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1. Inthe literatures it is implicitly assumed that the power-law is the only suitable kernel function for

the Schapery model. This assumption is not correct.

2. Pure viscoelastic matter does not exist. But all matter exhibits viscoelastic properties at a certain

temperature level and after a certain period of time.

3. ‘Material constants’ are never constant.

4. The micro-mechanical modelling of the global behaviour of composites shows many similarities

to attempting to explain the human behaviour by means of genetics.

5. Ugliness may become beauty when it grows up.

6. The meaning of life can only be hidden in its evolution.

7. In a family with two children, one looks like the father and the other like the mother.

8. The previous statement does not apply to a family with a twin.

9. It is potentially dangerous for a human society to rely solely upon a centralized supply system,
especially for food and energy. A solution is to adopt varieties of supply sources in an independent

way.

10. Consequently, the scale of a building or a city should be limited.

11. If people ate the same food, there would be no conflict/war in this world.
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1. In de literatuur wordt impliciet verondersteld dat de machtsfunctie de enige geschikte kernfunctie
voor het Schapery-model zou zijn. Deze veronderstelling is niet juist.

2. Een zuiver viscoelastisch materiaal bestaat niet. Maar alle materialen vertonen viscoelastische
eigenschappen bij een zeker temperatuurniveau en na een zekere tijdsduur.

3. "Materiaal constanten” zijn nooit constant.

4. Het micromechanisch modelleren van het globale gedrag van composieten vertoont veel overeen-
komsten met het pogen om met behulp van de genetica het menselijk gedrag te verklaren.

5. Lelijkheid kan uitgroeien tot schoonheid.

6. De betekenis van het leven kan alleen zijn verborgen in zijn evolutie.

7. In een gezin met twee kinderen lijkt het een op de vader en het ander op de moeder.
8. De vorige stelling is niet van toepassing op een gezin met een tweeling.

9. Het is een potentieel gevaar voor een menselijke samenleving volledig te steunen op een gecentra-
liseerd bevoorradingssysteem, in het bijzonder voor voedsel en energie. Een oplossing ligt in het toe-
laten van meerdere van elkaar onafhankelijke bevoorradingsbronnen.

10. Dientengevolge zou de schaal van een gebouw of een stad beperkt moeten blijven.

11. Er zou geen conflictloorlog in deze wereld zijn, indien alle mensen het zelfde voedsel zouden eten.
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Summary iX

Summary

In order to analyse the long-term time-dependent behaviour of unidirectional polymeric matrix com-
posites micromechanically, a constitutive model for the matrix material, polyester, is necessary. It
should be able to describe the matrix behaviour adequately. A 3D model based on nonlinear viscoe-
lastic theory has been set up and the aging effect and the creep Poisson’s effect have been taken into
account. This model is then implemented into an FEM package. A series of experiments have been
done such as biaxial and cyclic loading tests. Excellent agreement between experiment and theory is
obtained.

Further this matrix material model is employed to simulate the composite creep by means of finite
element calculations. The fibre packing geometry has been found to be important for both the local
stress field and the global deformation. The traditional uniform hexagonal and rectangular geometry
of fibre packing have been found to be inappropriate for simulating the real unidirectional composite
behaviour. To take into account the non-uniformity of the fibre packing, such as the fibre-rich area
and matrix-rich area, the global creep deformation can be modelled in a better way. As an improved
approach, two special periodic packing geometries have been proposed. These contain the local non-
uniform fibre array but are still periodic. These packing geometries can provide cell models which are
convenient for numerical analysis. Compared with the test data and the traditional method, the new
cell models have demonstrated to yield a better agreement. In this thesis, the phenomenon of stress
redistribution in the matrix and fibres due to time-dependent deformation has been exhibited for the
first time. The matrix shrinkage induced prestressed state and its influence on both the local stress
field and the global creep deformation has been considered as well.



Chapter 1

Introduction

1.1 Foreword

Plastics are nowadays a key part of our daily life. From packaging material to automobile parts, the
industry can provide a range of engineering plastics with a unique balanced combination of properties
tailored exactly to meet new demanding applications. Moreover plastics enable the designer’s exper-
tise to be exploited to the full.

Plastics have been developed with a well-deserved reputation for good performance through proper-
ties such as low density, toughness, corrosion resistance and electrical insulation, which are all inher-
ent to the polymer. It is possible to achieve those special properties required by demanding
applications.

The history of using composites dates back very early from about 1000 BC in the Middle East, where
people started to make mud and straw bricks. The application of polymeric composites began in this
century. In the beginning, it was common to add fillers into the basic resins, such as chalk, mostly
because it made the resin cheaper. Later fillers were added to improve various properties of plastics,
such as processability or reduced shrinkage, electrical resistivity, lubricity, elevated temperature sta-
bility, fire and smoke control. But fillers are generally referred to as reinforcements only, when their
main objective is to improve the mechanical properties, such as strength, stiffness and toughness.

Polymer based composites or reinforced plastics comprise a group of materials, generally reinforced
with fibrous or high aspect ratio particulate fillers. Continuous fibre reinforced materials contatn less
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polymer and therefore are dominated by the fibre. This is in contrast to thermoplastics with particu-
Jate fillers, which usually contain more polymer than filler and therefore their mechanical properties
are dominated by the polymer component.

Three major forms of reinforcement are used continuous filaments, discontinuous filaments and par-
ticulate reinforcement. The reinforced plastics may be separated into two sub-categories, commodity
composites and advanced composites. The commodity composites are based on E-glass-fibre and par-
ticulate reinforcement with the cheaper thermosetting and thermoplastic matrix materials. They are
mostly used in marine, construction, land transportation and many other industries. These materials
account for the most of the total composite market. The advanced composites are based on the higher
performance fibres, e.g., carbon (graphite), high performance glass, aramid, high performance ther-
moplastics and ceramics. They are often combined with higher performance polymeric matrices, their
cost is up to 100 times greater than the commodity composites and their application is largely in the
military, acrospace and sports equipment markets.

The unidirectional continuous fibre reinforced polymeric composites are polymers reinforced with
continuous and straight fibres which are laid parallel to each other in a chosen direction. The poly-
meric matrix is a continuous phase which supports the fibre and provides adequate environmental
protection. The interface controls the transfer of stress from matrix to fibre and also has a strong influ-
ence on the toughness and on damage tolerance. In the fibre direction, mechanical properties are
dominated by the stiff and strong fibres. Transversely, however, the matrix and interface play domi-
nant roles in the deformation.

For the E-glass/unsaturated polyester system, a commodity composite, the mechanical properties of
E-glass may determine the longitudinal properties of the composite, while those of the polyester
material determine the transverse properties. The unsaturated polyester resin used for the present
research is a liquid when supplied, and has a low viscosity which suggests a good processability. Dur-
ing the curing process, the molecular weight increases and an infusible and insoluble cross-linked
polymeric network is formed. The possible fast curing property enables a high efficiency in mass pro-
duction. Variations in formulation allow a wide range of viscosities, cure rates and final properties to
be achieved. Unsaturated polyester resin is dominant in the commodity composites market. It is man-
ufactured in much greater quantities and is cheaper than all alternatives.

The resin used in the present research is an unsaturated polyester, resin: Synolite 593-A-2, produced
by DSM, The Netherlands. This unsaturated resin is a liquid with a viscosity of about 2000 cp. It
appears as slightly straw coloured. The crosslinking can be initiated by adding 0.5% (in weight) of
Cobalt Octoate, an accelerator, and 1.5% (in weight) of MEK (Methyl Ethyl Keton), a catalyst. The
resin then cures within one to three hours. For obtaining a more chemically stable material, a postcur-
ing procedure is necessary at elevated temperatures, 24 hours at 60°C and 24 hours at 80°C. The post-
cured polyester is a brittle plastic with a high E-modulus of 4~5 GPa.

The E-glass fibre is a composition called aluminium-boro-silicate glass®%, which is a stable solid
material with an E-modulus of 73 GPa. The diameter of the fibre is about 15 um. This size deter-
mines, to a large extent, the processing characteristics of the glass fibre products and the conditions at
the glass-matrix interface in the composite material.
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The unidirectional composite was manufactured by the filament winding technique, the details can be
found in Chapter 7. This technique is ideal for mass production of simple axially symmetric compo-
nents, e.g. tubes, but is adaptable for more complex forms too. It is amenable to complete computer
control.

In a unidirectional fibrous composite, the interface between the matrix and the fibres, or even an
interphase, may play an important role in its fracture behaviour. In the present research however this
interface is assumed as a perfect bonding surface. No special properties are defined on the interface.
The reason for this assumption is the fact that evidence is lacking either about a mechanically impor-
tant thickness of the interface or about the mechanical properties of such an interphase and therefore
only the bonding strength may be special and different from both the matrix and the fibre strength.
But the bonding strength will be useful in a fracture analysis of the composite. The objectives of this
research are limited to the time-dependent behaviour of this sort of composite when loaded in the
direction transverse to the fibres.

1.2  Objectives

In order to investigate the time-dependent composite behaviour, the matrix constitutive behaviour
must first be studied. Therefore this work deals with two major objectives,

1. A time-dependent nonlinear theory for unsaturated polyester matrix material;

2. The transverse behaviour of unidirectional fibrous composites.

These two studies will establish a foundation for the further research of the fracture or cracking
behaviour of unidirectional composites under a transverse loading condition and of laminates with
different layer arrangement. In this thesis, only the two parts of work mentioned above are presented.

It is of great interest to study the UD composite behaviour in the transverse direction. In practice,
laminates which consist of several layers of UD composite are often used. Although the laminates are
generally designed in such a way that the reinforcing fibres take the majority of the loads, failure
often starts in the layers which are loaded in the transverse direction to the fibres, simply because the
UD composite has a much higher strength in the fibre direction than in the transverse direction.

For the constitutive law of the matrix material, the time-dependence basically concerns the creep/
relaxation behaviour, which can be accurately depicted by a viscoelastic theory due to its feature of
recoverable deformation. However, for the long-term behaviour, polymers age and become stiffen
and more compact in volume. In this case, the age of the material affects the rule of the time-depend-
ence which manifests itself not only in its stiffness but also in the creep law of the composite.

A good description of the stress-strain relation for a general loading situation, needs a three-dimen-
sional interpretation where the coupling between different features needs more attention to be paid.
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The applicability is often prior to all others. The theory must be finally installed into a finite element
computing code and only then, a three-dimensional analysis is made possible.

Finite element computations are needed to be carried out on the purpose of composite analysis. The
inclusions or fillers in the composite cause the stresses which are concentrated in some places where
the matrix material undergoes a local large deformation and eventually may develop a local failure.
The fibre packing geometry plays an important role in the stress and strain distribution under loading.
In the extreme case, when twe fibres contact each other, this contacting area is a defect in the compos-
ite. This area can cause a premature local failure or the initiation of cracks. More generally, the ran-
dom pattern of the fibre packing always constructs the areas where fibres are close to each other,
although the fibre volume fraction is not high. These areas contribute to the building-up of the stress
concentration, which is much more severe than in the case of a uniform pattern, such as it occurs in
the hexagonal case of fibre arrangement.

The shrinkage of the matrix will alter the stress field built up by the loading. On the other hand, the
shrinkage induced prestress field will fade away itself due to the relaxation process because of the
viscoelastic nature of the matrix. Therefore the age of the composite works in two directions. One is
the physical aging effect on the polymer, and the other is the relaxation effect on the prestressed state
of the composite.

1.3 Outline of the Thesis

The thesis comprises seven chapters. In the second chapter, a theoretical basis is set up for the
research of the matrix material. Most of nonlinear viscoelastic theories are not new. However, when a
specific material is proposed to be modelled, many of them can not be adapted to the application.
Actually most of these theories only have their academic significance but are not applicable in prac-
tice. The rest have their deficiencies here and there, and must be improved and modified before any
application may take place. Among different possibilities, Schapery’s theory was adopted in Chapter
2 in which, improvements, modifications and simplifications are performed. Finally the model
parameters have been characterized by simple step load test data and are afterwards compared to
other test data. With the data of the cyclic loading case, the comparison has approved the model accu-
racy.

Chapter 3 presents the aging phenomena of polyester. The theory has been established according to
the test data. Chapter 4 deals with the development of a three-dimensional model. A creep Poisson’s
ratio (which remains a constant) is introduced. In Chapter 5 a numerical scheme has been developed
as it was implemented into a commercial finite element software package. By means of this finite ele-
ment code, the three-dimensional model has been applied to simulate the stress distribution in a plate
with a circular hole as well as that of the biaxial loading case in Chapter 6. The calculated results have
been found to agree quite well with the test data. Finally, in Chapter 7, the nonlinear composite creep
behaviour has been analysed by using a micromechanical model. A cell model is developed based on
a special fibre packing geometry and the effects of the shrinkage of the matrix material has been con-
sidered.



Chapter 2

Time Dependent
Constitutive
Modelling

In this chapter, the constitutive framework, used to describe time dependent material behaviour, is
briefly described. Time dependent behaviour is assumed to follow a single integral nonlinear viscoe-
lastic model, which is due to Schapery. The model is modified in order to include physical ageing.
This is accomplished by implementing the effective-time theory of Struik into the nonlinear viscoe-
lastic model. Some important ensuing restrictions on the model parameters are discussed.

2.1  Viscoelastic Theories

2.1.1  Linear Viscoelasticity

Linear viscoelastic theory is considered to be a useful approximation of the time dependent behaviour
of materials at small strains. Viscoelasticity manifests itself through features like creep under constant
load or stress relaxation at constant deformation. Linear viscoelastic models, such as the Maxwell
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model, the Voigt model and the standard linear solid or Kelvin model, are composed of combinations
of linear springs and dashpots. More general models may be composed by adding more elements to
the Kelvin model. One of the most general uniaxial expressions for a linear viscoelastic material
behaviour is given by

2 m 2 n
6. _dac dc €, OJE de
PeS + Py +Pys o 4P, I = quE e Ayt 2.0
MR TP ¥ Y Y o
where € and o are strain and stress respectively, and p; and g; are material constants (i =0, 1...., m; j=
0, 1...., n).

An explicit expression between strain and stress for one dimensional linear viscoelasticity is due to
Boltzmann (1844-1906). Boltzmann’s superposition principle uses a convolution integral with an
integration limit over the whole stress or strain history.

The superposition principle is given by either

t
e() = o)+ jJ(r—t)c‘!(t)d‘: 2.2

+

0

in the case of a creep formulation, or

t

o) = B + [Eu-ne(ndr (2.3)

.

0

when stress relaxation is considered. Here, J and E are the compliance function and the modulus
function respectively, both functions are independent of stress and strain. The superposition principle,
or the Boltzmann superposition theorem, states that if ¢ =f(n0) and ¢, =f(10y), then
€, +&, = f(t.6, +0,) . Within the framework of linear viscoelasticity therefore, “time invariance” of the
creep or relaxation function must hold. These functions only depend on the difference between the
present time ¢ and the time 1 of integration, but do not change with time.

For a more detailed description of the superposition principle, reference is made to standard text
books, such as Arridge (1985).

Linear viscoelastic theory is well developed and has been widely used to describe the mechanical
behaviour of polymeric materials. However the concept of linearity is only applicable in the situation
of relatively low stress or strain levels. At moderate to high levels of stress the behaviour of polymers
can become highly nonlinear. Moreover, for composite materials, the micro-structural geometry con-
sisting of fibres and a polymeric matrix, having different stiffnesses, will cause high stress concentra-
tions on a local level, even when the material is only lightly loaded on the macroscopic level.
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2.1.2  Nonlinear Viscoelasticity

The type of nonlinearity mostly encountered at higher levels of stress and/or strain manifests itself
through stress (or deformation) dependencies of the creep compliance or stress relaxation function.
Other forms of nonlinear behaviour frequently encountered are stress coupling effects (nonlinear
interaction in multi-axial stress fields) and time dependence of mechanical properties of the material.

In this thesis, stress dependence and stress coupling will be discussed as sources of nonlinear behav-
iour. Time dependence in the form of physical ageing will also be addressed.

The superposition principle does not hold in the nonlinear regime. Several extensions to the linear
theory have been proposed. One of the most general approaches considers a series of multiple inte-
grals based on the Green-Rivlin theory (Green & Rivlin 1957121 1960122]; Green et al. 1959'?]) and
was given by Lockett!3%) (1965) for homogeneous isotropic materials. Although potentially very
accurate, a multiple integral formulation is rather cumbersome to use. A large test program is needed
to evaluate all kernel functions.

Another approach to nonlinear modelling is to modify the Boltzmann superposition 'mteFral in some
way. Examples of this approach are given by Leaderman (1943)12) and Schapery (1969) 381,

2.2  Schapery’s Model

In this thesis, nonlinear viscoelastic modelling will be carried out using Schapery’s theory. Schapery’s
model is originally based on a thermodynamic theory (Schapery 1969)1381 which gives it a theoretical
background for modelling nonlinear viscoelasticity. Its one-dimensional creep formulation is given
by

' . d(2,0) ,
() = gJy0 (1) + g,J'AJ(w-w ) — 24)
4]
where the kernel function (compliance function) As = aJ(y-vy’) depends on two shifted times
[ L
v=[% andy - &« (2.5)

0 ° 0 °

Jy represents the initial elastic compliance, gg, &), 82 and ag are nonlinearizing model parameters
which are at least stress dependent functions. They describe the nonlinear nature of the material
response and can be determined experimentally. When the four nonlinearizing functions are equal to
unity, Schapery’s creep formulation Eq (2.4) reduces to Boltzmann’s superposition integral, Eq (2.2).
When gg, g and ag are unity, the nonlinearity is modelled entirely by g, which reduces the expres-
sion to that of Leaderman’s MSM (modified superposition Method, H. Leadermant®®) 1943).
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Schapery’s model seems to be especially attractive because it has the advantage of retaining a single
integral form at all load levels. Also the nonlinearizing functions can in principle be determined quite
easily by a number of creep-recovery experiments at different load levels. Schapery’s model has been
used successfully for a large number of material types.

2.2.1 Kernel Functions

The kernel function of Eq (2.4) can, in principle, be any form of function, as long as it increases
monotonously with time. It should be appropriately chosen for a specific material. Because creep of
many materials can be represented by a power-law function of time, Schapery has chosen the follow-
ing form of the kernel function AJ (Schapery 1969)1381,

Al (y) = cy" 2.6)

where the material properties C and n are independent of the stress level and of time. Constancy of C
and n is required to preserve superposition at small stress levels.

The only thermodynamic restriction to the model parameters, gg, g1, g2 and ag, is that these should be
positive for stable materials (Schapery 1969)1381. Several functional dependencies of gg, g1, g2 and ag
on the stress level have been proposed. Schapery obtained the following expressions in a study on
creep of a fibre-reinforced phenolic resin (Schapery 1969)1381,

_ sinh (6/6,)

0" "o/a,
88, _sinh(a/0,) Q.7
a -~ " o/o,

Al(y) = CY'

where 6, and 6, are two material constants. The function g g,/as" is the so-called creep coefficient.

A generalized Kelvin model consisting of springs and dashpots in series has also been used as a repre-
sentation of the kernel function. Its functional form is given by

ul -w/1;
mew = Ti{1-"")ssw 28)

i=1

where J;, J; and 7; are positive constants; 7; are the so-called ‘retardation times’. The factor J,\ repre-
sents a steady-flow component, which leads to irrecoverable or residual strain in a creep experiment
after removal of the stress. The coefficient J; is negligible for most polymers, far below their glass-
transition temperatures. Un-cross-linked amorphous polymers above their glass-transition tempera-
ture may however exhibit steady flow.
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Another representation of the creep compliance consists of an infinite sum of fractional exponential
functions (Rabotnov 1980)[33]. This representation has been used widely in the Russian school for
predicting long-term behaviour from short-term tests. Fractional exponentials have been incorporated
in Schapery’s model (Brouwer 1986). The fitting procedure for this type of function however is very
elaborate (Brouwer 1986)[“], since fitting has to be carried out in the Laplace-domain.

Finally an exponential-law has been proposed as an appropriate description for long time creep defor-
mation for the master curve when the physical ageing effect is taken into account (long-term creep
behaviour, see Chapter 3). The kernel function of the exponential-law can be expressed as

arqy) = clexplv")-1] 2.9
where C and n are two constants, or so-called creep parameters (Zhang 1993c).

Schapery’s model as given by Eq (2.4) & Eq (2.5) has four nonlinearizing parameters, g, g, g, and
ag, one material constant to describe the initial response, Jg, and two or more creep parameters con-
tained in the kernel function AJ. Here the term, model parameters, stands for all these constants and
parameters. i

22.2  Limitation in Unloading Behaviour

Schapery’s model has been successfully used in polymer materials and polymer based composites.
The model has many advantages, such as the fact that the model parameters can easily be determined
by simple tests; the model can also be conveniently extended into a three-dimensional constitutive
relation. However, some limitations of this model have been revealed.

Hadley and Ward (1975)1%) concluded that Schapery’s model was quite appropriate when applied for
cases with increasing loading situations, such as constant-strain-rate loading. It however turned out to
be very inadequate for unloading situations. The conclusion was based on the original discussion by
Ward and Onat (1963)[*4) about the limited ability of the simple Boltzmann superposition integral to
describe recovery behaviour. Their study revealed that the nonlinear activity in recovery spoiled the
superposition rule in both Boltzmann’s expression and Leaderman’s nonlinear representation. Rendell
et al. (1987)[34] reached the same conclusion in their work. There is no detailed research available
being described in the literature about this restriction of Schapery’s model. Some recent implementa-
tion and application of the model (e.g. Brouwer 1986U'1] and Rooijackers 1988(3%}) did not consider
the unloading problem.

In Section 2.5, a remedy, based on the concept of history-dependent or loading-status-dependent
parameters is proposed. By introducing this concept, the flexibility of Schapery’s model is largely
enhanced and, theoretically, there is no restriction of this modified model to describe unloading situa-
tions within the short-term range. The idea of history-dependent or loading-status-dependent parame-
ters is based on the premise that these parameters may change at any moment during loading. After a
certain loading period, a polymeric material may change its mechanical properties even if all the load-
ing conditions and other environmental conditions are regained.

For long-term behaviour, however, the model parameters have to meet the requirement of conver-
gence in recovery (see Section 2.5). Technically, the enhanced method requires additional loading sta-
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tus-dependent tests to characterize these extra model parameters and, furthermore, a mathematical
description for the separate unloading parameters is needed when the loading and unloading status
switches frequently (Zhang 1992)#7). These requirements make the method less applicable in prac-
tice. Nevertheless, this loading-status-dependent-parameter-method may be useful in some specific
cases, especially when the unloading behaviour needs to be modelled accurately.

The model parameter properties will be discussed and the unloading behaviour of polyester will be
examined in Chapter 3.

2.3 Ageing Effects

23.1 Introduction

To characterize the long-term behaviour of polymers, an adequate method is needed for practical pur-
poses, in the sense that it must be effective in performance and relatively simple in application for
most engineering materials. Using short-term test data to predict the long-term behaviour of materials
is certainly the most economic way and, therefore, the most appealing method to obtain this long term
information. Schapery’s model has been used for this purpose by a number of research groups, espe-
cially, from Virginia Polytechnic Institute (Tuttle and Brinson 1986)(*°). Indeed, the nonlinearizing
function, ag, shifts the viscoelastic response with respect to time, making the model, at least in princi-
ple, a possible tool for long term prediction. An extremely important aspect of the long-term behav-
iour of polymers is however the influence of ageing. Neglecting ageing may lead to large errors, e.g.,
Sterrett & Miller (1988)*!] have found that without taking the ageing effect into account a large over-
estimation occurred, when extrapolating one day creep data for the prediction of a one-year-creep
case.

The polymeric material considered in the present work is an unsaturated polyester resin, le., a ther-
mosetting polymer. For such polymers, two different ageing phenomena can in principle be distin-
guished. These are rooted in completely different structural changes of the polymer with time.
Physical ageing corresponds to a thermodynamic process which concerns only the molecular chain
configuration of polymers. Chemical ageing, on the other hand, can be described as the continuation
of a chemical reaction, i.e. a cross-linking reaction.

The influence of ageing on the time-dependent behaviour of polymers is larger than most people
expect. In the case of creep loading, not taking ageing effects into account has caused either large
extrapolation errors in the long term prediction or has resulted in a poor fitting quality of the fitting
functions. Results from the present study show that neglecting the ageing effect can cause an error of
more than 200% in the strain when extrapolating a 24-day-creep strain over 3 decades. Even during
short-term creep, ageing may well be important. Deviations from linear viscoelastic behaviour in
recovery or general unloading may well be caused by a partial erasure of ongoing ageing due to high
imposed stress levels (Struik 1978)142),
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In this chapter, a brief review of ageing concepts will be given. A possible implementation of the age-
ing effect into the viscoelastic model will be proposed later. The aim of the implementation is an
attempt to consider ageing influences to predict long-term nonlinear viscoelastic behavior with the
use of short-term data. Specifically, the work aims to characterize the effect of physical ageing on the
nonlinear creep deformation of polymers and to provnde the necessary parameter(s) for a 3D nonlin-
ear viscoelastic model (Zhang & Ernst 1993)

2.3.2  Physical Ageing

The physical ageing phenomenon, which has been studied extensively by Struik and coworkers origi-
nally for amorphous polymers, is due to a general continuation of the glass formation that sets in
around the glass transition temperature T,. Ageing is therefore a basic feature of the glassy state and it
affects all those temperature-dependent properties which change drastically and abruptly at T,. Dur-
ing ageing these properties change in the same direction as during cooling through the T, range; the
material becomes stiffer and embrittles, its damping decreases, and so do its creep- and stress relax-
ation rates (Struik 1978)[42]

It is hard to obtain a reliable creep curve over a long period of time through an experiment, due to the
limited stability of available test equipment and disturbances from the surrounding environment. A
technique has therefore been presented to ‘construct’ such a long-time creep curve from a series of
short-time creep tests, carried out at different temperatures under the assumption that a time-tempera-
ture superposition rule holds for the material under investigation. In this manner, a so-called ‘master
curve’ is constructed (see, e.g., Findley et all'8 , page 107, for the procedure to obtain a master
curve). Fig. 2.1(b) shows that ageing effects cause the experimentally obtained long-term creep
curves to deviate from the master curve. Generally speaking the long-term creep curve will be much
flatter and will become straight and will even change in curvature.

Amorphous solids are not m thermodynamic equilibrium at temperatures below their glass transition
temperature (Struik 1978142 page 1). Such materials are to be regarded as solidified supercooled lig-
uids whose volume, enthalpy and entropy are larger than in a final equilibrium state. Polymers will
however reach a thermodynamic equilibrium immediately when they are heated to above T, and any
previous ageing will then be erased. Its thermal-reversibility is an important aspect of physical age-
ing. Use can be made of this in setting up an experimental program, A material can be rejuvenated
quite conveniently by a short excursion above its T,.

Physical ageing can be explained at least qualitatively by the free-volume concept (see Struik
1978143 Chapter 2).

2.3.3  Chemical Ageing

Chemical ageing of polymers is due to phenomena such as additional cross-linking, chemical degra-
dation and photo-oxidation. For the unsaturated polyester under investigation in this study, additional
cross-linking turns out to be the most important part of chemical ageing. Additional cross-linking
gives a significant reduction in molecular mobility. In order to reduce the influence of chemical age-
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ing on experimental data, the material is usually subjected to a postcuring process. Postcuring is nec-
essary to make an unsaturated polyester and its composite products stable in a long-term sense. An
essential difference with physical ageing is that chemical ageing, in the sense of additional cross-link-
ing, can only be accumulated and is therefore not reversible without damage (degradation). Under
much higher temperatures above T, and close to the degradation temperature of the polymer, chemi-
cal degradation will be triggered. Chemical bonds between molecules are then permanently disrupted
and the original material no longer exists. Since the tests performed in this study are all carried out at
room temperature, degradation is not an issue in this work. Other possible sources of chemical age-
ing, like UV radiation etc., are not studied in this work either.

234  Basic Physical Ageing Phenomena

Struik (1978)142] has shown that all polymers (physically) age in a similar way. Physical ageing per-
sists for a very long period of time and, therefore, should be considered when characterizing the long-
term behaviour of polymer materials.

1. Creep and Relaxation

Ageing affects material properties primarily by changing the relaxation times. These relaxation times
turn out to increase proportional to the ageing time (Struik 1978)42), Ageing effects will cause a
creep curve of a polymer to shift over the time-scale in a short-term creep case (Fig. 2.1 (a)).

qwain (a) creep deformation curves, Iy, << 1,

strain

(b) long-term situation, ¢;pep >> f,

horizontal shifting

. }
t=1 day master curve
v from short-term ./
A te=10 days
v test data /
A
=100 days
A v long-term test data

master curve

log time (sec) log time (sec)

Figure 2.1. (a) Tensile creep curves (artificial). The creep curves were obtained for various ageing times, I,
The master curve gives the result of a superposition of data; the shifting direction is indicated by the arrow. (b)
Long-term test (artificial). The dashed line is the master curve derived by time-temperature superposition.

Besides, because of physical ageing, it is generally incorrect to predict long-term creep behaviour
from short-term data simply by time-temperature superposition (see, for example, Findley et al.
1976118), page 105). Time-temperature superposition results in a creep curve which strongly overesti-
mates the actual long-term creep behaviour, since ageing induced gradual stiffening has been
neglected. This also affects the definition of ‘long-term’ and ‘short-term’ behaviour.
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The definitions of short-term and long-term material behavior should be based on the ageing time of a
material as was pointed out by Struik (1978)*21. 1t is incorrect to say that one hour is a short-term
period and two years a long-term period. If the ageing time of a material is 7,, and the test duration is
t, long-term and short-term are defined by:

t»1,, long-term test (2.10)

t«t,, short-term test (2.11)

Therefore, for-a new material (i.e., just after rejuvenating the material by raising its temperature to
above T, for a certain period of time, to remove its physical ageing history) with an ageing time of
several minutes, an one-hour-creep test is a long-term test. On the other hand, for a ten-year-old spec-
imen, a two-year-creep test is considered to be a short-term test.

2. Frozen Strain

Not only a small excursion to a temperature above T, is able 1o rejuvenate a potymeric material, the
same effect can be obtained by large deformations (or stresses). Struik has shown that stresses (at
least partly) erase some of the previous ageing (Struik 197 8)[“2]. The interaction between deformation
and ageing is an interesting phenomenon and leads to surprising results.

