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Abstract. The numerical solution of fluid-structure interactions with the customary
subiteration method incurs numerous deficiencies. We validate a recently proposed solu-
tion method based on the conjugation of subiteration with a Newton-Krylov method, and
demonstrate its superiority and beneficial characteristics.

1 INTRODUCTION

Fluid-structure interactions are of great relevance in aerospace, civil and offshore en-
gineering and in biomechanics. Numerical methods for the aggregated fluid-structure
equations customarily solve fluid and structure alternately subject to the complementary
interface conditions; see, e.g., Ref. [1]. This process is typically repeated until conver-
gence and commonly referred to as subiteration. Subiteration is a good solver for many
problems, but it lacks robustness for large fluid-to-structure mass ratios; cf. Refs. [2, 3].
As subiteration operates in a time-integration process, it solves a sequence of similar
problems. Since the method cannot reuse generated information, it is inefficient.

To overcome these deficiencies, we proposed in [4] a novel solution method that employs
subiteration as a preconditioner to GMRES; see also the proceedings article [5] for a
condensed presentation of the method. An error-amplification analysis of this method
was presented in Ref. [6]. The conjugation of subiteration and GMRES requires only
negligible computational resources, because the GMRES acceleration can be confined to
the interface degrees-of-freedom, which is considerably cheaper than applying GMRES to
the aggregated equations or to the Schur complement; see, e.g., Refs. [7, 8]. Thus, we refer
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to our method as Interface-GMRES(R), where the bracketed R indicates the possibility
of reusing Krylov vectors in subsequent invocations of GMRES. Such reuse can yield
substantial computational savings. Since Interface-GMRES(R) preserves the modularity
of the underlying subiteration method, it can easily be implemented in codes which use
subiteration as a solver. An investigation into efficient solution methods for fluid-structure
interaction was also conducted in [9], and for multigrid in space/time applied to fluid-
structure-interaction problems see [3].

In the present contribution, we validate the Interface-GMRES(R) method in a higher-
dimensional problem setting than the one adopted in [4, 5] to demonstrate the versatility
of the method. To this end, we consider the prototypical panel fluid-structure interaction
problem, viz., the interaction of an inviscid-fluid flow with a beam. Relevant features
that distinguish the panel problem from the piston problem considered in Refs. [4, 5]
are that it exhibits interface degrees-of-freedom pertaining to both space and time and,
moreover, that it can display parameter-dependent stability behaviour such as flutter and
divergence; see, e.g., Ref. [10].

To study the convergence behaviour of Interface-GMRES(R) in a systematic way, we
explore first the physical parameter space of the fluid-structure system. In particular,
we determine for which parameter settings the system is unstable, and which type of
instability it exhibits. Next, we assess the convergence behaviour of Interface-GMRES(R)
for representative settings of the physical and discretization parameters. We investigate
the relation between the convergence behaviour of Interface-GMRES(R) and the stability
of the problem. Numerical results are provided that demonstrate the performance and
versatility of the Interface-GMRES(R) solution method.

This paper is organized as follows. Section 2 presents a problem statement of the
panel problem. Section 3 concisely reviews the Interface-GMRES(R) solution method.
Section 4 presents numerical results for the panel problem. Section 5 contains concluding
remarks.

2 PROBLEM STATEMENT

Below, we present a concise description of the panel problem, for an elaboration we
refer to Ref. [11]. The upper side of the panel is exposed to an airstream, and its lower
side to a cavity with still air; see Fig. 1 for an illustration. We consider a panel with
an infinite aspect ratio, which renders the problem essentially two-dimensional. The
motion of the structure can then be described by the beam equation. Let x, y and t
be spatial and temporal coordinates, respectively, α(x, t) the y-coordinate position of the
fluid-structure interface and L the length of the beam. The mathematical formulation of
the fluid-structure system comprises the Euler equations on Ωα := {(x, y, t) : −∞ < x <
∞;α(x, t) < y < ∞; 0 < t < T} in connection with the beam equation at the interface
Γα := {(x, y, t) : 0 < x < L; y = α(x, t); 0 < t < T}. We consider the Euler equations in

