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Estimating Signal-to-Clutter Ratio of InSAR Corner
Reflectors From SAR Time Series

Richard Czikhardt™, Hans van der Marel™, Freek J. van Leijen

and Ramon F. Hanssen

Abstract— The estimation of Signal-to-Clutter Ratio (SCR) of
a radar point target, such as a corner reflector, is an essential
step for synthetic aperture radar (SAR) interferometry and
positioning, as it influences the phase measurement variance
as well as the absolute positioning precision. The standard
method to estimate the SCR of a point target relies on the
debatable assumption of spatial ergodicity, using the clutter of the
surrounding as representative of the clutter at the point target.
Here, we estimate the SCR of a corner reflector using a time
series of SAR measurements, i.e., assuming temporal ergodicity.
This assumption is often more realistic, particularly in a complex
environment, in the presence of other point scatterers, and for
small-sized reflectors. Empirical results on a corner reflector
network, using Sentinel-1 SAR measurements, show that the
temporal method yields a less biased and more precise estimate
of the average SCR. A second experiment shows that the InSAR
phase variance as well as positioning precision, predicted using
SCR estimated by the temporal estimation method, is closer to
the truth.

Index Terms— Corner reflector (CR), radar-cross-section
(RCS), signal-to-clutter ratio (SCR), synthetic aperture radar
(SAR), SAR interferometry (InSAR), SAR positioning, InSAR
phase variance.

I. INTRODUCTION

ORNER reflectors are commonly used for radiometric
and geometric synthetic aperture radar (SAR) sensor cal-
ibration and validation, [1]-[3], SAR interferometry (InSAR)
applications over areas with few natural coherent reflectors [4],
and for InSAR datum connection and geodetic integration [5].
These methods require a precise and unbiased estimation of
the Signal-to-Clutter Ratio (SCR): the ratio of the Radar-Cross
section (RCS) of the reflector and the power of its background
clutter. The SCR estimate is used to estimate the InSAR phase
variance [6] and the absolute positioning accuracy [7] of point
targets, such as corner reflectors, for geodetic applications.
The standard method for estimating RCS and SCR of
point targets involves spatial numerical integration of pixel
intensity values in square-law detected SAR images [8], [9].
It assumes that the background clutter over the integrated area
exhibits the same statistical properties as its surroundings, i.e.,
spatial ergodicity. However, for geodetic applications using
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medium-resolution SAR data clutter in the surrounding pixels
is often not representative and sometimes contains other point
scatterers (PSs), violating the assumption of spatial ergodicity.

Here, we propose to estimate the SCR of small-to-
medium-sized corner reflectors using SAR time series.

The objective is to obtain an unbiased and precise average
SCR estimate under the assumption on the temporal ergod-
icity. SAR time series are currently in abundance thanks to
the operational SAR satellite missions, such as Sentinel-1.
A secondary objective of the proposed method is to utilize
the time series of RCS to track the reflector performance, and
identify possible outliers due to damage, debris accumulation,
or other external factors.

II. METHODOLOGY

A point scatterers (PS) response in the SAR image is a
“sinc-like” 2-D impulse response function (IRF) in azimuth
and range [10]. A corner reflector is an approximation of
an ideal radar PS, P. Considering single-look-complex (SLC)
SAR images in the zero-Doppler geometry, the phasor mea-
surement y, per resolution cell R, containing a dominant PS
P consists of a real Re{y,} and an imaginary Im{y,} signal
component

Y, =Rely,} + jIm{y,} = Y Arexp(jy:)

i€R,

ey

which is the coherent summation of the backscatter from the
PS P and the scattering contributions of its surroundings—
the clutter—within the same resolution cell R,, where A is
the amplitude and y the phase.

A. Radar Cross Section

The power (intensity) of the signal in (1) is A% = Re{y,}*>+
Im{y,}>. The pixel intensity is stored in the SLC image as a
digital number (DN). Scaling factors are used to express DN
in terms of a specific backscattering coefficient.

