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i INTRODUCTION

In the present paper, the work conducted by the author regarding efficient determination
of hydrodynamic coefficients for manoeuvring ships within the manoeuvring work package of
the EU project VIRTUE' is presented. Based on various viscous-flow calculations for steady
drift motion, steady yaw motion and combined drift/yaw motion, a mathematical model for
the bare hull forces and moments is derived. The results show that using accurate viscous-flow
calculations, a considerable improvement in the prediction of the forces and moments on ships
compared to conventional empiric methods published in open literature is obtained.

Two hull forms are considered in this study. The first ship is the Hamburg Test Case (.HTC),
a single-screw ship. The second ship is the MARIN LNG carrier with twin gondolas, see also
Jurgens et al. [1].

2 CALCULATIONS

Series of calculations have been conducted in order to be able to derive the required hydrody-
namic coefficients, see Table 1. More information regarding the solver used for the calculation,
the method of solution, nomenclature and a sensitivity study conducted for the HTC can be
found in Toxopeus [2]. The experimental values were obtained by HSVA within VIRTUE.

Table 1: Overview of calculations

'Part of the work conducted for this paper has been funded by the Commission of the European Communities
for the Integrated Project VIRTUE under grand 516201 in the 6" Research and Technological Development
Famework Programme (Surface Transport Call).

i

Series HTC MARIN LNC
pure drift
pure yaw

[i - 0, 2.5, 5, 10, 15°

-y = 0.1, 0.15, 0.2, 0.3, 0.4, 0556

LI = 0, 25, 5, 10, 20,

-

30°

combined motion (LI,y) = (5°,0.2), (10°,0.2), (6°,0.4), (I0°,0.4), (15°,0.4) -
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3 MATHEMATICAL MANOEUV1UNG MODEL

Mathematical manoeuvring models for the bare hull consist in general of two different com-
ponents: (added') mass coefficients and damping coefficients. In earlier work (e.g. Vassalos et
al. [31, Buhan et al. [4]i), it was found that the sensitivity of the manoeuvrability to changes in
the added mass coefficients is small. Therefore, no calculations are required to obtain the added
mass coefficients and the added mass coefficients are approximated by using empiric formulae,
see e.g. Clarke et al. [5J.

The damping coefficients in the mathematical model are derived in several steps:

Linear coefficients for simple motions (slope of curves at ¡3 = O resp. y O)
Non-linear coefficients for pure transverse motion and pure rotation using empirical rela-
tions (based e.g. on work of Hooft [61)
Other non-linear components for simple motions
Cross-terms, based on combined motions

This approach is chosen to enable accurate modelling of the linearised behaviour for course-
keeping (1.), realistic modelling of the low speed/harbour manoeuvring characteristics (2.) and
accurate modelling of non-linear manoeuvres (3. and 4.). The following non-dimensionaiised
mathematical model for the transverse force Y and yawing moment N is obtained:

= . Icosßl . sinO + Y . cosß .y + . sin(3. IsinOI

+ ßI'I + 'a'b cos ¡3. sin' (3 . signsinß (1)

N' = N . cos/3 . sinß + N4 cos 13I 'y + JV IcosI3 i"I sign-y + N
. Vvi

+ (Nß . /3 + N y. signcos/3) .

+ Nb. cOSa (3 sin" . sign (cosß . sin /3) (2)

With equations (1) and (2) as the mathematical formulation for the bare hull manoeuvring
forces, the hydrodynamic derivatives are determined using the results of the available viscous-
flow calculations presented in Table 1. Table 2 shows the obtained manoeuvring coefficients.

Table 2: Estin ated bare hull i ianoeuvring coefficients

In Figure 1, good agreement with the experiments (designated exp) is seen for the results
based on the viscous flow calculations (designated cfd) and based on the mathematical model

2

Step Coefficient HTC MARIN LNG Coefficient HTC MARIN LNG
I 0.1830 00416 N 0.1403 0.0894

0.0250 - N4 -0.0270 -
2 1.1100 0:9662 N11 -0.0375 -0.1755

-0.6552 -0.9802 Nb 0.1314 -0.0373
a
b

3
2

2

3

a,
b

1

3
3
2

-0.0073 -

2 -
4 0.1635 - -0.8682 -

N 0.2753 -



(designated cfd-fit). Only the HTC results for the transverse force Y for pure yaw ('y) deviate
from the measurements. The magnitude of the Y force during pure rotation is however very
small and of less significance than the other force or moment components.
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Figure 1: Comparison between experiments and predicted forces and moments

In Table 3, the linear derivatives for the HTC are given according to empirical formulae in
open literature. Furthermore, the derivatives based on the measurements (exp), on the viscous-
flow calculations (cfd) and on the slender-body theory (sb, see e.g. Toxopeus [7]) are presented.
The errors in the predictions compared to the experimental values are shown in Figure 2. The
error is defined as error = (prediction/experiment - 1). It is seen that in general, both the
viscous-flow calculations and the slender-body coefficients approximate the experimental values
better than the other empiric formulae. Especially the de-stabilising (N/Y) and stabilising
N./(Y - m') arms are closer to the experimental ones.

4 CONCLUSIONS

The study presented in this paper demonstrates that the forces and moments acting on a
ship hull in manoeuvring conditions can be accurately predicted using viscous-flow calculations.
Comparisons with empiric formulae proposed in the past show that better linear hydrodynamic
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derivatives can be obtained when using CFD.
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Table 3: Comparison of linear coefficients, HTC

(3]
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4

Method Ref Y N, N/YJ Y,' N4 N.f,/(Y4 - m')
Kijima [8) 0.373 0.134 0.359 0.158 -0.054 0.730

Vassalos [3] 0.373 0.110 0.294 0.067 -0.053 0.323
Clarke [5] 0.357 0.139 0.390 0.067 -0.053 0.323
Norrbin [5] 0.365 0.130 0.356 0,092 -0.078 0.553

exp 0.175 0.137 0.782 0.032 -0.039 0.192
cfd 0.183 0.140 0.767 0.025 -0.027 0.130
sb [7] 0.253 0.151 0.598 0.058 -0.038 0.215

311)
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Figure 2: Comparison between errors in prediction of linear coefficients


