
Feasibility study of
"Invariant Information Clustering for
 Unsupervised Image Segmentation"

Yordan Dimitrov

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

Feasibility study of
"Invariant Information Clustering for
Unsupervised Image Segmentation"

by

Yordan Dimitrov
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Friday October 22, 2021 at 12:00 PM.

Student number: 4948874
Project duration: September 3, 2020 – October 22, 2021
Thesis committee: Dr. J. C. van Gemert, TU Delft, supervisor

A. Lengyel, MSc, TU Delft, daily supervisor
Dr. S. L. Pintea, TU Delft, daily supervisor
Dr. N. Tömen, TU Delft, daily supervisor
Dr. K. A. Hildebrandt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

The following report presents my thesis titled Feasibility study on "Invariant Information Clustering for Unsu-
pervised Image Segmentation". The objective of the project was to analyse and evaluate a novel unsupervised
segmentation approach which promises unparalleled performance on satellite imagery. The supplementary
chapters include background information on Deep Learning, different segmentation approaches and unsu-
pervised representation-learning methods. The thesis has been written to fullfil the requirements to obtain
the degree of Master of Science at the Delft University of Technology.

I would like to thank my supervisors Attila Lengyel, Silvia Pintea and Nergis Tömen for their immense help
and advice throughout the entire project, this work would not have been as detailed as it is now without their
guidance. I am also grateful for all the assistance and advice of my friends and fellow students that helped me
whenever I was confronted with a problem.

I am also extremely thankful for my time spent in Delft and for all the friendships that I have made along
the way. And last by not least, I would like to express my utmost gratitude towards my parents whose support
has made all of this possible.

Yordan Dimitrov
Delft, October 2021

iii

Contents

1 Scientific paper 1

2 Introduction 15
2.1 Motivation . 15
2.2 Research question . 16
2.3 Overview . 16

3 Foundations of Deep Learning 19
3.1 Neural Networks . 19

3.1.1 Perceptron . 19
3.1.2 Multilayer perceptron . 19
3.1.3 Weight optimisation . 20

3.2 Convolutional Neural Networks. 21
3.2.1 Convolution . 21
3.2.2 Pooling. 21
3.2.3 Preventing overfitting . 22

3.2.3.1 Dropout . 22
3.2.3.2 Weight regularisation . 22
3.2.3.3 Early stopping . 23

3.2.4 Batch normalisation . 23

4 Foundations of Image segmentation 25
4.1 Segmentation in Deep Learning. 25
4.2 Overview of segmentation architectures . 26

4.2.1 Pyramid and Multi-Scale architectures. 26
4.2.2 Atrous convolution. 26
4.2.3 R-CNN architectures . 27
4.2.4 Recurrent architectures . 28
4.2.5 Generative and Adversarial architectures . 28

5 Self-supervised Representation Learning 31
5.1 Clustering. 31

5.1.1 k-means . 31
5.1.2 Hierarchical clustering . 32

5.2 Dimensionality Reduction . 33
5.3 Autoencoders . 34
5.4 Contrastive Learning . 34

v

1
Scientific paper

1

Feasibility study on ”Invariant Information Clustering for
Unsupervised Image Segmentation”

Yordan Dimitrov1, Attila Lengyel2, Silvia Pintea2, and Nergis Tömen2

2Computer Vision Lab, Delft University of Technology
1 y.d.dimitrov@student.tudelft.nl

2{a.lengyel, s.l.pintea, n.tomen}@tudelft.nl

Abstract

In this paper we analyse the performance of a novel clus-
tering objective that optimises a neural network to predict
segmentation. We challenge the reported results by repli-
cating the original experiments and conducting additional
tests to gain an insight into the algorithm. We analysed the
efficiency of the clustering objective on a different architec-
ture, dataset and hyper-parameters. To our surprise the al-
gorithm demonstrated considerably lower results when run-
ning on the new setup. Further, in our work we detail the
reasons behind the discrepancy and provide configurations
under which the method performs best. We show that the
objective is highly sensitive to the type of images it is pre-
dicting and the complexity of the architecture that is being
used with.

1. Introduction
Convolutional networks have become the target of rapid

development over the last decade with the success of the
first deep learning models [25, 42]. The availability of large
amounts of data and advancement in the technological do-
main have further accelerated research. Image segmenta-
tion as a sub-field of deep learning has gained substantial
attention after the introduction of fully convolutional net-
works [29]. This type of architecture does not use a series
of fully-connected layers to generate predictions and instead
employs only banks of convolutional, activation and pool-
ing layers. To train such networks at a sufficient level, vast
amounts of annotated data are required. Despite the con-
siderable increase of available training datasets, generation
of semantic labels is still the single major bottleneck to the
performance of deep learning models.

To address this issue many works have proposed solu-
tions which seek to minimise the dependence on labeled

U-Net IIC-VGG U-Net IIC-VGG IIC-VGG
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Ac
cu

ra
cy

Cityscapes Potsdam-3

U-Net IIC-VGG Reported results Augmentations

Figure 1. Comparison of the reported results in [18] and the results
we obtained with the same setup. We conducted additional ex-
periments which demonstrate the ineffectiveness of the proposed
approach in different setups. Each triangle marker denotes an ex-
periment where a single augmentation was modified.

data or eliminate it entirely [19, 49, 23]. Many approaches
rely on semi-supervised techniques which reduce the use of
annotations by utilising synthetic data or joint-architectures
[20, 50]. There are however methods which learn CNNs
entirely without ground truth supervision [30, 32].

In our study, we analyse one such work which performs
segmentation based on contrastive learning and statistical
information of the input. The paper by Ji et al. [18], which
we abbreviate as IIC, maximises the mutual information be-
tween 2 input images as an optimisation objective. The ap-
proach does not use any labels for training and relies purely
on the correlation between images. Typical of the field of
contrastive learning [3], IIC generates its second image by
applying a random transformation to the first image. Next,
a given CNN learns the feature representation between both
inputs. Further details of the method can be found in section
3.1.

1

The results reported in the paper suggest that the method
is capable of predicting segmentation with relatively high
accuracy for a self-supervised method. On this basis we
investigate the documented results and attempt to replicate
them on a different setup.

To this end, we propose a set of experiments that aim
to explain the performance of IIC when used in a different
setup. We conducted tests on a different dataset, architec-
ture, learning rate and image augmentations, as shown in
Figure 1. Extensive analysis suggests that the approach is
highly sensitive to the choice of inputs and suffers when
used with non-uniform datasets. When applied to data
which exhibits a wide variety of class instances, IIC per-
forms worse. Additionally, we show that due to design fea-
tures, deep networks can satisfy the loss function without
producing accurate predictions. Empirical results suggest
that the learning rate and augmentations have an impact
on the method, although not as significant as that of the
dataset.

2. Related Work

Semantic segmentation is the process of assigning a class
label to each pixel in a given image. In this section we
firstly present works on fully- or semi- supervised segmen-
tation. Then some methods which address self-supervised
techniques will be introduced.

Fully-supervised techniques Semantic segmentation has
seen considerable improvements with the introduction of
fully convolutional neural networks which disposed of the
fully-connected layers and replaced them with upscaling
ones [29]. In later years significant progress was made with
supervised approaches which relied on encoder-decoder ar-
chitectures and skip connections [1, 41, 36]. These consist
of a contracting and expansive path, where the first capture
features and reduce spatial information and the latter use the
feature maps as input to upscale them through deconvolu-
tion. He et al. [15] achieved further development by merg-
ing classification and segmentation models together in their
Mask R-CNN. Many works incorporate pyramid pooling
methods to extract features at different scales [27, 56, 40].
This allows to achieve better segmentation by using local
features along with global information. Several works have
explored the feasibility of dilated convolutions [28, 6, 5].
This approach allows for expanding the receptive field of
kernels without losing resolution. Huang et al. [16] ex-
perimented with attention modules which guide the model
into learning context specific features of an image. Mul-
tiple attention modules and global attention networks have
proven effective in single object predictions [12, 57, 43, 24].
DeepLab and other architectures [5, 34] have achieved im-
pressive results with Conditional Random Field (CRF) in

the domain of semantic segmentation. CRF is used as a
post-processing step to smooth object-based segmentation
predictions. Attempts have been made to combine segmen-
tation architectures along with adversarial models organ-
ised in a generator-discriminator arrangement [31, 7]. Tu
et al. [45] have taken a bottom-up approach at the task of
scene parsing. They propose an idea to divide the input
image in separate regions using a dedicated superpixel al-
gorithm. After that regular CNN feature maps and a custom
loss function are used to optimise the network. Couprie et
al. [10] have addressed the problem in a similar fashion
by processing RGB-D images through a Laplacian pyra-
mid. The Laplacian outputs along with superpixels of the
original image are fed through a CNN. Multitask architec-
tures have also been studied as potential improvements in
the domain. Mousavian et al. [34] have proposed a solu-
tion that predicts depth and segmentation together. PAD-
Net by Xu et al. [50] combines depth, contour and surface
normals prediction. The described methods rely on a com-
mon backbone architecture that extracts essential features
and then generates several intermediate auxiliary outputs to
aid scene parsing. Recent advancements have been made in
recurrent training techniques mainly used in video or frame
sequences [24, 47]. They utilise predictions of previous im-
ages together with labels to improve predictions of succeed-
ing inputs.

All approaches described here utilise ground truth as the
sole supervisory signal to optimise the employed architec-
ture. In contrast, the method which we are analysing, can
work without the need of labels.

Semi-supervised techniques These methods rely mostly
on self-supervision and at certain training intervals make
use of labels. Other techniques may produce several in-
termediate outputs where one or more are fully-supervised
while the others remain unsupervised or self-supervised. Jin
et al. [20] address the task by training a CNN to construct
future frames and labels of a video stream, given the cur-
rent frame. This is done in a GAN-like architecture. The
extracted spatio-temporal information is reused along with
generated and existing labels to parse frames. A similar ap-
proaches is used by Zhu et al. [59]. They expand an exist-
ing annotated database of samples by reconstructing video
frames and training a CNN on the dataset. Memory gates
and attention modules also find an application in the semi-
supervised setting. Xie et al. [52] have employed a com-
bination of depth-aware attention modules organised in a
recurrent structure to generate object segmentation. Depth
information is already known. The medical domain is an-
other field that makes extensive use of sparsely annotated
data. A number of studies [17, 58, 4] explore the potential
of contrastive learning in segmentation models to address
the issue of scarce training data. The use of multi-modal ar-
chitectures extends in the semi-supervised domain as well.

Many approaches employ models of different types together
to improve segmentation [44, 19]. These architectures com-
prise of depth, optical flow, camera location and motion-
mask predicting models. Their outputs are channeled to-
gether to produce a per-pixel labelling of the input. The
aggregation allows for training with fewer samples. Many
of the proposed solutions employed depth as an auxiliary
method to segmentation. However, several works have in-
troduced methods which utilise depth as a main supervisory
signal for this task [11, 48]. These approaches begin by
grouping depth pixels either with a dedicated clustering al-
gorithm such as k-means or acquiring a kernel probability
membership for a specific cluster. After that the obtained
clusters are processed to produce the individual objects. Al-
though, these approaches are not as precise as previously
discussed methods they do not require any labels.

The presented methods learn prior information on the
dataset either by reconstructing video frames, learning
salient object features or predicting auxiliary outputs. Sim-
ilarly, IIC builds upon this and learns the statistical occur-
rences of class instances from the dataset to optimise a CNN
model.

