; Edwards et al. 1998) introduces nu-
merical stability issues (Aavatsmark et al. 2008; Kershaw 1981; Nordbotten et al.
2007). A similar form of discretization technique, namely Multi-Point Stress Ap-
proximation (MPSA), has been also developed to solve the linear elasticity problem
with FVM (Keilegavlen et al. 2017b; Martin 2014; Terekhov et al. 2020; Tuković
et al. 2013). Its extension to the coupled poroelasticity problem with a collocated
arrangement of unknowns often suffers from the violation of the inf-sup condition
and requires additional stabilization (Honório et al. 2018; Nordbotten 2016; Terek-
hov 2021a). One of the possible ways to enhance the numerical stability of FVM
is the use of nonlinear schemes which satisfy monotonicity (Nikitin et al. 2013;
Schneider et al. 2018a) or discrete maximum principle (Terekhov et al. 2017) at
every nonlinear iteration. In this thesis, a novel nonlinear MPFA scheme for the
elasticity problem is introduced.
Different numerical approaches have been developed to address the approxim-

ation of fluid flow in faults. The Discrete Fracture Model (DFM) (Karimi-Fard et al.
2004) allows faults to be resolved explicitly at the interfaces of the grid cells. It
respects fault geometry and material contrasts in the vicinity of the fault even on
coarse meshes (de Hoop et al. 2022). In contrast to DFM, the Embedded Discrete
Fracture Model (EDFM) (Li et al. 2008) and projection-based EDFM (Tene et al.
2017) do not require conformal meshing of faults, hence, independent grids for
faults and rock matrix can be employed. A comprehensive review and benchmark-
ing study of these approaches have been conducted (Berre et al. 2021).
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Both concepts have been successfully applied for mechanics and poromechanics
modeling (Berge et al. 2020; Deb et al. 2017b; Garipov et al. 2019; Garipov et al.
2016; Terekhov 2020b; Xu et al. 2021). In the embedded models, special discon-
tinuity basis functions are used to resolve contact mechanics (Deb et al. 2017b;
Xu et al. 2021) whereas the use of staggered grids (Garipov et al. 2019; Garipov
et al. 2016) allows for natural treatment of the discontinuities within a DFM unstruc-
tured mesh. The present study follows the latter approach, where we employ the
mixed-dimensional DFM within a cell-centered collocated FVM (Boon et al. 2023;
Boon et al. 2021; Keilegavlen et al. 2021). This approach implies the equidimen-
sional DFM to be utilized for the integration of fluid mass fluxes in faults, including
the fluxes between fault cells, while the lower-dimensional DFM resolves the mo-
mentum fluxes at the contact interfaces at faults.
The simulation of realistic models imposes strict requirements on the perform-

ance of numerical frameworks. Some authors (Deb et al. 2017b; Garipov et al.
2018) use fixed-stress splitting algorithms (Kim et al. 2011; Settari et al. 1998) to
decouple mechanics and flow equations. These are a form of sequential implicit (SI)
solution schemes and often lead to more efficient simulations than fully implicit (FI)
simulations. However, sequential schemes introduce certain restrictions on time
step sizes. On the other hand, FI schemes (Berge et al. 2020; Garipov et al. 2019;
Garipov et al. 2016; Garipov et al. 2018; Sokolova et al. 2019) are unconditionally
stable and are often more robust and convenient approaches for the investigation
of complex multiphysics problems. FI is often found to outperform the SI approach
for coupled thermo-compositional-mechanical simulation (Garipov et al. 2018).
Although the FI approach theoretically does not imply restrictions on time step

size, practically it requires efficient nonlinear and linear solution strategies for high-
resolution models. A preconditioner based on the fixed-stress splitting concept
has been developed (White et al. 2016). It utilizes a sparse approximation of the
Schur complement to obtain a block-preconditioned solution strategy. Later this
approach was combined with a constrained pressure residual (CPR) preconditioner
to construct a robust and effective solution strategy for coupled multiphase flow and
mechanics (White et al. 2019). Recently, block-partitioned preconditioners based
on the pseudo-Schur complement have been developed for the contact mechanics
problem solved with Lagrange multipliers (Ferronato et al. 2019; Franceschini et al.
2022a; Franceschini et al. 2022b). To enhance the performance of the proposed
FVM framework, in this work we implement a block-partitioned preconditioner based
on a sparse approximation of the Schur complement (White et al. 2016).

1.4. Thesis Objectives

I n this thesis, we present a FVM-based computational framework for the modeling
of fault reactivation. Regarding this topic, the goals of this thesis include

• The development of a fully implicit numerical method for the modeling of
fluid mass and momentum balances in faulted porous media. This numerical
scheme should be capable of handling arbitrary boundary conditions, hetero-
geneity, anisotropy, and fluid properties.
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• The implementation of an iterative linear solution strategy for the acceleration
solution of linear systems stemming from the fully implicit discretization of
poroelastic equations.

• The incorporation of a mixed-dimensional conformal DFM into the developed
numerical method for the coupled treatment of fluid mass and contact mech-
anics at faults. The use of the penalty method or the Lagrange method for
enforcing the contact mechanics constraints at faults.

• The benchmarking of developed modeling capabilities in a number of tests,
including the convergence study, benchmarks against existing analytical and
semi-analytical solutions, other modeling frameworks, and laboratory experi-
mental data.

• The validation of the framework against the experiment with injection-induced
slip in core crosscuts. The modeling of a large-scale experimental setup with
a displaced fault configuration. The evaluation of the possible loading path
for the experiment.

• The development of a first-of-its-kind nonlinear stress approximation scheme
for elasticity problem. The investigation of its accuracy and the convergence
of nonlinear iterations.

• The extension of the framework to the fully dynamic (FD) modeling of rup-
ture propagation. The investigation of nucleation, propagation, and arrest
stages of the rupture induced in the displaced fault configuration under slip-
weakening friction law.

1.5. Outline of the Thesis
The thesis presents a consecutive description of the theory of fluid mass and mo-
mentum transfer in porous faulted rocks, the proposed FVM, their validation in
multiple benchmarks, the modeling of experimental frictional setups and the fully
dynamic modeling of rupture propagation.
Sec. 2 describes the mathematical representation of faulted porous rocks and

the theory of fluid mass and momentum transfer in those rocks. The key con-
stitutive relationships defining the hydromechanical response of poroelastic media
are considered. Besides, the contact mechanics including contact constraints are
introduced together with friction laws most relevant to porous rocks.
Sec. 3 considers the discrete approximations of the continuous governing equa-

tions presented in Sec. 2. First, the FVM with derived multi-point approximations
at continuous, contact, and boundary interfaces is described. Second, the inf-sup
stabilization for the presented FVM is considered. Third, the derivation of the pro-
posed nonlinear FVM for elasticity problem is presented. Subsequently, the discrete
iterative process satisfying contact constraints is described in detail. In the final part
of the section, we present the linear solution strategies and the details of imple-
mentation.
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Sec. 4 includes several benchmarks for the developed FVM with incorporated
contact mechanics. We start with the basic testing of FVM in continuous media
(Terekhov 2020a; Terekhov et al. 2022) revealing its unstable behavior in the limit
of undrained conditions. Next, we consider a larger heterogeneous example in the
form of SPE10 model where we also check the performance of the implemented
linear solution strategy. We compare the results of simulation against two other
numerical frameworks for both continuous and faulted media. Then, we provide a
detailed consideration of the displaced fault problem with an extensive comparison
of the numerical simulation against those of a semi-analytical approach (Jansen
et al. 2019; Jansen et al. 2022). Finally, we perform a few tests of the proposed
nonlinear scheme.
Sec. 5 presents the modeling of two laboratory setups: injection-induced slip

in a core cross-cut, and a large-scale experimental setup with displaced fault con-
figuration. We perform modeling of the first setup with multiple friction laws and
successfully reproduce the measured data. In the second case, we investigate the
distribution of fault plane stresses and their sensitivity. As a result, we propose the
loading path for the experiment that facilitates the investigation of the initiation and
propagation of slippage in a laboratory-scale displaced fault configuration.
Sec. 6 considers the FD approach to the modeling of rupture propagation in order

to overcome nonlinear convergence issues. For the displaced fault configuration,
we perform the modeling of rupture propagation induced by a remote well and
perform a sensitivity study.
Sec. 7 recapitulates the key takeaways from the thesis. It initiates a discussion

about the suitability of the developed FVM for the modeling of induced seismicity
and considers possible future directions of research.





2
Mechanics of Faulted

Saturated Porous Media
Summary

This chapter presents the fundamentals of the mechanics of faulted saturated
poroelastic media including the conservation laws and relevant constitutive rela-
tionships. Moreover, we present the basics of contact mechanics and the friction
laws modeling the frictional response of faults in subsurface. Finally, the system of
partial differential equations (PDEs), defining the behavior of quasi-static poroelastic
media is presented.

11
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2.1. Main Definitions

A saturated porous medium consists of a solid deformable porous matrix and a
fluid. It is assumed that the pore space in matrix is connected in a way the

fluid can flow through it. The fluid represents a mixture of liquids and vapours. In
general, the fluid can be multicomponent and multiphase. We define component as
a chemical substance that comprises a matrix or a fluid. A phase is a thermodynam-
ically stable state of a substance distinct from other states of the same substance.
For simplicity, we limit our consideration to a single-phase single-component fluid.
The macroscale description of such dispersed media relies on the hypothesis of su-
perimposition of continuous media (Coussy 2004; Nigmatulin 1978) which implies
the existence of all constituents (matrix and fluid phases), each characterized by
an independent state of motion, at the same point in space (de Boer 2005). A
representative elementary volume (REV) or a material point is a volume of continu-
ous medium negligibly small for the spatial scale of a problem but sufficiently large
compared to the maximum pore size. Macroscale heterogeneities impose an even
lower upper bound to REV. Every material point is characterized by its coordinates
in three-dimensional space and by time. The way how they are assigned is called
coordinate system.
Let us denote 𝜅𝛼 a volume of space occupied by medium 𝛼 = {s, f} at time 𝑡 = 𝑡0.

We call 𝜅𝛼 an initial configuration. The volume of space 𝜒(𝑡) occupied by all media
at time 𝑡 > 𝑡0 is called a current configuration. The mapping of material points
𝜅𝛼 → 𝜒(𝑡) is called a deformation which, under certain assumptions, can be written
in the form of motion law as (Kondaurov 2007)

X𝛼 = X𝛼(x, 𝑡), X𝛼 ∈ 𝜅𝛼 , x ∈ 𝜒(𝑡), 𝛼 = {s, f}, 𝑡 > 𝑡0. (2.1)

The behaviour of medium 𝛼 characterized by its properties as the functions of X𝛼
and time is called a Lagrangian approach. In the case these properties are con-
sidered to be functions of x and time it is called Eulerian approach.
Note that in most literature (Coussy 2004; Truesdell 1991) the inverse motion

law x = x(X𝛼 , 𝑡) is used which represents the deformation 𝜅𝛼 → 𝜒(𝑡). Although
both laws lead to equivalent formulations, the law written in Eq. (2.1) leads us to
Eulerian formulation of mechanics that can be more convenient in fluid dynamics
and related applications.
If the motion law in Eq. (2.1) is differentiable then we can introduce a distortion

as
G𝛼 = ∇X𝛼 , 𝛼 = {s, f}. (2.2)

The velocity v𝛼 of material point X𝛼 and the particle change velocitym𝛼 at point
x are defined as

v𝛼 =
𝜕x(X𝛼 , 𝑡)

𝜕𝑡 |
X𝛼
, m𝛼 =

𝜕X𝛼(x, 𝑡)
𝜕𝑡 |

x
= −G𝛼v𝛼 , 𝛼 = {s, f}. (2.3)

Polar decomposition applied to the distortion gives

G𝛼 = R𝛼U𝛼 = V𝛼R𝛼 , 𝛼 = {s, f} (2.4)
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where R𝛼 is an orthogonal matrix, U𝛼 and V𝛼 are symmetric positive-definite
matrices. The decomposition in Eq. (2.4) is a mathematical representation of the
fact that the deformation can be decomposed into the combination of pure stretch
and rotation where U𝛼 and V𝛼 characterize stretch, R𝛼 characterizes rotation.
In the applications, the matrices C𝛼 = (G−1𝛼 )𝑇G−1𝛼 and B𝛼 = G𝑇𝛼G𝛼 are used to

introduce Green-Lagrange A𝛼 and Euler-Almansi E𝛼 strain tensors (Germain 1973)

A𝛼 = (C𝛼 − I)/2 = (V−2𝛼 − I)/2, 𝛼 = {s, f}, (2.5)

E𝛼 = (I− B𝛼)/2 = (I− U2𝛼)/2, 𝛼 = {s, f}, (2.6)

where superscript 𝑇 denotes a transposed matrix. The tensors in Eqs. (2.5) and
(2.6) define the measure of deformation.
Let us introduce the vector of displacements u𝛼 = x − X𝛼. Then, we have

G𝛼 = I−∇u𝛼 and the strain tensors defined in Eqs. (2.5) and (2.6) can be rewritten
as

A𝛼 = (∇𝑋𝛼u𝛼 + (∇𝑋𝛼u𝛼)𝑇 + ∇𝑋𝛼u𝛼(∇𝑋𝛼u𝛼)𝑇)/2, 𝛼 = {s, f}, (2.7)
E𝛼 = (∇u𝛼 + (∇u𝛼)𝑇 + ∇u𝛼(∇u𝛼)𝑇)/2, 𝛼 = {s, f}, (2.8)

where ∇ and ∇𝑋𝛼 denote gradient operator with respect to x and X𝛼 respectively.
The distortion tensor determines the relation ∇ = G𝑇𝛼∇𝑋𝛼 between them.
The quantities G𝛼 and m𝛼 are the first derivatives of motion law in Eq. (2.1)

with respect to space and time, correspondingly. The assumption of piecewise
twice continuous differentiability of Eq. (2.1) requires the equation of compatibility
of deformations and velocities to be satisfied as

𝜕G𝑇𝛼
𝜕𝑡 + ∇ ⋅ (G𝛼v𝛼) = 0, 𝛼 = {s, f}. (2.9)

The volume fraction of medium 𝛼 is defined as a ratio of volume 𝑉𝛼 occupied
by medium 𝛼 within volume 𝑉 of three-dimensional space where all volumes are
taken in the current configuration. The volume fraction of fluid 𝜙 = 𝑉f/𝑉 is called
porosity.
The elementary volume 𝑑𝑉𝜅𝛼 transforms to 𝑑𝑉𝛼 with deformation 𝜅𝛼 → 𝜒(𝑡) as

follows
𝑑𝑉𝛼 = 𝐽−1𝛼 𝑑𝑉𝜅𝛼 , 𝐽𝛼 = |detG𝛼| , 𝛼 = {s, f}. (2.10)

The material derivative with respect to particle X𝛼 is defined as

𝑑𝛼
𝑑𝑡 =

𝜕
𝜕𝑡 + v𝛼 ⋅ ∇. (2.11)

2.2. Conservation Laws

U sing Eq. (2.10) the conservation of mass of medium 𝛼 in Lagrange form can
be written as

∫
𝑉𝜅

𝜌𝜅𝛼𝑑𝑉𝜅𝛼 = ∫
𝑉
𝜌𝛼𝑑𝑉𝛼 + 𝑗𝛼 , 𝛼 = {s, f}, (2.12)
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where 𝜌𝜅𝛼 and 𝜌𝛼 are densities of medium 𝛼 in the initial and current configurations,
respectively, and 𝑗𝛼 stands for the sources and sinks of mass and the exchange
of mass with other media. The material derivative of Eq. (2.12) gives us the
conservation of mass balance in Euler form, i.e.,

∫
𝑉
( 𝜕𝜕𝑡 (𝜙𝛼𝜌𝛼) + ∇ ⋅ 𝜙𝛼𝜌𝛼v𝛼 − 𝑟𝛼)𝑑𝑉 = 0, 𝛼 = {s, f}, (2.13)

where 𝑟𝛼 is the intensity of the influx of mass in medium 𝛼.
In the same manner, one can achieve the conservation of linear momentum for

medium 𝛼 in Euler form

∫
𝑉
( 𝜕𝜕𝑡 (𝜙𝛼𝜌𝛼v𝛼) + ∇ ⋅ (𝜙𝛼𝜌𝛼v𝛼v

𝑇
𝛼 − 𝜙𝛼ΣΣΣ𝑇𝛼) − 𝜙𝛼𝜌𝛼𝑔∇𝑧 − fint𝛼 )𝑑𝑉 = 0, 𝛼 = {s, f},

(2.14)
where ΣΣΣ𝛼 is a Cauchy partial stress tensor of medium 𝛼, 𝑔 is gravitational accel-
eration, fint𝛼 is an interaction force to medium 𝛼 exerted by other media such that
fints + fintf = 0.
The porosity, the partial Cauchy stress tensor and the interaction force can be

represented as a sum of two terms (Kondaurov 2007; Nigmatulin 1978; Nikolaevskiy
1996)

𝜙𝛼 = 𝜙0𝛼 + 𝜙dis
𝛼 , fint𝛼 = f0𝛼 + fdis𝛼 , ΣΣΣ𝛼 = ΣΣΣ0𝛼 +ΣΣΣdis𝛼 , 𝛼 = {s, f}, (2.15)

where superscript “0” denotes properties taken in equilibrium, “dis” indicates the
dissipative contribution. From Eq. (2.14) one can find that f0𝛼 = −ΣΣΣ0𝛼 ⋅ ∇𝜙0𝛼.
The sum of momentum balances in Eq. (2.14) for both media can be written as

∫
𝑉
( 𝜕𝜕𝑡 (𝜌v) + ∇ ⋅ (𝜌vv

𝑇 −ΣΣΣ𝑇) − 𝜌𝑔∇𝑧)𝑑𝑉 = 0, (2.16)

where 𝜌v = ∑𝛼 𝜙𝛼𝜌𝛼v𝛼 is the total momentum, 𝜌vv𝑇 = ∑𝛼 𝜙𝛼𝜌𝛼v𝛼v𝑇𝛼 represents
the total velocity convection, ΣΣΣ = ∑𝛼 𝜙𝛼ΣΣΣ𝛼 is the total Cauchy stress tensor, 𝜌 =
∑𝛼 𝜙𝛼𝜌𝛼 is the total mass density.
The conservation of angular momentum is equivalent to the requirement of sym-

metry of the Cauchy stress tensor (Coussy 2004)

ΣΣΣ𝛼 = ΣΣΣ𝑇𝛼 , 𝛼 = {s, f}, (2.17)

The conservation of energy that represents the first law of thermodynamics reads
as

∫
𝑉

∑
𝛼={s,f}

( 𝜕𝜕𝑡 (𝜙𝛼𝜌𝛼𝑒𝛼) + ∇ ⋅ (𝜙𝛼 (𝜌𝛼𝑒𝛼v𝛼 −ΣΣΣ𝛼v𝛼)) − 𝜙𝛼𝜌𝛼𝑔∇𝑧 ⋅ v𝛼)𝑑𝑉 = 0,

(2.18)

where the 𝑒𝛼 = 𝑈𝛼 + v𝑇𝛼v/2 is the specific total energy of medium 𝛼, 𝑈𝛼 is the
specific internal energy of medium 𝛼.
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2.3. Contact Mechanics

G eologic formations in subsurface may contain faults and fractures. They in-
troduce discontinuities into a continuous porous medium which require special

treatment. For simplicity, below we call these discontinuities faults meaning that
they may represent fractures as well.
The formulation of contact mechanics requires stresses and forces attributed to

an interface to be defined. The projection of stress tensor ΣΣΣ to an interface with
unit normal vector n is called total traction vector or traction vector and defined as

f = −ΣΣΣn, (2.19)

where the negative sign is motivated by the sign of the corresponding term in
the momentum balance. Traction vector can be decomposed into normal f𝑁 and
tangential components f𝑇 as

f = f𝑁n+ f𝑇 , f𝑁 = −n𝑇ΣΣΣn, f𝑇 = (I− nn𝑇)f, (2.20)

where we call −f𝑁 and |f𝑇| as normal and shear stresses, respectively, I denotes
identity matrix.
Along with total stress tensor, we consider the effective Terzaghi ΣΣΣ′ and effective

Biot ΣΣΣ″ stress tensors defined as

ΣΣΣ′ = ΣΣΣ + 𝑝I, ΣΣΣ″ = ΣΣΣ + 𝑝B, (2.21)

where 𝑝 is pore pressure, B is the rank-two tensor of Biot’s coefficients that will
be defined in Sec. 2.4.2. Subsequently, effective Terzaghi f′ and effective Biot f″
traction vectors can defined as

f′ = −ΣΣΣ′n, f″ = −ΣΣΣ″n. (2.22)

At the fault interfaces, we also consider a gap vector g that is equal to the jump
of matrix displacements over the contact as

g = u+𝑠 − u−𝑠 (2.23)

where superscripts + and − denote different sides of the fault with respect to a
reference plane. As for the traction vector, we consider the decomposition of the
gap vector into normal g𝑁 and tangential g𝑇 components as

g = g𝑁n+ g𝑇 , g𝑁 = n𝑇g, g𝑇 = (I− nn𝑇)g, (2.24)

where the absolute value of normal component |g𝑁| is called aperture and the
absolute value of tangential component |g𝑇| is called slip.
Fault segments can be in three different states: stick, slip and open which are

defined as follows

{ f
′
𝑁 > 0,
Φ < 0, (stick), (2.25)

{ f
′
𝑁 > 0,
Φ = 0, (slip), (2.26)

f′𝑁 = 0, (open), (2.27)
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where Φ denotes a sliding surface (in analogy to yield surface) that defines sliding
criterion Φ = 0 (Yastrebov et al. 2013). Generally, a sliding surface could depend
not only on stresses but also on other parameters, e.g., stress rate, slip, slip rate,
and time. The particular form of sliding surface will be introduced in Sec. 2.4.3.
The formulation of contact mechanics includes inequality constraints that could

be written separately for normal and tangential projections. Normal constraints are
formulated in the form of Hertz-Signorini-Moreau (Seitz et al. 2019; Wriggers 2006)
conditions as

g𝑁 − g0𝑁 ≤ 0, f′𝑁 ≥ 0, f′𝑁 (g𝑁 − g0𝑁) = 0, (2.28)
where g0𝑁 represents the initial fault aperture. The tangential constraints can be
written in the form of Karush-Kuhn-Tucker conditions (Simo et al. 1992; Wriggers
2006) as

Φ ≤ 0, ġ𝑇 = −𝜐
𝜕Φ
𝜕f𝑇

, 𝜐 ≥ 0, 𝜐Φ = 0, (2.29)

where ġ𝑇 denotes time derivative of g𝑇, 𝜐 is a non-negative parameter. Eqs. (2.28)
represent impenetrability condition, the condition that prohibits tension stress, and
complementary conditions respectively. Eqs. (2.29) include a sliding (or slipping)
criterion, the condition that defines the direction of sliding, and a complementary
condition, respectively. The physical meaning of the complementary condition 𝜐Φ =
0 is that it allows a fault segment to be either in slip state Φ = 0 or in stick state
𝜐 = 0.

2.4. Constitutive Relationships

C onservation laws and contact constraints presented above are not sufficient
for even a qualitative representation of physical processes as many of their

parameters remain undefined. For example, the relationship between stress and
strains should be defined based on the rheology of the particular medium which is
different for rocks, liquids and vapors (Germain 1973; Sedov 1997; Truesdell 1991).
Another example is the interaction force between the constituents of a dispersive
medium capable to move past each other. It is also different for gas bubbles in a
liquid fluid (Nigmatulin 1978) and for a fluid flowing through porous rocks (de Boer
2005).

2.4.1. Infinitesimal Deformations
The assumption of infinitesimal deformations |u𝛼| ≪ 1, on the one hand, is com-
mon and acceptable in many geo-energy-related applications and, on the other
hand, it allows constitutive relationships and, as a result, governing equations to
be remarkably simplified. Under this assumption, the gradients taken in two con-
figurations become equal ∇ = ∇𝑋𝛼 and elementary volume transforms by a factor
of 𝐽𝛼 = |detG𝛼| = 1+∇ ⋅u𝛼. Moreover, in this case B𝛼 is linearized with respect to
∇u𝛼 and the Euler-Almansi strain tensor reduces to the infinitesimal strain tensor

E𝛼 =
∇u𝛼 + (∇u𝛼)𝑇

2 . (2.30)
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We proceed with derivations below under the assumption of infinitesimal deforma-
tions.

2.4.2. A Linear Saturated Thermoporoelastic Medium with
Viscous Interaction Between Components

An anisotropic linear saturated thermoporoelastic medium is defined by its total
stress tensor ΣΣΣ, porosity 𝜙 and specific matrix entropy 𝜂𝑠 as (Biot 1977; Biot 1941;
Cheng 1997; Coussy 2004; Kondaurov 2007)

ΣΣΣ −ΣΣΣ0 = ℂ ∶ (Es − E0s) − (𝜃 − 𝜃0)A− (𝑝 − 𝑝0)B, (2.31)

𝜙 − 𝜙0 = B ∶ (E𝑠 − E0𝑠) + 𝛼𝜙(𝜃 − 𝜃0) +
𝜓 − 𝜙0
𝐾𝑠

(𝑝 − 𝑝0), (2.32)

𝜌0𝑠 (𝜂𝑠 − 𝜂0𝑠 ) = A ∶ (E𝑠 − E0𝑠) −
𝛼𝜙
𝜌0𝑠
(𝑝 − 𝑝0) + 𝑐𝑠𝜌

0
𝑠

𝜃0 (𝜃 − 𝜃
0), (2.33)

and by dissipative part of the interaction force fdis𝛼 and heat conduction vector q𝜃

Kfdis𝛼
𝜙𝜇𝑓

= −w, (2.34)

q𝜃 = −ΛΛΛ∇𝜃, (2.35)

where ℂ is the rank-four stiffness tensor of drained rock, 𝜃 is temperature equal
for both media, 𝑝 is pore pressure, A is the rank-two rock thermal dilation tensor
(Coussy 2004), B is the rank-two Biot’s tensor, 𝛼𝜙 is the volumetric thermal dilation
coefficient related to the porosity (Coussy 2004), 𝜓 = tr(B)/3 denotes the one-
third of the trace of B, 𝐾𝑠 is the bulk modulus of rock matrix, 𝑐𝑠 is the specific
heat capacity of rock matrix, K is the rank-two permeability tensor, 𝜇f is the fluid
viscosity, w = vf − vs is the relative fluid velocity with respect to matrix or Darcy
velocity, ΛΛΛ is the rank-two heat conductivity tensor.
Eqs. (2.31)-(2.33) define the response of saturated thermoporoelastic medium

to thermomechanical perturbations and the coefficients in Eqs. (2.31)-(2.33) can
be defined through the partial derivatives of the thermodynamic potential of the
medium around its initial state (E0𝑠 , 𝑝0, 𝜃0). Eq. (2.34) leads to the Darcy law
whereas Eq. (2.35) represents Fourier’s law. Both relationships in Eqs. (2.34),
(2.35) define fluid and thermal energy dissipation respectively. Tensors K and ΛΛΛ
can be derived as the second partial derivatives of energy dissipation (Coussy 2004;
Kondaurov 2007).
Following the same approach and expanding the free potential energy of fluid

around the initial state (𝜌0f , 𝜃0) one may derive the constitutive relationships for
slightly compressible fluid

𝑝−𝑝0 = 𝐾f(𝜀𝑉 −𝜀0𝑉)+𝛼f(𝜃 −𝜃0), 𝜂f −𝜂0f = −
𝛼f
𝜌0f
(𝜀𝑉 − 𝜀0𝑉)−

𝑐f
𝜃0 (𝜃 −𝜃

0), (2.36)
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and for ideal gas with constant heat capacity 𝑐f

𝑝 = 𝜌f
𝑀f
𝑅𝜃, 𝜂f − 𝜂0f = 𝑐f ln

𝜃
𝜃0 + 𝑅 ln

𝑉𝑓
𝑉0𝑓
, (2.37)

where 𝐾f is the fluid bulk modulus, 𝜀𝑉 is the fluid volumetric strain, 𝛼f is the fluid
thermal dilation (expansion) coefficient,𝑀f is the fluid molar mass, 𝑅 is the universal
gas constant, 𝑉f is the volume that fluid occupies.

2.4.3. Sliding Criterion and Friction Laws
The Mohr-Coulomb potential represents a widely accepted failure criterion that
provides accurate predictions in a variety of applications, and, especially, in rock
and soil mechanics (Labuz et al. 2012; Wang 2017). We use the Mohr-Coulomb
failure potential for a sliding surface as

Φ = |f′𝑇| − 𝜇f′𝑁 − 𝑐, (2.38)

where 𝜇 is friction coefficient, 𝑐 is contact cohesion. These macroscale paramet-
ers characterize contact roughness, size and a number of asperities and can be
obtained from frictional experiments under rock faults. For many types of rock ma-
terials cohesion can be taken equal to zero. In contrast, the friction coefficient may
significantly vary for different materials and stress states. In the latter case, the
dependence of friction coefficient on the stress state is called friction law.
The simplest form of friction law is expressed by a static friction law as

𝜇 = 𝜇𝑠 , (2.39)

where 𝜇𝑠 denotes a static friction coefficient (or factor) that may vary over the fault
but remains fixed over time.
It was found that the friction coefficient may depend on the accumulated slip. In

this case, the linear slip-dependent model can be written as

𝜇 = {
𝜇𝑠 +

𝜇𝑑 − 𝜇𝑠
𝐷𝑐

|g𝑇| , |g𝑇| < 𝐷𝑐 ,
𝜇𝑑 , |g𝑇| ≥ 𝐷𝑐 ,

(2.40)

where 𝜇𝑑 is a dynamic friction coefficient (or factor). If 𝜇𝑑 − 𝜇𝑠 > 0 then the
friction mechanism is slip-strengthening. In the case of 𝜇𝑑 − 𝜇𝑠 < 0 the sliding
demonstrates slip-weakening behavior. The latter can potentially cause seismicity.
The friction coefficient can exhibit the relation to slip rate |ġ𝑇| which can be

accounted by the following equation

𝜇 = 𝜇∗ + (𝑎 − 𝑏) ln(
|ġ𝑇|
v∗
) , (2.41)

where 𝜇∗ is a reference friction coefficient, v∗ is a reference slip velocity, 𝑎 and 𝑏
are empirical constants.
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Both slip and slip rate effect on friction coefficient are combined in rate-and-state
friction (RSF) law (Dieterich 1979; Ruina 1983) that can be written as

𝜇 = 𝜇∗ + 𝑎 ln
|ġ𝑇|
v∗

+ 𝑏 ln v∗𝜃
𝐷𝑐
, (2.42)

where 𝜃 is a state parameter governed by either of the following laws

𝑑𝜃
𝑑𝑡 = 1 −

|ġ𝑇| 𝜃
𝐷𝑐

, (ageing law), (2.43)

𝑑𝜃
𝑑𝑡 = −

|ġ𝑇| 𝜃
𝐷𝑐

ln
|ġ𝑇| 𝜃
𝐷𝑐

, |ġ𝑇| ≠ 0 (slip law), (2.44)

where (2.44) turns into (2.43) when |ġ𝑇| ≈ v∗. When the state parameter becomes
constant over time 𝜃 ≈ 𝐷𝑐/v∗, Eq. (2.42) reduces to Eq. (2.41). Thus, Eq. (2.41)
is sometimes called steady-state RSF law.
RSF model in Eq. (2.42) becomes inconsistent in the limit of |ġ𝑇| → 0. The version

of Dieterich-Ruina RSF law stabilized in this limit can be written in the following form
(Lapusta et al. 2000; Rice et al. 2001)

𝜇 = 𝑎 sinh−1 (
|ġ𝑇|
2v∗ exp(

𝜇∗ + 𝑏 log(v∗𝜃/𝐷𝑐)
𝑎 )) . (2.45)

2.5. Governing Equations for This Thesis Study

C onservation laws in Eqs. (2.13), (2.14), (2.17), (2.18) and contact constraints in
Eqs. (2.25)-(2.29) represent the thermomechanical response of a wide range of

materials. In contrast, constitutive relationships determine the behavior of specific
material for a specific range of states. In particular, Eqs. (2.30), (2.31)-(2.37) and
Eqs. (2.38)-(2.45) define the behavior of a thermoporoelastic material saturated
by a single-phase liquid or gaseous fluid and friction contact with a Coulomb sliding
criterion. This formulation of mechanics has been found efficient since it is flexible
with respect to the change of constitutive relationships.
At the same time, the governing equation for a particular application can be

significantly simplified. For example, the typical value of relative fluid velocity with
respect to matrix (w < 10−4ms−1) is remarkably smaller than the speed of elastic
waves (v𝑠 ∼ 103ms−1). In many applications, it allows either fluid mass balance
or matrix mass balance to be excluded from consideration. Due to the same reason
the term proportional to vfv𝑇f in the momentum balance for fluid is also omitted
in many reservoir engineering applications. This difference between the velocities
leads to two classes of models working in the limits of short and long timescales.
Fully dynamic models are working in a short timescale that is suitable to resolve

the initiation and propagation of elastic waves. In this case, only the sum of mo-
mentum balances in Eq. (2.16) can be considered. Mass and energy balances are
usually excluded from consideration as poroelastic and thermoporoelastic effects
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may have a negligible influence on momentum balance at this timescale. These
kinds of models are extensively used for seismic interpretation, the investigation of
rupture propagation, and the monitoring of induced seismicity.
The focus of this work is quasi-static models that are working in a long timescale.