2



Christian Michler, Harald van Brummelen, Rob in’t Groen and René de Borst
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Figure 1: Illustration of the panel fluid-structure-interaction problem (interface region ex-
panded for clarity).

conservative form:

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 , (x, y, t) ∈ Ωα , (1a)

with

u :=




ρ
ρu
ρv
E


 , f(u) :=




ρu
ρu2 + p(u)

ρuv
(p(u) + E)u


 , g(u) :=




ρv
ρuv

ρv2 + p(u)
(p(u) + E)v


 ,

p(u) := (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
, (1b)

and γ = 1.4. In Eq. (1b), ρ, u, v, E and p denote the density, the x- and y-component
of the velocity, the total energy and the pressure of the fluid, respectively.

Eq. (1) must be supplemented with appropriate initial and boundary conditions. On
∂Ωα\Γα these are prescribed by

u(x, y, 0) = u0(x, y) , −∞ < x <∞ , α(x, 0) < y <∞ , (2a)

(ρv)(x, 0, t) = 0 , x < 0 , x > L , 0 < t < T , (2b)

with u0(x, y) the given initial conditions. Condition (2b) translates into the imperme-
ability condition of the rigid wall. Moreover, ‘farfield boundary conditions’ are imposed
for x → ±∞ and for y → ∞. The interface conditions, i.e., the conditions on Γα, are
specified below.

The governing equation for the beam is:

M
∂2z

∂t2
+D

∂4z

∂x4
= −π + β , 0 < x < L , 0 < t < T , (3)
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where z designates the beam displacement from its equilibrium position, and the constants
M,D ∈ R+ denote the mass and the bending stiffness of the beam, respectively. The right-
hand member of Eq. (3) is the forcing term which is composed of the traction π exerted by
the fluid on the structure through the interface, and the constant pressure β in the cavity
underneath the panel. The cavity pressure is equal to the freestream pressure. Eq. (3) is
subject to the initial and boundary conditions

z(x, 0) = z0(x) ,
∂z

∂t
(x, 0) = ż0(x) , 0 < x < L , (4a)

z(0, t) = z(L, t) = 0 ,
∂z

∂x
(0, t) =

∂z

∂x
(L, t) = 0 , 0 < t < T , (4b)

with z0(x), ż0(x) the given initial conditions. The boundary conditions (4b) state that
the beam is clamped on both sides.

The Euler equations and the beam equation are connected at the interface Γα by the
kinematic conditions

(ρv)|Γα = ρ|Γα
∂α

∂t
(x, t) + (ρu)|Γα

∂α

∂x
(x, t) , 0 < x < L , 0 < t < T , (5a)

α(x, t) = z(x, t) , 0 < x < L , 0 < t < T , (5b)

and the dynamic condition

p(u|Γα) = π(x, t) , 0 < x < L , 0 < t < T . (5c)

The condition (5a) constitutes a ‘slip’ boundary condition, which translates into the
tangency of the flow to the moving beam and renders the interface impermeable. The
condition (5b) identifies the interface position and the beam position. The condition (5c)
implies equilibrium of the forces exerted on the interface by the fluid and the structure.
Note that the interface conditions are imposed on the moving boundary Γα.

Upon suitable non-dimensionalization, we can identify the following dimensionless pa-
rameters that govern the behaviour of the panel fluid-structure system:

λ =
LC−1

0

M1/2L2D−1/2
, µ =

ρ0L

M
, Ma =

V0

C0

, (6)

where C0 denotes the speed of sound, ρ0 is the reference density and V0 is the freestream
velocity. The parameter λ can be identified as the ratio of characteristic time scales of
the fluid and the structure, the parameter µ constitutes the ratio of characteristic fluid
mass to characteristic structure mass, and the parameter Ma is the Mach number.