Self-supervised techniques Self-supervision in deep learn-
ing pertains to the kind of methods that generate supervi-
sory signal from data itself [51]. Most of these methods
create pretext tasks which allow the network to learn useful
representations while solving them. Depending on the type
of pretext task they can be split into in-painting a missing
part of an image [53, 39], colourisation of grey scale images
[55, 26], clustering [3, 18], adversarial methods [7, 14, 2]
and contrastive learning approaches [18, 8, 33]. There are
also tasks such solving jigsaw puzzles [37, 38] and video
motion segmentation [54]. These techniques for general
learning of input representations have been transferred to
the scene parsing and object segmentation domains. Lu et
al. [30] propose a multi-attention module that employs con-
trastive learning techniques between video frames to seg-
ment objects. A similar approach is adopted in [23]. An-
other study by Mahendran et al. [32] analyses the possi-
bility of employing the in-painting method for optical flow
prediction as a pretext task for segmentation. Several works
discuss the potential of learning an image prior based on few
input images [13, 46], which can be used to denoise and
segment images into foreground/background layers. The
method described in [49] concatenates two U-Nets [41],
which use an N-cut and a reconstruction loss to obtain a seg-
mentation and optimise the model. Kim et al. [22] exploit
an embedding module to produce feature vectors. These are
then normalised and clustered to produce object segmenta-
tion.

Unlike the described methods here, IIC does require
any pretext tasks to prepare the network, nor does it need
post-processing algorithms to obtain useful scene segmen-

tations.

3. Method
3.1. IIC background

IIC is a clustering based approach that learns invariant
image representations via contrastive learning. To learn
useful feature representations, contrastive approaches rely
on augmentation techniques of the input. In the context
of IIC, the objective function maximises the mutual infor-
mation between the feature embeddings of an input image
x and an augmented image x′, Eq. 2. If Φ(·) is a con-
volutional network with input x ∈ R3×H×W , the output
Φ(x) ∈ [0, 1]C×H×W , generated by a softmax layer, can be
regarded as a probability distribution of a random variable z
over C classes P (z = c|x) [18]. Considering an augmented
image x′, we can construct a C×C joint probability matrix
P of the outputs Φ(xi) and Φ(x′i), as shown in Eq. 1. More
specifically, an element at row c and column c′ represents
Pcc′ = P (z = c, z′ = c′), which is the joint probability of
Φ(xi) and Φ(x′i) for a given class C of the output tensors.

P =
1

n

n∑

i=1

Φ(xi) · Φ(x′i)
T (1)

Matrix P is the input to the objective function, shown
in Eq. 2. More concretely, Pcc′ is the joint probability
computed in Eq. 1. Pc and Pc′ are the marginal proba-
bilities obtained from P. They represent the independent
probability of class C as predicted from Φ(xi) and Φ(x′i).
When computing the mutual information, to avoid neutral-
ising Pcc′ and the product of Pc and Pc′ , P is symmetrised
along the diagonal using (P + P>)/2.

I(z, z′) = I(P) =
C∑

c=1

C∑

c′=1

Pcc′ · ln
Pcc′

Pc · Pc′
(2)

In terms of image segmentation, IIC operates on patches
u obtained from the input image. Each patch is trans-
formed via a set of geometric and photometric perturbations
g, which include colour transformations, affine transforma-
tions and flipping. Also, optional perturbations may include
translation transformations t ∈ T . Elaborating on Eq. 1,
to construct matrix P the output of the transformed patch
Φ(gxi) is inverted back to the original spatial frame by the
reverse transformation g−1, as shown in Eq. 3.

Pt =
1

n|G||Ω|
n∑

i=1

∑

g∈G

Convolution︷ ︸︸ ︷∑

u∈Ω

Φu(xi) · [g−1Φ(gxi)]
T
u+t (3)

Only the geometric transformations are negated by g−1,
while the photometric transformations such as colour aug-
mentations remain. Therefore the goal is to maximise the

information between Φu(xi) and [g−1Φ(gxi)]u+t over all
images i = 1, ..., n, patches u ∈ Ω and perturbations
g ∈ G.

In order to handle distractor classes in certain datasets
or noisy data, the authors employ an additional output 1x1
convolutional layer (head), along the main one. It is trained
in the same way as the main layer and uses the same loss
function. The key difference is that the main one predicts
the same number of classes as the ground truth, while the
auxiliary one predicts a larger number of classes. Its pur-
pose is to enhance the learned representation between class
instances.

Finally, the authors introduce 2 λ constants which weigh
the importance of the product of the marginals Pc and Pc′

with respect to the their joint probability Pcc′ = P (z =
c, z′ = c′).

3.2. Variation of IIC

In this section we propose our experimental setup whose
aim is to examine the poor generalisation of the IIC method
in other environments. We demonstrate this through 4 sets
of experiments, shown in Table 1. Their objective is to test
the method on a variety of different settings, which com-
prise: architecture, dataset, learning rate and augmentation
influence.

3.2.1 Dataset

The main dataset which is used to report performance is
Potsdam. In its original format it consists of 6 classes:
road, car, building, clutter, vegetation, tree. Consequently,
the authors generate Potsdam-3 by merging each of the 3
pairs. Since the majority of quantitative results in the paper
are produced from this dataset we decided to base our ex-
periments on it. To determine the importance of a dataset
empirically, we test on Cityscapes using an identical hyper-
parameter setup. The motivation behind this arises from
the characteristics of Potsdam-3. It has little variation in
class shapes - mostly rectangular regions with similar dis-
tribution and dynamic across all input images. On the other
hand, Cityscapes offers 19 classes which may have various
shapes, sizes, colours and locations across the inputs.

3.2.2 Architecture

Our assumption is that the architecture proposed by Ji et al.
has substantial influence on the reported results in [18]. For
this reason, we benchmark the results of IIC-VGG against
the well-known segmentation network U-Net, shown in Fig-
ure 2. In the version that we experimented with, U-Net has
close to 13.4M parameters, whereas IIC-VGG has 4.5M pa-
rameters. U-Net features a contracting and an expanding
path and at the bottleneck feature maps measure at 1

16 of
the original resolution. This allows U-Net to capture the

high-level semantics of the image. Furthermore, the model
implements skip-connections which recover low-level spa-
tial information from initial layers. In contrast, IIC-VGG
contains a single max pooling layer, which extracts features
at just half the original size, as shown in Figure 2. We be-
lieve that the higher complexity of U-Net allows it to ex-
ploit boundary effects, as suggested by Kayhan et al. [21].
These effects occur when padding is applied to a feature
map, which in turn allows a CNN to learn absolute loca-
tions of objects. This is a factor which has a detrimental
effect on the segmentation process in our use case. As a
consequence a given network can disregard input and pre-
dict random patterns across the input image which satisfy
the loss function.

3.2.3 Learning rate

The fully-unsupervised experiments conducted on
Potsdam-3 featured a learning rate of 1 × 10−5, and
1 × 10−6 for Potsdam-6, both of which are below the
standard value of 1 × 10−4. Additionally, training did not
include learning rate decay or growth. Also while testing,
we observed that the setup is sensitive to modifications
of the hyper-parameter. The low and unaltered value
led us to speculate that barely any weight optimisation
is done during training. For this reason we performed a
series of experiments with 3 learning rate magnitudes -
1×10−4, 1×10−5 and 1×10−6. To establish a benchmark
comparison the same 3 tests were conducted on U-Net.

3.2.4 Image augmentations

In the original training procedure the input images are mod-
ified by applying colour transformations and horizontal flip-
ping. Optional modifications include Sobel filtering and
affine transformations such as scaling, skewing or rotation.
Augmentation of inputs is a standard technique in con-
trastive learning which allows the network to learn high-
level representations from input [3]. To determine their in-
fluence on segmentation quality we trained U-Net with dif-
ferent augmentations enabled. We investigated the effect of
colour transformations by modifying brightness, contrast,
saturation and hue at a factor of 0.1, 0.2, 0.4 or none. Each
of these factors defines the allowed margin of transforma-
tion for the given colour characteristic. Further, we tested
with sobel filtering and flipping disabled. Full experimental
details can be found in Table 5.

4. Experimental results
In this section we provide details on the datasets that

were used to train the models as well as the evaluation met-
rics. Further, we describe how training is conducted and
afterwards we present empirical results on the discrepancy

Figure 2. Architectures Top: IIC-VGG by Ji et al. [18]. The net-
work is a simplified modification of VGG-16. It incorporates no
skip connections. Bottom: U-Net by Ronneberger et al. [41]. A
symmetric encoder-decoder architecture which implements grad-
ual upscaling of feature maps and skip connections to improve
low-level detail retrieval.

Architecture Test target

IIC-VGG [18] Datasets

U-Net [41] Architecture

IIC-VGG Learning rate
U-Net Learning rate

U-Net Augmentations

Table 1. Groups of experiments. These were designed with the
purpose of identifying key factors which are responsible for the
lower effectiveness of the objective function in different settings.

of the reported results in [18] and our findings.

4.1. Datasets

Cityscapes is large database of urban street scenes. The
dataset offers semantic, instance-wise and depth annota-
tions of over 5000 images. Additionally, it contains approx-
imately 20000 coarsely annotated images. The number of
classes are 30 and are divided into 8 distinctive categories.
The images were taken in 30 cities and capture a variety
of weather conditions and times of the day. The content
was originally recorded as video, however specific frames
were handpicked which contain dynamic objects and envi-
ronments.

ISPRS Potsdam is a dataset comprising of 38 high-
resolution satellite images of the city of Potsdam, Germany.
Each of the images has a resolution of 6000x6000 pixels.
The dataset provides semantic annotations grouped in 6 cat-

egories. Labels are available for only a part of the data as
the rest is used by the authors for test submission by other
researchers. The RGB images are also equipped with an in-
frared channel. The aerial footage is provided by the ISPRS
benchmark. [35].

4.2. Evaluation Metrics

In the paper [18] performance of the main approach and
baseline methods are measured in Mean Pixel Accuracy.
Naturally, accuracy is biased when input classes are imbal-
anced in training datasets. While this characteristic is not
present in Potsdam, it is highly pronounced in Cityscapes.
A large portion of all images is occupied by the classes sky
and road, albeit at different weather conditions, whereas
only some contain the class person. To address this issue we
also employed Intersection over Union (IoU), also known
as Jaccard index, to benchmark the setup. The metric over-
comes the issue of class imbalance by taking into account
the areas of overlap and union of predicted and ground truth
classes. The formula of IoU is shown in Eq. 4. We reported
IoU for every class at each validation epoch and then calcu-
lated an aggregated average value.

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B|+ |A ∩B| (4)

In the interest of producing unbiased results we also eval-
uated the predictions with class normalised accuracy. Let
ni be the total number of pixels in the image, ti be the to-
tal number of pixels per class and ci - number of correctly
predicted pixels per class. Instead of calculating ci/ni, we
report ci/ti. This modification mitigates the effect of im-
balanced classes when measuring performance.

