Laboratorium voor Chemische Technologie

Verslag behorende bij het processchema van

G.J. Smid.

onderwerp:

Het berekenen van evenwichten, volgens de "minimale vrije enthalpie" methode.

adres: Hoornbruglaan 28
Rijswijk (Z-H).

ONDERWERPEN:

A) Berekening van een evenwichtsmengsel. (algemeen).

B) Berekening van het evenwicht:

\[\text{Buteen} - 1 \rightleftharpoons \text{cis} - \text{Buteen} - 2 \]
\[\text{trans} - \text{Buteen} - 2 \] (ter controle van de berekeningsmethode, en "Algol"programma).

C) Berekening van de samenstelling van het stoechiométrisch verbrandingsmengsel van etheen. (eveneens ter controle).

D) Berekening van de samenstelling van het partiële verbrandingsmengsel van aardgas. (+ de kraking van metaan).

E) Zuivering van acetylene. (kwalitatief, met "flowscheme").
INHOUDSOPGAVE:

1) Onderwerpen .. 1
2) Nomenclatuur .. 3
3) Samenvatting ... 4
4) Inleiding ... 5
5) Berekening van de samenstelling van een evenwichtsmengsel d.m.v. minimalisering van de vrije enthalpie 8
6) Opmerkingen .. 14
7) Algemeen "Algol" programma voor het berekenen van evenwichtsmengsels 16
8) Toelichting bij het "Algol" programma 19
9) Isomerisatie evenwicht van butenen 21
10) Evenwicht verbrandingsmengsel van etheen 23
11) Evenwicht verbrandingsmengsel van aardgas 25
12) Eindconclusie .. 29
13) Zuivering van acetylen 30
14) Literatuur ... 33
15) Bijlage ... 35
NOMENCLATUUR

n.......................... aantal componenten in de gasfase.
m.......................... aantal componenten in de gecondenseerde fase.
s.......................... aantal elementen.

\(a_{ij} \).......................... aantal atomen van het \(j \)° element in het molecuul van de \(i \)° component in de gasfase.

\(a_{hj} \).......................... aantal atomen van het \(j \)° element in het molecuul van de \(h \)° component in de gecondenseerde fase.

\(b_j \).......................... totaal aantal gr. at. van het \(j \)° element betrokken op een gewichtshoeveelheid mengsel.

\(x_i^c, y_i^c \).......................... aantal molen (gr. at.,) van component \(i \) in de gasfase, betrokken op een gewichtshoeveelheid van het mengsel.

\(x_h^c, y_h^c \).......................... idem voor een component \(h \) in de gecondenseerde fase.

\(\bar{x}, \bar{y} \).......................... som van het aantal molen van de componenten in de gasfase.

\(\mu_{p_i} = 1 \).......................... standaard molaire thermodynamische potentiaal van component \(i \).

\(\frac{G_i^0 - H_i^0}{T}, \frac{G_h^0 - H_h^0}{T} \).......................... vrije energiefunctie van respectievelijk component \(i \) en \(h \).

\((\Delta H_i^0)_o, (\Delta H_h^0)_o \).......................... standaard vormingsenthalpie bij 0°K van resp. component \(i \) en \(h \).

\(R \).......................... gasconstante = 1,98719 cal /0°K mol

\(T \).......................... absolute temperatuur in 0°K.

\(P \).......................... totale druk in atm.

\(P_i \).......................... partiële druk van component \(i \).

\(\pi_j \).......................... Lagrange factor (betrokken op de massa-balans van het element \(j \)).
SAMENVATTING:

Het hoofddoel was de evenwichtsamensstelling te berekenen van een reaktiemengsel, verkregen door partiële oxydatie van aardgas volgens het S.B.A-proces.

Hierbij werd geen gebruik gemaakt van de klassieke methode, ter berekening van de evenwichtsamensstelling met behulp van reaktieevenwichtsconstanten, maar werd een andere methode gebruikt, die de vrije enthalpie van het beschouwde mengsel minimaliseert. Om deze methode op zijn juistheid te controleren, werd eerst deze methode toegepast voor de berekening van de samenstelling van eenvoudiger evenwichtsmengsels (zie blz. 1 onder B en C), waarvan de uitkomsten volgens de klassieke methode bekend waren.

