Microbial quality of swimming pool water
Treatment without disinfection, with ultrafiltration, with UV-based treatment and chlorination
Keuten, Maarten; Peters, Marjolein; van Dijk, Hans; van Loosdrecht, Mark C.M.; Rietveld, Luuk

Publication date
2017

Document Version
Peer reviewed version

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Microbial quality of swimming pool water

Treatment without disinfection, with ultrafiltration, with UV-based treatment and chlorination

Maarten Keuten1,2, Marjolein Peters1, Hans van Dijk1, Mark van Loosdrecht1 and Luuk Rietveld1

1) Delft University 2) Hellebrekers Technieken
Alternative disinfection

- **UV+H₂O₂** (Crandall ‘86, Dingman ‘90, Savino et al. ‘93)
- **UV in drinking water treatment** (Hijnen 2006)
- **Ultrafiltration** (van der Bruggen et al. 2003)
- **UV in pool water** (Caramello and Amisano 2001, Sobótka and Krysztofik 1984)
- **Ultrafiltration** (DIN 19643-4)
- **Natural waters** (Giampaoli eo al. 2014)
DIPool project

• Disinfection with ultrafiltration and UV-treatment every 30 minutes
• Reduction of nutrients with biological filtration

Goal: Investigate microbial water quality with UV-based treatment and influence of individual treatment steps
Microbial water quality

- Intact cell count (iCC) with flow cytometry
- Intracellular ATP (cATP)
- 2x per week in duplo

- $iCC + cATP \rightarrow$ metabolic state
- Tendency for overestimated results
Main design specifications

- Turnover: 30 min
- (re)circulation: 1 m³/h
- Setup volume: 500L
- Pool tank hydraulics:
 - Chlorination → well mixed
 - UV-based treatment → plug flow
Specific design specifications

- Biological sand filtration: 14-17 m/h
- Ultrafiltration:
 - 86 l/m²/h
 - 100-150 kD MWCO
- UV dose: 400 J/m²
- Sand filtration: 14 m/h
- Biological activated carbon filtration:
 - 10% side stream
 - 19 m/h
 - Norit PK1-3
Experiments

Without recirculation:
• Maximum concentration of nutrients
• Investigate influence treatment steps

With recirculation:
• Influence repetitive treatment and accumulation
Experiments without recirculation

- Biological sand filtration (BSF)
- BSF + ultrafiltration (UF)
- UV + BSF + UF
- UV + BSF + UF (25% BFA)
- Sand filtr. (SF) + chlorination

<table>
<thead>
<tr>
<th>NPOC (mg/L)</th>
<th>TN (mg/L)</th>
<th>PO₄ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>0.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Experiments with recirculation

- BSF + UF + UV
- SF + chlorination
- 10 h/d (continual + accidental) → BFA

<table>
<thead>
<tr>
<th></th>
<th>NPOC (µg/L)</th>
<th>TN (µg/L)</th>
<th>PO₄ (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With PO₄</td>
<td>32</td>
<td>64</td>
<td>2.4</td>
</tr>
<tr>
<td>Without PO₄</td>
<td>32</td>
<td>64</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Body Fluid Analogue (BFA)

Components

- Urea (95% of all N)
- Creatine monohydrate (5% of all N)
- Sodium citrate (all remaining C)
- Potassium hydrogen phosphate

- Cold stored, refreshed weekly
Settings

- Water temperature: 30-32 °C
- pH: 7.4
- Free chlorine: 0.3-0.5 mg/L
- Duration of each experiment: 23 days
Equipment preparation

Before each experiment:

• Chemical cleaning sampling tubes
• Chemical cleaning UF
• Backwash filters (SF, BSF BACF)
Sampling + analysis

• Constantly running sampling points
• Sampling 2x per week

Analysis in duplo:
• iCC (BD Accuri C6® fow cytometer)
• cATP (Junior LB 9509 Luminometer, Aquatools)
Results (without recirculation)

![Graph showing intact cells (cells/mL) versus intracellular ATP (ng/L) for different treatment methods: BSF, BSF + UF, UV + BSF + UF, SF + Chlor. The graph includes data from cold tap water without additions and results by Hammes (2010).]
Results (exp. without recirculation)