4.3. Implementation Details

Architecture The models shown in Figure 2 were used in
training. To follow the original approach as closely as pos-
sible we implemented the auxiliary overclustering head, as
described in [18]. We denote the number of ground truth
channels as kgt and the output channels of the auxiliary
head as k. In training we set k = 3 × kgt, as suggested
by the authors. No further modifications were done to the
models.
Training When calculating the joint probability matrix of
the IIC method we kept the padding value of 10, as seen in
[18]. Additionally, the λ entropy coefficients were also set
to their default values of 1.0 and 1.5 for the overclustering
head and regular head, respectively. We trained all experi-
ments for 35 epochs with a batch size of 40. For the learning
rate we used a value of 1×10−4, except for the experiments
described in section 3.2.3. When examining the impact of
augmentations we employed the setup presented in Table 5,
while for the remaining experiments we used entry 5 from

Figure 3. Example segmentation results (fully self-supervised). First column: IIC-VGG results, Second column: U-Net results, Third
column: Cityscapes and Potsdam-3 labels, Fourth column: Input. As it can be seen, the segmentations by U-Net vaguely resemble the
input. Comparatively, IIC-VGG performs well on Potsdam-3, while on Cityscapes it focuses mainly on colour cues.

the same list. Regarding dataset preparation, the high res-
olution images from Potsdam-3 were scaled down by half
and cropped into smaller 200x200 patches. For training
we used 7200 samples, while testing and validation each
had 675. To gain a better perspective on the parsed outputs
from Potsdam-3, we merged together the patch predictions
from testing and validation, into the initial 3000x3000 in-
puts. Likewise, the training inputs from Cityscapes were
scaled down by half and cropped to 224x224. All exper-
iments were conducted on an NVIDIA Tesla V100-32GB.
The duration of training was approximately 120h.

4.4. Results

4.4.1 Dataset and architecture

Results We investigated the performance of IIC on a differ-
ent architecture and dataset. The results of the experiments
are gathered in Table 2. Below these we present a base-
line comparison of the same set of tests conducted on un-
trained models of each architecture. The applied augmenta-
tion setup is referenced from Table 5, setup 6. The results
which we produced with IIC-VGG on Potsdam are similar
with those reported by Ji et al. [18] for the same experiment.
However, when IIC-VGG is substituted with U-Net it is ev-
ident that performance drops almost by 20%. Furthermore,
when the same experimental setup is applied on Cityscapes

a drastic decrease in accuracy is registered by both net-
works. In terms of mIoU, U-Net has an advantage of 2%
against IIC-VGG, while the opposite can be noted when
comparing normalised accuracy, where IIC-VGG prevails.
Referring to the untrained models we can conclude that IIC
does optimise the networks to some extent, although the re-
sults gathered from Cityscapes are close to the baseline.

Analysis We suggest that the poor performance of both net-
works on Cityscapes is due to the diversity of the dataset.
At every batch IIC constructs a probability matrix of the
pixel memberships of every class which means that the
method benefits from a bigger batch size. Since the major-
ity of Potsdam images follow a similar structure it is easy
to capture the distribution of colours and shapes across the
dataset. On the other hand, Cityscapes scenes vary greatly
and even identical classes appear different. As a result the
method fails to generalise between instances of the same
class, e.g., a green and a red car observed from a different
viewpoint. We infer that IIC as a method which relies on
the frequency at which instances appear, expects a dataset
with a uniform class prior. This implies that the objective is
good at predicting simple, well represented, visually consis-
tent classes such as sky, road and vegetation, or in general
those that have little instance variation.

We attribute the loss of performance when using U-Net
to the fact that deep convolutional neural networks are capa-
ble of exploiting absolute spatial location of objects within
an image [21]. Modern CNNs achieve this by learning fil-
ters which are highly sensitive to specific locations using
boundary effects. Since the receptive field increases with
each successive filter this flaw can be exploited even away
from the borders of an image. An example is demonstrated
in Figure 4. The images were produced by passing a com-
pletely white image through each of the models. Nonethe-
less, both networks still make ”predictions” on the blank in-
put. The patterns that we can observe are actually padding
artefacts that have been detected by the models when pass-
ing through the convolutional layers. The predictions of the
shallow IIC-VGG are located mainly near the borders of the
image since the architecture comprises of 7 convolutional
layers. Additionally, the model features a single upscal-
ing layer. Conversely, the predictions that U-Net made can
reach significantly closer to the centre of the image. This
is caused by the higher number of convolutional layers - 19
and up-sampling layers - 4, that are part of the architecture.
As shown in the Figure 3, U-Net can largely disregard the
input image and still produce a prediction which contains
all desired classes. Evidence suggest that a translationally
equivariant network should not be able to generate such pat-
terns, so we believe that the boundary cues are exploited to
satisfy the loss function [21].

We conclude that the choice of dataset is among the most
important factors behind the performance of the IIC ap-
proach. The results demonstrate that datasets with a uni-
form distribution and similar class instances are optimal.
Second to that we place the design of the employed archi-
tecture. Performance on U-Net suggests that deep networks
can manipulate the flaws of the objective function to pro-
duce low grade predictions.

Figure 4. Boundary effect Left: IIC-VGG boundary effect. Right:
U-Net boundary effect. It is evident that U-Net is much more
likely to take advantage of the boundary effect.

4.4.2 Learning rate

Results The learning rate (LR) experiments were conducted
on both architectures using Cityscapes with identical aug-
mentation setups, Table 4. The trend seen in Table 2, where

Learning Augm. mIoU Normalised
Model Dataset rate setup (%) accuracy (%)

IIC-VGG Potsdam 1× 10−4 6 45.84 61.16
U-Net Potsdam 1× 10−4 6 26.59 41.17

IIC-VGG Cityscapes 1× 10−4 6 6.40 14.91
U-Net Cityscapes 1× 10−4 6 8.86 14.44

Untrained models

IIC-VGG Potsdam – – 15.39 33.44
U-Net Potsdam – – 17.10 32.81

IIC-VGG Cityscapes – – 3.97 9.38
U-Net Cityscapes – – 5.15 8.13

Table 2. We trained the U-Net and IIC-VGG under the same con-
ditions on two different datasets and obtained significantly lower
results on the second one. The difference in performance on
Cityscapes is 3 to 7 times lower than that on Potsdam.

results on Cityscapes are significantly lower, can be ob-
served here, as well. All mIoU results range between 4%
and 6%, with the exception of U-Net, at its highest learning
rate, which peaks at 8.9%. Also, at lower learning rates the
performance of U-Net and IIC-VGG is comparable to that
of the untrained models from Table 2.

Average training loss of last epoch

U-Net IIC-VGG

Learning
rate

Head
A

Head
B

Head
A

Head
B

1× 10−4 −1.90 −4.84 −1.54 −4.68

1× 10−5 −0.59 −3.30 −1.45 −4.57

1× 10−6 −0.18 −3.08 −1.07 −4.25

Table 3. Average training loss of the last epochs of each of the
learning rate experiments. Each model has 2 output layers marked
as A and B. Head A is the overclustering output layer. As the learn-
ing rate decreases the average loss at which the models converge
also follows the trend.

Analysis As suggested by the findings, the networks seem
to benefit from a higher learning rate (LR). When training
at low LR values, however, the models converge to degen-
erate solutions. When we examine the output at different
learning rates in Figure 5, we can see that the segmentations
at the lowest learning rate focus more on colour cues and
edges, while the predictions at the highest LR are smoother,
although arguably not more semantically aware. Look-

Figure 5. The results obtained at lower learning rates suggest that
both models focus on low-level features such as colours and edges.
With a learning rate of 1 × 10−6, we can see that U-Net erro-
neously segments the road in 2 classes along a light gradient. Con-
versely, when the learning rate increases the models converge to
solutions which can identify higher level features.

ing at the results of IIC-VGG, we can still observe over-
fragmentation of the classes at the highest LR, although not
as distinctly as with the lower LR. In spite of the slight im-
provement at LR of 1×10−4, the overall performance of ei-
ther network is exceptionally low and does not differ greatly
from an untrained network. Table 3 shows the average train-
ing loss of the learning rate experiments of their last epoch.
Naturally, we can observe that the models do not converge
to the same level with a lower learning rate, which can be
an explanation for the emphasis on low-level features. The
higher mIoU and Accuracy obtained from both untrained
models on Potsdam implies that the significance of the LR
value comes second to that of the dataset. This further sup-
ports the hypothesis that the choice of dataset is crucial to
the effectiveness of the approach.

The findings indicate that a higher learning rate does
have a positive impact on the approach as it guides the mod-

els to focus on higher-level features. Despite this, its signif-
icance is negligible in comparison with the dataset, as both
models exhibit poor performance regardless of the learning
rate.

Learning Augm. mIoU Normalised
Model Dataset rate setup (%) accuracy (%)

IIC-VGG Cityscapes 1× 10−4 6 6.40 14.91
IIC-VGG Cityscapes 1× 10−5 6 5.46 13.96
IIC-VGG Cityscapes 1× 10−6 6 5.44 13.53

U-Net Cityscapes 1× 10−4 6 8.86 14.44
U-Net Cityscapes 1× 10−5 6 4.85 9.92
U-Net Cityscapes 1× 10−6 6 5.49 9.38

Table 4. Results of experiments on the learning rate scale. De-
spite the better results at the highest learning rate, both networks
performed poorly on Cityscapes.

4.4.3 Image augmentations

Results The results of this analysis are shown in Table 5.
The experiments were split in 2 categories: evaluating influ-
ence of a Sobel operator and geometric transformations; and
evaluating colour modifications (hue, saturation, brightness
and contrast). We established a baseline experiment that did
not include any augmentation techniques. It is denoted by
5 under every perturbation in the aforementioned table. As
expected, it demonstrates a remarkably poor result of 3.45%
which is even below the score obtained from an untrained
model. The best performance was achieved when colour
transformation was the single applied augmentation at a fac-
tor of 0.1, scoring 9.27%. Similarly, we tested with both ge-
ometric transformations enabled, to determine if combined
together they enhance contrastive learning. The experiment
did not manage to surpass the performance of only colour
transformation and produced an mIoU of 8.74%. Addi-
tionally, we set up 2 experiments where the colour trans-
formation was tested along with flip and affine transforma-
tion separately. Each of the tests registered a slight decrease
in mIoU compared to using colour transformation by itself.
Lastly, we tested with a pre-processing step which applied
a Sobel operator to both input images. The purpose of the
experiment was to examine if edge detection helps to uni-
formly segment objects. Again, the results of this test did
not display any substantial improvement over previous aug-
mentation techniques.

In addition, we also analysed the impact of the colour
transformation scale on the ability of the network to recog-
nise different class instances. The results are presented in
Table 5, below the dashed line. We tested at three different
scales. Our analysis show an inverse correlation between
the colour scale and performance. The mIoU decreases as

Learning Colour Horizontal Affine mIoU Normalised Augmentation
No Model Dataset rate Sobel transformation flip transformation (%) accuracy(%) invariance (%)

1 U-Net Cityscapes 1× 10−4 5 0.1 D D 8.74 16.97 82.31
2 U-Net Cityscapes 1× 10−4 5 0.1 5 D 7.64 13.62 78.96
3 U-Net Cityscapes 1× 10−4 5 5 5 5 3.45 8.58 –
4 U-Net Cityscapes 1× 10−4 5 0.1 5 5 9.27 15.45 93.08
5 U-Net Cityscapes 1× 10−4 D 0.1 D 5 8.22 15.29 93.12

6 U-Net Cityscapes 1× 10−4 5 0.1 D 5 8.86 14.44 91.95
7 U-Net Cityscapes 1× 10−4 5 0.2 D 5 8.17 13.31 89.23
8 U-Net Cityscapes 1× 10−4 5 0.4 D 5 4.65 9.88 88.57

Table 5. Results of augmentation experiments. The highest score was achieved when only colour transformations were used in the augmen-
tation setup. The results suggest that although flipping and affine transformations contribute to contrastive learning they are not as effective
as colour augmentation.

the colour transformation becomes more pronounced.