For the unsaturated polyester studied in the present work, experiments have been performed, which
clearly show this interaction phenomenon (de Boer 1993)“].

A partly cured unsaturated polyester bar having a rectangular cross section was subjected to a large
twist. The angle of twist during the test was measured in order to record the difference between the set
angle of twist during loading and the remaining angle of twist after the load had been released.

After removal of the load, a non-negligible remaining deformation was found which turned out to be
permanent. Both physical ageing and chemical ageing (additional cross-linking) can catch and freeze
the deformation at least partially if the material is kept in a deformed situation for a long-term period
(l0g: » logt, ). The physical ageing induced part of frozen deformation can, however, be removed totally
by raising the temperature above T, (rejuvenation). The additional cross-linking induced part on the
contrary is a permanent part which is due to an ongoing build-up of the molecular structure by new
chemical bonds during the period of deformation. It was found in a test on a postcured sample that
there did not exist permanent frozen deformation since it turned out that all the frozen deformation
was removed by raising the temperature above 7.

The interaction phenomenon might be one of the reasons why in a creep-recovery test on some poly-
mers at high stress levels, the recovery data show some permanent strain after very long times of
recovery. An other example of possible ageing effects is found in the so-called recovery abnormality
phenomenon. It reveals a slower decreasing recovery curve than what the superposition law would
suggest. This recovery abnormality was mentioned very early S. Turner around 1960.

The relaxation tests on the twisted partly cured unsaturated polyester test bars have also shown that
the recovery process following unloading does not always exists. If the ‘loading’ time is long enough,
almost all the deformation is frozen in (after removal of the loading, only less than 1% recovered tor-
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sional deformation was found for a ‘loading’ period up to one month). It suggests that the stresses
have been almost fully relaxed during the interaction process of relaxation and ageing.

The phenomenon of frozen-in deformation due to physical ageing was extensively studied by Struik
(1990) for thermoplastic materials by twisting tests by thermoplastic materials. Our tests on a thermo-
setting material have revealed that a large amount of permanent frozen-in deformation occurs. This
permanent deformation is attributed to the ongoing chemical ageing.

235  Struik’s Theory of Physical Ageing

Struik’s theory has been given and documented extensively in his book on physical ageing (Struik
1978)[42]. It will be summarized in this section.

For short-time creep of polymers, the creep curves often have the same shape for different ageing
times and temperatures and can be described by one single ‘universal’ creep compliance function (the
Kohlrausch-Williams-Watts exponential function) given by,

I, = loexp[( é)"] , (2.12)

where T is the temperature, , the ageing time, f, = (7, ,) the mechanical retardation time, J, = J(T,
t,) the initial compliance (= J,(7) if a small vertical shift due to ageing can be neglected), J the creep
compliance and n a material constant.

1. Shifting Rule

Shifting of short-term creep curves (for s«:,) on a logarithmic time scale may be interpreted as a
change of all mechanical retardation times, ¢,, with one factor. Creep is accelerated by shifting
towards shorter ageing times (Lamers 1989)[28f

aty(1,)) = t4{t,5) » 1,1 < 1,55 (2.13)

BI(r,) =J(t,5) 4 8,1 <0,,s (2.14)
where a and b are positive acceleration factors or shifting factors in the horizontal (i.e. time) and the
vertical (i.e. creep compliance) directions respectively.

2. Effective-Time Theory

For the prediction of long-term creep (z»1,), the acceleration factors become time dependent and the
change of ageing times should be taken into account. The regularity of the ageing shifting behavior in
Fig. 2.1(a) suggests that two constants, « and B, for horizontal and vertical shifting respectively exist,
such that

dloga
o= EET,’ 2.15)
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dlogh
B= dTo;%' (2.16)

o and B are the so-called horizontal (time) and vertical (creep compliance) shifting rates. Integrating
Eq (2.15) and Eq (2.16) in the domain (¢,, t+t,) one obtains

a@i+r) = [':‘] 2.17)

e

1]
bli4r) = [’j’f} . (2.18)

e

where ¢, is the initial ageing time and (z+¢,) the current ageing time.

logAJ to2 > 1o
Jlttey)
RN

Jttea)=b{atleq)

logt

Figure 2.2. Shifting of a creep curve due to the ageing influence

The short-term creep compliances of a material at different ageing times ¢,; and ¢, are related as fol-
lows:

J(t,1,) = bJ(art,) 1,y <t,, (2.19)

In other words, if the ageing time is changed from 1, to t,+dz, from Eq (2.19), the creep compliance is

It = t +dt). (2.20)

1 '
b(t, +dr) J(a (t,+dn)’ e
The effective time interval dt is now introduced as
dt
=D 2.21)

Its physical meaning is clear: within the time interval between ¢t and t+dt the same amount of creep
will occur as within the effective time interval dt, which refers to a short-term creep process where
the case of (physical) ageing is too slow to be detected. Combining Eq (2.17) and Eq (2.21) gives

at =( ‘e ]" (2.22)
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Further, with the initial condition 1 (f = 0) = 0, one derives, starting from Eq (2.22),

fora=1, t= ltln(] +,i) 2.23)

1-a :,

for as1, t= -'—((1 +£)""_1). (2.24)
Note that no ageing occurs for o = 0. For most polymers, o = 1 only holds near the glass transition
temperature. In principle the relation between short-term creep and long-term creep is solved and the
mathematical expressions for long-term creep curves can readily be calculated. The long-term creep

compliance for a given temperature and a given initial ageing time is easily derived from Eq (2.19),

Jlangunn T, 1) = ﬁfhoruerm . T1,). (225)

When the creep compliance J is an exponential function as defined in Eq (2.12), one obtains

fora=1:
Jlmlklelm (1 T1) = l_e ﬂj N t—’.ln . o (2 %)
1Tl T 1+, 0€xP P ( ‘l) > .
fora#1:
longterm t, P f, n () -e n
JOREm T ) = [:T::] Joexp[[——(l_u)‘o] ((1 +§) -1) ] 227

In this manner it is possible to make satisfactory predictions of the long-term creep behaviour of
amorphous linear macromolecular glasses (Lamers 1989)128]. Measurements have shown that predic-
tions differ less than 10% for extrapolations up to ¢/1, = 3000 (Lamers 1989)(28],

2.4 Ageing Implementation

In the previous section, the ageing phenomenon and the way physical ageing is dealt with by using a
physical ageing dependent shifting rule were discussed. In this section a possible way to introduce
ageing into the nonlinear viscoelastic model of Schapery, given by Eq (2.4) and Eq (2.5) is proposed.
Although chemical ageing is not important for the present purpose and can be limited if not excluded
by postcuring as was discussed in the previous section, both physical ageing and chemical ageing will
be included in the model. This will allow the presentation of a more general nonlinear viscoelastic
model for implementation in a finite-element-method package.

Physical and chemical ageing effects can be implemented into Schapery’s model by shifting the ker-
nel function, AJ, horizontally and vertically on logarithmic time scales (see Fig. 2.2).

The continuing ageing during loading will deviate the long-term creep curve from its original course.
According to Struik’s theory (Struik 1978)1Z] and Lamers’ work (Lamers 1989)1%%), the ageing-
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induced shifting factor a (along the time axes) and b (along the AJ axes) obey the rules, given by
Eq (2.17) and Eq (2.18) respectively. To take this effect into account, it is proposed here to replace the
variable v, from Eq (2.5), and the compliance function As of the Schapery model by a long-term
shifted time (or so-called effective-time), ¢, and a long-term parameter, AJ, respectively:

v=[% and v = [ (2.28)
. 0 (] 0 (4
Considering Eq (2.19), the long term kernel function is taken as follows,

t, P

a7 = (-—‘-) AJ, (2.29)
le +1T

where ¢, is the reference (or initial) ageing time, while #, + ¢ is the current ageing time. If there is no

coupling effect between stress-induced and ageing-induced shifting, the relation between the shifting

factors z, and 4, is given by

- asing (2.30)

1
g as

With the aid of Eq (2.17), a, can then be written as

2 = au["”]". 2.31)

t
e

Here a is the stress-induced shifting factor as originally defined in the Schapery model, Eq (2.5).

2.5 Restrictions on the Model Parameters

Nonlinear behaviour occurs when the viscoelastic functions become deformation (or stress) depen-
dent. In general therefore these functions may be dependent on both stress and stress history. If a con-
stitutive equation within the framework of viscoelasticity is to be formulated, the consistency
requirement must be met. This requirement prescribes a return to the original ‘material state’ after a
loading-unloading excursion, i.e., complete recoverability of deformation. If a viscous flow is
included in order to take unrecoverable (permanent) deformation into account, the model is extended
to a viscoelasto-plastic theory. Such a viscous flow effect, or plastic deformation will not be consid-
ered in the present model. Therefore the present model is viscoelastic and does not include plastic
deformation (viscous flow).

A mathematical model however will not satisfy this recoverability automatically. The analysis in this
section concerns an assessment of the stress dependence and stress history dependence of the model
parameters taking into account the consistency requirement of the viscoelastic assumption.
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25.1 A General Multi-Step Loading Case

In order to add a possibility for the model to describe unloading behaviour more accurately (see Sec-
tion 2.2.2), it is assumed here that the polymer changes its mechanical properties when it is under a
mechanical or thermal load for a period of time. The material changes can be reflected in changes of
the kernel function of the model, AJ with real time.

Evaluating the strain given by the Schapery model in Eq (2.4), for a general multi-step stress-input
loading case, some specific loading cases such as a single-step and a two-step stress-input, can be eas-
ily described. ‘

For a multi-step stress input (see also Zhang 1992)*7) as depicted in Fig. 2.3,

i

o = Y (o;~0;_pH@-1), 2.32)
i=1
A svess Si-1 Gi+t
O3 Si
b,
7] On. =0,
G Oy

<0,
00=0 — t

n 2 & Ui tis) I

Figure 2.3. n-step stress input

where H(z-t;) is the unit step function. If 6; - ;) < 0, an unloading step in given. The most general
expression for the kernel function AJ, being stress history dependent, is now assumed. Thus ageing
effects can be induced, for instance, directly into the kernel function AJ. AJ is thus written in a form
corresponding to expression Eq (2.32) for a multi-step loading,

Al = Z(AJ;:~AI;_,)HU-:’.) , 2.33)
j=0
with aJ_, = 0. In this expression, the subscripts indicate the stress-dependence and the superscripts
the time step, (see Fig. 2.4). Different subscripts and superscripts suggest a different value of the ker-
nel function AJ, which corresponds to a material change with either stress or real time, or both.
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Figure 2.4. Definition of superscripts and subscripts of the kernel function

In Eq (2 33), the kernel function value for the ith time-step AJ; ! is given by AJ; (‘w v;), where the argu-
ment ‘y is evaluated for the ith time-step, while v, is eva]uated for the stress level corresponding to
the jth time-step. Hence, following expression is obtained (Zhang 1992047}),

80 = 3 (o0~ a0, JHG-1) (2.34)
j=1
where the superscript j preceding g, stands for a different value of g;, which value is step-dependent
and corresponds to the stress level o;, during the jth step in time. It follows that

@ Z (ng"i‘j—lgz"j—l)““'j) , (2.35)

where 8(7) is the delta function. The kernel of the integral in Eq (2.4) is therefore
A.I%(gzo) = { ) [Ajj(iw—ij—AJj_,(i\y-\yj_,)]H(r—:j)} { > (1326]—}- ]gzdj_l)S(t—lj)} , (2.36)
j=0 j=1

and the strain ‘e (the superscript i preceding a symbol indicates the strain in the ith step period)
becomes

't = g J (D)o, +
1

*iglj{ 2", [A’i(i"’""j)“A’j—l(i"""’j—lh”““j)} {Z( 8,0~ 32"1—1)5("'})}‘" , 237

0 =0 =

wherei=1, 2,..., n and
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Figure 2.5. Single-step case

Single-Step Stress-Input

The particular case of a single creep-recovery experiment is then considered. It will now be shown
that if a viscoelastic requirement must be met for the recovery deformation, some important condi-
tions for the creep parameters, C and n must be ensured.

For a single-step case (see Fig. 2.5), 6, = 0, 0, = o and o, = 0 for ;>2, the second term on the right
hand side of Eq (2.36) becomes,

{AJO+(A.I|—A.IO)H(t—t|)+(A12—AI‘)H(I—12)){(lgzol-ugzco)S(t—rl)+(Zg202-lgzol)5(t—t2)} , (240)

in which, o, = 0 and o, = 0, so that the following terms are obtained after integration,

1

juﬂ(('gzo, -"gzo“)a(:-:,) +(zgzsz—lg26])5(l—t2))d1: = (AJOI—AJOZ)lgzc ,

o
t

j(AJ,—AIo)H(r-r,)Igzcls(t-tl)dr = l(u,'—uol)'gza .

2
0

!

0

[, —AIO)H(t-tl)(zgzoz-lgzol)S(l—tz)dt = (Ale-Moz](-lgzo) ,
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t

fan-ar)HE-1) g080-t)dc =0,
0
1

I(Alz-AJ,)H(t—tZ)[2gzoz-lgzol)6(t-t2)d‘r = %(AJZZ—AJ,Z)(-lgzo) .
0

Together with all the terms above, the integration in Eq (2.37) becomes

[89% (8,01 = %('gzo)[(u(,' —A112)+(AJ" —AJ,Z)] . (2.41)
0
and the strain

= %(251282")[(M01‘A122)+(A111‘M12)] ) (2.42)

where the superscripts on AF indicate the step time, (+, = 0 and ¢, = ¢,), and

1 1, -t
Ady =AJO[1—+2— s
a, ‘a
2 -1,
Al = Alz[ 5 J .
s
1 1, t-t,
aJ = Al{l—-—"' 3 5
b G

Finally the recovery strain for the single-step stress input case is,

2 12 2 t, t-r\% =t \" I AN -\
€ = i( 8 gzoz){czv-coi-coexp(l—“q-T—“ - Cpexp| 5| +Ciexp| 7= +5—| -Ciexp +— , (243)
ag ag a, a, ‘ag ag

where the exponential law Eq (2.9) has been applied. Rearranging Eq (2.43) yields (o, = 0),

c,~-C, C 1 t-t Y C -1, \™ . t-r \h 1=t \"
%= %2glzgzccl{ ZC 0+5Q exp[l—'l—i-z—") —C—zexp{ 7 "] + exp[]—“—+2—“ —exp[z—") } . (2.44)
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Assuming that the consistency requirement of viscoelasticity holds for the material, a convergent
strain expression for the recovery period must be obtained. Therefore

lim=0, (2.45)

to

In Eq (2.44)
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lim [exp[lt—“ + rz_—t"]"’-ex/{ ‘2— L )" ] =0, (2.46)
il aU‘ ac aO

Condition Eq (2.45) therefore requires that the limit for  » « of the remaining terms in Eq (2.46) also
vanishes. This is the case if

lim [ezp(l‘—" +t;—["] n—gzexp(l—zj) 2] = %% =a, (2.47)
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@ 4 ag

or, equivalently

lim exp[‘z_—-l"Jnl{exp[[lt—"- + 12- ;a)ﬂn—(;z__;“J 2]—%} =a, (2.48)
[ided a a a a 0.
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where a is a constant. Eq (2.48) further requires that

lim {exp[(l'_"+’z’_'a] "_(,_21‘ an}_g_z} -0, (2.49)
L a, ay ay 0
or alternatively,
lim [(“—‘w'z_—-"‘)%-(;ﬁ‘]nz] = ln% . (2.50)
=l ag a, a, 0
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Since lim‘['.z_ﬁ]"z = =, because n, > 0, a finite value of the above limit, Eq (2.51), requires that
t—

a
— n,
| 2
aﬂ aO'

lim ——’—n———l =0. (2.52)
r—3ee -1,
[2 ]
ao

The first part of the above limit is assumed to be a constant b,
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t AL
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L’Hospital’s rule for a = type of limit is applied to evaluate this limit, b.
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Comparing with Eq (2.53), yields the conclusion that ng = n,. When ng = n,, it is not difficult to prove
that the limit of Eq (2.50) is zero, hence Cy = C,. These results suggest that the creep pattern should
not change after a step loading history and only then the strain can be fully recovered if the recovery
time is long enough. It confirms that, within the framework of viscoelasticity, the creep parameters C,
and the exponent n of the exponential creep rule should NOT be stress/strain history dependent and
ageing dependent. These parameters may only be stress dependent. While there is no such restriction
on the nonlinearizing parameters, gg, g, g2 and a.

2.5.3  Simplification

The following simplifying picture emerges from the previous assumptions made above. J; is a mate-
rial constant which is independent of the stress and strain history. From a theoretical point of view, the
creep parameters C and n may only be stress dependent. The nonlinear parameters g, g, g, and a4
are generally both stress state and stress history dependent.

For the material studied, it will be demonstrated in Chapter 3 that the nonlinearity can be primarily
reflected by the parameter g,. If only one of the nonlinear parameters, g,, remains, the model is actu-
ally simplified to the MSM, Modified Superposition Method (Leaderman 1943)1°1,

Starting out from the MSM, and adopting one more nonlinear parameter g, to account for a nonlinear
elastic behavior (the instantaneous part of the deformation), a simplified model is obtained which, as
it will be proved later, is accurate enough for the material under consideration. The model equations
in Eq (2.4) & Eq (2.5) are then simplified to

! n 14(8,9)
e(1) = gd,o (1) +jc[exp(x-r) -1] d: dt, (2.55)
0

wherein go = go(o:t); g2 = g2(o:); n, C, Jy are constants.

In Chapter 3 it will be shown that for relatively low stress levels, the simplified model is accurate
enough and eventually it is adopted for further study instead of applying a more complicated model
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with load-history dependent model parameters. A motivation for the adaptation of the model
Eq (2.55) for the material studied will be given again in Chapter 3.



Chapter 3

Material Characterization
and Experiments

In this chapter the uniaxial nonlinear viscoelastic model, including ageing effects, which has been
developed in Chapter 2 (consists of Eq (2.4), Eq (2.9), Eq (2.28), Eq (2.29) and Eq (2.31)), will be
applied to the time-dependent behaviour of an unsaturated polyester.

Ageing behaviour of the unsaturated polyester material will be discussed first, whereafter the nonlin-
earizing parameters of the Schapery model will be determined. Finally, the obtained model will be
verified by cyclic loading tests.

3.1 Characterization of Physical Ageing

In this section the ageing properties of the unsaturated polyester will be studied. The characterization
will be restricted to determination of the ageing shifting rate o in Eq (2.31). Other model parameters
in the model will be characterized in Section 3.2.
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3.1.1 Specimen and Equipment

Creep-recovery tests have been used for characterizing the physical ageing behaviour of the unsatu-
rated polyester.

The specimen used in the tests was designed for a creep test machine which can provide a maximum
load of 7,000 N. The geometry of the dog-bone plate specimen is shown in Fig. 3.1.

170mm
I|$ 112.5mm o

~ O
e 65mm

3.2mm

Figure 3.1. Specimen geometry (thickness is 3.5 mm)

The material used for characterization is an unsaturated polyester obtained from DSM Resins and
denoted Synolite 593-A-2. This resin is an amorphous cross-linked polymer with a glass transition
temperature around 116°C, see Table 3.1. The procedure of specimen preparation is the same as in ten
Busschen ez al. (1989)U15]. All specimens, after being moulded, were postcured according to the fol-
lowing cycle: 60°C for 24 hours and 80°C for 24 hours. To obtain a zero reference ageing time all
specimens were rejuvenated at 130°C for 20 min. An extensometer was used to measure the strain
data. The strain signal was recorded with the aid of a personal computer.

Table 3.1. Unsaturated polyester resin, Synolite 593-A-2

Young’s modulus, E 5.0GPa

tensile strength, G, 87 MPa

compression strength, G, 120 MPa
glass transition temperature, 7, 116°C

All tests were carried out on the creep test machine in the laboratory of Material Science, Delft Uni-
versity of Technology.

3.1.2  Single Specimen Method

Preliminary creep test results on different specimens have shown that the variation of the test data
from specimen to specimen is quite large. Typically a 10% difference in creep strains is obtained
(Zhang 1992[41). The reasons for this variation are due to induced variability in the manufacture of
the specimens and in loading preparation. During specimen fabrication, variability is introduced in,
e.g., the volume fractions of chemical components, impurities and entrapped air (visible and invisi-
ble). Also the curing conditions, such as thermal history and moisture conditions can vary appreciably
from specimen to specimen. It is costly to try to improve the preparation procedure in order to obtain
a better repeatability of specimen preparation. A second source of variability occurs in the loading
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procedure. Also the loading weights of the test machine itself have about 3% error. All these factors
suggest that the poor repeatability of the creep test is inevitable. A simple way to minimize these
problems is to use one single sample for a series of tests instead of using many different samples. The
same method was adopted by Struik{*?) and Lamers!?® in their tests. One example of even failing to
reveal shifting due to ageing when using different samples can be found in Zhang (1993c, Fig. 8) 0,

Some tests have been carried out to check the reliability of the single-specimen-method for the
unsaturated polyester material and to determine the necessary recovery period between two tests (see
Section 3.1.3). In order to avoid additional cross-linking which may be accelerated at higher tempera-
tures and thus might interfere with the normal creep process, all tests were performed at room temper-
ature. No rejuvenating procedure was performed during the tests. This is a much simplified method
which may cause some minor errors in the results.

When performing repeating creep tests on a single specimen, the main source of errors occurs when
the loading levels are all beyond the linear creep range of the material. In this range, the Boltzmann
superposition principle no longer holds. Between two creep tests, there is always some not-yet-recov-
ered deformation and the next creep strains actually superpose on this deformation. The remaining
strain in a creep-recovery cycle can not simply be subtracted from the creep strain in the next cycle
because the superposition principle does not hold in the nonlinear range of the material response.

We thus have designed a particular test which repeats the loading and unloading cycle a large number
of times in order to check the possible error induced by the subtraction method. A typical deformation
history is shown in Fig. 3.2 for a eight-month-old specimen. The series of tests mostly consist of
creep-recovery-recovery tests with a loading period (1 hour), a partial loading period (1 hour) and an
unloading period (22 or 70 hours). After subtracting the not-yet-recovered strain from every creep
curve the creep curves, as shown in Fig. 3.3, are obtained.
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Figure 3.2. Deformation History (for the repeating creep test). For the fist eight creep tests, the stress levels of
the first step are 40 MPa, the stress levels for the first recovery step are different, ranging from 5 MPa to 35
MPa, the load is released for the second recovery step. The last test is a simple creep-recovery test.
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Apart from the first creep curve which shows lower strains than all the other subsequent creep curves,
all subsequent curves show little differences in strain values. The difference is smaller than 1%. It
should be noted that the creep stress is 40 MPa in this case, which is higher than the applied stresses
for the ageing tests. According to these results this method was accepted for further application within
the present research.

3.1.3  Rejuvenation by Large Stresses and Specimen Conditioning

Another interesting phenomenon, which was first found by Struik (1978)*2] s that a stress loading
far beyond the linear loading range obviously can partially and temporarily erase prior ageing. This
phenomenon is used here to explain the observed difference in creep strains between subsequent
creep curves discovered in the repeating tests. The first creep curve shows the lowest strain values
because after the first creep load (40 MPa), the amount of previous physical ageing was partially
erased and consequently the material became more compliant resulting in larger strains. The ageing is
however gradually recovered during the unloading period. A recovery period of 70 hours seems to be
long enough for subsequent creep curves to allow to recover, at least partially. Indeed two creep
curves (the 4th and 9th) show lower strains than the others (except for the first one). The results
obtained also suggest that physical ageing erasure by high stresses (or deformation) is limited for a
certain stress level. Once this limit is reached, further loading cycles with the same maximum stress
level will not further erase the ageing and the creep curves will start to have repeatability.

1500 T T ~
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Figure 3.3. Subtraction Method applied to the series of creep tests of Fig. 3.2 (specimen # 046, creep stress:
40MPa).

This limited rejuvenation capacity at a certain stress level can be used to explain the so-called well-
known “conditioning” procedure for test specimens. Specimen conditioning was suggested by
Leaderman (1943)!”), The sample should be subjected to successive creep and recovery cycles
before the formal tests are carried out. Ward & Onat (1963)[44] explained that by this procedure the
“Jong-time memory” of the sample obviously can be removed. After the conditioning procedure, only
the effects of the loads applied in the very recent history are remembered by the specimen.
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Figure 3.4. Subtraction Method to obtain a creep-recovery curve from the raw data

Their test results show an apparently different first cycle of strain response, being smaller than the
responses of other cycles. The same phenomenon was found here. The explanation offered for this
phenomenon, i.e. the prior ageing erasing at high stress levels, seems however more appropriate. Par-
tial rejuvenation at high stresses is, however, only a minor effect of physical ageing. It will therefore
not be included in the model being used later.

3.1.4  Testing Procedure for Ageing Creep Tests

The test procedure used and the ageing times for all creep curves are given in Table 3.2. The subse-
quent creep strains are shown in Fig. 3.5.

Table 3.2. The testing procedure for a single specimen
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clock time? = ageing | creep recovery
test state time £, (from ~ to) time ¢, time £, 1/, L/,
rejuvenating -20min ~ 0 min at a temperature of 130°C
resting 0 min ~ 22.5 min
1st creep 22.5 min ~ 30 min 7.5 min 1714~ 1/3
recovery 30 min~ 1.5 hr 60 min 8
2nd creep 1.5hr~2hr 30 min 1/4~1/3
recovery 2hr~6hr 240 min 8
3rd creep 6 hr ~ 8 hr 120 min 1/4 ~1/3
recovery 8hr~24hr 960 min 8
4th creep 24 hr ~ 32 hr 480 min 1/4~1/3
recovery 32 hr ~ 96 hr (4 day) 3840 min 8
Sth creep 96 hr ~ 128 hr 1920 min 14 ~1/3
The advantages of the specific testing procedure are:
(1) Since no refreshing or rejuvenating of samples was performed by raising the temperature above T,
before starting a novel creep test, the test programme is considerably shortened and possible addi-

tional cross-linking (chemical ageing) caused by raising the temperature is avoided.
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(2) There is no variation of material data occurring due to specimen to specimen differences
The disadvantages are:

(1) The creep tests are not strictly short-term tests, since Eq (2.11) is not strictly satisfied, due to the
fact that ¢ /t, < 1/3 instead of 1./t, << 1 (the creep testing times are not absolutely small compared to
the physical ageing times for various cycles);

(2) The interaction between ageing and creep deformation will cause some remaining strain which is
accumulated with the increase of the number of creep tests (see Fig. 3.5);

(3) Not yet recovered creep strain will also be accumulated (see Fig. 3.5) because of limited recovery
duration.

Except where indicated, all specimens were first cured free standing at 60°C for 24 hours and at 80°C
for 24 hours. In a special case, extra postcuring was applied at 130°C for 120 hours.
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Figure 3.5. Strain output from a repeating creep test (specimen # 150, creep load: 20MPa)

3.1.5  Shifting of Creep Curves

Fig. 3.6 gives an overview of the shifting of creep curves over the time scale, due to physical ageing.
The curves are taken at 4 different stress levels. Four different specimens have been used, one for
each stress level. It is clear from Fig. 3.6 that ageing affects the creep strains at all stress levels tested,
the highest level being 40MPa, corresponding to about half the tensile strength of the unsaturated pol-
yester resin. :

Fig. 3.7, Fig. 3.8 and Fig. 3.9 show a series of creep curves for different ageing times, obtained at
stress levels of respectively 30MPa, 20MPa and 10MPa.

Moreover Fig. 3.7 shows the possible effect of chemical ageing on creep strains at different ageing
times. The solid lines in this figure represent the creep strains of a specimen, which had been addi-
tionally postcured for 120 hours at 130°C, prior to the start of the testing procedure.
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In Fig. 3.9 four creep curves have been shifted horizontally to the fifth curve corresponding to an age-
ing time of 4 days. The resulting shifting factors for three stress levels are given in Fig. 3.10. The
shifting rates are obtained by measuring the slopes of the curves in Fig. 3.10 and the results are listed
in Table 3.3 and depicted graphically in Fig. 3.11.

Table 3.3. Shifting Rate o.

creep stress 10 MPa 20 MPa 30 MPa
postcured 0.4806 0.5417 0.4489
postcured 0.4579 05187 0.4251
extra-postcured 0.4490 0.4390 0.4489
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Figure 3.6. Physical Ageing Effect on Creep (Synolite 593-A-2)
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Figure 3.7. Physical Ageing (specimen # 149, creep load: 30MPa)
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Figure 3.8. Physical Ageing (specimen ¥ 150, creep stress: 20MPa)
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Figure 3.9. Horizontal Shifting (specimen # 153, creep stress: 10MPa). The data for different ageing times are
shifted horizontally onto the data (curve) corresponding 1o 4 days ageing time.

3.1.6  Shifting Rate

The shifting factor was measured directly from the creep curves as shown in Fig. 3.6~Fig. 3.9. The
results obtained for the shifting factor are shown in Fig. 3.10. The solid lines stand for creep data of
specimens with a postcure (60°C/24hr and 80°C/24hr), the dotted lines for specimens with an extra
postcure (130°C/120hr). The obtained shifting rates, defined as the slopes of the curves in Fig. 3.10,
are depicted in Fig. 3.11.

The results show that the physical ageing induced horizontal shifting rate is not apparently stress
dependent, nor does it seem to be influenced by additional cross-linking or chemical ageing. If the
shifting rate is not creep stress dependent, the curves in Fig. 3.11 should be horizontal. Considering
the scatter in the data, this is assumed to be correct at least for stress levels up to 30MPa. The com-
puted averaged shifting rate for all stress levels is then a = 0.45. This value will be used in the analy-
sis of the data, although probably a range for the shifting rate, 0.40~0.55, is more correct for the
unsaturated polyester material tested.

It should be noted that for most amorphous themoplastic polymers within the ageing range, the shift-
ing rate is about equal to 1 (see Fig. 3.12). The obtained shifting rate for the unsaturated polyester
material is considerably lower than unity. Several factors might be responsible such as, e.g., a broad
glass transition. Another possibility is that the stresses are sufficiently high to erase a part of the pre-
vious ageing. This also results in a lower shifting rate, although in this case one would expect a grad-
ual decrease of the shifting rate with the stress level and not a constant value, such as obtained here.
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Due to a lack of additional supportive data, no conclusive explanation can be given here, nor was this
aimed at in this study.
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Figure 3.10. Shifting Factor a, horizontal shifting in creep due to physical ageing
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Figure 3.11. Shifting Rate o, horizontal shifting of creep curves due to physical ageing (a point in this figure
can be obtained from the average slope of a curve in Fig. 3.10).



