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Large Car-following Data Based on Lyft level-5 Open Dataset:
Following Autonomous Vehicles vs. Human-driven Vehicles

Guopeng Li1,∗, Yiru Jiao1, Victor L. Knoop1, Simeon C. Calvert1, and J.W.C. van Lint1

Abstract— Car-Following (CF), as a fundamental driving
behaviour, has significant influences on the safety and
efficiency of traffic flow. Investigating how human drivers
react differently when following autonomous vs. human-driven
vehicles (HV) is thus critical for mixed traffic flow. Research
in this field can be expedited with trajectory datasets collected
by Autonomous Vehicles (AVs). However, trajectories collected
by AVs are noisy and not readily applicable for studying CF
behaviour. This paper extracts and enhances two categories of
CF data, HV-following-AV (H-A) and HV-following-HV (H-H),
from the open Lyft level-5 dataset. First, CF pairs are selected
based on specific rules. Next, the quality of raw data is assessed
by anomaly analysis. Then, the raw CF data is corrected and
enhanced via motion planning, Kalman filtering, and wavelet
denoising. As a result, 29k+ H-A and 42k+ H-H car-following
segments are obtained, with a total driving distance of 150k+
km. A diversity assessment shows that the processed data
cover complete CF regimes for calibrating CF models. This
open and ready-to-use dataset provides the opportunity to
investigate the CF behaviours of following AVs vs. HVs from
real-world data. It can further facilitate studies on exploring
the impact of AVs on mixed urban traffic.

Index Terms— Car-following, trajectory dataset, autonomous
vehicle, driving behaviour

I. INTRODUCTION

Autonomous vehicles (AVs) have been rapidly developing

in recent years, bringing potential benefits such as enhancing

traffic safety [1], reducing congestion [2], and increasing

mobility accessibility [3]. However, the extent of these

improvements remains unclear, which depends not only on

the performance of AVs but also on human drivers’ reactions

to AVs. Clarifying the impact of AVs on human driving

behaviour is thus crucial for safe and efficient integration

of AVs into transportation systems [4,5].

Car-following (CF), which refers to one vehicle following

another, is the most common driving behaviour. CF plays a

critical role in maintaining smooth traffic flow and reducing

congestion [6,7]. The presence of AVs may reshape CF

behaviours and thus mixed traffic flow. How an AV follows

its leading vehicle is determined by the specific driving

algorithm, which is continuously being improved. Therefore,

it is more important to examine how human-driven vehicles

(HVs) react differently when following an AV vs. an HV.

In the literature, the influence of AVs on the CF behaviours

of human drivers has mainly been studied through field

experiments, driving simulators, and real-world AV datasets.

In field experiments, participants are asked to follow a real

1 Department of Transport & Planning, Delft University of Technology,
the Netherlands

or seemingly-real AV in different scenarios [8–10]. Similar

experiments can also be carried out in a virtual environment

by using driving simulators [11]. Field tests and simulations

are controllable so researchers can focus on specific points

of interest. However, due to cost limitations, these two

approaches cannot provide comprehensive and large data

covering diverse scenarios.

Recently, the release of autonomous driving datasets, such

as Waymo [12], nuScenes [13], and Lyft5 [14], has enabled

researchers to study AVs’ impacts on traffic with real-world

data. Hu et al. [15] offer the first attempt to process a CF

dataset from the Waymo dataset. However, because AVs are

not marked in the entire dataset of Waymo, only 274 HV-

following-AV (H-A) pairs and 1032 HV-following-HV (H-H)

pairs are extracted. The limited amount of samples leads to

contradictory findings. For example, Wen et al. [16] conclude

that, compared with H-H, H-A has lower driving volatility,

smaller time headways, and higher Time-to-Collision (TTC);

while Hu et al. [17] found no significant difference between

H-H and H-A, except for smaller spacing during congestion.

To reduce the biases when using small datasets, a larger and

comparative CF dataset balanced comprising both scenarios

is indispensable.

In this paper, the Lyft level-5 open dataset is processed.

We select, assess, and enhance 29k+ HV-following-AV pairs

and 42k+ HV-following-HV pairs in similar environments.

The dataset covers diverse CF regimes and the enhanced

dataset provides smooth, ready-to-use motion information for

CF model calibration/training. The contribution of this paper

is double-fold. First, we propose a processing procedure and

demonstrate its validity. Second, the processed data is openly

shared as the first large CF dataset that allows comparing the

behaviours of following AV vs. HV. It is expected to help bet-

ter evaluate the influence of AVs in mixed traffic. The dataset

is available at https://github.com/RomainLITUD/
Car-Following-Dataset-HV-vs-AV, including de-

tailed instructions on reading and filtering desired CF pairs.