Analysis The conducted experiments suggest that geomet-
ric transformations have an adverse effect on the contrastive
learning process. When flip or affine transformation are in-
cluded the results are consistently lower, albeit better than
no augmentations. We can observe that flip by itself per-
forms better than affine transformation by itself. When
combined together, the results improve slightly, but are still
below the expected. We hypothesise that once an image is
rotated or flipped the network struggles to recognise that
an object and its flipped version are the same entity. As a
result, the joint probability matrix P from Eq. 1 is not cal-
culated accurately which in turn hampers the ability to op-
timise the network optimally. In terms of the colour trans-
formation scale, we made a similar conclusion. With the in-
crease of colour augmentation, the network looses the abil-
ity to label pixels of different colours identically, despite
the fact that they are technically the same object. To anal-
yse these assumptions, we calculated an augmentation in-
variance score for each experiment in Table 5. The metric
reflects the accuracy between the predictions of an unaltered
input image and its augmented variant. The higher the value
is, the more robust the model is to the augmentations. The
obtained results, however, suggest that the network is in fact
invariant to transformations and this is not the root cause of
the discrepancy in the results.

Based on these findings, we claim that the IIC approach
relies heavily on colour cues to extract mutual information
between two samples. Ultimately, the use of geometric
perturbations is effective, although not as nearly as colour
transformations.

5. Discussion
The goal of our analysis was to determine the factors

that support or hinder the performance of the IIC approach.

Based on our findings, we outline a number of aspects
which could have an impact on the method.

Batch and Image size Fundamentally, IIC attempts to es-
timate a class distribution of the comprising classes at each
batch. While training, the batch size that we employed in all
of our experiments was set to 40. Taking into account the
nature of the algorithm, we believe that in certain use cases
IIC would benefit from a batch size that is several orders
of magnitude larger. Since Cityscapes offers a wide vari-
ety of road scenes, an input that includes all potential class
instances and class variations would be optimal. Further-
more, due to hardware limitations the networks are trained
on cropped patches which contain a small portion of the
original image. Considering that they are handled in a ran-
domised manner, this makes the network prone to lose con-
textual information of the input. As a result, these factors
contribute to worse performance on diverse datasets. Ac-
knowledging these findings, we believe that IIC would be
useful for applications and research which have access to
large computational power.

Lambda constant In terms of our experimental setup, we
set the λ values as constants, as described in section 3.1. We
reflect that further analysis could be done to fine-tune the
values when different datasets are being used. By default,
when using the auxiliary overclustering head, section 4.3,
λ equals 1, while when the regular head is used, λ is 1.5.
When predicting with the correct number of output classes,
a larger λ value decreases the mutual information. A larger
denominator value in

Pcc′

λPc · λPc′

reduces the overall value of the fraction. As a conse-
quence, distinct objects share considerably less similarity

and boundaries are more discernible. Therefore datasets
which contain more classes could benefit from an adjusted
λ value.

To support our findings we reference the work of Cho et
al. [9] who have also experimented with IIC and published
their results on Cityscapes. According to their reports, they
achieve an mIoU of 6.35% on the dataset, which largely
coincides with our results.

6. Conclusion

In this work we analysed the Invariant Information Clus-
tering method proposed by Ji et al. [18]. Its purpose is to
segment images by optimising mutual information between
image pairs. We present an experimental setup which evalu-
ates the influence of individual components of the algorithm
on the quality of segmentation. The purpose of our tests
is to analyse the choice of architecture, choice of dataset,
magnitude of the learning rate and importance of different
augmentations. Our findings suggest that IIC performs bet-
ter when used with shallow architectures which implement
fewer convolutional layers. In terms of input data, we re-
port that datasets which comprise of large, uniform class
instances are optimal for this use case. Furthermore, we in-
dicate that a larger learning rate influences the learning pro-
cess favourably, when presented with a suitable dataset. Fi-
nally, among image transformations the most effective tech-
nique to generate image pairs is colour transformation.

Based on our observations we claim that the method con-
structs a statistical prior solely on colours in order to opti-
mise the mutual information. In contrast, object features
such as shape, scale and pose are mostly ignored. As a re-
sult, the performance of a given CNN will suffer when the
dataset is not tailored to the IIC loss.

References
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation.
IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495, 2017. 2

[2] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins,
M. Botvinick, and A. Lerchner. Monet: Unsupervised scene decom-
position and representation. arXiv preprint arXiv:1901.11390, 2019.
3

[3] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 132–149,
2018. 1, 3, 4

[4] K. Chaitanya, E. Erdil, N. Karani, and E. Konukoglu. Contrastive
learning of global and local features for medical image segmentation
with limited annotations. arXiv preprint arXiv:2006.10511, 2020. 2

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE trans-
actions on pattern analysis and machine intelligence, 40(4):834–
848, 2017. 2

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for semantic im-

age segmentation. In Proceedings of the European conference on
computer vision (ECCV), pages 801–818, 2018. 2

[7] M. Chen, T. Artières, and L. Denoyer. Unsupervised object segmen-
tation by redrawing. arXiv preprint arXiv:1905.13539, 2019. 2, 3

[8] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple frame-
work for contrastive learning of visual representations. In Interna-
tional conference on machine learning, pages 1597–1607. PMLR,
2020. 3

[9] J. H. Cho, U. Mall, K. Bala, and B. Hariharan. Picie: Unsupervised
semantic segmentation using invariance and equivariance in cluster-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 16794–16804, 2021. 10

[10] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. Indoor se-
mantic segmentation using depth information. arXiv preprint
arXiv:1301.3572, 2013. 2

[11] C. Dal Mutto, P. Zanuttigh, G. M. Cortelazzo, and S. Mattoccia.
Scene segmentation assisted by stereo vision. In 2011 International
Conference on 3D Imaging, Modeling, Processing, Visualization and
Transmission, pages 57–64. IEEE, 2011. 3

[12] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu. Dual
attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3146–3154, 2019. 2

[13] Y. Gandelsman, A. Shocher, and M. Irani. ” double-dip”: Unsu-
pervised image decomposition via coupled deep-image-priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11026–11035, 2019. 3

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014. 3

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Pro-
ceedings of the IEEE international conference on computer vision,
pages 2961–2969, 2017. 2

[16] Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, and W. Liu. Ccnet:
Criss-cross attention for semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages
603–612, 2019. 2

[17] J. Iwasawa, Y. Hirano, and Y. Sugawara. Label-efficient multi-
task segmentation using contrastive learning. arXiv preprint
arXiv:2009.11160, 2020. 2

[18] X. Ji, J. F. Henriques, and A. Vedaldi. Invariant information cluster-
ing for unsupervised image classification and segmentation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9865–9874, 2019. 1, 3, 4, 5, 6, 10

[19] Y. Jiao, T. D. Tran, and G. Shi. Effiscene: Efficient per-pixel rigidity
inference for unsupervised joint learning of optical flow, depth, cam-
era pose and motion segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages
5538–5547, 2021. 1, 3

[20] X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen, J. Dong,
L. Liu, Z. Jie, et al. Video scene parsing with predictive feature
learning. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5580–5588, 2017. 1, 2

[21] O. S. Kayhan and J. C. v. Gemert. On translation invariance in cnns:
Convolutional layers can exploit absolute spatial location. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14274–14285, 2020. 4, 7

[22] W. Kim, A. Kanezaki, and M. Tanaka. Unsupervised learning of
image segmentation based on differentiable feature clustering. IEEE
Transactions on Image Processing, 29:8055–8068, 2020. 3

[23] Y. Kim, S. Choi, H. Lee, T. Kim, and C. Kim. Rpm-net: Robust
pixel-level matching networks for self-supervised video object seg-
mentation. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2057–2065, 2020. 1, 3

[24] S. Kong and C. C. Fowlkes. Recurrent scene parsing with perspective
understanding in the loop. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 956–965, 2018.
2

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105, 2012. 1

[26] G. Larsson, M. Maire, and G. Shakhnarovich. Learning represen-
tations for automatic colorization. In European conference on com-
puter vision, pages 577–593. Springer, 2016. 3

[27] H. Li, P. Xiong, J. An, and L. Wang. Pyramid attention network for
semantic segmentation. arXiv preprint arXiv:1805.10180, 2018. 2

[28] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei. Auto-deeplab: Hierarchical neural architecture search
for semantic image segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 82–
92, 2019. 2

[29] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440, 2015.
1, 2

[30] X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See
more, know more: Unsupervised video object segmentation with co-
attention siamese networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 3623–
3632, 2019. 1, 3

[31] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic segmen-
tation using adversarial networks. arXiv preprint arXiv:1611.08408,
2016. 2

[32] A. Mahendran, J. Thewlis, and A. Vedaldi. Self-supervised segmen-
tation by grouping optical-flow. In Proceedings of the European Con-
ference on Computer Vision (ECCV) Workshops, pages 0–0, 2018. 1,
3

[33] I. Misra and L. v. d. Maaten. Self-supervised learning of pretext-
invariant representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 6707–
6717, 2020. 3

[34] A. Mousavian, H. Pirsiavash, and J. Košecká. Joint semantic seg-
mentation and depth estimation with deep convolutional networks.
In 2016 Fourth International Conference on 3D Vision (3DV), pages
611–619. IEEE, 2016. 2

[35] F. Nex, F. Remondino, M. Gerke, H.-J. Przybilla, M. Bäumker, and
A. Zurhorst. Isprs benchmark for multi-platform photogrammetry.
ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Infor-
mation Sciences, 2, 2015. 5

[36] H. Noh, S. Hong, and B. Han. Learning deconvolution network for
semantic segmentation. In Proceedings of the IEEE international
conference on computer vision, pages 1520–1528, 2015. 2

[37] M. Noroozi and P. Favaro. Unsupervised learning of visual repre-
sentations by solving jigsaw puzzles. In European conference on
computer vision, pages 69–84. Springer, 2016. 3

[38] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash. Boosting
self-supervised learning via knowledge transfer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pages 9359–9367, 2018. 3

[39] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros.
Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 2536–2544, 2016. 3

[40] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun. Large kernel matters–
improve semantic segmentation by global convolutional network. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4353–4361, 2017. 2

[41] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Confer-
ence on Medical image computing and computer-assisted interven-
tion, pages 234–241. Springer, 2015. 2, 3, 5

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014. 1

[43] P. Tokmakov, K. Alahari, and C. Schmid. Learning video object
segmentation with visual memory. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4481–4490, 2017.
2

[44] F. Tosi, F. Aleotti, P. Z. Ramirez, M. Poggi, S. Salti, L. D. Stefano,
and S. Mattoccia. Distilled semantics for comprehensive scene un-
derstanding from videos. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 4654–
4665, 2020. 3

[45] W.-C. Tu, M.-Y. Liu, V. Jampani, D. Sun, S.-Y. Chien, M.-H. Yang,
and J. Kautz. Learning superpixels with segmentation-aware affinity
loss. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 568–576, 2018. 2

[46] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9446–9454, 2018. 3

[47] C. Ventura, M. Bellver, A. Girbau, A. Salvador, F. Marques, and
X. Giro-i Nieto. Rvos: End-to-end recurrent network for video ob-
ject segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5277–5286, 2019.
2