§ 3.1 Characterization of Physical Ageing 35

shift rate O

-200 -100 0 100 200
temperature (°C)

Figure 3.12. The shifting rate 0. vs. temperature for various polymers (remade from Struik 1 978[42], page 20)

3.1.7 Long-Term Creep Prediction

Three long-term creep tests have been done for different initial ageing times and loading levels, as
specified in Table 3.4.

specimen number #106 #117 #156

initial ageing time | 45 minutes | 12 minutes | 40 minutes
testing time 24 days 12 days 96 days
Creep stress 30 MPa 20 MPa 10 MPa

Table 3.4. Experiment conditions for the long-term creep tests

Short-term creep tests of one to fifteen minutes duration were used for curve fitting to define expo-
nential creep rules for these specimens. The creep rules were subsequently corrected for the ageing
effect by assuming shifting rates a = 0.45 and B = 0 in Eq (2.27). For the case of a 30MPa creep
stress, the following exponential creep rule was obtained

€ = 0.0075638 + 0.00037888exp [ (1.4424n "' 55] . 3.
After the ageing effect correction, according to Eq (2.27), the following long-term prediction results
_ ' 0.55 0.11557
= 0.0075638 + 0.00037888exp [2.7858 (( 1+ Eo"o) -1} } . 3.2)

Fig. 3.13 shows a comparison of the model prediction Eq (3.2) with an experimental creep curve of
24 days.

EIrmglerm
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Figure 3.13. Ageing Influence on Long-Term Creep (specimen # 106, creep stress: 30MPa)

With the correction of ongoing ageing, the creep strain is overestimated by about 8.5% after 24 days
of creep (1, = 768). Using 15 min. data for a 24-day-creep prediction corresponds to an extrapolation
over about three decades (~2300 times). Similarly, for the case of a 20MPa creep stress, following
creep strain expressions were found (see Fig. 3.14). Here a fitting period of 1 minute was used.

€ = 0.0046173 +0.0003966exp [ (1.10120) *'®%7] | 3.3)
0.55 0.10952
Ciongierm = 00046173 + o.woa%eexp[z.zus {( 1+ 7;—0) “1} ] . (3.4)

The expressions for I0MPa creep strain are (see Fig. 3.15),

€ = 0.002025 + 0.00020136exp ["*"*27], @3.5)

2400)0_55 1 0093252] ) (36)

Here a fitting period of 1.9 hours was used. In the 10MPa creep stress case, the strain after about 90
days was underestimated by about 15.7% after the ageing effect correction. This was due to the fact
that the momentary creep rule Eq (3.3) was obtained by fitting data up to 1.9 hour of creep. This was
needed because with less data points no reliable fitting results could be obtained. However using a
momentary creep time of 1.9 hours on a specimen with an age of 40 minutes violates the definition of
short-term creep data. It is therefore likely that in this case the ‘short-term’ creep data were consider-
ably influenced by ongoing ageing. The long-term prediction therefore underestimates the real long-
term strains.

Elanglclm

= 0.0017536 +0.0018|5exp[l.0925 {( 1+
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Figure 3.14. Ageing Influence on Long-Term Creep (specimen # 117, creep stress: 20MPa)
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Figure 3.15. Ageing Influence on Long-Term Creep (specimen # 156, creep stress: 10MPa})
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3.1.8 Conclusions and Discussions

The following conclusions for the unsaturated polyester material studied can be formulated. The con-
clusions are only valid for the material at room temperature.

(1) The effect of physical ageing on the creep behaviour of the unsaturated polyester can be approxi-
mated by a horizontal shifting of the creep curves only.

This approximation reduces two shifting factors to only one. This simplifies the effects of ageing.
In the model presented here, only one parameter accounts for the ageing effect and is needed to be
characterized.
(2) Physical ageing of the unsaturated polyester is independent of the stress level up to 30MPa. Its
shifting rate averages 0.45.

The horizontal shifting rates for many polymers at room temperatures were reported (Struik
1978)142] between 0.5 and 1.0 (see Fig. 3.12). The present results show a rate of 0.45 for polyester.

(3) Physical ageing shifting is independent of the cross-linking level.

The shifting rate of physical ageing, a, remains unaffected by a prolonged cure of the tested speci-
mens. It can therefore be concluded that extra postcuring does not change the shifting rule of phys-
ical ageing.

This result suggests that coupling between physical ageing and chemical ageing is not present.
This decoupling property represents a great convenience in dealing with the ageing behaviour of
the unsaturated polyester material studied.

(4) Additional cross-linking causes both horizontal and vertical shifting, but only to a negligible
extent.

Fig. 3.7 shows a difference in two sets of creep curves, corresponding to different cross-linking
levels. The difference may be explained by both the horizontal and the vertical shifting level. How-
ever, the tests were not carried out under a strict moisture level control. Part of the observed differ-
ence in creep may be due to different moisture levels in the specimens, and due to the extra
postcure given. Furthermore, after a postcure at 60°C for 24 hours and 80°C for 24 hours, the
material is quite chemically stable. An additional curing at 130°C for 120 hours may cause extra
cross-linking in the material but only to a limited extent. Therefore the effect of the additional cur-
ing (chemical ageing) was expected to be small.

Even if the difference of creep curves in Fig. 3.7 is totally due to the effect of the cross-linking
level, this effect is not large. For simplicity, this effect will be neglected so that there is no cross-
linking level induced shifting in the model. Due to the fact that a possible moisture level decrease
during additional ageing will cause a similar effect as shown in Fig. 3.7, the simplicity reached in
this manner is believed to be appropriate.

A translation relation between the real time for chemical ageing and the postcuring procedure has
not been established here. Hence no effort was made to determine the shifting factors for chemical
ageing. In this thesis, the polyester under study is always prepared by a postcuring procedure
which can warrant a much more stable material. The chemical ageing influence on creep is there-
fore neglected in the further chapters.

(5) There is a temporary stress influence in physical ageing.
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Experimental data have shown that a tensile stress can erase a part of the physical ageing temporar-
ily, see Fig.3.3. A successive application of a certain level of stress can only erase a certain
amount of physical ageing and reaches some limit. A possible reason of this erasing effect is that a
tensile load may create some additional free volume in the material.

(6) Long-term creep prediction is made possible by considering physical ageing.

Using Struik’s effective-time theory, good predictions of the long-term creep behaviour of the
unsaturated polyester are obtained, see Fig. 3.13, Fig. 3.14 and Fig. 3.15.

3.2 Material Characterization for the Model

In this section, the creep parameters C and », the nonlinearizing parameters g, &1, 8 and a,, and the
initial compliance J, will be characterized. The verification of the model for the uniaxial loading case
will be presented in Section 3.3, and for biaxial loading cases in Chapter 6.

Lou & Schapery ( 1971)131] have developed a graphical method to determine the model parameters
from experimental data. This method uses a power-law kernel function. It has been demonstrated in
great detail in Zhang (1992)[47] and that this method is inaccurate and time consuming. The inaccu-
racy directly stems from the choice of a power law as kernel function in the Schapery equations. The
power-law provides linear creep curves on a logarithmic time scale, and is not able to model all the
experimentally obtained creep curves, especially not for the long time creep cases. Hence in this
work, the exponential creep-law will be adopted, as has been described in Chapter 2 (Section 2.3.1).
A concept of history dependent model parameters which was meant to deal with significant changes
of certain model parameters with time and loading direction was suggested in Section 2.5. The mate-
rial change of unsaturated polyester with time under a deformed state was later confirmed in the labo-
ratory (De Boer 199311} and was explained by introducing the ageing concept, as has been discussed
in Section 2.4.

321 Experimental

The creep-recovery test method was used here for determination of the parameters of the viscoelastic
model. The tests were carried out at room temperature on plate dog-bone specimens under a uniaxial
constant tensile load. The same type of dog-bone specimens was used as for the ageing characteriza-
tion. A series of tests at different loading levels provide data for the characterization of the stress
dependence of the creep deformation of the material.

The experimental technique has already been discussed in Section 3.1. No conditioning procedure
was applied however. Moreover the age of the specimen was held constant (seven months). The creep
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testing time was one hour, followed by twenty three hours of recovery. The creep load was varied
between 3MPa and 40MPa.

A o= 0

— > time

Figure 3.16. Stress input (G) and strain output (€) of the experiment

3.2.2 Formulation for Data Fitting

If a series of single-step creep-recovery tests is carried out for model parameters determination, the
ongoing ageing effect can be neglected since the testing time is short with respect to the chosen spec-
imen age of 7 months. Therefore J,, C and n are assumed to be constant. The exponential creep law
for the kernel function is adopted. This has shown to give a better description of long-time creep
behaviour of unsaturated polyester than the power law. This has especially been the case, when phys-
ical ageing is involved.

The choice of the exponential creep law causes a different procedure for model parameter determina-
tion. Here a procedure is presented which differs from the procedure originally used by Schapery
(1969) which was subsequently adopted by a large number of other researchers. The fitting functions
for different loading cases and their relations to the model parameters are easily derived from the
Schapery equations, Eq (2.4) and Eq (2.9). In the single-step stress input situation, the strain during
creep is

'e = PR 2 lchC[exp(r")— 1], 3.7

and the strain during recovery is

% = zngo[exp(t")— exp(t-1)"]. (3.8)
For a two-step stress input situation, the strain in the first step is the same as given by Eq (3.7).
’t: = lgoloul + 'gzc,C[exp(tn}- l] . (3.9)
In the second step and the third step, the strains are
%= zgulooz + zg2czC[exp (- !,)" . l] + lgzc, C[exp( r") —exp(1- t,)“] ’ (3.10)

and
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35 = ngOIC[exp(l')-exp(r—l,)"] +ngGIC[exp(t-tl)"—exp(l—lz)’r] (3.1 1

For a one-step creep experiment, the creep compliance (J = ¢/0) is given by,

£ = a +a,[up( aLa)- 1] : (.12)
where Eq (3.7) has been used. For recovery data the following function is obtained from Eq (3.8),

b b
5L = bl[exp(t—ta-l—bz) Pexplr-1y) ’] . (3.13)

The fitting variables, a, to a, and b, to b;, are defined as

a; = 8yJy

11
a = 8 8§C

, (3.14)

b = (28|I52)C
by =t/'ay (3.15)

by=n

Since at sufficiently small strains linear viscoelastic behaviour must ensue, following initial values
are used,

%| =
°¢-o.z-n

1
8 =
ovarno (3.16)

le 1
lo=0,t=0
=1

aq‘u-ﬂ,!:O -

323 Model Parameter Determination

The procedure used to obtain the model parameters from the creep-recovery data is described in sub-
sequent paragraphs.

1. exponent n

To determine the exponent only creep data have been used. Due to the large strain signal (with
respect to typical recovery strains), it was found that this procedure yielded the best accuracy. The
fitting results for n using the fitting function Eq (3.12) are shown in Fig. 3.17 for a number of creep
tests with various stress levels, ranging from 3MPa to 40MPa. Most of the tests have been per-
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formed using one specimen. No clear linear range could be identified in the tests (in the linear
range, the curves of the creep compliances at different stress levels are coincident), therefore the
lowest load level applied was assumed to correspond to the linear range (3MPa load).

0.10
oon|

0.06

exponent n

0.04

002}

0.00,

0.0 100 400

200 3(;.0
creep stress (MPa)

Figure 3.17. Fitting results for the exponent n from tests on one specimen (# 46)

It is clear from Fig. 3.17 that the exponent n is independent of the creep stress. The average of the
fitting data in Fig. 3.17 is 0.065 with a standard deviation of 0.009.
2. shifting factor ag

When using the exponential creep law, the fitting results yield a constant shifting factor a,, inde-
pendent of the stress level, and on the average equal to 1.0. The values obtained at different stress
levels are given in Table 3.5.

Table 3.5. Creep data fitting resuits for as (specimen #46, Table Al, Zhang 1993c)

3MPa 5 MPa 7MPa 10 MPa 20 MPa 25 MPa 35MPa 40 MPa
1.0436 1.009 0.99403 1.0047 0.93428 0.79104 0.96536 0.95862

The obtained values for a, close to 1 suggest that a higher stress level does not accelerate the vis-
coelastic rate process for the unsaturated polyester studied. This means that no horizontal shift of
creep curves occurs for different stress levels. The effect of the creep stress actually manifests
itself as a rotation of the creep curves. A higher creep stress causes a faster creep rate. This rotation
is accounted for by the nonlinearizing parameter g,.

3. initial compliance Jy
The fitting results for the initial compliance, again using Eq (3.12) are shown in Fig. 3.18. A slight
stress dependence of the fitting parameter a; can be seen in Fig. 3.18. As a first approximation, the
fitting variable a,; can be assumed to be a constant. g, and J; are therefore constants, given by g, =
1and Jy = 22.4x10™"! (Pa)’!.
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Creep data from different specimens were also used to determine Jp by fitting with Eq (3.12). The

results are listed in Zhang (1993c, Table A3)P% and are shown here in Fig. 3.19.

parameters a, (x10'") [GPa™]

240

2001

180

140

~— 5-point averaged
Ofitting results

total average a,=22.391x10""!
standard deviaion = 0.718x10-11

: 2

0.0

100

200 40.030.0
creep stress (MPa)

Figure 3.18. Fitting Parameter ay = gply (specimen # 46)

Since the creep data used for Fig. 3.19 are obtained from different specimens (of the same mate-
rial) the fitting results of J; scatter in a larger range than those obtained from a single specimen (as
in Fig. 3.18). The average of J is 21.66x10™"(Pa)™! with a standard deviation of 1.786x10"!'(Pa)™!.

The scatter reflects the differences in material properties, storage and testing conditions, etc.

Jo (x10")

Figure 3.19.  Fitting Results for J, (from tests on different specimens)
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A better approximation is obtained if the parameter a, is not assumed to be constant, but is taken to
be slightly stress dependent according to Fig. 3.18. In this case, the nonlinear parameter g is taken
to be slightly stress dependent. In doing this a more appropriate model is obtained. This more
appropriate model, referred to as the ‘two-nonlinear-parameter model’, has shown to be more
accurate than the MSM, especially in describing the response to cyclic loading (see next section).

. model parameters g; and g,

The fitting parameter a, for the creep data contains the product (g,g,) while the parameter b, for
the recovery data contains the product (3g,g,). Except for the superscript ‘2, which indicates the
stress level o,, the other superscripts of g, and g, (corresponding to the creep stress 6,), are omit-
ted for writing convenience. By using rt = 0.065, Jo = 21.66x10"'!GPa’", g5 = 1 and ag = 1, the
creep data are refitted for (g,g,). The fitting results of a, are shown in Fig. 3.20 (Zhang 1993¢)1301,

6 T T S T
<Vitting results (# 46)
~——_5-point average (¥ 46)
sl Ofitting results (va{ious specimens) )
""" 5-point average (various specimens) 11
— gig=alC C=2.0x10
ar cosmio o o
> .
x 3 8/’8\\ ﬂ 1
& 0. 2 T e
8— B o0 g """""
27 o & }
<1, G190 results
1 d 1
<
o , : . P
0 10 20 30 40 50

creep stress (MPa)

Figure 3.20. Fitting Parameter a, (results from different tests and specimens)

Because C is a material constant, it can be determined by scaling the curves in Fig. 3.20. Doing so
it was found to be different for two sets of data. The scaled results of the two curves however coin-
cide very well (see (g,8,) results in Fig. 3.20). The existing difference in the creep parameter C
can, just as in the parameter n, be explained by the variation of material properties and testing con-
ditions from specimen to specimen. '

Using recovery data parameter b, was subsequently fitted. The results at different stress levels are
shown in Fig. 3.21 and are listed in Table A4, Zhang (1993c)l°”). By vertically shifting the b; data
by an amount of C, the (%g,g,) data are obtained. Fig. 3.22 gives a comparison between g,g, data
and Zg, g, data. The coincidence of the three curves suggests that g, = %g, = 1. Moreover since %g,
represents the nonlinearizing function g((c), evaluated at a stress level 6, = 0 (recovery) this
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parameter should be equal to one. Therefore the curves in Fig. 3.21 & Fig. 3.22 represent g only.
An analytical expression for g, is graphically shown in Fig. 3.23. An exponential function,

selected as

& =

(207% 10" 71)
e '

@317

represents the stress dependency of g, reasonably well. Here the stress o is given in Pa. In
Fig. 3.23 a curve according to this function is drawn.
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» »
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Ofitting results
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Figure 3.21. Fitting Parameter b, (specimen # 46)
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Figure 3.22. Model Parameter g,g, (comparison between g g, from creep and 2g 182 from recovery data)
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If it is assumed that the parameter go = 1, it follows from the described fitting procedure that three
of the four nonlinearizing parameters are constant and equal to unity. Only g, shows a stress-
dependency. The model is then actually simplified to MSM, Leaderman’s modified superposition
method (Leaderman 1943){2°),

40 - — 200 ( v r T —

Os-point averaged results from specimen # 46
W5.point averaged results from other specimens
— analytical expression: g,=6xp(2.0869x10"'451-7678)

30 15.0 for a large range of stress

20 100

10
] 5.0
0’00.0 200 40.0 60.0 0'%.0 20.0 40.0 60.0 80.0 100.0

creep stress (MPa) creep stress (MPa)

Figure 3.23.  Model Parameter g,

5. Two-nonlinear-parameter-model

The parameter g, plays a major role in the nonlinear stress dependence. Since it varies considera-
bly with the stress level, only g, in fact could be determined satisfactorily from the test data. The
scatter in the data overshadows a possible minor stress dependence of the other parameters. A pos-
sible slight stress dependence might be present in the parameter gy,

When viewing the data for gg in Fig. 3.18 especially at low stress levels between about 4MPa to
10MPa such a stress dependence can be observed. By considering the data between 4MPa and
10MPa, these data can be fitted quite well by Eq (3.18) when using a value of Jy = 21 66x10711pa’l.

. 1.0 g <49MPa
8 =

0.045

. (3.18)
050 a>49MPa

This choice for the stress dependence of g is not unique. From the data gathered it is clear that
other combinations of J; and g are possible. However, it is found that when choosing gp as given
in Eq (3.18), the quality of the prediction in cyclic loading is drastically improved. Summarizing
the fitting effort, a ‘two-nonlinear-parameter-model’ appears to fit the creep-recovery data,
obtained on the unsaturated polyester material, very well. The variation of the two parameters with
stress is given in Fig. 3.24. Although there is little to discriminate between the present model and a
MSM model for creep loading, the present model is superior for simulation of cases with a cyclic
loading.
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Figure 3.24. Model Parameters gy, Eq (3.18), and g5, Eq(3.17), (g1 =ag=1)

324  Unloading Behaviour

It has been found that creep-recovery tests are generally not able to provide sufficient information for
establishing a model to describe higher stress level loading and unloading behaviour (Zhang 19921471
and Zhang 1993c150h), Unloading behaviour can be significantly different from loading behaviour,
especially when the imposed stresses are high, e.g. larger than 70% of the strength of the material.
However little difference is usually found. Fig. 3.25 shows an example of the underestimation of the
strains by a power-law theory as well as by an exponential theory during the second creep period of a
two-step-test. In such a two-step test the sample is loaded up to a first stress level, whereafter com-
plete unloading occurs. In this case the first stress level was 40MPa, while for the second stress level
stresses ranging from 5MPa to 30MPa have been used. In Fig. 3.25 the simple (MSM) model with
only one non-unity parameter g, has been used. For unloading stresses less than about 60% of the
strength (the strength of unsaturated polyester = 87 MPa), the simple model established by creep-
recovery tests has sufficient accuracy for both loading and unloading behaviour. However at higher
unloading stress levels considerable deviation is observed between theoretical prediction and experi-
ment. Note that by introducing the exponential creep law, instead of the widely used power law, for
the kernel function in the Schapery model, the prediction is improved.

In Section 3.3 where cyclic loading is considered, comparison between the theoretical model with
only two nonlinear parameters (the ‘two-nonlinear-parameter model’) and experiments will be shown
to be excellent. Although for higher stress levels, the model can still be improved by applying other
stress-history dependent model parameters too, we did not consider this in this work, since it was very
difficult to obtain reliable data at high stress levels (close to the strength). Consequently the ‘two-non-
linear-parameter model’ has been established according to the data from tests in a mild stress region
(0 ~ 50 MPa). This model will therefore be adopted for further calculations.



48 Material Characterization and Experiments

0012 T tor power-law (zhang 1992):
6a A & » a =20.6e-11
N 30MPa =1.36e-11, n=0.07
0.010 r : ) i
for exponential-law:
M A a & =2§:e~1 1

25MPa =1.57e-11, n=0.065
0.008 N ~ AAMB AL A A & - a

20MPa

£
£ oo | %oManan s g 4 ] s

15MPa £

0.004 1 ® 1oMPa 4
4 5MPa | -
0.002 T 41est data
— theory based on exponential-law
theory based on power-law {see Zhang1992) —
0.000 ' ' '
3000 4000 5000 6000 7000 8000
time (sec.)

Figure 3.25. Comparison between theoretical and experimental results, the stress level of the first creep step
is 40MPa, the figure shows the results for the second (recovery) step strains, different stress levels are applied
in the second step, specimen #46)

3.25  Ageing Effects on the Exponent n

In the case of long-term creep and relaxation, the coupling effect between deformation and ongoing
(physical and chemical) ageing will definitely cause permanent deformation. Evidence for this was
found in the laboratory (De Boer 1993)U!]. Therefore the long-term viscoelastic behaviour is actually
not likely to be modelled accurately for a polymer, when disregarding physical as well as chemical
ageing. The relative contribution of both types of ageing depends on the nature of the polymer stud-
ied. Chemical ageing may cause a change in the cree[p 8ﬁmrameter C to a certain degree during several
stages of creep (see Chapter 3 and also Zhang 1993a’ 4] R g. 6a). However, for the unsaturated poly-
ester studied here, a suitable postcuring procedure makes the chemical ageing effect on the creep
behaviour negligible.

Creep (elongation) data for different physical and chemical (cross-linking) ageing times were
obtained by the author (Zhang 1993a)%), The data were fitted by an exponential creep law. The fit-
ting results for the exponent n of the creep law for a number of sets of creep data are summarized in
Fig. 3.26.
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Figure 3.26. Ageing effect on the exponent n (20°C), the data at the physical ageing time of one year are
obtained from various specimens, the point at the ageing time of seven months is from Fig. 3.16

A series of creep tests with different curing levels and corresponding to small physical ageing times
(< 1,000,000 sec. = 11.5 days) were performed by using single-specimen method as previously
described. Five different physical ageing times were chosen. The results of these experiments are
shown in Fig. 3.26 as those points with physical ageing times less than 1,000,000 sec. Some tests
were performed on a 7 month old specimen. The results indicate a range of variation of n. This varia-
tion is larger than the variation for »n found for specimens with the same age (see also Fig. 3.17).
Additional tests were carried out with four one-year old specimens. For these specimens a larger var-
iation of n was found. Although there are some contradictory points (30 MPa and 40 MPa) located at
one year physical ageing time, the tendency of the exponent can be presented by the dashed line in
Fig. 3.26. It agrees well with the average exponent, n = 0.065, obtained for the seven month physical
aged specimens (Fig. 3.17). The variation of the exponent n with ageing time z, can be expressed ana-
lytically as (¢, in sec.)

n = 0.1673-0.04141logt, . 3.19

In order to observe a possible effect of chemical ageing, some samples were given a prolonged post-
curing. The usual postcuring consists of two periods of curing, at 60°C for 24 hours and at 80°C for
24 hours. A prolonged postcuring corresponds to an additional curing at 130°C for 120 hours.

The results obtained (Fig. 3.26) show that there is hardly any chemical ageing effect on the exponent
n. The effect of physical ageing in fact remains the same whether the unsaturated polyester material is
given an additional postcuring or not.
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3.2.6 Validation of Theories

Although the data scatter is large, as can be observed in Fig. 3.26, it seems that there is an influence of
the physical ageing time on the creep parameter n. If the ageing dependence of the exponential law
generally exists (which means that the creep parameters C and n are ageing time dependent), both
Schapery’s viscoelastic theory and Struik’s ageing theory may at least not be very accurate.

In Section 2.5 it has been proven that the introduction of a stress dependence of the creep parameters
of the exponential creep law does not contradict the basic viscoelastic assumption, i.e., full recovera-
bility of the viscoelastic strains. But introduction of ageing dependent creep parameters, C and n, will
indeed conflict this assumption and lead to irrecoverable deformation. In this sense, a viscoelastic
theory may not be suitable to predict long-term behaviour at all.

Struik’s theory assumes that the physical ageing effects on the creep deformation can be described
simply by shifting creep curves over the time scale, which is based on the superimposability of creep
curves with different physical ageing times (see Chapter 2). But if the shape of the creep curves is
changing with ageing time as exemplified by changing the creep parameters C and n with ageing
time, then the ageing effect can not be described by solely changing relaxation times, i.e., a simple
shift over the time scale.

On the other hand, the change of the exponent n is very limited given the large physical ageing times
considered. Table 3.6 lists some physical ageing times and the corresponding exponent n obtained
from Eq (3.19) (the dashed line in Fig. 3.26). When physical ageing is between one year and thirty

Table 3.6. The relation between the physical ageing time and the exponent of exponential law

1, 6 hours 1 day 10 days 3 months 7 months 1 year 10 years 30 years
n 0.1062 0.0977 0.0836 0.0701 0.0650 0.0616 0.0475 0.0407

years, the averaged exponent n has an extrapolated value between about 0.04 and 0.06. This range of
the exponent is within the scatter of data being obtained from the tests when using different speci-
mens (e.g., the data at one year, in Fig. 3.26). In other words, for the unsaturated poiyester material
studied, the scatter in the test data is usually large enough to overwhelm the change of the exponent
due to physical ageing. Considering the scatter in the data, the fitting result of the exponent has a
range even for a certain ageing time. In order to avoid the conflict with the consistency requirement
discussed in Chapter 2, a constant value for n of 0.065 (at 7 months ageing time) is chosen for the
numerical simulation in the later part of this thesis.

327 Conclusions

The following conclusions regarding the time-dependent characterization of the unsaturated polyester
material (DSM Resins Synolite 593-A-2) can be formulated.

1. The nonlinear viscoelastic model able to characterize the material contains three kinds of parame-
ters: material constants, creep parameters and nonlinearizing model parameters. The material con-
stant, J, (the creep compliance in the linear range), is independent of the stress level and of the
ageing time. According to the consistency analysis in Chapter 2, both creep parameters C and n
can only be stress dependent. Limited experimental evidence suggests, however, that the creep
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parameter, C, may depend on chemical ageing if any vertical shift in creep data due to chemical
ageing occurs (for the unsaturated polyester material this dependence is negligible after postcur-
ing). The creep exponent » indeed is related to ongoing physical ageing (see Fig. 3.26). The non-
linearizing parameters, gy, g1, &2 and ag, are generally stress level, stress state and stress history
dependent. The dependency of the nonlinearizing parameters upon stress state and stress history
will assure the capability of the theory of modelling unloading behaviour.

. It is found that to use the exponential kernel function gives more accurate prediction of the stress-

strain relation of the unsaturated polyester studied. It has shown that the exponential law is better
than the traditional power law for this material. To use the exponential kernel function, the theory
for the material studied can be simplified to be have only two nonlinearizing parameters.

3. The nonlinearizing parameter g, plays a major role in describing the nonlinearity of the unsatu-

rated polyester. Therefore an MSM (modified superposition model), which has only one nonlinear
parameter g, is an acceptable simplified model for the unsaturated polyester in the case of short-
term loading and for moderate stress levels.

. According to Struik’s theory, the effect of physical ageing can be accounted for by a shift of the

creep strains over the time scale (see Chapter 3 and Struik 1978)#2) as has been formulated in
Eq (2.30). The nonlinearizing parameters, go, 81, &2 and a,, are assumed to be independent of age-
ing time.

. The theory described in this chapter is capable of describing the short-term time dependent behav-

iour of unsaturated polyester very accurately. Due to variation in the material properties from spec-
imen to specimen, an accurate model set up in terms of one specimen may however be in error
when trying to describe the behaviour of another specimen. The unavoidable scatter in mechanical
properties of the material will result in an error band for practical modelling.

. Viscoelastic models are intrinsically not capable of predicting the long-term behaviour of a ther-

moset material in a general sense because of the existence of permanent deformation due to chem-
ical ageing or extra cross-linking. In other words, these effects will change the creep parameters, C
and n in a long term sense, which in turn conflicts the consistency requirement of viscoelasticity.
However, for the unsaturated polyester studied, after postcuring treatment, the material is chemi-
cally stable and the error of applying a viscoelastic theory is considerably small.

For all practical purposes, Schapery’s model and Struik’s theory are very useful for long-term
behaviour modelling since the errors brought about by these theories are small, most specifically,
much smaller than the errors introduced by variability in the material mechanical properties.

The scatter in material properties is reflected in a range of variation of all model parameters. This
scatter in the creep parameter data, n, overwhelms the range of the change caused by the physical
ageing (at 7 months and 1 year in Fig. 3.26).

The scatter of strain in elongation creep among different specimens can be as large as 10% (see
Zhang 1992[47], Fig. 9) and even increases under higher stress levels or/and longer creep times
(Fig. 3.27). The scatter of model parameters determined by fitting of test data can be always larger
than 10% (see Fig. 3.17~Fig. 3.21 and Fig. 3.26).
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Figure 3.27. Creep Rupture Tests (creep stress = 50 MPa, 20°C, t, = 5 months) showing typical scatter in the
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creep data.

All these scatters of the material properties can overwhelm the error brought by the viscoelastic
theories for the long-term behaviour prediction. Henceforth, the viscoelastic theories can still be
adopted for the practical use of modelling.

. Unloading behaviour may be completely different from loading behaviour when the imposed stress

is very high, close to the ultimate tensile strength of the material (Zhang 1993c150], Fig. 29 and
Zhang 199247), Fig. 26).