In the context of PS, DN is converted to RCS, which
describes the ability of a PS to intercept incident energy with
an effective cross-sectional area and reflect it in the direction
of a radar receiver [1]. For an idealized PS response in the
absence of clutter, the RCS is the integral of the power (signal
energy) under its IRF [8].

RCS is strictly related to PS. For distributed scatterers (DS),
a dimensionless backscattering coefficient, g, is generally
used to describe their mean reflectivity per unit area of
a horizontal surface. Contrary to oo, radar brightness, o,
is independent of the radar signal’s local incidence angle, as its
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area normalization is in the slant-range direction [11]. Radar
brightness is computed via [12]

Bo = (DN* — ) oz K~ 2
where the calibration constant K and the pixel scaling factor
opn are annotated in the metadata of SLC products. opn
is given as a pixel lookup table (LUT). The thermal noise
correction 7, i.e., the Noise-Equivalent-Sigma-Zero (NESZ),
is applied if available in the LUT annotation (e.g., in the case
of Sentinel-1 data [13]). Given the local incidence angle, 6,
oy is readily obtained from fy as oy = Sy sin 8. Henceforth,
we assume a dimensionless, calibrated, and noise-corrected
amplitude measurement, A, obtained from (2) as A = ().

B. Signal-to-Clutter Ratio

DS can be considered as the coherent summation of many
random elementary scatterers within a resolution cell. There-
fore, the central limit theorem applies, and the probability
density function (PDF) of a DS complex phasor per image
pixel is circular Gaussian [14]. Consequently, its amplitude A
(1) is Rayleigh distributed with [15]

A2

A
PDF(Alo) = — exp {_ﬁ] 3)

where o is a scale parameter, related to the expected value of
the power by E(A%) = 202, and the phase y € [—m,7) is
uniformly distributed [16].

PS, on the other hand, can be considered a signal determined
by their physical properties and coherence. However, they are
typically superimposed on the surrounding scatterers within
the same resolution cell, i.e., the clutter. The ratio between
the signal and the clutter is described by the SCR, and is a
metric for the noise in the PS. Consider a PS characterized
by complex phasor y. Clutter in the same resolution cell
introduces circular Gaussian noise n characterized by its
expected value E(n) = 0 and variance 0,12 for both its real
and imaginary components. The PS amplitude A (1) follows
a Rice distribution [16], [17]:

—(A%+ )
202

PDF(A AL (As
( |ﬂ,0n)—;10 o2 €xp “)

n n

where Iy is the modified-Bessel function of the first kind
with order zero and u = E(A) is the expected value of the
amplitude. The shape of the Rice distribution is determined
by the SCR

2
u

SCR = — 5

20?2 )

which is the ratio of a reflector’s signal power to the power

of the surrounding clutter within the resolution cell. Note that

for clutter only, the Rice PDF transforms to a Rayleigh PDF

driven solely by variance anz =[E(4?)/2.
C. Spatial SCR Estimation Method

If SAR sensor and processing gain factors are known, and
DN values, see (2), are scaled to pixel intensities, the standard
RCS estimation formula [8], [9] can be rewritten as [12], [18]

Ip Py

RCS = —— 6
X Cr (6)
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where [Ip is the total (integrated) power in the mainlobe
(which is not directly observable due to the superimposition
with clutter occupying the same resolution cell as the point
target), Cr is the relative power in the sidelobes and P4 is
the sample (pixel) area. As the IRF is finitely sampled by the
SAR image pixels, oversampling and numerical integration is
employed within the estimation process. The components of
(6) are approximated as follows:

Ip We estimate the background clutter C from four
areas (quadrants) outside the cross-shaped area of the
IRF, assuming spatial ergodicity. We subtract C from all
pixel intensities within a center area of 2 by 2 resolution
cells (half-power width of IRF), centered at the point
target. We integrate corrected pixel intensities within the
center area, which yields /p.

Cr We estimate the sidelobe energy from pixels spanning
the cross-shaped area of the IRF (excluding the center
area) within 10 by 10 resolution cells. We then compute
the ratio between the total energy in the sidelobes
(excluding the main lobe) and the energy in the main
lobe, i.e., the integrated sidelobe ratio (ISLR). The
relative power in the sidelobes is Cr = 1/(1 + ISLR).