In this case, the inertia and velocity convection (first two terms) can be omitted
in Eq. (2.16) which reduces the equation to stationary momentum balance. As
mentioned above, only fluid mass balance can be taken into account which is usually
formulated with the help of the Darcy velocityw leaving the matrix velocity term out
of consideration in this timescale. Besides, in this work, we consider an isothermal
processes that let us disregard the energy balance in Eq. (2.18) and the influence
of temperature on hydromechanical response in Eqs. (2.31), (2.32). Accumulating
all aforementioned simplifications the conservation laws can be rewritten as

∫
𝑉
(𝜕𝜕(𝜙𝜌f) + ∇ ⋅ 𝜌fw− 𝑟f)𝑑𝑉 = 0, (2.46)

−∫
𝑉

(∇ ⋅ ΣΣΣ + 𝜌𝑔∇𝑧) 𝑑𝑉 = 0, (2.47)

subjected to the following constraints

ΣΣΣ −ΣΣΣ0 = ℂ ∶ (E− E0) − (𝑝 − 𝑝0)B, (2.48)

𝜙 − 𝜙0 = B ∶ (E− E0) + 𝜓 − 𝜙
0

𝐾s
(𝑝 − 𝑝0), (2.49)

E = ∇u+ (∇u)𝑇
2 , (2.50)

w = −K𝜇f
(∇𝑝 − 𝜌f𝑔∇𝑧) , (2.51)

𝜌f = 𝜌f(𝑝), 𝜇f = 𝜇f(𝑝), (2.52)
𝜌 = 𝜙𝜌f + (1 − 𝜙)𝜌s, (2.53)

where E = Es represents a matrix strain tensor according to Eq. (2.50), Darcy
velocity w is derived from Eq. (2.34) and stationary fluid momentum balance, Eq.
(2.52) represents an arbitrary relation suitable for both liquid and gaseous fluids,
Eq. (2.53) defines the total density of saturated porous medium. Furthermore,
in isotropic media we define a stiffness tensor ℂ by either Young’s modulus 𝐸 and
Poisson’s ratio 𝜈 or Lame’s parameters 𝜆 and 𝐺 as

ℂ = 𝜆I⊗outer I+ 2𝐺1, 𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈) , 𝐺 = 𝐸

2(1 + 𝜈) , (2.54)

where ⊗outer denotes outer product, 1 stands for the symmetric part of the rank-
four identity tensor, which transforms rank-two tensors as 1 ∶ E = (E+ E𝑇)/2.
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Boundary conditions for the system of Eqs. (2.46)-(2.53) can be written as

{
n𝑇 (𝑎𝑛u𝑏 − 𝑏𝑛f″𝑏) = 𝑟𝑛 ,
(I− nn𝑇) (𝑎𝑡u𝑏 − 𝑏𝑡f″𝑏) = r𝑡 ,
𝑎𝑝𝑝𝑏 − 𝑏𝑝n𝑇w = 𝑟𝑝,

(2.55)

where f″𝑏, u𝑏, and 𝑝𝑏 are effective traction, matrix displacement, and pore pressure
at the boundary, respectively. In addition, 𝑎𝑛 , 𝑏𝑛 , 𝑎𝑡 , 𝑏𝑡 , 𝑎𝑝, 𝑏𝑝 are coefficients that
determine the magnitude of their corresponding boundary conditions, while 𝑟𝑛 , r𝑡 , 𝑟𝑝
are the corresponding condition values. All these constants are allowed to be time-
dependent.
Eqs. (2.46)-(2.53) represent the system of equations with respect to unknown

displacement vector and pressure. Therefore, the following initial conditions can
be applied

u = u0(𝑥, 𝑦, 𝑧), 𝑝 = 𝑝0(𝑥, 𝑦, 𝑧). (2.56)





3
Finite Volume Framework
for Modeling of Induced

Fault Slip
Summary

The mathematical models of faulted saturated poroelastic media discussed in the
previous chapter require numerical consideration. In this chapter, we present re-
cently proposed numerical schemes of Finite Volume Method (FVM) for the integra-
tion of those models. We extend those schemes for the support of discontinuities
exhibited at faults and fractures. A mixed-dimensional fault representation is em-
ployed for the incorporation of fluid mass and momentum transfer in faults. Contact
constraints are satisfied with the use of the penalty method and the return-mapping
algorithm. The efficient solution of linear systems is enabled by the implementa-
tion of a block-partitioned preconditioning strategy. Moreover, we propose a novel
nonlinear FVM scheme for the solving pure elasticity problems. Finally, the details
of implementation are presented.

Parts of this chapter are published in Novikov et al. 2022b and Tripuraneni et al. 2023.
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3.1. Finite Volume Method

L et us consider the system of partial differential equations (PDEs) of the following
conservative form

𝜕𝔞𝔞𝔞
𝜕𝑡 + ∇ ⋅ 𝔉𝔉𝔉 = 𝔯𝔯𝔯, (3.1)

where 𝔞𝔞𝔞, 𝔯𝔯𝔯 are vectors, 𝔉𝔉𝔉 is a matrix. In the case of

𝔞𝔞𝔞 = [𝜙𝜌𝑓] , 𝔉𝔉𝔉 = [𝜌𝑓w] , (3.2)

Eq. (3.1) represents the conservation of fluid mass in a porous medium, and 𝜙 is
porosity, 𝜌𝑓 is fluid density, w is fluid velocity with respect to the porous matrix. In
the case of

𝔞𝔞𝔞 = [𝜙𝜌𝑓𝑈𝑓 + (1 − 𝜙)𝜌𝑠𝑈𝑠] , 𝔉𝔉𝔉 = [𝜌𝑓ℎfw−ΛΛΛ∇𝜃] , (3.3)

Eq. (3.1) represents the conservation of energy in a saturated porous medium, and
𝜌𝑠 is rock density, 𝑈𝑓 and 𝑈𝑟 are fluid and rock internal energies respectively, ℎf is
fluid enthalpy, ΛΛΛ is the heat conductivity tensor, and 𝜃 is temperature. In the case
of

𝔞𝔞𝔞 = 𝜌𝜕u𝜕𝑡 , 𝔉𝔉𝔉 = −ΣΣΣ, (3.4)

Eq. (3.1) represents the fully dynamic momentum balance, where 𝜌 is total density,
u is displacement, ΣΣΣ is the Cauchy stress tensor. In the case of 𝔞𝔞𝔞 = 0, Eq. (3.4)
simplifies to a stationary momentum balance.
The conservation laws represented by Eq. (3.1) can be written in integral form

and discretized with the FVM (Klofkorn et al. 2020; LeVeque 2002; Vassilevski et al.
2020). This implies the representation of integrals of divergence term ∇ ⋅ 𝔉𝔉𝔉 as the
fluxes 𝔮𝔮𝔮 = 𝔉𝔉𝔉n over cell interfaces with the help of Gauss formula as

∫
𝑉𝑖

(𝜕𝔞
𝔞𝔞
𝜕𝑡 + ∇ ⋅ 𝔉𝔉𝔉) 𝑑𝑉 = ∫

𝑉𝑖

𝜕𝔞𝔞𝔞
𝜕𝑡 𝑑𝑉 + ∑

𝛽∈𝜕𝑉𝑖

∫
𝛽
𝔮𝔮𝔮 𝑑𝑆 ≈ 𝔞

𝔞𝔞𝑛+1𝑖 −𝔞𝔞𝔞𝑛𝑖
Δ𝑡 𝑉𝑖 + ∑

𝛽∈𝜕𝑉𝑖

𝛿𝛽𝔮𝔮𝔮𝑖𝑗 = 𝔯𝔯𝔯𝑉𝑖 ,

(3.5)
where subscript 𝑖 denotes the values defined at cell 𝑖 and subscript 𝑖𝑗 means that
the value is evaluated at the interface between cells 𝑖 and 𝑗, superscripts 𝑛 and
𝑛+1 define variables taken at a previous and current time step respectively, Δ𝑡 is a
time step, 𝑉𝑖 is a cell volume and 𝛿𝑗 is an area of the interface between neighboring
cells. The backward Euler scheme is used here for time integration.
It is worth to be mentioned that the assumption of 𝔞𝔞𝔞 = 0 in Eqs. (3.2), (3.4)

leads to elliptic PDEs with respect to the unknown pressure 𝑝 and the vector of dis-
placements u, correspondingly. Eq. (3.3) includes both convective and conductive
heat transport so that in the case 𝔞𝔞𝔞 = 0 it is close to an elliptic PDE for Peclet
numbers (ratio between advective and conductive transport rates) close to zero.
Eqs. (3.2)-(3.4) and their extension to compositional fluid flow, transport and

coupled poromechanics are extensively used in reservoir modelling (Chen 2007;
K. Aziz 1979; Zoback 2007). Robust solution of these equations requires reli-
able numerical schemes capable to handle severe heterogeneity, arbitrary mater-
ial anisotropy and advanced gridding techniques. Moreover, consistent numerical
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schemes must preserve local conservation of fluid mass to guarantee the proper
solution of transport problems (Rivière 2008). FVM schemes can fit these require-
ments. They are both locally and globally conservative and can be used to re-
solve highly heterogeneous anisotropic media with arbitrary star-shaped polyhedral
meshes (Vassilevski et al. 2020).

3.2. Finite Volume Method for Poroelasticity

T he fluid mass and momentum balance in Eqs. (2.46) and (2.49) govern the
hydromechanical behavior of poroelastic media. Let us start by rewriting Eq.

(3.5) for a single-phase fluid mass balance in a poroelastic media as

0 = ∫
𝑉𝑖

( 𝜕𝜕𝑡 (𝜙𝜌𝑓) + ∇ ⋅ 𝜌𝑓w− 𝑟f)𝑑𝑉 =

= ∫
𝑉𝑖

( 𝜕𝜕𝑡 (�̃�𝜌𝑓) − 𝑟f)𝑑𝑉+∫
𝑉𝑖

[∇ ⋅ 𝜌𝑓w+
𝜕
𝜕𝑡 (𝜌𝑓∇ ⋅ B (u− u

0) − 𝜌𝑓 (u− u0) ⋅ (∇ ⋅ B))] 𝑑𝑉 ≈

≈ ∫
𝑉𝑖

( 𝜕𝜕𝑡 (�̃�𝜌𝑓) − 𝑟f)𝑑𝑉+

+ ∫
𝜕𝑉𝑖

𝜌𝑓w𝑇n𝑑𝑆 +
𝜕
𝜕𝑡 (𝜌𝑓,𝑖 [ ∫

𝜕𝑉𝑖

(u− u0)𝑇 Bn𝑑𝑆 − (u𝑖 − u0)
𝑇 ∫
𝜕𝑉𝑖

Bn𝑑𝑆]) ≈

≈ 𝑉𝑖 (
(�̃�𝜌𝑓)𝑛+1𝑖 − (�̃�𝜌𝑓)𝑛𝑖

Δ𝑡𝑛
− 𝑟𝑛+1f,𝑖 )+

+ ∑
𝛽∈𝜕𝑉𝑖

𝛿𝛽 [(𝜌𝑓w𝑇n)𝑛+1𝛽 +
𝜌𝑛+1𝑓,𝑖 (u𝛽 − u𝑖)𝑛+1 − 𝜌𝑛𝑓,𝑖(u𝛽 − u𝑖)𝑛

Δ𝑡𝑛
⋅ (Bn)𝛽] (3.6)

where porosity was decomposed as

𝜙 = �̃� + B ∶ (E− E0) = �̃� + B ∶ ∇ (u− u0) = �̃� + ∇ ⋅ B (u− u0) − (u− u0) ⋅ ∇ ⋅ B,
(3.7)

�̃� = 𝜙0 + 𝜓 − 𝜙
0

𝐾s
, (3.8)
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with implied symmetry of the Biot tensor B. Besides, the following approximations
of integrals are used

𝜌𝑓,𝑖 = 𝜌𝑓(𝑝𝑖), 𝑝𝑖 =
1
𝑉𝑖
∫
𝑉𝑖

𝑝𝑑𝑉, u𝑖 =
1
𝑉𝑖
∫
𝑉𝑖

u𝑑𝑉, (3.9)

(𝜌𝑓w𝑇n)𝛽 =
1
𝛿𝛽
∫
𝛽
𝜌𝑓w𝑇n𝑑𝑆, u𝑇𝛽(Bn)𝛽 =

1
𝛿𝛽
∫
𝛽
u𝑇Bn𝑑𝑆, (Bn)𝛽 =

1
𝛿𝛽
∫
𝛽
Bn𝑑𝑆.

(3.10)

Let us introduce the following notations:

𝑞f,𝛽 = (w𝑇n)𝛽 , �̃�𝛽 = (u𝛽 − u𝑖) ⋅ (Bn)𝛽 , (3.11)

where 𝑞f denotes the Darcy flux. Using Eq. (3.11) we can define the residual H𝑛+1f,𝑖
of Eq. (3.6) as

H𝑛+1f,𝑖 = 𝑉𝑖 (
(�̃�𝜌f)𝑛+1𝑖 − (�̃�𝜌f)𝑛𝑖

Δ𝑡𝑛
− 𝑟𝑛+1f,𝑖 ) + ∑

𝛽∈𝜕𝑉𝑖

𝛿𝛽 [(𝜌f𝑞f)𝑛+1𝛽 +
𝜌𝑛+1f,𝑖 �̃�𝑛+1𝛽 − 𝜌𝑛f,𝑖�̃�𝑛𝛽

Δ𝑡𝑛
] ,

(3.12)
We obtain a discrete fluid mass balance in Eq. (3.12) that consists of two terms.

The first term, called the accumulation term, represents the change of fluid mass
in cell 𝑉𝑖 due to pressure changes and sources (sinks). We use the backward
Euler method for time integration of this term so that its discrete approximation
is provided. The second term in Eq. (3.12), called the flux term, is responsible
for the exchange of fluid mass with other cells that can be caused by a pressure
gradient, gravity, or matrix movement. The conservation of fluid mass during this
exchange is governed by the approximation of the flux term that will be considered
in the next section.
The FVM can be applied to the stationary momentum balance in Eq. (2.47)

subject to Eq. (2.48). The associated residual vector H𝑛+1s,𝑖 can be written as

H𝑛+1s,𝑖 = −𝜌𝑛+1𝑖 𝑉𝑖𝑔∇𝑧 + ∑
𝛽∈𝜕𝑉𝑖

𝛿𝛽f𝑛+1𝛽 , (3.13)

where the total traction vector is to be found at the interface 𝛽 as

f𝛽 = −(ℂ ∶
∇u+ (∇u)𝑇

2 − 𝑝B)
𝛽
⋅ n𝛽 , (3.14)

and the approximation of porosity is derived from Eqs. (3.7) as

𝜙𝑖 = �̃�𝑖 +
1
𝑉𝑖

∑
𝛽∈𝜕𝑉𝑖

𝛿𝛽 (�̃�𝛽 − �̃�0𝛽) , (3.15)
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where the approximations from Eq. (3.10) are used.
The gravity force constitutes the accumulation term in the discrete momentum

balance in Eq. (3.13) while its flux term is represented by the traction vector. Both
terms require accurate approximations at all interfaces in a computational grid.

3.3. Approximation of Fluxes

T he complete discrete formulation of the conservation laws in Eqs. (3.12) and
(3.13) necessitates the approximation of 𝑞f, �̃�, f at every interface of the com-

pulational grid. Below we derive the approximations of these terms provided for
interior interfaces without contact, interior contact interfaces and boundary inter-
faces from the corresponding balance laws imposed locally. The goal of this section
is to present the extension of coupled multi-point flux and multi-point stress approx-
imations (Terekhov 2020a) to the interior contact interfaces.

3.3.1. Approximations at Interior Continuous Interface
The conservation laws in Eqs. (3.12) and (3.13) are formulated with respect to the
vector of unknowns d = [u𝑇 𝑝]𝑇. By imposing the continuity of the unknowns and
the continuity of fluid fluxes defined in Eq. (3.11) and the tractions defined in Eq.
(3.14) between neighboring cells 1 and 2 (Terekhov et al. 2020), one obtains a local
problem as

d𝛽1 = d1 + [I⊗ (x𝛽 − x1)𝑇] (∇⊗ d1) = d2 + [I⊗ (x𝛽 − x2)𝑇] (∇⊗ d2) = d𝛽2,(3.16)
− [I⊗ n𝑇]S1 (∇⊗ u1) + 𝑝𝛽1B1n = − [I⊗ n𝑇]S2 (∇⊗ u2) + 𝑝𝛽2B2n, (3.17)

−(∇𝑝1 − 𝜌f𝑔∇𝑧) ⋅K1n = −(∇𝑝2 − 𝜌f𝑔∇𝑧) ⋅K2n, (3.18)

where d1 and d2 are unknowns at the cell centers, x1 and x2 are the positions of
the cell centers, ⊗ denotes the Kronecker product, x𝛽 denotes the center of the
interface, I⊗(x𝛽 −x1)𝑇 and I⊗(x𝛽 −x2)𝑇 represent 4×12 matrices constructed
as

I⊗ (x𝛽 − x𝑖)𝑇 = (
(x𝛽 − x𝑖)𝑇

(x𝛽 − x𝑖)𝑇
(x𝛽 − x𝑖)𝑇

(x𝛽 − x𝑖)𝑇
) , 𝑖 = 1, 2,

I⊗ n𝑇 stands for 3 × 9 matrix constructed in a similar way, ∇ ⊗ d1, ∇ ⊗ d2 and
∇⊗ u1, ∇ ⊗ u2 are 12 × 1 and 9 × 1 vectors respectively, constructed as

∇⊗ d𝑖 = (
∇⊗ u𝑖
∇𝑝𝑖 ) = (

∇𝑢𝑖𝑥
∇𝑢𝑖𝑦
∇𝑢𝑖𝑧
∇𝑝𝑖

) , 𝑖 = 1, 2, (3.19)

where [𝑢𝑖𝑥𝑢𝑖𝑦𝑢𝑖𝑧]
𝑇
are the components of displacement vector u𝑖, S1 = YC1Y𝑇 , S2 =

YC2Y𝑇 are 9 × 9 matrices where C denotes a 6 × 6 symmetric stiffness matrix in
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Voigt notation and where

Y𝑇 = [
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0

].

Flux balances in Eqs. (3.17) and (3.18) stem from the flux terms of the discrete
conservation laws in Eqs. (3.12) and (3.13), respectively. In Eq. (3.18), we neglect
the fluid mass flux caused by matrix movement.
The following decompositions

∇⊗ d𝑖 = [I⊗ n]𝜉𝜉𝜉𝑖 +𝜉𝜉𝜉𝜏𝑖 , 𝜉𝜉𝜉𝑖 = [I⊗ n𝑇] [∇ ⊗ d𝑖] , 𝜉𝜉𝜉𝜏𝑖 = [I⊗ (I − nn𝑇)] [∇ ⊗ d𝑖] , (3.20)

[I⊗ n𝑇]S𝑖 = T𝑖[I⊗ n𝑇] + ΓΓΓ𝑖 , T𝑖 = [I⊗ n𝑇]S𝑖[I⊗ n], ΓΓΓ𝑖 = [I⊗ n𝑇]S𝑖[I⊗ (I − nn𝑇)], (3.21)

K𝑖n = 𝜅𝑖n +𝜅𝜅𝜅𝑖 , 𝜅𝑖 = n𝑇K𝑖n, 𝜅𝜅𝜅𝑖 = (I − nn𝑇)K𝑖n, (3.22)

x𝛽 − x1 = 𝑑1n + (x𝛽 − y1), 𝑑1 = n ⋅ (x𝛽 − x1) > 0, y1 = x1 + 𝑑1n,
x2 − x𝛽 = 𝑑2n + (y2 − x𝛽), 𝑑2 = n ⋅ (x2 − x𝛽) > 0, y2 = x2 − 𝑑2n, (3.23)

are used, where the subscripts 𝑖 = 1, 2 refer to the cells neighboring an interface,
𝑑1 and 𝑑2 are distances between the cell centers and the interface, y1 and y2 are
projections of the cell centers on the interface, T1 and T2 are 3 × 3 matrices, ΓΓΓ1
and ΓΓΓ2 are 3 × 9 matrices, while scalars 𝜅1 and 𝜅2 and vectors 𝜅𝜅𝜅1 and 𝜅𝜅𝜅2 provide
co-normal decompositions of K1 and K2. The 4 × 1 vectors 𝜉𝜉𝜉1 and 𝜉𝜉𝜉2, and the
12×1 vectors 𝜉𝜉𝜉𝜏1 and 𝜉𝜉𝜉𝜏2 represent normal and tangential projections respectively
of the gradients of the unknowns. The decomposition of distances in Eq. (3.23) is
shown in Fig. 3.1.

𝐱𝐱1

𝐱𝐱2

𝐧𝐧

𝐱𝐱𝛽𝛽

𝑑𝑑1

𝐲𝐲2 𝑑𝑑2

1

2

𝐲𝐲1

Figure 3.1.: Normal decomposition of distances between the centers of cells 1, 2
and the center of interface 𝛽.

Using the notation introduced above, the continuity of fluxes, represented in Eqs.
(3.17) and (3.18), can be written in the coupled form of

A1d1 +Q1𝜉𝜉𝜉1 +ΘΘΘ1𝜉𝜉𝜉𝜏1 +𝜁𝜁𝜁1 = A2d2 +Q2𝜉𝜉𝜉2 +ΘΘΘ2𝜉𝜉𝜉𝜏2 +𝜁𝜁𝜁2, (3.24)
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where

A𝑖 =[
B𝑖n

0 ] , Q𝑖 =[
−T𝑖

−𝜅𝑖] ± 𝑑𝑖A𝑖 , (3.25)

ΘΘΘ𝑖 =[
−ΓΓΓ𝑖

−𝜅𝜅𝜅𝑇𝑖
] + A𝑖⊗ (x𝛽 − y𝑖)𝑇 , 𝜁𝜁𝜁 = [ 0

𝜌f𝑔∇𝑧 ⋅K𝑖n] , (3.26)

Here A𝑖 and Q𝑖 are 4 × 4 matrices, ΘΘΘ𝑖 is a 4 × 12 matrix and 𝜁𝜁𝜁𝑖 is a 4 × 1 vector
and “±” in Q𝑖 corresponds to 𝑖 = 1, 2 respectively.
According to Eq. (3.16) the tangential projections of the gradients are 𝜉𝜉𝜉𝜏1 =

𝜉𝜉𝜉𝜏2 = 𝜉𝜉𝜉𝜏. Deriving 𝜉𝜉𝜉2 from Eq. (3.16) and substituting the result into Eq. (3.24)
we obtain the following expression for 𝜉𝜉𝜉1:

(𝑑1Q2 + 𝑑2Q1)𝜉𝜉𝜉1 =
= (𝑑2A2 +Q2)d2 − (𝑑2A1 +Q2)d1 + (Q2⊗ (y1 − y2)𝑇 + 𝑑2(ΘΘΘ2 −ΘΘΘ1))𝜉𝜉𝜉𝜏 + 𝑑2(𝜁𝜁𝜁2 −𝜁𝜁𝜁1).

(3.27)

Substituting Eq. (3.27) into the left-hand side of Eq. (3.24), one obtains the
multi-point approximation for the Darcy flux 𝑞f,𝛽 defined in Eq. (3.11) and the
traction f𝛽, as given in Eq. (3.14), as

[ f
𝜇f𝑞f]𝛽

= Q1(𝑑1Q2 + 𝑑2Q1)−1Q2 (d2 − d1 + [I⊗ (y1 − y2)𝑇]𝜉𝜉𝜉𝜏)+

+𝑑1Q2(𝑑1Q2+𝑑2Q1)−1 (A1d1 +ΘΘΘ1𝜉𝜉𝜉𝜏 +𝜁𝜁𝜁1)+𝑑2Q1(𝑑1Q2+𝑑2Q1)−1 (A2d2 +ΘΘΘ2𝜉𝜉𝜉𝜏 +𝜁𝜁𝜁2) .
(3.28)

The coupled multi-point approximation Eq. (3.28) was presented in (Terekhov et
al. 2020). The gravity term 𝜌f𝑔∇𝑧 ⋅Kn in the Darcy flux 𝑞f includes fluid density 𝜌f
which requires manual treatment as it participates in the discretization according to
Eq. (3.18) while the density depends on the unknown pressure. Before assembly,
this term is multiplied by the fluid density evaluated at the interface as the linear
interpolation between cells 𝜌f,𝛽 = (𝑑1𝜌f,2 + 𝑑2𝜌f,1)/(𝑑1 + 𝑑2).
The approximation in Eq. (3.28) requires the tangential projection of the gradi-

ents of the unknowns to be reconstructed. One can derive 𝜉𝜉𝜉2 from Eq. (3.24) and
substitute it into Eq. (3.16) to obtain the interpolation equation as

(Q2⊗ (x2 − x1)𝑇 + 𝑑2(Q1 −Q2) ⊗ n𝑇 + 𝑑2(ΘΘΘ1 −ΘΘΘ2)) (∇⊗ d1) =
= (Q2 + 𝑑2A2)d2 − (Q2 + 𝑑2A1)d1 + 𝑑2(𝜁𝜁𝜁2 −𝜁𝜁𝜁1). (3.29)

It is necessary to consider at least 3 interfaces (in 3D) of the first cell to enclose
the system with respect to the 12 components of ∇⊗ d1.
Bringing together the results of Eq. (3.29) for 𝑁 considered interfaces of the 𝑖-th

cell, we build up the system

M𝑖(∇⊗ d𝑖) = D𝑖𝜓𝜓𝜓𝑖 , (3.30)

where M𝑖 is a 4𝑁 × 12 matrix and D𝑖 is a 4𝑁 × 4(𝑁 + 1) matrix of coefficients
Q2+𝑑2A2, −(Q2+𝑑2A1) in front of the corresponding unknowns at the right-hand
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side of Eq. (3.29), while 𝜓𝜓𝜓𝑖 is a 4(𝑁 + 1) × 1 vector of 𝑁 + 1 unknowns (or free
terms in the right-hand side of boundary conditions). The solution of Eq. (3.30)
can be obtained in a least-squares sense as

∇⊗ d𝑖 = (M𝑇
𝑖M𝑖)−1M𝑇

𝑖 D𝑖𝜓𝜓𝜓𝑖 . (3.31)

For the approximation of 𝜉𝜉𝜉𝜏 in Eq. (3.28) the following combination of gradients

𝜉𝜉𝜉𝜏 =
𝜉𝜉𝜉𝜏1 +𝜉𝜉𝜉𝜏2

2 , (3.32)

is used. A set of cells that contribute to the approximation Eq. (3.32) for each
interface of some cell 𝑖 is illustrated in Fig. 3.2.

Figure 3.2.: Cells that contribute to the approximation of fluxes over the interfaces
of cell 𝑖. Index 𝑗 denotes the nearest neighbours of cell 𝑖. Index 𝑘 de-
notes farther neighbours that contribute to the gradients reconstructed
in cells 𝑗.

It is worth to be mentioned that the least squares solution in Eq. (3.31) allows
computing the gradients of unknowns locally and independently for every cell. Note,
however, that it does not guarantee the local conservation property for the scheme.
In order to maintain it, individual gradients for every interface that respects the
corresponding flux balance should be employed.

3.3.2. Diffusive and Advective Terms
The momentum and fluid mass fluxes used in Eqs. (3.12) and (3.13) can be rep-
resented through the diffusive (𝑑) and advective (𝑎) terms

[f𝑞]
(𝑑)

𝛽
= [ f

″

𝜇f𝑞f]𝛽
, [f𝑞]

(𝑎)

𝛽
= [𝑝Bn�̃� ]

𝛽
, (3.33)

where the effective Biot traction f″𝛽 is defined in Eq. (2.22), the fluid fluxes 𝑞f, �̃� are
defined in Eq. (3.11). Both diffusive and advective terms are to be approximated
at the interface 𝛽, but the diffusive term depends on on the gradient of unknowns
while the advective terms are linear with respect to unknowns. The total traction f
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and the total fluid mass flux 𝑞 admit the following representation with the diffusive
and advective terms

[f𝑞]𝛽
= [

f″𝛽 + (𝑝Bn)𝛽
(𝜌f𝑞f)𝛽 +

𝜌𝑛+1f,𝑖 �̃�𝑛+1𝛽 −𝜌𝑛f,𝑖�̃�𝑛𝛽
Δ𝑡𝑛

] =

= [I (𝜌f𝜇−1f )𝑢
] [f𝑞]

(𝑑)

𝛽
+ [I 𝜌𝑛+1f,𝑖 Δ𝑡−1𝑛 ] [

f
𝑞𝑛+1]

(𝑎)

𝛽
− [0 𝜌𝑛f,𝑖Δ𝑡−1𝑛

] [ f𝑞𝑛]
(𝑎)

𝛽
(3.34)

where subscript 𝑢 denotes the property taken from the upwind direction defined
by the sign of 𝑞𝑛f,𝛽: 𝑞𝑛f,𝛽 ≥ 0 ⟹ 𝑢 = 𝑖 and 𝑞𝑛f,𝛽 < 0 ⟹ 𝑢 = 𝑗. Note that 𝑞𝑛f,𝛽
is calculated under the convention about the outward direction of normal vector
(x𝑗 −x𝑖) ⋅n𝛽 > 0. We denote time steps with 𝑛, 𝑛 +1 superscripts only in the term
representing the time derivative while the rest of the terms are taken implicitly, i.e.,
at the 𝑛 + 1th time step.
The approximation derived in Eq. (3.28) can be easily rewritten only for diffusive

term as

[f𝑞]
(𝑑)

𝛽
= (Q1 − 𝑑1A1)𝜉𝜉𝜉1 + (ΘΘΘ1 − A1⊗ (x𝛽 − y1)𝑇)𝜉𝜉𝜉𝜏 +𝜁𝜁𝜁1, (3.35)

where 𝜉𝜉𝜉1 is defined in Eq. (3.27) and 𝜉𝜉𝜉𝜏 is defined in Eqs. (3.31), (3.32). The
advective term requires the approximation of the vector of unknowns d at the
center of the interface. Multiple approximations can be provided: a single-side
interpolations d𝛽1,d𝛽2 defined in Eq. (3.16) or a two-side interpolation derived
from the local problem (Terekhov et al. 2020; Vassilevski et al. 2020). Substituting
Eq. (3.27) into the left-hand side of Eq. (3.16) one can obtain

d𝛽 = (𝑑1Q2 + 𝑑2Q1)−1 [𝑑2Q1d1 + 𝑑1Q2d2+
+ 𝑑1𝑑2 ((A2d2 +ΘΘΘ2𝜉𝜉𝜉𝜏 +𝜁𝜁𝜁2) − (A1d1 +ΘΘΘ1𝜉𝜉𝜉𝜏 +𝜁𝜁𝜁1))+

+(𝑑2Q1⊗ (x𝛽 − y1)𝑇 + 𝑑1Q2⊗ (x𝛽 − y2)𝑇)𝜉𝜉𝜉𝜏] . (3.36)

This second-order accurate interpolation can lead to inf-sup instability, i.e. spurious
oscillations appearing in the solution of a coupled displacement-pressure system
under undrained conditions or close to them (Gaspar et al. 2008). The substitution
of Eq. (3.36) in Eq. (3.33) provides the approximation of the advective term.