II. LYFT LEVEL-5 DATASET

A. Dataset description

The Lyft level-5 dataset [14] is a large-scale dataset of

high-resolution sensor data collected by a fleet of 20 self-

driving cars. The dataset includes 1000+ hours of perception

and motion data collected over a 4-month period from urban

and suburban environments along a fixed route in Palo Alto,

California. The route is shown in Fig.1.

The motion prediction dataset comprises about 170,000

scenes, with each scene spanning approximately 25 s.

2023 IEEE 26th International Conference on
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Fig. 1. The road maps of Palo Alto, California (in meters). The blue lines
mark the fixed route in the Lyft level-5 dataset.

These scenes may be collected continuously or intermit-

tently. For each scene, the track ids of agents are re-

numbered (from 1). Each scene includes the movement

states (e.g. position, yaw angle, size, speed) of perceived

vehicles, cyclists, and pedestrians, as well as the position

and orientation of the AV. Information about the driv-

ing environment, including high-definite maps and traf-

fic light status, is also provided. The dataset is avail-

able from the website: https://woven.toyota/en/
prediction-dataset. The material used in this paper

includes the full training and validation datasets, the se-

mantic map file, and the python toolkit l5kit (https:
//woven-planet.github.io/l5kit/) provided by

Lyft developers.

B. Data Processing Framework

CF pair selection and raw CF data assessment

HV (࢞, (࢜ AV (࢞)
CF data enhancement

Kalman Filter(࢞, (࢜ → ,࢞) ,࢜ (ࢇ
Wavelet denoising

Kalman Filter࢞ → ,࢞) ,࢞)Missing data filling(࢜ (࢜

Enhanced dataset assessment

Vehicle kinematics 
anomalies

CF regime 
diversity

Vehicle size processing

Section III

Section IV

Section V

Fig. 2. Flowchart of the data processing.

The flowchart in Fig.2 presents the procedure of CF data

selection, assessment, and enhancement. In section III, CF

pairs and their raw trajectories are first selected from the

unlabelled dataset based on certain rules. Next, the raw data

quality is assessed from the perspective of anomaly analysis.

In section IV, the raw data is enhanced. For AVs (only

position x is given) and HVs (speed v and position x are

given), we use two different methods to fill in the missing

segments and estimate smooth x and v. The acceleration a
is estimated by the combination of the Kalman Filter and

wavelet denoising methods. After the processing procedure,

in section V, the enhanced data is assessed again, including

both anomaly analysis and the diversity of CF regimes. In

the following sections, we will introduce each step in detail.

III. CF PAIR SELECTION AND ASSESSMENT

A. CF pair selection

The first step is identifying CF pairs from unlabelled data.

Previous studies about the rules of extracting CF pairs have

been reviewed by Wen et al. [16]. We refer the readers to

this recent paper for more details.

Considering the large size of the dataset (1000+ hours), we

make two groups of rules and propose a two-step procedure.

The first step is quick screening. The entire dataset is scanned

second by second (every 1-5 seconds) based on the first

group of rules to roughly identify possible CF events. Next,

the second group of rules rigorously check each CF event

frame by frame. The rules are listed in Table.I. The extracted

CF pairs are categorized based on the type of the leading

vehicle (AV or HV). Statistics of the CF dataset are presented

in Table.II. The total duration of this CF dataset spans over

460+ hours, covering a total distance of 15,000+ km.

TABLE I

CF EVENT SELECTION RULES [16]

No. Description

Group-1: second-to-second

1.1 The probability of both vehicles being passenger cars > 0.95.
1.2 The longitudinal distance between the vehicles < 85m.
1.3 The lateral distance between the vehicles < 1.75m.
1.4 No obstacles or other road agents interrupt the CF pairs.
1.5 Both vehicles are on the same side of the traffic lights.
1.6 Both vehicles are on a straight road.
1.7 Rules 1.1-1.6 must hold with a duration > 16 s.

Group-2: frame-to-frame

2.1 The deviation of yaw for both vehicles < 0.035 rad.
2.2 The maximum yaw to the driving direction for both vehicles <

0.087 rad.
2.3 The interval between all adjacent timestamps < 0.42 s.
2.4 The distance between all adjacent positions < 5m.
2.5 The average speed of both vehicles > 1m s−1.