[48] D. Weikersdorfer, A. Schick, and D. Cremers. Depth-adaptive su-
pervoxels for rgb-d video segmentation. In 2013 IEEE International
Conference on Image Processing, pages 2708–2712. IEEE, 2013. 3

[49] X. Xia and B. Kulis. W-net: A deep model for fully unsupervised
image segmentation. arXiv preprint arXiv:1711.08506, 2017. 1, 3

[50] D. Xu, W. Ouyang, X. Wang, and N. Sebe. Pad-net: Multi-tasks
guided prediction-and-distillation network for simultaneous depth
estimation and scene parsing. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 675–684,
2018. 1, 2

[51] G. Xu, Z. Liu, X. Li, and C. C. Loy. Knowledge distillation meets
self-supervision. In European Conference on Computer Vision, pages
588–604. Springer, 2020. 3

[52] H. X. Y. H. A. Xu and J. L. W. Sun. Depth-aware space-time memory
network for video object segmentation. DAVIS challenge on video
object segmentation, 2020. 2

[53] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Generative
image inpainting with contextual attention. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
5505–5514, 2018. 3

[54] X. Zhan, X. Pan, Z. Liu, D. Lin, and C. C. Loy. Self-supervised
learning via conditional motion propagation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 1881–1889, 2019. 3

[55] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In
European conference on computer vision, pages 649–666. Springer,
2016. 3

[56] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2881–2890, 2017. 2

[57] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia. Psanet:
Point-wise spatial attention network for scene parsing. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages
267–283, 2018. 2

[58] X. Zhao, R. Vemulapalli, P. Mansfield, B. Gong, B. Green,
L. Shapira, and Y. Wu. Contrastive learning for label-efficient se-
mantic segmentation. arXiv preprint arXiv:2012.06985, 2020. 2

[59] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and
B. Catanzaro. Improving semantic segmentation via video propa-
gation and label relaxation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 8856–
8865, 2019. 2

2
Introduction

Image segmentation is the process of dividing an image into disparate regions based on object colour, se-
mantics or instance. In this procedure, every pixel of an image is given a label either on the basis of its colour
or the object that it belongs to. Being a low-level classification process, the spatial location of the entire scene,
captured in a given image has vital importance to the success of the task, as opposed to object detection or
classification. Until the emergence of deep learning, the computer vision field was dominated by traditional
machine learning algorithms. These included edge detection [2], super-pixels [1, 7], and clustering [3, 23],
among others. The effectiveness of the most prevalent algorithms, such as SIFT [5] and HOG [6] which em-
ployed handcrafted features, greatly depended on domain experts to construct a reliable representation of the
training data. The advent of AlexNet [13] transformed the computer vision field and shifted the focus of re-
search to convolutional neural networks, or CNNs in short. Unlike handcrafted approaches, CNN models do
not require additional human intervention, provided that they are supplied with sufficient annotated data.
This factor and the unparalleled performance of CNNs contributed to their rapid expansion and increased
interest from the research community. Semantic segmentation as a subfield of deep learning has critically
influenced academic dialogue in recent years due to the outstanding performance of fully-convolutional net-
works [14, 16]. This type of architecture disposes of fully-connected layers, and instead comprises solely of
convolutional filters. The common encoder-decoder network arrangement has become a standard in the
field and has been implemented by many successful segmentation networks such as U-Net [17], SegNet [4],
FastFCN [21] and Mask R-CNN [10]. This structure allows to learn high level image features by downsampling
the spatial resolution of the input and then upsampling to produce a full resolution label map. This approach
introduces a natural bottleneck to the architecture which efficiently stores the most prominent characteristic
of the image. Image segmentation has found application most notably in the domains of autonomous driving
[8, 22] and medical image diagnostics [15, 24]

2.1. Motivation
Despite the revolutionary success of deep learning, the excelled performance comes at a cost. To reliably
train a model, an adequately large and rich dataset is required. Although, the development of CNNs gave rise
to a substantial increase in data collection, the generation of a training dataset remains the largest obstacle
to achieving high performance in a given task. Since acquiring and annotating data is a time consuming
process, discussions regarding alternative methods for training have gained considerable momentum. The
emphasis of this effort has been on reducing the required amount of training data or entirely eliminating
its need. This has led to the emergence of two main fields of network optimisation, namely: supervised
and unsupervised/semi-supervised approaches. Exemplary works from the supervised domain which aim to
reduce the use of labels use a mixture of synthetic and real data to train networks [18, 20]. In this study we
turn our attention particularly to unsupervised segmentation. By definition, the term unsupervised learning
refers to a type of machine learning where the algorithm is not provided with labels while learning [11]. As
a result, algorithms of this type identify patterns and occurrences in a given dataset autonomously. In the
field of neural networks, examples of unsupervised approaches include autoencoders [19] and generative
adversarial networks (GANs) [9].

The investigation of Ji et al. [12], which we analyse in detail in our study, is part of the unsupervised

15

16 Bibliography

representation-learning domain. Their method claims to be capable of performing semantic segmentation
without requiring any pre-training or supervision. The approach learns to segment images by maximising the
mutual information between an image and its augmented variant. In the current study, the augmentations
consist of colour and geometric transformations. The authors argue that the algorithm can achieve impres-
sive results without any supervision on satellite image segmentation. For this reason, we decided to replicate
the experiments on a variety of different environments and hyper-parameters to pinpoint the key reasons
behind its performance and identify any potential shortcomings.

2.2. Research question
We define the main research question as follows:

What are the generalisation and robustness capabilities of the Invariant Information Clustering method
for semantic segmentation?

and address it by investigating these topics in particular:

Q1. What is the influence of the employed architecture?

Q2. How important is the choice of dataset?

Q3. How significant is the role of the learning rate in the optimisation of the network?

Q4. What is the most effective image transformation applied on the second image?

In this work, the authors employ a shallow neural network, hence the goal of the first question is to determine
if deep segmentation architectures of the encoder-decoder type have any effect on the performance. Next,
we analyse whether training on a dataset of urban street scenes would yield comparable results to those
achieved on the satellite images, as reported in the paper. Further, the third question concerns the impact of
the learning rate, since the one used in the original study is comparatively low. Finally, we address the use of
image transformations and determine their effectiveness.

2.3. Overview
The following chapters will provide background information on the subjects that appertain to the main topic
of the paper. Chapter 3 will introduce the basics of Deep Learning and the main building blocks of a con-
volutional neural network. Next, Chapter 4 will elaborate further into segmentation architectures and the
principle behind their operation. Lastly, Chapter 5 will explain the notion behind representation and con-
trastive learning.

Bibliography
[1] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Süsstrunk, S. (2012). Slic superpixels compared

to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence,
34(11):2274–2282.

[2] Al-Amri, S. S., Kalyankar, N., and Khamitkar, S. (2010). Image segmentation by using edge detection.
International journal on computer science and engineering, 2(3):804–807.

[3] Ali, M. A., Dooley, L. S., and Karmakar, G. C. (2006). Object based image segmentation using fuzzy clus-
tering. In 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol-
ume 2, pages II–II. IEEE.

[4] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495.

[5] Burger, W. and Burge, M. J. (2016). Scale-invariant feature transform (sift). In Digital Image Processing,
pages 609–664. Springer.

Bibliography 17

[6] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), volume 1, pages 886–
893. Ieee.

[7] Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. Interna-
tional journal of computer vision, 59(2):167–181.

[8] Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., and Diet-
mayer, K. (2020). Deep multi-modal object detection and semantic segmentation for autonomous driving:
Datasets, methods, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(3):1341–
1360.

[9] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

[10] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969.

[11] Hinton, G. E., Sejnowski, T. J., et al. (1999). Unsupervised learning: foundations of neural computation.
MIT press.

[12] Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant information clustering for unsupervised image
classification and segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9865–9874.

[13] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25:1097–1105.

[14] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440.

[15] Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-net: Fully convolutional neural networks for vol-
umetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV), pages
565–571. IEEE.

[16] Papandreou, G., Chen, L.-C., Murphy, K. P., and Yuille, A. L. (2015). Weakly-and semi-supervised learning
of a deep convolutional network for semantic image segmentation. In Proceedings of the IEEE international
conference on computer vision, pages 1742–1750.

[17] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pages 234–241. Springer.

[18] Sankaranarayanan, S., Balaji, Y., Jain, A., Lim, S. N., and Chellappa, R. (2018). Learning from synthetic
data: Addressing domain shift for semantic segmentation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3752–3761.

[19] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61:85–117.

[20] Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon,
S., and Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the reality gap by do-
main randomization. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 969–977.

[21] Wu, H., Zhang, J., Huang, K., Liang, K., and Yu, Y. (2019). Fastfcn: Rethinking dilated convolution in the
backbone for semantic segmentation. arXiv preprint arXiv:1903.11816.

[22] Zhang, Z., Fidler, S., and Urtasun, R. (2016). Instance-level segmentation for autonomous driving with
deep densely connected mrfs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 669–677.

[23] Zheng, X., Lei, Q., Yao, R., Gong, Y., and Yin, Q. (2018). Image segmentation based on adaptive k-means
algorithm. EURASIP Journal on Image and Video Processing, 2018(1):1–10.

18 Bibliography

[24] Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2018). Unet++: A nested u-net architecture
for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for
clinical decision support, pages 3–11. Springer.

3
Foundations of Deep Learning

Deep learning is a subfield of machine learning that draws inspiration from the structure of the neuron cell
found in the brain. Algorithms of this type are fundamentally mathematical models which attempt to sim-
ulate processes that occur in the human brain. The models comprise of multiple layers of artificial neurons
linked together, hence where the origin of the term Artificial Neural Networks (ANN) is derived from. Al-
though, a network with a single layer is capable of making predictions, additional layers can improve accuracy
and generalisation.

3.1. Neural Networks
This section will introduce the general theory behind conventional neural networks and their origins.

3.1.1. Perceptron
A perceptron is the building block of a neural network. It represents a simplified model of a brain neuron.
Figure 3.1a illustrates a high-level diagram of the biological unit and Figure 3.1b its artificial counterpart. In
the image on the left, we can see the general components of a neuron, with dendrites that receive signals, the
cell body that processes input and the axon which transmits the impulse. A perceptron attempts to replicate
this functionality by having an input component, processing phase and lastly an activation phase. Similar to
the biological neuron, the perceptron processes the input and under the right conditions triggers a signal. The
mathematical expression in Eq. 3.1 describes the operation within the perceptron. A weighted summation is
performed between the product of vector input xi and weights wi , which afterwards is corrected with a bias
term b.

a j =
n∑

i=1
xi wi +b (3.1)

Defined explicitly, the perceptron is a binary classification algorithm (predicts 2 values), which maps an input
x to a resulting value f (x). To extend the prediction capability of the perceptron beyond linearly separable
patterns, activation functions are employed to allow non-linearity to be learnt. These take as input the result
of Eq. 3.1, as is shown in Figure 3.1b. Common choices for activation functions are ReLu [29] and Sigmoid
[30].