K calibration constant as annotated in the SLC metadata.

P, azimuth times slant-range pixel spacing in meters.

The SCR is obtained as the ratio of the estimated /p and the
estimated clutter power C, multiplied by the mainlobe area

A mainlobe

Ip
SCR= ——+" | (7
C- Amainlobe

D. Temporal SCR Estimation Method

An alternative to the spatial SCR estimation method is
to compute the average SCR from the time series of the
instantaneous “apparent RCS”, using the peak method [8],
[19], and maximum likelihood estimation (MLE) to estimate
the mean RCS and the clutter. Defining the resolution as the
half-power width (—3 dB) of the IRF main lobe, multiplying
the IRF peak intensity with the resolution cell area yields the
volume of a rectangular box which is the same as the power
under an IRF.

The original peak method assumes that the space-averaged
clutter and mean system noise are used to correct the
peak response. However, the clutter power estimated from
nearby pixels in medium-resolution SAR imagery in areas
with spatially varying clutter may be inaccurate. Therefore,
we intentionally omit this correction in the “apparent RCS”
computation

RCS ~ fy - Ag-A, [m?] (8)

where A, are the azimuth and range resolution, respec-
tively. Peak and clutter contributions are separated from the
amplitude time series assuming temporal ergodicity. Given a
reasonably large time series (>20 images), two independent
clutter power estimates are obtained by:

1) a maximum likelihood fit of a Rayleigh distribution, see
(3), to the amplitude time series of the site prior to the
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Fig. 1. (a) Network of 24 Integrated Geodetic Reference Stations. (b) CRDS
reference reflector used in the second experiment. (c) Integrated Geodetic
Reference Stations DBFT reflector used in both experiments.

installation of the reflector, to estimate the power of the
clutter, and

2) a maximum likelihood fit of a Rice distribution to
the peak amplitude time series of the reflector after
installation, to separate the clutter and PS contributions
via its two parameters, see (4). The first parameter,
[vLE, multiplied by the resolution cell area yields the
reflector’s RCS, see (8). The second parameter, Gy g,
represents the power of the clutter while the reflector
is in place (provided its statistical properties are not
undergoing significant temporal changes). The ratio of
the two parameters is the estimate of the SCR, see (5)

a2
SCR = SMLE )

2651e
Note that the sample mean and the standard deviation (STD)
are biased estimators for x and o, although their ratio, known
as the normalized amplitude dispersion, is generally used
as the phase STD proxy in InSAR applications [17]. If the
assumption on the stationarity of the clutter is violated, it still
yields the unbiased average SCR estimate, although not fully
representative for the instantaneous RCS (considering, e.g.,
seasonal or secular variations). Absolute radiometric calibra-
tion, however, is not the primary objective of the temporal
estimation method. Potential outliers in the “apparent” RCS
(e.g., due to debris accumulation) are readily handled in time
series analysis using a threshold of three median absolute
deviations (MAD), thus ensuring the reflector’s RCS does not
significantly vary in time.

II1. EXPERIMENT

The viability of the proposed method is tested on Sentinel-1
C-band SLC time series in two different experiments in
the Netherlands. The first experiment uses a corner reflector
network with 24 sites (48 reflectors), see Fig. 1. The second
experiment uses two proximate corner reflectors. For each
experiment, a time series of three years with a 6-day acqui-
sition interval is collected, from April 2017 until April 2020,
including one year of measurements before installation. For
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Fig. 2. Sorted and scaled amplitude data of a resolution cell before (a) and
after (b) corner reflector installation, corresponding to the background clutter
and the point target response, respectively. The background clutter follows a
Rayleigh distribution whereas the reflector follows a Rice distribution.

each reflector, an image patch of 10 x 10 resolution cells is
selected and oversampled by a factor 32 in the frequency
domain using zero-padding. Then, we estimate the precise
peak position and amplitude by fitting a 2-D elliptic paraboloid
over a small image subpatch, centered at the oversampled
amplitude maximum of the initial image patch [3].