TABLE II

EXTRACTED CF PAIRS FROM LYFT DATASET

Dataset CF pairs Distance(km) Duration(h)

H-A 29449 6996 220
H-H 42892 8125 240

For each CF pair, the initial position of the leading vehicle

is set as the origin. The straight road lane defines the driving

direction. Because the angle between the yaw of the vehicles

and the lanes is small (as stated in Rules 2.1 and 2.2),

it is reasonable to assume that the lateral movement is
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independent of the car-following behaviours. Therefore, this

paper will only focus on the longitudinal movement going

forward.

B. Raw CF data assessment
Calibrating CF models requires highly accurate and con-

sistent position, speed, and acceleration data. It is necessary

to first assess the quality of the raw CF data. For HV

(either in H-A or H-H dataset), we assess (1) anomalies that

violate constraints of vehicle kinematics, and (2) missing

data. For AV, because only x is given, the anomalies of

vehicle kinematics are assessed only. According to Punzo

et al. [18], 3 constraints on acceleration a and jerk j must

be satisfied:

• a ∈ [−8, 5] m/s2

• j ∈ [−15, 15] m/s3

• The jerk’s sign cannot be inverse more than once in 1 s
(denoted as Jerk Sign Inversion, JSI).

For HV, a and j are directly computed by the 1st and the

2nd-order differentiation of v (v-based). While for AV, a and

j are derived from the 2nd and the 3rd-order differentiation

of x (x-based). Violating one of the 3 constraints is identified

as an anomaly. The result is shown in Table.III, which is also

compared with the CF data in the Waymo dataset (evaluated

in [15]). The v-based jerk and JSI anomaly proportion for

HVs in Lyft are on-par with the Waymo dataset. For x-based

AVs, Lyft shows higher quality than Waymo (lower anomaly

proportion).

TABLE III

ANOMALY ASSESSMENT OF RAW CF DATA

Lyft Waymo

Statistics
AV

(x-based)
HV

(v-based) x-based v-based

Anomaly acc (%) 0.004 0.226 – –
Anomaly jerk (%) 1.007 0.656 5.3 0.439
Anomaly JSI (%) 34.2 25.4 86.1 37.2

Next, abnormal segments are further investigated. Fig.3

shows an example that compares the given speed and x-

based speed of an HV. The result demonstrates that the

speed provided by Lyft is smoothed from the measurements

of position. However, there also exist some errors. At the

beginning and the end of each scene (25 s duration), there is

a 0-speed value, which seems to have been added artificially

and was not excluded in smoothing. We guess that perhaps

these 0-values are used to assist in segmenting scenes (for

deep-learning purposes) but for some reason not removed.

Therefore, the first 0.5 to 1.5 s data in these scenes are

unreliable.
The assessment of the raw CF data is summarized as

follows:

• The given position data of AVs is of high quality.

• Data are missing at the beginning and end of each scene.

• For both AVs and HVs, acceleration and jerk derived

by differentiation is not smooth enough for calibrating

CF models.

Fig. 3. Comparison between the speed data and the position-derived speed.

In the next section, the raw data will be enhanced to

address these problems.

IV. CF DATA ENHANCEMENT

A. Missing data filling

Before further processing raw HV data, the missing part

around the 0-speed points must be filled in first. In this

study, we remove the speed and position data within 1.5 s
of the last 0-value timestamp. This segment of motion is

estimated by the polynomial of degree seven (7-DOP) jerk-

minimization method. The position of the vehicle is assumed

to have the form of a polynomial of degree seven with 8

unknown coefficients pi
7
i=0:

x(t) =
7∑

i=0

pit
i (1)

The initial and final positions, speeds, and accelerations

(derived from speed) pose 6 boundary conditions (con-

straints). The objective function to minimize is the jerk in

the duration T :

J =

∫ T

0

[x′′′(t)]2dt (2)

which is typical quadratic programming that can be easily

solved. Notice that only the position and speed are estimated.

The acceleration data will be derived later.

One example of the estimation results is shown in Fig.4.

The time interval is not always uniform. Clearly, the 0-

value influences the given speed at around 3.0 s (the red

line). The removed segment is filled in by the black-star

curves (the timestamp series are not changed), which is a 6-

degree polynomial. We see that the estimated speed profile

is smoother due to the vehicle’s kinematic constraints.