3.3.3. Approximations at Interior Contact Interface
Faults introduce breaches in porous media which, on the one hand, can be highly
conductive flow pathways, and, on the other hand, can represent frictional con-
tacts between two edges. The transfer of fluid mass along the fault requires the
equidimensional fault representation in a numerical model as longitudinal fluxes are
proportional to the fault aperture. A number of these models have been proposed
to resolve fluid flow in fractured porous media (Berre et al. 2021; Karimi-Fard et al.
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2004; Li et al. 2008; Tene et al. 2017). In contrast to high hydraulic conductivity,
the conductivity of momentum fluxes (stiffness) of saturated space in breaches is
negligible compared to the one in the matrix. Moreover, momentum fluxes between
equidimensional fault segments are eliminated by miniature fault apertures. Neg-
lecting inter-fault momentum fluxes allows a lower-dimensional fault model to be
used in the momentum balance. Furthermore, the equidimensional fault model may
significantly complicate the solution of the momentum balance due to nonsmooth
geometry.
In this work, we use a mixed-dimensional fault model that includes the equidi-

mensional Discrete Fracture Model for fluid mass balance and a lower-dimensional
fault model for momentum balance (Boon et al. 2023). Fault representations are
shown in Fig. 3.3. The fault partitioning is conformal with the computational grid.

(a) Fault representation for momentum fluxes (b) Fault representation for fluid fluxes
Figure 3.3.: Fault representations in the approximation of momentum fluxes (a) and

the approximation of fluid mass fluxes (b).

The mixed-dimensional fault model described above implies a continuous pres-
sure as fault cell has the same dimension as cells in the matrix. In contrast, the
model allows matrix displacements to be discontinuous. We consider the gap vector
defined in Eq. (2.23) and pressure as primary unknowns assigned to the centers
of fault cells. In regard of that, we have the following continuity of unknowns and
fluxes over the contact between matrix cells 1, 2 and fault cell 3 in between

u1 ± g3 + [I⊗ (x3 − x1)𝑇] (∇⊗ u1) = u2 + [I⊗ (x3 − x2)𝑇] (∇⊗ u2) , (3.37)
𝑝1 + (x𝛽1 − x1)𝑇 ⋅ ∇𝑝1 = 𝑝3 + (x𝛽1 − x3)𝑇 ⋅ ∇𝑝3, (3.38)

𝑝3B1n− [I⊗ n𝑇]S1 (∇⊗ u1) = 𝑝3B2n− [I⊗ n𝑇]S2 (∇⊗ u2) , (3.39)
− (∇𝑝1 − 𝜌f𝑔∇𝑧) ⋅K1n = −(∇𝑝3 − 𝜌f𝑔∇𝑧) ⋅K3n, (3.40)

where ± is positive when cells 1 and 2 are located at negative and positive sides
of the fault, respectively. Also x1,x2, and x3 are the centers of matrix cells 1, 2
and fault cell 3, respectively. Furthermore, x𝛽1 and x𝛽2 are the centers of the fault
interfaces 𝛽1 and 𝛽2 in the equidimensional fault representation respectively. It is
worth to be noted that we do not approximate pressure in Eq. (3.39). Instead, we
use an unknown pressure 𝑝3 assigned to a fault cell.
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𝛽𝛽1 𝛽𝛽2

Figure 3.4.: Normal decomposition of distances between the centers of cells 1, 2
and the center of interface 𝛽.

Below we will use the following co-normal decompositions

x3 − x1 = 𝑑1n+ (x3 − y1), 𝑑1 = n ⋅ (x3 − x1) > 0, y1 = x1 + 𝑑1n,
x2 − x3 = 𝑑2n+ (y2 − x3), 𝑑2 = n ⋅ (x2 − x3) > 0, y2 = x2 − 𝑑2n,

x𝛽1 − x1 = 𝑑𝛽1,1n+ (x𝛽1 − y𝛽1,1), 𝑑𝛽1,1 = n ⋅ (x𝛽1 − x1) > 0, y𝛽1,1 = x1 + 𝑑𝛽1,1n,
x3 − x𝛽1 = 𝑑𝛽1,3n, 𝑑𝛽1,3 = n ⋅ (x3 − x𝛽1) > 0, (3.41)

where we assume that x3 − x𝛽1 = 𝑑𝛽1,3n which means that the center of the
interface between matrix cell 1 and fault cell 3 is shifted by 𝑑𝛽1,3 along the direction
normal to the fault. The aforementioned geometrical properties are shown in Fig.
3.4. It is worth to be noted that 𝑑𝛽1,3 is a half-aperture and it is to be equal
to |g𝑇3n| /2. However, the treatment of this distance as an unknown makes the
discretization nonlinear. It means that the conservative disсretization may require
taking into account this nonlinearity and resolving it at every nonlinear iteration.
Fault opening is out of the scope of this work which allows us to treat this distance
as a constant.
A co-normal split of Eqs. (3.37)-(3.40) reads as

u1 ± g3 + 𝑑1𝜉𝜉𝜉𝑢1 + I⊗ (x𝛽 − y1)𝑇𝜉𝜉𝜉𝑢𝜏1 = u2 − 𝑑2𝜉𝜉𝜉𝑢2 + I⊗ (x𝛽 − y2)𝑇𝜉𝜉𝜉𝑢𝜏2, (3.42)

𝑝1 + 𝑑𝛽1,1𝜉𝑝1 + (x𝛽1 − y𝛽1,1)𝑇𝜉𝜉𝜉𝑝𝜏 = 𝑝3 − 𝑑𝛽1,3𝜉𝑝3 , (3.43)
𝑝3B1n− T1𝜉𝜉𝜉𝑢1 −ΓΓΓ1𝜉𝜉𝜉𝑢𝜏1 = 𝑝3B2n− T2𝜉𝜉𝜉𝑢2 −ΓΓΓ2𝜉𝜉𝜉𝑢𝜏2, (3.44)

−𝜅1𝜉𝑝1 −𝜅𝜅𝜅1𝜉𝜉𝜉𝑝𝜏 + 𝜌f𝑔∇𝑧 ⋅K1n = −𝜅3𝜉𝑝3 −𝜅𝜅𝜅3𝜉𝜉𝜉𝑝𝜏 + 𝜌f𝑔∇𝑧 ⋅K3n, (3.45)

where 𝜉𝜉𝜉𝑢𝑖 , 𝜉𝜉𝜉
𝑝
𝑖 are normal projections of displacement and pressure gradients in cell

𝑖 while 𝜉𝜉𝜉𝑢𝜏𝑖 denote tangential projections of displacement gradients in cell 𝑖 = 1, 2.
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In contrast to displacements, pressure remains continuous in the equidimensional
fault representation and Eq. (3.32) defines the tangential projection of the pressure
gradient 𝜉𝜉𝜉𝑝𝜏 .
Following the same way as we derived the approximation at a continuous inter-

face, we derive the approximations at a contact interface. Taking 𝜉𝜉𝜉𝑢2 , 𝜉𝑝3 from Eqs.
(3.42) and (3.43) and substituting them to Eqs. (3.44) and (3.45) results in

(𝑑1T2 + 𝑑2T1)𝜉𝜉𝜉𝑢1 = T2(u2 − u1 ∓ g3) + 𝑑2(B1 − B2)n𝑝3+
+ (T2⊗ (x𝛽 − y2)𝑇 + 𝑑2ΓΓΓ2)𝜉𝜉𝜉𝑢𝜏2 − (T2⊗ (x𝛽 − y1)𝑇 + 𝑑2ΓΓΓ1)𝜉𝜉𝜉𝑢𝜏1, (3.46)

(𝑑𝛽1,3𝜅1 + 𝑑𝛽1,1𝜅3)𝜉𝑝1 = 𝜅3(𝑝3 − 𝑝1) − (𝜅3(x𝛽1 − y𝛽1,1)𝑇 + 𝑑𝛽1,3(𝜅𝜅𝜅1 −𝜅𝜅𝜅3)𝑇)𝜉𝜉𝜉𝑝𝜏+
+ 𝑑𝛽1,3𝜌f𝑔∇𝑧 ⋅ (K1 −K3)n,

(3.47)

which, once substituted to Eqs. (3.39) and (3.40), provide the following approxim-
ations
f(𝑑)𝛽 = T (u1 ± g3 − u2 − I⊗ (x𝛽 − y2)𝑇𝜉𝜉𝜉𝑢𝜏2 + I⊗ (x𝛽 − y1)𝑇𝜉𝜉𝜉𝑢𝜏1)−
− 𝑑1T2(𝑑2T1 + 𝑑1T2)−1ΓΓΓ1𝜉𝜉𝜉𝑢𝜏1 − 𝑑2T1(𝑑2T1 + 𝑑1T2)−1 (ΓΓΓ2𝜉𝜉𝜉𝑢𝜏2 + (B1 − B2)n𝑝3) , (3.48)

f(𝑎)𝛽 = 𝑝3B1n, (3.49)

𝑞(𝑑)𝛽1 = 𝜅 (𝑝1 − 𝑝3 − (x𝛽1 − y𝛽1,1)𝑇𝜉𝜉𝜉𝑝𝜏 ) + 𝑑𝛽1,3𝜅1 (𝑑𝛽1,3𝜅1 + 𝑑𝛽1,1𝜅3)
−1 (𝜅𝜅𝜅1 −𝜅𝜅𝜅2)

𝑇 𝜉𝜉𝜉𝑝𝜏−
− 𝑑𝛽1,1𝜅3(𝑑𝛽1,3𝜅1 + 𝑑𝛽1,1𝜅3)−1𝜌𝑔∇𝑧 ⋅K1n− 𝑑𝛽1,3𝜅1(𝑑𝛽1,3𝜅1 + 𝑑𝛽1,1𝜅3)−1𝜌𝑔∇𝑧 ⋅K3n,

(3.50)

(3.51)

where T = T1(𝑑1T2 + 𝑑2T1)−1T2, 𝜅 = 𝜅1 (𝑑𝛽1,3𝜅1 + 𝑑𝛽1,1𝜅3)
−1 𝜅3 while the tan-

gential gradients of displacements relate to each other as 𝜉𝜉𝜉𝑢𝜏1 ± ∇⊗ g3 = 𝜉𝜉𝜉𝑢𝜏2.
The final approximation of the traction vector f𝛽 = f(𝑑)𝛽 + f(𝑎)𝛽 is obtained as the

arithmetic mean of the approximations defined in Eqs. (3.48) and (3.49) written
for both sides 𝛽1 and 𝛽2 of the fault cell, i.e.,

f𝛽 =
f(𝑑)𝛽1 + f

(𝑎)
𝛽2 − f

(𝑑)
𝛽2 − f

(𝑎)
𝛽2

2 , (3.52)

where “-” takes into account the fact that the approximations f(𝑑)𝛽1 , f
(𝑑)
𝛽2 are defined

in Eqs. (3.48) and (3.49) for opposite orientations of the normal vector.
Eqs. (3.46) and (3.47) can be substituted to Eqs. (3.37) and (3.38) and we

obtain the approximation of unknowns at corresponding interfaces.

u𝛽 = (𝑑1T2 + 𝑑2T1)−1 [𝑑2T1(u1 ± g3) + 𝑑1T2u2 + 𝑑1𝑑2(B1 − B2)n𝑝3+
+(𝑑2T1⊗ (x𝛽 − y1)𝑇 − 𝑑1𝑑2ΓΓΓ1)𝜉𝜉𝜉𝑢𝜏1 + (𝑑1T2⊗ (x𝛽 − y2)𝑇 + 𝑑1𝑑2ΓΓΓ2)𝜉𝜉𝜉𝑢𝜏2]

(3.53)

𝑝𝛽1 = (𝑑𝛽1,1𝜅3 + 𝑑𝛽1,3𝜅1)−1 [𝑑𝛽1,1𝜅3 + 𝑑𝛽1,3𝜅1+
+ (𝑑𝛽1,3𝜅1(x𝛽1 − y𝛽1,1)𝑇 + 𝑑𝛽1,1𝑑𝛽1,3(𝜅𝜅𝜅3 −𝜅𝜅𝜅1)𝑇)𝜉𝜉𝜉𝑝𝜏+

+ 𝑑𝛽1,1𝑑𝛽1,3𝜌f𝑔∇𝑧 ⋅ (K1 −K3)n] .

(3.54)
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We approximate the advective term for fluid flux as

𝑞(𝑎)𝛽1 = �̃�𝛽1 = (B1n)𝑇⊗ (x𝛽1 − x1)𝑇 (∇⊗ u1) , (3.55)

where (B𝑖n)𝑇⊗ (x𝛽1 − x𝑖)𝑇 is a 1 × 9 row vector.
We use a DFM for simulation of the mass balance equation which implies hav-

ing discrete equations for fracture segments of non-zero volumes. We assume
continuous pressure at the boundary between fault cells. The following two-point
approximation of Darcy flux is used for these connections

𝑞f,𝛽1 =
𝜅1𝜅2

𝑑1𝜅2 + 𝑑2𝜅1
(𝑝1 − 𝑝2) + 𝜌f,12𝑔∇𝑧 ⋅ n, (3.56)

where 𝜌f,12 = (𝑑1𝜌f,2 + 𝑑2𝜌f,1)/(𝑑1 + 𝑑2) is linearly interpolated between cells.
The approximations in Eqs. (3.48)-(3.55) require the gradients of the unknowns

to be reconstructed. We follow the same approach as in the expressions for gradient
reconstruction derived for interior interfaces, but the particular condition in Eq.
(3.29) should be modified for a contact interface. One can derive 𝜉𝜉𝜉𝑢2 and 𝜉𝑝3 from
Eqs. (3.44) and (3.45) and substitute them into Eqs. (3.42) and (3.43) to obtain
the interpolation equation as

(T2⊗ (x2 − x1)𝑇 + 𝑑23 (T1 − T2) ⊗ n𝑇 + 𝑑23(ΓΓΓ1 −ΓΓΓ2)) [∇⊗ u1] =
= T2 (u2 − u1 ∓ g3) ∓ (T2⊗ (y23 − x3)

𝑇 − 𝑑23ΓΓΓ2) ∇⊗ g3, (3.57)

(𝜅3 (x3 − x1) + 𝑑3𝛿(K1 −K3)n) ⋅ ∇𝑝1 = 𝜅3 (𝑝3 − 𝑝1) + 𝑑3𝛿𝜌f,𝛽1𝑔∇𝑧 (K1 −K2)n.
(3.58)

Eq. (3.58) is used as a condition for pressure gradient reconstruction not only
between matrix and fault cells but also between fault cells.
Gap gradients are reconstructed by using the following relation for the connec-

tions between fault cells

[I⊗ (x2 − x1)𝑇]∇ ⊗ g1 = g2 − g1. (3.59)

In the connection between a fault cell and an open boundary interface, we have

[I⊗ (x2 − x1)𝑇] ∇ ⊗ g1 = 0, (3.60)

whereas for a closed boundary (fault tip) we have

[I⊗ (x2 − x1)𝑇] ∇ ⊗ g1 = −g1. (3.61)

Note, that Eqs. (3.59)-(3.61) do not take into account material contrasts.

3.3.4. Approximations at Boundary Interface
The approximations of fluxes at boundary interfaces must satisfy corresponding
boundary conditions defined in Eq. (2.55). Using the single-side approximation of
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normal pressure gradient 𝜉𝑝1 one can derive pressure 𝑝𝑏 and Darcy flux 𝑞f,𝑏 at the
boundary interface as

𝑝𝑏 = (𝑎𝑝 +
𝑏𝑝𝜅1
𝜇f𝑑1

)
−1

(𝑟𝑝 +
𝑏𝑝𝜅1
𝜇f𝑑1

𝑝1 −
𝑏𝑝
𝜇f
(𝜅1𝑑1

(y1 − x𝑏) + 𝜅𝜅𝜅1) ⋅ 𝜉𝜉𝜉𝑝𝜏 +
𝑏𝑝
𝜇f
𝜌f𝑔∇𝑧 ⋅K1n) ,

(3.62)

𝑞f,𝑏 = −
1
𝜇f
(𝑎𝑝 +

𝑏𝑝𝜅1
𝜇f𝑑1

)
−1

(𝜅1𝑑1
𝑟𝑝 − 𝑎𝑝

𝜅1
𝑑1
𝑝1 + 𝑎𝑝 (

𝜅1
𝑑1
(y1 − x𝑏) + 𝜅𝜅𝜅1) ⋅ 𝜉𝜉𝜉𝑝𝜏 − 𝑎𝑝𝜌f𝑔∇𝑧 ⋅K1n) ,

(3.63)

where x𝑏 denotes the center of boundary interface (Terekhov 2020a).
In the same manner, one can substitute the single-side approximation of dis-

placement gradients 𝜉𝜉𝜉𝑢1 to boundary conditions in Eq. (2.55) and derive u𝑏 and the
total traction vector at the boundary interface as

u𝑏 = (𝑎𝑡I+
𝑏𝑡
𝑑1
T1)

−1
(𝑙𝑟𝑛n+ (I− 𝑙nn𝑇L)𝑟𝑡)+

+ (𝑎𝑡I+
𝑏𝑡
𝑑1
T1)

−1
(𝑏𝑡I+ 𝑙nn𝑇(𝑏𝑛I− 𝑏𝑡L)) ⋅

⋅ ( 1𝑑1
T1u1 − (

1
𝑑1
T1 [I⊗ (y1 − x𝑏)𝑇] + ΓΓΓ1)𝜉𝜉𝜉𝑢𝜏 + 𝑝𝑏B1n) , (3.64)

f𝑏 = −
1
𝑑1
T1 (𝑎𝑡I+

𝑏𝑡
𝑑1
T1)

−1
(𝑙𝑟𝑛n+ (I− 𝑙nn𝑇L)𝑟𝑡)−

1
𝑑1
T1 (𝑎𝑡I+

𝑏𝑡
𝑑1
T1)

−1
(𝑙nn𝑇(𝑏𝑛I− 𝑏𝑡L) − 𝑎𝑡𝑑1T−11 ) ⋅

⋅ ( 1𝑑1
T1u1 − (

1
𝑑1
T1 [I⊗ (y1 − x𝑏)] + ΓΓΓ1)𝜉𝜉𝜉𝑢𝜏 + 𝑝𝑏B1n), (3.65)

where L = (𝑎𝑛I+
𝑏𝑛
𝑑1
T1) (𝑎𝑡I+

𝑏𝑡
𝑑1
T1)

−1
is a 3 × 3 matrix and 𝑙 = (n𝑇Ln)−1 is a

scalar. The approximation of �̃�𝛽 in Eq. (3.11) can be achieved from Eq. (3.64).
Eqs. (3.62) and (3.64) can be rewritten for the reconstruction of gradients in the

cells with boundary interfaces as

(𝑎𝑝(x𝑏 − x1) +
𝑏𝑝
𝜇f
K1n) ⋅ ∇𝑝1 = 𝑟𝑝 +

𝑏𝑝
𝜇f
𝜌f𝑔∇𝑧 ⋅K1n− 𝑎𝑝𝑝1, (3.66)

(𝑎𝑡 [I⊗ (x𝑏 − x1)𝑇] + 𝑏𝑡 [I⊗ n𝑇]S1+

+ 𝑙nn𝑇(𝑏𝑛I− 𝑏𝑡L) (ΓΓΓ1 +
1
𝑑1
T1 [I⊗ (y1 − x𝑏)𝑇])) [∇⊗ u1] =

= 𝑙𝑟𝑛n+ (I− 𝑙nn𝑇L) 𝑟𝑡 + (𝑙nn𝑇(𝑏𝑛I− 𝑏𝑡L)
1
𝑑1
T1 − 𝑎𝑡I)u1 + (𝑏𝑡I+ 𝑙nn𝑇(𝑏𝑛I− 𝑏𝑡L))B1n𝑝𝑏.

(3.67)
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3.4. Stabilized Approximation

T he displacement-pressure system is a known example of a saddle-point prob-
lem. Many numerical schemes approximating the system violate the Ladyzhenskaya-

Babuska-Brezzi (LBB or inf-sup) condition (Franco Brezzi 1991; Ladyzhenskaya 1969)
which introduces unphysical oscillations to numerical solution in the limit of un-
drained conditions (Gaspar et al. 2008; Murad et al. 1994; Preisig et al. 2011). The
collocated FVM based on the multi-point approximations presented above is not an
exception (Nordbotten 2016; Terekhov 2020a; Terekhov et al. 2022). Therefore, it
requires appropriate treatment of this instability.
Numerous techniques have been proposed to stabilize these kind of systems.

Most of the techniques introduce a specially-designed perturbation that suppresses
the instability maintaining the accurate discretization of original equations includ-
ing Brezzi-Pitkaranta scheme (Brezzi et al. 1984), the Galerkin least-squares method
(Hughes et al. 1986), Polynomial Pressure Projection (Dohrmann et al. 2004), Phys-
ical Influence Scheme for the Element-based FVM for poroelasticity (Honório et al.
2018), penalization of pressure jump across macroelements (Hughes et al. 1987)
and related Local Pressure Jump stabilization (Silvester et al. 1990) applied to the
multiphase poroelastic systems (Aronson et al. 2023; Camargo et al. 2021). The use
of a staggered grid for fluid mass and momentum balance may help to avoid sta-
bility issues (Gaspar et al. 2006; Shokrollahzadeh Behbahani et al. 2022a; Wheeler
et al. 2014), but it imposes additional limitations to admissible grids, complicates
the satisfaction of conservation principles (Morinishi et al. 1998; Perot 2000) and
amplifies the technical challenges related to building efficient solvers.
Flux vector splitting (FVS) has been widely utilized for the approximation of ad-

vection terms in computational fluid dynamics (Toro 2009). Recently, FVS has been
successfully extended to the schemes of FVM applied to saddle-point problems
(Terekhov 2021a), including the mixed formulation of the Darcy problem (Terekhov
et al. 2019), Navier-Stokes equations (Terekhov 2021b) and a coupled poroelastic
problem (Terekhov 2020b; Terekhov et al. 2022). In the following, the latter ap-
proach is briefly introduced.
We can write the single-side approximation of the vector 𝔮𝔮𝔮 of momentum and

fluid mass fluxes as
𝔮𝔮𝔮𝑖 = ΛΛΛ𝑖 [∇ ⊗ d𝑖] +M𝑖d𝛿 +𝜁𝜁𝜁𝑖 , (3.68)

where the first term is a diffusion term, the second term is an advection term and
last term is a free term, d𝛿 = [u𝑇 𝑝] is a vector of unknowns at the center of the
interface and the following notations are used

ΛΛΛ𝑖 = [I⊗ n𝑇] (−S𝑖 −Δ𝑡𝜇−1K𝑖
) , M𝑖 = (

B1n
(B1n)𝑇 ) , 𝜁𝜁𝜁𝑖 = [

0
𝜌f𝑔∇𝑧 ⋅K𝑖n

] . (3.69)

Let us consider the following decomposition of gradient vector of unknowns into
normal and transversal parts

∇⊗ d1 = [I⊗ n]𝜉𝜉𝜉1 +𝜉𝜉𝜉𝜏 = 𝑑−11 [I⊗ n](d(y1) − d1) + 𝜉𝜉𝜉𝜏 =
= 𝑑−11 [I⊗ n](d𝛿 − d1) + (I− 𝑑−11 I⊗ n(x𝛿 − y1)𝑇)𝜉𝜉𝜉𝜏 , (3.70)
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where 𝜉𝜉𝜉1 = [I ⊗ n𝑇][∇ ⊗ d1], 𝜉𝜉𝜉𝜏 = [I ⊗ (I − nn𝑇)][∇ ⊗ d1] are normal and
transversal components of ∇ ⊗ d1. Substituting the last definition into Eq. (3.70)
and decomposing ∇ ⊗ d2 in the following manner one may come to the following
form

∇⊗ d1 = 𝑑−11 [I⊗ n](d𝛿 − d1) + (I− 𝑑−11 I⊗ n(x𝛿 − x1)𝑇) [∇⊗ d1], (3.71)

∇⊗ d2 = 𝑑−12 [I⊗ n](d2 − d𝛿) + (I− 𝑑−12 I⊗ n(x2 − x𝛿)𝑇) [∇⊗ d2], (3.72)

Using co-normal decomposition ΛΛΛ𝑖 = 𝑑𝑖Q𝑖[I⊗ n𝑇] + ΘΘΘ𝑖, Q𝑖 = 𝑑−1𝑖 ΛΛΛ𝑖[I⊗ n] and
substituting Eq. (3.70) into Eq. (3.68) we will have the following representation of
fluxes

𝔮𝔮𝔮1 = −Q1d1 + (M1 +Q1)d𝛿 + (ΛΛΛ1 −Q1⊗ (x𝛿 − x1)𝑇) [∇⊗ d1] + 𝜁𝜁𝜁1, (3.73)

𝔮𝔮𝔮2 = Q2d2 + (M2 −Q2)d𝛿 + (ΛΛΛ2 −Q2⊗ (x2 − x𝛿)𝑇) [∇⊗ d2] + 𝜁𝜁𝜁2, (3.74)

where the terms (M1 + Q1)d𝛿, (M2 − Q2)d𝛿 can cause numerical instability. To
avoid it one can add the following terms to the fluxes

R1(d1 − d𝛿) +R1⊗ (x𝛿 − x1)𝑇[∇ ⊗ d1] = 0, (3.75)
S2(d𝛿 − d2) +R2⊗ (x2 − x𝛿)𝑇[∇ ⊗ d2] = 0, (3.76)

which are equal to zero because of linearity of d within each cell, R1,R2 are 4 × 4
matrices defined as

R𝑖 = 𝛼𝑖 (
𝑏−1𝑖 M1nn𝑇M𝑖

𝑏𝑖) , 𝛼𝑖 ≥
√(𝑘𝑖 − 𝑐𝑖)2 + 4𝑏2𝑖 𝜏 − (𝑘𝑖 + 𝑐𝑖)

2𝑏𝑖
(3.77)

𝑏𝑖 = √n𝑇B2𝑖 n, 𝑐𝑖 =
1
𝑑𝑖𝑏2𝑖

(n𝑇B𝑖⊗ n𝑇)Q𝑖(n⊗ B𝑖n), 𝑘𝑖 = (𝑑𝑖𝜇f)−1𝜅𝑖 ,
(3.78)

Adding Eqs. (3.75) and (3.76) to Eqs. (3.73) and (3.74) we have the following
flux approximations

𝔮𝔮𝔮1 = (R1 −Q1)u1 − (R1 −M1 −Q1)d𝛿 + (ΛΛΛ1 − (Q1 −R1) ⊗ (x𝛿 − x1)𝑇) [∇⊗ d1] + 𝜁𝜁𝜁1,
(3.79)

𝔮𝔮𝔮2 = (R2 +M2 −Q2)d𝛿 − (R2 −Q2)d2 + (ΛΛΛ2 − (Q2 −R2) ⊗ (x2 − x𝛿)𝑇) [∇⊗ d2] + 𝜁𝜁𝜁2.
(3.80)

The continuity of fluxes 𝔮𝔮𝔮1 and 𝔮𝔮𝔮2 can provide the approximation of the vector of
unknowns at the interface between d𝛿

d𝛿 = (Q1 +Q2 +M1 −M2 −R1 −R2)
−1 ((Q1 −R1)d1 + (Q2 −R2)d2+

(ΛΛΛ2 − (Q2 −R2) ⊗ (x2 − x𝛿)𝑇) [∇⊗ d2] − (ΛΛΛ1 − (Q1 −R1) ⊗ (x𝛿 − x1)𝑇) [∇⊗ d1] + 𝜁𝜁𝜁2 −𝜁𝜁𝜁1) ,
(3.81)



3.5. Reconstruction of Stresses

3

39

which once substituted back to Eq. (3.79) can provide a final approximation as

𝔮𝔮𝔮 = G2(G1 +G2)−1(R1 −Q1)d1 −G1(G1 +G2)−1(R2 −Q2)d2+
+G2(G1 +G2)−1 (ΛΛΛ1 − (Q1 −R1) ⊗ (x𝛿 − x1)𝑇) [∇⊗ d1] +G2(G1 +G2)−1𝜁𝜁𝜁1+

+G1(G1 +G2)−1 (ΛΛΛ2 − (Q2 −R2) ⊗ (x2 − x𝛿)𝑇) [∇⊗ d2] +G1(G1 +G2)−1𝜁𝜁𝜁2, (3.82)

where G1 = R1 −M1 − Q1, G2 = R2 +M2 − Q2. The separate approximation of
advective part 𝔮𝔮𝔮(𝑎) of flux can be derived from Eq. (3.79) as

𝔮𝔮𝔮(𝑎) = (R1 −Q1)d1 − (R1 −M1 −Q1)d𝛿 − (Q1 −R1) ⊗ (x𝛿 − x1)𝑇[∇ ⊗ d1], (3.83)

where the approximation of d𝛿 is provided in Eq. (3.81).
The approximation from Eq. (3.82) can be used as a standalone approximation or

the approximation of the advective part from Eq. (3.83) can be supplemented by the
approximation of the diffusive term from Eq. (3.35). The latter approach is utilized
in here. The boundary fluxes are not subjected to any stabilization procedure.

3.5. Reconstruction of Stresses

S olving the system of discrete mass and momentum balance in every cell provides
the vector of unknowns in the cell centers. To reconstruct effective stresses at

the same locations we use the algorithm from Terekhov 2020a.
For the 𝑗th interface of the cell let us construct the matrices

N𝑗 = (
𝑛𝑥 0 0 0 𝑛𝑧 𝑛𝑦
0 𝑛𝑦 0 𝑛𝑧 0 𝑛𝑥
0 0 𝑛𝑧 𝑛𝑦 𝑛𝑥 0

), T𝑗 = (
𝑥𝑗−𝑥𝑉 0 0 0

𝑧𝑗−𝑧𝑉
2

𝑦𝑗−𝑦𝑉
2

0 𝑦𝑗−𝑦𝑉 0
𝑧𝑗−𝑧𝑉
2 0

𝑥𝑗−𝑥𝑉
2

0 0 𝑧𝑗−𝑧𝑉
𝑦𝑗−𝑦𝑉
2

𝑥𝑗−𝑥𝑉
2 0

), (3.84)

where 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are components of the unit normal to the 𝑗th interface; 𝑥𝑗, 𝑦𝑗
and 𝑧𝑗 are components of the 𝑗th interface center position; and 𝑥𝑉, 𝑦𝑉 and 𝑧𝑉 are
components of the cell center position.
Collecting these matrices for 𝑁 interfaces of the cell we obtain the following 3𝑁×6

and 3𝑁 × 6 matrices, and 3𝑁 × 1 vector

N = ( 𝛿1N1⋯
𝛿𝑁N𝑁

), T = ( T1⋯
T𝑁
), f″ = (

𝛿1(f1+b𝑝𝛽1)⋯
𝛿𝑁(f𝑁+b𝑝𝛽𝑁)

), (3.85)

where vector b represents the Biot tensor B in Voigt notation. The stresses at the
cell center can then be reconstructed using the least squares solution

𝜎𝜎𝜎″ = (T𝑇N)−1 T𝑇f″, (3.86)

where the Biot effective stress tensor 𝜎𝜎𝜎″ = [𝜎″𝑥𝑥 , 𝜎″𝑦𝑦 , 𝜎″𝑧𝑧 , 𝜎″𝑦𝑧 , 𝜎″𝑥𝑧 , 𝜎″𝑥𝑦]𝑇 is written in
Voigt notation.
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3.6. Nonlinear Finite Volume Method for Pure
Elasticity Problem

T he approximation of the traction vector derived in Eq. (3.28) can be repeated
with A1 = A2 = 0 which corresponds to pure elasticity. Under this assumption,

the approximation in Eq. (3.28) can be represented as a sum of harmonic T(u1 −
u2) and transversal f𝜏 terms (Terekhov et al. 2020) as

f = T(u1 − u2) + f𝜏 , (3.87)
f𝜏 = −ΓΓΓ𝜉𝜉𝜉𝑢𝜏 , T = T1(𝑑1T2 + 𝑑2T1)−1T2, (3.88)

ΓΓΓ = 𝑑2T1(𝑑1T2 + 𝑑2T1)−1ΓΓΓ2 + 𝑑1T2(𝑑1T2 + 𝑑2T1)−1ΓΓΓ1 + T[I⊗ (y1 − y2)𝑇],
(3.89)

where 𝜉𝜉𝜉𝑢𝜏 represents 9×1 vector of tangential gradients of displacements, the other
notations are defined in Eqs. (3.20)-(3.23).
The weighting scheme applied to this approximation of the traction vector in Eq.