3.1.2. Multilayer perceptron
Figure 3.2a shows a diagram of a synapse, which is where transmission of electrical impulses happens be-
tween two nerve cells. As described before, signals travel in the neuron from the dendrites through the axon
to reach the terminal axon. At this site the neuron is attached to the dendrites of another neuron cell. This
chaining creates a network of millions of nerve cells which communicate together and exchange impulses.
Equivalently, these processes are modelled in ANNs in smaller scales where neurons are structured together
in multiple interconnected layers. The neurons between two adjacent layers are fully connected via weighted
nodes, as illustrated in Figure 3.2b. As shown, a network of such type includes three main components: an
input layer, a hidden layer(s) and an output layer. The input layer accepts numerically represented data that
can be processed by the following layers. Hidden layers are positioned between the input and output layers

19

20 3. Foundations of Deep Learning

Figure 3.1: Comparison of a biological neuron and an artificial neuron: a) biological neuron; b) model of an artificial neuron [28]

and are responsible for expanding the capacity of the network. The same flow of steps is followed as with a
single perceptron. The output layer is where the final result is obtained. In most cases to obtain a prediction,
we need a probability distribution derived from the outputs of the final layer. It is usually computed by a

softmax function, expressed by the following formula: fi (x) = exp(xi)∑
j exp(xi) . The diagram in Figure 3.2b is an ex-

ample of a simple feed forward network, which comprises of 2 hidden layers and 2 outputs nodes. Networks
of this type formulate a combination of multiple approximation functions f n(f n−1(f n−2(.. f 1(x)))), where f n

corresponds to the first layer and f n to the n-th layer of the ANN [25]. This factor renders them suitable for
tasks which are difficult or impossible to compute with an exact mathematical solution.

Figure 3.2: Comparison of a biological synapse a) and an artificial neural network b) [28]

3.1.3. Weight optimisation
In order to produce correct output when given specific input, ANNs undergo a procedure called "training".
It refers to the tuning of the weights w and biases b of all neurons comprising the network. Learning of those
parameters happens after each piece of data is processed, such that the margin of error between the output
an expected result is minimised. Loss functions are used to measure the discrepancy between the outcome
ŷi and the truth value yi . Often in neural networks two types of loss functions are used:

MSE = 1

n

n∑
i=1

(yi − ŷi)2 (3.2) Cr oss entr opy =− 1

n

n∑
i=1

yi · l og (ŷi) (3.3)

Updating the weights is performed by computing the gradient of the chosen loss function with respect to each
weight and bias of the network. Their values are tuned using gradient descent and the process is commonly
referred to as backpropagation. Weights adjustment begins at the output layer and is propagated to the initial
layers following the derivative chain rule. Training is conducted iteratively with small portions of the available
data which are called mini batches. A full iteration over all mini batches is known as an epoch. Training
usually requires a few dozen epochs.

3.2. Convolutional Neural Networks 21

3.2. Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a class of ANNs which are commonly used in image analysis. They
differ from standard neural networks in several key aspects with regards to vision applications. Firstly, in
ANNs, the number of trainable parameters increase significantly with an increase in image size. As a result,
their application in vision tasks is severely limited due to low scalability. Secondly, since the inputs to a stan-
dard ANN are fed in the form of a vector, the spatial features of an image are lost. The term spatial features
refers to the arrangement of pixels in a given image. Additionally, CNNs employ a more advanced approach
when analysing an image which allows to reuse weights for different locations of the same image. Finally, they
utilise pooling layers (a.k.a. subsampling) which reduce the dimensions of the input by extracting the most
significant information. These factors contribute to making CNNs more resource optimised and powerful
predictors than ANNs in the vision domain. In the following section we will describe the basics of convolu-
tional neural networks and their application in computer vision.

3.2.1. Convolution
At the core of CNNs lie convolutional layers comprised of filters which perform a convolutional function over
some input matrix, hence the name of the layer. Specifically, the main advantage of a convolution layer is
instead of having a weight for each input, there is a set of weights known as kernels or filters which is reused
throughout the input and moves around the input matrix to compute outputs [32]. The process is shown in
Figure 3.3, where the kernel is typically presented as a small matrix of size Wr×c , for an input matrix V .

1

1

1 1

0

1

1

0

0

0

1

0

1

1

0

1

1

1
0 1

1 1

Kernel (W)

Input matrix (V)
Output matrix (Z)

2

3

2

1

1

1

3

1

3

2

Figure 3.3: Convolution of a 2 × 2 Kernel by a 3 × 6 Input Matrix. [32]

Formally, the convolution function is given by:

zi , j =
r∑

k=1

c∑
l=1

wk,l vi+k−1, j+l−1 (3.4)

Each element from the output matrix is a summation of the one-by-one multiplications of the kernel ele-
ments into r × c window from the input matrix V . If we observe the red square in the input matrix and the
corresponding element in the resulting matrix, we can see that the magnitude of each element directly corre-
sponds to the resemblance of the kernel to the convolved input window. Since the window highlighted in red
exactly matches the kernel we get a high activation value. In the computer vision domain, the output matrix
is usually called a feature map, as it contains filtered image features and their relative locations within the im-
age. To scan the entire image a filter slides across all cells of the input matrix in a predetermined step called
stride. It is applied both horizontally and vertically. Convolutional networks typically have multiple filters
stacked in banks in different layers. Filters from initial layers are capable of extracting low-level features such
as edges, corners and colour combinations. As we progress deeper in the network, filters start to recognise
higher-level features which are parts of entire objects such as eyes and feathers, if we are analysing a bird,
for instance. Towards the output of the network, filters are capable of identifying complete objects such as
bicycles, cars, dogs or cats. An example of the filtering process is shown in Figure 3.4.

3.2.2. Pooling
The area that a filter in a given layer can cover is known as receptive field. As previously described the receptive
field of filters gradually increases as we go deeper in the network. This property of CNNs is additionally
enhanced by special pooling layers. Their purpose is to decrease the spatial resolution of outputs while still
retaining important features. Similar to convolution filters, a max-pooling function employs an r × c sliding
window that traverses input features [34]. While moving, it calculates summary statistics of the scanned
elements and outputs the maximum value of that neighbourhood. The stride of pooling filters determines

22 3. Foundations of Deep Learning

the extent of dimension reduction. Unlike convolution filters, the stride of pooling filters should not overlap
with the corresponding r ×c window from the input matrix, since this would distort the calculation. Likewise,
an average-pooling function takes the average of the output elements, instead of the maximum value. Figure
3.4 illustrates the effect of a max-pooling function applied to a feature map.

1

1

2

3

2

Horizontal Kernel

Input Image Output Image

3

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

1

2

3

4

5

6

7

8 =
9

1 0

1 1

1 2

1 3

1 4

1 5

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5 Output

M ax Pooling

Figure 3.4: Example of extracting horizontal lines with convolution and applying max-pooling to reduce the output size [32]. Values in
the output image, coloured in white indicate a higher activation, confirming that a filter has detected a feature.

3.2.3. Preventing overfitting
Most CNNs are trained under the supervision of ground truth labels. A general definition of any machine
learning method is stated as approximating a target function f (·) that maps input variables X to an output
variable Y . Overfitting refers to approximating target function f (·) exactly to the training data. As a con-
sequence, target function f (·) cannot generalise well to unseen data. In other words, a given network will
perform poorly when presented with data it was not trained on. The described event can occur when a CNN
is trained on too few training samples. Networks with significantly more layers are prone to overfitting when
trained on a small training set. The following sections will discuss standard techniques which prevent over-
fitting.

3.2.3.1 Dropout

Ensembles of neural networks with different model configurations are known to tackle overfitting well [33].
Having different architectures allows each model to learn a specific characteristic of the dataset. However,
maintaining and training a set of networks is computationally expensive and time consuming. Instead, a
single model can be used to emulate this behaviour by randomly choosing nodes from each layer and remov-
ing them during training. The technique is called dropout and has proven to be a very effective and cheap
solution against overfitting. To implement dropout, a new hyper-parameter is added that defines the proba-
bility at which nodes from a given layer will be omitted while training. A typical value for intermediate layers
is p(0.5) , while p(0.8) is used for final layers. Dropout is not used when predicting. An illustration of the
procedure on fully-connected layers in shown in Figure 3.5.

3.2.3.2 Weight regularisation

When training a neural network we learn the weights of the network. As training progresses they become
more specialised to the input. As a result, weights grow in value to accommodate any variations and pecu-
liarities seen in the dataset. Although, the model is well adapted to the specific dataset, the magnitude of
the weights may make the network unstable, which implies that small differences in the input can cause ma-
jor changes in the output. This leads to poor generalisation and knowledge transfer. A technique known as
weight regularisation is introduced to overcome this issue. Weight regularisation is used to encourage the
network to keep weight values small which helps the model discard irrelevant or too specific details about
the training examples. It is implemented by adding an additional term to the loss function, which represents
the current size of all weights. Since the objective is to minimise the loss function, a larger weight term will
penalise the network more. The end result will be a more generic and stable network. There exist two ap-
proaches of calculating the size of all parameters, namely: L1 (Lasso regression) and L2 (Euclidean Norm)
[27].

3.2. Convolutional Neural Networks 23

Figure 3.5: Dropout applied on fully-connected layers [33].

3.2.3.3 Early stopping

A common challenge when training a neural network is to determine the number of training epochs, or oth-
erwise stated – the duration of training. Training for too long will overfit the model to the dataset, while
not enough training may underfit it. Early stopping is a commonly used technique to address this question.
Usually, a dedicated validation set is employed alongside the training set, which is not used in training and
its purpose is to evaluate the performance on unseen examples. While training the loss on both datasets is
monitored. Typically, when the validation loss begins to diverge, it is the best moment to suspend training.
Example loss curves which show the process are shown in Figure 3.6.

Figure 3.6: Timeline showing best moment to suspend training [31].

3.2.4. Batch normalisation
Upon creation, a neural network will have all its weights randomly initialised. This can be challenging for
training because after each batch the inputs from previous layers can change dramatically. Therefore later
layers may encounter difficulties adapting to the ever changing input. In backpropagation, when updating
the weights of a layer it is assumed that the outputs of the previous layer follow a certain distribution. This,
however, is not case since every mini-batch and its feature map outputs are likely to vary significantly [26].

24 Bibliography

Batch normalisation operates by computing the mean and variance of each batch, following Eq. 3.5. The final
normalised input of layer k is computed by Eq. 3.6, where γ and β are learnable parameters which control
the scale and shift of the new distribution.

x̂(k) = x(k) −E [x(k)]√
V ar [x(k)]

(3.5)
y (k) = γx̂(k) +β (3.6)

This ensures that the distribution which a subsequent layer expects will not differ substantially, thus sta-
bilising the training process. This reduces the required number of epochs to train a model sufficiently and
mitigates fluctuations of the loss. Besides these benefits, batch normalisation also has a regularisation effect
on training.

Bibliography
[25] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.

deeplearningbook.org.

[26] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456. PMLR.

[27] Krogh, A. and Hertz, J. A. (1992). A simple weight decay can improve generalization. In Advances in
neural information processing systems, pages 950–957.

[28] Meng, Z., Hu, Y., and Ancey, C. (2020). Using a data driven approach to predict waves generated by
gravity driven mass flows. Water, 12(2):600.

[29] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Icml.

[30] Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation functions: Comparison of
trends in practice and research for deep learning. arXiv preprint arXiv:1811.03378.

[31] Santos, J. M. F. d. et al. (2007). Data classification with neural networks and entropic criteria.

[32] Sharda, R., Delen, D., and Turban, E. (2020). Analytics, Data Science, & Artificial Intelligence. Pearson
Education, Limited.

[33] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–
1958.

[34] Zhou, Y.-T., Chellappa, R., Vaid, A., and Jenkins, B. K. (1988). Image restoration using a neural network.
IEEE transactions on acoustics, speech, and signal processing, 36(7):1141–1151.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

4
Foundations of Image segmentation

The introduction of CNNs in the domain of Image segmentation has improved overall quality and speed of
prediction. In this chapter we will explain the knowledge distillation that happens in a neural network and
present various segmentation methods.