Fig. 4. Use the 7-DOP method to fill in the incorrect data segment.
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B. Kalman filtering for speed estimation

Because the speed of AVs is not provided, to facilitate the

following acceleration estimation and smoothing steps, we

need to derive the speed of AVs from position data first. The

well-known Kalman Filter (KF) [19] is used. In this Kalman

Filter, we employ the constant-speed model. For each time

interval (mostly Δt = 0.1 s), the state transition equation is:

[
x(ti+1)
v(ti+1)

]
=

[
1 Δti
0 1

]
·
[
x(ti)
v(ti)

]
(3)

The given position and its differentiation are regarded as the

measurement of x and v. The process covariance matrix Q1

and the measurement covariance matrix R1 control the trade-

off between accuracy and smoothness. Considering the range

of acceleration in Eq.III-B, their values are set as follows by

trial and error:

Q1 =

[
0.2 0
0 0.8

]2
, R1 =

[
0.5 0
0 1.1

]2
(4)

The next step is estimating the acceleration. In principle,

this can also be accomplished by a Kalman filter that gives

both speed and acceleration. However, tuning the process

and measurement covariance is difficult and usually the

acceleration covariance changes with time for a CF event.

Therefore, we propose a 2-step method. First, continuing in

this subsection, a second KF is applied for both AVs and HVs

to derive an over-smoothed acceleration. Next in subsection

IV-C, wavelet denoising will be used to smooth the v-based

(differentiation) acceleration. For the second KF, the state

transition equation is:⎡
⎣x(ti+1)
v(ti+1)
a(ti+1)

⎤
⎦ =

⎡
⎣1 Δti

1
2a(ti)(Δti)

2

0 1 a(ti)Δti
0 0 1

⎤
⎦ ·

⎡
⎣x(ti)v(ti)
a(ti)

⎤
⎦ (5)

The Q2 and R2 are set as follows. We set a high value of

measurement error for acceleration to over-smooth it.

Q2 =

⎡
⎣0.2 0 0

0 0.4 0
0 0 1.5

⎤
⎦
2

, R2 =

⎡
⎣0.5 0 0

0 1 0
0 0 10

⎤
⎦
2

(6)

Denote the v-based acceleration as av and the over-

smoothed acceleration given by KF as ak, their RMSE, σa,

is regarded as an approximation of the total noise. This

estimated hyper-parameter will be used in wavelet denoising

to further smooth acceleration.

C. Wavelet denoising for acceleration smoothing

Wavelet denoising [20] is a robust technique to remove

noise from signals by transforming the time series into

wavelet space and then thresholding the high-frequency

coefficients while preserving the important information in

the low-frequency coefficients. Compared with KF, wavelet

denoising is non-parametric. It is effective for removing

different types of noise, including Gaussian noise, impulsive

noise, and mixed noise. Especially, wavelet denoising can

adapt to non-stationary noise characteristics, which meets

the requirements of acceleration estimation and smoothing.

In this study, we use the wavelet denoising tool in

skimage python package. The noise standard deviation is

set as σa from the result of KF. The type of wavelet is

the Daubechies family with 6 vanishing moments (‘db6’),

which can effectively capture both short-term and long-

term features. A soft threshold method and up to 4 wavelet

decomposition levels are used.

Fig.5 presents a 1min H-A car-following example. The

silver lines are raw position, speed, v-based acceleration and

jerk of the following HV. This CF pair approaches an inter-

section, decelerates, stops and waits, and then accelerates

to a desired speed. The missing segments at 24 s and at

49 s are filled in. Processed acceleration and jerk profiles

are significantly smoother.

Fig. 5. Comparison between the raw data and the processed data in a 60 s
CF event.

D. Vehicle size processing

Besides motion information, the length of the vehicle is

also important, especially for calculating some safety and

efficiency metrics, such as bump-to-rear gap and TTC. The

size of the AVs is a given, fixed value (4.87m length, 1.85m
width). However, the size of perceived HVs is not always

stable. It varies with time due to perception errors (such as

shading). Many datasets, including the Waymo CF data [15],

ignore this step.

Fig. 6. Distribution of HV lengths.

Because we excluded vehicles that are not passenger cars

when selecting CF pairs, we set a maximum length of 6.5m
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(pick-up truck) and a minimum length of 4m (small vehicle).

The following rules are used to estimate the size. (1) For each

HV, if the variance of the length time series < 0.3m, then

we choose the mean value. (2) Otherwise, perceived length

series are clamped between 3.5m and 6.5m, then we choose

the percentile at 0.95 (95%). The distribution of estimated

HV lengths is shown in Fig.6. The mean value is 4.38m,

which is close to the average length of passenger cars in the

US [21].

By now, the entire data enhancement procedure is finished.

Next, we will assess the quality of enhanced data.

V. ENHANCED DATASET EVALUATION

The enhanced dataset is split into two groups, following

AV (denoted as H-A) vs. following HV (denoted as H-H).

They will be assessed based on anomaly analysis and diver-

sity evaluation. We will show that the enhanced trajectories

have higher quantity and the dataset covers diverse regimes

for calibrating CF models.

