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Abstract—Resistive random access memory (RRAM) based
computation-in-memory (CIM) architectures can meet the un-
precedented energy efficiency requirements to execute AI al-
gorithms directly on edge devices. However, the read-disturb
problem associated with these architectures can lead to accu-
mulated computational errors. To achieve the necessary level
of computational accuracy, after a specific number of read
cycles, these devices must undergo a reprogramming process
which is a static approach and needs a large counter. This
paper proposes a circuit-level RRAM read-disturb detection
technique by monitoring real-time conductance drifts of RRAM
devices, which initiate the reprogramming when actually it needs.
Moreover, an analytic method is presented to determine the
minimum conductance detection requirements, and our proposed
read-disturb detection technique is tuned for the same to detect it
dynamically. SPICE simulation result using TSMC 40 nm shows
the correct functionality of our proposed detection technique.

I. INTRODUCTION

Edge AI refers to algorithms and models implemented on
devices such as smartphones, cameras, and sensors, rather
than relying on cloud computing or remote servers. There
have been many ASIC designs developed to implement deep
neural networks (DNN) with a large number of multiply-
and-accumulate (MAC) operations. By virtue of the massive
data movement between computing and storage units, Von
Neumann architecture approaches are energy-inefficient for
real-time inference due to the significant power consumption
and high latency [1]–[4]. The concept of computation-in-
memory (CIM) involves performing computations directly
within the memory, which can improve the energy efficiency
as well as the performance of DNNs [5]–[7]. Resistive random
access memory (RRAM) based CIM is promising due to its
many advantageous features such as practically zero leakage,
less access power consumption, high density, and massive
parallelism [6], [7]. However, RRAM devices are subject
to conductance drift over time during the read operations,
leading to bit flips known as read-disturb. Any drifts in
the conductance (or resistance) of the RRAM may result in
computational errors due to the disruption of analog MAC
values [8], [9].

Several approaches have been proposed to solve the read-
disturb problem in RRAM-based CIM architecture. For in-
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stance, employing a low read voltage can reduce the impact
of conductance drifts [10], [11]. Nevertheless, the voltage
reduction can also increase the rate of incorrect computations,
especially in the presence of process variation. Additionally,
an architectural solution is proposed to improve the sensing
margin that degrades the computational error due to the read-
disturb [12]. However, these aforementioned solutions can
just delay read-disturb occurrences and thus are not concrete
solutions for the read-disturb. To address this problem, a pe-
riodic reprogram-based solution is proposed in which RRAM
devices are rewritten after a certain number of read cycles [13].
Furthermore, a technique is proposed in which the read
current directions can be periodically reversed to compensate
for the drift effect [14], [15]. Both of these techniques use
static approaches designed to consider the worst-case scenario
for a correct computation, which makes the overall design
too pessimistic. Additionally, a large counter is necessary to
count the acceptable read cycles to reprogram periodically.
Hence, there is a decisive need for a low-cost and process-
independent read-disturb detection mechanism that can detect
its occurrence dynamically in an efficient manner.

In this paper, we propose a methodology for RRAM read-
disturb detection based on a real-time drift monitoring circuit.
To introduce a realistic conductance drift scenario, the required
resistance difference can be developed using a selector logic
by activating/deactivating multiple RRAM devices, which can
be compared using a sense amplifier. Our proposed detection
methodology utilizes the same RRAM configuration as in a
CIM array to detect drift effectively, considering variations in
process, voltage, and temperature (PVT). Overall, the contri-
butions to this paper are as follows:

• Develop a dynamic read-disturb detection methodology.
• Implement the circuit of the proposed read-disturb detec-

tion methodology.
• Present an analytic method to determine the minimum

conductance states ratio to meet the accurate computation
requirements.

SPICE simulation results using TSMC 40 nm verify the
functionality of the proposed technique. Our proposed method
has the capability to detect read-disturb with proximity to its
occurrence, thus reducing the frequency of reprogramming
cycles. The proposed technique results in a 2x improvement
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Fig. 1. A generic RRAM-based CIM architecture for neural networks.

in energy efficiency compared to the conventional periodic
reprogramming approach.

The rest of the paper is organized as follows. A background
on RRAM-based CIM and RRAM read-disturb is discussed
in Section II. Section III presents proposed ideas, including
the detection circuit and analysis. Section IV describes the
simulation setups and results to verify the proposed circuit
performance. The last section concludes the paper.

II. BACKGROUND

A. RRAM-based CIM Architecture

Fig. 1 demonstrates a resistive random access memory
(RRAM) crossbar array to implement vector-matrix multipli-
cations (VMM) employing the computation-in-memory (CIM)
paradigm. The weights of the DNN model are mapped as the
resistance states of 1-transistor-1-resistor (1T1R) bitcells in the
crossbar array. Multiple inputs are provided simultaneously to
the bitcells in each row, where the current through bitcells per-
form multiplication of these inputs with the content of the bit-
cell (means weights). These current values are then summed
up in a column to perform multiply-and-accumulate (MAC)
operations. Such a MAC arrangement can result in high
computation parallelism and improve energy efficiency [7].