4.1. Segmentation in Deep Learning
A very common architecture in the segmentation field is the encoder-decoder type. Unlike standard CNNs
which implement several fully-connected layers at the output, the architecture in question does not employ
any. Since the use of fully-connected layers requires feature maps to be flattened to a 1-D vector, the spatial
information which the maps contain is lost. For this reason the fully-connected layers are discarded and
replaced by more convolutional layers. An illustration of such a network is displayed in Figure 4.1.

Figure 4.1: Example of an encoder-decoder CNN used for segmentation [35].

The output of the last layer of the encoder is referred to as the bottleneck. It represents a low-resolution tensor
containing the highest level information encoded in the feature maps. An example of the output of VGG16’s
fifth convolutional layer [53] is shown in Figure 4.2. As we can see, the outputs do not resemble a meaningful
image. Instead, the contents of each box indicate the presence of a high-level feature. Brighter colours denote
a higher confidence, whereas dark areas suggest that a specific feature is not detected. The role of the decoder
is to "decipher" the contents of each box and reconstruct the input image according to a given label. Gradually
feature maps are upscaled and each subsequent convolutional layer learns how to decode the outputs of the
previous layer. Upsampling is achieved through special layers which use bilinear interpolation or transposed
convolutions [38]. The entire process of rebuilding the feature maps to an image segmentation is guided by
the labels.

25

26 4. Foundations of Image segmentation

Figure 4.2: Low resolution feature maps produced by the 5th layer of VGG16

4.2. Overview of segmentation architectures
The following sections will present the most prominent approaches to image segmentation in the deep learn-
ing domain.

4.2.1. Pyramid and Multi-Scale architectures
Pyramid architectures propose the use of multi-scale convolution to capture objects of different size. One of
the fundamental works in the field is Feature Pyramid Network (FPN) by Liu et al. [49], Figure 4.3. Feature
maps are generated at different scales and are subsequently linked together in order to share feature cues.
Each stage is processed by a 3×3 filter to obtain output. Another approach is the Pyramid Scene Parsing Net
(PSPNet) [56], Figure 4.4 which focuses on global information. The authors use Pyramid Pooling on extracted
feature maps to detect patterns at different scales. Further pooling at four different sizes is performed inside
the pyramid and each result is processed by a 1x1 convolutional layer. The outputs of the pyramid are up-
scaled and concatenated with early feature maps to retain low-level details. Anoher work named RefineNet
[48] introduces a multi path network which enhances feature maps from initial layers through residual blocks
to obtain high-resolution segmentation mappings. Feature maps are processed at four different scales with
the purpose of capturing details with different proportions. Each refinement stage is supplied with pooling
and residual connections from previous stages.

Figure 4.3: Feature Pyramid Network architecture [49].
Each stage is divided into 5×5 regions which are pro-
cessed by an MLP.

Figure 4.4: Pyramid Scene Parsing Network [56]. Pyra-
mid Pooling is applied to the feature map of a CNN.
All outputs are concatenated and segmented by a final
convolutional layer.

4.2.2. Atrous convolution
The literal translation of the term "atrous" is derived from the french "à trous", meaning "with holes". It refers
to the concept of dilated convolution which introduces spacing inside filter weights with the purpose of ex-
panding their receptive field. Figure 4.5 illustrates a comparison between atrous and standard convolutions.
Dilated filters impose no additional computational overhead and are a preferred choice for real-time seg-

4.2. Overview of segmentation architectures 27

mentation. As a result a dilated 3×3 filter will cover the same area as a 5×5 filter, while using only 9 weights
instead of 25.

Figure 4.5: Standard convolutions (red) vs Atrous con-
volution (green) [39].

Figure 4.6: DeepLabv1 architecture [36] . Images are
processed by atrous filters and then upscaled using bi-
linear interpolation. Finally, CRF is used to refine the
segmentation output.

DeepLab1 [36], Figure 4.6 and DeepLab2 [37] are the most widely known solutions to use such filtering.
Segmentation models are usually required to generate full resolution outputs. To achieve this the modifica-
tion was employed with the purpose of addressing the issue of resolution reduction that occurs with pooling
and strided convolution. Furthermore, atrous convolutions are more efficient at capturing contextual infor-
mation due to the larger receptive field, which otherwise could only be achieved through larger and more
computationally expensive filters. Additionally, the DeepLab family of networks employs pyramid pooling
features and CRFs [46] for better feature extraction and boundary definition.

4.2.3. R-CNN architectures
R-CNN based models [40, 41, 52] have become popular due to their success in object detection and classi-
fication tasks. These networks use a dedicated region proposal sub-network to propose bounding box can-
didates. The proposals are then processed by the backbone of the architecture to finalise the bounding box
coordinates and predict the contained class, as shown in Figure 4.7.

Figure 4.7: Faster R-CNN architecture [52]. Figure 4.8: Mask R-CNN architecture [43].

The continuation of these papers, Mask R-CNN [43], Figure 4.8 includes object instance segmentation func-
tionality. The model is capable of detecting, classifying and segmenting a given object from an input image.
Mask R-CNN is an improved Faster R-CNN [52] with three output heads, one for each type of prediction. The
loss function of Mask R-CNN jointly optimises for all three tasks: bounding box regression, classification and
binary segmentation. Further models have been developed by other authors which are based on the R-CNN
architecture. The Path Aggregation Network (PANet) [50] employs an FPN network to extract features at dif-
ferent scales. To construct a condensed feature tensor the outputs of FPN stage are processed by 3×3 filter
and then pooled via an adaptive feature pooling method. Similarly to Mask R-CNN, the network contains
three output branches for the same prediction tasks.

28 4. Foundations of Image segmentation

4.2.4. Recurrent architectures
Recurrent neural networks (RNN) have also found application in segmentation. Research in the field has
proven that they can be useful for encoding short and long term dependencies between pixels to improve
segmentation performance. With this approach pixel information is chained thus allowing global contextual
information to be preserved. ReSeg [54] is a well-known RNN used in segmentation. It comprises of a back-
bone VGG-16 network that extracts generic features. Following that are RNN layers which scan the image
horizontally and vertically to encode relevant global information and patterns. The output of the RNN layers
is upsampled to be brought back to the original resolution. Gated Recurrent Units are employed throughout
the network to balance processing time and performance quality. Another work by Liang et al. [47] employs
Long Short-Term Memory (LSTM) [44] along with graphs to construct a segmentation model. The approach
creates a graph topology on superpixels (clustering of pixels) rather than on single pixels. A CNN process the
image in the standard method and generates confidence maps through a 1×1 filter. These are then appended
with global features from the LSTMs. The graph constructed from the superpixels is initially updated by the
confidence map and afterwards by each successive LSTM module.

Figure 4.9: ReSeg architecture [54]. Here are shown the
RNN modules which scan the image horizontally and
vertically.

Figure 4.10: LSTM graph architecture [47]. LSTM mod-
ules update the graph for successive modules. Lo-
cal features from standard convolutions are enhanced
with global context information by the recurrent mod-
ules.

4.2.5. Generative and Adversarial architectures
Generative Adversarial Networks (GAN) [42] have revolutionised the deep learning field and have found ap-
plication in almost all domains of computer vision, including segmentation. The most straight-forward ap-
proach is to train a segmentation CNN together with a discriminator network that differentiates whether a
segmentation map is real or synthetic. Such a method is described in [51] and the architecture is illustrated
in Figure 4.11. SeGAN by Xue et al. [55], Figure 4.12 is a GAN which employs a multi-scale L1 loss for medical
image segmentation. Again a standard FCN is used to perform image parsing whose output is fed to a dis-
criminator network. The novelty in the second network is the addition of multi-scale pooling which allows
both the segmentator and the discriminator to learn local and global contextual features. Hung et al. [45]
propose a triple loss for training an adversarial network, which comprises of a cross-entropy loss to optimise
a segmentation network, adversarial loss for the discriminator network and a semi-supervised loss on the
basis of the confidence map produced by the discriminator.

Figure 4.11: Standard approach to segmentation with
GANs [51].

Figure 4.12: SegAN architecture [55]. The discrimina-
tor combines several feature map scales in order to
capture relevant contextual information. The loss is
specifically designed to handle different sized inputs.

Bibliography 29

Bibliography
[35] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder

architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495.

[36] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2014). Semantic image segmen-
tation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062.

[37] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transac-
tions on pattern analysis and machine intelligence, 40(4):834–848.

[38] Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint
arXiv:1603.07285.

[39] Ghosh, S., Das, N., Das, I., and Maulik, U. (2019). Understanding deep learning techniques for image
segmentation. ACM Computing Surveys (CSUR), 52(4):1–35.

[40] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 1440–1448.

[41] Gkioxari, G., Hariharan, B., Girshick, R., and Malik, J. (2014). R-cnns for pose estimation and action
detection. arXiv preprint arXiv:1406.5212.

[42] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

[43] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2961–2969.

[44] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–
1780.

[45] Hung, W.-C., Tsai, Y.-H., Liou, Y.-T., Lin, Y.-Y., and Yang, M.-H. (2018). Adversarial learning for semi-
supervised semantic segmentation. arXiv preprint arXiv:1802.07934.

[46] Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields: Probabilistic models for
segmenting and labeling sequence data.

[47] Liang, X., Shen, X., Feng, J., Lin, L., and Yan, S. (2016). Semantic object parsing with graph lstm. In
European Conference on Computer Vision, pages 125–143. Springer.

[48] Lin, G., Milan, A., Shen, C., and Reid, I. (2017a). Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1925–1934.

[49] Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017b). Feature pyramid net-
works for object detection. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2117–2125.

[50] Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for instance segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8759–8768.

[51] Luc, P., Couprie, C., Chintala, S., and Verbeek, J. (2016). Semantic segmentation using adversarial net-
works. arXiv preprint arXiv:1611.08408.

[52] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. Advances in neural information processing systems, 28:91–99.

[53] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556.

30 Bibliography

[54] Visin, F., Ciccone, M., Romero, A., Kastner, K., Cho, K., Bengio, Y., Matteucci, M., and Courville, A. (2016).
Reseg: A recurrent neural network-based model for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 41–48.

[55] Xue, Y., Xu, T., Zhang, H., Long, L. R., and Huang, X. (2018). Segan: Adversarial network with multi-scale
l 1 loss for medical image segmentation. Neuroinformatics, 16(3):383–392.

[56] Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 2881–2890.

5
Self-supervised Representation Learning

By definition the terms representation learning or feature learning refer to a set of algorithms which automat-
ically discover patterns and features from given input and reuse this for future referencing such as classifica-
tion or detection of unseen data [58]. Representation learning can be of two types:

• Supervised

• Unsupervised / Self-supervised

Supervised methods are those that require annotated data for training. Examples include ANNs, single per-
ceptrons and CNNs, as explained in Chapter 3. On the other hand, unsupervised methods learn without
labels. Such types are dimensionality reduction, autoencoders, CNNs with special loss functions and cluster-
ing algorithms. This chapter will describe some general unsupervised methods including the technique, also
known as Constrastive Learning, which is used in the analysed paper from Chapter 1.