A distinct property of the panel problem is its ability to exhibit parameter-dependent
stability behaviour. That is, the fluid-structure system can display instabilities such as
flutter and divergence for certain parameter settings, whereas other parameter settings
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yield stable behaviour; cf. Ref. [10]. Instability of the fluid-structure system is a prop-
erty that is shared by many fluid-structure-interaction problems and that is of significant
practical importance. Since flutter and divergence can induce the failure of the struc-
ture, the analysis and prediction of such instabilities plays a crucial role in engineering
design. For instance, in aerospace engineering, flutter and divergence impose constraints
on the allowable operating conditions of aircraft. Hence, they need to be controlled by an
adequate design; see, e.g., Ref. [12].

3 THE INTERFACE-GMRES(R) SOLUTION METHOD

For self-containedness of this paper, we review in this section the Interface-GMRES(R)
method that was recently proposed in [4] and analysed in [6]. Since the Interface-
GMRES(R) method builds on the customary subiteration method, we shall first recall
the subiteration method.

3.1 The subiteration method

The interconnection between the state variables and their domain of definition compli-
cates the numerical treatment of fluid-structure interaction problems. This complication
can be bypassed through an iterative solution procedure often referred to as subiteration:
Given an initial approximation z0(x, t), for j = 1, 2, . . . repeat until convergence

(S1) Solve the kinematic condition: find αj such that αj(x, t) = zj−1(x, t).

(S2) Solve the fluid on Ωαj subject to u3(x, αj, t) = u1(x, αj, t)
∂αj
∂t

(x, t)+u2(x, αj, t)
∂αj
∂x

(x, t)
on Γαj to obtain uj.

(S3) Solve the dynamic condition: find πj such that πj(x, t) = p(uj(x, αj(x, t), t)).

(S4) Solve the structure problem with right member −πj(x, t) + β to obtain zj(x, t).

This procedure obviates the simultaneous treatment of fluid and structure. Subiteration
can be conceived as a mapping C : zj 7→ zj+1, and essentially constitutes a fixed-point
iteration z : Cz = z, with C the operator associated with subiteration. The subiteration
process is formally stable if the spectral radius of C is smaller than unity. However,
despite formal stability, transient divergence can occur for large fluid-to-structure mass
ratios or large time steps. This non-monotonous convergence is caused by nonnormality
of C (cf. [2]) and can even lead to failure of the iterative method. Hence, it constitutes
an essential drawback of subiteration.

3.2 The Interface-GMRES(R) method

The Interface-GMRES(R) method essentially constitutes a Newton-Krylov method [13]
applied to the interface degrees-of-freedom. To solve the nonlinear fixed-point problem
by a Newton-Krylov method, we reformulate it as z : Rz = 0 with R := C− I the residual

5



Christian Michler, Harald van Brummelen, Rob in’t Groen and René de Borst

operator. Correspondingly, the residual of an iterate zi is ri := Rzi = (C − I)zi = zi+1 −
zi. For a given initial guess z0, Newton’s method generates a sequence of approximate
solutions according to

z0 ← z0 + z′0 = z0 − R′−1Rz0, (7)

with R′ = ∂R/∂z and z′0 a perturbation around the linearization state z0. Each Newton
step requires the solution of a linear problem of the form

Rz0 + R′z′0 = 0. (8)

Substituting into (8) the ansatz z′0 ∈ Km := span{zj − z0}j=mj=1 with Km the Krylov space
associated with (8) and using finite-difference approximation, we obtain

Rz0 + R′
j=m∑

j=1

αj(zj − z0) = r0 +

j=m∑

j=1

αj(rj − r0) + O(‖
j=m∑

j=1

αj(zj − z0)‖2) = 0, (9)

with Rm := span{rj − r0}j=mj=1 the residual space corresponding to Km. The coefficients