(3.87) can be written as follows

f = T(u1 − u2) +M1f𝜏1 +M2f𝜏2, (3.90)

where f𝜏1 and f𝜏2 are the single-side approximations of traction vector, f𝜏1 and
f𝜏2 are single-side approximations of the transversal term defined in Eq. (3.88).
Furthermore, M1 and M are 3 × 3 positive semidefinite matrices of the coefficients
of convex combination such that M1 +M2 = I. Taking M1 = M2 = I/2 as defined
in Eq. (3.32) results in the Average MPSA scheme (Terekhov et al. 2020) called
according to the analogy of Average MPFA scheme (Schneider et al. 2018b).
The following general representation of single-side tractions f𝜏1 and f𝜏2 can be

used once the gradient reconstruction described in the previous sections has been
performed

f𝜏1 = R2(u1 − u2) + ∑
𝑘∈𝜔1\{2}

R𝑘(u1 − u𝑘) + ∑
𝑘∈�̃�1

R𝑘(u1 − r𝑘) + h1, (3.91)

f𝜏2 = S1(u1 − u2) + ∑
𝑘∈𝜔2\{1}

S𝑘(u𝑘 − u2) + ∑
𝑘∈�̃�2

S𝑘(r𝑘 − u2) + h2, (3.92)

where 𝜔1 and 𝜔2 denote the sets of cells participated in the approximation of f𝜏1
and f𝜏2 respectively, �̃�1 and �̃�2 denote the sets of boundary conditions defined in
Eq. (2.55) and contributed to f𝜏1 and f𝜏2. Moreover, R𝑘 and S𝑘 are 3 × 3 matrices
that represent the single-side approximations of f𝜏1 and f𝜏2, respectively. They
are obtained from the reconstruction of displacement gradients in cells 1 and 2
being substituted to either Eq. (2.19) or to Eq. (3.87). Also, r𝑘 = r𝑡,𝑘 + 𝑟𝑛,𝑘n
represents the right-hand side of boundary condition in Eq. (2.55) contributed
to the single-side approximations, h1,h2 denotes the sum of Neumann boundary
conditions contributed to the approximation of f𝜏1 and f𝜏2, respectively.
Substituting Eqs. (3.91) and (3.92) in Eq. (3.90) and rearranging the terms we

can come up with the following equation

f = D1u1 −D2u2 − (M1a1 −M2a2), (3.93)
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where the following notations are used

D1 =M1 ∑
𝑘∈𝜔1∪�̃�1

R𝑘 +M2S1, D2 =M1R2 +M2 ∑
𝑘∈𝜔2∪�̃�2

S𝑘 , (3.94)

a1 = ∑
𝑘∈𝜔1\{2}

R𝑘u𝑘 + ∑
𝑘∈�̃�1

R𝑘r𝑘 − h1, a2 = ∑
𝑘∈𝜔2\{1}

S𝑘u𝑘 + ∑
𝑘∈�̃�2

S𝑘r𝑘 + h2.

(3.95)

We can construct a two-point nonlinear scheme in the same way as it was done
for the flux approximation, by eliminating all the terms in Eq. (3.93) except those
that are proportional to u1,u2. Assuming that the matrices of weights M1,M2 are
diagonal, the following linear system of equations completely defines them

M1a1 −M2a2 = 0, (3.96)
M1 +M2 = I, (3.97)

which solution is

M1 = diag {
a(𝑖)2 + 𝜀

a(𝑖)1 + a(𝑖)2 + 2𝜀
} , M2 = diag {

a(𝑖)1 + 𝜀
a(𝑖)1 + a(𝑖)2 + 2𝜀

} , 𝑖 = 1, 2, 3, (3.98)

where a(𝑖)1 ,a
(𝑖)
2 represent the components of a1,a2 vectors, and 𝜀 stands for a small

regularization parameter (Terekhov et al. 2017).
The weights M1,M2 defined in Eq. (3.98) introduce nonlinearity to the scheme

as they depend on unknown displacements through a1,a2. It leads to nonlinear
discrete equations even for the linear continuous problem. This artificial complexity
allows the numerical properties of the scheme to be adjusted. Here we reduce the
stencil of the scheme to a two-point version as it results to a monotone conver-
gent scheme for a scalar diffusion operator (Terekhov et al. 2017). However, the
constraint in Eq. (3.96) can be chosen in a different way. For example, keeping
only the terms with a single displacement component in each row in Eq. (3.93) it
is possible to split nine coupled scalar diffusion operators in Eq. (2.19) into three
decoupled operators. If a two-point stencil is also preserved within this constraint
then it can be seen that the full matrix will be an M-matrix (Berman et al. 1979).
Here we impose the constraint in Eq. (3.96) that produces a two-point approxim-
ation, but each semi-flux in Eqs. (3.91), (3.92) may include contributions from all
displacement components.
The positivity of the solution is required for the purpose of nonlinear convergence

(Terekhov et al. 2017). For those setups where negative values of any displace-
ment component may be exhibited, we add a large constant to the corresponding
displacement component as an initial guess. Dirichlet boundary conditions were
modified accordingly.
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3.7. Contact Constraints

T he solution of a momentum balance at the contact under the constraints for-
mulated in Eqs. (2.25)-(2.29) is challenging. From the mathematical stand-

point, the existence and uniqueness of the solution of a contact problem have been
proved only for small deformation frictionless contact (Kikuchi et al. 1995). The
lack of existence theory in the case of Coulomb friction motivated the introduction
of possible simplifications (known contact pressure or tangential stress, regular-
ized Coulomb friction) that allow the existence and uniqueness of the solution to
be proved (Yastrebov et al. 2013). Furthermore, the computational aspects of a
frictional contact problem are complicated by the non-smooth energy functional
associated with Coulomb friction (Kikuchi et al. 1995).
Several numerical techniques have been proposed to satisfy the contact con-

straints within FEM frameworks. The Lagrange multiplier method proposes the
introduction of extra degrees of freedom called Lagrange multipliers that allow the
constrained minimization problem to be converted to an unconstrained saddle-point
problem. The necessity to update contact status requires the incorporation of the
active-set strategy (Luenberger et al. 2008) into a nonlinear convergence loop.
The penalty method imposes the contact constraints as numerical barriers defined
by a penalty parameter which has to be infinite to fulfill the constraints precisely.
In practice, it has been found that penalty parameter equal to one magnitude
higher than Young’s modulus represents a good balance between the fulfillment
of the constraints and the ill-conditioning of the numerical problem for higher val-
ues. The augmented Lagrangian method represents a sort of Lagrange multiplier
method regularized by a penalty term (Simo et al. 1992). Consequently, it yields a
smooth energy functional for a fully unconstrained problem, satisfying the contact
constraints with a finite value of the penalty parameter. Further developments in
computational contact mechanics include the treatment of contact between non-
conforming meshes, mortar and Nitsche’s methods, finite deformations and contact
detection (Chouly et al. 2022; Laursen 2010; Wriggers 2006; Yastrebov et al. 2013).

3.7.1. Penalty Method with Return-Mapping Algorithm
We employ the penalty method (Gallyamov et al. 2018; Garipov et al. 2016; Simo
et al. 1992; Wriggers 2006; Yastrebov et al. 2013) to enforce contact constraints
written in Eqs. (2.28) and (2.29). The penalty method leads to the return-mapping
algorithm that can be formulated separately for normal and contact constraints as

f
′𝑛+1
𝑁 − 𝜀𝑁⟨g𝑛+1𝑁 ⟩ = 0, (3.99)

f̃′𝑇 = f′𝑛𝑇 + 𝜀𝑇(g𝑛+1𝑇 − g𝑛𝑇), Φ̃ = |f̃′𝑇| − 𝜇𝑛+1f
′𝑛+1
𝑁 , (3.100)

f′𝑛+1𝑇 − f̃′𝑇 + ⟨Φ̃⟩
f̃′𝑇
|f̃′𝑇|

= 0, (3.101)

where f̃′𝑇 denotes trial traction, which represents the penalized effective tangential
traction (Simo et al. 1992). Penalty parameters 𝜀𝑁 , 𝜀𝑇 ≫ 1 are calculated as 𝜀𝑁 =
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𝑓scale𝐸𝛿/𝑉, 𝜀𝑇 = 𝑓scale𝐺𝛿/𝑉 where 𝑓scale is an empirical scaling factor, 𝛿 denotes
the area of the contact interface, 𝑉 stands for the mean volume of two neighboring
matrix cells, while 𝐸 and 𝐺 denote the mean Young’s and shear moduli of two
contacting matrix cells (Cardiff et al. 2017). Moreover, the Coulomb friction function
Φ used as a slipping criterion is evaluated at the trial state Φ̃ = Φ(f̃′) that accounts
for the change of slip g𝑇 over the time step. Macaulay brackets ⟨𝑎⟩ are equal to
𝑎 if 𝑎 ≥ 0 and otherwise equal to zero. Thus, in the slip state Φ̃ = 0 Eq. (3.101)
requires contact to remain at the slipping surface defined by Φ = 0 where the
direction of forces is defined by the trial traction. Contact reaches the stick state
once the slip increment in Eq. (3.100) becomes negligible compared to the previous
traction (ġ𝑇 = 0). In this case, Eq. (3.101) claims the traction to be equal to the
trial one.

Although Eqs. (3.99)-(3.101) might be treated as boundary conditions with no
extra degrees of freedom (Terekhov 2020b), it might be convenient to treat the
gap vector g as an unknown assigned to particular fault cells, especially in induced
seismicity applications. Moreover, it allows for maintaining the block structure of
the Jacobian.

The influence of mechanical stresses on the conductivity of hydraulically active
faults can be of high interest in the modeling of hydraulic fracturing. Although we
do not consider fault opening, this effect was addressed by other researchers using
FEM with penalty regularization (Garipov et al. 2016), Nitsche’s method (Garipov
et al. 2019) or Lagrange multipliers (Franceschini et al. 2022b); and in the FVM
framework with using Lagrange multipliers (Berge et al. 2020). The latter develop-
ment within FVM also demonstrates the applicability of our developed method to
modeling of hydraulically active faults.

3.8. Linear Solution Strategies

T he efficient treatment of the systems of linear equations produced by coupled
quasi-static poro- and contact mechanics remains challenging. Algebraic Multi-

grid (AMG) methods have proved their efficiency in the solution of diffusion, linear
elasticity, and other elliptic problems (Baker et al. 2010; Griebel et al. 2003), and
they have become a part of preconditioning strategies for multi-physics problems
(Ferronato et al. 2019; Nardean et al. 2022). A fixed-stress split concept can be ex-
ploited to construct a block-partitioned preconditioner for a coupled poromechanics
(White et al. 2016), and extended to coupled multiphase flow and poromechanics
(White et al. 2019). Alternatively, System-AMG (McCormick 1987) can handle the
entire linear system which has been successfully applied for the solution of coupled
multiphase flow and geomechanics (Gries et al. 2019). A physics-based partitioning
of unknown displacements and Lagrange multipliers is utilized to construct a block-
partitioned preconditioner for coupled elasticity and contact mechanics (Ferronato
et al. 2019; Franceschini et al. 2022a; Franceschini et al. 2022b).
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3.8.1. Fixed-Stress Split Preconditioner
In this section, we describe the fixed-stress split concept (Kim et al. 2011) for the
construction of an efficient preconditioner for poromechanics (White et al. 2016).
The idea of the method is to consider the block-partitioned linear system

L−1J𝛿𝛿𝛿d = ( I 0
−J𝑝𝑢J−1𝑢𝑢 I)(

J𝑢𝑢 J𝑢𝑝
J𝑝𝑢 J𝑝𝑝

)(𝛿𝛿𝛿u𝛿𝛿𝛿p) =

= (J𝑢𝑢 J𝑢𝑝
0 S𝑝𝑝

)(𝛿𝛿𝛿u𝛿𝛿𝛿p) = −(
Hs

Hf − J𝑝𝑢J−1𝑢𝑢Hs
) , (3.102)

where J, Hs and Hf are the Jacobian and the residuals for momentum and mass
balance equations produced by the numerical scheme, 𝛿𝛿𝛿u and 𝛿𝛿𝛿p are unknown in-
crements of the vector of displacements and pressure, J𝑢𝑢 ,J𝑢𝑝,J𝑝𝑢 ,J𝑝𝑝 are contri-
butions to the momentum balance and mass balance equations from displacement
and pressure unknowns, L is the lower-triangular term in an LDU decomposition
of the Jacobian, and S𝑝𝑝 = J𝑝𝑝 − J𝑝𝑢J−1𝑢𝑢J𝑢𝑝 represents the Schur complement of
block J𝑢𝑢 in the Jacobian.
The concept of fixed-stress splitting is used here to provide the sparse approx-

imation of S𝑝𝑝 as
S̃𝑝𝑝 = J𝑝𝑝 − diag (J𝑝𝑢P−1𝑢 J𝑢𝑝 ⋅ e) , (3.103)

where e = [1, 1, .., 1]𝑇 is a probing vector, and P−1𝑢 is a preconditioner used for the
elasticity system.
This preconditioner is applied as follows:

1. At the beginning of every nonlinear (Newton) iteration, S̃𝑝𝑝 is evaluated. A
single V-cycle of an algebraic multi-grid (AMG) solver is typically used for P−1𝑢 .

2. At every iteration of the linear solver (GMRES) we employ the approximation
S̃𝑝𝑝 to solve the upper triangular system in Eq. (3.102) as follows:

a) Solve the second equation in upper triangular system in Eq. (3.102):
S̃𝑝𝑝𝛿𝛿𝛿p = −Hf.

b) Use the known value of 𝛿𝛿𝛿p to solve the first equation in Eq. (3.102):
J𝑢𝑢𝛿𝛿𝛿u = −Hs − J𝑢𝑝𝛿𝛿𝛿p.

3. Provide the linear solver with the approximate solution {𝛿𝛿𝛿u, 𝛿𝛿𝛿p} as initial
guess.

The system for the pressure unknowns is preconditioned using a single V-cycle as
well. The generalized minimal residual (GMRES) method is used as an outer solver.

3.8.2. System Algebraic Multigrid (SAMG)
The discovery of the multigrid principle was a breakthrough for solving large sys-
tems of elliptic partial differential equations. This principle constitutes the use of
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a hierarchical algorithm that works not only with a given discretization of differen-
tial operators but operates on a hierarchy of grids ensuring a rapid reduction of
both high- and low-frequency error components. In particular, smoothing steps
applied to a hierarchy of coarsened grids steadily eliminate various components of
the Fourier transform of the error vector starting from the higher-frequency down to
lower-frequency components. A wide range of possible applications dictated the in-
creasing interest in algebraic multigrid (AMG) methods that construct a reasonable
hierarchy automatically from the information contained in the provided Jacobian
matrix rather than considering a hierarchy of discretizations (Brandt 1986; Ruge
et al. 1987).

One of the implementations of AMG solvers, called System AMG or SAMG, further
continues the line of the black-box solvers that require minimal extra knowledge
about the used grid. Moreover, it extends the AMG method to the coupled linear
systems with different physical unknowns involved (Clees 2005; Ruge et al. 1987).
SAMG considers two approaches to handle the coupled linear system: unknown-
wise and point-wise. An unknown-wise approach applies the scalar AMG inde-
pendently to every unknown in the diagonalized matrix while the coupling terms
are taken into account on the coarser levels. A point-wise approach utilizes the
same coarse/fine splitting for every unknown constructed from the point connectiv-
ity identified from the matrix entries.

In this work, we attempt to utilize the SAMG library for the solving of linear sys-
tems stemming from the coupled formulation of poroelasticity and contact mech-
anics. The use of gap vectors as fault unknowns allows all mechanical unknowns
to be treated in the same manner. As additional information, SAMG requires the
tagging of the kind of unknowns (pressure, displacement, or saturation), the same
physical unknowns and the equations written at the same point in space. Unfortu-
nately, the linear systems obtained from the proposed FVM scheme coupled with
penalty method for contact mechanics demonstrate neither symmetry nor positive-
definiteness properties that are important for an effective work of AMG-based pre-
conditioners. Additionally, in some cases the successful application of SAMG for
these systems is limited by poor-conditioning which can be barely alleviated by
suitable dimensionalization.

3.8.3. Incomplete LU Factorization for Fully Dynamic
Modeling

The introduction of the inertia term into the momentum balance equation changes
the kind of equations, making them hyperbolic-like. Incomplete LU (ILU) factoriza-
tion has demonstrated its efficacy as a preconditioner, especially for the elimination
of high-frequency errors in geo-energy applications (Cao et al. 2005; Forsyth Jr.
et al. 1986; Wallis et al. 1985). We utilize the ILU(0) preconditioner with GMRES
iterations for the implicit solution of a fully dynamic problem.
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3.9. Implementation Details

T he presented schemes of FVM, the penalty method for contact constraints and
linear solution strategy described in the previous sections have been imple-

mented in an open-source Delft Advanced Research Terra Simulator called DARTS
(Voskov et al. 2023). It is a scalable parallel simulation framework, which has been
successfully applied for geo-energy applications including modeling of hydrocarbon
(Khait et al. 2018a; Lyu et al. 2021a), geothermal (Khait et al. 2018b; Wang et al.
2020b) and CO2 sequestration (Kala et al. 2020; Lyu et al. 2021b).
One of the main advantages of DARTS as a simulation framework is its flexibil-

ity. It is achieved by the following a hybrid code structure. The computationally
demanding interfaces are implemented and optimized in C++ and, subsequently,
exposed to Python. On the Python side, those interfaces are combined into user-
friendly routines that enable easy model setup with arbitrary user-defined proper-
ties, running high-performance simulations, and the post-processing of obtained
results.
The flexibility in regard to fluid mixture properties is reinforced by the Operator-

Based Linearization (OBL) technique incorporated into DARTS (Khait et al. 2018b;
Voskov 2017). The idea behind this technique is the parametrization of operators
participating in the discrete equations rather than deriving the analytical expressions
for them. This parametrization is performed in a state space that is single for all
cells sharing the same fluid physics. Interpolation techniques allow operator values
and their derivatives with respect to the state dimensions to be evaluated. As a
result, OBL can easily incorporate arbitrary user-defined fluid properties. In coupled
poroelastic modeling, OBL is utilized in the assembly of operators participating in
fluid mass balance equations.
The incorporation of the new functionality into the structure of DARTS can be

done in a few following stages.

3.9.1. Discretization
The implementation of the FVM described above starts with the evaluation of the ap-
proximations of the vector of fluxes over all interfaces in a computational grid. In the
presented version the discretization can be performed once at the pre-processing
stage before simulation. The discretization includes the following steps:

1. Geometry processing: For a given mesh (vertices and cells) we evaluate an
adjacency matrix of the cells comprising the computational grid. Besides, we
prepare the necessary geometrical data: cell and face centroids, face normals
and their areas, and cell volumes.

2. Gradient reconstruction: For a given mesh with specified material proper-
ties, boundary conditions, and contacts we calculate the approximation of the
cell-wise gradients of unknown pressure and displacements. For every cell we
assemble the linear system of Eqs. (3.29), (3.57)-(3.61), (3.66) and (3.67)
(an equation per cell’s interface, depending on the type of interface: mat-
rix, contact, boundary, contact boundary). The least-square solution of the
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assembled system from Eq. (3.31) provides the approximation of gradients.

3. The approximation of fluxes: We evaluate the approximation of fluid
fluxes and tractions at every interface of the computational grid according
to Eqs. (3.28), (3.35), (3.36), (3.48), (3.49), (3.52), (3.55), (3.56), (3.63),
(3.65), (3.82) and (3.83). The approximations are assembled for diffusive and
advective terms separately and provided as flattened arrays of coefficients
with the associated stencil. For convenient Jacobian assembly, the approx-
imations for every, either matrix or contact, interface are provided twice, for
each of two neighboring cells.

The particular implementation of the described discretization procedures has
been done in C++. For convenient and readable realization, a class for small
matrices with support of BLAS operations and slicing has been added. Next, the
structure that describes approximation has been developed with supported merge
and scalar multiplication operations. This structure consists of an array of coeffi-
cients, an array of cell (or boundary condition) indices defining the stencil and the
free terms. This structure has been utilized only during discretization: in gradient
reconstruction and in the assembly of approximations. The final approximations
are provided in the form of flattened arrays.
The other important implementation feature is that the contribution of boundary

conditions to the approximations has been implemented in a way unified with the
contributions of matrix or contact cells. Although, the boundary conditions do not
represent unknowns they participate in the assembly of fluxes, not giving direct
contributions to the Jacobian matrix. Therefore, during the discretization and matrix
assembly stages, they have an enumeration shared with cells.
It is worth to be noted that the proper incorporation of the gravity term with

pressure-dependent fluid density from Darcy’s law to the coupled discretization is
possible due to the fact that the approximations of both gradients and fluxes are
linear with respect to this term.

Gradient Reconstruction
In our experience, special attention should be paid to the gradient reconstruction
of unknowns and, in particular, to the matrix inversion in Eq. (3.31), as its quality
may significantly affect the accuracy of the subsequent simulation.
First, we should clarify the reconstruction of gap gradients over the 2D surfaces

representing faults. This reconstruction is based on the assembly of Eqs. (3.59)-
(3.61) that represent interpolation conditions within these 2D surfaces. Note that
even though we use the term 2D surface, they can represent curvilinear surfaces
in 3D space which admit parametrization with only two variables. It is important as
these in-surface conditions do not allow us to reconstruct full gradients. Instead,
we use the Moore-Penrose matrix pseudoinverse based on the Singular Value De-
composition to evaluate the approximation of in-surface gradients in Eq. (3.31).
Although an equidimensional fault representation is used in the calculation of fluid
mass balance in faults, and fault-matrix (off-surface) connections also participate in
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the reconstruction, we found that the use of pseudoinversion for the reconstruction
of pressure gradients in fault cells is more robust than normal inversion in some
cases.
Second, the reconstruction of gradients in matrix cells can be problematic. A

particular combination of boundary conditions adjacent to matrix cell or heterogen-
eity pattern may dramatically increase the condition number of the matrix M𝑇

𝑖M𝑖
in Eq. (3.31) making its inversion with standard LU-decomposition incorrect. In
some cases, the use of a small regularization parameter 𝜉I, which can be added to
the matrix, can already help to restore the matrix conditionality (Terekhov 2021b).
However, sometimes, this technique may not provide enough reduction in the con-
dition number. We use dimensionality reduction to balance equations in M either
coming from different connections or between displacement and pressure condi-
tions within a single connection.
The gradient reconstruction in the presence of the Neumann boundary condition

for the momentum balance can sometimes introduce issues. We discovered that
incorporating Neumann boundary condition in Eq. (3.67) into the gradient recon-
struction can makeM𝑇

𝑖M𝑖 not-invertible or drastically change the final solution. Ex-
cluding the Neumann boundary conditions from the reconstruction of displacement
gradients in adjacent cells has helped to overcome this issue. This approach applies
only to the reconstruction of displacement gradients in cells adjacent to Neumann
boundaries, while the boundary condition still receives the consistent approximation
according to Sec. (3.3.4).

3.9.2. Matrix Assembly
In DARTS, an instance of the class called “‘engine”’ assembles the Jacobian matrix
in block compressed sparse row format (BCSR) and the vector of residuals. For the
new functionality of coupled poroelasticity and contact mechanics, a new engine
class has been implemented. The following structure briefly outlines the assembly
stage:

1. Iterate over matrix, fault and well cells.
a) Assembly of flux term: Iterate over connections of a given matrix cell.

i. Iterate over cells within the stencil of approximation of fluxes at a
given connection. Add corresponding contributions to the vector of
fluxes, cell’s volumetric strain, and to the Jacobian matrix.

ii. Iterate over the boundary conditions within the stencil of approxima-
tion of fluxes at a given connection. Add corresponding contributions
to the vector of fluxes and the cell’s volumetric strain.

iii. Add free terms to the vector of fluxes, and the cell’s volumetric strain.
iv. Add an assembled vector of fluxes to the residual.

b) Assembly of accumulation term: Add the time derivative term to the
Jacobian matrix and the vector of residuals.

2. Iterate over faults and fault cells (contact mechanics).
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a) Assemble effective stresses used in sliding criterion

b) Transform stresses and gaps to the local basis associated with a contact
interface.

c) For a given friction law, assemble a trial slipping criterion according to
Eq. (3.100) and update the state.

d) Assemble contact Eqs. (3.99) and (3.101) in the local basis. Apply ap-
propriate dimensionality scaling if needed.

e) Transform contact equations from unknowns written in the local basis
to the Cartesian (global) unknowns. Add corresponding contributions to
Jacobian matrix and the vector of residuals.

3. Iterate over wells: Apply well controls to the cells assigned to well heads.
No momentum balance is considered in wellbores; assign an identity matrix to
the corresponding Jacobian block to keep block structure. Add the contribu-
tions from fluid mass balance to Jacobian matrix and the vector of residuals.

The first round of iterations over all the cells does not cover the contact constraints
which are assembled in the following loop over faults and associated fault cells. The
assembly of the momentum and fluid mass fluxes constitutes the major part of the
assembly procedure described above. It is important to store these fluxes as the
reconstruction of cell-centered stresses described in Sec. (3.5) requires them. A
similar reconstruction can be used to estimation of fluid velocities necessary for the
evaluation of streamlines and associated analyses (Datta-Gupta et al. 2007).

3.9.3. Linear Solution
Usually, the solution of linear systems makes up the largest part of simulation time.
In order to accelerate the numerical solution for fluid dynamics applications, a set
of linear solvers for large sparse systems has been implemented and integrated into
DARTS. They include the CPU and GPU implementations of a Constrained Pressure
Residual preconditioning strategy with Algebraic Multigrid (AMG) and incomplete
LU (ILU) factorization as preconditioners for elliptic (or parabolic) and hyperbolic
subsystems. The preconditioners have been incorporated in the iterations of the
generalized minimal residual method (GMRES) (Wang et al. 2020b).
For fully implicit poroelastic systems, the fixed-stress split preconditioner de-

scribed in Sec. 3.8.1 has been implemented for CPU backend. Its program imple-
mentation basically follows the algorithm described in Sec. 3.8.1. The BoomerAMG
solver (Henson et al. 2002) performs preconditioning P−1𝑢 for an elastic subsystem
while the local proprietary version of AMG has been utilized as the preconditioner
P−1𝑝 for a fluid flow subsystem. A local implementation of the ILU preconditioner is
used for the fully dynamic simulation. All preconditioners are incorporated into the
existing GMRES solver.
For the systems appearing in the fully implicit and coupled discretization of poroelasti-

city and contact mechanics, mainly, the direct solver from SuperLU library (Demmel
et al. 1999; Li et al. 1999) has been employed. Apart from the direct solver, we
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incorporated the interfaces to System Algebraic Multigrid solver (Gries et al. 2019;
McCormick 1987) into DARTS.

3.9.4. User Interfaces
The Python side of DARTS provides users with shortcuts to many model setups.
A model setup usually incorporates mesh import, specification of fluid physics and
reservoir properties, well controls, initial and time-dependent boundary conditions.
To facilitate the structured implementation of all these routines, the model class is
utilized.
The poroelastic formulation substantially complicates the specification of reservoir

properties compared to fluid dynamics. This motivated us to introduce a separate
reservoir class that structures the setup of reservoir properties, including faults with
frictional contacts. Once the model setup with reservoir properties is initialized, the
simulation can be launched.
A main script for the running poroelastic simulation in DARTS usually includes two

functions that are responsible for managing time steps and non-linear (Newton)
iterations within a time step respectively. The one more function runs the whole
script starting from the model setup, initialization and subsequent time stepping,
and post-processing.
In some simulations, it is useful to turn off the poroelastic mode and perform a

purely mechanical simulation with a predefined pressure distribution. Moreover, for
modeling realistic subsurface reservoirs, a special initialization step is often required.
For example, this step allows the initial volumetric strains associated with initial
porosity to be estimated. These functionalities are supported with a special flag
passed to the matrix assembly that prevents adding extra terms to the Jacobian
matrix.



4
Benchmarking Numerical

Solution
Summary

This chapter presents a number of benchmarks that the proposed Finite Volume
framework has undergone. These include numerical convergence tests, as well
as comparisons with existing analytical and semi-analytical solutions for continu-
ous and faulted poroelastic media. Additionally, the framework’s results are juxta-
posed against numerical solutions obtained from other numerical frameworks, fur-
ther demonstrating its efficacy and accuracy. The solution behavior in the presence
of the inf-sup instability is investigated in multiple tests. Finally, the performance
of the implemented linear solution strategy is assessed in the mechanical extension
of the SPE10 model.
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4.1. Linearity-Preserving Test

A numerical scheme is called linearity-preserving when its derivation is exact
whenever the solution is piecewise linear and the permeability (or diffusion)

tensor remains piecewise constant within each cell. As a result, a linearity-preserving
scheme must demonstrate the accuracy of the magnitude of numerical precision
for linear solutions. Linearity-preserving property is a desirable feature of numer-
ical schemes as these schemes are found to be accurate on highly skewed meshes
(Luo et al. 2017).
Consider a cubic domain Ω = [0, 1]3 [m] of a poroelastic body with the following

constant stiffness matrix C, Biot tensor B and permeability tensor K (Terekhov
2020a):

C =

⎡
⎢
⎢
⎢
⎢
⎣

93 46 22 13 72 35
46 95 41 62 56 24
22 41 89 25 33 21
13 62 25 87 13 25
72 56 33 13 99 57
35 24 21 25 57 78

⎤
⎥
⎥
⎥
⎥
⎦

bar,

B = [
1 6 5
6 67 27
5 27 76

] , K = [
25 2 39
2 42 7
39 7 100

]mD, (4.1)

with the following linear reference solution

⎡
⎢
⎢
⎣

𝑢
𝑣
𝑤
𝑝

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

1 2 3 4
6 7 8 9
11 12 13 14
16 17 18 19

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥
𝑦
𝑧
𝑡

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

5
10
15
20

⎤
⎥
⎥
⎦
, (4.2)

which satisfies the system of Eqs. (2.46), (2.47) and (2.55). Note, that in this
example we employ a full Biot tensor B. Although such a matrix is of no physical
significance for practical applications, it serves to test the computational aspects of
the algorithm. We assume that densities and viscosity in Eqs. (2.52) and (2.53)
remain constant. Substituting material properties from Eq. (4.1) and reference
solution from Eq. (4.2) into balance laws from Eqs. (2.46) and (2.47), we can
analytically derive the magnitude of left-hand side of the equations. Substituting
these values as a right-hand side and specifying initial and boundary (Dirichlet)
conditions according to Eq. (4.2), we expect that the numerical solution will match
the reference one from Eq. (4.2) up to machine precision. The parameters used
for calculation are listed in Table 4.1.
The results are summarized in Table 4.2. The calculations were performed using

structured grids composed of cubes and wedges, and an unstructured tetrahedral
grid up to time 𝑡 = 1 day. The linear solution was observed for every time step
and for each type of grid. Absolute errors at 𝑡 = 1 day with respect to the refer-
ence solution in Eq. (4.2) are almost at the level of machine double floating-point
precision.
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Table 4.1.: Parameters used for calculations in linearity preservation test case.

𝜇f, cP 𝑔, barm2 kg−1 1/𝑀, bar−1 𝜌f,kgm−3

9.81E-2 9.81E-2 1.45E-06 978

Table 4.2.: Absolute errors of solutions calculated on different mesh types for Test
Case 1.

Cell geometry Nr. of cells ||u− uℎ||𝐿2 ||𝑝 − 𝑝ℎ||𝐿2,
Cubic 64 3.0E-12 7.99E-11
Cubic 8000 3.38E-12 7.29E-10
Wedge 16000 7.14E-14 2.53E-11
Tetrahedron 16030 1.82E-11 4.55E-12

4.2. Convergence Tests

F or the same Ω = [0, 1]3m cubic domain let us consider the following constant
stiffness matrix C, Biot tensor B and permeability tensor K

C =

⎡
⎢
⎢
⎢
⎢
⎣

1.323 0.0726 0.263 0.108 −0.08 −0.239
0.0726 1.276 −0.318 0.383 0.108 0.501
0.263 −0.318 0.943 −0.183 0.146 0.182
0.108 0.383 −0.183 1.517 −0.0127 −0.304
−0.08 0.108 0.146 −0.0127 1.209 −0.326
−0.239 0.501 0.182 −0.304 −0.326 1.373

⎤
⎥
⎥
⎥
⎥
⎦

[bar], (4.3)

B = [
1.5 0.1 0.5
0.1 1.5 0.15
0.5 0.15 1.5

] , K = [
1.5 0.5 0.35
0.5 1.5 0.45
0.35 0.45 1.5

] [mD], (4.4)

and the reference solution (Terekhov 2020a) as

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = [(𝑥 − 0.5)2 − 𝑦 − 𝑧] (1 + 𝑡2)

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = [(𝑦 − 0.5)2 − 𝑥 − 𝑧] (1 + 𝑡2) (4.5)

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = [(𝑧 − 0.5)2 − 𝑥 − 𝑦] (1 + 𝑡2)

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 1
2 sin(1) sin((1 − 𝑥)(1 − 𝑦)(1 − 𝑧)) + 0.5(1 − 𝑥)

3(1 − 𝑦)2(1 − 𝑧)(1 + 𝑡2).