Een algemeen programma voor de TR 4 computer werd opgesteld, om te voorkomen dat voor elk soort evenwicht een nieuw programma moest worden geschreven. Dit had het voordeel dat geen vergissingen gemaakt konden worden voor het schrijven van een nieuw programma; wat wel het geval zou kunnen zijn indien men niet beschikte over een algemeen programma.

Dit programma is in dit verslag opgenomen.

* S.B.A. = Société Belge de l'Azote.
INLEIDING:

De samenstelling van een evenwichtsmengsel kan op verschillende manieren berekend worden.

De meest gebruikte methode, die we de klassieke methode zullen noemen, berekent de samenstelling als volgt: (lit.1)

1). Men stelt de mogelijke evenwichtsreakties op; eventueel met de mogelijke dissociatieevenwichten.

2). Men berekent de K's van alle evenwichten bij de gewenste temperatuur.

3). Men stelt op alle evenwichtsvergelijkingen en materiaalbalansen. (voor elk element één materiaalbalans).

4). De samenstelling van het evenwichtsmengsel is dan te berekenen door het oplossen van een aantal onbekenden uit de vergelijkingen (even groot aantal) vergelijkingen.

Het bezwaar van deze methode is, dat reeds bij vrij eenvoudige systemen deze methode leidt tot het oplossen van gecomplICEerde niet lineaire vergelijkingen. Meestal wordt dan de berekening vereenvoudigd door die componenten te verwaarlozen die in zeer kleine hoeveelheden voorkomen of men moet andere dubieuze aannamen stellen om de zaak te vereenvoudigen. Ter voorkoming van deze moeilijkheden werd hier een andere methode gebruikt.

Bij deze methode (lit.2) wordt de totale vrije enthalpie van het beschouwde mengsel met geschatte beginsamenstelling geminaliseerd, waarbij steeds gezorgd wordt dat aan de eisen van de materiaalbalansen voldaan wordt.

Immers een mengsel verkeert in evenwicht wanneer bij constante temperatuur en druk de vrije enthalpie van dat mengsel minimaal is.

Bij deze methode worden niet de individuele evenwichten beschouwd. Kennis van evenwichtsconstanten is hier dus niet nodig. Hiervoor in de plaats komen de benodigde thermodynamische gegevens (zoals vrije energie functie) van de afzonderlijke componenten, die in het evenwichtsmengsel zijn te verwachten.

De samenstelling wordt bij deze methode als volgt berekend:
1). Men schat de samenstelling van het evenwichtsmengsel. Deze schatting kan vrij willekeurig gemaakt worden.
Echter hoe dichter de schatting bij de werkelijke evenwichtssamenstelling ligt des te kleiner wordt het benodigde aantal iteraties om de evenwichtssamenstelling te bereken.

2). Men schrijft een uitdrukking $G(y)$ (zie formule (3) blz. 9) voor de thermodynamische potentiaal of vrije enthalpie van het mengsel met de geschatte samenstelling en bij de heersende temperatuur en druk.

3). Een nieuwe betrekking $Q(x)$ (zie formule (4) blz. 9), een benadering van de minimale vrije enthalpie van het mengsel $G(x)$, wordt verkregen door toepassing van de reeks van Taylor. (Alleen de eerste twee termen van de reeks worden beschouwd.) Hiervoor wordt de betrekking $G(y)$ uitgedrukt in de bekende geschatte termen y_i ("concentraties") en onbekende veranderingen hierin Δ_i, die noodzakelijk zijn om de samenstelling van de geschatte naar de werkelijke evenwicht waarden te brengen. De grootte van deze onbekende veranderingen in de concentraties of, exacter, de herzieningen van de concentraties moeten nu gevonden worden.