αj for the redefinition z0 ← z0 +
∑j=m

j=1 αj(zj − z0) are determined by solving (9) in a
least-squares sense

ᾱ = arg min‖r0 +

j=m∑

j=1

αj(rj − r0)‖2, ξ := ‖r0 +

j=m∑

j=1

ᾱj(rj − r0)‖2, (10)

with ξ the norm of the residual of the linear problem. The latter constitutes an estimate
for the norm of the residual of the nonlinear problem.
Km coincides with span{ζj−z0}j=mj=1 with ζj the j-th subiteration iterate. The minimal-

residual property of GMRES implies that the subiteration residuals form an upper bound
for the GMRES residuals and that, in contrast to the subiteration iterates, the GMRES
iterates must form a non-increasing sequence. However, this implies faster Newton-Krylov
convergence only for problems which are sufficiently linear. For strongly nonlinear prob-
lems, the linearization in the Newton-Krylov method can hamper convergence.

Provided with an initial approximation z0(x, t), Algorithm 1 summarizes the Interface-
GMRES method, endowed with Gram-Schmidt orthonormalization (lines 6a–f) and un-
derrelaxation with an appropriate constant ν (line 6e). The former improves the robust-
ness, the latter facilitates the subiteration process and allows the combination of GMRES
with subiteration even if subiteration is formally unstable. The fluid solution can be ex-
tracted from the subiteration process on line 1 or 13. The convergence tolerances for the
nonlinear and the linear problem are denoted by ε0 and ε1, respectively. We set ε1 = κ‖ri‖
with ri the residual in the current Newton step i and κ < 1 an appropriate scalar. In
contrast to methods which apply GMRES to the aggregated equations or to the Schur
complement, see Refs. [7, 8], the proposed Newton-Krylov method is confined to the inter-
face degrees-of-freedom and, therefore, the storage requirements for the Krylov space and
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1: i = 0; z1 = Cz0; r0 = z1 − z0

2: while ‖ri‖ > ε0 do
3: j = 0; ξ = ‖ri‖
4: while ξ > ε1 do
5: j = j + 1
6: z′j = zj − z0

7: zj+1 = Czj
8: r′j = (zj+1 − zj)− ri
9: ᾱ = arg min‖ri +

∑k=j
k=1 αkr

′
k‖

10: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

11: end while
12: z0 = z0 +

∑k=j
k=1 ᾱkz

′
k

13: i = i + 1; z1 = Cz0; ri = z1 − z0

14: end while

6a: z′j = zj − z0

6b: for k = 1, . . . , j − 1 do
6c: z′j = z′j − z′k(z′j · z′k)/‖z′k‖2

6d: end for
6e: z′j = νz′j/‖z′j‖
6f: zj = z0 + z′j

1: i = 0; j = 0; z1 = Cz0; r0 = z1−z0

3a: ᾱ = arg min‖ri +
∑k=j

k=1 αkr
′
k‖

3b: ξ = ‖ri +
∑k=j

k=1 ᾱkr
′
k‖

3c: zj+1 = z1

Algorithm 1: The Interface-GMRES(R) method for solving z : Cz = z; the basic algorithm
(left), modifications to enable Gram-Schmidt orthonormalization and underrelaxation (right
top) and modifications to enable reuse of Krylov vectors within a time step (right bottom).

the computational expense for the solution of the least-squares problem (10) are much
lower. Accordingly, we refer to this solution method as Interface-GMRES.

Reuse of Krylov vectors only requires minor modifications; see Algorithm 1. The inner
loop then augments instead of overwrites the available spaces Km and Rm. Depending
on the reduction of the updated nonlinear residual in Rm, Km is further augmented or
another Newton update is carried out.

In addition to reuse within a single time step, reuse is also possible within subsequent
time steps. In the latter case, the available spaces K and R are transferred from one time
interval to the next. Such reuse can substantially increase the efficiency of the method;
however, it comes at the expense of robustness and therefore has to be exercised with some
caution. We refer to the Interface-GMRES method with reuse as Interface-GMRESR.
Finally, let us remark that the Interface-GMRES(R) solution method is generic and that
it is easily implemented in existing codes which use subiteration as a solver.