Following the same procedure we explained in the previous test case, we substitute
Eqs. (4.3) and (4.4) to Eqs. (2.46) and (2.47) and calculate the right-hand side
sufficient for them to be satisfied. We use automatic differentiation for the calcu-
lation of derivatives. Dirichlet boundary and initial conditions are also aligned with
Eq. (4.5). We assume that densities and viscosity in Eq. (2.52) and (2.53) remain
constant. All relevant parameters used in the calculations are listed in Table 4.3.
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L2 norms of differences between reference and calculated solutions are depic-
ted in Fig. 4.1. The calculations were done for a few cubic meshes of different
resolutions and using different time step sizes. They demonstrate superlinear con-
vergence for the vector of displacements and nearly linear convergence for the
pressure. The fact that the order of convergence is below the second order can be
explained by the Backward-Euler scheme used for the time integration (Terekhov
2020a).

Table 4.3.: Parameters used for calculations in convergence test case.

𝜇f, cP 𝑔, barm2 kg−1 1/𝑀, bar−1 𝜌f, kgm−3 𝜌s, kgm−3

9.81E-2 9.81E-2 1.45E-06 978 2500
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Figure 4.1.: Error norms of pressure and displacements calculated using cubic
meshes of various resolutions.

4.3. Terzaghi’s Problem

W e further validate the numerical scheme against the analytical solution for the
one-dimensional consolidation problem, also known as Terzaghi’s problem. In

this problem, an instant uniaxial compression is applied to the poroelastic domain
depicted in Fig. 4.2. A horizontal compressive force 𝐹 = 10MPa and constant
initial pressure 𝑝0 = 0Pa are applied at 𝑡 = 0 to the right side of the domain
of ℎ = 100m horizontal extent. All other sides of the domain are impermeable
to fluid and subjected to the roller boundary conditions (normal displacement and
tangential tractions are equal to zero). The domain’s permeability K = 𝑘I and
Biot’s tensor B = 𝑏I are defined by scalar values 𝑘 = 1mD, 𝑏 = 0.9, while the
domain’s stiffness is determined by Young’s modulus 𝐸 = 1GPa and Poisson’s ratio
𝜈 = 0.25. The domain of porosity 𝜙 = 0.375, fluid compressibility 𝑐f = 10−5bar−1,
fluid viscosity 𝜇f = 1cP.

Figure 4.2.: Terzaghi setup.
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The analytical solution for the Terzaghi problem can be written as follows (Verruijt
2016)

𝑢𝑥(𝑥, 𝑡) = −
𝐹𝑥(1 − 2𝜈)
2𝐺(1 − 𝜈) −

− 4𝐹ℎ(𝜈𝑢 − 𝜈)
𝜋2𝐺(1 − 𝜈)(1 − 𝜈𝑢)

∞

∑
𝑚=0

exp(−(2𝑚 + 1)2𝜋
2𝑐𝑡
4ℎ2 )

(2𝑚 + 1)2 cos((2𝑚 + 1)𝜋(𝑥 + ℎ))2ℎ ) ,

(4.6)

𝑝(𝑥, 𝑡) = 𝐹𝐵(1 + 𝜈𝑢)
3(1 − 𝜈𝑢)

−

− 𝐹𝐵(1 + 𝜈𝑢)3(1 − 𝜈𝑢)

∞

∑
𝑚=0

(−1)𝑚 (erfc (2𝑚 + 1)ℎ + 𝑥
√4𝑐𝑡

+ erfc
(2𝑚 + 1)ℎ − 𝑥

√4𝑐𝑡
) ,

(4.7)

where 𝐺 is shear modulus, and 𝑀 is Biot modulus. The consolidation coefficient 𝑐,
the undrained Poisson’s ratio 𝜈𝑢 and Skempton’s coefficient 𝐵 are defined as follows

𝑐 = 2𝑘𝐺(1 − 𝜈)(𝜈𝑢 − 𝜈)
𝜇f𝑏2(1 − 𝜈𝑢)(1 − 2𝜈)2

, 𝜈𝑢 =
3𝜈 + 𝑏𝐵(1 − 2𝜈)
3 − 𝑏𝐵(1 − 2𝜈) , 𝐵 = 3𝑏(1 − 2𝜈)𝑀

𝐸 + 3𝑏2(1 − 2𝜈)𝑀 ,
(4.8)

This problem was solved numerically with the non-stabilized scheme using a rect-
angular grid comprised of 30 cells per horizontal extent ℎ. Fig. 4.3 demonstrates
the comparison of calculated results against the analytical solution from Eqs. (4.6)
and (4.7). In the top left subfigure (Fig. 4.3a), pressure estimated at 𝑥 = 1.66m
is shown over time. The top right subfigure (Fig. 4.3b) demonstrates pressure pro-
files over a horizontal line at three moments of time. The horizontal displacement
𝑢𝑥 estimated at 𝑥 = 98.33m are plotted over time in the bottom left subfigure
(Fig. 4.3c). The bottom right subfigure (Fig. 4.3d) shows the spatial profiles of
vertical displacements at three moments of time.
Fig. 4.3 demonstrates a good match to the analytical solution obtained even

with this coarse grid. The compression of the poroelastic domain causes an instant
pressure build-up, uniform throughout the domain. As a result, thin boundary layer
originates at the right side of the domain subjected to the constant initial pressure.
Numerically it produces spurious oscillations that disappear over time. They can be
observed in Fig. 4.3b. A more detailed discussion of this phenomenon is presented
in one of the next sections.

4.4. Mandel’s Problem

C onsider the same domain as in the previous section with different boundary con-
ditions illustrated in Fig. 4.4. Now roller boundary conditions are applied only

to the left and bottom boundaries of the domain. The right boundary is free of both
normal and tangential forces while a normal load is applied from the top. Note that
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Figure 4.3.: Comparison of the analytical and numerical solutions for Terzaghi’s
problem. In the left column, pressure (a) and displacement (c) es-
timated at 𝑥 = 1.66m and 𝑥 = 98.33m respectively are shown over
time. In the right column, pressure (b) and displacement (d) profiles
over the whole domain are depicted at three moments of time.

this load is applied through the stiff bulk in a way that produces a uniform vertical
displacement. Therefore, it could be more convenient to specify time-dependent
normal displacement at the top estimated from analytical expressions. No-flow
conditions are specified for all boundaries except for the right one subjected to the
Dirichlet condition 𝑝0 = 0Pa. This setup is the so-called Mandel’s problem which is
often used as an example to demonstrate specific aspects of poroelasticity.

A porous homogeneous domain is characterized by Young’s modulus 𝐸 = 1GPa,
Poisson’s ratio 𝜈 = 0.25, a diagonal permeability tensor K = 𝑘I, 𝑘 = 1mD, satur-
ated with a single-phase compressible fluid with compressibility 𝑐f = 10−5bar−1,
viscosity 𝜇f = 1cP, and with a Biot modulus 𝑀 = 10−5bar−1 and a diagonal Biot
tensor B = 𝑏I, 𝑏 = 0.9.

The analytical solution of Mandel’s problem reads as (Terekhov et al. 2022; Ver-
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Figure 4.4.: Mandel setup.

ruijt 2016)

𝑢𝑥(𝑥, 𝑡) =
𝐹
𝐺ℎ (

𝜈𝑥
2 +

∞

∑
𝑚=1

(ℎ sin 𝜔𝑚𝑥ℎ − 𝜈𝑢𝑥 sin𝜔𝑚) cos𝜔𝑚
𝜔𝑚 − sin𝜔𝑚 cos𝜔𝑚

exp(−𝜔
2
𝑚𝑐𝑡
ℎ2 )) ,

(4.9)

𝑢𝑦(𝑦, 𝑡) =
𝐹
𝐺ℎ (

(𝜈 − 1)𝑦
2 − (𝜈𝑢 − 1)𝑦

∞

∑
𝑚=1

sin𝜔𝑚 cos𝜔𝑚
𝜔𝑚 − sin𝜔𝑚 cos𝜔𝑚

exp(−𝜔
2
𝑚𝑐𝑡
ℎ2 )) ,

(4.10)

𝑝(𝑥, 𝑡) = 2𝐹𝐵(1 + 𝜈𝑢)
3ℎ

∞

∑
𝑚=1

(cos 𝜔𝑚𝑥ℎ − cos𝜔𝑚) sin𝜔𝑚
𝜔𝑚 − sin𝜔𝑚 cos𝜔𝑚

exp(−𝜔
2
𝑚𝑐𝑡
ℎ2 ) , (4.11)

where 𝜔𝑚 are positive roots of the equation

cos𝜔𝑚 −
𝜈𝑢 − 𝜈
1 − 𝜈

sin𝜔𝑚
𝜔𝑚

= 0,

and the consolidation coefficient 𝑐, the undrained Poisson’s ratio 𝜈𝑢 and Skempton’s
coefficient 𝐵 are defined in Eq. (4.8). The initial values of displacements and
pressure are assigned as

𝑢𝑥(𝑥, 0) =
𝐹𝜈𝑢𝑥
2𝐺ℎ , 𝑢𝑦(𝑦, 0) =

𝐹(𝜈𝑢 − 1)𝑦
2𝐺ℎ , 𝑝(𝑥, 0) = 𝐹𝐵(1 + 𝜈𝑢)

3ℎ .

For the numerical solution, we use a 30 × 30 square mesh. Fig. 4.5 depicts a
comparison between the numerical solution and analytics from Eqs. (4.9),(4.11).
As in the previous section, the top left subfigure (Fig. 4.5a) shows the pressure
dynamics evaluated at 𝑥 = 1.66m, the bottom left subfigure (Fig. 4.5c) shows the
dynamics of horizontal displacement 𝑢𝑥 at 𝑥 = 98.33m, the right top (Fig. 4.5b)
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and the right bottom (Fig. 4.5d) subfigures illustrate the profiles of pressure and
vertical displacement correspondingly over a horizontal centerline at three moments
in time. The numerical solution matches analytics quite well. As in the previous
example, spurious oscillations arise around the right side of the domain at the very
beginning of simulation. They can be seen in the top right subfigure (Fig. 4.5b). A
more detailed discussion of this instability is provided in Sec. 4.6.

Figure 4.5.: Comparison of the analytical and numerical solutions for the Mandel’s
problem. In the left column, pressure (a) and displacement (c) at the
center of the most left cell are shown over time. In the right column,
pressure (b) and displacement (d) profiles over the whole domain are
depicted at three moments in time.

4.5. Two-Layer Terzaghi’s Problem

T he analytical solution in the presence of the two heterogeneous layers in Terz-
aghi’s problem remains feasible (Verruijt 2016). Thus, this test case represents

a nice benchmark for the validation of the numerical solution in the presence of het-
erogeneity. As in the previous sections, we consider a poroelastic domain of vertical
extent ℎ = 100m comprised of two layers of distinct properties with ℎ1 = 25m
and ℎ2 = 75m respectively. The first layer is adjacent to the right boundary which
is subjected to a constant normal load 𝐹 = 10MPa and a constant initial pressure
𝑝0 = 0Pa. As in the original Terzaghi’s problem, the roller no-flow boundary condi-
tions are applied to the other boundaries. The properties of the porous matrix and
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the fluid are listed in Tab. 4.4.

Figure 4.6.: Two-layer Terzaghi setup.

For simplicity, we assume that the Skempton’s coefficient is equal in both layers:
𝐵 = 𝐵1 = 𝐵2. In this case, the analytical solution follows as (Terekhov et al. 2022;
Verruijt 2016)

𝑔𝑚 =
2𝐵𝐹
𝜔𝑚

exp(−𝜔2𝑚𝑐2𝑡/ℎ22)
(1 + 𝛽𝜃) cos(𝜃𝜔𝑚) sin𝜔𝑚 + (𝛽 + 𝜃) sin(𝜃𝜔𝑚) cos𝜔𝑚

, (4.12)

𝑝(𝜉, 𝑡) =
∞

∑
𝑚=0

𝑔𝑚(𝑡) {
cos𝜔𝑚 cos(𝜃𝜔𝑚𝜉/ℎ1) − 𝛽 sin𝜔𝑚 sin(𝜃𝜔𝑚𝜉/ℎ1), 𝜉 > 0,
cos𝜔𝑘 cos(𝜔𝑚𝜉/ℎ2) − sin𝜔𝑚 sin(𝜔𝑚𝜉/ℎ2), 𝜉 < 0,

(4.13)

𝑢𝑥 = 𝐹 {
𝑚1𝜉 + 𝑚2ℎ2, 𝜉 > 0,
𝑚2(𝜉 + ℎ2), 𝜉 < 0,

−
∞

∑
𝑚=0

𝑔𝑚(𝑡)
𝜃𝜔𝑚

{
𝛼1𝑚1ℎ1 (cos𝜔𝑚 sin(𝜃𝜔𝑚𝜉/ℎ1) + 𝛽 sin𝜔𝑚 cos(𝜃𝜔𝑚𝜉/ℎ1))−
−𝛼1𝑚1ℎ1𝛽 sin𝜔𝑘 + 𝛼2𝑚2ℎ2𝜃 sin𝜔𝑚 𝜉 > 0,
𝛼2𝑚2ℎ2𝜃 (cos𝜔𝑚 sin(𝜔𝑚𝜉/ℎ2) + sin𝜔𝑚 cos(𝜔𝑚𝜉/ℎ2)) , 𝜉 < 0.

(4.14)

where 𝜉 = 𝑥 − ℎ2, Skempton’s coefficient 𝐵𝑖, the consolidation coefficient 𝑐𝑖, and
the confined compressibility coefficient 𝑚𝑖 are defined as

𝐵𝑖 =
𝑏𝑖𝑚𝑖𝑀𝑖

1 + 𝑏2𝑖 𝑚𝑖𝑀𝑖
, 𝑐𝑖 =

𝑘𝑖
𝜇f

𝑀𝑖
1 + 𝑏2𝑖 𝑚𝑖𝑀𝑖

, 𝑚𝑖 =
(1 + 𝜈)(1 − 2𝜈)

𝐸(1 − 𝜈) , (4.15)

Table 4.4.: The properties of two layers.

Layer ℎ,m 𝐸, GPa 𝜈 𝑏 𝑘, mD 𝜙 𝜇f, cP 𝑐f, bar−1

1 25 1 0.35 0.9 1 0.15 1 10−102 75 5 0.15 0.01 0.001 0.00695
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while the following definitions are used

𝛽 = 𝑘2
𝑘1
𝑐1
𝑐2
, 𝜃 = ℎ1

ℎ2
√
𝑐2
𝑐1
. (4.16)

In this example, we do not specify the Biot modulus manually in each layer; we use
the following relationship instead

𝑀𝑖 = [
(𝑏𝑖 − 𝜙0,𝑖)(1 − 𝑏𝑖)

𝐾s,𝑖
+ 𝜙0,𝑖𝑐f]

−1
, 𝐾s,𝑖 =

𝐸𝑖
3(1 − 2𝜈𝑖)

, (4.17)

where 𝐾s,𝑖 is the drained bulk modulus in layer 𝑖, and 𝜙0,𝑖 is the initial porosity in
layer 𝑖.
The assumption about identical values of Skempton’s coefficients is satisfied by

choosing the initial porosity 𝜙0 and Biot’s modulus in the second layer as

𝑀2 =
𝑏1𝑚1
𝑏2𝑚2

𝑀1
1 + 𝑏1𝑚1(𝑏1 − 𝑏2)𝑀1

, 𝜙0,2 =
𝐾s,2 − 𝑏2𝑀2(1 − 𝑏2)
𝑀2(𝑐f𝐾s,2 + 𝑏2 − 1)

. (4.18)

The comparison of results presented in Fig. 4.7 has the same format as in the
previous two sections. We use a uniform mesh comprised of 40 cells, so that the top
left subfigure (Fig. 4.7a) demonstrates pressure over time evaluated at 𝑥 = 1.25m
and the bottom left subfigure (Fig. 4.7c) shows the dynamics of horizontal displace-
ment 𝑢𝑥 taken at 𝑥 = 98.75m. The top and bottom right subfigures (Fig. 4.7b,
Fig. 4.7d) present pressure and horizontal displacement profiles over the domain
respectively. Numerical results remain in good accordance with the analytical solu-
tion.

4.6. Inf-Sup Instability

T he collocated arrangement of unknown pressure and displacements leads to
the numerical schemes suffering from the violation of the inf-sup condition.

The scheme presented in Sec. 3.3 is not an exception. In Sec. 3.4 we describe one
of the possible stabilizations of the current scheme (Terekhov et al. 2022). In this
section, we compare the behavior of both schemes with respect to inf-sup instability
that emerges in the last three examples.
The instability appears in the behavior of pressure close to the drained boundary.

The drainage creates a boundary layer in pressure in the case of sudden pressure
change. Even though fluid fluxes tend to smoothen the boundary layer with time,
the instability observed just after the sudden pressure change can have a significant
effect that takes place at early times in Terzaghi’s, Mandel’s, and two-layer Terzaghi’s
problems discussed above. Close to the right boundary of the domain pressure
starts oscillating with increasing magnitude towards the boundary. This can be
seen in the top right subfigures, in Figs. 4.3b, 4.5b and 4.7b.
The magnitude of this instability depends on how accurately the numerical model

resolves the boundary layer. Mathematically speaking, it is governed by the mag-
nitude of the Biot’s term in fluid mass balance relative to the magnitude of Darcy’s
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Figure 4.7.: Comparison of the analytical and numerical solutions for the two-layer
Terzaghi’s problem. In the left column, pressure (a) and displacement
(c) at the center of the most left cell are shown over time. In the
right column, pressure (b) and displacement (d) profiles over the whole
domain are depicted at three moments of time.

fluxes. Therefore, not only physical properties like permeability and fluid viscosity
affect the instability, but also numerical ones like time step and cell size. We can
introduce the ratio D = 𝑘Δ𝑡/(𝑏𝜇f) where 𝑘 is scalar permeability, Δ𝑡 is time step,
𝜇f is fluid viscosity, 𝑏 is scalar Biot’s coefficient. The limit of D → 0 implies the
best resolution of the boundary layer which means that we can experience more
pronounced oscillations whereas in the limit of D → ∞ the boundary layer becomes
smoothened and we observe no signs of instability.
Fig. 4.8 demonstrates a comparison of results produced with non-stabilized (NS)

and stabilized (ST) schemes against analytical solutions. As in the previous sections,
the top left subfigure (Fig. 4.8a) demonstrates pressure over time at 𝑥 = 1.66m,
the bottom left subfigure (Fig. 4.8c) shows the dynamics of horizontal displacement
𝑢𝑥 at 𝑥 = 98.33m and the top right (Fig. 4.8b) and top left subfigures (Fig. 4.8d)
illustrate pressure and horizontal displacement profiles respectively plotted over
the whole domain. As can be seen, the stabilized scheme does not experience
spurious pressure oscillations close to the right boundary. Instead, it smoothens
the boundary layer producing a large overshoot behind it.
Fig. 4.9 shows pressure profiles calculated with non-stabilized (NS) and stabil-

ized (ST) schemes for three values of permeability (Fig. 4.9a) and in three grid
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Figure 4.8.: Comparison of the analytical and two numerical solutions for Mandel’s
problem. In the left column, pressure (a) and displacement (c) at the
center of the most left cell are shown over time. In the right column,
pressure (b) and displacement (d) profiles over the whole domain are
depicted at three moments of time. NS - non-stabilized scheme, ST -
stabilized scheme.

resolutions (Fig. 4.9b). Here we still can see that the stabilized scheme produces
an overshoot behind the boundary layer. Nevertheless, the overshoot is decreasing
with finer grids; in coarse grids this overshoot can span a big part of the domain
introducing a significant deviation from the precise solution. At the same time, sub-
figure (Fig. 4.9b) shows that the instability emerging in the non-stabilized scheme
disappears with finer grid resolution.
Further analysis has revealed the sensitivity of the stabilized scheme to the aspect

ratio of grid cells and to the choice of parameter 𝛼 from Eq. (3.77) that is responsible
for the magnitude of the stabilization term added to the scheme. Taking all these
facts into account, we use the non-stabilized scheme for the numerical calculations
presented below.

4.7. SPE10 with Mechanical Extension
In this field-scale test case, we use data from the SPE10 benchmark for flow sup-
plemented by mechanical parameters, in particular a spatial distribution of Young’s
modulus that depends linearly on the porosity (Garipov et al. 2018). The original



4

64 4. Benchmarking Numerical Solution

(a) multiple permeability values. (b) multiple grid resolutions.
Figure 4.9.: Pressure profiles over the domain in Mandel’s problem calculated for

multiple values of permeability (a) and multiple grid resolutions (b) at
the first time step 𝑡 = 10−3 days. NS means non-stabilized scheme,
and ST stands for the stabilized scheme.

dataset represents a reservoir characterized by a channelized permeability and by a
permeability field that has a Gaussian spatial covariance as shown in Fig. 4.10. The
dataset was coarsened using a volume-averaging approach (Garipov et al. 2018).
Although the original SPE10 benchmark was designed as a two-phase flow problem,
here we consider single-phase flow. The reservoir is produced by a single doublet
of an injector and producer. No-flow boundary conditions are prescribed for all the
boundaries. Normal displacements and tangential tractions are set to zero at all
boundaries except for the top boundary where a uniform distributed load of 900
bar is applied. Poisson’s ratio is taken as constant 𝜈 = 0.2, and Young’s modulus
and lateral permeability fields are depicted in Fig. 4.10.

The calculations are made using five rectangular grids of different resolutions:
20×40×20, 20×40×40, 40×80×20, 40×80×40, 40×80×80. Constant bottom
hole pressures are kept at the producer as 𝑝𝑝𝑟𝑜𝑑 = 𝑝0 − 100 bar and the injector
as 𝑝𝑖𝑛𝑗 = 𝑝0 + 100 bar for 𝑡𝑚𝑎𝑥 = 2 years. The results are summarized in Fig.
4.11. They demonstrate the applicability of block-partitioned preconditioning for
the solution of a discrete system produced by a coupled FVM multi-point scheme.

In Fig. 4.11a it can be seen that the number of linear iterations (LI) increases as
the problem size increases while the number of nonlinear iterations (NI) remains
equal to 20. A similar behavior was observed in the nonlinear problem of two-phase
flow in a deformable poroelastic medium (White et al. 2019) and was explained by
the effect of upscaling. The upscaled grid tends to be more homogeneous, which
may also improve the convergence of the linear solver. To distinguish the effect of
upscaling, we also present calculations for a homogeneous reservoir in Fig. 4.11b).
In the homogeneous case, the number of linear iterations flattens as the problem
size grows which demonstrates the scalability of the solution strategy.



4.7. SPE10 with Mechanical Extension

4

65

Figure 4.10.: Young modulus (in GPa) and lateral permeability (in mD) fields shown
from the top (top row) and from the bottom (bottom row) of reservoir.
Young’s modulus is calculated as a linear function of porosity. The top
24 layers represent a channelized structure whereas the bottom 16
layers correspond to a Gaussian distribution. Note that the colorbar
of permeability is in logarithmic scale.

(a) (b)
Figure 4.11.: Cumulative number of linear iterations and computational time taken

by the linear solver to calculate 20 time steps and 20 nonlinear iter-
ations for five different resolutions. For every resolution results are
depicted for an upscaled heterogeneous reservoir (a) and for a ho-
mogeneous one (b). The rise in the number of linear iterations in
the heterogeneous case can be explained by the effects of upscal-
ing, while the flattening in the homogeneous case demonstrates the
scalability of the solution strategy.
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4.8. Comparison Against Other Simulators
4.8.1. GEOS
GEOS, an open-source exascale simulation framework for modeling coupled flow,
transport, and geomechanics in the subsurface, has been developed to address the
computational challenges introduced by geological CO2 storage and geothermal
energy applications (Settgast et al. 2022). It uses a combined cell-centered FVM
and node-based FEM for the numerical integration of fluid mass and momentum
balance laws respectively.
In this section, we compare the numerical solution obtained with the presented

scheme of FVM against the numerical solution provided by GEOS. In particular, we
investigate the behavior of the scheme at the contact between porous and non-
porous rocks, which is of high practical relevance.

Two-Layer Terzaghi Problem

(a) horizontal displacement (b) pressure
Figure 4.12.: The comparison of horizontal displacement (a) and pressure (b)

against the solution obtained with GEOS for the Case #1.

Consider the two-layer Terzaghi problem presented in Sec 4.5. One of the two
layers remains a porous permeable layer while the other is assigned a porosity,
permeability and Biot’s coefficient equal to zero. We consider two cases when the
impermeable layer is either exposed or not to the right open boundary. The model

Table 4.5.: The parameters of two cases of the two-layer Terzaghi model.

Case 𝐸1,2,GPa 𝜈1,2 𝑏1 𝑏2 𝜙1 𝜙2 𝑘1,mD 𝑘2,mD

#1 1 0.15 0.9 0 0.15 0.0 1 0
#2 0 0.9 0.0 0.15 0 1
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(a) horizontal displacement (b) pressure
Figure 4.13.: The comparison of horizontal displacement (a) and pressure (b)

against the solution obtained with GEOS for the Case #2.

properties are listed in Tab. 4.5 while the remaining properties are taken from Tab.
4.4.
Fig. 4.12 and Fig. 4.13 demonstrate the comparison of displacement and pres-

sure profiles across the domain at three moments of time for the two cases cor-
respondingly. In case #1, when the right layer remains porous and permeable we
observe a pressure build-up in this layer due to the poroelastic effect. The pressure
in the left layer remains equal to zero as it is non-porous and impermeable. Both
the proposed scheme (DARTS) and GEOS manage to resolve the pressure jump
between two layers. Although both simulators may suffer from inf-sup instability,
the proposed scheme demonstrates pressure oscillations of higher magnitude at
the right boundary than the pressure obtained with GEOS. This jump decreases
over time as fluid discharges from the right boundary. In case #2, the left layer
remains porous and permeable whereas the right layer is non-porous and imper-
meable. Pressure rises in the left layer due to the poroelastic effect. However, as
the impermeable right layer does allow fluid to discharge over the outlet at the right
boundary, the pressure remains the same over time. It is worth to notice that a
regular unidimensional grid is used in the calculations presented here.

A Porous Domain Inside Non-Porous Box
In this section, we demonstrate a comparison of numerical solutions for 2D poroelastic
response in a porous domain placed inside a non-permeable box calculated with
DARTS and GEOS. The contact of permeable and non-permeable materials is com-
mon in the geomechanical modeling of porous geological reservoirs surrounded by
non-permeable formations.
We consider the triaxial compression of a box-shaped non-porous domain ex-

truded from a square xy plane, see Fig. 4.14. In the center of xy plane we assign a
porous and permeable inner region (yellow color) of two geometries, namely square



4

68 4. Benchmarking Numerical Solution

(a) square inner domain (b) displaced inner domain
Figure 4.14.: Model setup.

and displaced-fault geometries shown in Fig. 4.14a and Fig. 4.14b respectively. Tri-
axial forces 𝜎𝑥𝑥 = 𝜎𝑧𝑧 = −10MPa, 𝜎𝑦𝑦 = −25MPa applied at the three positive
sides compress the domain while the roller conditions assigned to three negative
sides sustain compression. All boundaries are maintained impermeable. A uniform
Young’s modulus 𝐸 = 17GPa and Poisson’s ratio 𝜈 = 0.3 define an elastic re-
sponse of both domains while Biot’s coefficient 𝑏 = 0.9 and initial porosity 𝜙 = 0.15
define the poroelastic behavior of the inner region (yellow color). We assign per-
meability 𝑘0 = 1D to the inner permeable region and permeability 𝑘 = 10−8𝑘0 to
the surrounding domain (grey color). Compression causes an instantaneous pres-
sure build-up in the inner region. Fig. 4.14 illustrates the domain’s geometry and
boundary conditions.

Table 4.6.: The cases considered in the comparison.

Case Geometry Mesh Number of cells

#1 square 60×60 3600
#2 240×240 57600
#3 displaced 62×60 3720
#4 244×240 58560
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Figure 4.15.: The components of total stress tensor and pressure calculated with
GEOS (left column), DARTS (middle column) and their difference
(right column): 𝜎𝑥𝑥 are shown in the first row (a)-(c), 𝜎𝑦𝑦 are in
the second row (d)-(f), 𝜎𝑥𝑦 are demonstrated in the third row (g)-(i)
and pressure are illustrated in the last row (j)-(l).
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Figure 4.16.: The components of total stress tensor and pressure calculated with
GEOS (left column), DARTS (middle column) and their difference
(right column): 𝜎𝑥𝑥 are shown in the first row (a)-(c), 𝜎𝑦𝑦 are in
the second row (d)-(f), 𝜎𝑥𝑦 are demonstrated in the third row (g)-(i)
and pressure are illustrated in the last row (j)-(l).



4.8. Comparison Against Other Simulators

4

71

For the calculation of the numerical solution, we consider structured hexahedral
meshes of coarse and fine resolutions for both geometries. In the case of the square
geometry of the inner region we employ 60×60, and 240×240 square grids. For the
modeling of the displaced geometry, we utilize 62×60 and 244×240 quadrilateral
grids. These grids are tagged and listed in Tab. 4.6.
The cell-centered arrangement of unknown pressures and post-processed stresses

in both simulations enables their comparison within the same grid. We perform a
comparison of results obtained after a single time step Δ𝑡 = 1h. Fig. 4.15 and Fig.
4.16 demonstrate the comparison of the components 𝜎𝑥𝑥 (first row), 𝜎𝑦𝑦 (second
row), 𝜎𝑥𝑦 (third row) of the total stress tensor and pressures (last row) calculated
with GEOS (left columns) and DARTS (middle columns). The difference between
the two numerical approaches is shown in the right column. The results presented
in these two plots are obtained with the finer grids.
For convenient comparison, we also present 1D profiles of stresses and pressures

over the vertical (1) and horizontal (2) centerlines of the domains. The centerlines
are shown in Figs. 4.15a and 4.16a. Figs. 4.17 and 4.18 demonstrate the 1D
profiles for the cases listed in Tab. 4.6.
The results of modeling for the displaced geometry shown in Fig. 4.16 exhibit

an oscillating pressure at the boundary of the inner domain in the DARTS’s solution
(Fig. 4.16k) whereas the GEOS’s results do not demonstrate similar oscillations (Fig.
4.16j). This difference can be clearly seen in 1D pressure profiles over the vertical
centerline presented in Fig. 4.17e (Cases #3, #4). We attribute this behavior to
the violation of the inf-sup condition discussed in the previous sections. Obviously,
these pressure oscillations affect the whole comparison. Their effect on stresses is
clearly seen in Figs. 4.16b, 4.16e and 4.16h.
Surprisingly, we observe the pressure oscillations only in the case of curved non-

rectangular quadrilaterals. In the case of a rectangular cell geometry present at
the left and right sides of the inner displaced region, the DARTS’s pressure does
not exhibit oscillations. This can be seen from both the 2D colormap in Fig. 4.16k
and the 1D horizontal profiles in Fig. 4.18b. Furthermore, we observe no pressure
oscillations in the case of the square geometry of the inner region. These obser-
vations may indicate that the non-rectangular grid geometry provokes the inf-sup
instability for the current scheme of FVM.
At the same time, we observe that the magnitude of pressure build-up obtained

with two simulators does not precisely match even in the absence of pressure os-
cillations in the square geometry, see Figs. 4.18a and 4.17a. The coarse and fine
results from GEOS match each other while the DARTS’s results approach them with
finer grid resolution. Several other mismatches in stresses between the two solu-
tions can be found in the square geometry (Cases #1, #2) in Figs. 4.17 and 4.18.
Nevertheless, the results from both simulators seem converged, i.e. coarse and fine
results match each other; the most significant discrepancy between the simulators
is present in the 𝜎𝑥𝑥 and 𝜎𝑦𝑦 components. The source of this discrepancy requires
further investigation.
It is important to note that the total stresses from both simulators maintain con-

tinuity over the boundary of the inner region. The vertical total stresses 𝜎𝑦𝑦 remain
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continuous over the vertical centerline shown in Fig. 4.17c and 4.17g while the
horizontal total stress 𝜎𝑥𝑥 is continuous over the horizontal centerline as presented
in Figs. 4.18c and 4.18d. The non-smooth boundary of the inner region produces
concentrations of the total shear stress 𝜎𝑥𝑦 at corresponding locations. The dif-
ference in this stress component between two simulations is relatively high around
those concentrations which can be seen in Figs. 4.15i and 4.16i. Besides, the 1D
profiles of 𝜎𝑥𝑦 calculated by both simulators on coarse grids with the square geo-
metry demonstrate jumps (Figs. 4.17g and 4.18g) located far from the boundary
of the inner region.