A. Corner Reflector Network Experiment

Both the spatial and the temporal RCS and SCR estimation
methods were applied on ascending track 88 and descending
track 139 covering the network of Integrated Geodetic Ref-
erence Stations (IGRS) in Groningen, see Fig. 1(a). Each of
the 24 IGRS stations consists of a global navigation satellite
system (GNSS) antenna and two back-flipped triangular trihe-
dral corner reflectors, see Fig. 1(c), with an inner edge length
of 0.9 m and a corresponding theoretical RCS of 29.5 dBm? at
bore-sight for C-band [20]. Fig. 2(a) and (b) shows the distri-
bution of the observed radar brightness values for a particular
resolution cell, before and after corner reflector installation,
respectively. The corresponding distribution functions match
with the Rayleigh and the Rice distribution. This sustains our
assumption on the validity of these functions, see Section II-D.

Fig. 3 shows scatter plots of the temporally averaged results
for all 48 reflectors. Fig. 3(a) confirms that the estimated
RCS values of the reflectors by the temporal method (TM)
are comparable to the spatial method (SM). The mean and
STD of the differences are 0.04 and 0.42 dB, respectively. The
black dots show the analytical RCS values computed using
a geometric optics simulation [1], [21], taking into account
the corner reflector alignment for each acquisition. Fig. 3(b)
shows that the precision of the RCS estimates, expressed as
the STD of the time series, is significantly better for the TM.
This is mainly because the TM does not use the instantaneous
clutter estimates to correct (8), whereas the SM does. The
higher precision of the TM is also justified considering the
reported 0.25 dB radiometric stability (1 sigma) of Sentinel-
1 SLC data [2]. Fig. 3(c) shows that the differences between
the spatial and TMs for SCR estimation are significant. This is
caused by the different strategies of clutter estimation. While
the SM uses samples outside the IRF (which represents sur-
faces tens to hundreds of meters away from the actual reflector
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Fig. 3. (a)~(c) Comparison of the spatial method (SM) and the temporal

method (TM) for RCS and SCR estimation of 48 corner reflectors (CRs) on
three years of Sentinel-1 time series from ascending track 88 and descend-
ing track 139. (d) Clutter power estimated by the temporal method (TM)
before/after corner reflector deployment. Each triangle represents a single CR
of the network. (a) Average RCS. (b) RCS STD. (c) Average SCR. (d) Clutter
power.

position in case of medium-resolution data), the TM uses
samples directly from the reflector, albeit assuming temporal
ergodicity of the SCR in the time series. Finally, Fig. 3(d)
depicts an independent validation of clutter power estimates
using the TM, see Section II-D. The clutter power values
estimated from time series after reflector installation (Rice
distribution fit, scale parameter) differ by 0.05 dB in the mean
with 3.84 dB STD from the independently estimated values
from the time series before reflector’s deployment (Rayleigh
distribution fit).

The estimated SCR can be used to predict the peak position
variance in the radar coordinates (azimuth and range) [7].
We do the reverse and use the observed peak position variance
to compare with the predictions computed by the spatial and
the TM. The observed subpixel peak positions were corrected
for the effects of reference frame motion, solid earth tides,
atmospheric signal delay, and Sentinel-1 specific processor
biases in both azimuth and range, as reported in [22]. Fig. 4
shows that the positioning STDs predicted by the SM are
higher than the observed STDs. On the other hand, STDs
predicted by the TM are equal or slightly lower. The latter
is what we expect: the predicted values are the Cramer—Rao
Lower Bound (CRLB) and should be smaller than those
observed, and the observed STD is affected by other errors,
such as variations in tropospheric signal delay, which could
not be completely mitigated.

B. Short Baseline Experiment

An experiment to evaluate the bias in the estimated SCR
is performed on a test site where two corner reflectors,
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Fig. 4. Predicted versus estimated STDs (STD) of observed peak positions
in azimuth and range (in meters) from a time series of 150 Sentinel-1
acquisitions. Each point represents a single corner reflector.