4 NUMERICAL EXPERIMENTS

To demonstrate the versatility of the Interface-GMRES(R) method, we assess its con-
vergence behaviour on the panel problem. In particular, we investigate the effect of
physical instability due to flutter on Interface-GMRES(R) convergence and on the effec-
tiveness of reuse of the Krylov space. For reference purposes, we include comparisons
with standard subiteration.
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4.1 Experimental setup

We consider the panel problem stated in Section 2. The infinite-dimensional domain
with x → ±∞ and y → ∞ is modeled by a truncated domain. In particular, in the
x-direction inflow and outflow fluid boundary conditions are prescribed with the flow
going from the left to the right, and in the y-direction the domain is bounded by a solid
wall at a distance of one from the panel. The distance of the solid wall to the panel is
sufficiently large to ensure that the wall does not significantly influence the solution and
the convergence behaviour of the solution methods.

We use initial conditions for the beam according to its first mode shape. The initial
conditions for the fluid are determined as the steady-state solution of the flow over a beam
that is deflected according to its first mode shape. The system parameters are given in
Table 1, where τ denotes the length of the solution time interval. With Ma = 1.5, the
flow is supersonic.

Case λ µ Ma τ
I 0.25 ∗ 1.5 0.05
II ∗ 10 1.5 0.05

Table 1: System parameters for the panel problem (∗ indicates a variable parameter).

The fluid-structure system is discretized by the space/time finite-element method with
piecewise-polynomial base functions that are discontinuous in time and continuous in
space. As base functions for the structure discretization we use Legendre polynomials,
and enforce C1-continuity in space by means of Lagrange multipliers. The base functions
for the fluid are of modal type in conformity with Ref. [14, ch.3].

The time-discontinuous Galerkin discretization implies that displacement and velocity
of the structure are discontinuous from one time slab to the next. However, since the
fluid-boundary representation assumes a continuous displacement, the discontinuity in
the structure displacement needs to be controlled. To render the discontinuity in the
structure displacement and velocity negligible, we use polynomials of sufficiently high
degree for the approximation space of the structure.

We remark that the considered discretization does not maintain the conservation prop-
erties at the fluid-structure interface; cf. Ref. [15]. To render the error pertaining to the
lack of conservation negligible, we choose a discretization for fluid and structure that is
sufficiently fine.

The discretization parameters are given in Table 2, where the polynomial degree of
the approximation spaces associated with u, α, z and π are, respectively, (P x

U , P
y
U, P

t
U),

(P x
A , P

t
A), (P x

Z , P
t
Z) and (P x

P , P
t
P), and the number of elements, N , is denoted accordingly.

The number of elements in the x-direction is specified over the length of the beam. The
discretization time step is equal to the length of the solution time interval. The dis-
cretization is sufficiently fine to ensure that the results are essentially mesh independent.
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NU NA NZ NP PU PA PZ PP
(16, 24, 1) (16, 1) (16, 1) (16, 1) (2, 2, 2) (1, 1) (6, 6) (2, 2)

Table 2: Discretization parameters for the panel problem, test cases I and II.

In each time slab, we provide an initial approximation of the structure displacement
based on a linear extrapolation of the initial conditions conforming to

z0(x, t) = z0(x) + ż0(x)t , 0 ≤ x ≤ L , 0 ≤ t ≤ τ . (11)

We set the convergence tolerance to ε0 = 10−4‖r0‖, i.e., we require a reduction of the
initial residual by four orders of magnitude. In addition, we specify for the Newton-Krylov
method the tolerance for the GMRES iteration according to ε1 = 10−1‖ri‖, i.e., we use a
relative tolerance for the convergence in the inner loop of the acceleration; cf. Section 3.2.
Moreover, the underrelaxation parameter is set to ν = 10−2‖r0‖ for the Interface-GMRES
method with reuse and to ν = 10−2‖ri‖ for the method without reuse.