For moderate stresses (up to 70% of the ultimate tensile strength) not much difference in deforma-
tion behaviour can be expected between loading and unloading. Without considering this differ-
ence in the model parameters, the theory works quite well and shows excellent agreement with test
data for a uniaxial tensile cyclic loading case, although there are some small underestimations.
But generally, the nonlinearizing parameters, go., g1, &2 and ag, are deformation history dependent,
which may be more important for a higher stress level loading. Fortunately, in this study, the load-
ing stress was always less than 70% of the ultimate tensile strength. The history-independent non-
linearizing parameters are sufficiently accurate. For the further calculations in this work, the ‘two-
nonlinear-parameter model’ will be chosen instead of using a model with more nonlinear parame-
ters or stress-history dependent parameters.

3 Prediction of Cyclic Loading

Section 3.1 and Section 3.2, the model parameters were determined on the basis of step loading

(with constant stresses) experiments. Now the validity of the model will be checked by considering
more complicated loading situations. In this section this check will be carried out by comparing the
model prediction to experimentally obtained cyclic loading strains. Biaxial testing will be presented
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in Chapter 6, to further ensure a simple-test-determined model being able to predict the response
under a more general loading situation.

33.1  Experimental

The specimens used were slightly different from those used in the creep experiments (Fig. 3.1). The
plate dog-bone specimens have a larger width (Fig. 3.28). The test machine used was a Zwick-1484
with which the changing load could be controlled automatically. Strain gauges were used for strain
measurements. All tests were stress-rate controlled.

§

200mm
£
L]

C 1
114mm

Figure 3.28. Specimen geometry

The cyclic loading tests were performed using three different loading speeds of 0.5, 2 and 10MPa/sec.
The model employed for comparison is the two-nonlinear-parameter-model (gg and g5 stress-depend-
ent), with an exponential-law kernel function. Only in one case the MSM model has been used in
order to compare its predictive quality with that of the two-parameter nonlinear model (Fig. 3.29).
Possible different model parameters for the unloading situation have not been considered. In other
words, gq is defined by Eq (3.18) and g, by Eq (3.17). Due to the variation of the test data between
tests, and from specimen to specimen, the constant J, has been adjusted (within 2%) in order to obtain
a good comparison between theory and test result.

All theoretical predictions are obtained by numerical integration of Eq (2.4). The method of numeri-
cal integration adopted here is a usual one (since there is no singularity or sharp peaks in the integrand
function) which automatically updates the number of sub-domains and adds up the value of the inte-
grand in a sequence of sub-domains within the range of integration until a certain criteria of accuracy
is satisfied. Specifically, the trapezoidal rule (Press et al. 19891321, p. 110) was used here. Accuracy is
obtained by comparing two recent results of integration and letting the relative error be less than
0.001.

33.2  One/Two Cycles up to a Maximum Stress of 30MPa

The stress input is controlled at a constant stress-rate. Fig. 3.29 shows a result for a stress rate of
0.5MPa/sec.
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Here theoretical prediction is from the simplest theory, the MSM (Maodified Superposition Method).
The model parameters are all constant and equal to 1, except g, which is defined in Eq (3.17). There
is a 6.1% underestimation of the strain at the maximum stress of 30 MPa. The error can be expected
to be more than 10% if the stress is higher than 30 MPa (see the deviation of the dash lines from the
test data in Fig. 3.29).

By admitting a slight stress dependency of the nonlinearizing parameter g, according to Eq (3.18)
and shown in Fig. 3.24, the prediction improves considerably. This is shown in Fig. 3.30 where an
excellent agreement between theory and test data can be observed (for the ‘two-nonlinear-parameter
model’).

The details in Fig. 3.30(B)~(D) exhibit the quality of the coincidence. For stress rates of 1, 2 and
10MPa/sec respectively, the comparison between model and data is shown in Fig. 3.31~Fig. 3.33.
The error has been found to be less than 1% for all cases considered.
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Figure 3.31. A comparison between the two-parameter model and the test data (stress rate: 2MPa/sec)
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Figure 3.32. A comparison between the two-parameter model prediction and the test data (stress rate:
1OMPa/sec), the experimental data show some disturbance at the minimum and maximum stresses, due to the
inability of the test machine to follow the rapid changes in loading speed.
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333  Cydlic loading with increasing amplitudes of stress

The stress input and strain output are shown in Fig. 3.34. The comparisons between experimental data
and theoretical results are shown in detai} in Fig. 3.35~Fig. 3.37 for different loading conditions. All
parameters are the same as in the previous section, except for a small adjustment of J; to a value Jy =
19.452¢-11 GPa™! (1% difference with the Jo value in Section 3.3.2). Again excellent agreement is
obtained.
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Figure 3.34. Cyclic Loading; stress rate: 0.5MPa/sec
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Figure 3.35. Cyclic Loading; stress rate: 0.5MPa/sec
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Figure 3.37. Cyclic Loading, two different loading speeds

334  Five-Cycle Loading

The stress input is shown in Fig. 3.38(A). The elastic compliance Jy is adjusted to a value of
19.643x10°11GPa™! (1.03% of difference compared to 19.071x107!! GPa™'), Using the value of
Section 3.3.2 for J yields a 2.55% error in the maximum strain (Fig. 3.38B).
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Figure 3.38. A cyclic case (stress rate: IMPa/sec)
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The results for the adjusted initial compliance J;, are shown in Fig. 3.39. The small adjustment of Jg
yields an excellent agreement.
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Figure 3.39. Cyclic Loading; stress rate: 0.5MPa/sec; Jg=19.643e-11)

The predictions using the two-nonlinear-parameter model in this sub-section and in the previous two
sub-sections show a good description of the creep and cyclic behaviour of the unsaturated polyester
material. Using a slight adjustment of the parameter J, different cyclic loading behaviour can be
modelled excellently. The adjustment of J can be viewed upon as an adaptation to the theory to
account for the data scatter which is inherent to the experimental procedure. It most probably results
from slight variations in experimental conditions such as e.g. the load application, ezc., between tests.

335

Conclusions

1. The use of two nonlinear parameters, g, and g, in Schapery's model, is sufficient to establish an
accurate model for the unsaturated polyester material studied.



Material Characterization and Experiments

For various cyclic loading conditions, the strains predicted with this simplified theory, have small
relative errors, less than 1%. This confirms that the history-independent nonlinearizing parameters
are sufficiently accurate. For the further calculations in this work, the ‘two-nonlinear-parameter
model’ will be chosen instead of using a model with more nonlinear parameters or stress-history
dependent parameters.

The model is correct for relaxation behaviour

Because of the difficulties in doing relaxation tests, that there is no appropriate method for the brit-
tle materials in our laboratory, the relaxation case has not been checked directly. However, the suc-
cessful prediction of cyclic loading cases ensures in a certain degree that the relaxation behaviour
can be described appropriately. In the cyclic loading case, the loading speed is limited and there-
fore, both creep and relaxation occur.

The simple-test determined model can be used for describing cyclic loading behaviour

The model established will be used to simulate the micromechanical behaviour of a fibre rein-
forced composite with the unsaturated polyester as matrix. The model is then expected to be able
to describe the constitutive behaviour of the material under a complicated loading history. It is
encouraging that the cyclic loading behaviour can be successfully simulated by a model which is
characterized by simple creep-recovery tests.



Chapter 4

Three Dimensional
Model

4.1 Introduction

It has been shown in the previous chapters that the short-term time-dependent behaviour of the
unsaturated polyester resin under study can be described very well by a single-integral nonlinear vis-
coelastic model, due to Schapery. The model was extended by including the physical ageing shifting
effect in order to describe long-term time-dependent behaviour of the resin.

The ultimate goal of this work is to build a numerical model which is able to predict time-dependent
behaviour of glass fibre reinforced unsaturated polyester composites. In these materials, the polyester
matrix will generally experience multi-axial stresses, even when the global (macroscopic) stress field
is uniaxial. Therefore an extension of Schapery’s model to a general 3D formulation is necessary.

4.2 3-D Model

The uniaxial stress-strain relation which results from Schapery’s model has been given in Chapter 2,
Eq (2.4). The Poisson effect is of main concern when the expansion of a model from a uniaxial for-
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mulation to a three-dimensional formulation is considered. A viscoelastic material will generally
show a time or strain rate dependent Poisson effect. In order to prevent a complicated time or strain
rate dependent Poisson’s ratio function, however, two constants are introduced instead, a so-called
instantaneous Poisson’s ratio, v, and a creep Poisson’s ratio, v,. With the aid of these constants, the
Poisson effect can be described successfully, as will be shown hereinafter.

One of the possible three-dimensional representations of the Schapery model for isotropic materials is
given by

!

; nd

€ = gOJOSijUj+g1JAJ(w—w = gz.sfjcj)dt, @.n
o

where
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The kernel function AJ is defined as

ar(w-v) = Clesp[(w-v)"]-1} @5)
where the shifted times are given by

V= j’“_" and v’ = jgi', 4.6)
0 (-2
and

a, = ao[‘;ﬁ_‘)" , @7



§ 4.3 Poisson’s Ratio of a Viscoelastic Material 63

In these equations, z, and o are the initial physical ageing time and the shifting rate of physical ageing
respectively.

For uniaxial loading, the nonlinearizing functions g, g, g» and a, of the model are functions of the
uniaxial stress only. For a multiaxial formulation, these functions in general will depend on some
measure of the multiaxial stress field. This measure must of course be invariant. Several approaches
have been proposed (Brouwer 1986!!71, etc.). One of the most cited invariants is the effective stress
(or von Mises stress), ©,, defined by

o, = JP-31, (4.8)

where I, and 1, are the first and second stress invariants which are defined as

(4.9)

I, =0,+0,+0;
I < 2. 2. 2\*
2 = 6,0;+0,03+0,0;—| 04 +05+ 0

A simplification of the model Eq (4.1) results when assuming a single Poisson’s ratio for both instan-
taneous and creep deformations, i.e. v, = v . This was done by Henriksen (1984)27! for plane stress
and plane strain cases but there was no experimental evidence given for this assumption. For the
present material it was found from experiments that these Poisson’s ratio’s are not equal. The results
of these experiments are presented in Section 4.3.

4.3 Poisson’s Ratio of a Viscoelastic Material

For a viscoelastic material, the Poisson’s ratio in general is not a constant but varies with time. It is a
function of the strain, stress, time, etc. In this section, it is hypothesized that two constant parameters
are sufficient to describe the Poisson effect in a 3D stress-strain refation. These two parameters are the
instantaneous Poisson’s ratio, which describes the instantaneous elastic deformation, and the creep
Poisson’s ratio, which is related to the time-dependent deformation part.

The major objective of this section is to apply these two parameters and determine experimentally
that these two parameters can be considered as two material constants. It will bring us a great conven-
ience in 3-D modelling if they are constants instead of functions.

4.3.1 Overall Poisson’s Ratio

If v, in Eq (4.4) is assumed to be a constant, Eq (4.1) can be rewritten as

'
& = 800S0+ 58, [ A (8,0 a1 . (4.10)
0

But this assumption is not apparently true and proof for it is required. If v, is a function of stress and/
or time, the determination of v, according to Eq (4.1) is not possible.
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The first three components of strain in Eq (4.1) are

t
d

g = gojosnj",-*81IME(825£|j0j)d1. .11
[
t,d

€ = gojoszjd,**hfuﬁ(ezsgjaj)ﬁ, (4.12)
o
t P .

e = 809083,0;+ 8,12 5,850, . @.13)
)

Under a uniaxial loading situation (Fig. 4.1), only o is different from zero, while all other stress com-
PONENts are ZEro, 6, = 03 = G4 = G5 = 64 = 0. Above expressions can in this case be written as

?
€, = 89/¢% *x;f“;j;(xzﬂ,)dt s 4.19)
o

1
d
£, = €5 = -VgyJ,0; ‘hj‘”ﬁ(s’z";"l)d“ , (4.15)
o

where relations Eq (4.3) and Eq (4.4) have been used for the components of S;; and S;;°. The creep
Poisson ratio v, is for now assumed to be in general a function of time.

to

N

Y

* Gy
Figure 4.1. Loading Direction

On the other hand, the viscoelastic strain can always be divided into two parts, the elastic strain and
the creep strain, i.e.,

Efi'la.m'r = 801001
(4.16)

creep

1
& = g Jart (8,0, dt
0
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The coefficient of lateral contraction (overall Poisson’s ratio), defined by the negative ratio of lateral
to axial strain for each instant of time, is then given by

!
d
VEolo0, +8, [AI T (8,9, 0)) dn
Q

n(o. = _E—T = : 4.17)
L 31[“%(3261)‘“
0
An approximation of Eq (4.17) for an almost constant v, is
vselanic v ecrup
(0,0 = L ad) (4.18)

elastic creep
+ El

The equality only holds exactly when v, is a constant. Apparently, the overall Poisson’s ratio is not a
material constant. It is generally both stress and time dependent for viscoelastic materials (Findley et
al. 1976['8), p. 189).

4.3.2  Creep Poisson’s Ratio

In the same fashion as above, the lateral strain, €,, can be separated into an elastic strain and a creep
strain,

- szla.\'lic + Ecrﬂp A (4 ] 9)

2 2 2

If v, is constant then according to Eq (4.15)

&€

t
d .
g 7= —vcgJA!d—‘(gzcr,)d‘r = -v el . (4.20)
o

Lateral and axial strains are proportional to each other. The creep Poisson’s ratio is then by definition

cre
gsreer

2 4.21n

creep’
e’

V. =

Generally, v, is both time and stress dependent, v, = v(G;, 7). In order to fully determine v, therefore,
the test program should include different stress levels and creep-recovery times.

Probably because of the fact that the experimental determination of the creep Poisson’s ratio is
extremely difficult, little information is available about the creep Poisson’s ratio in the literature and
even spme opinions about this Poisson’s ratio conflict each other due to the difference of the materi-
als. Ross (1964)B7] reported that creep in the direction of the major principal stress appeared to be
unaffected by the presence of stresses in the other principal directions, thus suggesting that the creep
Poisson’s ratio was zero for concrete material. While most people believe that creep is essentially a
shear-dominated process. Boyle and Spence (198317, p. 41) in a study on metals, concluded that
changes in hydrostatic pressure had no influence on the creep behaviour and the observation showed
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that creep deformations appeared as distortions. There was a change in shape without a change in vol-
ume. They therefore suggested a creep Poisson’s ratio of 0.5 for metal. Some other researchers sug-
gested a creep Poisson’s ratio similar in magnitude to the instantaneous elastic Poisson’s ratio {e.g.
Henriksen 1984[27] for polymers and Gopalakrishnan ez al. 19692% for concrete materials). Due to
the sparse and unreliable literature data, a test program was set up to evaluate the creep Poisson’s ratio
of the unsaturated polyester.

4.3.3 Determination of Poisson’s Ratios

A uniaxial creep-recovery test is considered here. The uniaxial stress is given by of?) = o, H(t). For
this one-step stress input, the strain in the loading direction is given (from Eq (4.14)) by

- £ .
€ = 8¢/y0, +8I52°1M(00) : 4.22)
In the transverse direction, the strain ¢; becomes, according to Eq (4.15)
€, = —vgolocl-glgzvcolA!(;t-) . (4.23)
g
The overall Poisson’s ratio is then obtained from Eq (4.17)

€ vezla:lic .y E”“F
2 1 -l
ne,n = Tg, . elastic _creep ’ (4.24)
i € +&

where

€ = glgzclAJ(‘-::). (4.25)

Note that, under a step stress input, Eq (4.24) is an exact relation without the assumption of a constant
v, whereas Eq (4.18) only holds exactly when v, is constant under a general stress input.

In the beginning of the loading, the creep time is very small, ;5" » €;';” ~0. From Eq (4.24) we
obtain

elastic creep

£ Ve +VE
LY tvE (4.26)
€ elastic ~ creep
1

During recovery, the strain in the loading direction is
€ = 8,0 [AS (W) —AJ(y-w))] . 4.27)

Similarly Eq (4.15) provides the transverse strain

€, = g,(-v.0)) [AJ(y) -AJ(w-y)], (4.28)
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and thus the overall Poisson’s ratio (without an assumption of a constant v.) can be derived by divid-
ing Eq (4.28) by Eq (4.27),

e (4.29)

An experimental method to determine both the instantaneous Poisson’s ratio, v, and the creep Pois-
son’s ratio, v, is then established by Eq (4.26) and Eq (4.29).

Fig. 4.2(C) shows this graphically. At the point P in Fig. 42(C), the value of —€,/; at short times
equals the elastic Poisson’s ratio, since creep deformation has not got enough time to become visible
(there is a difficulty to measure this v accurately, see Section 4.3.4). Along the path PQ, -€5/€,
increases because of the increase of the creep strain in Eq (4.17). But it will not reach the creep Pois-
son’s ratio (here assume v, > v) unless the creep strains are much larger than the elastic strains. At the
points Q and R, when the load is released, the elastic strains are recovered immediately, while the
creep strains remain. According to Eq (4.29), the measured value -€,/€ is exactly the creep Poisson’s
ratio v,.
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Figure 4.2. Creep-recovery test and overall Poisson’s ratio

434  Test Results

Uniaxial tensile creep tests were performed on dog-bone specimens. A uniaxial tensile load was
applied in the ‘1" direction (which is along the specimen, see Fig. 4.1 and Fig. 4.2). Both strains in the
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‘1’ and the ‘2’ direction were measured and were divided by each other to obtain the overall Poisson’s
ratio.

The tests were carried out in an air-conditioned room with a constant temperature of 23°C +0.5 °C
and a relative humidity of 52%+2 %. A temperature chamber was used for several cases when lower
and higher temperatures were required. Specimens used were the same as those presented in
Figure 3.28 on page 53. The test machine (Zwick-1484) could provide automatic loading control in
tension as well as in compression. Strain gauges were used for strain measuring.

Different test conditions were chosen in order to examine the dependence of the creep Poisson’s ratio
on factors like stress/strain level, aging time, creep time and temperature.

A fundamental difficulty of these tests originates from the small strains during the recovery period.
These strains are so small that any slight change in temperature due to the air flow around the strain
gauges may spoil the data for the Poisson’s ratio measurement. Some discussions about this problem
are presented in Zhang (1993b).

1. Stress Level Influence

Fig. 4.3 shows the creep Poisson’s ratio against different stress levels.
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Figure 4.3. Creep Poisson’s Ratio

Fig. 4.4 gives three results for different creep stresses and creep times. It can be observed that there is
a slight stress dependence of the creep Poisson’s ratio. The averaged creep Poisson’s ratios are listed
in Table 4.1. As a first approximation, it can still be assumed that there is a constant creep Poisson’s
ratio which equals 0.417 (according to the data obtained in a stress range of 10~40 MPa). The ulti-
mate error is defined as the half of the maximum of the difference of any two data.
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Figure 4.4. Test Results for Different Creep Stresses
Table 4.1. Averaged Creep Poisson’s Ratio (23°C105°C)
creep stress 10 MPa 20 MPa 25 MPa 30 MPa 40 MPa
creep Poisson’s ratio 0.434 0.429 0.415 0.407 0.398
ultimate error 10.020 +0.001 +0.019 +0.017
(number of data) Q) ) (1) N (6)

2. Creep Time Dependence

From the test results it can be concluded that the creep Poisson’s ratio is not time dependent.
Table 4.2. shows the results of averaged creep Poisson’s ratios from different creep times and stresses.

Table 4.2. Creep Time Influence (23°C+0.5°C)

creep stress 10 MPa 30 MPa 40 MPa
creep time 14 hours 1 hour 12 hours 4 hours 10 hours 1 hour
creep Poisson’s ratio 0435 0442 0419 0.410 0.404 0.395
ultimate error +0.005 0.001 +0.008 +0.002 +0.020
| (number of data) @) (¥4} m 3) 2) 4)

Due to the scatter of the data (Table 4.2) the differences between creep times can not be attributed to a
‘ time dépendence since the scatter in the data is of the same order of magnitude.

| 4.3.5 Aging Influence
’ The aging times of samples are recorded in Zhang ( 199361491, Appendix). A comparison between
creep Poisson’s ratios for samples with different physical aging times is given in Table 4.3. Again a



70 Three Di ional Model

slight influence on the creep stress level can be observed, but there is no evidence of a dependence on
the physical aging time.

Table 4.4. shows the results for a sample which did not undergo postcuring. Without postcuring, the
cross-linking level of molecules is lower. This causes a softer material behaviour and a larger instan-
taneous Poisson’s ratio. This suggests that, on the other hand, the increase of the cross-linking level
will reduce the instantaneous Poisson’s ratio while the creep Poisson’s ratio remains constant. The
results from the case with a 20 MPa creep stress are not reliable. More details about this are described
in Zhang (]993b)[49]. It can not be concluded from Table 4.4 that there is a dependence of the creep
Poisson’s ratio on the chemical aging or on the creep stress level. The thermal influence will be dis-
cussed in the Section 4.3.6

Table 4.3. Physical Aging Time Influence (23°C+0.5°C)

creep stress 10 MPa 30 MPa 40 MPa

aging time 10mon. | 2mon. | 10mon. ( 2moen. | 5Smin. | 10 mon. | 2 mon.
0.440 0435 0.398 0416 04127 | 0.391 0.415

test results of 0434 0414 0.402 0413 0.391 0402

oreep Poisson’s | 0431 | 0441 | 0388 | 0419 0406 | 0.383
0.443

averaged 0.437 0.430 0.396 0.416 04127 | 0.396 0.400

Table 4.4. Results from Samples without Postcuring (23°C+0.5°C)

creep stress 10 MPa 20 MPa
instantaneous Pois- | 0.386/0.439 0.381/0.408*
son’s ratio/creep | () 388/0.434 0.378/0.388*
Poisson’s ratio

0.3834/0.434

0.391/0.435
averaged 0.3871/0.4355
ultimate error 1$0.004/+0.0035

* poor data quality

4.3.6 Temperature Influence
The results for different temperatures are listed in Table 4.5. Table 4.6 shows the instantaneous Pois-

son’s ratio.

There is a large deviation of the results of the instantaneous Poisson’s ratio due to a ‘zero-point’ shift-
ing of the electronic instruments after a sudden increase of the displacement. This phenomenon will
be discussed later. The occurrence of this problem suggests that for the measurement of time depend-
ent material behaviour, a long-term stable measuring system is crucial for a good data quality.

There were three tests done for a higher temperature (40°C). The results showed a severe zero-point
shifting influence (see Section 4.4.4). Due to the difference of thermal expansion between the polyes-
ter and the base material of the strain gauges, an initial strain of the same order of magnitude as the
creep strain was observed. Besides, under a higher temperature than the room temperature, a period of
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time is needed for the polymer to reach a new thermodynamic equilibrium, during which the physical
aging may be partially removed.

A temperature independence of both Poisson’s ratios is required in order to be able to apply the accel-
eration method for general 3-D creep-relaxation tests by increasing the temperature. If the independ-
ence is not true, the acceleration method can only be adopted for uniaxial testing and modelling. The
experiments have proved the temperature independence within a range of 10°C ~ 23°C, for both Pois-
son’s ratios.

Table 4.5. Tests for Different Temperatures (creep stress: 10 MPa)

temperature 10°C+1°C 23°C+0.5°C
physical aging time 10 months 2 months 10 months | 2 months
creep Poisson’s ratio (from 0427 0.430 0.4400434 | 04350414
various samples) 0.417 04310443 | 0.441
| averaged & ultimate error 0.422+0.05 0430 04374006 | 0.43010.16

Table 4.6. Instantaneous Poisson’s Ratio (creep stress: 10 MPa)

temperature 10°Cct1°C 23°C+05°C
instantaneous Poisson’s ratio 0.371 0.362
ultimate error +0.002 +0.009

4.4 Discussion on Poisson’s Ratio Measurements

44.1 Thermal Influence in the Overall Poisson’s Ratio

Eq (4.17) and Eq (4.18) are obtained under the assumption of a viscoelastic material behaviour. For a
more general situation, other strains might be involved during the measurement too. Here the influ-
ence of possible thermal strain is considered. In this case, the overall Poisson’s ratio under a uniaxial
load can be written as follows

therm v elustic +v giTeer
&g £ (4.30)
£ therm  _elastic  _creep N
1 El + El + 51

therm therm , therm

Here €)";™ are thermal strains, where €,""/€,""" = 1 due to the assumed isotropy; Elastic strains are
instantaneously recoverable and creep strains are typically time dependent but recoverable.

4.4.2 Loading Imperfection Influence

In the experiments, the loading rate was about 20MPa/sec. for the first 90% of loading. For 40MPa
creep stress, it took the test machine about 2.5 seconds to finish a loading or an unloading step (99%)
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without overshoot. Fig. 4.5 shows a case with a loading step of 30MPa creep stress. The strain data at
the beginning of the loading step and at the start of the unloading step are not accurate.

100% load \ -
99% load
%load [
1.5 sec. &
-
0040 20 4.0 60 80 100
time (sec)

Figure 4.5. Loading imperfection, creep stress: 30MPa, specimen # 745

It was found that, however, the loading imperfections have just minor influences on the creep and
recovery data compared with the influences due to temperature effects and due to stability of the
instruments.

443 Thermal Expansion and Contraction Influence

Dealing with temperature influences, two different aspects have to be considered: heat generation by
the strain gauge and heat transfer between strain gauge and specimen, and consequently thermal
expansion/contraction of the testing material.

If a strain gauge is used for testing, the electrical resistance of the strain gauge will create heat, hence
the temperature of the material will be raised locally and the material can be expected to undergo a
volume change according to the local temperature. On the other hand, the heat is partly transferred to
the surrounding air. This transfer is sensitive to the air flow around the specimen. Although a dummy
sample was used for temperature compensation, the air current around the samples changed locally
and randomly and caused a difference in heat diffusion efficiencies between the specimen gauge and
the dummy gauge, and consequently a temperature discord between them. Thus a temperature
induced strain variation occurs. This can in turn spoil small strain data (see Fig. 4.6). For lower stress
levels and short creep times, the recovery data are extremely small, of the order of 104, which is com-
patible with the order of magnitude of the variations caused by the above-mentioned temperature
changes.
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Figure 4.6. Recovery Data & Poisson’s Ratio, creep stress: 10MPa

The thermal expansion and contraction can distort the overall Poisson’s ratio data considerably as can
be observed in Fig. 4.6. The arrows marked with A show a thermal contraction influence (in a short
period of time) on the overall Poisson’s ratio, while those marked with B indicate an expansion effect.

The environmental temperature will have an influence on the heat transmission efficiency from the
strain gauge to the surrounding air. If the air flows along the strain gauge, the heat transmission effi-
ciency between the gauge and the air will be influenced by the air temperature. A relatively high air
temperature will cause a larger part of the generated heat to remain on the sample and cause a raise of
the local temperature. An analysis of the air flow influence has been done in Zhang (1993b)149) and
the disturbances of the strains as shown in Fig. 4.6 have been well explained.

The variation of strain will change the electrical resistance of the strain gauge, hence the electric
power and eventually change the amount of heat generated by the strain gauge. An unloading will
reduce the strain significantly in a short period of time, and hence reduce the resistance of the strain
gauge too. This causes a corresponding increase of the electric power or the heat generated by the
strain gauge. This in turn further raises the local temperature and thus produces an extra thermal
strain. An analysis of this second thermal effect is given in Zhang (1993b)%9). The results show that
there is 1~2% of relative strain error existing in the beginning of the recovery data due to a sudden
change of load. According to Fig. 4.7, the relative errors of the peak disturbances in the overall Pois-
son’s ratio (10MPa) can be calculated. They are 2.7% and 7% at the beginning of creep and of recov-
ery respectively. The division of strains doubles the error, hence the errors in the individual strains are
1.35% (at the beginning of creep) and 3.5% (at the bc%inning of recovery). They are of the same order

of magnitude as those calculated in Zhang (1993b)14°1,

73
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4.9(A) Overall Poisson's Ratio during Creep 4.9(B) Overall Poisson's Ratio during Recovery
creep stress: 40MPa creep stress: 40MPa
0.355 0.39
£2/€
-£0€4

0.38 beginning of recovery

0.350 \ 0.37

beginning of creep

0.36

034555 R B0 200 033450 3600 _ 3800 000
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Figure 4.7. Overall Poisson’s ratio at the beginning of creep and recovery

Because of the small strain situation during recovery, the thermal strain exhibits as an inseparable part
of the strain data due to the application of the strain gauge. To avoid the temperature influence, it is
better to use other measuring means instead of strain gauges. But to pursue a higher accuracy will
finally lead to a complicated and expensive measurement method.

4.4.4  Stability of Signal Amplifiers and the Correction Method

It has been found that the measuring system can cause 1% error in creep and recovery data including
zero-point floating during large amplitude signal changes and zero-point variations during a long time
measurement under room temperature. The floating of data generated by creep step jumping will shift
the creep data and cause an inaccuracy of the result for the Poisson’s ratio even at the very beginning
of creep. But the variation during creep will possibly net bring large errors for creep data, neither the
variation from the recovery period for recovery data will do. But there may be a large error transpor-
tation from the creep period to the recovery period. Since the strain in the creep period is usually
large, its 1% floating and variation can be as large as the strain in the recovery period. When the test
is transferred into the recovery stage, the remaining variation error from the creep stage will shift the
strain data in recovery unanimously.

This influence is hard to be observed from strain data, but can easily be reduced from overall Pois-
son’s ratio data. If there is no permanent deformation and thermal deformation, the overall Poisson’s
ratio in the recovery period is the same as the creep Poisson’s ratio. The overall Poisson’s ratio keeps
then a constant value and will not increase or decrease with time during recovery (see Section 4.3.3).
On the (-ey/e;) vs. time figure, a horizontal line during the recovery period should be seen. The posi-
tion of this horizontal line thus determines the creep Poisson’s ratio. The test results, however, often
show that the data curve tends to deviate from a horizontal line.

It is easy to make a correction by shifting the strain data until the Poisson’s ratio curve becomes hori-
zontal. Fig. 4.8 shows how to perform this method: adding or subtracting a constant from the strain
data in recovery until the overall Poisson’s ratio curve becomes horizontal. This constant is hence
considered to be the accumulated zero-point shifting in the creep period. This method is usually valid
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if there is no thermal deformation involved. It was found that there is little difference whether ) or g
is corrected, as long as the correction is not larger than 10% of the total strain in the recovery period.
In the data processing, usually the strain data, ¢, were shifted because ¢, is smaller than ¢; and more
sensitive to a correction.