Figure 4.17.: Pressure and stress profiles over the vertical centerline.
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Figure 4.18.: Pressure and stress profiles over the horizontal centerline.
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4.8.2. PorePy

The introduction of FVM for mechanics (Keilegavlen et al. 2017a; Martin 2014),
coupled poroelasticity (Nordbotten 2016) and the recent development in the cal-
culus of mixed-dimensional hydromechanical problems (Berge et al. 2020; Boon
et al. 2023; Boon et al. 2021) inspired the development of the FVM reservoir simu-
lation tool, called PorePy (Keilegavlen et al. 2021). In this section, we validate the
proposed scheme against the numerical results calculated with PorePy.

Figure 4.19.: The domain with an inclined fault and boundary conditions.

This case concerns a fault with Coulomb friction in the center of a square domain
of size 𝑎 = 1 m; see Fig. 4.19. The right boundary is fixed, the top and bottom
boundaries are free of any forces, while displacements u𝑙𝑒𝑓𝑡 = {0.001, 0.01} m are
prescribed at the left. A plane strain setup is considered. The stiffness matrix is
determined by Lame coefficients 𝜆 = 𝐺 = 1Pa. A fault of length 𝐿 = 0.4𝑎 with
friction coefficient 𝜇 = 0.85 is allowed to slip once the sliding criterion is exceeded.
A structured quadrilateral grid is used in the calculation. The resulting displacement
and stress fields for a vertical fault are shown in Figs. 4.20 and 4.21. One can notice
a small jump in horizontal displacements across the fault.

The results are compared with other ones, obtained by the PorePy simulation tool,
for different orientations of the fault determined by a dip angle 𝜙. The comparison
is displayed in Fig. 4.22. Tangential tractions over the fault calculated by the
proposed scheme (DARTS) and PorePy match quite well. For higher dip angles
(nearly vertical orientation) the resulting slip also fits quite well. However, for lower
dip angles the slip is decreasing and in the case of 𝜙 = 72° it becomes located at
the tips of the fault whereas the center of the fault displays higher normal tractions
and smaller slip values. With decreasing dip angles, the slip magnitude decreases
as well and a tiny mismatch in tangential traction results in a higher mismatch in
slip (for 𝜙 = 72°). Below some threshold angle, no slip over the fault is observed.
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Figure 4.20.: Horizontal (left) and vertical (right) displacements for the case of a
vertical fault (𝜙 = 90°). Note the jump in vertical displacements at
the fault.

Figure 4.21.: Normal horizontal (left), vertical (middle) and shear stresses (right)
for the case of a vertical fault (𝜙 = 90°).

4.9. Displaced Fault Model

R educing stress concentration is a challenging task, relevant to many applications
in mechanical and civil engineering. From the mathematical point of view, the

elasticity operator, unlike e.g. diffusion operator, can be severely influenced by

Parts of this section have been published in Novikov et al. 2023.
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Figure 4.22.: Comparison of slip and tangential traction along the fault for different
dip angles.

the smoothness of domain geometry. A non-smooth geometry in the domain’s
boundaries or in surfaces dividing homogeneous regions may introduce discontinu-
ous stresses. Even though, in reality, those discontinuities are limited by non-linear
material rheology, they still may introduce enormous stress concentration compared
to the background stresses.

In reservoir engineering, the stress concentrations introduced by non-smooth
geometry may appear on the faults and fractures dividing geological compartments,
and may impair their stability. Real subsurface configurations often consist of mul-
tiple rock layers crossed by natural faults. Sometimes the parts of initially aligned
formations can be displaced over these faults juxtaposing the rock layers with dis-
tinct properties against each other. This configuration increases the risk of fault
reactivation during the extraction of geo-energy resources (Orlic et al. 2012; Van
den Bogert 2018).

Fortunately, the analytical consideration is possible for the simple representation
of this displaced fault configuration. The poroelastic stresses in a reservoir can
be estimated analytically with the aid of inclusion theory (Eshelby 1957), or the
closely-related nucleus of strain concept (Geertsma 1966; Geertsma 1973), based
on potential theory (Goodier 1937). In particular, the analytical expressions for the
stresses in a reservoir with a displaced fault induced by quasi-static pressure per-
turbations have been derived (Cornelissen et al. 2023; Jansen et al. 2019; Jansen
et al. 2022).

In this section, we perform the validation of the developed FVM against the ana-
lytics existing for the displaced fault model in a number of cases. First, we validate
the initial unperturbed stresses. Next, we check the stress and slip profiles over the
fault in the case of vertical frictionless contact, and inclined contacts governed by
constant and linear slip-weakening friction laws.
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(a) Initial setup. (b) Computational grid.
Figure 4.23.: Left: the initial setup to represent an infinitely wide reservoir without

faults (not to scale). Load configuration and mechanical boundary
conditions to simulate initial stresses. Right: computational grid used
in the initial setup (cell size - not to scale).

4.9.1. Model Setup
The calculation of the displaced fault model implies the consideration of two setups.
A square homogeneous poroelastic domain of equal height and width 𝐻 = 𝑊 =
4500m is considered in both setups. Shear modulus 𝐺 = 6.5GPa, Poisson’s ratio
𝜈 = 0.15 and Biot coefficient 𝑏 = 0.9 determine the mechanical response of the
domain’s material. Moreover, the specified pressure distribution is assigned in both
setups due to an assumption about quasi-steady-state poroelasticity used in the
analytical consideration. We apply the plain strain condition in the both setups.
The origin of the coordinate system is placed in the center of the domain.
The first setup, shown in Fig. 4.23b, is designed to estimate the initial stresses

as they behave in the subsurface. Therefore, initial horizontal stress 𝜎0𝑥𝑥(𝑦), initial
vertical stress 𝜎0𝑦𝑦(𝑦), and initial pressure 𝑝0(𝑦) depends on the depth aligned with
the y-axis as follows

𝜎0𝑥𝑥(𝑦) = 𝐾0(𝜎0𝑦𝑦 + 𝑏𝑝0(𝑦)) − 𝑏𝑝0(𝑦), (4.19)
𝜎0𝑦𝑦(𝑦) = ((1 − 𝜙)𝜌s + 𝜙𝜌f) 𝑔(𝑦 − 𝐷0), (4.20)

𝑝0(𝑦) = 𝑝0(𝑦 = 0) − 𝜌f𝑔𝑦, (4.21)

where 𝐾0 = 0.5 denotes the constant ratio of effective horizontal 𝜎″𝑥𝑥 to effective
vertical 𝜎″𝑦𝑦 stresses, 𝐷0 represents the depth assigned to the center of domain, 𝜙
is rock porosity, 𝜌f, 𝜌s are fluid and rock densities correspondingly, 𝑔 is gravitational
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Table 4.7.: Reservoir properties, fault geometry and simulation domain.

Symbol Property Value Units

𝑎 See Fig. 4.25 75 m
𝑏 See Fig. 4.25 150 m
𝐷0 Depth at reservoir center (𝑦 = 0) 3500 m
𝑔 Acceleration of gravity 9.81 ms−2
𝐺 Shear modulus 6500 MPa
𝐻 Height of simulation domain 4500 m
𝐾0 Ratio of initial effective horizontal to vertical stresses 0.5 −
𝑝00 Initial reservoir pressure at reservoir center 35 MPa
𝑊 Width of simulation domain 4500 m
𝑏 Biot coefficient 0.9 −
𝜃 Dip angle 70 deg.
𝑐 Cohesion 0 MPa
𝜈 Poisson’s coefficient 0.15 −
𝜌f Fluid density 1020 kgm−3

𝜌f Solid density 2650 kgm−3

𝜙 Porosity 0.15 −

acceleration. The reservoir properties used in calculations are listed in Tab. 4.7.
The stress distributions defined in Eqs. (4.19)-(4.21) are satisfied with appropri-

ate Neumann boundary conditions

𝑓ℎ(𝑦) = −𝜎0𝑥𝑥(𝑦), 𝑓𝑣,𝑡𝑜𝑝 = 𝜎0𝑦𝑦(𝑦 = 2250), 𝑓𝑣,𝑏𝑜𝑡 = −𝜎0𝑦𝑦(𝑦 = −2250), (4.22)

where 𝑓ℎ is a normal force applied to the left boundary at 𝑥 = −2250m and
the opposite −𝑓ℎ normal force is applied to the right boundary at 𝑥 = 2250m,
−𝑓𝑣,𝑡𝑜𝑝, 𝑓𝑣,𝑏𝑜𝑡 are normal forces applied to the top boundary at 𝑦 = 2250m and to
the bottom boundary at 𝑦 = −2250m respectively. As we consider quasi-steady-
state poroelasticity, the pressure distribution in Eq. (4.21) is provided as an input.
To regularize the purely Neumann problem and constrain rigid body motion we

impose the following Dirichlet condition in tangential directions at three points

{ 𝑢𝑦 = 0, at 𝑥 = ±2500m, 𝑦 = 0m,
𝑢𝑥 = 0, at 𝑥 = 0m, 𝑦 = −2500m. (4.23)

These specific locations of stick points allow stress concentrations around them to
be avoided. The boundary displacements calculated from the modeling of the initial
setup are shown in Fig. 4.24.
The second setup introduces a displaced fault geometry presented in Fig. 4.25

for two values of dip angle 𝜃 = 90° and 𝜃 = 70°. In this setup, the reservoir,
situated in the middle of the domain, becomes divided into two parts shifted with
respect to each other. The boundary displacements calculated in the initial setup
are taken as the left, right and bottom normal boundary conditions for the main
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Figure 4.24.: The shape of the domain’s boundary calculated in the initial setup (not
to scale).

setup. The normal force −𝑓𝑣 = −𝑓𝑣,𝑡𝑜𝑝 is applied at the top boundary like in the
initial setup. We impose a free condition in a tangential direction at all boundaries.
The properties defining the domain’s geometry are listed in Tab. 4.7.
In the main setup, we assign a uniform pressure depletion in the reservoir. Due

to the displaced fault geometry, the discontinuous stresses appear over the fault at
the inner (𝑦 = ±𝑎) and outer (𝑦 = ±𝑏) corners of reservoir which may cause fault
reactivation. The resolving of these infinite stresses, albeit challenging, is inevitable
for the quantification of seismicity risks in this setup.
Having both weak (stress) discontinuities and strong (displacement) discontinu-

ities over the fault imposes high requirements on the quality of the computational
grid. We use an unstructured grid comprised of wedges and adaptively refined to-
wards the fault. Figs. 4.25b, 4.25d illustrate the grids used for the modelling of the
main setup with 𝜃 = 90° and 𝜃 = 70° respectively. For convenient representation,
the cell size shown in the figures is much higher than used in simulation.

4.9.2. Initial State
The initial setup described above is shown in Fig. 4.23b. The unstructured grid
comprised of wedges and used in numerical simulation is demonstrated in Fig.
4.23a.
In order to check the consistency of the initial setup we check if the numerical

solution satisfies the presumptions from Eqs. (4.19)-(4.21). Fig. 4.26 demonstrates
the match of the numerical solution (DARTS) to the stresses presumed in Eqs.
(4.19), (4.20) (Analytical) projected to the line crossing the center of the domain
at an angle of 70° with horizontal.
The main goal of the first setup is to calculate the initial state and to provide

boundary conditions for the main setup. Fig. 4.27 presents the particular profiles
of the displacements evaluated at the domain’s boundaries normal to the boundary
interface. Subfigures (a), (b) show the horizontal displacement 𝑢𝑥 over the left and
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(a) Vertical fault: setup. (b) Vertical fault: grid.

(c) Inclined fault: setup. (d) Inclined fault: grid.
Figure 4.25.: The main setup with a displaced fault for the two values of dip angle:

𝜃 = 90° (a) and 𝜃 = 70° (c). Corresponding computational grids are
shown in the right column.

right boundaries correspondingly whereas subfigures (c), (d) illustrate the profiles
of vertical displacements 𝑢𝑦 over the bottom and top boundaries respectively. In the
main setup, these displacements will be applied as a Dirichlet boundary condition
in the normal direction to the left, right and bottom boundaries.
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Figure 4.26.: Initial normal stresses 𝜎0⊥ (left) and initial shear stresses 𝜎0∥ (right)
along a line through the center of the reservoir at an angle of 70°
with horizontal.

Figure 4.27.: Normal boundary displacements calculated from the initial setup. Sub-
figures (a), (b) show the horizontal displacements at the left and right
boundaries respectively while subfigures (c), (d) present the vertical
displacements evaluated at the bottom and top boundaries corres-
pondingly.
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4.9.3. Vertical Frictionless Fault
Consider the main setup described above with an introduced displaced vertical fault
at the center of the reservoir by choosing 𝑎 = 75m and 𝑏 = 150m such that the
reservoir contains a fault with throw 𝑡𝑓 = 𝑏 − 𝑎 = 75m, see Fig. 4.25a. As a first
step, we don’t allow for fault slip in the simulation and perform the same steps as
in the previous example to generate the initial and incremental stress fields.
The combined pre-slip Coulomb stress Σ𝐶, i.e. the pre-slip Coulomb stress res-

ulting from the sum of initial and incremental stresses is defined for an arbitrarily
oriented fault with friction coefficient 𝜇 as

Σ𝐶 = |Σ∥| + 𝜇Σ⊥. (4.24)

For the particular case of positive shear stress in a vertical fault without friction,
i.e. with 𝜃 = 90° and 𝜇 = 0, and an incremental pressure of 𝑝 = −25MPa this
reduces to (Jansen et al. 2022)

Σ𝐶 = 𝜎𝑥𝑦 =
𝐶
2 ln

(𝑦 − 𝑎)2(𝑦 + 𝑎)2
(𝑦 − 𝑏)2(𝑦 + 𝑏)2 , 𝐶 = (1 − 2𝜈)𝛼𝑝

2𝜋(1 − 𝜈) . (4.25)

Next, we allow for a slip in the fault over the entire simulation domain, i.e. from
-2250 to 2250m. The pressure in the fault is equal to the initial pressure 𝑝0(𝑦)
except for the reservoir section −150m ≥ 𝑦 ≥ 150m where it is equal to the
combined pressure 𝑝(𝑦) = 𝑝0(𝑦)−25MPa. The analytical solution for the fault slip
is given by (Jansen et al. 2022)

𝛿(𝑦) = 𝐶
𝐴 ×

⎧
⎪
⎨
⎪
⎩

0 if 𝑦 ≤ −𝑏,
−(𝑦 + 𝑏) if −𝑏 < 𝑦 ≤ −𝑎,
(𝑎 − 𝑏) if −𝑎 < 𝑦 < 𝑎,
(𝑦 − 𝑏) if 𝑎 ≤ 𝑦 < 𝑏,
0 if 𝑏 ≤ 𝑦 ,

, 𝐴 = 𝐺
2𝜋(1 − 𝜈) . (4.26)

Fig. 4.28 (right) displays this slip distribution over the height of the reservoir, and
Fig. 4.28 (left) displays the pre-slip Coulomb stress. The correspondence between
the numerical results (DARTS) and the semi-analytical results (Analytical) is excel-
lent.

4.9.4. Inclined Fault with Static Friction
Consider the same reservoir as in the previous section but now with a fault at
𝜃 = 70° with respect to horizontal; see Fig. 4.25c. A sketch of corresponding
computational grid is displayed in Fig. 4.25d. For convenient visualization, the cell
size in the figure is much bigger compared to the one used in calculations. Fig. 4.29
(left) displays the pre-slip shear stresses Σ∥ and the slip threshold Σ𝑠𝑙 = −𝜇Σ′⊥ for an
incremental pressure 𝑝 = −25 MPa, and Fig. 4.29 (right) shows the corresponding
pre-slip Coulomb stresses Σ𝐶. The numerical results (DARTS) closely match the
semi-analytical ones (red curves).
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Figure 4.28.: Left: pre-slip Coulomb stresses Σ𝐶 in a frictionless vertical fault with
offset (which, for this particular case, just equals the incremental
shear stress 𝜎∥). Right: the resulting slip 𝛿.

Figure 4.29.: Left: pre-slip shear stresses Σ∥ and slip threshold Σ𝑠𝑙 in an inclined
fault with offset and constant friction. Right: the corresponding pre-
slip Coulomb stresses Σ𝐶. Simulation domain width 𝑊 = 4500m.
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Figure 4.30.: Left: post-slip Coulomb stresses Σ̆𝐶. Right: the corresponding slip 𝛿.
Simulation domain width 𝑊 = 4500m.
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Figure 4.31.: Left: post-slip Coulomb stresses Σ̆𝐶. Right: the corresponding slip 𝛿.
Simulation domain width 𝑊 = 18km.

Figure 4.32.: Simulation set-up, with increased width 𝑊 = 18km, to scale.
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Fig. 4.30 displays the post-slip Coulomb stresses (left) and fault slip (right) for
𝑝 = −25 MPa. At this depletion level, the slip occurs in the form of two separate
slip patches. For increasing depletion, the patches will merge as shown in the same
figure with results for 𝑝 = −27 MPa. Somewhat surprisingly the numerical results
(DARTS) now show a discrepancy with the semi-analytical ones (red curves), espe-
cially for the merged slip patch. It can be explained by the fact that an analytical
solution has been derived for an infinitely wide domain. Further comparisons re-
vealed that this discrepancy disappears if the width 𝑊 of the simulation domain
is increased. Fig. 4.31 displays the same results but now for a simulation with
𝑊 = 18km, i.e. four times as wide as the original simulation domain. Apparently,
the strongly nonlinear mechanics involved in fault slip leads to strong sensitivities
of the slip patch size to the boundary conditions at the edges of the reservoir. This
finding suggests that in reality there will also be a large sensitivity to the bound-
ary conditions of the reservoir and probably also a significant interaction effect of
neighboring faults. Fig. 4.32 displays the reservoir and the simulation domain, with
increased width, to scale.
Fig. 4.33 displays the location of the four slip patch boundaries (two for each

of the two patches) as a function of incremental pressure. Merging occurs when
the pressure has dropped to 𝑝 = −26.9 MPa and the numerical results (DARTS),
computed with 𝑊 = 18km, match the semi-analytical ones (Analytical).

4.9.5. Inclined Fault with Linear Slip-Weakening friction
In the case of slip-weakening friction decreases as slip increases in absolute value.
We use the linear slip-weakening friction law which implies a linear decrease of fric-
tion coefficient from a static value 𝜇𝑠 to a dynamic one 𝜇𝑑 over a critical slip distance
𝛿𝑐. The friction remains equal to 𝜇𝑑 for the absolute values of slip larger than 𝛿𝑐
as shown in Fig. 4.34. Slip-weakening promotes fault reactivation and may cause
unstable rupture propagation. Although simplistic, it is a representative model that
describes seismicity observed in geological formations (Buijze et al. 2019; Buijze
et al. 2017; Franceschini et al. 2023; Van den Bogert 2018).
Fig. 4.35 illustrates the comparison of analytical and numerical profiles of post-

slip Coulomb stress and slip over an upper patch calculated in the square domain at
a nucleation depletion pressure 𝑝∗. For the depletion pressures below 𝑝∗ unstable
rupture propagation is expected. With the parameters of 𝜇𝑠 = 0.52, 𝜇𝑑 = 0.2, 𝛿𝑐 =
0.02m analytics predicts 𝑝∗ = −17.44MPa while DARTS has 𝑝∗ = −17.3MPa. The
small difference in slip profiles and nucleation depletion pressures can be explained
by the finite domain width discussed above.

4.10. Benchmarking the Nonlinear Finite Volume
Method

4.10.1. Convergence Study
In the first part, we prove the convergence of NTPSA and Average MPSA discretiza-
tion techniques presented in Sec. 3.6. Let us consider the following reference solu-
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Figure 4.33.: Slip patch boundaries as a function of depletion pressure 𝑝. The ver-
tical dotted line indicates the merging pressure. Simulation domain
width 𝑊 = 18km.

Figure 4.34.: Slip-weakening friction law.
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Figure 4.35.: Post-slip Coulomb stresses Σ̆𝐶 (left) and slip 𝛿 (right) profiles for an
upper slip patch calculated with analytics (red curve) and DARTS (blue
curve) at a nucleation depletion pressure 𝑝∗. Slip-weakening friction
law is used with 𝜇𝑠 = 0.52, 𝜇𝑑 = 0.2, 𝛿𝑐 = 0.02m. The analytical es-
timate for the nucleation pressure is 𝑝∗ = −17.44MPa, the numerical
one is 𝑝∗ = −17.3MPa.
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tion of the elasticity problem (Terekhov et al. 2020) in the cubic domain Ω = [0, 1]3

𝑢𝑥(𝑥, 𝑦, 𝑧) = (𝑥 −
1
2)

2

−𝑦−𝑧, 𝑢𝑦(𝑥, 𝑦, 𝑧) = (𝑦 −
1
2)

2

−𝑥−𝑧, 𝑢𝑧(𝑥, 𝑦, 𝑧) = (𝑧 −
1
2)

2

−𝑥−𝑦,
(4.27)

and the 6 × 6 stiffness matrix from Eq. (4.3).

We substitute the reference solution and the stiffness matrix to the left-hand
side of the momentum balance equation and use the result of the calculation as
the vector of volumetric forces in the right-hand side of the momentum balance
equation. We also subject the domain to Dirichlet boundary conditions according
to the reference solution. The solution of all three components of displacement can
be seen in Fig. 4.36.

Figure 4.36.: Reference solution from Eq. (4.27) for displacement components 𝑢𝑥
(left) 𝑢𝑦 (center) 𝑢𝑧 (right).

We reconstruct the stress tensor in the centers of the cells. This is done by
the procedure described in (Terekhov et al. 2020). As we can see in Fig. 4.37,
both NTPSA and AvgMPSA schemes converge with second order with respect to
displacements and we observe superlinear convergence with respect to stresses.
We use a cubic mesh in these calculations. In Fig. 4.37, 𝑚 is the inverse of the
cube root of a number of cells in the domain on a log scale.

The residual over NTPSA iterations is shown in Fig. 4.38 on a semi-log scale. The
structured cubic and unstructured extruded wedge grids of various resolutions are
considered. The residual drops more than by two orders of magnitude every iter-
ation. Once a cut-off tolerance 10−10 (orange line) is reached nonlinear iterations
are stopped. Fig. 4.37, Fig. 4.38 demonstrate good behavior of the scheme in a
homogeneous domain.
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Figure 4.37.: The convergence of numerical solutions produced with nonlinear and
linear schemes to the reference one. The second-order convergence
for displacement vector (a) and superlinear convergence for stress
tensor (b) is obtained.

Figure 4.38.: Residual drop over nonlinear iterations for the setup calculated with a
grid composed of structured hexahedrons (a) or unstructured wedges
(b).

4.10.2. Compression and Shear
In this example, we consider the two-dimensional unit square domain (𝜆 = 𝐺 =
1Pa) shown in Fig. 4.19. The domain is subjected to shearing (𝑢𝑦 = 0.01) and
smaller compressive (𝑢𝑥 = 0.001) displacements at the left boundary; the right
boundary is kept fixed whereas the top and bottom sides are free. A plane strain
setup is considered.
In contrast to the previous consideration of this setup, we do not allow the fault

located in the center of the domain to slip. Instead, we analyze stress profiles over
it while maintained stuck. In this test case, we consider a vertical fault with 𝜙 = 0°,
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Table 4.8.: The properties of the meshes used in convergence study

Mesh type 𝐿𝑐 𝐿𝑐,𝑓𝑟𝑎𝑐 Cells Least squares Homogenization
Coarse square 0.025 0.025 1600 Smooth Smooth
Coarse wedges 0.1 0.01 1274 Noisy Noisy

see Fig. 4.19. Normal and tangential components of the traction vector over the
line are presented in Fig. 4.39 for two types of mesh: an adaptive coarse wedge
and a coarse square one. The details of the meshes are shown in Tab. 4.8. We
compare the reference solution against the profiles obtained with three different
schemes: Average MPSA with positivity-preserving gradient reconstruction, Aver-
age MPSA with least square gradient reconstruction and NTPSA. The magnitude of
tangential traction is higher than the magnitude of the normal one which is consist-
ent with displacements applied at the top boundary. Thus, the relative accuracy
for tangential traction is noticeably higher than for normal traction. All considered
schemes exhibit up to 3% deviation in tractions in this example. Although the regu-
lar square mesh produces much smoother traction profiles than the adaptive wedge
mesh, it can not be used for more complex geometry.
In order to preserve a positive solution in the NTPSA scheme, we shift the refer-

ence state for displacements to {10, 10} to make sure that they remain positive over
nonlinear iterations. The NTPSA scheme takes 3 nonlinear iterations to converge
to residual of 10−10.

4.11. Conclusion

T his chapter demonstrates the benchmarking of the numerical capabilities pro-
posed in this thesis. To conclude, the following takeaways have been obtained

• The implemented scheme of FVM demonstrates linearity-preservation (Sec.
4.1) and convergence (Sec. 4.2, 4.10) in continuous anisotropic poroelastic
media. It matches analytical solutions for poroelastic response in continuous
homogeneous (Sec. 4.3, 4.4) and heterogeneous (Sec. 4.5) media.

• In conditions close to undrained, the implemented scheme of FVM exhibits
unstable behavior caused by the violation of inf-sup conditions (Sec. 4.3-
4.5). Although the considered stabilization (Sec. 3.4) reduces the oscillatory
pattern appearing in these conditions, it introduces significant diffusion to the
solution that, in some cases, leads to the worse solution accuracy compared
to the non-stabilized scheme (Sec. 4.6).

• The scalability test of the implemented block-partitioned preconditioning strategy
for continuous poroelastic media suggests about the weak scalability of the
linear solver, although rigorous proof necessitates wider scalability analysis.
(Sec. 4.7).
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(a) 𝐹𝑛 on coarse wedges (b) 𝐹𝑡 on coarse wedges

(c) 𝐹𝑛 on coarse squares (d) 𝐹𝑡 on coarse squares
Figure 4.39.: Normal (a), (c) and tangential (b), (d) components of traction vector

along the line in the center of the domain. (a), (b) and (c), (d) repres-
ent components calculated on the coarse wedge and coarse square
grids respectively.

• The implemented scheme of FVM and the penalty method for contact mech-
anics provide solutions to the contact problems in a displaced fault configur-
ation matching with the existing (semi-)analytical solutions (Sec. 4.9). The
corresponding benchmarking has been conducted for the cases of friction-
less, static and slip-weakening frictional contacts. This test case verifies the
proposed numerical techniques for the modeling of contact problems in the
presence of weak (stress) discontinuities.

• The comparison against an FEM simulator for the continuous heterogeneous
poroelastic setup (Sec. 4.8.1) and against a FVM simulator for the faulted
homogeneous elastic setup (Sec. 4.8.2) further ensures the validity of the
implemented scheme and the penalty method for contact constraints.

• The proposed nonlinear FVM demonstrates an accuracy in traction vector com-
ponents over a straight line similar to the one obtained with linear FVM (Sec.
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4.10). Thus, the supposed higher accuracy of the non-linear scheme have
not been found.



5
Modeling of Experiments

Summary

This chapter considers the modeling of two experimental setups: injection-induced
slip in core crosscut and the large-scale displaced fault setup. In the first setup,
we demonstrate the validation of FVM numerical solutions against experimental
results and the modeling of fault slip governed by rate-dependent friction law. The
numerical investigation of the second case, performed with the other FE framework,
focuses on the sensitivity study and the development of a possible loading path for
the experiment.

93
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5.1. Core Injection Experiments
The developed framework has been applied to model fluid-induced fault slip be-
havior observed in a core injection experiment (Wang et al. 2020a). The authors
performed two fluid-induced slip experiments (SC1, SC2) conducted on permeable
Bentheim sandstone crosscuts. Fault slip was triggered by fluid injection into the
core at different rates. As a result, they measured slip, slip velocity, normal and
shear stresses, and the apparent friction coefficient as a function of time.
In order to approximately simulate the experiment, the following setup is con-

sidered. A rectangular 2D domain (Fig. 5.1) of 50 × 100mm size is loaded from
the left and the right with confining normal stress |f| = 350bar and initially is
loaded from the top by a constant displacement 𝑢top𝑦 = −0.385mm in SC1 and
𝑢top𝑦 = −0.36mm in SC2. A roller condition is specified for the tangential degree
of freedom at the top boundary whereas the displacements at the bottom bound-
ary are fixed. Following the post-processing of experimental results (Wang et al.
2020a) we apply plane strain conditions to the third dimension. Although, in the
experimental setup the confining stress is applied to all domain’s sides in 𝑥𝑧 plane,
the combination of input parameters (𝜎𝑥𝑥 , 𝑝) and control parameter 𝑢top𝑦 used here
allow the effect of missing confining stress along 𝑧-axis to be modeled with ad-
justing 𝑢top𝑦 while fitting measured fault stresses. Thus, the use of plane strain
conditions is acceptable in this modeling. The domain has constant Young’s mod-
ulus 26 GPa, Poisson’s ratio 𝜈 = 0.17, an isotropic Biot tensor B = 𝑏I, 𝑏 = 0.6 an
isotropic permeability tensor K = 𝑘0I, 𝑘0 = 1D, porosity 𝜙0 = 0.23 and constant
compressibility 1.45⋅10−10Pa−1. The fault has the same permeability as the matrix.
The normal displacements applied from the top are chosen to match the initial

vertical stress observed in the experiment. Using a Neumann condition for the top
boundary directly is not possible because once the fault starts sliding, the prob-
lem becomes purely Neumann so that the displacements in the top piece become
defined with respect to a constant.
Water of constant viscosity 𝜇f = 1cP and compressibility 10−9 Pa−1 is injected

into the domain through the bottom boundary at a specified pressure 𝑝 = 𝑝(𝑡)
whereas the other boundaries are impermeable. The evolution of injection pres-
sure and friction coefficient are taken precisely from the experimental data and are
shown in Fig. 5.2. The injection pressure is increased step-wise in SC1 while in SC2
it is increased gradually while keeping the pressure constant during short periods
of time.
Fig. 5.2 depicts the dynamics of experimental slip, slip velocity, normal and shear

stresses compared to calculated values. Although we used a 2D approximation of
a 3D setup, there is a good match in terms of slip, both stresses and slip velocity
in both tests.
Above, we use the friction coefficient calculated from the experimental data. Now

we employ the steady-state friction law defined as

𝜇 = 𝜇∗ + (𝑎 − 𝑏) ln( ġ𝑇
v∗
) , (5.1)

where 𝜇∗ is a reference friction coefficient measured at reference velocity v∗, while
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Figure 5.1.: Model setup.

𝑎 and 𝑏 are the parameters of the rate-and-state friction law (Dieterich 1979; Ruina
1983).
A comparison of the friction coefficients obtained in modeling and measured in

the experiment is shown in Fig. 5.3. The calculated friction coefficient manages to
qualitatively represent the behavior observed in the experiment except during the
final stage of SC2 where strong slip-weakening is exhibited.
The use of rate-dependent friction laws is complicated by the fact that friction

goes to infinity in Eq. (5.1) when the slip velocity is equal to zero. One of the options
is to use a regularized rate-and-state friction law (Lapusta et al. 2000). In this
modeling, we impose a cut-off on the magnitude of the slip velocity 𝑣𝑐𝑜 = 0.01v∗.
Below this cut-off |ġ𝑇| < 𝑣𝑐𝑜 we assume the friction coefficient to remain equal
to the reference value 𝜇 = 𝜇∗. Another complication is that under the quasi-static
assumption we may not observe the slip velocity to remain continuous over time.
As a result, rate-dependent friction may exhibit noisy behavior. The results shown
in Fig. 5.3 are calculated with a large time step Δ𝑡 = 20s. The use of smaller time
steps leads to more frequent oscillations in slip velocity and in friction.
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Figure 5.2.: Numerical simulation of core injection experiments from (Wang et al.
2020a). Two injection scenarios were considered: step-wise increase
(SC1) and gradual increase (SC2) of injection pressure from 50 to 350
bar. The time-dependent friction coefficient was taken from the ex-
periment.
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Figure 5.3.: Numerical simulation of core injection experiments from (Wang et al.
2020a). Two injection scenarios were considered: step-wise increase
(SC1) and gradual increase (SC2) of injection pressure from 50 to 350
bar. Steady-state friction law defined in Eq. (5.1) is used, where 𝜇∗ =
0.68, 𝑎 − 𝑏 = 0.01, v∗ = 1nms−1 in experiment SC1, and 𝜇∗ = 0.68,
𝑎 − 𝑏 = 0.006, v∗ = 1nms−1 in experiment SC2.
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5.2. Large-Scale Triaxial Loading Experiment

F or the investigation of induced seismicity in a displaced fault configuration, a cor-
responding experimental setup has been designed and assembled in the GSE

Laboratory of the Delft University of Technology. We prepared a numerical coun-
terpart of this experimental setup in order to evaluate possible loading paths of
the upcoming experiment. In this section, we present the numerical model of this
setup, the results of simulation, and propose the loading path for the experiment.