A. Vehicle kinematics anomalies

For anomaly detection, we use the same rules as stated

in section III-B. The result is shown in Table.IV. After

processing, the anomaly percentage is significantly reduced

compared to the raw data in Table.III, especially abnormal

jerk sign inversion. The enhanced data is smoother and better

conforms to the vehicle’s kinematic constraints.

TABLE IV

ANOMALY ASSESSMENT OF THE ENHANCED DATASET

Statistics H-A pairs H-H pairs

Anomaly acc (%) 0.0082 0.0234
Anomaly jerk (%) 0.0039 0.0186
Anomaly jerk sign inversion (%) 0.455 0.454

B. CF regime diversity

Next, we will evaluate the regime diversity in both H-H

and H-A subsets. Here a regime refers to a driving situation

experienced by the following vehicle (usually restricted by its

leader). A higher diversity of regimes means that the dataset

is not just ‘big’ but also informative. For some CF models,

e.g. Intelligent Driver Models (IDM), certain parameters

cannot be calibrated if some specific regimes are missing in

the data [22]. Insufficient regime diversity in CF data may

also result in unrepresentative or over-fitted models [23], and

thus contradictory conclusions about driving behaviours.

To evaluate the regime diversity in the enhanced dataset,

we adopt the identification algorithm proposed in [24].

The algorithm consists of three steps: 1) segmenting the

follower’s speed profile into various sections, 2) categorizing

the sections into car-following (CF) and free-following (FF),

and 3) determining regimes based on the acceleration within

these sections. For the second step, a threshold is selected

based on the mean and variance of the distribution of time

gaps that are calibrated from Newell’s car-following model

[25] (we refer the readers to [24] for more details). Given

that the followers in H-H and H-A may exhibit different

time gap distributions, we perform two separate threshold

selection. Fig.7 compares the distributions of time gaps for

H-H and H-A, where a clear difference is shown between

following an HV vs. an AV.

Fig. 7. Distribution comparison between H-H and H-A time gaps calibrated
from Newell’s car-following model.

Sharma et al. [24] classify regimes based on the previous

studies by Treiber et al. [22], where standstill and deceler-

ation are excluded from free-flowing. This consideration is

reasonable for highways because the traffic flow on highways

is highly continuous. However, vehicles face more interrup-

tions in urban environments, such as vulnerable road agents

(cyclists, pedestrians) and traffic signals. Therefore, this

paper considers the following 7 regimes: free acceleration

(Fa), free deceleration not caused by the leading vehicle

(Fd), cruising at a desired speed (C), acceleration following a

leading vehicle (A), deceleration following a leading vehicle

(D), constant speed following (F), and standstill (S).

Fig.8 presents the proportion of accumulated duration of

the 7 regimes in H-A and H-H subsets. The regimes F, D, and

A constitute around 74% and 70% of the total duration in

H-A and H-H, respectively. This suggests that the followers’

behaviours depend on their leaders most of the time. This

dataset is therefore suitable for studying how followers react

differently to the leading AV vs. HV.

Fig. 8. Time proportion of car-following regimes.

According to Sharma et al. [23], to calibrate all parameters

in IDM, at least 3 regimes, A, D, and F, must be included

in a CF event. Based on this principle, we categorize all

CF pairs into two groups. One is ‘ADF+n’, which means all

ADF regimes are included and there are n extra regimes. The

other is ‘others’, which means at least one of ADF regimes

is missing (no matter how many regimes they have). The

results in Fig.9 show that 64% and 56% CF pairs fall in the
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Fig. 9. Regime diversity of car-following pairs.

ADF+n group in H-A and H-H subset, respectively. These

pairs support calibrating IDMs. Meanwhile, we would like to

emphasize that ‘others’ do not mean that these CF pairs are

useless. They are not suitable for calibrating IDM but they

are still informative for calibrating other more complex car-

following models, e.g. deep-neural-networks-based methods.

In summary, this section shows that the enhanced dataset

has fewer anomalies and high car-following regime diversity.

VI. CONCLUSION

This paper proposes a car-following trajectory data pro-

cessing procedure. This procedure has been applied to an

openly available dataset and validated by anomaly analysis

and regime assessment. The Lyft level-5 dataset, which

contains information about both autonomous vehicles and

human-driven vehicles, has been processed with this tech-

nique and the enhanced car-following trajectories are pub-

licly available. The initial dataset now is processed into a

high-quality, ready-to-use dataset. It contains human drivers

following autonomous as well as human-driven vehicles in

diverse scenarios. The processing procedure is essential for

doing further analysis. The published enhanced car-following

dataset is expected to help researchers better understand the

impact of AVs on traffic flow and to develop safer and more

effective AV systems in the future.
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