4.10(A) Data Correction 4.10(B) Data Correction
20MPa 40MPa
05 05
&8y pranesn LEJ/Ey comected data
041 o35 0.428 ] 04 ™\ 0383 afterc,-0.00006
fore,000000 | | e
03 arereet 1 03 /
original data
02 1 02
01 0.1
0.0, R 10000 15000 OAOO 2000 - 000 000
time (sec) time (sec)

Figure 4.8. Data correction by a translation of strain

Fig. 4.8(A) shows a result where 0.00009 was added to the recovery data of ;. In Fig. 4.8(B) 0.00006
was subtracted from the recovery data of &, (the dot lines are the original data, the solid lines are the
corrected data).

Some results show a zero-point shifting of the strain signal which is too large to be corrected by this
method. The data then seem to be useless. In Fig. 4.9 some data of a higher temperature experiment
(40°C) are presented. The correction of the recovery data by the above mentioned method required a
correction beyond the above-mentioned 10% limit. It results in creep Poisson’s ratio’s above 0.5. The
high zero-point shifting here probably may also be attributed to a thermal influence, to the creep of
the base material of the strain gauge and to clamping imperfections.

4.11(a) staat104d 10MPa 4.11(b) staaf77¢ 10MPa
4°C 06 40°C
1€,/€4 0.505 after e, 47.0mv
05 /€ r
- e 0.580 after £,-0.00012
04t 0371
0.4 1
0.373
0.3 02
0.2
00
0.1
004 7000 2000, 3Q00 4000 5000 025 1000 2000 000 5000
time (sec?) time (sec,

Figure 4.9. Thermal volume change influence
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4.4.5 Conclusions

1. An accurate description of 3D behaviour is observed when considering two constant Poisson’s
ratio’s: an instantaneous and a creep Poisson’s ratio.

2. The creep Poisson’s ratio remains constant for different creep times, aging times (both physical
and chemical aging) and temperatures (10°C~23°C).

3. The creep Poisson’s ratio slightly varies with the creep stress level from 0.398 for 40 MPa to
0.434 for 10 MPa, the average being 0.417. This suggests that there is a hydrostatic pressure
effect on the creep deformation (volume creep). On the other hand, the creep Poisson’s ratio is
apparently larger than the instantaneous creep Poisson’s ratio, which suggests that if a single
Poisson’s ratio is used a large error will be introduced in the 3D time-dependent analysis;

4. The instantaneous Poisson’s ratio decreases with an increase of the cross-linking level. It is also
possibly dependent on temperasure;

5. The proposed method for determination of the creep Poisson’s ratio is easily and economically to
be used, especially the data correction method is simple to carry out and can avoid the require-
ment of extraordinary stable electronic instruments for long time small strain measurements;

6. Thermal strain caused by strain gauges has various influences in small strain measurements, and
can distort the creep data and recovery data significantly.

In the composite creep analysis, Chapter 7, an example will be given of the fact that neglecting the
creep Poisson’s ratio by equalizing it to the instantaneous Poisson’s ratio will lead to a 10% error in
the strain for a creep time longer than one month, see Fig. 7.13. In the direction perpendicular to the
remote load, there is a 6% error. Due to the fact that the remote load is not large (10MPa) when a 10%
error has been found, a larger error is expected at higher load levels. It is therefore necessary to con-
sider the creep Poisson’s ratio in the composite creep calculation.



Chapter 5

Numerical Algorithm and
DIANA Implementation

5.1 Introduction

In Chapter 4, a 3D constitutive relation has been established. In order to apply the finite element
method to analyse the composite material, this 3D model is needed to be implemented into a finite
element package, and hence the numerical scheme for this model is required. This is the subject of
this chapter.

The integral representation of the viscoelastic constitutive relations straightforwardly reveals the
hereditary property of polymer materials, i.e., the time dependence or the memory of the stress his-
tory. However, to evaluate this integral, all the information of the stress history from time zero to the
present time is necessary. This is due to the fact that the kernel of the integral is a function of current
time which is the integration limit of the convolution integral (see Eq (5.1)). The kernel thus changes
with carrent time and consequently the integral is needed to be repeatedly evaluated for different cur-
rent times. This suggests that if a numerical evaluation is adopted, as the observing time increases, the
computing time of the integral becomes longer and longer and, at the same time, more and more eval-
uated stress data from every time step are needed to be stored for later calculation of the integral.
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In this Chapter, we use an exponential function series to approximate the kernel function. A numeri-
cal scheme in which only the data of the previous time increment are involved in the current time cal-
culation thus has been developed. Hence only the data of the previous time step are required to be
stored. Therefore no large data storage is required and the computing time is also reduced. A similar
method, using an exponential series kernel, was developed by Henriksen (1984)127 for plane strain
and plane stress cases. Here the general 3-D formulation is presented with the physical aging effects
and a creep Poisson’s ratio being included.

This material model will be particularly used for the modelling of the matrix behaviour of fibre-rein-
forced polymers in the micromechanical analysis of composites.

DIANA software is a finite element method package developed by TNO, the Netherlands. The imple-
mentation of the constitutive model has been done in this package and has been tested by several
examples including creep with an aging influence, cyclic loading and shear deformation. The results
have shown a good accuracy of the numerical scheme. Especially, for a uniaxial creep simulation, a
large time step for the calculation is possible and brings very limited errors, hence a several years
creep calculation, whatever for pure polymer or composite, can be done with merely several time
steps. The numerical scheme can successfully deal with the strong nonlinearities at high stress rates
and high stress levels although these situations may cause a low convergent speed and hence require
either smaller time increments or more iterations.

5.2 Formulation and Discretisation

In this section, the formulation is focused on setting up a numerical scheme which can avoid a large
storage for all old stress information.

52.1 Theory

Under the assumption of a constant creep Poisson’s ratio, the three-dimensional representation
Eq (4.1) becomes

r
: d
€ = 80Jo5;0,+ Sij8, [ M- (8,0)) dt 5.1
0

uy-i

and gy g;, g2 (will appear later) and ag (in Eq (5.3) and Eq (5.4)) are nonlinear parameters being
functions of the effective stress Z(t) (defined in Eq (5.19)). The kernel function, AJ, can be generally
approximated by a certain number of terms of the exponential series

Al = i JI‘( 1 -e’l’w’w) , (5.2)

p=1

where the reduced times, in which the physical aging effect is included (see Chapter 4 for details), are
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I

Vv = [— T (5.3)
Vag (Z(¥))| <
¢
T d'
v=y@=| % (5.4
vay (Z())| <

t

e

Here 1, is the physical aging time of the material at v = 0 and o the shifting rate of physical aging (see
Chapter 3). Compared to Eq (4.9), the bar over vy is dropped for writing convenience. Breaking of the
series expansion Eq (5.2) at a chosen value of p, an adequate approximation of the power law or
exponential law kernel function within a certain time domain is obtained (see, e.g., Figure 5.1 on
page 86). The participation factors can be determined by a usual curve fitting procedure. Generally a
limited number of terms will be sufficient for a required accuracy. If more terms are used in the same
time domain, the accuracy of the series may be improved extensively. If a certain accuracy is chosen,
the use of more terms can extend the time domain. The stresses and strains will be written as follows,

see Eq (4.2),

{ (€1 €p 83 B €5, ) = (€11, €19.Eq3 813 Exyi E13) 55
(6),05,03,0405,0¢) = (O}, Ogy 033 Oy Oy: Oy3)

and S, S‘,-j are copied from Eq (4.3) and Eq (4.4):
l—v-v 0 0 0
~+1-v 0 0 0
=YY | 1] 0 0} (5~6)
Y oo o1+ 0 0
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5.2.2 Discretisation

Substitution of Eq (5.2) into Eq (5.1) yields

13
- A (v(N-y(0) g
g = g()'l()sijcj+sll'jgljz('lll—'lﬂe : )E(gzt’j)‘h : (58
[
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or
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The second term of the right hand side of Eq (5.9) is
I3 t
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where the initial stress o; = 5,(0) and g = g,[£(0)1 . The third term of the right hand side of Eq (5.9)
is

t 1-Ar t
- A, (WO () 4 : -A, (W(N-w(t)) 4
_s;},glj'z Wye * Z(80)dt = -sfjg]z:fp{ ] + f }e ’ 77 (8204 5.11)
oP P 0 t-ar

and, by the use of the basic properties of logarithms, the first integral of the right hand side can be as
follows:

1~ Ar
J e—h'wm_wm)dit(gzcj)d‘c = e_l’Avmef:(t—At) y 5.12)
0
where
t-Ar
G:.’(I—Al) _ I e_l"wm—Aw(l)_wm%(gzuj)dr. (5.13)

0
Here according to the definition of W in Eq (5.3), w(1-41) = y(») -aAy () and

Ay = f R (.14)

r,+7
1-At aa(t')

The second integral of the right hand side of Eq (5.11) can approximately be integrated by assuming
that £,9,(1) varies linearly over the time step (¢-As, 1), for small Ar

L e win .
J’ e - (W (N =¥ ( ))a%(gzoj)dr - J- . A (v (1) w(ﬂrd_{v_(gzoj)dw -
A y(-8n (5.15)
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A Ay (1) ENT0)
1-At

Therefore, by introducing
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following relation is found by considering Eq (5.11), Eq (5.12) and Eq (5.15),
o = e‘l’A‘”')ef (1-A0) +A (8,8, (DA, () s

where A(g,0,(0) = g, (Z(D)0;(1) —8,(T(1-81) o;(1-An and the effective stress X is

I= /IT_BIZ = %A/(GI—GZ)Z*" (02—03)2+ (53—cl)z+6(c§+o§+cz].

Here I; and , are the first and the second stress invariants.
Eq (5.9) can now be written as
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Eq (5.20) becomes
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523 The Procedure of Stress Evaluation in DIANA

The nonlinear viscoelastic modei has been implemented in the nonlinear internal force part of
DIANA. The subroutine is named as SCHPRY.F, and is meant to calculate new stresses at an integra-
tion point by using the data of the previous time step and the previous iteration. It contains the follow-
ing parts:

1.

basic data input:
klg(), o1-At), 640), 8 (t-Ar), E(t-At) and (:-2A1); k denotes iteration

2. evaluate 5; and 5°;, Eq (5.6) & Eq (5.7)
3. evaluate ¥Z(r), Eq (5.19), and nonlinear parameters kg,-(t); 80> 81» 82 and g3 = ag are listed, for the

present case, in Table 5.1 on page 85 and Table 5.2 on page 85

4. evaluate *Ay(#), Eq (5.14)

. evaluate kAp(t), Eq (5.16), applying Simpson’s rule by using four sub-domains

6. evaluate “,(1), Eq (5.21); *E(1), Eq (5.22); and *o,(¢), Eq (5.24)

7(a). (optional for faster convergence) back to step 4 only once, and define the new stresses: ko‘,-(t)
=03 *lo ) +0.7%0()

7. evaluate 87(1), Eq (5.18)

. store the data: *(), Z(r-A7) and 8/(r)

5.2.4  Tangential Stiffness Matrix

The total differential of the strains is derived in Appendix 1. It can be simply written as

de, = D:j'dcj-LD;'Cj)dr, (5.25)
where Dy; is the tangential stiffness matrix
D;jl =T +T,+T;+T, (5.26)
Sigdt
Ty = 8JoSy+ e gz(ZJplp]"p(t)) (5.27)
ey "
€
9,
Ty = 1yS, 050 (5.28)
J

, - ka[(gzck—ggcf)g:lp—glﬂef];% (5.29)
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dgy/dZ, dg/dZ and dg,/dZ are input data.

During the numerical tests, it was found that some economization of the computing time usage can be
performed by letting Dij'l = T, combined with the computing step 7(a) in the stress evaluation
(Section 5.2.3 on page 82). Some comparisons have been made in Section 5.3. This method will be
referred to as the improved method. It can remarkably reduce the number of iterations and the com-
puting time. The original method is a method without step 7(a) in the stress evaluation and with all

four terms in Eq (5.26).

5.3 Numerical Testing

Among other methods, the Newton-Raphson method is used in DIANA, for the iterative process of
solving the nonlinear equations. The convergence is then controlled by setting a relative criterion for
the norm of the “out-of-balance force” term of the Newton-Raphson equation. When during iteration,
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the norm of the “out-of-balance force” vector decreases until it becomes less than 0.01% of the first
calculated norm value (before iterations), the calculation is considered as convergent for this loading
or time step. The calculation then continues, with a next loading step.

The numerical tests were carried out under two uniaxial loading situations and one pure shear loading
situation (in Section 5.3.2). The solution obtained by a direct numerical integration of the uniaxial
model provides the accurate result for comparison. The results from DIANA are always related to the
use of the improved method mentioned above except when particularly specified.

5.3.1  Accurate Result from the Theory

The accurate results are based on a numerical integration of the uniaxial model. This uniaxial model
has been completely established through an experimental procedure of model parameter determina-
tion (see Chapter 3). This uniaxial model has the following simple representation, (from Eq (2.55)
combined with the aging effect, Eq (5.3) and Eq (5.4))

t
. d
&) = 80Jy0y + Cf {exp[ (W -¥)"] - 1) (g0t (5.36)
1]
where
L} d ,
- = T
URR70] { e
lt
. (5.37)
_ _ dt’
V=V —{ AT
‘E
Jp=20x10™°
c=1727%x107"
n = 0.065 (5.38)
1, = Tmonth~1810"
o = 045
6
10 £<49x10°MPa
& = { 0.045 6 (539
0.5% £>49x 10°MPa
8 = exp(2.0669x lO_MZ”wB) (5.40)

g1 = a, = 1, and the effective stress X is defined in Eq (5.19). These basic data have been determined
in Chapter 3 and will be used for all the numerical tests. The numerical integration divides the time
domain into more than 2!? sub-domains and hence provides us with a very accurate result. For every
specific time, the integration in Eq (5.36) is calculated independently.
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This model is simple to use for uniaxial analysis, especially, for creep deformation because then the
integral can be calculated directly without numerical approximation. For other cases, e.g. the 3-D
case, the computing is too complicated or even not possible. But the restriction is that the 3-D stress
state situation and the relaxation process can not be solved by this method, therefore, the numerical
testing here is restricted to the uniaxial stress-strain states in a creep situation.

53.2 FEM Test by DIANA

For the DIANA implementation, the model parameters are required in an alternative form. First, an
initial elastic modulus is introduced:

=L -50x10°. (5.41)

Next, the kernel function for the exponential creep law, according to Eq (2.9) and Eq (5.2), is replaced
by an exponential series expansion:

clew{)-11 = 3 1 (1-¢™) (5.42)

r=1
The number of terms of this series depends on the required accuracy and the time domain. Different
series are used for different time domains. Fig. 5.1 shows the parameters J,, and A, for different time
domains.

The nonlinear parameters g and g, are given by two tables according to Eq (5.39) & Eq (5.40), see
Table 5.1 and Table 5.2.
Table 5.1. gg vs. &

Z(MPa) 00 4.9 10.0 15.0 20.0 30.0 50.0 70.0 100.0
20 1.0 1.0 1.03 1.051 1.065 1.084 1.110 1.126 1.145

Table 5.2. gy vs.

TMPa) 00 50 10.0 200 30.0 200
P 1.0 10106 10500 11800 14000  1.7600
T(MPa) 500 60.0 700 80.0 9.0 100.0
& 23200 32000 46100 65000 10700 17500
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Figure 5.1. Exponential Series Approximation to the Kernel Function (A) Eight terms of the exponential
series; (B)~(D) Four terms of the exponential series for different time domains

Case 1.Creep Test

Three different types of membrane elements (plane stress) are used for creep testing. The meshes
being used are shown in Fig. 5.2.

nodes
'YYYYYY 18 19 20
4

CQI8M 15 16 17
12 13

) CTEZM 14

CT12 9 3

1 6 " 8

CQioM 4 5

1 2 3

Figure 5.2. Elements and nodes
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The data-file and command-file are given in Zhang (199346 1, Appendix). Under a creep loading sit-
uvation, Eq (5.36) becomes (i.e. Eq (2.34))

& = 8440, +gZC[exth"J -1]e, (5.43)

In this test, a creep stress of 40 MPa was chosen. Using the parameters given in Eq (5.38) ~ Eq (5.40),
the exact strain data can be easily expressed by the formula

€, = 8793107 +12189x 10~ [exp| ** | -1] (5.44)

The comparison between the DIANA calculation and the “exact results” is shown in Table 5.3.

Table 5.3. Creep Test

DIANA results
At=5 sec it——-lﬂ sec At=50 sec At=100 sec At=1000 sec
creep exact N=4 N=4 N=4 N=4 N=4
time (sec) strain Fig. 5.1(B) Fig. 5.1(B) Fig. 5.1(B) Fig. 5.1(A) Fig. 5.1(A)

0.0 8.793e-3 8.776e-3 8.776e-3 8.776e-3 : 8.776e-3 8.776e-3

50 11.27e-3 11.06e-3

10.0 11.47e-3 11.43e-3 11.23e-3

15.0 11.59e-3 11.56e-3

20.0 11.68e-3 11.65¢e-3 11.65e-3

25.0 11.76e-3 11.72e-3

30.0 11.82¢-3 11.79¢-3 11.79e-3

350 | 11873 11.84¢-3 }7 T

40.0 11.92e-3 11.89e-3 11.88e-3

450 11.96e-3 11.93e-3

r 50.0 12.00e-3 11.97¢-3 11.97e-3 11.66e-3

100 12.27e-3 12.24e-3 12.23e-3 12.22e-3 11.88e-3

200 12.57e-3 12.52e-3

500 13.02e-3 12.99¢-3

1000 13.41e-3 13.39%-3 12.70e-3
5000 14.52¢-3 14.48e-3 14.46e-3
10000 15.0%-3 15.08e-3 15.07e-3
50000 | 16.77e-3 ! 16.76¢-3
100000 | 17.66e-3 | | 17.66¢-3

In Table 5.3, the series parameters of four terms were chosen based on Fig. 5.1(B) for the time incre-
ments Af = 5, 10 and 50 sec. The parameters of eight terms (Fig. 5.1A) were used for the time incre-
ments At = 100 and 1000 sec. In Table 5.4, a comparison of creep strains for different numbers of
terms in the series expansion is given. As can be seen in Table 5.4, the errors are always less than 3%
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of the “exact results”. These errors are mainly due to the quality of the series expansion approxima-
tion of the exponential law.

The conclusion that the time increment can be chosen as large as 10% seconds without introducing a
large error in strain (<3%) has been reached from these tests. It is found that even if a larger time step
is chosen, mostly no extra iteration is needed for convergence. For both Ar = 10° and At = 105, the
number of iterations is 8 (nominal force convergence criterium); but using the original method
(Section 5.2.3 on page 82) the numbers of iteration are 20 and 30 respectively. In the long-term creep
calculation using the improved method, a large amount of computing time can be saved by using rela-
tively large time increments.

The error at z = 1.¢7 sec. (Table 5.4) shows that the accuracy of the series expansion approximation of
the kernel function plays a major role in the accuracy of the long-term creep modelling. Smaller time
increments and more terms of the series will not always be necessary for a more accurate simulation
in DIANA in this case. Table 5.5 shows two very large time-step cases.

Table 5.4. A comparison between the numbers of terms of the series

DIANA results DIANA results DIANA results
At = 1.0e5 sec At = 1.0e6 sec At = 1.e5 & 1.e6 sec

creep —

time | accurate N=8 N=4 N=8 N=4 N=8 N=4
(sec) strain Fig. 5.1(A) | Fig. 5.1(D) | Fig.5.1(A) | Fig.5.1(D) | Fig.5.1(A) | Fig. 5.1(D)

0.0 8.793¢-3 8.776e-3 8.776e-3 8.776¢-3 8.776e-3 8.776e-3 8.776e-3
1.e5 17.66e-3 17.67¢-3 17.66e-3 17.64¢-3 17.64¢-3
leb | 21.77e-3 21.74e-3 21.71e-3 21.74e-3 21.42e-3 21.74e-3 21.71e-3
2e6 | 2347e-3 23.50e-3 23.48e-3 23.50e-3 23.42¢-3 23.50e-3 23.47¢-3
3.e6 24.5%¢-3 24.71e-3 24.57e-3 24.71e-3 24.55¢-3 24.71e-3 24.57e-3
4.6 | 2546e-3 25.63e-3 25.42e-3 25.63e-3 25.40e-3 25.63e-3 25.42¢-3
5e6 | 26.18¢-3 26.34e-3 26.13e-3 26.34e-3 26.12e-3 26.34e-3 26.13e-3
6.e6 26.79¢-3 26.88¢-3 26.74¢-3 26.88e-3 26.73e-3 26.88¢-3 26.74e-3
766 | 27.33-3 27.29¢-3 27.27e-3 27.29¢-3 27.26e-3 27.29¢-3 27.27¢-3
8.6 | 27.82e-3 27.60e-3 27.73e-3 27.61e-3 27.72e-3 27.60e-3 27.73e-3
9e6 | 28.26e-3 27.85¢-3 28.13e-3 27.85e-3 28.12¢-3 27.85e-3 28.13e-3
1.e7 28.67e-3 28.03e-3 28.48e-3 28.03e-3 28.47e-3 28.03e-3 28.48e-3

Table 5.5. 8 terms series expansion for the kernel, EP is the accuracy criterion
strains from DIANA analysis (N=8)
creep EP=1.e4 EP = 1.e-2 { EP =1.e-4 EP = l.e-2
time (sec) Af = 5,66 At =5.e6 At = 1.7 At = 1.e7
0.0 8.776e-3 (5) 8.776¢-3 (5) 8.776e-3 (5) 8.776e-3 (5)
5.6 26.34¢-3 (8) (>50)* | 26.26e-3 (5) (41)*
1.e7 28.03¢-3(7)(>50)* | 28.02e-3 (4) (32)* 28.03e-3 (8) 28.02e-3 (6) (47)*

 the numbers in parentheses indicate the iteration numbers, with asterisks refer to the original method
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The iteration numbers are indicated within parentheses, the parentheses with asterisks refer to the
original method (Section 5.2.3 on page 82).

case 2.Uniaxial Cyclic Tensile Loading

The ‘accurate results’ were based on the numerical integration method as mentioned in Section 5.3.1.
A comparison is presented in Table 5.6 for a single-cycle loading case. The parentheses with asterisks
in Table 5.6 refer to the original method (Section 5.2.3 on page 82). Table 5.7 shows two results of
different time -increments. It is found that the accuracy is quite good even though the time step is
large.

Table 5.8 gives a check on convergent speed. Here a higher stress, 80 MPa, is reached in one-cycle
loading situation. Larger time increments will lead to more iterations and even divergence for higher
stress levels. The idealized tensile strength of polyester (DMS Resins Synolite 593-A-2) is 87 MPa.
The lower convergent speed for higher stress levels is due to the strong nonlinearity of the material.

Table 5.6. Tensile loading, stress rate: 5 MPa/sec, At = I sec.

strain

time stress strain DIANA iteration error

(sec) (MPa) accurate (N=8) number %
0 0.0 0.0 0.0
1 50 1.1376e-3 | 1.131e-3 4 (5)* 0.580
2 10 2.3680e-3 | 2.357e-3 5(N* 0.465
3 15 3.6514e-3 | 3.647¢-3 5(8)* 0.121 _J
4 20 4.9868e-3 | 4.978e-3 5(8)* 0.176
5 25 6.3809¢-3 | 6.369%-3 6 (N* 0.186
6 30 7.8455e-3 | 7.824e-3 6(9)* 0.274
7 35 9.3988e-3 | 9.381e-3 T(NH* 0.189
8 40 11.063e-3 | 11.02e-3 T(9)* 0.389
9 45 12.870e-3 | 12.87e-3 8 (14)* 0.0
10 50 14.864e-3 | 14.84e-3 9 (14)* 0.161
11 45 13.212e-3 | 13.26e-3 6 (15)* 0.363
12 40 11.535e-3 | 11.53e-3 7 (15)* 0.043
13 35 9.9321e-3 | 9.938e-3 6 (11)* 0.059
14 30 8.4028e-3 | 8.40le-3 6(9)* 0.021
15 25 6.9396e-3 | 6.948e-3 5(N* 0.121
16 20 5.5319¢-3 | 5.547e-3 5(8)* 0.289
17 15 4.1753e-3 | 4.197e-3 5(NH* 0.520
18 10 2.8635e-3 | 2.88le-3 5 0611
19 5.0 1.5968e-3 | 1.619%-3 4 (6)* 1.390
20 0.0 0.4050e-3 | 0.4277e-3 4 (4)* 5.605
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Table 5.7. Single-cycle loading with 5 MPa/sec, the same as in Table 5.6

., strain results (DIANA) (N=8)
time stress strain
(sec) (MPa) accurate Af=5sec | iteration | Az=10sec | iteration
5 25 6.3809e-3 6.389%-3 6
10 50 14.864e-3 14.92e-3 9 15.05¢-3 10
15 25 6.9396e-3 7.045¢-3 7
20 0 0.4050e-3 0.4810e-3 4 0.6497e-3 11
Table 5.8. The convergent speed and the stress level, stress rate = 5 MPa/sec
strains from DIANA
time stress analytical
(sec) (MPa) strains At =2.0 sec
2 10 2.368e-3 2.358¢-3 (5)
4 20 4.987e-3 4.980e-3 (5)
6 30 7.846e-3 7.827¢-3 (6)
8 40 11.06e-3 11.03e-3 (7)
10 50 14.86¢-3 14.85¢-3 (9)
12 60 19.67e-3 19.64¢-3 (10)
14 70 26.25e-3 26.22¢-3 (>30)
16 80 36.05¢-3 divergent
since 70 At = 0.2 sec At =0.4 sec
14.2 71 27.05¢-3 27.03e-3 (16)
144 72 27.88e-3 27.93e-3 (21) 27.94e-3 (21)
14.6 73 28.75¢-3 28.86e-3 (21)
14.8 74 29.66e-3 29.80e-3 (21) 29.81e-3 (>30)
15.0 75 30.61e-3 30.77e-3 (21)
15.2 76 31.60e-3 31.76e-3 (21) 31.76e-3 (27)
154 77 32.64e-3 32.77e-3 (21)
15.6 78 33.72¢-3 33.80e-3(11) 33.80e-3 (27)
15.8 79 34.86¢-3 34.85¢e-3 (21)
16.0 80 36.05¢-3 divergent divergent
since A = 0.05 sec
| 7900
15.85 79.25 35.15e-3 35.11e-3(7)
15.90 79.50 35.45¢-3 35.38¢-3 (8)
15.95 79.75 35.75¢-3 35.65¢-3 (8)
16.00 80.00 36.05e-3 35.92e-3(10)
16.05 79.75 35.94e-3 35.98e-3 (7) unloading
16.10 79.50 35.77¢-3 35.92e-3 (6) period
16.15 79.25 35.59¢-3 35.81e-3(8)
1620 | 79.00 35.42e-3 35.67e-3 (8)
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The numbers within parentheses in Table 5.8 indicate the iterations required in the calculation. The
iteration number increases with the increase of the stress level, but it can be reduced if a smaller time
step is chosen.

Table 5.9 shows a two-cycle loading case. The total error was found mostly less than 0.5% when the
stress is close to zero. In Table 5.9, after the first cycle and after the second cycle, the errors in the
strain are 3.5% and 4.2% respectively (compared to the accurate results). In Table 5.9, larger errors
have also been found in the lower loading level situations, about 1% when 6 = § MPa and 5.6% when
6 = 0 The parentheses with asterisks in all the tables refer to the original method (Section 5.2.3 on
page 82).

Table 5.9. Two cycles, stress rate: 5 MPa/sec, At = [ sec.

time stress accurate DIANA iteration error
(sec) (MPa) strain strain number %
0 0.0 0.0 0.0
1 5.0 1.1376e-3 1.131e-3 4 (5)* 0.580
2 10 2.368e-3 2.357e-3 5(N* 0.465
3 15 3.651e-3 3.647¢-3 5 (By* 0.120
4 20 4.987e-3 4.978e-3 5 (8)y* 0.180
5 25 6.381e-3 6.369-3 6 (9)* 0.188
6 30 7.846e-3 7.824e-3 6 (9)* 0.280
7 25 6.519e-3 6.526e-3 5(9)* 0.107
8 20 5.179¢-3 5.182e-3 5(8)* 0.058
9 15 3.867e-3 3.871e-3 5(M* 0.103
10 10 2.588e-3 2.586e-3 5(N* 0.077
1 5.0 1.347e-3 1.351e-3 3 (6)* 0.297
12 0.0 0.1762¢-3 | 0.1823¢-3 3(3)* 3.462
13 50 1.277e-3 1.273e-3 4 (5)* 0.313
14 10 2.488e-3 2.482¢-3 5(N* 0.241
15 15 3.758e-3 3.760e-3 5 (8)* 0.053
16 20 5.083e-3 5.080e-3 5(8)* 0.059
17 25 6.469¢-3 6.463e-3 6 (9)* 0.093
18 30 7.927e-3 7.909¢-3 6(9* 0.227
19 35 9.474e-3 9.495¢-3 7(N* 0.222
20 40 11.13e-3 11.10e-3 7 (10)* 0.270
21 35 9.677e-3 9.660e-3 6 (11)* 0.176
22 30 8.206¢-3 8.207e-3 6 (10)* 0.012
23 25 6.778e-3 6.780e-3 5(N* 0.030
24 20 5.396¢-3 5.399¢-3 5(9)* 0.056
25 15 4.057e-3 4.065e-3 5(N* 0.197
26 10 2.795¢-3 2.763e-3 5(N* 1.145
27 5.0 1.502¢-3 1.513e-3 4 (6)* 0.732
il
28 0.0 0.3184e-3 | 0.3319e-3 3(3)* 4.240
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case 3.Shear Cyclic Loading

In this case, a single element was used for testing. Fig. 5.3 shows the element and the loading condi-

tion.
dir. 2
. note number

— e —
6 7. 8

’ }

1 # 4 coieM 5 * T

' t

y }
1 2 3 _adir 1

Figure 5.3. Element and loading for shear test

Table 5.10 shows the results of the shear test.