5.1. Clustering
Clustering is the task of grouping a set of data points under a predefined number of groups, based on specific
characteristics of the data. The end result is such that all points in a given group are most similar between
each other than those outside of their category. The groups in which they are allocated are called centroids or
clusters. A criteria for clustering together a set of points may be but not limited to choice of distance metric
between elements, close proximity in feature space of members or a statistical distribution. In the sections
below are presented examples of two widely used clustering algorithms.

5.1.1. k-means
k-means belongs to the family of clustering algorithm. Fundamentally, it operates by dividing a given dataset
into n distinctive groups named clusters, where each one is defined by a centroid value. The objective of the
algorithm is to associate all points to a given cluster based on a similarity metric. To consider a point as a
member of a cluster it needs to be more similar to the centroid of the given cluster than to any other centroid.
k-means is an iterative algorithm which proceeds in several steps. Initially we begin by picking the number
of clusters. Next, as shown in Figure 5.1 centroids are assigned to randomly chosen data points. Following
that, Figure 5.2, samples x are grouped with their nearest centroid C such that

∑m
i=1 ||xi −C ||2 is minimised.

In the next step, the centroids are recalculated, according to all current members of the cluster, as given by:

C =
∑m

i=1
m , and illustrated in Figure 5.3. Finally, steps 3 and 4 are repeated until one of the following conditions

is satisfied:

• Centroids stop changing.

• Data points do not change cluster membership.

• A predefined number of iterations is reached.

31

32 5. Self-supervised Representation Learning

Figure 5.1: k-means second step. Random initialisa-
tion of cluster centroids [68]

Figure 5.2: k-means third step. Assignment of all
points to their respective closest cluster centroid [68].

Figure 5.3: k-means fourth step. Recomputing new
centroids based on all comprising members of a clus-
ter [68].

Figure 5.4: k-means fifth step. Repetition of steps 3
and 4 until convergence [68].

5.1.2. Hierarchical clustering

Hierarchical clustering shares similarities with k-means since data points are also grouped together based on
a distance metric. The algorithm begins by placing each sample in its own cluster. Next, a proximity matrix
is computed that reflects the distance between all data points, as shown in Figure 5.6. The values along the
diagonal will always be equal to 0, since they show the distance of the sample to itself, hence no distance. The
purpose of the matrix is to determine the clusters with the smallest distance to be merged.

Figure 5.5: Example of agglomerative hierarchical clustering. Clus-
ters are joined based on the distance calculated by a distance metric.
The dendrogram at the bottom shows the proximity of each cluster
with respect to all remaining. The vertical length of each edge is pro-
portional to the distance between a pair of clusters [62].

Figure 5.6: Distance matrix to be used in agglomera-
tive hierarchical clustering.

Once the closest samples are identified and merged, the distance matrix is recomputed, to account for the
coupled clusters, where they are treated as a single newly created cluster. The process is repeated until we
obtain a single aggregated group. An example of the algorithm is shown in Figure 5.5. To select the number
of final clusters, we dissect the longest edge of the resulting dendrogram, shown at the bottom of Figure 5.5.
The number of intersected lines denotes the number of final clusters, in the example from the same Figure,
the number of clusters will be 3.

5.2. Dimensionality Reduction 33

5.2. Dimensionality Reduction
Dimensionality Reduction is the process of transforming data with high dimensionality into data with low
dimensionality, such that essential features are preserved, as demonstrated in Figure 5.7. Reducing dimen-
sions of a given input alleviates problems such as curse of dimensionality [57] and inefficient computability.
It is often employed as a precursory step when performing data visualisation or cluster analysis. Algorithms
from this domain are divided in linear and nonlinear. We will focus on a specific linear method commonly re-
ferred to as Principal Component Analysis (PCA). Other nonlinear methods include but not limited to Linear
Discriminant Analysis (LDA) and Factor Analysis (FA).

Figure 5.7: Illustration of dimensionality reduction. The points in 3D space in the far-left have been recast to 2D space, as shown in the
rightmost plot. Taken from Andrew NG, at Coursera.

By definition a principal component of a collection of samples is represented by a hyper-plane in K-dimensional
space that explains the maximum amount of variance, such that most of the information of the data is cap-
tured. We can see that such a hyper-plane illustrated in Figure 5.8 under the name PC1, which means first
principal component. This component represents the line which best approximates the sample space.

Figure 5.8: Sample of data points, where principal components (PC) 1 and 2 are shown [65].

The first step of PCA is to standardise the data points by scaling their values to unit variance and mean-
centering the entire population. Following that, the first principal component is computed, as shown in
Figure 5.8. Afterwards the second principal component (PC2) is derived such that it best explains the sec-
ond largest source of variation in the data, while also being orthogonal to PC1. Considering a 3-dimensional
space, the two principal components define a hyper-plane of lower-dimensional sub-space which can be

34 5. Self-supervised Representation Learning

plotted in 2D space and visualised. This allows to eliminate a given dimension while still preserve meaning-
ful properties of the dataset. PCA is not limited to three dimensions and can be applied on K-dimensional
problems.

5.3. Autoencoders
Autoencoders are a type of CNNs that are used to learn compact encodings of unlabelled data. The encoding
is learnt by reconstructing the input image as output of the CNN. A diagram of the process is shown in Figure
5.9. To force the network into generating a compressed representation a bottleneck layer is imposed on the
network [67]. Typically, autoencoders are employed on tasks which involve anomaly detection, dimensional-
ity reduction, facial recognition and others.

Figure 5.9: An input image is processed by an encoder and compressed into a compact representation. The role of the encoder is to learn
to reconstruct the same image given its representation.

In the domain of image reconstruction, the bottleneck layer restricts the flow of information from the input
to the output, thus not allowing the network to directly learn the pixel values of the image. Therefore, the
network is forced to learn only specific features of data and discard redundant information. In certain im-
plementations the latent space representation in the bottleneck layer is generated by fully connected layers,
which implies that it takes the form of a vector. Training of autoencoders is done through backpropagation
based on the reconstruction error. Types of autoencoders include sparse [64], denoising [60], contractive [66]
and variational [63] amongst others.

5.4. Contrastive Learning
The idea behind contrastive learning is to learn representations such that similar samples remain close to
each other, while different samples are far apart, when plotted in feature space. More specifically, in the field
of Deep Learning, contrastive learning refers to the act of learning general features of the input data, without
the use of labels. This is achieved by enforcing a model to learn which samples are similar to each other.
Figure 5.10 illustrates an example between two samples of the same class and a third one which is different.

By observing the animals in Figure 5.10 we can recognise a number of high-level similarities. For instance,
cats have pointy ears and short snouts, also usually their eyes are bright coloured. In contrast, dogs’ ears are
more often relaxed and floppy, while their noses are longer and more projecting from the face. The CNN we
use in our use case needs to observe the 2 pairs of images and determine which 2 belong to the same class.
This is a very convenient technique as the model does not require annotated data [69].

Figure 5.12 presents a standard contrastive learning framework. Since sorting a dataset by similar sam-
ples is time consuming and is a form of supervision the use of augmentations is required to represent similar
instances of the same class. Typical augmentations include cropping, resizing, colour and geometric trans-
formations. The goal is to modify the sample while still preserving class specific features. Such is the case

5.4. Contrastive Learning 35

Figure 5.10: Although, the two cats in the images on
top are not the same, humans are capable of recognis-
ing that they are the same type of animal. Likewise,
we can instantly differentiate between the cat and the
dog. Contrastive learning attempts to replicate the
same approach [69].

Figure 5.11: To optimise without the use of labels we
need to generate a vector representation of a given im-
age. The goal is to generate similar vectors for similar
images [69].

with the kitten, which has been recoloured in a blue shade.
Once both images are handled by the CNN, the obtained compact feature map representation is fed to the

several stages of fully-connected layers which will generate the vector representation, Figure 5.11. The entire
architecture can be viewed as a function h = f (x) which takes input x and produces output h in latent space.

Figure 5.12: SimCLR framework [59, 69]. CNN architecture is ResNet-50 [61]. We can see the real and augmented images being passed to
the same model to obtain their representation and compute a similarity score.

The similarity between the generated vectors needs to be maximised and therefore a metric to quantita-
tively measure their alikeness is required. Given the problem domain, we can measure the angle between two
vectors in 2D space to determine their equivalence. This is computed by the cosine similarity, which is given
by:

si mi l ar i t y = cos(θ) = A ·B

||A|| ||B|| =
∑n

i=1 Ai Bi√∑n
i=1 Ai

2
√∑n

i=1 Bi
2

(5.1)

where A and B are our samples. When the angle between the two vectors is small we can conclude that they

36 Bibliography

are similar, meaning they overlap and vice versa when the angle is large then the vectors are unalike. In order
to optimise the model, a loss function is required that will penalise when the vectors are far apart, and con-
versely encourage the network to continue optimisation in the given direction when the vectors are close to
each other. The authors of [59] use a Normalised Temperature-Scaled Cross-Entropy loss, which calculates the
probability that the initial images are similar. Let si m(·) denote the cosine similarity between two samples.
The function for a positive pair (an image and its augmented variant) is given by:

`i , j =−l og
exp(si m(zi , z j)/τ)∑2N

k=11[k 6=i]exp(si m(zi , zk)/τ)
(5.2)

where 1[k 6=i] evaluates to 1 iff samples k and i are different. τ is the temperature hyper-parameter which
controls the degree of how positive or negative a pair is. The −log (·) of the loss function is considered since
we are interested in the negative of the maximised probability that the input images are similar or identical.
The complete loss is computed on all zi , z j positive pairs in a random batch.

Bibliography
[57] Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

[58] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.

[59] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607. PMLR.

[60] Cho, K. (2013). Simple sparsification improves sparse denoising autoencoders in denoising highly cor-
rupted images. In International conference on machine learning, pages 432–440. PMLR.

[61] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778.

[62] Janssen, P., Walther, C., and Lüdeke, M. K. (2012). Cluster analysis to understand socio-ecological sys-
tems: a guideline.

[63] Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. arXiv preprint
arXiv:1906.02691.

[64] Makhzani, A. and Frey, B. (2013). K-sparse autoencoders. arXiv preprint arXiv:1312.5663.

[65] Ng, A. (2018). Machine learning. Dimensionality reduction.

[66] Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011). Higher order
contractive auto-encoder. In Joint European conference on machine learning and knowledge discovery in
databases, pages 645–660. Springer.

[67] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations by error
propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science.

[68] Sharma, P. (2019). Comprehensive guide to k-means clustering. Available at https://www.
analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/.

[69] Tiu, E. (2021). Understanding contrastive learning. Available at https://towardsdatascience.com/
understanding-contrastive-learning-d5b19fd96607.

https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://www.analyticsvidhya.com/blog/2019/08/comprehensive-guide-k-means-clustering/
https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607
https://towardsdatascience.com/understanding-contrastive-learning-d5b19fd96607

	Scientific paper
	Introduction
	Motivation
	Research question
	Overview

	Foundations of Deep Learning
	Neural Networks
	Perceptron
	Multilayer perceptron
	Weight optimisation

	Convolutional Neural Networks
	Convolution
	Pooling
	Preventing overfitting
	Dropout
	Weight regularisation
	Early stopping

	Batch normalisation

	Foundations of Image segmentation
	Segmentation in Deep Learning
	Overview of segmentation architectures
	Pyramid and Multi-Scale architectures
	Atrous convolution
	R-CNN architectures
	Recurrent architectures
	Generative and Adversarial architectures

	Self-supervised Representation Learning
	Clustering
	k-means
	Hierarchical clustering

	Dimensionality Reduction
	Autoencoders
	Contrastive Learning