TABLE I
SCR-DERIVED VERSUS OBSERVED DOUBLE-DIFFERENCED
PHASE STANDARD DEVIATIONS (STDS), IN MILLIMETERS

Track Reflector SM ™ SM ™ NS
RD .22 .1

DSC t037 CRDS 0 0-10 1.00 0.47 0.43
DB 0.67 0.32

DSC t110 CRDS 0.21 0-11 1.13 0.47 0.44
DBFT 0.77 0.31

“CRDS” and “DBFT,” form a very short baseline of 102 m
length. Under such circumstances, the clutter can be consid-
ered the main component of the phase variance. CRDS is a
square-based trihedral, see Fig. 1(a), with an inner edge length
of 1.425 m and a corresponding peak-RCS of 40.7 dBm? for
C-band, while DBFT is a back-flipped triangular trihedral with
an inner edge length of 0.9 m and a corresponding peak-RCS
of 29.5 dBm? for C-band.

The CRLB, 5%, [6] of the single-epoch phase mea-
surement 7, computed from the estimated SCR and prop-
agated to the double-differenced InSAR phases, aigR, with
”iqﬁu = 20(/2,’, + 20(/211,, is compared to the STD G4 esti-
mated on the actual observed double-differenced phase mea-
surements. Results for different SCR estimation methods
are shown in Table I. For the SM we used the tempo-
rally averaged SCR. The empirical STD, 6¢4, is computed
from the detrended double-differenced phase measurements
of two descending Sentinel-1 tracks spanning 2.5 years,
i.e., 150 acquisitions, see Fig. 5. Considering the sensor noise,
not accounted for by the CRLB prediction, the comparison
shows that the TM provides a more realistic, unbiased phase
variance prediction, hence the SCR estimate, while the SM
overestimates it, even if a sizeable temporal average is used.

IV. DISCUSSION AND CONCLUSION

The pros and cons of the spatial and temporal SCR estima-
tion methods for corner reflectors are summarized in Table II.
The significant STD of the clutter power differences, estimated
by the TM, shows that the temporal ergodicity assumption
may be violated. Nonetheless, for small-sized InSAR corner
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TABLE II
COMPARISON OF THE SPATIAL AND THE TM FOR SCR ESTIMATION

Spatial method (SM) Temporal method (TM)

advantages

o Epoch-wise description of IRF
o Instantaneous RCS representa-

tive of secular or seasonal effects
e Invariant to resolution values

o Higher precision

o Unsupervised clutter estimation

e Less biased SCR estimate in
a complex environment

disadvantages

Assumption on temporal ergod-
icity of the clutter, time series
needed

Precise resolution values needed

e Assumption on spatial ergodic- e
ity of the clutter

o Biased SCR estimate in case of
close proximity of other point e

scatterers or significant clutter o Sidelobes not accounted for
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Fig. 6. Empirical distributions of quarterly temporal subsets (7'/4, where

= 1 year) of the amplitude time series for DBFT reflector (a) and the
corresponding background clutter observed prior to reflector deployment (b).
p-values come from the Kolmogorovov—Smirnovov test (KS) 2-sample test.

reflectors with proximate PSs, this assumption is often more
realistic than the assumption of spatial ergodicity. As an
example, Fig. 6 shows empirical distributions of the amplitude
time series for reflector DBFT split into quarterly temporal
subsets, 7'/4, where T = 1 year. Using Kolmogorov—Smirnov
2-sample tests, we could not reject our two hypotheses that the
subsets with the reflector [Fig. 6(a)] follow the same proba-
bility distribution and the subsets with the clutter [Fig. 6(b)]

4012605

follow the same distribution. Moreover, the assumption of
spatial ergodicity cannot be fulfilled as the surroundings of
the reflectors are often not homogeneous random scatterers
but may contain several other PSs. The temporal SCR esti-
mate, invariant to the potential RCS estimate bias, is more
realistic with respect to the STD of the phase measurement
and positioning precision, which are imperative for InSAR
applications.
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