Table 5.10. Shear test, At = 1 sec

sh
stm:rt accurate result accurate result | DIANA results | iteration | iteration
MPa) Eq (5.36) (N=4) (N=4) number | number*
5 1.584e-3 1.575e-3 1.573e-3 7 10*
‘ 10 3.312¢-3 3.302e-3 3.318e-3 7 11*
15 5.146e-3 5.133¢-3 5.184e-3 7 11*
| 20 711163 7.0933 7.223¢-3 8 7*
25 9.263e-3 9.236e-3 9.526e-3 9 13*
| 30 11.696e-3 11.65¢-3 12.24e-3 9 16*
‘ 25 9.564e-3 9.587¢-3 9.980e-3 7 20*
20 7.491e-3 7.498¢-3 7.724e-3 6 11*
15 5.543¢-3 5.542¢-3 5.671e-3 6 7*
10 3.697¢-3 3.698¢-3 3.775e-3 6 9*
5 1.939¢-3 1.944¢-3 1.991e-3 5 9*
0.2969¢-3 0.3067¢-3 0.3474e-3 4 5%

« numbers with an asterisks refer to the original method (see Section 5.2.3)

The approximation of the kernel with an exponential series expansion may produce some error which
can be seen in the different results between column 2 and column 3 in Table 5.10. The error is usually
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smaller than 2.5%, except an error of 13% when the stress is almost zero. The iteration number with
asterisk refers to the original method.

case 4.Physical Aging

The influence of physical aging is tested in a case of creep deformation (same conditions as in Case
1). When the aging effect is taken into account, the creep formula Eq (5.44) becomes (for details see
Chapter 3)

6= sohn oo 55 (1) - )1} (5.45)
-3 _3 1.8x 10 0.55 0065
£, = 8793x 107 + 12189 x 10 {exp( 55 {(nm;"ﬂ -1]] -1 (5.46)

Eq (5.46) is based on the seven months old material. In order to consider the aging effects to be rea-
sonably pronounced, a long-term creep case must be considered. Hence a three years creep was cho-
sen. An exponential series expansion covering a time domain from 10% to 10® seconds is used
(Fig. 5.4A). The creep results both with and without the physical aging effect are listed in Table 5.11.

Fig. 5.4(B) shows the difference between the curves with and without the aging effect. The DIANA

Table 5.11. Aging Effect on Long-Term Creep Elongation (initial aging t, = 1.8e7 sec)

cree without physical aging effect with physical aging effect l
timg accurate DIANA (N=6) | DIANA (N=6) | accurate | DIANA (N=6) | DIANA (N=6)
(sec) strain At = 5e6 At =27 strain At =5e6 At =27

0 8.793e-3 8.776e-3 (5) 8.776e-3 (5) 8.793e-3 8.776e-3 (5) 8.776e-3 (5)
le7 28.67e-3 28.66e-3 (6) 28.26e-3 28.24e-3 (9) .

2e7 31.63e-3 31.55¢-3 (7) 31.54e-3 (9) 30.79-3 30.74e-3 (7) 30.69¢-3(9)
3e7 33.62e-3 33.49¢-3 (7) 32.38e-3 32.26e-3 (7)

4e7 35.17e-3 35.06e-3 (7) 35.06e-3 (7) 33.55¢-3 3341e-3(7) 33.36e-3 (7)
5e7 36.46e-3 36.40¢-3 (7) 34.48e-3 34.34¢-3 (8)

6e7 37.57¢-3 37.54¢-3 (8) 37.54e-3 (8) 35.26e-3 35.14e-3(7) 35.10e-3 (7)
Te7 38.56e-3 38.52e-3 (10) 35.92e-3 35.83e-3 (8)

8e7 39.44e-3 39.38¢-3 (11) 39.38¢-3 (8) 36.51e-3 36.44¢-3 (8) 36.40¢-3 (8)
9e7 40.25e-3 40.13e-3 (12) 37.03e-3 36.98e-3 (8)

1e8 41.00e-3 [ 40.79¢-3 (12) 40.7%-3 (8) 37.50e-3 37.46e-3 (11) 37.43e-3(8)

input data-file for this case can be found in Zhang (1993dP1, Appendix). Again the iteration number
in Table 5.11 suggests that applying a large time increment can reduce the computing time enor-
mously. If the aging effect is taken into account, the accuracy tends to become poor for a larger time
increment. This can be observed by comparing the last two columns in Table 5.11.
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(A) (8)
1600 a kemel function for = 1.e6 ~ 1.e8 sec o ggesp stress: 40 MPa, initial aging t,=1.8e7sec (7months)
exponential law
6 terms

6610 A1=9.764538-11
A2-7.85218e-11
A3-8.16734e-11
A=18.47976-11
AS5=19.0689%-11
410 AB=30.2487¢-11
11-1.92172-5
L6=1921726-10

3e-10
2:8.7206;5'“ ! — analytical without aging effect
---- analytical with aging effect
py 0.02 2 DIANA without aging effect
2e-10 < o DIANA with aging effect
1e-10 * - N o0 * - * n
@+05 18+08 1e+07 16408 16409 0 20407  4e+07  Be+07  8e407  1e+08
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Figure 5.4. Physical aging influence on creep (A} Six terms of exponential series; (B) Long-Term Creep

5.4 Conclusions

1. The implementation of the nonlinear viscoelastic constitute relation in DIANA is successful for
creep loading. For a long period of creep as well as for a cyclic loading situation in a short period
of time, the DIANA simulation has sufficient accuracy;

2. For static loading situations, the time increment can be chosen larger than 107 seconds without
having to increase the number of iterations for the same accuracy;

3. For cyclic loading situations with relatively high stress levels, the convergent speed is sensitive to
the time increment. Small time increments can reduce the number of iterations while large time
increments require more iterations and may even lead to divergence;

4. The effect of physical aging on a long-term loading situation is taken into account by the effective-
time theory (see Chapter 3). Its implementation in DIANA is simple and has been found to be ade-
quate.



Chapter 6

2D Stress States

6.1 Introduction

The intention of the work in this Chapter is to evaluate the 3D model as presented in Chapter 4 and
Chapter 5. The parameters in this model were obtained from simple uniaxial creep tests.

In Chapter 3, the validity of the uniaxial model has been demonstrated by comparison with experi-
ments for creep and for cyclic loading cases. Due to the difficulty of doing relaxation tests (a step
deformation is obstructed by the brittleness of the material), the relaxation property was checked indi-
rectly by cyclic loading tests.

The implementation of the theory into a finite element package in Chapter 5 facilitates the examina-
tion of the performance of the theory in a 3D stress state. However, in order to reduce the complexity
of the experiments, some tests of two-dimensional stress states have been carried out. In this chapter,
the results from the tests of a plate with a circular hole and of biaxial tests on polyester tubes will be
shown. The tests, for a plate with a hole, can be done under a simple tensile loading. But, around the
hole, there exists a two-dimensional stress field which results into a more complicated stress-strain
response than in the uniaxial case. Both creep and relaxation occur in this case. The biaxial tests can
produce a relatively higher effective stress compared to the applied normal stress. A relatively higher
effective stress will lead to a highly nonlinear stress-strain response, which may challenge the accu-
racy of the nonlinear theory.
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The comparison between the experiment and the theory showed an excellent agreement. This gave
confidence for the application of the model to more complicated cases, such as in composite micro-
mechanical analysis (Chapter 7).

6.2 A Plate with a Circular Hole

6.2.1  Experimental

The size of the specimen is shown in Fig. 6.1. Two kinds of tests have been carried out with two dif-
ferent series of measuring points (see Fig. 6.2). The loading direction corresponds to the y-axis.

g
S
polyester (DSM Resin Synolite 593-A-2) O
20 mm i
el — Vi
—
le _600mm ol
i 7l

Figure 6.1. Specimen

G (-15,-15) Q8

,\/\/\/\/\/\_/

(A} Test 1, to measure €,, along the x-axis (b) Test 2, to measure egg, &, and eyy

Figure 6.2. Test 1. and Test 2 for different strain measurements (positions and directions)
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In test 1, only £, along the x-axis was measured and the strain gauges were placed on both surfaces
of the plate, symmetrically about the centre of the hole. Gauge no. 1 (see Fig. 6.2) was placed on the
inner side of the hole. The averaged strain data of symmetry positions were recorded by a PC in order
to eliminate the possible bending influence from the clamping system of the test machine. In test 2,
the strain gauges were placed along the edge of the hole with a distance of 2.5 mm to the hole. Only
the strains in the circumferential direction were measured. There are two gauges, G and H in Fig. 6.2,
measuring the strains in x-direction, €,,, and y-direction, €,,, respectively. At these places, a more
general two-dimensional stress state exists.

The specimens were postcured at 60°C, 24 hours and 80°C, 24 hours successively. The physical aging
times were recorded starting from the end of the postcuring, and listed in Table 6.4 for three different
specimens. The details of the specimen preparation can be found in Toutenhoofd (1993)144).

6.2.2 Numerical Simulation

The numerical simulation was performed by means of the finite element package, DIANA, in which
the constitutive relation was implemented as described in Chapter 5. The mesh creation and the post-
processing were performed by means of the finite element package I-Deas.

1. Material Properties

The physical aging is only considered according to the age of the specimen. The ongoing aging effect
is not considered for this short-term test. The material properties used for the simulation are listed in
Table 6.1, Table 6.2 and Table 6.3.

ENmY) |V v
5.0¢9 0.353 0417

Table 6.1. Material constants: tensile modulus (experimental data in Chapter 3), instantaneous Poisson’s
ratio (experimental data in Chapter 3) and creep Poisson’s ratio (experimental data in Chapter 4)

eff. stress 0.0 49e6 | 1.0e7 1.5¢7 20e7 | 3067 5.0e7 7.0e7 1.0¢8
2o 10 10 | 103 1051 1065 | 1084 L1l 1126 1.145
eff. stress 00 1.0e8
81 1.0 1.0
off siwess | 00 | 5.0¢6 | 107 | 2067 | 3067 | 40¢7 [ 50¢7 [ 60¢7 [ 707 [ 8.0e7 | 9.0¢7 | 1.0e8
52 | 10| 10106 | 105 | 118 | 140 | 176 | 232 | 320 | 461 [ 690 [ 107 [ 175
eff. stress 0.0 1.0e8
ag 1.0 1.0

Table 6.2. Model nonlinear parameters (according to Eq (2.44) and Eq (2.45))
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14 1 2 3 4 5 6 7 8
Jp | 292727 | 594899 | 1.10066 | 1.44981 | 2.08694 | 3.38408 | 4.24545 | 124176
e-1) e-11 e-11 e-11 e-11 e-11 e-11 e-11
1.,, 267248 | 2.67248 | 2.67248 | 2.67248 | 2.67248 | 2.67248 | 2.67248 | 2.67248
e-1 e-2 e-3 c4 e-5 e-6 e-7

Table 6.3. Exponential-Law parameters (according to Eq (5.2))

2. Mesh and Boundary Conditions

One eighth of the specimen was chosen to be the calculation model and 318 solid elements were
applied with a varied density from the edge of the hole to the end of the specimen (see Fig. 6.3).

Figure 6.3. Mesh for FEM analysis (318 linear hexahedron elements)

The boundary conditions are shown in Fig. 6.4. The plate was supported on three surfaces. A tying
for the axial displacement was subjected on the surface where the load was exerted.

-—
-— —
= u, = 0
-—=
Sremotcs
- X
~ 5,
u, =0 y
z
Oremote, | =
u,=0 y

Figure 6.4.. Boundary Conditions, u,, u, and u, are the components of the displacement vector of the nodes

6.23  Results

The comparison between experiment and theory has been done for three cases, €,, along the x-axis,
the hoop strain €4 along the edge of the hole and £, and &,, at chosen points H (15, 15) and G (-15, -
15) (see Fig. 6.2). The hoop strain along the edge was considered at an average distance of 2.5 mm
from the edge. Therefore the measuring points A~E (see Fig. 6.2) are actually under a 2D stress state.
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A model which was characterized by uniaxial creep tests is used here to predict a 2D stress state
mechanical response. In this 2D stress state, both creep and relaxation occur, the Poisson’s effect
exists and stress coupling contributes to the nonlinear response. Stress coupling means that more
stress components contribute to the nonlinear response in a general 3D stress state.

After the numerical discretisation, the model was employed for a 2D simulation by means of the
DIANA package. Errors could originate from the extension of the uniaxial model to a 3D model, see
Chapter 4, and could come from the numerical discretisation with the finite element method including
the series expansion of the kernel function. However, a good agreement between experimental data
and the theoretical calculation confirms that the 3D extension of the uniaxial model is accurate
enough and the assumed effective stress dependent nonlinear mode! parameters are correct. Finally,
the numerical discretisation procedure has also shown to be sufficiently accurate.

1. &,y along the X-Axis

0.020 - —
172800 s
a—apxperiment
0.015 | —2RESY
100 s¢

& oot0f 0sec

0.005 |

0.00,9 40.0

10.0 20.0 30.0
distance to the center of the hola (mm)

Figure 6.5. £y along the x-axis (see Fig. 6.2). Remote creep stress: 11.667MPa, specimen no. 85 with an age
of 111 days, temperature: 23+ 0.2°C

0.030

172800 s A_-w_aggg’g";,mem

0.020

0010

0.000 20.0

100 20.0 300
distance to the center of the hole {mm)

Figure 6.6. €y along the x-axis (see Fig. 6.2). Remote creep stress: 13.333MPa, specimen no. 64 with an age
of 111 days, temperature: 23+ 0.2°c



100 2D Stress States

Fig. 6.5, Fig. 6.6 and Fig. 6.7 have generally demonstrated an excellent agreement between the exper-
iment and the theory. A finer mesh has been used to check the accuracy of the numerical method.
Fig. 6.7 demonstrates an excellent strain prediction even for a relatively high stress level (oyy =
38~40 MPa at the edge of the hole, see Fig. 6.10(A)).

However, there is some difference at the edge of the hole. The strain gauge no. 1 has measured appar-
ently larger strains than those of the calculation, if the remote stress is large (Fig. 6.6). The possible
reasons are the following: the theory is not accurate enough for high stress levels. This has not been
checked, even not in the uniaxial case, due to the difficulty of testing; the accuracy of the experimen-
tal results is limited due to the error introduced, e.g. by placing the strain gauges on to the specimen;
the material difference between the tests here and the tests for model characterization.

0.1 T Amaaas 2
—  experiment
o-0

gauge no.

F 001 M:

00015 100 1000 10000 100000 1000000
time (sec)

Figure 6.7. €, on four measuring points (see Fig. 6.2), same case as in Fig. 6.5
2. Hoop Strain along the Edge of the Hole

The hoop strains being measured originate from positions with a distance of 2.5 mm from the edge of
the hole.

0.015 T
'S g‘xep%erem
172800sec
4 120000sec
0.010 é ?0000&(:
’ 2 | g
<
b Osec
£ o005} A 2
@
0.000
0.00% 0 200 400 __ 600 800 1000
angle to the y-axis 6

Figure 6.8. Hoop strains along the edge of the circular hole with a distance of 2.5 mm, specimen no. 93 with
a month of age, remote constant stress: 11.667 MPa, room temperature 23+ 0.2°C.
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Generally, the comparison of hoop strains is satisfactory.

0.0063

— experiment

strain

10 009000 10000 100000 1000000
time {sec)
Figure 6.9. Strains at the location (15mm, 15mm). The test data represent the mean values from the points G
and H (see Fig. 6.2). The same specimen and the test conditions as in Fig. 6.8.

Fig. 6.9 shows the strains for a 2D stress state case. At the point (15, 15) (see Fig. 6.2(B), G and H),
the stress state is slightly changing with time. When ¢ = 0, the stress state in this point is given by: 6,4
= -2.52 MPa, o, = 14.41 MPa, 6,y = -1.09 MPa. The agreement of strains between experiment and
theory can be observed from the figure.

3. Stress Distribution

Redistribution of the normal stress ,,, as calculated with the theory, can be found in Fig. 6.10 and
Fig. 6.11. Some stress and strain fields are presented in Fig. 6.12 and Fig. 6.13. The maximum shear
stress, which is related to the Tresca criterion of failure, is defined as half the difference of the maxi-
mum principal stress and the minimum principal stress.

The maximum stresses decreasing during the creep process suggest a relaxation of the stress concen-
tration.

41.0 F 47.0
_ 46D
E 40.0 Kl
s -
E 5 45.0
‘E’ 39.0 €
2 2 40
>3
38.0 430
t=1728003ec
370050006 100000 150000 200000 420053000 100000 150000 200000
time {sec) time {sec)
(A) remote stress: 11.667 MPa (B) remote stress load: 13.333 MPa

Figure 6.10. Calculated maximum o, (on the edge of the hole) for two load cases
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G,y (MPa)

--- 120
1= 172600 sec

10 30
distance to the center %?the hole (mm)

Figure 6.11. Calculated o, redistribution along the x-axis, remote stress load: 13.333 MPa

J—Y

(A) MAX PRIN STRESS Min: -6.61E+5 Max: 3.80E+7

{B) EFFECTIVE STRESS Min: 3.63E+6 Max: 3.53E+7

5. 03Ex06

6. SIE+06

(CYMAX SHEAR STRESS Min: Z08E+6 Max: T33E+7

Figure 6.12. Calculated maximum principal stress, effective stress and maximum shear stress at t = 0, the
same load conditions as in Fig. 6.8
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(B) MAX SHEAR STRAIN Min: 0.001622 Max: 0.0225] 1

Figure 6.13. Calculated €, and maximum shear strain at t = 0, the same load conditions as in Fig. 6.8

4. Aging Influence

The specimens had different aging times when the tests were performed. The model parameters orig-
inally have been determined (in Eq (2.43) and Eq (2.44)) for a 7 months old specimen, therefore, the
basic theory is applicable for the material with a seven-month age. In the calculations for specimens
with other ages, the aging time influence was taken into account according to the theory as presented

in Section 4.3.

The shifting rate and the reference aging time are chosen as a = 0.45 (see Section 3.5.2 on page 48)
and t,, = 7 months. The shifting factor a,a has been determined for the different aging times, and are

listed in Table 6.4.
specimen #9 #8 #6 & #8
aging time £, 30 days 55days | 111 days 7
months
asa 0.4166 0.5472 0.7507 1.0
Table 6.4. Aging influence was considered in the model parameter aq

0.020 0.020 T —

1723003% 5 days aging time

\ . 4 111 days aging time
0.015 A ey o 55 days aging 0015 )
1 A Aexperiment
- m ;Snd‘;‘y;sa)w 111 days)
& 0.010 & 0010 creep time: 172800sec

0.005 0.005
0.000, 0.000,

v

1 20
dislancg to(:{))e center of the ho?g {mm)
£,

dislan‘zga(tg lRe'cer%l?)r of the holls (mm)

) Aging Influence

Figure 6.14. €, from specimen #8 with 55 days aging time, remote stress: 11.667 MPa

40
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According to the theory there is only a small difference in the deformation due to the initial aging
time difference. But the experimental results show a slightly larger difference.

6.3 Polyester Tubes - Biaxial Loading

Another evaluation of the accuracy of the model in a 2D loading case is done by using a biaxial load-
ing test. The stress coupling effect will play a role in the nonlinear response of the material in a ten-
sion and torsion loading situation. The purpose of this experimental work is to verify this role.

63.1 Experimental

Aging information of the specimen is given below. The test conditions are listed in Table 6.6. The
geometry of the specimen is shown in Fig. 6.15. Manufacturing of these specimens is described in
Ten Busschen (1995). Due to the possible unstable state in compression, only tensile loading has been
applied in combination with torsion.

making date Nov.9, 1989
postcuring date Apr.13, 1993
(60°C 24 hours,
80°C 24 hours)

Table 6.5. Specimen information

test condition 6-0&1 1T-0&T o1 —C 0—0&1 T,

test no. 2211 2212 221 2222 2231 2232 2241 2242 2251

testing date | 20/10/93 | 29/1093 | 21/1093 | 27/1093 | 22/10/93 | 01/11/93 | 25/1093 | 28/1093 2/1193

aging time 190 days | 199days | 191 days | 197 days | 192 days | 201 days | 195 days | 198 days 202 days
Table 6.6. Testing Conditions (o - tension state, 1 - torsion state)

2
&
T X T T AT TN T XXX T X TTTX v - TSI
nt v v
- — - — 7 B &
8 8| &
YZZZ7Z 777z F T T T T Ty r s rrrxx T Y 2277777777
50.0 L 180.0 R 59.0
- ' 400.0 i =

Figure 6.15. Specimen Geometry
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ot

£
‘ ? idealized stress state of a unit material
€90 (0%)
c

for theoretical analysis
po% 1
s [

¥,

F
Figure 6.16. Loading, Measurement and Calculation

On the specimen, two metal ends were glued These in turn were clamped in the testing machine. The
torsion stress T ~ T/A (thin shell assumption), tensile siress G = F/A, where A is the cross-sectional
area of the tube. Using this method of clamping, the load level to be applied is limited (Ten Busschen
1995). Two specimens were broken at the tube ends during testing.

In the experiments, the stress levels for tension and torsion were both chosen to be 10 MPa. The
effective stress is then 20 MPa (see Eq (5.19)). Hence the material behaves under a moderate range of
nonlinearity (see Fig. 2.11).

6.3.2 Numerical Model

The calculation was performed by using a single element (linear hexahedron element). This choice is
based on a thin shell assumption.The calculated strains are €1y, &5, and &,. Their directions are indi-
cated in Fig. 6.16. The theoretical relationships between the calculated strains and the measured
strains are

1
€y = Ep E400 = EnF5 (&) +Ep) €900 = Eqp - 6.1
The general expression of the strain in a chosen direction (parallel to the tube surface) is
€gg = Ensinzﬂ-l-encosze+elzsin29. (6.2)

The material parameters and model parameters are those as listed in Table 6.1~Table 6.3.
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633  Results and Comparison

1. Torsion first, tension next

15 0.004
~ faseats ©
tension 0.002 1
10
g s 2 0.0008 ;
&
3 'Eo.ooz
@ 0 tension torsion
- riment
0.004 gm et
5o 2000 6000 8000 00085 2000 6000 8000
i {esc) e (abc)
(A) Load Input (8) Strain Output

Figure 6.17. Results from tests 2241&2242, two tests for a constant torsional load first and after one hour
switched over to a constant tensile load

2. torsion first, tension & torsion next

15 0.004 ——
 {gngien — G ment
0.002
10
g 0.000
3 i-he €900 €
g 5 |-
@
£ -0.002
2]
0
0.004
5
o 2000 6000 8000  -0.006
e fac) 0 2000 | 400 T 6000 8000
(A) Load Input {B) Strain Qutput

Figure 6.18. Test 2221, a constant torsional load and, after one hour, combined with a constant tensile load

3. Tension first, torsion next

15 -
=l

o T e
K3
a
s
2
2
®

o e o i om +

-5, -0.006

0 2000 4 6000 8000 s
time (abc) 0 2000 i m%c ) 6000 8000
(A} Load Input (B) Strain Output

Figure 6.19. Test 2231, first a constant torsion load and then a constant tension load
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4. tension first, tension & torsion next

15
tension
10 . =
g :
2 I
g S :
[l
= !
@ torsion !
P ol A
50 3000 6000
time (sec)
(A) Load Input

8000
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strains

<0.002

-0.004

-0.006

j}ﬁ‘xg&ryimem
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tim??s%c)

(B) Strain Output

8000

Figure 6.20. Test 2211&2212, two tests for a constant tension load and after one hour combined with a
constant torsion load

5. Tension first, tension & increasing torsion next, finally tension & opposite torsion

20
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o

-

-20,
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{(A) Load Input

10000
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0.004
0.002 ¢

0.000

strains

-0.002 [

-0.004

o &

o

0.006 5
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(B) Strain Output

Figure 6.21. Test 2251, a constant tension load combined with a linearly increasing torsion load, which
finally is reversed abruptly

634

Difference between Linear Theory and Nonlinear Theory

When the stresses are small, as an approximation, one could try to apply the linear viscoelastic theory
by assuming all the nonlinear parameters, go. &1, §2 and a,, to be unity. This has been proven to be

inaccurate for this case even when the maximum effective stress was only 20 MPa, see Fig. 6.22.

Comparing with the experimental data, the linear theory brings 9.05% error in ggo and 5.84% error in
€450, while the nonlinear theory only brings 0.28% and 3.26% errors in ggo and e450 respectively. In
ed in Section 6.2), it is shown that the error from the lin-
ear theory is further pronounced if the stress level is higher and when the creep time is larger.

Fig. 6.23, for the plate with a hole (as discuss
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0.008
0.004
0.002

'E 0.000 [
<0.002

-0.004

-0.008
] 5%. (s0c) 10000

Figure 6.22. Comparison between the experimental data, the linear viscoelastic theory and the nonlinear
viscoelastic theory for a biaxial loading case. The data are taken from Fig. 6.21

0.020 remote Creep siress: 11.067 MPa, specimen: #85
0.015
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Figure 6.23. Comparison between the experimental data, the linear theory and the nonlinear theory. The data
of the nonlinear theory and the experiment are taken from Fig. 6.5

6.4 Conclusions

In the previous chapters, a nonlinear viscoelastic model has been established and characterized by
simple tensile creep tests. The model has been applied in this chapter to simulate 2D stress state cases.
Here both creep and relaxation occur while stress coupling and strain coupling (Poisson’s effect)
exist. The successful prediction of creep and relaxation behaviour, found here for biaxial stress states,
leads to confidence in to the capability of the theory to simulate a general time-dependent behaviour
for a complicated stress state and history.

It is concluded that a simply established theory (through uniaxial tests) can indeed be applied to sim-
ulate more complicated stress states such as cyclic loading in Section 2.6 and the 2D stress situation
in this chapter. Both the time-dependence and the stress-dependent nonlinearity can be modelled suc-
cessfully. This conclusion will lead us to employ the theory for the simulation of general 3D stress sit-
uations, i.e., the micromechanical analysis of unidirectional glass fibre/polyester composites in the
next chapter.



Chapter 7

Unidirectional
Composite Creep

7.1 Introduction

In this chapter, the nonlinear viscoelastic model, developed in the previous chapters, will be applied
to the micromechanical study of a unidirectional composite, a glass-fibre reinforced polyester system.
For such a composite, the polyester matrix will generally be in a 3D stress state and will creep and
relax with time under the action of this 3D stress field. Therefore even if we want to describe compos-
ite mechanical behaviour under a uniaxial load, a general 3D model for the matrix material is needed.

The matrix behaviour depends also on the fibre packing geometry of the composite. For a unidirec-
tional composite (see Fig. 7.4), the fibres are embedded in the matrix material all in one direction. To
simplify the real random fibre distribution, the simplest idealization for analytical and or numerical
approaches is to adopt so-called hexagonal and rectangular patterns of fibre packing geometry (see
Fig. 7.7, Fig. 7.9 and Fig. 7.10). These are based on assumptions of uniform distribution and periodic
packing of the fibres. These assumptions have brought a great convenience since models of limited
size can be used. Moreover the boundary conditions for both analytical and numerical analyses can be
constructed in a simple way.
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Foye was probably the first to apply simple cell models and the finite element method to estimate the
transverse properties of unidirectional composites (1966). Both a square packing and a hexagonal
packing geometry of fibres were considered to predict the Poisson’s ratios, elastic moduli and stress
concentrations. The results also included the stress distributions around the fibre for two different
* fibre packing cases (Foye 1966)11), Recently, simple cell models are still used to study the interface
effects of metal matrix composites; Ronald et al. (1991) for rectangular arrays of fibres and Achen-
bach and Zhu (1990) for hexagonal arrays of fibres are typical examples of such studies.

Adams and his colleagues have started to use the cell model for a rectangular array of fibres in the
early 70’s. They used a finite element method to simulate the subsequent propagation of failure in a
cell (Adams 1973, 1987). Their method is capable of modelling many aspects, including matrix non-
linear stress-strain response, fibre anisotropy and fibre-matrix interface degradation (Adams 1987).

The ability to model longitudinal shear loading in combination with normal stress loading was origi-
nally developed by Crane and Adams (1981). Achenbach and his colleagues have improved the
method by a spring layer interface model and obtained more reasonable results for their material
(Achenbach and Zhu 1989). While Ronald ef al. (1991) assumed an infinitely strong interface as well
as an interface without tensile strength for unidirectional silicon-carbide fibre within titanium alumi-
nide as an elasto-plastic matrix system. The results suggest that large thermally-induced residual
stresses and weak fibre/matrix interface conditions are both significant issues for metal-matrix com-
posites being used and the differences between experiment and model are due to the regularity of the
model fibre array in contrast to the local variability in fibre location (While Ronald ez al. 1991).

Aboudi (1982) applied a doubly periodic array arrangement, the simplest geometry shown in Fig. 7.1,
on which an analytically micromechanical analysis was performed. The analysis consists of the appli-
cation of the continuity of displacements and tractions at the interfaces between the subcells and
between neighbouring cells on an average base, as well as considerations on equilibrium.

h; hy
e
RO
7 A
ideal UD composite representative unit cell
P

Figure 7.1. Aboudi’s cell model (Aboudi 1989)

For a UD-composite, there are three aspects that play important roles in both the local and the global
load-deformation response. These aspects are the mechanical model of components (fibres and
matrix), the interfacial properties and the fibre packing geometry. To simplify the problems, many
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researchers have adopted choices for the above aspects to perform numerical simulations. These sim-
ulations thus can only provide qualitative results.

Various studies about UD-composites (for polymeric matrix or metal matrix) have been done with
emphasis on, e.g., thermal stress (Zywicz 1986) and interface influences (Achenbach and Zhu 1990,
Sottos et al. 1989). However, this work was restricted by using a regular type of fibre packing geom-
etry. Analytical or numerical models of UD-composites based on uniform and regularly periodic dis-
tributions of fibres provide erroneous predictions of the behaviour of real composites. Therefore, non-
uniform packing cases have been presented to perform more accurate simulations, e.g., a random
fibre packing case was adopted by Brockenbrough et al. (1990) for an aluminium alloy reinforced
with boron fibres.

In this thesis, not only a carefully characterized constitutive model is used for the matrix material, but
also two types of local non-uniform fibre packing geometry are presented. The models used yield a
more accurate simulation of local stress fields and global deformation of a UD-composite. Initial
strain effects have also been considered in the calculation. An experiment on the transverse creep
behaviour of a unidirectional composite has been carried out. The test data were used to evaluate and
select an appropriate numerical model for further examination of the local details of the stress state of
the composite. These local details can not be measured directly through experiments. These details
may illustrate the reason and the patterns of the early failure of the composite in the transverse direc-
tion. But for small loads, the interfacial influence was considered negligible, hence a perfect bonding
interface has been adopted in the present simulation. The comparison with the experiment shows a
good agreement.