Results after 16, 21 and 23 days min-max (average)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>cATP ng/L</th>
<th>iCC Mcells/L</th>
<th>ATP/cell ag/cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV + BSF + UF 100% BFA</td>
<td>1.4-1.8 (1.6)</td>
<td>8.6-18 (12.5)</td>
<td>102-159 (133)</td>
</tr>
<tr>
<td>UV + BSF + UF 25% BFA</td>
<td>0.8-1.4 (1.1)</td>
<td>9.3-13 (11.1)</td>
<td>58-148 (102)</td>
</tr>
</tbody>
</table>
Influence treatment steps
(with recirculation)

<table>
<thead>
<tr>
<th>Treatment Steps</th>
<th>-log (C/C₀)</th>
<th>cATP</th>
<th>iCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSF (no disinfection)</td>
<td>BSF</td>
<td>0.17</td>
<td>-0.21</td>
</tr>
<tr>
<td>BSF + UF</td>
<td>BSF</td>
<td>-0.03</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>UF</td>
<td>0.16</td>
<td>-0.09</td>
</tr>
<tr>
<td>UV + BSF + UF</td>
<td>UV</td>
<td>0.19</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>BSF</td>
<td>0.22</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>UF</td>
<td>1.40</td>
<td>1.47</td>
</tr>
<tr>
<td>SF + Chlorination</td>
<td>SF (without flocculation)</td>
<td>-0.28</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Results (without recirculation)

![Graph showing the relationship between intact cells (cells/mL) and intracellular ATP (ng/L) for different treatments: BSF, BSF + UF, UV + BSF + UF, SF + Chlor. The graph includes data from cold tap water without additions and results by Hammes (2010).]
Results (with recirculation)

![Graph showing results with recirculation](attachment:image.png)

- BSF
- BSF + UF
- UV + BSF + UF
- SF + Chlor
- BSF + UF + UV, recirc, BFA + PO4
- BSF + UF + UV, recirc, BFA - PO4
- SF + Chlor, recirc, BFA + PO4
- SF + Chlor + BACF, recirc, BFA - PO4
- cold tap water without additions
- results by Hammes (2010)
Results (exp. with recirculation)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>cATP (ng/L)</th>
<th>iCC (Mcells/L)</th>
<th>ATP/cell (ag/cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSF + UF + UV (BFA + PO₄)</td>
<td>9.3-13 (11)</td>
<td>54-66 (60)</td>
<td>151-228 (190)</td>
</tr>
<tr>
<td>BSF + UF + UV (BFA – PO₄)</td>
<td>1.4-2.7 (2.1)</td>
<td>17-24 (21)</td>
<td>58-161 (109)</td>
</tr>
<tr>
<td>SF + chlorination (BFA + PO₄)</td>
<td>2.8-5.9 (4.5)</td>
<td>18-30 (23)</td>
<td>159-273 (197)</td>
</tr>
<tr>
<td>SF + chlorination (BFA – PO₄)</td>
<td>0.5-5.1 (2.8)</td>
<td>13-38 (25)</td>
<td>38-137 (88)</td>
</tr>
<tr>
<td>Cold tap water</td>
<td>1.4-4.5 (2.4)</td>
<td>59-150 (98)</td>
<td>15-35 (21)</td>
</tr>
</tbody>
</table>
Influence treatment steps (with recirculation)

<table>
<thead>
<tr>
<th></th>
<th>-log (\frac{C}{C_0})</th>
<th>cATP</th>
<th>iCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV-based treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool tank residence</td>
<td>-0.93</td>
<td>-0.82</td>
<td></td>
</tr>
<tr>
<td>Chemical addition</td>
<td>0.20</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>BSF</td>
<td>0.10</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>UF</td>
<td>0.50</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>UV</td>
<td>0.13</td>
<td></td>
<td>-0.12</td>
</tr>
<tr>
<td>Chlorination-based treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pool tank residence</td>
<td>-0.31</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>Chemical addition</td>
<td>0.33</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>SF (with flocculation)</td>
<td>0.21</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>
Results

Influence FAC concentration

![Graph showing the relationship between intact cells (# cells/mL) and free available chlorine (mg Cl₂/L). The graph plots data points on a logarithmic scale, indicating a decrease in intact cells as the free available chlorine concentration increases.](image-url)
Conclusions to microbial water quality

- UV-based pool water similar to chlorinated pool water
- UF is important treatment step
- SF + flocculation improves water quality
- C-limitation is not likely in pool water
- P-limitation can be additional restrain
Acknowledgements

• Financing organisations: Ministry of economic affairs, European Fund for Regional Development (EFRO), Hellebrekers Technieken, van Remmen UV Techniek, AkzoNobel Industrial Chemicals, Coram International and Sportfondsen Nederland
Thanks for your attention

Questions ?