5.2.1. Model Setup

(a) x-y midplane. (b) 3D view and boundary conditions.
Figure 5.4.: Numerical model of the large-scale experimental setup.

We consider a cubic setup of 30 × 30 × 30 cm dimensions constituted of three
materials: purely elastic concrete, sealing material and poroelastic sandstone. The
material properties are listed in Tab. 5.1 while Fig. 5.4 illustrates the domain
geometry, materials and boundary conditions. The concrete frame covers the inner
block of the cubic geometry. This block consists of concrete parts cemented to the
sandstone. The block of sandstone was cut into two parts over an angle 𝜃 = 70° to
horizontal, and the parts were displaced over the cross-cut. The obtained displaced
configuration was supplemented by concrete parts cemented to the sandstone in

Table 5.1.: Material properties.

Material 𝐸,GPa 𝜈 𝑏 𝜙0 𝑘,D
concrete 19.6 0.115 0 0 10−10sealing 5.2 0.34
sandstone 17 0.3 0.9 0.15 1
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order to achieve an almost cubic geometry. The 5mm layer of sealing isolates the
inner block and prevents fluid leakage. Two holes of 10mm diameter were drilled
from the outside towards the centers of the sides of the two sandstone blocks in
order to be able to pump fluid to the sandstone.
The setup is subjected to triaxial compression with 𝜎3, 𝜎1, 𝜎2 uniform compressive

forces applied at the positive sides (i.e. facing to the positive axis directions) of
the domain respectively, see Fig. 5.4b. At the negative (opposite) sides, the zero
normal displacement balances the applied forces. Tangential forces remain equal to
zero at all boundaries. Besides, the injection of fluid into the displaced sandstone
block is modeled by assigning a uniform pressure within the block.

(a) structured hexahedral grid (b) tetrahedral grid
Figure 5.5.: Computational grids used in simulation. The structure hexahedral grid

does not consider holes.

In Sec. 4.8.1, we presented a simplified 2D model of this setup. We conducted
a comparison of the proposed FVM framework, implemented in DARTS, against
the solution obtained with a simulation framework known as GEOS (Settgast et al.
2022). For modeling the full 3D experimental setup, we utilize GEOS, as it is more
effectively optimized for handling large-scale models (exceeding 106 cells). GEOS
employs a combined FEM-FVM numerical method for the fully implicit integration of
momentum balance and fluid mass equations, respectively.
In simulations, we use structured hexahedral and tetrahedral grids of various

resolutions. The grids are displayed in Fig. 5.5. Structured grids often provide a
less noisy solution than tetrahedral grids. However, they are limited in terms of
adaptivity. Therefore, the structured grid in our application does not consider holes
introduced in the model geometry in Fig. 5.4. In contrast, the tetrahedral mesh
enables adaptive grid refinement allowing holes and stress peaks to be accurately
resolved. We set the origin of the coordinate system in the center of the domain.
In all calculations below, we consider the pre-slip state of the cross-cut plane

mimicking the fault. However, we assess the fault stability by investigating the
Coulomb stresses calculated under the assumption of the following distribution of
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static friction coefficient

𝜇 = {
0.6, sandstone-sandstone contact,
0.62, sandstone-concrete contact,
0.67, concrete-concrete contact,

(5.2)

which assigns different values of friction coefficient to the contacts between differ-
ent materials. Coulomb stress utilizes the Terzaghi effective stress according to Eq.
2.38. Moreover, zero cohesion is assumed.

5.2.2. In-Plane Stress Distribution

Figure 5.6.: The distribution of Coulomb stress over the cut plane with 𝜎1 =
−25MPa, 𝜎2 = 𝜎3 = −10MPa, 𝑝 = 0.1MPa. Coulomb stress profiles
over horizontal (blue) and vertical centerline (red) centerlines. The
structured hexahedral grid of 231k cells is used.

First, we investigate the distribution of stresses in the cross-cut plane. Fig.
5.6 and Fig. 5.7 illustrate the results of simulation with the structured hexahed-
ral and adaptive tetrahedral grids. They include 2D maps of Coulomb stress over
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Figure 5.7.: The distribution of Coulomb stress over the cut plane with 𝜎1 =
−25MPa, 𝜎2 = 𝜎3 = −10MPa, 𝑝 = 0.1MPa. Coulomb stress profiles
over horizontal (blue) and vertical centerline (red) centerlines. The ad-
aptive tetrahedral grid of 576k cells is used.

the plane with 1D profiles over horizontal and vertical centerlines for the stresses
𝜎1 = −25MPa, 𝜎2 = 𝜎3 = −10MPa and pressure 𝑝 = 0.1MPa. We see that
a combined effect of pressure and heterogeneity introduces peaks in Coulomb
stresses at the corners of sandstone blocks. As a result, the Coulomb stress ex-
ceeds zero at the outer corners of sandstone blocks which means that we expect
the fault to slip at those locations. This fact is aligned with analytical expressions
(Jansen et al. 2019) which presume having slip at the outer corners during fluid
injection and at the inner corners during fluid extraction.
We may observe that the 2D map of Coulomb stress calculated with the struc-

tured hexahedral grid in Fig. 5.6 has less numerical noise than the one calculated
with the tetrahedral grid in Fig. 5.7. However, the structured grid has a coarser
resolution around the corners which can be seen in the vertical profile in Fig. 5.6.
An other important observation is that the horizontal distribution (along the z-axis)
of Coulomb stresses within the plane is almost uniform. This fact allows us to limit
the investigation of stresses by the consideration of 1D stress profiles taken over
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the vertical centerline of the fault plane, i.e. red line in Figs. 5.6 and 5.7.

5.2.3. Sensitivity Study

Figure 5.8.: The sensitivity of fault properties plotted over its centerline 𝑧 = 0 to the
resolution of the tetrahedral grid. The following stresses are applied at
the boundary 𝜎1 = −25MPa, 𝜎2 = 𝜎3 = −10MPa while the pressure
𝑝 = 5MPa maintained in the sandstone block.

To facilitate a consistent modeling of the experimental setup we perform a set of
sensitivity studies. We start with a resolution study of the adaptive tetrahedral grid
shown in Fig. 5.5b. We prepared three grids comprised of 653k, 951k and 3905k
cells adaptively refined towards the fault plane and holes.
Fig. 5.8 demonstrates the comparison of the fault properties obtained with

these three grids for the uniform Neumann boundary conditions defined by 𝜎1 =
−25MPa, 𝜎2 = 𝜎3 = −10MPa and uniform pressure 𝑝 = 5MPa assigned to the
porous sandstone block. Coulomb stress, shear stress, Terzaghi effective normal
stress and pressure are plotted over the centerline 𝑧 = 0 of the fault plane.
We observe that the finer grid much better resolves stress peaks near both the

inner and outer corners of the sandstone block. The Coulomb stress reveals the
possibility of slip at the outer corners. The proper resolution of these stress peaks
is important as they are responsible for generating positive Coulomb stress and,
consequently, slip. This result suggests using finer grids in simulation.
Besides, we observe a strange noise in the fluid pressure over the contact between

sandstone and concrete. This is a result of the interpolation of cell-centered pres-
sure from the neighboring cells to the fault plane, where it exhibits a jump.
The experiment is supposed to be conducted with a large triaxial machine that

applies uniform displacements at the boundaries of the experimental setup. How-
ever, it is more convenient to perform simulation with uniform Neumann boundary
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Figure 5.9.: The sensitivity of fault properties plotted over its centerline 𝑧 = 0 to
the kind of boundary condition. The uniform Neumann condition with
𝜎1 = −25MPa, 𝜎2 = 𝜎3 = −10MPa is compared against uniform
Dirichlet conditions with 𝑢𝑦 = −0.349mm, 𝑢𝑥 = −0.062mm, 𝑢𝑧 =
−0.063mm. Fluid pressure 𝑝 = 5MPa is maintained. Both conditions
generate the same cumulative load at the boundaries. The tetrahedral
adaptive grid with 3905k cells is used.

conditions because they allow the applied stresses to be directly controlled.
To ensure the similarity of uniform Neumann and uniform Dirichlet boundary

conditions, we perform a comparison of the same setup calculated with the fol-
lowing two conditions. First, we model the experimental setup with uniform Neu-
mann boundary conditions defined by 𝜎1 = −25MPa, 𝜎2 = 𝜎3 = −10MPa as
we have done before. It implies that the constant normal load compresses every
segment of the boundary planes, different for different boundary planes. Then,
we perform a set of simulations with uniform Dirichlet boundary conditions of
multiple magnitudes. The conditions imply having the normal displacements uni-
formly applied to every segment of the boundary surfaces. Three displacements
applied to three surfaces define the boundary condition. As an initial guess for
these displacements, we use the mean values of normal displacements we ob-
served in the modeling with the Neumann boundary condition. Eventually, we find
𝑢𝑦 = −0.349mm, 𝑢𝑥 = −0.062mm, 𝑢𝑧 = −0.063mm produce cumulative loads
at the boundaries close enough to what we specified for the Neumann boundary
condition. In all calculations here we maintain a uniform fluid pressure 𝑝 = 5MPa
inside the sandstone block.
Fig. 5.9 presents the comparison of fault properties obtained in simulations

with these two boundary conditions. We observe insignificant difference between
stresses inside the sandstone block whereas the stresses around the outer stress
peaks match each other. This result justifies the use of the Neumann boundary
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conditions for the modeling of the experimental setup.

Figure 5.10.: The sensitivity of fault properties plotted over its centerline 𝑧 = 0 to
fluid pressure in sandstone. The compression stresses applied to the
domain are 𝜎1 = −25MPa, 𝜎2 = 𝜎3 = −10MPa. The tetrahedral
adaptive grid with 653k cells is used.

Next, we perform a sensitivity study to the variation of fluid pressure in the sand-
stone block. Fig. 5.10 illustrates the fault properties plotted over the centerline
𝑧 = 0 of the fault plane. According to the figure, higher fluid pressure causes higher
magnitudes of shear stress peaks at the corners. The profiles of shear and effective
normal stress demonstrate a competition between corresponding contributions to
Coulomb stress. Even though, in this particular case, the higher pressure tends to
provoke higher Coulomb stress, and, consequently, slip at the upper corners and
at the lower inner corner of the sandstone block; however, this result is not gen-
eral and certainly changes for different values of input parameters. This, therefore,
does not allow us to draw conclusive results about the effect of pressure on the
Coulomb stress.
Fig. 5.11 illustrates the sensitivity of fault properties to the magnitudes of stresses

applied at the boundary. We present results for three pairs of stresses: 𝜎1 =
20MPa, 𝜎2 = 5MPa, 𝜎1 = 25MPa, 𝜎2 = 10MPa and 𝜎1 = 30MPa, 𝜎2 = 15MPa
maintaining 𝜎3 = 𝜎2 and 𝑝 = 0.1MPa. As can observed from the figure, Cou-
lomb stress is inversely proportional to the magnitudes of stresses. This can be
explained by the higher compressive normal stresses obtained for the higher stress
magnitude while shear stress, proportional to differential stress 𝜎1 − 𝜎2, remains
almost unchanged. Therefore, the pair of stresses with the lowest magnitudes,
namely 𝜎1 = 20MPa, 𝜎2 = 5MPa produces the higher profile of Coulomb stress,
provoking much wider slip patches than the two other pairs of stresses. This result
ensures the fact of slippage even in the case of low applied stresses. This inform-
ation may be very useful for the experiment as the laboratory equipment has an
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Figure 5.11.: The sensitivity of fault properties plotted over its centerline 𝑧 = 0 to
the magnitudes of applied stresses. Fluid pressure 𝑝 = 0.1MPa and
x-axis stress 𝜎3 = 𝜎2 are maintained. The tetrahedral adaptive grid
composed of 653k cells is used.

upper limit for the magnitude of compressive stresses.

Figure 5.12.: The sensitivity of fault properties plotted over its centerline 𝑧 = 0
to the applied differential stress. Fluid pressure 𝑝 = 0.1MPa and
x-axis stress 𝜎3 = 𝜎2 are maintained. The tetrahedral adaptive grid
composed of 653k cells is used.

In the last sensitivity study, we investigate the effect of differential stress on
fault properties and, in particular, on Coulomb stress. We take 𝜎1 = 25MPa, 𝜎2 =
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10MPa as a reference case keeping 𝜎3 = 𝜎2, 𝑝 = 0.1MPa and, then, we symmet-
rically change 𝜎1, 𝜎2 by 1MPa a couple of times. As a result, Fig. 5.12 shows
the fault properties calculated for 5 values of differential stress: starting from
the lowest value 𝜎1 − 𝜎2 = 23MPa − 12MPa = 11MPa up to the highest one
𝜎1 − 𝜎2 = 27MPa− 8MPa = 19MPa. As expected, the highest differential stress
generates the largest Coulomb stress over the fault as both shear and effective nor-
mal stresses promote slippage at the higher differential stress than for the lower
ones considered. These results confirm the guess that the higher differential stress
should provoke more slippage in the current displaced fault setup.

5.2.4. Loading Path
The goal of the laboratory experiment under the displaced fault setup is to investig-
ate the acoustic emission generated during rupture initiation and propagation. This
investigation can provide multiple insights into the induced seismicity observed in
subsurface. To facilitate this investigation, the design of the experiment should be
appropriately elaborated. In particular, the loading path, which involves the dy-
namics of boundary stresses 𝜎1, 𝜎2, 𝜎3 and fluid pressure 𝑝 over the experiment’s
time, must satisfy multiple requirements.
First, the contact plane in the experimental setup must exhibit slippage. The suf-

ficient condition of slippage is the satisfaction of slippage criterion which is assumed
to be Coulomb stress in current consideration. Second, the laboratory equipment
imposes certain limitations on the maximum compression stress achievable in the
experiment (𝜎1 < 30MPa). Third, the materials and the assembly of the ex-
perimental setup impose restrictions on the maximum differential stress and the
maximum fluid pressure (𝑝 < 7MPa).

Figure 5.13.: The proposed loading path for the laboratory experiment. The applied
boundary stresses and fluid pressure over time and Coulomb stress
profiles over the 𝑧 = 0 centerline of the fault plane.
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Many simulation runs have been performed in the region of control parameters
admissible for the mentioned constraints. As a result, Fig. 5.13 shows the pro-
posed loading path and Coulomb stress profiles observed at several points over the
loading. Coulomb stress suggests having slippage at the outer corners of the sand-
stone block starting from point #4. The unavoidable uncertainties in the material
and contact properties motivate us to reach the estimated critical state slowly. That
explains the multi-step behavior of the loading path preceding point #4.

5.3. Conclusion
This chapter is dedicated to the modeling of two experimental setups. The following
presents concluding remarks regarding the modeling of injection-induced slip in core
crosscuts (Sec. 5.1)

• The modeling with the predefined measured static friction coefficient demon-
strates a good match of the measured slip (Fig. 5.2) and further validates the
proposed numerical framework.

• The modeling with a rate-dependent friction coefficient qualitatively repres-
ents the measured behavior of the friction coefficient (Fig. 5.3). The signific-
ant deviation between estimated and measured slip can be explained by the
disability of the quasi-static model to accurately resolve slip velocity. Further-
more, the modeling with rate-dependent friction involves nonlinear conver-
gence issues, which are amplified with smaller time steps.

The second setup considers a large-scale block with displaced fault configuration
(Sec. 5.2). The key takeaways obtained in the modeling of this setup are

• The distribution of Coulomb stresses within the fault plane is almost uniform
along the 𝑧-axis (Figs. 5.6, 5.7). It enables to simplify the further considera-
tion to 1D profiles over the vertical centerline of the fault plane.

• The conducted sensitivity study suggests using the tetrahedral grids adapt-
ively refined towards the fault plane for a better resolution of stress peaks at
the corners of the poroelastic reservoir (Fig. 5.8). While the type of bound-
ary condition demonstrates a negligible effect on the distribution of Coulomb
stress (Fig. 5.9), a lower stress magnitude and a higher differential stress are
found to be more slip-provoking (Figs. 5.11, 5.12) whereas the effect of fluid
pressure is ambiguous (Fig. 5.10).

• The proposed loading path for the experiment (Fig. 5.13) ensures the appear-
ance of fault slippage, and it satisfies the limitations imposed by the materials
and equipment used in the experiment.





6
Beyond the Quasi-Static

Modeling of Induced
Seismicity

Summary

In the previous sections, we have investigated the response of poroelastic media
with frictional contact under quasi-static (QS) assumption. We demonstrated that
the proposed Finite Volume scheme together with the penalty method has success-
fully resolved aseismic slip even in challenging examples. However, the contacts
governed by non-static friction laws, which hold significant practical importance,
present a profound nonlinearity that is challenging to address (Yastrebov et al.
2013) and usually leads to nonlinear convergence issues. Moreover, these issues
naturally appear in the case of seismic events when slip may grow from aseismic
values by up to a few magnitudes. In this case, the proposed method can success-
fully resolve only the onset of seismicity up to the nucleation point. The modeling
of the subsequent or coseismic phase, which includes the propagation and arrest
of contact rupture, requires additional treatment.
In order to resolve the rupture dynamics during the coseismic phase and to over-

come convergence issues, quasi-dynamic (QD) and fully dynamic (FD) approaches
have been utilized for decades. The QD approach augments the QS model with
a radiation damping term. This term helps to avoid an unbounded slip speed ap-
pearing in QS simulation at rupture fronts (Rice 1993; Rice et al. 2001). At the
same time, the QD approach does not account for inertia and avoids complicated
integration of this term. In contrast, the FD approach does not consider radiation
damping, but requires the integration of an inertia term. As a result, FD simulation
allows not only rupture but also elastic wave propagation to be resolved, although
at a much higher computational cost compared to the QD approach.
Below, we present the equations that govern both QD and FD approaches, the

numerical strategies to incorporate them into the current framework, and the val-

109



6

110 6. Beyond the Quasi-Static Modeling of Induced Seismicity

idation of the FD strategy. In the end, we investigate the rupture dynamics in a
displaced fault case study.

6.1. Quasi-Dynamic Approach

T he QD approach considers a radiation damping term added to the sliding cri-
terion in Eq. (2.38) as

Φ = |f′𝑇| − 𝜇f′𝑁 − 𝑐 + 𝜂 |ġ𝑇| , (6.1)

where 𝜂 is the radiation damping factor, and ġ𝑇 is slip velocity. The radiation damp-
ing term effectively introduces a velocity-dependent cohesion.
Taking into account the radiation damping term, the discrete equation in Eq.

(3.101) reads

f′𝑛+1𝑇 − f̃′𝑇 + ⟨Φ̃⟩
f̃′𝑇
|f̃′𝑇|

+ 𝛼𝜀𝑇Δ𝑡𝑛
|g𝑛+1𝑇 − g𝑛𝑇| = 0, (6.2)

where the backward Euler scheme approximates the slip velocity.
The penalization incorporated into f̃′𝑇 , Φ̃ makes other terms in Eq. (6.2) insignific-

ant in the presence of non-zero slip velocities. In this case, the radiation damping
term should be correspondingly scaled. For this purpose, we introduce a penalty
parameter 𝜀𝑇 in the radiation damping term 𝜂 = 𝛼𝜀𝑇, where 𝛼 is an empirical
coefficient.

6.2. Fully-Dynamic Approach

T he FD approach introduces an inertia term in the QS momentum balance equa-
tion in Eq. (2.47) as

𝛼𝜌ü− ∇ ⋅ ΣΣΣ − 𝜌𝑔∇𝑧 = 0, (6.3)

where 𝛼 is a control parameter, the total density 𝜌 is defined in Eq. (2.53), and the
total stress tensor ΣΣΣ is defined in Eq. (2.48). The integration of Eq. (6.4) requires
the knowledge of the initial velocity. The parameter 𝛼 is used to turn off the inertia
term controlling the (either QS or FD) mode of simulation.
The backward Euler scheme can be applied for the integration of inertia as

ü𝑛+1 = (Δ𝑡𝑛 + Δ𝑡𝑛−1)
−1 [u

𝑛+1 − u𝑛
Δ𝑡𝑛

− u𝑛 − u𝑛−1
Δ𝑡𝑛−1

] , (6.4)

which provides a first-order approximation.
The following approximations of velocity and displacements

u̇𝑛+1 = u̇𝑛 + Δ𝑡 ((1 − 𝛾)ü𝑛 + 𝛾ü𝑛+1) , (6.5)

u𝑛+1 = u𝑛 + Δ𝑡u̇𝑛 + Δ𝑡
2

2 ((1 − 2𝛽)ü𝑛 + 2𝛽ü𝑛+1) . (6.6)
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lead us to the family of Newmark schemes with parameters 𝛾, 𝛽 (Newmark 1959).
The choice of 𝛾 = 0.5 ensures second-order accuracy of the obtained scheme.
Substitution of 𝛽 = 0 provides an explicit scheme while 𝛽 = 0.25 results in an
implicit unconditionally stable scheme.
The incorporation of Eqs. (6.5), (6.6) into the Finite Volume scheme for the QS

system in Eq. (3.13) provides system of equations with unknown acceleration ü𝑛+1
instead of displacement u𝑛+1. It reads as follows

H𝑛+1s,𝑖 = 𝜌𝑛+1𝑖 𝑉𝑖 (ü𝑛+1 − 𝑔∇𝑧) + 𝛽Δ𝑡2𝑛 ∑
𝑗∈𝜕𝑉𝑖

𝛿𝑗f𝑛+1𝑗 (u𝑛+1), (6.7)

where Eqs. (6.5) and (6.6) are used for the assembly of fluxes f𝑛+1𝑗 (u𝑛+1).

6.3. Combined Quasi-Dynamic and Fully Dynamic
Strategy

We use the combined QS and FD modeling to overcome the convergence issues
appearing close to the nucleation point. The coefficient 𝛼 in front of the inertia
term in Eq. (6.3) determines a particular simulation mode. The QS mode implies
having 𝛼 = 0 while the FD mode requires 𝛼 = 1. By default, the simulation runs
in the QS mode. The loss of nonlinear convergence causes a reduction of time
step. Whenever the time step is reduced to the magnitude of one second, the
FD mode becomes activated. The backward transition to the quasi-static mode
happens when arrest of the rupture is observed. We identify the rupture arrest by
measuring the relative area of recently activated fault segments which left slip state
and become stuck according to criterion in Eq. (2.25). Whenever the significant
percentage of fault become stuck, we switch back to the QS mode.
In this work we use the direct solver for the inversion of linear systems appeared

in the QSmode. In the FD mode we find GMRES iterations quite efficient once used
with ILU(0) preconditioner.

6.4. Validation
6.4.1. One-Dimensional Elastic Wave Propagation
The solution of the one-dimensional wave equation is perhaps the easiest way to
validate the numerical schemes proposed for the FD approach. We consider a purely
elastic one-dimensional column [0, 1] × [0, 1] × [0, 10] ∈ ℝ3 with Young’s modulus
𝐸 = 1GPa, Poisson’s ratio 𝜈 = 0.25 and total density 𝜌 = 2406kgm−3. All the
boundaries are maintained under the roller condition, but, in addition to zero tan-
gential traction, at the upper one 𝑧 = 10m, time-dependent normal displacements
are specified as 𝑢𝑧 = 𝑢𝑧(𝑡). The function 𝑢𝑧(𝑡) generates a rectangular compres-
sion wave of magnitude 𝑢0𝑧 = −0.01m that lasts 𝑇 = 0.001sec.
Fig. 6.1 demonstrates the calculated and analytical profiles of vertical displace-

ments at two moments of time (Fig. 6.1a) and the obtained order of convergence
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(a) Calculated and analytical displace-
ments at 𝑡 = 0.002 s and at 𝑡 = 0.012
s.

(b) Numerical convergence with respect
to analytical solution

Figure 6.1.: Vertical displacements (a) and the convergence (b) for backward Euler
time integration.

(Fig. 6.1b). We present a couple of results of different resolutions calculated with
the same Courant–Friedrichs–Lewy number CFL = 0.706. As expected the back-
ward Euler time integration significantly smoothens the initial profile even for a grid
of finer resolution. It provides first order of convergence with respect to the square
root of timestep and cell size.
The comparison of analytical and numerical displacement profiles obtained with

the Newmark scheme is presented in Fig. 6.2. We use the implicit scheme with the
trapezoidal integration rule (𝛾 = 0.5, 𝛽 = 0.25). Multiple spurious oscillations appear
across the domain which is an essential feature of many higher-order schemes.

6.5. Case Study: Displaced Fault
The displaced fault setup is presented in detail in Sec. 4.9. Here we briefly remind
the key features of the setup. It considers a square poroelastic domain of homo-
geneous material properties. A conductive fault with dip angle 𝜃 = 70° passes
throughout the domain. The reservoir situated in the middle of the domain is di-
vided by the fault into two parts displaced with respect to each other over the
fault. The domain is subjected to gravitational forces and to compressive boundary
conditions mimicking real reservoir conditions. Fluid extraction from the reservoir
causes a depletion of pore pressure within the reservoir which results in stress dis-
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(a) 𝑡 = 0.002 s. (b) 𝑡 = 0.012 s.
Figure 6.2.: Calculated and analytical vertical displacements at two moments of

time for the Newmark scheme.

continuities at the non-smooth reservoir-fault corners appearing in the displaced
configuration.
The QS modeling of the displaced fault setup was demonstrated in Sec. 4.9. The

QS model faces nonlinear convergence issues when approaching the nucleation
point. Here we employ QD and FD approaches to overcome convergence issues
and to resolve the initiation, propagation and arrest of coseismic rupture.

6.5.1. Uniform Depletion
Nucleation Point

Tab. 6.1 summarizes the parameters of the considered test cases. It includes the
parameters that specify the slip-weakening friction law and the characteristics of
the nucleation point (nucleation pressure and nucleation length) obtained from both
analytical and numerical considerations.
Note, that there are at least two reasons explaining the mismatch between the

analytical and numerical nucleation pressure in Tab. 6.1. First, an infinite horizontal
size of the domain is assumed by analytics (Jansen et al. 2022) while it remains
finite in numerical calculations. Second, the smaller nucleation length requires a
finer resolution for slip patches. However, all numerical calculations shown in Fig.
6.3 are performed using the same computational grid.
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Table 6.1.: Parameters of the slip-weakening friction law: 𝜇𝑠 is static friction coeffi-
cient, 𝜇𝑑 is dynamic friction coefficient, 𝐷𝑐 is critical slip distance, Δ𝑝∗𝑎𝑛 is
nucleation pressure determined analytically (Jansen et al. 2022), Δ𝑝∗𝑛𝑢𝑚
is nucleation pressure determined from calculation, 𝐿∗𝑈&𝑅 is nucleation
length calculated analytically (Uenishi et al. 2003) and 𝐿∗𝑛𝑢𝑚 is nucle-
ation length determined numerically (upper slip patch size).

Case 𝜇𝑠 𝜇𝑑 𝐷𝑐, mm Δ𝑝∗𝑎𝑛, MPa Δ𝑝∗𝑛𝑢𝑚, MPa 𝐿∗𝑈&𝑅, m 𝐿∗𝑛𝑢𝑚, m
#1 0.52 0.2 20 -17.44 -17.3 15.92 15
#2 0.52 0.4 20 -21.38 -21.2 40.92 37.75
#3 0.6 0.45 5 – -21.5 7.89 6.09

Figure 6.3.: Properties over the fault calculated for three sets of parameters from
Tab. 6.1.

Nonlinear Convergence Issues
Numerical modeling of frictional contacts is a strongly nonlinear problem that may
suffer from nonlinear convergence issues (Chouly et al. 2022; Dostál et al. 2016;
Laursen 2010; Wriggers 2006; Yastrebov et al. 2013). The transition of contact
from aseismic slip to coseismic slip furthermore amplifies these issues. As a result,
at the nucleation point, the nonlinear iterations of the QS model exhibit divergent
behavior. In this section, we investigate the appearance of this divergence.
Fig. 6.4 demonstrates the profiles of residuals, slip and Coulomb stress over

Newton iterations for three grids of different spatial resolutions. The frictional slip-
weakening contact (Case #1 from Tab. 6.1) perturbed by a depletion pressure
Δ𝑝 = −17.2MPa is considered. For better representation, the profiles are shown
only for the upper slip patch. The residual profiles are estimated by the calculation
of the cell-wise norm of the residual vector corresponding to the three contact
constraints Eqs. (3.99)-(3.101) in each cell. Note that we divide these equations
by the corresponding penalty parameters after the assembly which results in units
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Figure 6.4.: The profiles of contact residual (left column), slip (middle column) and
Coulomb stress (right column) over nonlinear iterations for the Case
#1 from Tab. 6.1 at Δ𝑝 = −17.2MPa. The results are calculated for
the three grid resolutions defined by Δ𝑥𝑓, the cell size at the fault and
Δ𝑥𝑏, the cell size at the domain’s boundary.

of residual measured in meters.
We use a cut-off equal to 10−7 as an absolute convergence tolerance for the

Newton iterations. As a result, we observe that the coarsest grid characterized by
a fault cell size Δ𝑥𝑓 = 1m and a boundary cell size Δ𝑥𝑏 = 300m does not allow
the Newton iterations to converge. In contrast, two finer grids demonstrate that
the solutions converged in 7-8 iterations. It is worth to note that the residuals in
the matrix cells disappear after the first iteration and never exceed the cut-off later.
Let us inspect the behavior of the residual profiles over iterations depicted in
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Figs. 6.4a, 6.4d, 6.4g. At the first iteration, the residuals are equal to zero as the
Coulomb stresses stay below zero and the whole contact remains in stick mode.
Starting from the second iteration, the residual profile follows the profile of the
Coulomb stress. At the second iteration, Coulomb stresses resemble the pre-slip
shear stress from Fig. 4.29, and they result in the appearance of a slip patch in
the following iteration. After the second iteration, Coulomb stresses, and residuals,
exceed zero at the boundaries of the slip patch promoting its spreading. As in this
setup, the upper slip patch primarily propagates toward the deeper (negative y-
axis) direction, and the upper peak in Coulomb stresses and residuals disappears in
a few iterations while the magnitude of the lower peak decreases over iterations. As
we can see, for the two finer grids this peak steadily disappears and the slip profile
stabilizes near the converged solution. In contrast, in the case of a coarse grid, both
(residual) peaks magnify starting from the 6th iteration. Thus, by the 8th iteration,
the slip profile substantially exceeds the converged solutions obtained with the two
other grids. The subsequent iterations generate a solution much further from the
converged one, thus they are not shown in the plot. These observations hint that
the divergence of nonlinear iterations may start from an overestimation of the slip
profile which can be alleviated by chopping strategies.
An other important observation is about the relation between the smoothness of

slip and convergence. As can be seen from Fig. 6.4, the converged slip profiles
are smooth at the patch’s tips while both non-converged and diverged slip profiles
remain non-smooth at those points.
Fig. 6.5 demonstrates similar results calculated for a depletion pressure Δ𝑝 =

−17.3MPa which defines the numerical nucleation pressure for Case #1 (see Tab.
6.1). As expected, we observed a poorer convergence for higher depletion that
results in divergent iterations on the finest grid (Figs. 6.5g-6.5i). At the same
time, the grid of medium resolution still provides a convergent solution (Figs. 6.5d-
6.5f). The iterations with both the coarsest and finest grids before the divergence
initiate a smaller separate patch in the direction of the main patch’s propagation.
The appearance of this smaller patch leads to a dramatic increase in the residual’s
profile that already never converges.
In order to have a detailed inspection of the transition from convergent to a di-

vergent solution near the nucleation point, we demonstrate a comparison of the
results obtained with a single grid (Δ𝑥𝑓 = 1m, Δ𝑥𝑏 = 200m) at three depletion
pressures Δ𝑝 = −17.2, −17.3, −17.4MPa. Fig. 6.6 illustrates the profiles of resid-
ual, slip and Coulomb stress over several Newton iterations. The two smaller de-
pletion pressures Δ𝑝 = −17.2, −17.3MPa allow the Newton iterations to converge
and the converged slip profiles are shown by the marked bold lines. The highest
depletion pressure Δ𝑝 = −17.4MPa lies beyond the estimated nucleation point
at Δ𝑝∗𝑛𝑢𝑚 = −17.3MPa which results in divergent iterations. As we may observe
from Fig. 6.6, the profiles for three depletion pressures stay close to each other
over the few first iterations. Starting from the 4th iteration, the Coulomb stress
and residuals at Δ𝑝 = −17.4MPa tend to outrun their counterparts at smaller de-
pletion pressures which results in a noticeably higher slip profile. The iterations
for Δ𝑝 = −17.2MPa converge by the 7th iteration whereas the convergence at
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Figure 6.5.: The profiles of contact residual (left column), slip (middle column) and
Coulomb stress (right column) over nonlinear iterations for the Case
#1 from Tab. 6.1 at Δ𝑝 = −17.3MPa. The results are calculated for
the three grid resolutions defined by Δ𝑥𝑓, the cell size at the fault and
Δ𝑥𝑏, the cell size at the domain’s boundary.