4.2 Numerical results

In the first test case, we study the convergence of the Interface-GMRES(R) method and
subiteration for three distinct settings of the problem with parameters as given in Table 1,
case I and µ = 1, 50, 100. We remark that the spectral radius of the subiteration-operator
derivative scales with µ; see also Ref. [2].

Fig. 2 plots the displacement of the beam in space/time. For all considered settings,
the oscillation of the structure attenuates with time, indicating that the fluid-structure
system is stable. Moreover, it is apparent that the beam deflection is downwind according
to the direction of the flow. The convergence behaviour of the Newton-Krylov method
with and without reuse and of the subiteration method is displayed in Fig. 3 for time
steps 1 and 50 for exemplification. In addition, we plot in Figs. 4 and 5 the dimension of
the Krylov space and the cumulative number of iterations versus the time-step counter,
respectively. The cumulative number of iterations specifies the total number of iterations
required for convergence upto and including the time step under consideration. Fig. 3
illustrates that if reuse is applied, initially most iterations of the Newton-Krylov method
are spent on generating the Krylov space. However, in subsequent time steps, increasingly
fewer Krylov vectors need to be added to the space due to reuse; see also Fig. 4. This
results in a decreasing number of iterations per time step and manifests in the gradually
changing slope of the cumulative-iteration-count curve; see Fig. 5. In contrast, the num-
ber of iterations required by subiteration hardly changes in subsequent time steps. We
infer from these results that reuse can render the Newton-Krylov method computationally
cheaper than subiteration even under conditions that are favorable for the convergence of
subiteration; see Figs. 3 and 5 (left) with µ = 1. Subiteration convergence deteriorates
significantly with increasing µ, in contrast to Newton-Krylov convergence. Hence, a dis-
crepancy in computational cost for larger µ emanates. For µ = 100, subiteration diverges.
Note that the Newton-Krylov method attains convergence despite the instability of the
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Figure 2: Test case I: Space/time displacement of the beam (colour bars) for system parameters
according to Table 1 and µ = 1 (left), µ = 50 (center) and µ = 100 (right).

underlying subiteration method.
For reference, we have included in Figs. 3 and 5 the results for the Newton-Krylov

method without reuse of the Krylov space. A comparison to the method with reuse
clearly demonstrates the significant savings in computational cost that can be obtained
by reusing the Krylov space.

To put our results into context, we remark that for an initial amplitude of the beam de-
flection of approximately 10−4 the system behaviour is close to linear. Preliminary studies
indicate that for nonlinear system behaviour corresponding to larger initial amplitudes
the performance of the Newton-Krylov method degrades only moderately. Moreover, we
remark that our results are in good agreement with the results obtained on the piston
model problem; cf. [4].

In the second test case, we investigate the effect of physical instability on convergence
and on the effectiveness of reusing the Krylov space. To this end, we consider the fluid-
structure system with parameters according to Table 1, case II and two representative
settings of λ, viz., λ = 0.1 and λ = 0.25. The discretization parameters are specified in
Table 2.

Fig. 6 plots the numerical solution of the beam displacement in space/time for the
unstable system (left figure) and the stable system (right). Whereas for λ = 0.1 the
oscillation amplifies which indicates flutter, for λ = 0.25 the oscillation attenuates, indi-
cating stability of the fluid-structure system. Fig. 7 (left) plots the cumulative number
of iterations versus the time-step counter for the Newton-Krylov method and for subiter-
ation as a reference. In addition, Fig. 7 (right) plots the dimension of the Krylov space
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Figure 3: Test case I: Residual reduction in the L2 norm versus iteration number in time steps
1 (top) and 50 (bottom) for the Newton-Krylov method with reuse (−−−) and without reuse
(−−) and for subiteration (· · ·); residual estimates and true residuals of the Newton-Krylov
method are indicated by ◦ and �, respectively, and residuals of subiteration by 4; µ = 1 (left),
µ = 50 (center) and µ = 100 (right). y-axis in log10-scale.