B. Read-disturb Issue

DNN needs a large number of MAC operations [14], which
means a significant of bitcell read operations are required.
Due to such multiple read operations, the conductance state of
the storage device can be drifted from its initial state, which
can eventually switch its state, known as read-disturb [16].
Compared to standard memory, the RRAM-based CIM archi-
tectures can be more severely affected by this problem because
it has to deal with small current/voltage margins during the
MAC operations. Apart from the device-level parameters, the
read disturb rate depends on the read voltage as well as the
number of read operations [14]. Fig. 2 illustrates the impact
of the aforementioned factors on the conductance state ratio
of the RRAM, in which the read-disturb and conductance
state ratio degradation are observed earlier as the read voltage
increases. This deviation in conductance degrades computation
accuracy significantly during the analog-to-digital conversion,
which reduces the inference accuracy of DNNs [10], [13], [14].
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Fig. 2. SPICE simulation of RRAM conductance states ratio degradation

(a) Periodic reprogramming

(b) Dynamic reprogramming

Fig. 3. Reprogramming approaches and their operation details.

III. PROPOSED READ-DISTURB DETECTION APPROACH

A. Overview

The most effective solution to address the read-disturb
problem is to reprogram the RRAM devices after a certain
number of read cycles. A static approach is proposed to
program the RRAM devices after a fixed number of read cycles
which is obtained considering the worst-case number of read
operations on a set of test cells [13]. However, the number
of read cycles for MAC values in a neural network follows
a normal distribution [17], which means most of the bitcells
experience it close to their mean value of read operations.
As RRAMs in the CIM crossbar array do not face the same
number of read operations, applying the worst iteration of read
operations to test cells results in the definition of a pessimistic
periodic reprogramming window. Although the majority of
bitcells do not require reprogramming, it may be necessary to
rewrite the entire array, even if a few conductance values are
degraded for a few cells. This conservative approach ensures
the long-term functionality of the RRAM-based CIM crossbar
array at the cost of high energy consumption due to the
higher write-verify iterations. According to our SPICE sim-
ulations, resetting a single-bit RRAM cell consumes 6x more
energy than reading a 32x32 crossbar array of one-bit RRAM
cells. Furthermore, defining a reprogramming period at design
time cannot guarantee its accuracy in the presence of PVT
variations of RRAMs at runtime. In this paper, we propose
an on-chip read-disturb detection unit, as demonstrated in
Fig. 3(b), which can be based on an input-profiled number
of read operations on test RRAM bitcells. When the detection
unit detects a read-disturb, it triggers the write-verify unit to
reprogram the CIM array and test cells.
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(a) (b)
Fig. 4. Proposed read-disturb detection methodology: (a) Conceptual diagram to describe the read-disturb detection mechanism (b) Circuit diagram.

B. Detection Methodology and Circuit

In our proposed read-disturb detection methodology, we
arrange a set of RRAM devices with a high-resistance state
(HRS) configuration in parallel so that its equivalent resistance
can be compared with that of the RRAM device with a low-
resistance state (LRS) configuration. For that, we employed
two test columns of 32 RRAM devices, in which one column
has a bitcell with LRS configuration, and the rest other are
dummy cells. The other column has 32 bitcells, and all are
configured in HRS. We consider the read-disturb of resistance
states as illustrated in Fig. 4(a) to describe the proposed detec-
tion methodology. To detect RRAM read-disturb, two columns
of RRAMs (Fig. 4(b)) are read by a read pulse with 25% duty-
cycle to monitor the RRAM states ratio (k = RH/RL). Due to
the large initial states ratio, n HRS bitcells (RH ) are connected
in parallel to compare with one LRS bitcell (RL) under the
following condition:

RH/n > RL (1)
The initial equivalent resistance of all parallel connected HRS
bitcells in one column is adjusted to be lower than that of
with LRS configuration:

RH0

nrows−max
< RL0 (2)

where RH0, RL0, and nrows−max are the initial high resis-
tance value, the initial low resistance value, and the maximum
number of activated rows in one column, respectively. In order
to meet the condition described in (1), the active bit-cells with
HRS configurations are turned off one by one during each
cycle until the initialization point is reached. The resistance
of n parallel-connected HRS bitcells equals one LRS bitcell
when the read-disturb is detected at the detection point using
a comparator to generate a detection signal. This means that
the RRAM states ratio at the detection point is the number of
active rows, nrows. Also, the ratio at the detection point can
be defined as the minimum required ratio, kmin.

Fig. 4(b) demonstrates the proposed detection circuit, which
utilizes two columns of the crossbar array. The first column
consists of one active LRS bitcell and 31 deactivated dummy
cells, while all the wordlines of the second column, all

programmed in HRS, are driven by a logic circuit called N-
Selector logic. The N-Selector logic is utilized to initialize
the number of active HRS bitcells. This block deactivates
the last active wordline when the sense amplifier produces
a high output. In other words, this block operates only if the
condition described in (1) is not met. Therefore, it is employed
to initialize the detection unit and remains inactive until the
detection point.