17.3MPa spends one more iteration. In contrast, the residuals observed in the
calculation at the highest depletion pressure dramatically increase at the 8th itera-
tion and they never converge afterward.
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Figure 6.6.: The profiles of contact residual (left column), slip (middle column) and
Coulomb stress (right column) over nonlinear iterations for the Case
#1 from Tab. 6.1. The results are calculated for the grid defined by
Δ𝑥𝑓 = 1m, the cell size at the fault and Δ𝑥𝑏 = 200m, the cell size at
the domain’s boundary.

6.5.2. Depletion from a Remote Production Well
Most of the induced seismicity in the subsurface, in one way or another, is caused
by pore pressure perturbations imposed by wells. In this section, we investigate
the seismicity induced by a remote well. Fig. 6.7 demonstrates a displaced fault
configuration with a vertical well placed on the right side of the reservoir at 𝑥 =
2000m. The production well, controlled by a fixed wellbore depletion pressure
Δ𝑝 = −25MPa, produces fluid defined by density 𝜌f = 1020kgm−3, viscosity
𝜇f = 1cP and compressibility 𝑐f = 10−5MPa−1 from the reservoir with permeability
𝑘 = 1D. The conductive fault crossing the reservoir has the same permeability as
reservoir. We consider a slip-weakening fault defined by a static friction coefficient
𝜇𝑠 = 0.6, a dynamic friction coefficient 𝜇𝑑 = 0.4 and a critical slip distance 𝐷𝑐 =
5mm.
Fig. 6.8 demonstrates the evolution of fault rupture starting from nucleation.

Initially, the production well imposes a pressure depletion propagating towards
the fault. As a result, aseismic slip increases over time until the nucleation point.
We model this phase in QS mode as we did before. At, approximately, 𝑡0 =
2d13h22min rupture nucleation is initiated and we switch simulation to the FD
mode. During around 0.2s the rupture propagates through the entire reservoir and
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Figure 6.7.: Displaced fault setup in a square domain 𝑊 = 𝐻 = 4500m with a
vertical production well placed at 𝑥 = 2000m. Fault dip angle 𝜃 = 70°
and the parameters 𝑎 = 75m, 𝑏 = 150m.

Figure 6.8.: The fault properties at the nucleation point (blue line), duting rupture
propagation and at the rupture arrest (magenta line) calculated with
the grid of Δ𝑥𝑓 = 4m fault cell size.

parts of the overburden and underburden. We identify the arrest of the rupture at
𝑡𝑎 = 𝑡0 + 215ms by the fact that we do not observe the rupture to propage any
further. Moreover, the friction coefficient at 𝑡 = 𝑡𝑎 decreases to its minimal val-
ues indicating that the further rupture propagation is purely controlled by further
depletion.
It is clear from the figure that the parts of the fault exposed to the contact
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between reservoir and non-permeable formations are less prone to rupture propaga-
tion compared to the parts fault solely covered by reservoir. Note that we as-
sume the same slip-weakening friction for both reservoir-reservoir and reservoir-
over/under-burden contacts, which may be not a realistic assumption. The devi-
ation of the shear stress below underburden at 𝑡 = 𝑡𝑎 from its previous values is
caused by induced elastic waves.

Figure 6.9.: Convergence study of the rupture arrest. The fault properties are cal-
culated with the multiple grids listed in Tab. 6.2.

Fig. 6.9 demonstrates the convergence study. Grids of multiple fault cell sizes,
starting from the coarsest Δ𝑥𝑓 = 4m up to the finest Δ𝑥𝑓 = 0.5m, are considered.
In addition to the grid resolution, we decrease the maximum time step allowed in
the FD mode. The parameters of the FD part of the simulation are listed in Tab.
6.2.
As we can see from the figure, even though the stresses do not exhibit significant

differences among grids, a noticeable difference appears between slip profiles. A
more remarkable difference can be observed between the values of the nucleation
time 𝑡𝑛𝑢𝑐 in Tab. 6.2. No sign of convergence with respect to this property indicates
that the more sophisticated time-stepping strategy should be employed (Han et al.
2023).
One of the practically interesting questions regarding the mitigation of induced

seismicity in depleted reservoirs is how subsequent reinjection may affect the fault
stability. In order to investigate that, we perform the same simulation with an
extra QS stage started after the rupture arrest. During this stage, we switch the
production well into an injection mode by assigning wellbore pressure control of
Δ𝑝 = 0MPa. It effectively means to inject fluid into reservoir up to its initial
pressure.
Fig. 6.10 demonstrates the calculated fault properties at four key moments of

the simulation run: 1) initial or unperturbed reservoir state, 2) nucleation point, 3)
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Table 6.2.: The parameters of simulation runs for the convergence study. Δ𝑥𝑓 and
Δ𝑥𝑏 are the characteristic fault and boundary cell sizes respectively, 𝑡𝑛𝑢𝑐
is the time of nucleation, 𝑀 is the seismic moment, Δ𝑡𝑚𝑎𝑥 and Δ𝑡𝑚𝑒𝑎𝑛
are maximum and mean time steps in the FD mode.

Δ𝑥𝑓,m Δ𝑥𝑏,m N. of cells 𝑡𝑛𝑢𝑐 𝑀,GNm−1 Δ𝑡𝑚𝑎𝑥,ms Δ𝑡𝑚𝑒𝑎𝑛,ms

4 300 7.8k 2d 13h 22min 125.7 1 0.38
3 300 14k 2d 7h 34min 112.2 0.5 0.379
2 200 30.6k 2d 9h 1min 109.8 0.5 0.352
1 100 115.9k 3d 7h 46min 121.6 0.5 0.346
0.6 60 308.5k 4d 14h 53min 129.9 0.1 0.09

Figure 6.10.: The fault properties at the initial state (blue line), at nucleation point
(red line), at the rupture arrest (green line) and some after reinjection
(magenta line) calculated with the grid of Δ𝑥𝑓 = 4m fault cell size.

rupture arrest and 4) at some point of time after the start of reinjection. As we can
see from the figure, in this particular case of linear slip-weakening, the subsequent
reinjection stabilizes the displaced fault. However, we observe opposite effects
from shear and effective normal stresses: the relaxed shear stress stabilizes the
fault while the less compressive normal stress destabilizes it. Therefore, we can
not extend the conclusion about the stabilization effect of reinjection to a much
wider parameter space.
Fig. 6.11 presents a sensitivity study with respect to the dynamic friction coef-

ficient. The figure illustrates the fault properties at the moment of the rupture
arrest. Generally, a lower friction coefficient provokes higher slip. The behavior
of slip profiles in the area where the reservoir is juxtaposed to the non-permeable
formations is close to linear. At the same time, we observe that rupture propagates
noticeably further beyond reservoir depths. Again, it is worth to note that in this
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Figure 6.11.: The sensitivity study with respect to the dynamic friction coefficient 𝜇𝑑
performed with grid of Δ𝑥𝑓 = 4m fault cell size. The fault properties
are shown at the time of rupture arrest.

case, we consider a homogeneous domain. The consideration of a more realistic
heterogeneous configuration may qualitatively affect these results.

Figure 6.12.: The seismic moment against the dynamic friction coefficient.
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The calculations with the dynamic friction coefficient below 𝜇𝑑 < 0.28 require
the extension of the fault throughout the whole domain and even further. This
behavior when rupture propagates far beyond the reservoir depths is called a run-
away rupture.

Fig. 6.12 illustrates how the seismic moment depends on the dynamic friction
coefficient. According to the figure, the seismic moment exponentially increases
with a falling dynamic friction coefficient. The observed slip profiles and the beha-
vior of the seismic moment support the previous sensitivity studies conducted for
a displaced fault configuration (Van den Bogert 2018). Note that in this particular
setup, we do not observe the aseismic merging of two slip patches as the nucle-
ation length is very small for the parameters of the slip-weakening law used here.
Instead, the merging of slip patches happens during the coseismic phase.

Figure 6.13.: Number of GMRES iterations over simulation timesteps for three grids
characterized by fault cell sizes Δ𝑥𝑓 = 3, 1, 0.6m. The red background
denotes the QS modeling with the direct solver used, and the green
one – the FD modeling with the iterative GMRES+ILU(0) used.

Finally, Fig. 6.13 demonstrates the efficiency of the preconditioner based on the
Incomplete LU factorization for solving linear systems appearing in the FD simula-
tion mode. We present the number of GMRES iterations spent on a single Newton
iteration in three simulation runs: with Δ𝑥𝑓 = 3, 1, 0.6m. In all cases, it takes less
than 25 linear iterations to reduce residual by 10−12 from its initial values. As expec-
ted the number of iterations is proportional to the time step used in corresponding
runs (see. Tab. 6.2 for time steps).
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6.6. Conclusion
This chapter considers the fully dynamic (FD) modeling of rupture nucleation, propaga-
tion and arrest under slip-weakening friction law. The following key takeaways are
obtained in this chapter

• The implemented second-order implicit Newmark scheme for the inertia term
demonstrates strongly oscillating solution in a test case with unidimensional
propagation of a rectangular wave (Fig. 6.2) while the first-order backward
Euler scheme remains stable but exhibits high numerical dispersion (Fig. 6.1).

• The estimated nucleation length and nucleation depletion pressure in a dis-
placed fault configuration with the slip-weakening frictional contact are found
close enough to their analytically-derived counterparts (Tab. 6.1).

• The passing of the nucleation point with a quasi-static model introduces es-
sential convergence issues to the numerical solvers. The analysis of nonlinear
iterations indicates that the smoothness of slip profiles is improving over iter-
ations (Fig. 6.4) and the finest grid is not always better from a convergence
point of view (Fig. 6.5). The nonconverging behavior around the nucleation
point is characterized by a sudden increase in slip (Fig. 6.6) which reflects
the slip increase during the coseismic phase.

• The implemented FD modeling allows us to overcome the nonlinear conver-
gence issues and to proceed with modeling beyond the nucleation point,
resolving rupture propagation and arrest (Fig. 6.8). A resolution study in-
dicates converged results with respect to stresses and poor convergence with
respect to slip (Fig. 6.9). In the considered setup, reinjection leads to fault
stabilization, indicating a stronger stabilizing effect caused by shear stress
reduction in comparison to a destabilizing contribution from the effective nor-
mal stress (Fig. 6.10). The sensitivity of the seismic moment to the dynamic
friction coefficient qualitatively supports the previous sensitivity study.

• In the proposed FD modeling framework, incomplete LU factorization demon-
strates its efficiency as a preconditioner for the GMRES iterations (Fig. 6.13).
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Conclusion

7.1. Recapitulation and Key Learning Points

I n this thesis, a novel Finite Volume scheme for the fully implicit modeling of faul-
ted poroelastic media has been developed. For this purpose, coupled multi-point

flux and multi-stress approximations have been extended to contact interfaces.
The penalty method with a return-mapping algorithm was utilized to enforce con-
tact constraints. The proposed numerical techniques have been implemented in the
open-source Delft Advanced Research Terra Simulator (DARTS). This implementa-
tion supports arbitrary boundary conditions, material heterogeneity, and anisotropy
for the poroelastic media and multiple constitutive laws for the frictional contacts.
The support of various fluid properties has been enabled by the use of Operator-
Based Linearization as incorporated into DARTS. Finally, a nonlinear Finite Volume
scheme for the pure elasticity problem has been proposed.
To accelerate the solution of linear systems appearing in the modeling, a block-

partitioned preconditioning strategy based on a sparse approximation of Schur’s
complement with the fixed-stress split concept has been implemented. Moreover,
the System Algebraic Multigrid solver and a preconditioner based on incomplete LU
factorization have been incorporated into the simulation workflow.
The implemented modeling functionality has been validated in a number of bench-

marks. First, we demonstrated the preservation of linearity and convergence of the
scheme. Next, we examined the validity of the approximations by comparing the
numerical solution to the analytical one for Terzaghi’s, Mandel’s and two-layer Terz-
aghi’s cases, and to numerical solutions obtained with other modelling frameworks.
Furthermore, we examined the capability of the scheme to handle highly hetero-
geneous media in a mechanical extension of the SPE10 model. Besides, we checked
the acceleration and scalability provided by the block-partitioned preconditioner in
this case. In the next part, we thoroughly investigated a displaced fault problem
and validated the numerical solution against existing semi-analytics. Finally, we
demonstrated the convergence of the nonlinear FV scheme and investigated the
quality of numerical solutions obtained with different schemes.
We presented the modeling of two experimental setups: injection-induced slip
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in a cross-cut core and a large-scale setup with a displaced fault configuration.
The results of modeling the injection-induced slip in the core cross-cut, performed
with measured friction coefficient, matched other experimental measurements, with
steady-state rate-and-state friction – qualitatively represented the measured dy-
namics. In the modeling of the large-scale experimental setup the loading path for
the experiment has been proposed.
Finally, we presented fully dynamic approaches to the modeling of rupture propaga-

tion based on the fully implicit Finite Volume scheme. We performed the modeling
of rupture nucleation, propagation and arrest induced by a distant depletion well
and subsequent re-injection.
The key takeaways from the thesis are

• The fully implicit fully coupled Finite Volume scheme proposed in Sec. 3.3 is
capable of resolving fluid mass and momentum transfer in poroelastic media
with frictional contacts, and has been validated in multiple benchmarks in Sec.
4.

• The scheme exhibits spurious oscillations due to violation of the inf-sup condi-
tion. Even though stabilization, considered in Sec. 3.4, reduces the oscillatory
behavior, it does not completely eliminate it. Instead, the stabilization induces
a significant pressure overshoot behind the boundary layer appearing in the
region with undrained conditions. This overshoot does not allow the stabilized
scheme to be utilized in many setups, and the original non-stabilized variant
was found to be more robust, especially with finer grid resolution.

• The implemented block-partitioned preconditioner demonstrates a good per-
formance for the modeling of poroelastic response in continuous media (Sec.
4.7). In the presence of discontinuities, even though in the current approach
they introduce unknowns of the same type, the sparse approximation of Schur
complement becomes not accurate which results in poor convergence of it-
erations of generalized minimal residual method (GMRES), or even in diver-
gence. System algebraic multigrid (SAMG) demonstrates similar behavior in
both continuous and faulted setups.

• The implemented mixed-dimensional fault representation provides a reason-
able approximation of frictional contact and ensures accuracy of the solution
without having to resolve displacement gradients in the narrow fault cells with
a high aspect ratio.

• In a simple frictional fault with static friction coefficient, the penalty method
with the return-mapping algorithm demonstrates a good-enough solution qual-
ity obtained in a reasonable number of nonlinear iterations (Sec. 4.8.2). How-
ever, either the presence of weak discontinuities (Sec. 4.9) or friction laws
(Sec. 4.9.5, Sec. 5.1) requires very fine grid resolution. Moreover, even a
very fine grid resolution does not guarantee the convergence of the nonlinear
iterations.
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• The dynamic simulation based on the proposed implicit FV scheme is capable
of resolving the rupture dynamics at frictional contacts (Sec. 6). Incom-
plete LU factorization significantly accelerates the solution of linear systems
appearing in the fully dynamic simulation.

• The nonlinear FV scheme for the pure elastic problem proposed in Sec. 3.6
provides a similar accuracy as the linear scheme (Sec. 4.10), and, in its current
shape, does not bring any benefits for geomechanical modeling.

7.2. Future Perspectives
The main implications of this work for future developments can be formulated in
the following list of points:

• Other stabilized FV schemes (Nordbotten 2016; Terekhov 2021a) or stabiliza-
tion techniques (Aronson et al. 2023; Camargo et al. 2021) could be employed
to avoid unstable behavior introduced by the violation of the inf-sup condition.

• The poor nonlinear convergence observed in the modeling of frictional contact
exposed to weak discontinuities or complex frictional laws should be invest-
igated in the simplest, perhaps 0D or 1D, numerical models. Furthermore,
the same simplified models can be used for the modeling of slip in the exper-
iments with core cross-cuts. The spatial simplicity of these models enables
the incorporation of sophisticated friction laws and the identification of these
laws from experimental data by solving corresponding inverse problems.

• A significant limitation of the geomechanical modeling in the presence of dis-
continuities is a robust and efficient iterative linear solution strategy. Further
investigation should be performed for a better approximation of the Schur
complement in regard to the fault’s degrees of freedom (Ferronato et al. 2019;
Franceschini et al. 2022a; Franceschini et al. 2022b).

• Dynamic modeling of induced seismicity can provide a much more compre-
hensive insight compared to quasi-static modeling. Being widely utilized in
seismic studies, empowered by high-performance computing (HPC) infrastruc-
ture (Reinarz et al. 2020; Uphoff et al. n.d.; Walker et al. 2023), fully dynamic
modeling has the potential to be conveniently integrated into the reservoir
simulation and risk assessment workflows as it enables the direct evaluation
of seismic moments in particular geological settings.





A
Finite Volume Method for
Thermoporoelastic Media

A.1. Approximation of Fluxes at Interior Interfaces
The local problem between two neighboring cells written in Eqs. (3.16)-(3.18) can
be easily extended to the case of thermoporoelastic media. It implies the continuity
of unknown vector of unknowns d = [u𝑇 𝑝 𝜃] including unknown temperature 𝜃.
Then the local balance of momentum, fluid and heat conduction fluxes can be
written as follows

d𝛽1 = d1 + [I⊗ (x𝛽 − x1)𝑇] (∇⊗ d1) = d2 + [I⊗ (x𝛽 − x2)𝑇] (∇⊗ d2) = d𝛽2 , (A.1)

− [I⊗ n𝑇]S1 (∇⊗ u1) + 𝑝𝛽1B1n + 𝜃𝛽1A1n = − [I⊗ n𝑇]S2 (∇⊗ u2) + 𝑝𝛽2B2n + 𝜃𝛽2A2n, (A.2)

−(∇𝑝1 − 𝜌f𝑔∇𝑧) ⋅K1n = −(∇𝑝2 − 𝜌f𝑔∇𝑧) ⋅K2n, (A.3)

−∇𝜃1 ⋅ ΛΛΛ1n = −∇𝜃2 ⋅ ΛΛΛ2n, (A.4)

where A is the rank-two thermal dilation tensor, ΛΛΛ is the rank-two heat conductivity
tensor introduced in Sec. 2.4.2.

The following decomposition we use in heat flux

ΛΛΛ𝑖n = 𝜆𝑖n+𝜆𝜆𝜆𝑖 , 𝜆𝑖 = n𝑇ΛΛΛ𝑖n, 𝜆𝜆𝜆𝑖 = (I− nn𝑇)ΛΛΛ𝑖n, (A.5)

where scalars 𝜆1 and 𝜆2 and vectors 𝜆𝜆𝜆1 and 𝜆𝜆𝜆2 provide co-normal decompositions
of ΛΛΛ1 and ΛΛΛ2 respectively.
Fluid mass and heat fluxes in Eqs. (A.1)-(A.4) do not depend on neither dis-

placements nor their gradients. Therefore the approximation of fluid mass and
heat fluxes can be done independently of the approximation of momentum fluxes
and Biot’s terms. Following the same way we derived approximation in Eq. (3.28)
we obtain the approximation for fluid mass 𝑞f and heat fluxes 𝑞𝜃 at the interface 𝛽
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as

[𝜇f𝑞f]𝛽 = 𝜅(𝑝1 − 𝑝2) − (𝜅(y1 − y2)𝑇 +
𝑑1𝜅2𝜅𝜅𝜅𝑇1 + 𝑑2𝜅1𝜅𝜅𝜅𝑇2
𝑑2𝜅1 + 𝑑1𝜅2

)𝜉𝜉𝜉𝑝𝜏+

+ 𝜌f𝑔∇𝑧 ⋅
𝑑1𝜅2K1 + 𝑑2𝜅1K2
𝑑2𝜅1 + 𝑑1𝜅2

n (A.6)

[𝑞𝜃]𝛽 = 𝜆(𝜃1 − 𝜃2) − (𝜆(y1 − y2)𝑇 +
𝑑1𝜆2𝜆𝜆𝜆𝑇1 + 𝑑2𝜆1𝜆𝜆𝜆𝑇2
𝑑2𝜆1 + 𝑑1𝜆2

)𝜉𝜉𝜉𝜃𝜏 , (A.7)

where 𝜅 = 𝜅1𝜅2(𝑑1𝜅2 + 𝑑2𝜅1)−1, 𝜆 = 𝜆1𝜆2(𝑑1𝜆2 + 𝑑2𝜆1)−1 are weighted harmonic
mean permeability and heat conductivity respectively.
The following equations can be used for the reconstruction of pressure and tem-

perature at the interface between matrix cells

(𝜅2(x2 − x1) + 𝑑2(K1 −K2)n)
𝑇 ∇𝑝1 = 𝜅2(𝑝2 − 𝑝1) + 𝑑2𝜌f𝑔∇𝑧𝑇 (K2 −K1)n,

(A.8)

(𝜆2(x2 − x1) + 𝑑2(ΛΛΛ1 −ΛΛΛ2)n)
𝑇 ∇𝜃1 = 𝜆2(𝜃2 − 𝜃1). (A.9)

The pressure and temperature can be approximated at the center of the interface
𝛽 as

𝑝𝛽 = (𝑑1𝜅2 + 𝑑2𝜅1)−1(𝑑2𝜅1𝑝1 + 𝑑1𝜅2𝑝2)+
+ (𝑑1𝜅2 + 𝑑2𝜅1)−1 ((𝑑1𝑑2(𝜅𝜅𝜅2 −𝜅𝜅𝜅1)𝑇 + 𝑑2𝜅1(x𝛽 − y1)𝑇 + 𝑑1𝜅2(x𝛽 − y2)𝑇)𝜉𝜉𝜉𝑝𝜏+

+ 𝑑1𝑑2𝜌f𝑔∇𝑧𝑇(K1 −K2)n) ,
(A.10)

𝜃𝛽 = (𝑑1𝜆2 + 𝑑2𝜆1)−1(𝑑2𝜆1𝜃1 + 𝑑1𝜆2𝜃2)+
+ (𝑑1𝜆2 + 𝑑2𝜆1)−1 (𝑑1𝑑2(𝜆𝜆𝜆2 −𝜆𝜆𝜆1)𝑇 + 𝑑2𝜆1(x𝛽 − y1)𝑇 + 𝑑1𝜆2(x𝛽 − y2)𝑇)𝜉𝜉𝜉𝜃𝜏 .

(A.11)

Given the approximations for pressure, temperature, and their gradients presen-
ted above, we can rewrite the balance of momentum fluxes in Eq. (A.2) in the
following form

−T1𝜉𝜉𝜉𝑢1 −ΓΓΓ1𝜉𝜉𝜉𝑢𝜏 +(𝑝𝛽1B1 + 𝜃𝛽1A1)n = −T2𝜉𝜉𝜉𝑢2 −ΓΓΓ2𝜉𝜉𝜉𝑢𝜏 +(𝑝𝛽2B2 + 𝜃𝛽2A2)n, (A.12)
where 𝑝𝛽1, 𝜃𝛽1 denote the left-side approximations

𝑝𝛽1 = 𝑝1 + (x𝛽 − x1)𝑇∇𝑝1, 𝜃𝛽1 = 𝜃1 + (x𝛽 − x1)𝑇∇𝜃1. (A.13)

The approximations of ∇𝑝2, ∇𝜃2 required in Eq. (A.13) significantly broaden the
stencil of displacement gradients compared to the stencil of ∇𝑝2, ∇𝜃2. Below, we
use the following approximations in the reconstruction of gradients which allow the
supporting stencil between pressure and displacement gradients to be the same

𝑝𝛽2 = 𝑝2 + (x𝛽 − y2 − 𝑑2𝜅−12 (K1n−𝜅𝜅𝜅2))𝑇∇𝑝1 + 𝑑2𝜅−12 𝜌f𝑔∇𝑧𝑇(K1 −K2)n,
(A.14)

𝜃𝛽2 = 𝜃2 + (x𝛽 − y2 − 𝑑2𝜆−12 (ΛΛΛ1n−𝜆𝜆𝜆2))𝑇∇𝜃1 (A.15)
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According to Eq. (A.1) the tangential projections of the gradients are 𝜉𝜉𝜉𝑢𝜏1 = 𝜉𝜉𝜉𝑢𝜏2 =
𝜉𝜉𝜉𝑢𝜏 . Deriving 𝜉𝜉𝜉2 from Eq. (A.1) and substituting the result into Eq. (A.2) we obtain
the following expression for 𝜉𝜉𝜉𝑢1 :

(𝑑1T2 + 𝑑2T1)𝜉𝜉𝜉𝑢1 = T2 (u2 − u1) + (T2⊗ (y1 − y2)𝑇 + 𝑑2(ΓΓΓ2 −ΓΓΓ1))𝜉𝜉𝜉𝑢𝜏+
+ 𝑑2 (𝑝𝛽1B1 + 𝜃𝛽1A1 − 𝑝𝛽2B2 − 𝜃𝛽2A2)n. (A.16)

Substitution of Eq. (A.16) in the left-hand side of Eq. (A.2) we obtain the ap-
proximation for the traction f at the interface 𝛽 as

f𝛽 = f(𝑑)𝛽 + f(𝑎)𝛽 , (A.17)

where

f(𝑑)𝛽 = −T1𝜉𝜉𝜉𝑢1 −ΓΓΓ1𝜉𝜉𝜉𝑢𝜏 = T (u1 − u2)−
− ([T⊗ (y1 − y2)𝑇] + 𝑑1T2(𝑑1T2 + 𝑑2T1)−1ΓΓΓ1 + 𝑑2T1(𝑑1T2 + 𝑑2T1)−1ΓΓΓ2)𝜉𝜉𝜉𝑢𝜏+

+ 𝑑2T1(𝑑1T2 + 𝑑2T1)−1 (𝑝𝛽 (B2 − B1) + 𝜃𝛽 (A2 − A1))n,
(A.18)

f(𝑎)𝛽 = (𝑝𝛽B1 + 𝜃𝛽A1)n, (A.19)

where T = T1(𝑑1T2 + 𝑑2T1)−1T2 stands for 3 × 3 matrix and the approximations
for 𝑝𝛽 , 𝜃𝛽 are taken from Eqs. (A.10), (A.11).

The reconstruction of the gradients of displacements has to be performed before
the assembly of momentum fluxes. The interface provides the following restrictions
on it

(T2⊗ (x2 − x1)𝑇 + 𝑑2(T1 − T2) ⊗ n𝑇 + 𝑑2(ΓΓΓ1 −ΓΓΓ2)) [∇⊗u1] = T2 (u2 − u1)+
+ 𝑑2 (𝑝𝛽1B1 + 𝜃𝛽1A1 − 𝑝𝛽2B2 − 𝜃𝛽2A2)n. (A.20)

The advective term �̃�𝛽 = (u𝛽 − u1) ⋅ B1n depends on the approximation of dis-
placements at the center of an interface u𝛽 that can be approximated as

u𝛽 = (𝑑1T2 + 𝑑2T1)−1(𝑑2T1u1 + 𝑑1T2u2)+
+(𝑑1T2+𝑑2T1)−1 ((𝑑1𝑑2 (ΓΓΓ2 −ΓΓΓ1) + 𝑑2T1⊗ (x𝛽 − y1)𝑇 + 𝑑1T2⊗ (x𝛽 − y2)𝑇)𝜉𝜉𝜉𝑢𝜏+

+𝑑1𝑑2 (𝑝𝛽1B1 + 𝜃𝛽1A1 − 𝑝𝛽2B2 − 𝜃𝛽2A2)n) . (A.21)
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A.2. Approximation of Fluxes at Boundary
Interfaces

For the following system of boundary conditions enforced at the boundary of ther-
moporoelastic media

⎧⎪
⎨⎪⎩

n𝑇 (𝑎𝑛u𝑏 − 𝑏𝑛f𝑏) = 𝑟𝑛 ,
(I− nn𝑇) (𝑎𝑡u𝑏 − 𝑏𝑡f𝑏) = r𝑡 ,
𝑎𝑝𝑝𝑏 − 𝑏𝑝𝑞f = 𝑟𝑝,
𝑎𝜃𝜃𝑏 − 𝑏𝜃𝑞𝜃 = 𝑟𝜃 ,

(A.22)

we can derive the approximation of temperature 𝜃𝑏 and heat flux n𝑇𝑞𝜃,𝑏 at the
boundary in the same manner to the derivation of Eqs. (3.62), (3.63)

𝜃𝑏 = (𝑎𝜃 +
𝑏𝜃𝜆1
𝑑1

)
−1

(𝑟𝜃 +
𝑏𝜃𝜆1
𝑑1

𝜃1 − 𝑏𝜃 (
𝜆1
𝑑1
(y1 − x𝑏) + 𝜆𝜆𝜆1) ⋅ 𝜉𝜉𝜉𝜃𝜏) , (A.23)

𝑞𝜃,𝑏 = −(𝑎𝜃 +
𝑏𝜃𝜆1
𝑑1

)
−1

( 𝜆1𝑑1
𝑟𝜃 − 𝑎𝜃

𝜆1
𝑑1
𝜃1 + 𝑎𝜃 (

𝜆1
𝑑1
(y1 − x𝑏) + 𝜆𝜆𝜆1) ⋅ 𝜉𝜉𝜉𝜃𝜏) . (A.24)

The extension of Eqs. (3.64), (3.65), (3.67) to the thermoporoelastic stresses
can be done with substitution of 𝜃𝑏A1n+ 𝑝𝑏B1n instead of 𝑝𝑏B1n.

A.3. Uniaxial thermoporoelastic consolidation
The semi-analytical solution for a coupled problem of fluid mass, energy, and mo-
mentum balance in the uniaxial consolidation test (Bai 2005) can be employed to
benchmark the developed approximations. Thus, we consider the vertical column
of 7m height subjected to instant vertical loading with 𝐹 = 1Pa at the top bound-
ary (Gao et al. 2020). The constant pressure 𝑝 = 0Pa and temperature 𝜃 = 50 °C
is maintained at the top boundary while the initial pressure and temperature are
equal to 𝑝0 = 0Pa and 𝜃0 = 0 °C, respectively. All other sides of the domain are
impermeable to fluid and heat and subjected to the roller boundary condition. The
domain is shown in Fig. A.1.
Furthermore, the stiffness tensor is defined by Young’s modulus 𝐸 = 6kPa and

Poisson’s ratio 𝜈 = 0.4. Isotropic permeability K = 𝑘I, Biot’s B = 𝑏I, thermal
dilation A = 𝑎I and total heat conduction ΛΛΛ = 𝜆I tensors are defined by the
corresponding scalar values 𝑘 = 4 × 10−9m2, 𝑏 = 1.0, 𝑎 = 9 × 10−7 °C−1 and
𝜆 = 836Jm−1 s−1 °C−1, respectively. The total volumetric heat capacity is equal
to 𝑐 = 167.2kJm−3 °C−1. Fluid is maintained incompressible with fluid viscosity
𝜇 = 1cP.
Fig. A.2 illustrates the comparison of pressure, temperature, and vertical displace-

ment to the analytical solution. Pressure, temperature, and vertical displacement
evaluated at three points in space are plotted against time. The numerical solution
obtained with the proposed approximations implemented in DARTS (Voskov et al.
2023) demonstrates a good match to the analytical solution (Analytics).
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Figure A.1.: The setup for uniaxial thermoporoelastic consolidation test (Gao et al.
2020).

An instant loading causes an instant compression followed by further consolida-
tion due to fluid discharge as in the uniaxial poroelastic consolidation test. However,
heat conduction propagates energy from the top boundary, which is maintained
under high temperature 𝑇 = 50 °C, throughout the whole domain. Temperature
increase causes thermal expansion, competing with consolidation.
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(a) pressure (b) temperature

(c) vertical displacement
Figure A.2.: The dynamics of pressure (a), temperature (b) and vertical displace-

ment (c) over time estimated in three points in space with semi-
analytical method (solid curve) and numerical solution from DARTS
(dashed curve).
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