The experiment was suitable to measure the overall stress-strain-time response and provides the data
for a comparison and evaluation of the quality of the numerical models. Various numerical models
have been tested upon the experiment data. The modelling provided us the detailed pictures of the
local stress distribution and redistribution as well as the strain accumulation due to the time-depend-
ent properties. The details of stress distribution can not be measured through experiments, however,
the stress concentration and redistribution are crucial for the crack initiation and crack growth, which
in turn determine the transverse strength of the composite. In this work, efforts are made to examine
the level of the stress concentration which is reached under different loading conditions.

The basic material properties for the glass-fibre reinforced polyester are listed in Table 7.1.

composite composite
unsaturated longitudinal transverse
E-glass fiber polyester (<75% tvf) (57~62% tvf)
stiffness 73GPa" 50GPa” 42GPa’ 15-20 GPa™"
tensile strength 1900 MPa" 85 MPa® 1150 MPa’ 24 MPa™*

Table 7.1. Basic material properties for the glass-fiber reinforced polyester system; fuf stands for the fiber
volume fraction; * from Silenka Manual (1 990)3%1; ** from experiment.

One can see from the table that the transverse strength of the UD composite is very low, even lower
than that of the matrix. The stress concentration in the matrix, defects in the matrix and on the inter-
face and a possible lower strength of the interface are all possible candidates to contribute to the low
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overall strength of the composite in the transverse direction. More explanation can be found in Ten
Busschen (1995). For the long-term behaviour, the tensile transverse strength will be even lower, due
to creep strain accumulation which reaches its limitation at the stress concentration area.

7.2 Experiment on the Transverse Creep of UD Composites

The experiment was carried out in the Laboratory for Engineering Mechanics, Delft University of
Technology. The specimens were dog-bone tubes which were made on a continuous winding machine

(see Fig. 7.2).

<

fiber bu

Winding
Resin bath

Rovings

Figure 7.2. Winding machine

The winding angle 6 was kept less than 1 degree (see the definition of e in Fig. 7.2) in order to achieve
an almost unidirectional composite tube. Fig. 7.3 demonstrates the specimen size.

R250 mm
fif
fiber strand ber mat

/ 3

A O O O N O O T TN IO T T IO OO O T e T O <<

A

®71.5 mm
®53.5mm

F61.5 mm

|

'\\\\\\\\\\\\\\\\\\\\‘\‘“\\\l\“\\\\\\‘\X\\\\\\\\\\\\\\\
48 mm L 112 mm J 48 mm.
g ——
352 mm
1

Figure 7.3. Specimen
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The fibre volume fraction varies from 56% to 63% for different specimens. It is roughly controlled
through changing the winding force. The circumferential direction of the wbe is the longitudinal
direction of the fibres, while the centre line of the tube is the transverse direction of the fibres, see
Fig. 7.4.

longitudinal direction

A Unidirectional Composite

—

transverse directions

Figure 7.4. A UD composite

The tests were performed at room temperature under a constant load in order to obtain creep data. The
principle of the testing machine is illustrated in Fig. 7.5. The possible tensile force varies from O to
120 kN. The force is applied by means of a semidead weight system and remains constant by adjust-
ing the position of the lower end of the specimen. The beam ratio is 1:75 (Fig. 7.5), which provides a
precise control to keep the beam horizontal. Fig. 7.6 reveals a band of creep data due to the variation
of the fibre volume fraction and other influences on the specimens. The fibre volume fraction was
obtained from a measuring procedure as described in Ten Busschen (1995).

fulcrum

/V\ beam

clamp
specimen
weight

i switch ==

b [

motof ~ =~ - T TT - T T T T oo oo oo 4

—
loading screw spindle

Figure 7.5. Testing equipment
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Short-term Transverse Creep of a UD Composite
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Figure 7.6. Test result, one-day short-term creep experiment under room temperature 20.5°C; constant load
10MPa; from the top curve to the bottom curve: specimen no. 710, 910, 010, 310, 510, 810, 610; their aging
times (days): 48, 50, 51, 62, 62, 49 and 44 respectively

7.3 Constitutive Relations for Fibres and Matrix

For the later calculations it is assumed that the fibres are linear elastic while the matrix is the nonlin-
ear viscoelastic material as described before in Chapters 2~6. Both materials are isotropic.

For the matrix material, the stress-strain relation as given in Chapter 2 has been adopted, i.e.,
Eq (2.55). The finite element approach is based on its three-dimensional representation as described
in Chapter 5.

Material constants as used are given in subsequent tables.

fibers polyester
Young’s modulus Ef=73¢9 E,, = 5¢9
Poisson’s ratio ve=0.18 vy =0.353
creep Poisson’s ratio Vem = 0417
parameter of exponential creep law C=1727¢-11
exponent of exponential creep law n=0.065
physical aging shifting rate a=045

Table 7.2. Material constants for two components of a UD composite
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The parameters in the exponential function series are given below

i & M
1 2.92727¢-11 267248

2 0.594899%-11 2.67248¢-1
3 1.10066¢-11 2.67248¢-2
4 1.44981e-11 2.67248¢-3
5 2.08694¢-11 2.67248¢-4
6 3.38408¢-11 2.67248¢-5
7 4.24545¢-11 2.67248¢-6
8 12.4176e-11 2.67248¢-7

Table 7.3. Parameters in the exponential function series

The model nonlinear parameters are presented in the next table,

a, 00 49e6 1.0e7 157 20e 3.0e7 50e7 7.0e7 108
g0 1.0 10 1.03 105 1065 1084 111 1126 1.145
o, 0.0 50e6 10e7 20e7 3.0¢7 407 50e7 607 707 80e7 90e7 1.0e8
81 1.0 101 1.05 1.18 1.4 1.76 232 32 4.61 6.9 10.7 17.5

Table 7.4. Model nonlinear parameter vs. the effective stress (Zhang 1993b)

Two kinds of output from the calculation are presented. One represents physical values within an ele-
ment averaged from the integration point values. The other is a post-processed output, the contour
picture. In the contour pictures, the curves are calculated by interpolation of integration point values.
This interpolation process always results into continuous curves. In some cases these should be dis-
continuous, e.g., in the case of a normal strain across the interface between the matrix and the fibres.
The confusion is due to the post-processing program, e.g., I-Dias, which was used to deal with large
amounts of data through the easiest way. We will accept these unreality in the contour pictures when
the distortion is not too large to lead to any wrong conclusions. On the other hand, the contour pic-
tures are only meant to provide a qualitative view on the distributions of those physical quantities.
Any values listed in the tables are obtained directly from the output-files and have only an averaged
sense over all integration points in one element.

The numerical results include the distributions and redistribution of various stresses and strains, such
as normal stresses and strains, principal stresses and strains, effective stress and strain and maximum
shear stress and strain. The effective stress and strain and maximum shear stress and strain are defined
as follows:

If 6}, 6 and Oy are the principal stresses (67 > Gy > ) the effective stress is defined as

S, = %J("l“’u)z* (“u"’lu)z"’ ("m"’l)2 . 7.1

o, is the maximum principal stress and oy is the minimum principal stress. The maximum shear
stress then is
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Tmax = (al' ) /2. (7.2)

If €, €y and €y are the principal strains, and €; > &) > €y, the effective strain is defined as

g, = %J(s,—em% (e”-e,")2+ (*:m'*:l)2 . (1.3)

The maximum shear strain is

g ax = (EI_ elll) /2. (74)

In this chapter, results of maximum principal stress and strain, effective stress and strain and the max-
imum shear stress and strain will be presented.

7.4 Rectangular and Hexagonal Fibre Packing

The periodic packing geometry reduces the mechanical analysis of a unidirectional composite to the
solution of a set of boundary problems for a repeating cell. According to this method in an infinite
medium a surface isolates a volume composed of one or several fibres, and assumes that the structure
of the remaining part is obtained by means of repetition of the cell, see, e.g., Fig. 7.7 and Fig. 7.9.

The boundary condition for this rectangular cell is such that any of two parallel edges remain straight
and parallel during deformation (or all edges are symmetry planes). The load is applied on two paral-
lel edges in the normal directions (see, e.g., Fig. 7.18).

The fibres and matrix are assumed perfectly contacted (perfect bonding condition). When the loading
is small, this assumption is realistic. In a study of time-independent behaviour of the same material
(Busschen 1995), a friction interfacial model has been proposed, and combined with initial strains.
The comparison with tests shows a good agreement (Busschen 1995). In this thesis, a softer inter-
phase layer and a faster creep interphase layer are examined in Section 7.11. The purpose of using
these two cases is to know how the influences of different interphases on the global creep behaviour
of a cell exhibit.

7.4.1  Rectangular Fibre Packing

Assuming a periodic array of fibres as shown in Fig. 7.7, a typical repeating unit can be isolated and
the computation will be carried out for this unit cell.
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Figure 7.7.

CPD cell

loading direction
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Unit cells of square packing geometry of fibres

The unit cell can be obtained through drawing four closest symmetry axes, two parallel axes perpen-
dicular to another two parallel axes. In Fig. 7.7, there are two different packing directions depending
on the loading direction on this square packing geometry. One is called the closest packing direction
(CPD), and the other one the mid closest packing direction (mid-CPD).
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Figure 7.8. The theoretical prediction by a square cell overestimates the transverse creep of a UD composite,

global load 10MPa

The square cell shows an anisotropic property in global stress-strain behaviour. Fig. 7.8 demonstrates
an overestimation of the creep deformation in mid-CPD. This anisotropic propesty is not only unreal-
istic, but also may bring difficulties in the numerical simulation of the overall composite creep behav-
iour. For the convenience of further analysis, this anisotropic cell case was abandoned. Furthermore,
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b

in further analysis, the isotropic property will always be considered as a favourite property of chosen
cell models.

For a2 more general rectangular packing geometry, only one unit cell exists with a CPD packing and a
mid CPD packing, see Fig. 7.9. This rectangular packing geometry gives even a worse global iso-

/
OO0000

Figure 7.9. Rectangular packing

CPD

mid-CPD  loading directions

&

74.2 Hexagonal Fibre Packing

A most uniform packing geometry is the so-called hexagonal array packing, which is almost an iso-
tropic packing case. In this packing geometry, there are also two packing directions, see Fig. 7.10,
i.e., CPD and mid-CPD. Both will be used as loading directions. A finite element mesh (3D brick ele-
ments) is shown in Fig. 7.11. Some numerical results at different tensile loading levels and directions
are demonstrated. Fig. 7.11 shows two contour pictures of stress distributions.
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Figure 7.10. Hexagonal packing and its numerical cell mode!

@)
O
O
O
O



§ 7.4 Recf lar and Hexagonal Fibre Packing 119

Pa

(4]

3.50E+07 (6) ¢ 3. 008407

2. 506407
3. 00E+07 /

2006407
2. 50E+07

1. 508407
2. 00E+07 T+ boR07
1. 508407 i 5 DOEY06
1. D0EO7 (1) ’ 0.00

(O]

(A) )

Figure 7.11. (A) mesh, (B) effective stress and {C) maximum principal stress, after 3 month, loaded in y-
direction (see Fig. 7.10) with global stress 24MPa, 60% fibre volume fraction

An evidence of the stress redistribution can be found in Fig. 7.12 even though the remote load is low,
10MPa. The influence of the creep Poisson’s ratio has been found to be quite large in Fig. 7.13. When
the creep time is more than one month, the error in the global strain due to the neglect of this ratio can
be as large as 10%, for a small remote load, 10MPa. The differences of global Poisson’s ratio between
fibres and matrix can result in interfacial stresses similar to thermal stresses. When a fibre has a lower
global Poisson’s ratio than the matrix, upon application of axial tension (in the fibre direction) to the
composite the matrix shrinks to a greater extent than the fibre, that results in radial compressive
stresses. Conversely, upon compression, the mismatch of the global Poisson’s ratios can contribute to
fibre-matrix debonding.

The global creep deformation in Fig. 7.14 illustrates a less anisotropic property of this fibre packing
geometry compared with the square packing case (Fig. 7.7). However an overestimation of the global
creep strain is still formed.
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Figure 7.12. Data points, (A) effective stress, (B) maximum principal stress and (C) maximum shear stress,
loaded in y-direction with global stress 10MPa, 60% fibre volume fraction
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Figure 7.13. Influence of the creep Poisson’s ratio on the creep strain, calculated results from fhe hexagonal
cell model, creep stress: 10MPa; initial aging time: 3.9¢6 sec. (1.5 months); (A) The strains in the loading
direction; (B) The strains transverse to both the loading direction and the fibre direction
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Figure 7.14. The theoretical prediction by the hexagonal cell model overestimates the transverse creep of a
UD composite, global load 10MPa

743 Discussion

The result of the hexagonal cell model in Fig. 7.14 demonstrates an overestimation of the global
creep deformation. This overestimation suggests a fundamental incorrectness of the uniform cell
models. In the real situation, fibres are packed non-uniformly but it has been observed that globally
the composite still behaves transversely isotropic.

In general, the rectangular fibre packing is not appropriate due to its anisotropy. The hexagonal fibre
packing is better than the rectangular packing, but both are not realistic due to their too uniform fibre
distribution, which suggests a more uniform stress distribution and hence a more efficient matrix
material use than in reality.

To overcome these problems, modification is necessary. Ten Busschen (1995) has tried to use an
effective volume fraction, which is higher than the global fibre volume fraction, in order to compen-
sate the application of a uniform fibre packing geometry. Among other possibilities, two special cases
of fibre packing geometry have been proposed in the following sections. Different kinds of packing
geometry meet in some sense the non-uniformity of the real fibre packing geometry.

7.5 Modified Hexagonal Fibre Packing - Type 1 and Type 2

The overestimation of the creep deformation is due to the oversimplification of the real fibre distribu-
tion, which is always of a random form. The photos in Fig. 7.15 demonstrate that in the realistic fibre
distribution, there apparently exist two different kinds of regions, so-called fibre-rich regions and
matrix-rich regions. The traditional regular fibre packing approximations, both rectangular and hex-
agonal packing forms, fail to simulate the transverse deformation of UD composites since these pro-
vide the models with too much unrealistic uniformity. These models imply a more efficient usage of
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matrix material. This is not true in reality because the non-uniform distribution of fibres in the matrix
may cause severe non-uniform stress and strain distributions. A fibre-rich area will show a relatively
higher stress level compared to a matrix-rich area.

To take into account the influence of fibre-rich regions and matrix-rich regions, a modified regular
distribution pattern will be used. This again results into a lot of convenience in the numerical work. A
simple calculation cell with a local non-uniform distribution of fibres will be used for this purpose.

7.5.1  Fibre Distribution in Samples

According to the revelation of the photos (e.g. Fig. 7.15), the winding fibre reinforced composite has
a very particular fibre distribution pattern. Almost all the fibres are distributed close to each other
forming fibre clusters where the distance between two neighbouring fibres is usually much smaller
than the scale of the fibre radius. These fibre-rich areas are dominant in the cross-section of the com-
posite tubes. While between the fibre clusters, there exist some narrow and long matrix-rich regions,
mostly parallel to the axis of the sample tube. The difference of the global fibre volume fraction of
samples can hardly change the compactness of the fibre clusters, but can indeed change the total area
of the matrix-rich regions.
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Figure 7.15. Video-photos by a microscope, the fibre distributi
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7.5.2 A Special Regular Fibre Packing

In order to consider the non-uniformity of the fibre distribution, in the present research two different
periodic fibre packing geometry patterns have been developed, i.e., type 1 and type 2 packing forms,
as shown below. Globally they are transversely isotropic.

o

Figure 7.16. Type 1 regular non-uniform packing

et

Figure 7.17. Type 2 regular non-uniform packing

In these cases, the concentrated fibres and matrix are still periodically arranged but with a local varia-
tion of the fibre density. Therefore these packing forms will be referred to as the “locally. non-uniform
geometry”. One interesting property of these packing forms is the highest volume fraction these can
reach. These are 68.02% and 60.46% for type 1 and type 2 respectively. The highest fibre volume
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fraction of the specimens which could be performed in the laboratory, by means of the winding tech-
nique, were never larger than 65%. In industry, this technique can reach a maximum fibre volume
fraction of about 75%. The ideal hexagonal geometry can have a maximum fibre volume fraction of
90.69%. This suggests that the sever non-uniformity of the fibre distribution prevents a higher com-
pactness of the fibres, resulting in a lower fibre volume fraction. Consequently this will bring more
distributed fibre-rich regions and matrix-rich regions.

7.5.3  Boundary Conditions for the Numerical Calculation

The numerical cell model for a periodic packing geometry with symmetry properties has an advan-
tage of simple boundary conditions. As shown in Fig. 7.18, three surfaces are supported in three dif-
ferent directions: the surface EFGH is supported in the z-direction, the surface ABFE in the y-
direction and the surface AEHD in the x-direction. According to the symmetric property, the surface
ABCD is forced to remain plane and parallel to the surface EFGH. A tying of an equal displacement
in the z-direction is hence applied on the surface ABCD. Similarly, the surface DCGH is kept parallel
to the surface ABFE and the surface BFGC parallel to the surface AEHD. The tensile load in the x-
direction or in the y-direction is then applied on the node C as a concentrated force.

Uy = const

Figure 7.18. Boundary conditions for a numerical cell model

754  57% Fibre Volume Fraction, 10MPa Global Load

The FEM analysis result shows that the stress is concentrated in the fibres and in the matrix region
where two fibres are close to each other (see Fig. 7.21). The corresponding strains then situate domi-
nantly in the same matrix region (Fig. 7.19). But most importantly, the creep curves for different load
levels are very close to the experimental results (Fig. 7.20). One sample is used to perform a series of
creep tests with increasing loads from test to test until the sample failed. It is assumed that the fibre
and matrix are perfectly bonded and that during the deformation no damage occurs. Therefore, the
underestimation of the numerical results in Fig. 7.19 suggests a reasonable modelling due to the fact
that in reality, before the failure of the composite, the damage at the interface and in the matrix has
contributed to a larger global deformation. Hence the composite showed a larger strain for the global
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creep elongation than the theoretical prediction, especially, when the global stress was relatively high,
see Fig. 7.21.

The initial strain is excluded in this section. This will be considered later in Section 7.8.

5 A\ (6) 0.003781
0. 002463 \ 0. 003165
q f 0. 001990 \" 0. 002550
0.001517 ] 0.001935

0. 001044 0. 0601320
1) 0.000571 (1) 0.000705

Figure 7.19. Mesh, maximum principal strain and effective strain distributions, type 1 fibre packing form,
[fibre volume fraction 57%, global creep stress load 10mpa in y-direction
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Figure 7.20. Transverse creep of a UD composite, specimen #9, fvf 57.5%, cell model (type 1) loaded in y-
direction
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Figure 7.21. Principal stress and effective stress distributions for type 1 fibre packing, volume fraction 57%,
global creep stress load 10mpa in y-direction

Fig. 7.22 demonstrates the creep curves of the largest global stress (24MPa) being applied in the
experiment. All the four specimens fractured after some time. Both type 1 and type 2 models give an
underestimation in the strain for the case of 57% fibre volume fraction.

22

201
grar 1
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141 1
#5-61.8%
1249 100 1000 10000 100000
time (sec)

Figure 7.22. Composite creep, 24MPa in y-direction, specimen no. (from top to bottom) #7, #0, #9 and #5, the
fibre volume fractions are depicted in the figure
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7.6 Stress and Strain Redistribution

Due to the viscoelastic behaviour of the matrix, under a stressed and deformed state, the matrix starts
to creep and relax. After a period of time, one can expect a redistribution of stresses in both matrix
and fibres. This will not only change the stress concentration level, but also its location

The type 1 model cell can be loaded in two different directions, i.e., the x-direction (CPD) and the y-
direction (mid-CPD), and consequently has two different stress and strain distributions within the
cell.

In this section, the calculation has been done for a cell model with a fibre volume fraction of 57%.

7.6.1 Y-direction global loading case (mid-CPD)

The loading direction is in mid-CPD, see the following figure. The effective stresses along the “cen-
tral fibre” in the matrix and in the “comer fibre” are different.

global load Z, = 10MPa

effective stress (MPa)

4.% =0
.0 50.0 100.0 150.0 200.0
8 (degreo)

z
£ 150
g 100
; % s0
global load I, = 10MPa
%90 500 1000 1500  200.0
0 (degree)

Figure 7.23. Effective stress in the matrix and in the fibre region along the interface of the central fibre
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Figure 7.25. Maximum shear stress and effective strain in the matrix along the interface of the centre fibre,
creep loading T, = 10MPa
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Figure 7.26. Stresses in the matrix along the interface of the corner fibre, L, = 10MPa
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Figure 7.27. Maximum shear stress and effective strain in the matrix along the interface of the corner fibre,
creep loading X, = 10MPa

Fig. 7.28 shows the path where the stress and strain distributions as presented in Fig. 7.29 and
Fig. 7.30 are considered.

stress/strain O global load

distance O global load
Figure 7.28. The stress/strain distribution along the line PQ, for Fig. 7.29 ~ Fig. 7.31
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Figure 7.29. Effective stress and effective strain along the path PQ, in Fig. 7.28, fibre volume fraction 57%,
global load 10MPa in y-direction
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Figure 7.30. Maximum principal stress and maximum principal strain along the path PQ, in Fig. 7.28, fibre
volume fraction 57%, global load 10MPa in y-direction
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Figure 7.31. Maximum shear stress and maximum shear strain along the path PQ, in Fig. 7.28, fibre volume
fraction 57%, global load 10MPa in y-direction

7.6.2  X-direction global loading case (CPD)

When the “local non-uniform geometry” model is loaded in x-direction, the stress distribution pattern
will be completely different from the results as presented in the latter section for loading in the y-

direction.
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Figure 7.32. (A) effective stress and (B) maximum principal stress distribution, type | fibre packing geometry,
global load 24 MPa in x-direction
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The stress and the strains also show different distributions along the interface.

A) effective stress the interface B) maximum principal stress the interface
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Figure 7.33. Stress distributions in the matrix along the interface of the centre fibre, fibre volume fraction
57%, global load 10MPa in x-direction
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Figure 7.34. Strain distributions in the matrix along the interface of the centre fibre, fibre volume fraction
57%, global load 10MPa in x-direction

The stress and strain redistribution around the corner fibre have been illustrated in Fig. 7.35 and
Fig. 7.36.
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Figure 7.35. Stress distributions in the matrix along the interface of the corner fibre, fibre volume fraction
57%, global load 10MPa in x-direction
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Figure 7.36. Strain distributions in the matrix along the interface of the corner fibre, fibre volume fraction
57%, global load 10MPa in x-direction
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Figure 7.37. Effective stress and effective strain along an edge of the model cell as defined above
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Figure 7.38. x-stress and x-strain along the left-edge of the model cell

7.6.3 Conclusions

The figures have shown that the stresses and strains along the interface and other paths change with
time. The locations of the maxima also change slightly. Therefore the stress redistribution is insignif-
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icant. The new types of fibre packing geometry show almost isotropic properties. Stress concentration
in the matrix occurs at the areas where the distance between two fibres is the smallest.

7.7 Random Packing of Fibres

The geometry in Fig. 7.39 was artificially made for the simulation of a case with a random fibre distri-
bution. The fibre volume fraction was chosen to be 60%.

A coarse mesh (not shown here) was first made for initial calculation. According to the stress distri-
bution found, especially, for the area with the largest stress gradients, a relatively finer mesh with
2636 linear solid elements was made (Fig. 7.39). It was observed that the load transfer follows a band
of relatively closely spaced fibres, where the matrix between those fibres shows a relatively high
stress level (compared to the matrix-rich areas).

The mesh used here, however, is still a coarse mesh. It was adopted due to the limitation of the com-
puter capacity. Errors are inevitable when a coarse mesh is used for stress calculation. Especially,
between some fibres, the matrix only has one element thickness. The goal of using this mesh is to
examine the relative relation of the stress pattern to the mutual distance of fibres.

Figure 7.39. A mesh for a random fibre packing form, fuf 60%

The stress distribution is illustrated in Fig. 7.40 and Fig. 7.41. In Fig. 7.43 ~ Fig. 7.45 irregular stress
and strain patterns around a fibre in the matrix are observed. Some of the fibres are close to each
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other, so that both the effective stress and the maximum principal stress have higher peaks after a
period of creep time.
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Figure 7.41. Maximum principal stress, 10mpa global creep stress in y-direction




§ 7.7 Random Packing of Fibres 137

o
=
@®

exp. 56. »
exp. 57. e
16 | eXp. 57.5% e

strain (%)

e

random 61.8%. -

exp. 61.8%

0125 100

_ 1000 10000 100000
time (sec)

Figure 7.42. Composite creep, 24MPa, experimental data stop when specimens fail, their fibre volume
fractions are shown in the figure. The random fibre-packing model provides an overestimated result.

The global strains obtained from the simulation with the random fibre-packing model are slightly
higher than the experimentally obtained strains. In the calculation, the matrix volume was adjusted in
order to obtain a fibre volume fraction of 61.8%. The overestimation suggests that this artificial “ran-
dom” case is not appropriate to present the reality. In reality, fibre-rich regions are connected to each

other while the matrix-rich regions are relatively isolated. In the present case, see Fig. 7.40, the fibre-
rich region is surrounded by a matrix-rich region.
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Figure 7.43. Effective stress and effective strain in the matrix along the interface of the fibre ‘A’ (see
Fig. 7.40), global stress load 10MPa, fibre volume fraction 60%
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Figure 7.44. Maximum principal stress and maximum principal strain in the matrix along the interface of the
fibre ‘A’ (see Fig. 7.40), global stress load 10MPa, fibre volume fraction 60%
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Figure 7.45. Maximum shear stress and maximum shear strain in the matrix along the interface of the fibre
‘A’ (see Fig. 7.40), global stress load 10MPa, fibre volume fraction 60%

7.8 Shrinkage and Prestress State

7.8.1  Shrinkage due to polyester curing

Shrinkage occurs during the chemical reaction of the reactants where the polymerization and accom-
panied temperature changing are the reasons of a volume change. This volume change is a continuous
phenomenon when the chemical reaction continues. In the beginning, the curing starts and the polym-
erization causes a volume shrinkage but the raising of the temperature due to the heat generation
because of the chemical reaction causes an expansion. Differences in heat conductivity. in the mould
lead to a varied temperature distribution, which may in turn accelerate the reaction in a local higher
temperature region. This accelerated reaction causes more curing shrinkage compared to the shrink-
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age within other relatively lower temperature areas. When the material still is in the liquid state, no
stress will be built up. Even when the material in one region first is solidified, the surrounding mate-
rial can still flow and shrinkage induced stress is limited. However, when the whole material turns
into the solid state, due to a different thermal history and consequently different curing stages, the
volume shrinkage may vary from region to region. This finally introduces a stress distribution even
without inclusions such as fibres. In the later curing stage, the chemical reaction slows down and little
heat is generated, the temperature drops which causes a corresponding thermal shrinkage too. The
thermal shrinkage may introduce an extra stress value on the stress field built up by the curing shrink-
age, especially, when inclusions exist.

The total volume change for cast polyester (DSM Resins Synolite 593-A-2) after postcuring (60°C
24hours and 80°C 24hours) is 9.3% (AV/V) with a standard deviation of 0.2% (Ten Busschen 1995).
However, since a description of the relation of the curing stage, the physical phase (liquid or solid),
the heat creation and the volume shrinkage rate is not yet available, a quantitative determination of
the stresses build-up during the curing procedure can not be obtained.

The test results have shown (Ten Busschen 1995) that, among the total volume shrinkage 9.3%, about
2.7% (linear shrinkage 0.9%) occurs in the solid state and 6.6% (linear shrinkage 2.2%) in the liquid
state. When the polyester changes in phase from the liquid state into the solid state, the material firstly
behaves quite soft and then gradually becomes harder. Hence only a part of the shrinkage contributes
to the stress built up in the composite. Ten Busschen (1995) has introduced an equivalent initial strain
to provide an initial stress state of a UD composite for time independent analysis of the ultimate
strength of this composite.

In this report, a volume reduction of 1.05% (equivalent to a linear initial strain -0.35%) was chosen
for investigation of possible influences of shrinkage on the time dependent composite behaviour. The
distributions and redistribution of stress and strain fields due to the viscoelastic property of the matrix
and the influences on the loading situations are considered. The above volume reduction of 1.05% is
in some sense arbitrarily chosen, however, it was found that higher initial strain values resulted in too
large stresses (above the strength of the material).

A calculation for an initial strain of 0.9% (as used by Ten Busschen for the time independent case)
resulted in quite unrealistic stress levels, using the “time-dependent” material data. Computational
results for different initial strain levels are presented in Section 7.8.5. The major reason of this is due
to the fact that before the material is cured to a certain degree, its relaxation time is considerably
small (or the material is soft). Hence a part of the shrinkage occurring in the early stage will generate
relatively small stresses. Thus to adopt an equivalent initial strain, -0.35%, for a time dependent anal-
ysis (a smaller value than -0.9% as used by Ten Busschen might be reasonable for a time independent
analysis).