A sense amplifier does the comparison between the current
values of the two columns. We have employed a pseudo-
differential StrongARM latch-based sense amplifier [18], as
illustrated in Fig. 4(b). The sense amplifier was modified to
apply a read voltage on the bitline using two overlapping
READ and COMP pulses. Furthermore, a fast discharging
path is considered to prevent post-comparison voltage on
RRAMs and to rapidly reset the bitline voltages at the end
of the comparison. High input offset is one of the issues
of pseudo-differential sense amplifiers. To alleviate the input
offset impact on initialization, the output of the sense amplifier
has been delayed for two clock cycles. Consequently, the
detection circuit initializes with two lower active wordlines
than the first initialization point. This technique reduces the
sensitivity of the circuit initialization to PVT variations.

C. Minimum RRAM Conductance States Ratio

As shown in Fig. 5, we considered the two low current
states (I0 and I1) to have an equal relative error, e, which
can be defined as 3σ/µ. In order to prevent the overlap of
these current states, the following condition must be fulfilled:

I0(1 + e) < I1(1− e) (3)

Considering states ratio of k(t) (RH = k(t)RL), condition
described in (3) can be rewritten as:

nrowsVread

k(t)RL
(1+e) < (

(nrows − 1)Vread

k(t)RL
+
Vread

RL
)(1−e) (4)

Therefore, the minimum states ratio (kmin) derives as:

kmin =
2nrowse− e+ 1

1− e
(5)
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Fig. 5. Conceptual diagram of MAC current states.

5 10 15 20 25 30

Error (e) [%]

10
0

10
1

10
2

M
in

im
u

m
 R

R
A

M
 S

ta
te

s
 R

a
ti

o

n
rows

=32

n
rows

=64

n
rows

=128

n
rows

=256

Fig. 6. Minimum required RRAM states ratio for the different numbers of
rows and error values.

According to (5), the minimum required ratio is an ascending
function of the number of rows, which indicates that it is
essential to meet the conductance ratio criterion according to
the memory size in design time. Please see Section IV-B for
the simulation results for the minimum required ratio.

IV. SIMULATION RESULTS

A. Setup

The proposed read-disturb detection unit has been designed
using TSMC 40 nm CMOS technology with 0.9 V supply
voltage and simulated using Cadence Virtuoso tools. Due to
the inactive nature of N-Selector logic after initialization, it
has been implemented using Verilog-A. Moreover, we have
employed the JART VCM v1b RRAM model [19], [20]. To
simulate the read behavior, a 200 MHz clock frequency is used
in the proposed circuit, which applies a 460 mV voltage for
a 5 ns period on bitlines followed by a 15 ns bitline reset
according to the sense amplifier, augmented by the considered
READ and COMP signals in the proposed circuit.

B. Analytic Results

The curves illustrated in Fig. 6 demonstrate the minimum
required states ratio for the different numbers of rows and error
values. Equation (5) states that in cases where the desired
error is less than 20%, the minimum required ratio is less
than the number of rows in the crossbar. This means that
the monitoring circuit requires only one column of parallel-
connected HRS bitcells, while multiple columns of parallel-
connected HRS bitcells are essential for higher error values.
However, the relative error value can be reduced significantly
below 20% by employing the write-verify scheme during the
design time [21].

C. Circuit-level Results

Simulation results demonstrate 75.9 µW power consump-
tion, 1.6 fJ power-delay product (PDP), and less than 3.1 ×
10−20 Js energy-delay product (EDP) for a 20 ns read-
comparison operation in initialized condition. It is seen from
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the Monte-Carlo simulation results of Fig. 7, that the detection
circuit was initialized correctly in all of the 100 run points
and satisfied the condition described in (1). The proposed
detection unit was also evaluated in both the initialization and
detection phases, as depicted in Fig. 8. It is seen that when the
RRAM states ratio is degraded by 10% to its original value,
the proposed circuit generates a detection signal.

Comparing the detected point in Fig. 8 with the ratio drop
for a worst-case inputted RRAM cell, a reduction of 19% is
indicated in the worst-case inputted RRAM cell. The worst-
case input is rare [17] and its detection point occurs approxi-
mately 6×108 read cycles prior to the averaged input detection
point. In other words, the proposed detection methodology
triggers the write and verify unit around 50% less than the
pessimistic reprogramming approach, which means 2× write
energy efficiency. Note that the acceptable conductance ratio
reduction can be determined based on the calculated minimum
required ratio and the desired error margin (e) for the actual
crossbar in a specific application.

V. CONCLUSION

In this paper, an approach for detecting RRAM read-disturb
in real-time by monitoring the RRAM states ratio was pre-
sented. Our proposed method facilitates dynamic reprogram-
ming by providing superior energy efficiency and computation
accuracy compared to the static method. Further, an analytical
method was developed to determine the minimum required
RRAM states ratio in a CIM architecture. According to SPICE
simulation results using TSMC 40 nm CMOS Technology,
the proposed methodology promises a 2x increase in the
energy efficiency of the writing operation over conventional
periodic reprogramming through the reduction of redundant
write operations. The proposed approach is a potential solution
for developing RRAM-based CIM architectures.
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