versus the time-step counter. We remark that these figures plot upto a time step of
n = 200 corresponding to computational time t = 10, whereas Fig. 6 plots only upto
n = 100 (t = 5). Note that the instability becomes increasingly pronounced with time.
Fig. 7 (left) displays a slight change in slope of the cumulative-iteration-count curve of the
Newton-Krylov method with reuse for the unstable system setting. To explain this change
in slope, we consider the evolution of the Krylov-space dimension plotted in Fig. 7 (right).
The figure exhibits that, after the initial construction of a sufficiently large Krylov space,
the dimension of the space remains essentially constant upto a time step of approximately
100. Henceforth, the dimension of the Krylov space further increases in the case of the
unstable system, which means that additional Krylov vectors need to be added to the
space to attain convergence. This indicates a mild degradation in the effectiveness of the
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Figure 4: Test case I: Dimension of the Krylov space versus the time-step counter for the
Newton-Krylov method with reuse in subsequent time steps; µ = 1 (left), µ = 50 (center) and
µ = 100 (right).
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Figure 5: Test case I: Cumulative number of iterations versus the time-step counter for the
Newton-Krylov method with reuse (−−−) and without reuse (−−) and for subiteration (· · ·);
µ = 1 (left), µ = 50 (center) and µ = 100 (right).

reused Krylov space which can be attributed to the significant change in the solution in-
duced by flutter. However, this effect appears to be minor in that reuse remains beneficial
and renders Newton-Krylov convergence faster than subiteration convergence; see Fig. 7
(left). This result underlines that the improvement in efficiency that can be gained by
reuse is not restricted to stable fluid-structure systems only but also applies to systems
undergoing flutter.

In conclusion, the test cases indicate that the Interface-GMRES method generally
outperforms subiteration. Settings corresponding to a relatively weak coupling in the
fluid-structure-interaction problem, e.g. due to small µ, are favorable for the subitera-
tion method. For such settings, the convergence behaviour of subiteration and Interface-
GMRES is comparable. For larger µ and, accordingly, a stronger coupling, Interface-
GMRES converges much faster than subiteration. Even if the coupling is so strong
that the subiteration method separately diverges, the Interface-GMRES method still dis-
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Figure 6: Test case II: Space/time displacement of the beam (colour bars): Solution computed
with system parameters according to Table 1 with λ = 0.1 (left) and λ = 0.25 (right).

plays adequate convergence behavior. Moreover, if the reuse option is exercised, then the
Interface-GMRESR method converges in just a few iterations, independent of the strength
of the coupling.
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Figure 7: Test case II: Cumulative number of iterations versus the time-step counter for the
Newton-Krylov method with reuse in subsequent time steps (�) and without reuse (◦) and for
subiteration (4) (left), and dimension of the Krylov space versus the time-step counter for the
Newton-Krylov method with reuse (right); system parameters according to Table 1 with λ = 0.1
(−−−) and λ = 0.25 (−−).
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5 CONCLUSIONS

In this paper we have assessed the convergence behaviour of the recently proposed
Interface-GMRES(R) solution method on the prototypical panel fluid-structure-interaction
problem. This model problem exhibits parameter-dependent stability behaviour, admit-
ting instabilities such as flutter and divergence.

Our numerical experiments demonstrate that the Interface-GMRESR method with
reuse of the Krylov space generally converges faster than the customary subiteration
method. For the Interface-GMRES method without reuse, however, this is not always
the case. If the coupling in the fluid-structure-interaction problem is weak, e.g. due to
a small fluid-to-structure mass ratio, then the subiteration method can display slightly
better convergence. For strongly-coupled problems, the Interface-GMRES method clearly
outperforms the subiteration method. Moreover, the Interface-GMRES method even
converges in cases where the underlying subiteration method diverges, e.g. for large fluid-
to-structure mass ratios.

Our results indicate that physical instability in the form of flutter can induce a mild
degradation of the effectiveness of reuse of the Krylov space. However, this effect appears
to be minor and reuse remains beneficial. These findings underline the versatility of the
method.
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