7.8.2  Prestress state due to matrix shrinkage

After initial loading by a strain of -0.35% and subsequent relaxation of the stress field for one month,
the stress distributions as shown in Fig. 7.46 are found. The maximum principal stress as well as the
effective stress are shown. Further, in Fig. 7.47, both the maximum principal stress and the minimum
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principal stress in the matrix around the centre fibre are drawn. The figure shows that over a relatively
long arc, there is a large tensile stress (90° < 8 < 160°%) while at two positions a large compression
stress is found (8 = 0° & 60°), see Fig. 7.47.
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Figure 7.46. Contours of maximum principal stress and effective stress due to initial strain at t = { month
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Figure 7.47. Shrinkage induced prestress at t = | month, numerical model type 1, initial strain 0.35%
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7.8.3  Relaxation and creep in the matrix without external loading

The composite usually will not be used immediately after its manufacturing. The products will be
stored and transported and will be used after a period of several months to more than a year. There-
fore the age of the products may vary in a large range. Hence we need to know how the prestress field
in the composite will change during that period of time, since the current prestress field will influence
the loading response once it is loaded in application. Fig. 7.48 to Fig. 7.50 illustrate the change of the
stress fields and the strain fields after one month of creep/relaxation. Surprisingly the maximum shear
stress and the effective stress reduce to about half the initial amplitudes. The strains increased within
this period.
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Figure 7.48. Stress change and strain increase due to the relaxation and creep process, starting from an
initial strain induced prestress state, 61.8% fvf, numerical model type 1

(A) effective stress (MPa) (B) effective strain
50 T T T 0030 ¥ T
— 1= 0 (initial strain 0.35%)
| “* t= 1 month |
o 40 0.025
3 y
£ € 0.020[%
2 a9 s
e >
5 L]
2 0015
2 g
20 1%
s 0.010
10 A ]
— t=0 (initial strain 0.35%) 0.005
-=~ t=1 month
% 50 100 150 200 0000, 50 100
angle 6 angle 8

Figure 7.49. Effective stress and strain (same conditions as those in Fig. 7.48)
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Figure 7.50. Maximum shear stress and strain (same conditions as those in Fig. 7.48)

Fig. 7.51 illustrates a unanimous decline of different stresses of an initially prestressed composite,
due to the ongoing creep and relaxation process in the matrix material. An extrapolation of these
curves can provide a theoretical prediction that all stresses initiated by shrinkage of the matrix may
eventually vanish due to the viscoelastic properties of the matrix. For this case the complete relaxa-
tion would take about 4500 years.
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Figure 7.51. Declining stress concentration in the matrix (a case without external load), model type 1, 61.8%
SV, initial strain 0.35%
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7.84  Influence of prestress on composite creep

When the model cell (type 1, fvf 61.8%) is loaded in different directions, the stress distribution pat-
terns around the fibre are different.

The initial strain influenced results are exhibited in subsequent steps, the comparisons between differ-
ent loading directions are shown afterwards.

1. X-direction loading

The load situation is demonstrated in the following figure. The stress distributions are presented for
the matrix around the interface of the centre fibre, where the angle 8 provides the exact positions of
the stresses, being presented.

3 Dz

y, mid-CPD

‘ » X, CPD

Figure 7.52. Cell model type 1 loaded in CPD, L = 24MPa
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Figure 7.53. Influence of shrinkage on the global creep case. Maximum principal stress and strain, matrix
initial strain 0.35%, fuf: 61. 8%, global load: 24MPa in CPD

It can be seen from Fig. 7.53 that there is a compression area in the matrix at about 6 = 60°, even after
application of the tensile loading to the model. On the other hand, from Fig. 7.54, a high peak of
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effective stress can be observed in the vicinity of © = 55°. Due to the fact that the strain continuously
increases, this place is likely to show the first matrix failure.
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Figure 7.54. Influence of shrinkage on the global creep case. Effective stress and strain. Matrix initial strain
0.35%, fvf 61. 8%, global load: 24MPa in CPD
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Figure 7.55. Influence of shrinkage on the global creep case. Maximum shear stress and maximum shear
strain. Matrix initial strain 0.35%, fvf 61. 8%, global load: 24MPa in CPD

2. Y-direction loading

Under a Y-direction or mid-CPD loading, there is a compression area at 6 = 0°. Very closely, a effec-
tive stress peak locates at © = 170°.
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Figure 7.56. Maximum principal stress and strain. Initial strain + mid CPD loading case. Matrix initial
strain 0.35%, fuf: 61.8%, load: 24MPa in y-direction
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Figure 7.57. Effective stress and strain, for conditions as specified in Fig. 7.56
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Figure 7.58. Maximum shear stress and strain, for conditions as specified in Fig. 7.56
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3. Comparison between different loading directions

The comparisons have shown that the compression areas always exist at the narrowest matrix regions,
6 = 60° (x-dir. loading) and 8 = 0° (y-dir. loading). The maximum of the effective (or of the maximum
shear) stress locates in the vicinity of these regions, 8 = 55° and 6 = 175°.
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Figure 7.59. Maximum principal stress. Matrix initial strain 0.35%, Jf: 61.8%, load: 24MPa in x- and y-
direction respectively
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Figure 7.60. Maximum shear stress and effective stress. Matrix initial strain 0.35%, fvf: 61.8%, load: 24MPa
in x- and y-direction respectively
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Figure 7.61. Maximum stress before and after loading (linear interpolations between discrete times). Matrix
initial strain 0.35%, fvf 61.8%, model type 1

Fig. 7.61 demonstrates the tendency that both the maximums of the maximum principal stress and of
the effective stress decline before the loading is being applied. But after loading, the maximum of the
maximum principal stress increases with time, if the model is loaded in x-direction. An increasing
principal stress at the interface may cause the matrix-fibre debonding.

It is observed that before the loading is being applied, the position of the maxima change with time.
But after the application of the loading, these maxima remain on the same positions.

4. Global Strain

The global strain in the transverse direction of UD composites is a measurable quantity, and therefore
is one of the limited items which can be used for comparison between theory and experiment.
Fig. 7.20 has already shown a comparison between the experimental data and the theory with the cell
model type 1. Here the results related to different matrix shrinkage histories and global loading direc-
tions are put together. The difference between these theoretical curves is small, see Fig. 7.62. This
tells us that the shrinkage gives little influence on the global creep behaviour of UD composites.
Although the local distribution and the magnitude of stresses and strains are significantly affected by
the matrix shrinkage. In other words, the matrix shrinkage will turn out to be significant, for the
cracking and fracture behaviour of composites and hence for the strength in the transverse direction
of the composites. However, the matrix shrinkage has little effect on the global stiffness of the com-
posites.
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Figure 7.62. Influence from prestress on creep, matrix initial strain 0.35%, fvf: 61.8%, load: 24MPa

5. Stress Evolution in a Prestressed Model Cell

The matrix shrinkage of UD composites rﬁay cause a significant change in the stress and strain distri-
butions. Furthermore, the stress and strain fields will redistribute due to the time elapsing and the
change in loading. Fig. 7.63~Fig. 7.66 illustrate these time dependent fields.
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Figure 7.63. Stress Redistribution in Prestressed Composite, numerical model type I, matrix initial strain

0.35%, creep load 24MPa in mid-CPD
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Figure 7.64. Stress Redistribution in Prestressed Composite, numerical model type I, matrix initial strain
0.35%, creep load 24MPa in mid-CPD
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Figure 7.65. Strain Development in Composite Creep, numerical model typel, matrix initial strain 0.35%,
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Figure 7.66. Strain Development in Composite Creep, numerical model typel, matrix initial strain 0.35%,

creep load 24MPa in mid-CPD



150

Unidirectional Composite Creep

7.8.5  The Influence of Matrix Initial Strains

Different matrix initial strains are applied to investigate the local stress distributions and the global
strains in creep deformation. The numerical work has been done according to the following condi-

tions

numerical cell model type

type 1

fiber volume fraction of the composite

61.8%

aging time of the matrix material

1 month

global constant load and its direction

24 MPa in x-direction

specimen used in experiment

tube #5

creep time for tests(22°C, r. m. 50%)

1 day

Table 7.5. Test and calculation conditions

In the matrix of the model cell (type 1), the maxima and the minima of the principal stress and the

effective stress are listed in the following tables.

principal stress (MPa) effective stress (MPa)
initial strain maximum minimum maximum minimum

0.0035 37.56 -66.12 56.39 8.142
0.005 60.30 -91.92 74.52 10.35
0.006 73.08 -106.30 81.80 12.47
0.007 84.54 -116.40 82.71 14.49
0.008 94.47 -127.30 86.54 16.38
0.009 104.30 -136.20 88.39 18.32

Table 7.6. Principal stress and efffective stress in the mode! cell (type 1) immediately after the matrix
shrinking

When the initial strain is higher, the maximum of the principal stress and the maximum of the effec-
tive stress both increase. A modified effective stress is defined as

1

o, = [(6,-0) 7+ (0y-0+ (0;-0,)7] +034(0, +5,+ 0y , (7.5)

This effective stress was suggested by Ten Busschen (1992)['3! for a failure criterion of the matrix
material, where failure occurs for unsaturated polyester resin when

0,>6,, = 153MPa.

(7.6)
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modified effective stress (MPa)
initial strain maximum minimum
0.0035 69.25 30.16
0.005 103.42 40.85
0.006 121.22 46.12
0.007 133.75 39.83
0.008 145.53 37.56
0.009 154.98 32.70

Table 7.7. Modified effective stress in the model cell (type 1) immediately after the matrix shrinking

In Table 7.7, for the highest initial strain case, the modified effective stress exceeds the criterion,
which suggests a local failure due to matrix shrinkage alone. These maximum stresses are presented
once again in the following graph:
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Figure 7.67. The stress maxima in the matrix vs. matrix initial strain

The strength of the interface between the matrix and the fibres is not a subject of this research. But it
might be lower than the matrix strength. In that case, even for a lower matrix initial strain, debonding
of the interface might occur.

In Fig. 7.69, the specimen failed after about 8000 sec. The comparison shows a larger slope of the test
data (or a faster creep rate) compared to the calculated results. Possible reasons are the fact that the
model parameters were determined from other specimens; material and/or interface damage most
probably occurred during the test (these effects are not described by the computational model). The
model does not include these factors. Therefore the model will give a conservative estimation, which
means the calculated results should be smaller than the test data and should have a smaller creep rate.
However, for higher initial strains, the calculation of the global strain apparently overestimates the
measured strain (Fig. 7.69). This suggests that the initial strain used in the calculations should be cho-
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sen to be relatively small. Using an initial strain of 0.35% is found not contradictory to what has been
discussed above.

Fig. 7.68 gives distributions of the effective stress for two cases with different initial strains. The
comparison suggests that the stress distribution patterns are similar except for the amplitudes.
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Figure 7.68. Effective stress distribution, numerical model type 1, fuf 61.8%, global load 24MPa in x-dir; the
matrix shrinkage was made by an initial strain 0.35% and 0.70% respectively. Application of loading after one
month of creep. Pictures show situations directly after loading setup.
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Figure 7.69. Comparison between the numerical results and the experiment results, composite creep in tensile
load 24MPa for different matrix shrinkage strains, directly after loading-set-up. For other data see Table 7.5.
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7.8.6  Global Loading Leyel Influence on the Stress Distribution Patterns

Along a half interface, see Fig. 7.70, the maximum principal stress distribution forms a one-peak pat-
tern when the global stress is large. While for the pure shrinkage case and the case of a small global
load (10MPa), the stress patterns also show local maxima (peaks).

The change of the distribution pattern can be seen in the effective stress plot as well as in the maxi-
mum shear stress plot, see Fig. 7.71. When the global stress is small (10MPa), one of the two local
maxima originating from the initial strain influence retreats at the position, 6 = 175°, while the other
exhibits at the position, 8 = 70°. After further increase of the global load, one local maximum disap-
pears (at @ = 175°), while another one is formed (at 8 = 130°).
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Figure 7.70. Maximum principal stress distribution, fvf 61.8%, typel, one month after initial strain of 3.5%
and subsequent creep. Immediate after loading in x-dir.
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Figure 7.71. Maximum shear stress and effective stress distributions, fuf 61.8%, typel, one month after initial
strain of 3.5% and subsequent creep. Immediate after loading in x-dir.
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The influence of initial strain on the stress patterns is so large that both the amplitude and the position
of the maxima will never be the same compared to the cases without shrinkage (see, e.g., Fig. 7.33
and Fig. 7.34). Hence the shrinkage will contribute not only to a possible earlier initiation of cracking
or debonding, but will also influence the initial cracking place, which in turn might evolve a com-
pletely different fracture path in the composite.

7.8.7  Stress Fields in the Model Cell

Through numerical simulation, it was found that the global creep deformation is not very sensitive to
the local micro-structure of the composite. However, the local stress distributions and stress concen-
trations are. However the local stress distributions and stress concentrations are quite dependent of
the local structure. Next few paragraphs show stress distributions for various models, with and with-
out initial strain influence.

1. 24MPa globally loaded in the x-direction

The model was loaded in CPD (the closest packing direction) or x-direction, see Fig. 7.72.

z
i
x, CPD
-
mid-CPD
O
z

Figure 7.72. Model type 1 loaded in CPD

Stress results with and without initial strain influence are presented in Fig. 7.73 and Fig. 7.74. With or
\ without initial strain influence, the stress distributions are completely different. This suggests that the
shrinkage may introduce a different location of crack initiation and a different fracture behaviour.
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Figure 7.73. Maximum principal stress distribution directly after loading set-up. Numerical model type 1, ff
61.8%, global load 24MPa in x-dir; matrix shrinkage was initiated by an initial strain of 0.35%, the global
load was applied after a month of creep
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Figure 7.74.  Effective stress distribution directly after loading set-up. Numerical model type 1, fvf 61.8%,
global load 24MPa in x-dir; matrix shrinkage was initiated by an initial strain of 0.35%, the global load was
applied after a month of creep.

2. 24MPa globally loaded in the y-direction

In this section, the model cell is loaded in y-direction, or mid-CPD. Stress results with and without
initial strain influence are shown in Fig. 7.76 to Fig. 7.78.

zq Dz ,._T

mid-CPD
Figure 7.75. Model type 1 loaded in mid-CPD

Again, we have found completely different stress fields due to the initial strain influence.
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Figure 7.76. Maximum principal stress distribution directly after loading set-up. Numerical model type 1, ff
61.8%, global load 24MPa in y-dir; matrix shrinkage was initiated by an initial strain of 0.35%, the global
load was applied after a month of creep.
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Figure 7.77. Minimum principal stress distribution directly after loading set-up. Numerical model type 1, fof
61.8%, global load 24MPa in y-dir; matrix shrinkage was initiated by an initial strain of 0.35%, the global
load was applied after a month of creep.
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Figure 7.78. Effective stress distribution directly after loading set-up. Numerical model type 1, fvf 61.8%,
global load 24MPa in y-dir; matrix shrinkage was initiated by an initial strain of 0.35%, the global load was
applied after a month aof creep.

7.9 Interphase Influence

No conclusive evidence of the existence of an interphase between fibre and matrix has been found
from experimental observations in case of a glass-polyester system. It is still possible that a mechani-
cal weak interphase layer exists (due to entrapped gas, moisture, contaminants, etc.). This layer with
lower cohesive properties than their bulk counterparts results at least in reduction in efficiency of load
transfer at the interface. The influence of possible interphase behaviour on the local stress fields will
be considered here. Some efforts about interfacial effects on the global deformation of the composite
have been done by Ten Busschen (1995) by assuming a frictional contact on the interface between
fibre and matrix. Here an interphase layer has been assumed in order to examine the possible effect of
changed material properties of an interphase on the global creep behaviour.

The influence of the interphase between the matrix and the fibre has been tested numerically by a hex-
agonal cell model, with a fibre volume fraction of 60%. No experimental results are available. Only
the comparisons between numerical results are presented in this section. The mesh for the finite ele-
ment analysis is presented in Fig. 7.79. The thickness of the interphase is taken to be 4% of the fibre
radius. The interphase volume fraction is 4.9%.

There are three situations being considered, without interphase, with a “faster creep interphase” and
with a “softer interphase”. The “faster creep interphase” has a doubled creep parameter C (defined in
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Chapter 2). This suggests a faster creep property of the interphase (doubled creep strain). For a “‘softer
interphase” the Young’s modulus of the interphase is taken to be 20% of that of the matrix itself.

The results have shown that when a softer interphase exists, the effective strain (defined in Eq (7.3))
will be more concentrated in the interphase, see Fig. 7.80. While for the effective stress distribution,
the three different interphases show little differences, see Fig. 7.81.

However, the maximum modified effective stresses, defined in Eq (7.4), yet show relevant differences
between different types of interphases (see Table7.8 and Table 7.9). Some phenomena can be
observed from the tables,

1. In both matrix and interphase (if this exists) the maximum modified effective stresses decline dur-
ing the relaxation period before loading set up and rise during the global creep stage after set up
of the loading;

2. The existence of the interphase, for both cases, will cause a difference in the maximum modified
effective stress;

3. With one exception only, the maximum modified effective stress is lower in the interphase than in
the matrix.

Max. modified effective stress
in matrix (MPa) shrinkage start after one month loading start after one month
without interphase/interface 47.00 (#2554) 31.53 (#3050) 53.72 (#2915) 59.35 (#2106)
with an easier creep interphase 46.95 (#2379) 26.70 (#2557) 50.01 (#2548) 56.02 (#2861)
with a softer interphase 48.64 (#2376) 27.87 (#2559) 52.13 (#2861) 54.34 (#2861)

Table 7.8. The maximum effective stress in the matrix for different interphase conditions. Numerical results
for a hexagonal cell, fibre volume fraction 60%, matrix and interphase volume shrinkage 1.05% (i.e., initial
strain 0.35%), loading started after one month: 24MPa in CPD.

Max. modified effective streas
in interphase (MPa) shrinkage start after one month loading start after one month
with an easier creep interphase 41.42 (#3002) 22.61 (#3050) 50.11 (#2912) 52.44 (#2877)
with a softer interphase 11.10 (#2074) 11.00 (#3050) 45.10 (#2125) 48.10 (#2128)

Table 7.9. The modified maximum effective stress in the interphase for different interphase conditions.
Numerical results by a hexagonal cell, fibre volume fraction 60%, matrix and interphase volume shrinkage
' 1.05% (i.e., initial strain 0.35%), loading started after one month: 24MPa in CPD.

In Table 7.8 and Table 7.9, the numbers within parentheses indicate the element numbers. The change
of these numbers suggests a relocation of the stress concentration.
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l R

Figure 7.79. The mesh for a hexagonal cell with an interphase, the interphase layer contains two or three
elements in the thickness direction
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~ \1.\
Figure 7.80. Effective strain distribution after one month of loading (matrix initial strain 0.35%, without

external loading stress/strain redistribution for one month subsequently, load application (24MPa in CPD)
and again stress/strain redistribution for another month.
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Figure 7.81. Effective stress distribution after one month of creep loading (matrix initial strain 0.35% without
external loading stress/strain redistribution for one month subsequently, load application (24MPa in CPD)
and again stress/strain redistribution for another month.
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Figure 7.82. Global strains for different interphase conditions, numerical results by a hexagonal cell, fibre
volume fraction 60%, matrix and interphase have initial strain of 0.35%, the global load, 24MPa CPD, was
applied after one month of creep
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Fig. 7.82 demonstrates that the influence of two different interphases on the global creep deformation.
For a “softer interphase”, the global creep deformation is mainly shifted upwards. But for a “faster
creep interphase”, an apparent acceleration of the global creep can be seen in Fig. 7.82, from 1.9%
difference at 10 sec. to 8.6% at 1 month.

7.10 Conclusions

The fibre packing geometry plays an important role in the transverse creep simulation of unidirec-
tional composites. After establishing an accurate matrix stress-strain relationship (at least under a
mild stress range), we are able to examine the creep behaviour of traditional hexagonal and rectangu-
lar types of fibre packing geometry by means of a finite element approach and then to compare the
results with experimental data. The comparison shows that the global strains from the calculation are
always overestimated by these traditional forms of fibre packing geometry. The rectangular packing
reveals a sever anisotropic property, not leading to an appropriate simulation of reality. The overesti-
mation of the strains give us evidence that the uniform fibre distribution is an over-simplification of
the fibre packing geometry. In reality, the fibres are distributed randomly and non-uniformly. There
are fibre-rich regions and matrix-rich regions which play different roles in the deformation. The
matrix-rich regions contribute to a major part of the global strain while the fibre-rich regions possess
the highest stresses. Therefore taking into account the influence of fibre-rich regions and matrix-rich
regions can provide not only more accurate global deformation predictions, but also a better predic-
tion of the local stress field of UD composites. We have developed two different types of fibre pack-
ing geometry, which are locally non-uniform but globally still periodic. The advantages of these types
of geometry include simplicity for calculation, local non-uniform distribution of the two constituents
and (almost) global isotropic properties. The comparison between theory and experiment for the glo-
bal strain shows a satisfactory model description.

The non-uniform fibre packing geometry will result in a higher stress concentration within the matrix
as well as within a possible fibre-matrix interphase. On the other hand, a high fibre volume fraction
and eventually contact of fibres will also enhance the stress concentration. Some calculations have
been done for a random packing model, in Section 7.7, and for other types of cell models with differ-
ent fibre volume fractions.

With or without matrix shrinkage or initial strain, the global stiffness of composites hardly changes.
But a pre-shrunk composite exhibits a higher stress concentration and completely different stress and
strain distributions. Hence the shrinkage does have its influence on the local stress fields and conse-
quently in the initiation and development of crack behaviour, but not significantly in the global trans-
verse behaviour of composites if the crack initiation does not yet occur.

The manufacturing of a composite with a “softer” or a “faster creep interphase” can be helpful for the
reduction of the stress concentration within the matrix and within the interphase.




Chapter 8

Conclusions

8.1 General Conclusions

This thesis presents the research results in three aspects:
A. a constitutive model for an unsaturated polyester resin;
B. the numerical implementation of the model into an FEM package;

C. the transverse creep of a unidirectional unsaturated polyester/glass fibre composite.

8.1.1 A constitutive model for an unsaturated polyester resin

A time-dependent nonlinear model has been established on the basis of a theory, due to Schapery. The
model has been modified and improved in order to have a better description of the studied material.

The conclusions are

1. The kernel function of Schapery’s model should be chosen to be an exponential function, Eq (2.9)
instead of the usual power law. The exponential function provides a more accurate description of
the creep behaviour of the unsaturated polyester. This is especially true when predicting long-
term behaviour where physical ageing effects are important.



164 Conclusions

2. In the general three dimensional model, two constants are presented, the instantaneous Poisson's
ratio and the creep Poisson’s ratio. The constancy of the creep Poisson’s ratio prevents a difficult
description of a time/deformation dependent Poisson effect. A testing method has been presented
for the measurement of the creep Poisson’s ratio, Section 4.3.3.

3. Physical ageing is incorporated into the model by a time-shifting effect, see Section 2.3.5. The
shifting factor has been measured through experiments, Section 3.1.

4. The model parameters have been analysed leading to a better understanding of the viscoelastic
theory. Specific conclusions are summarized in Section 3.2.7.

5. A simplified model, with only two nonlinearizing model parameters, has been found accurate
enough for the studied material. The model is restated in Section 5.2.1 and Section 5.3.1. Its dis-
cretisized form for FEM analysis is presented in Section 6.2.2.

8.1.2  Numerical implementation of the model into an FEM package

The 3D model has been implemented into an FEM package (DIANA). The exponential series
Eq (5.42) has been used to replace the exponential function Eq (2.9). By this technique, the numerical
scheme contains only the variables of the previous time step and the present time step. This therefore
avoids the storage of all the information of the stress history for evaluation of the convolution integral
of the model.

1. The DIANA simulation has sufficient accuracy for short-term and physical ageing influenced
long-term creep (Section 5.3), for the cyclic loading situation (Section 5.3), for a 2D stress state of
a plate with a circular hole (Section 6.2), and for a biaxial loading case (Section 6.3).

2. The numerical method has adequate convergent speed, especially for the creep calculation.

3. The relaxation simulation has also been checked indirectly. In the case of a plate with a circular
hole, Section 6.2, stress relaxation occurs at the edge of the hole. Due to the fact that the compar-
ison of the strain between calculation and experiment exhibits a good agreement, the relaxation
process is appropriately simulated.

8.1.3  Transverse creep of a unidirectional polyester/glass fibre composite

The modelling of transverse creep of a unidirectional composite in this thesis has been concentrated
on two aspects: the study of the fibre packing geometry in the numerical simulation and the influence
of the initial strain introduced by matrix shrinkage, Section 7.8. This initial strain is a lumped param-
eter for underlying causes as matrix cure shrinkage, difference in thermal expansion between fibre
and matrix, efc. The interphase influence, Section 7.9, has been touched very briefly due to a lack of
experimental information. The conclusions of this study are as follows.
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1. Two special types of fibre packing geometry are presented. A new fibre packing geometry yields
quite a good replacement model for the random packing which is present in reality, Section 7.5.

2. By means of the new fibre packing geometry, the global strain is successfully calculated in creep
cases. The local stress strain fields and their changes with time are presented in Section 7.6.

3. The initial strain due to matrix shrinkage changes the local stress and strain fields completely, but
the global strain does not differ much from the case without initial strains. The stress field will be
relaxed after a period of time. The initial strain generally causes a higher stress concentration.

4. The case of a ‘softer’ or a ‘faster creep interphase’ has shown a tendency of reducing the stress
concentration in a unidirectional composite, Section 7.9.

8.2 Limitation and Recommendation

1. The theory presented in this thesis is a nonlinear viscoelastic theory. When this theory is applied
to the material studied, the assumption of elasticity is adopted, i.e. no plastic or permanent defor-
mation due to external loading exists. Future research might be directed to higher stress levels,
where plastic deformation is more important.

2. A possible effect of hydrostatic stress has not been included in the model, i.e. coupling is governed
by the effective stress which is equivalent to the Von Mises equivalent stress. Experimental results
show that there is a difference between the tensile behaviour and the compression behaviour of
unsaturated polyester. This is usually considered an effect of hydrostatic stress.

3. The compressive behaviour of unsaturated polyester-resin has not been considered in this study.
The compressive behaviour is generally different from the tensile behaviour for polymers.

4. The theory has been verified through experiments in a mild range of stress levels. For higher
stress levels, close to the failure point, polymers may behave strongly nonlinear and stress/defor-
mation dependent.

5. The stress-erased or deformation-erased ageing effect has been assumed negligible in this model.

6. Contacting fibres and other initial cracks are not considered in this study. The composite studied
is assumed to be undamaged and without defects in matrix, fibre and interface.

7. The initial strain concept used represents an oversimplification of the matrix shrinkage process.
The chemical reaction or polymerization of matrix material, an unsaturated polyester resin,
causes a volume shrink. However, uncured resin behaves differently and its relaxation time is
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much shorter than for a cured resin. Therefore during the curing process, the stress is being built
up and relaxed at the same time. The complex process is simplified in this work as a sudden
shrinkage which takes no time. This simplification may bring errors in the stress/strain fields. A
separate research is needed for understanding the coupled chemical-mechanical process in real-

iy.

8. In the future work, the influence of moisture absorption for both resin material and composite
should be considered especially for a long-term prediction.

Future work should be devoted in considering and improving any of these above-mentioned items.
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Appendix

Total differential

The total differential of Eq (5.8) is

t !
de; = 80/oS 40, + 15,048, + S;dg [AT5. (8,0) dv+ g, d[ALE (8,0, d . A-1)
0 0
The differential in the last term of the right hand side of Eq (A-1) can be written as

1
d
) Idr + IE (Bzcj) d(Ad)dr . (A-2)

1
d _Tad
dfarZ(e,0)dv = [81%(8,0) | i
- 0

[

Since AJ(y-y)|,_, = AJ(0) = 0, the first term on the right hand side of Eq (A-2) is zero.

ag () (A-3)

Eq (A-2) becomes




171

1
d k (v-¥" 4
dIA!E(gzcj)d‘l: = F]u——jz (80 dT =
0 a, (HoP
2 (A-4)

A, (- W)
= pJ‘ v-vod (gzu)dt
G
'e ag (1 4
An intermediate variable is introduced
ef(i) J =X, (¥ (1) w(r))i( zo)d‘c, (A-5)
0
Eq (A-4) is then
tod
dfar g @o)dt = y )(z; M) (A-6)
0 a (1

r¢

The integral in the third term on the right hand side of Eq (A-1) can also be written by means of the
variable in Eq (A-5),

! '
d _ ( - (\v—\v’))d _
jarztaopdr = [Ta\1-e (820 dt =
0 0or
1
_ X, (v-¥) d (A-T)
_IZJPE(ch)a D,;’ . F(g0)dt =
or

- (510,20 ) 0, 208
r »
Rewrite Eq (A-1) in terms of Eq (A-6) and Eq (A-7),
de; = £0JyS,d6;+ S, ‘dg°+.5‘:j[(gzo gzc )2/ 2 ]dg, [—L]—(ZJ Apef)dt . (A-8)
t

Further, the last term in Eq (A-8) is dissolved by the relation of 6/

W = - +d(g0,)A, 0. (a9
where
| e
A0 = e (A-10)

Hence
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Reformulation of Eq (A-8) yields,
S7g,dt 00
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Consider the total derivati %, %145 and dg, = 22 A-14) be
onsider the total derivative dg, = 32do;, dg, = 5—do, and dg, = x_"do,, Eq (A-14) becomes
) 1 1
~1 ~1
de; = D; doj—(D,.j Cj)dl . (A-15)




Samenvatting

Om het lange-duur-tijdsafhankelijke gedrag van in n richting versterkte polymere matrix-composie-
ten micromechanisch te berekenen, is een constitutief model voor het matrix-materiaal noodzakelijk.
Dit model dient het mechanische gedrag van het matrix-materiaal adequaat te beschrijven. Een driedi-
mensionaal model gebaseerd op een niet-lineaire viscoelastische theorie werd opgezet, waarbij de
verouderingseffecten en het kruip-dwarscontractie-effect werden verdisconteerd. Dit model is vervol-
gens geimplementeerd in een eindige-elementenpakket. Een serie experimenten, waaronder biaxiale
en cyclische testen, werd uitgevoerd. Experiment en theorie vertonen een uitstekende overeenkomst.

Vervolgens wordt dit matrix-materiaalmodel gebruikt voor het simuleren van het kruipgedrag van de
composiet. De vezelverdeling bleek zowel voor het lokale spanningsveld alsook voor de globale ver-
vorming een belangrijke rol te spelen. De traditioneel gebruikte uniforme hexagonale en rechthoekige
vezelverdelingen bleken niet geschikt om het mechanische gedrag van de in een richting versterkte
composiet te beschrijven. Door rekening te houden met een niet uniforme vezelverdeling, met vezel-
rijke en matrixrijke gebieden, kan de globale kruipvervorming beter beschreven worden. In een ver-
beterde aanpak worden een tweetal speciale periodieke vezelverdelingen voorgesteld. Het betreft hier
verdelingen die, hoewel periodiek, lokaal toch niet-uniform zijn. Deze verdelingen leiden tot celmo-
dellen, die eenvoudig gebruikt kunnen worden voor numerieke berekeningen. Vergeleken met testge-
gevens blijken de nieuwe celmodellen tot betere resultaten te leiden dan de traditionele modelien. In
dit proefschrift is voor het eerst het fenomeen van spanningsherverdeling in de matrix en de vezels als
gevolg van tijdsafhankelijke vervorming uiteengezet. De door matrixkrimp genitierde voorspan-
ningstoestand is eveneens onderzocht en met name diens invloed op het lokale spanningsveld en de
globale kruipvervorming.
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