4). Aangezien steeds voldaan moet worden aan de materiaalbalansen, wordt de nieuwe betrekking $Q(x)$ uitgebreid met deze balansen. Hierbij wordt gebruik gemaakt van Lagrange factoren λ_j (zie formule (5) blz. 9). Dit zijn variabelen, die in optimaliserings of minimiseringen problemen worden ingevoerd ter voorkoming van het simultaan oplossen van een functie (in dit geval $Q(x)$) en een daarbij behorende, beperkingen opleggende, functie (in dit geval de massabalansen). Een beschrijving van het gebruik van Lagrange factoren is te vinden in literatuur 3 en 4.

5). De nieuwe uitgebreide betrekking $R(x)$ wordt nu geminimaliseerd, d.w.z. de afgeleiden van functie $R(x)$ worden nul gesteld.
Het resultaat van deze manipulaties levert uiteindelijk \(m + s + 1 \) lineaire vergelijkingen met evenzovele onbekenden. Hierin is \(m \) het aantal gecondenseerde fasen en \(s \) het aantal elementen; dus het aantal gasvormige componenten heeft geen invloed op het aantal op te lossen vergelijkingen.

6. Het oplossen van de lineaire vergelijkingen levert de onbekenden, waarmee de eerste benadering van de samenstelling van het evenwichtsmengsel kan worden berekend.

7. De gehele procedure wordt weer herhaald, nu met de nieuw verkregen waarden, net zolang tot de uitkomsten van op- eenvolgende iteraties binnen de gewenste nauwkeurigheid aan elkaar gelijk zijn.

De vrije enthalpie van het systeem is dan minimaal.
A) BEREKENING van de SAMENSTELLING van een EVENWICHTSMENGSEL
d.m.v. MINIMALISERING van de VRIJE ENTHALPIE.

Voor een ideaal gas geldt voor de molaire thermodynamische potentiaal:

\[\mu = \mu_{P=1} + RT \ln P \quad (T = \text{constant}) \]

en voor een component in een ideaal gasmengsel:

\[\mu_i = \mu_{P_i=1} + RT \ln P_i = \mu_{P_i=1} + RT \ln \frac{P_i}{P} + RT \ln P = \]

\[\mu_{P_i} + RT \ln \frac{x_i}{\bar{x}} + RT \ln P. \]

of \[\mu_i = RT \ln \frac{x_i}{\bar{x}} + RT \ c_i \], waarin: \[c_i = \frac{\mu_{P_i=1}}{RT} + \ln P \]

en \[\bar{x} = \frac{n}{\sum_{i=1}^{n} x_i} \]

(voor verklaring der letters zie nomenclatuur blz. 3).

De vrije enthalpie van het hele ideale gasmengsel, voor de beschouwde hoeveelheid molen, wordt dan:

\[G_{P,T} = \sum_{i=1}^{n} x_i \mu_i = RT \sum_{i=1}^{n} x_i (c_i + \ln \frac{x_i}{\bar{x}}). \]

Bij aanwezigheid van gecondenseerde fasen, die onmensbaar zijn, is voor de thermodynamische potentiaal van het mengsel te schrijven:

\[G_{P,T} = \sum_{i=1}^{n} x_i^g \mu_i + \sum_{h=1}^{m} x_h^c \mu_h. \]

of \[G(x) = \frac{G_{P,T}}{RT} = \sum_{i=1}^{n} (x_i^g c_i + x_i^g \ln \frac{x_i^g}{\bar{x}}) + \sum_{h=1}^{m} x_h^c c_h \ldots, (1). \]

hierin is:

\[c_i = \frac{1}{R} (\frac{G_i^O - H_i^O}{T}) + \frac{(\Delta H_i^C)_o}{RT} + \ln P. \]

\[c_h = \frac{1}{R} (\frac{G_h^O - H_h^O}{T}) + \frac{(\Delta H_h^C)_o}{RT}. \]
Voor de materiaalbalansen geldt:

\[
\sum_{i=1}^{n} a_{ij} x_{i}^{g} + \sum_{h=1}^{m} a_{hj} x_{h}^{c} = b_{j} \quad \ldots \ldots \ldots \ldots \ldots \ldots (2).
\]

\[j = 1, 2, 3, \ldots \ldots .\]

Stel nu dat \(y_{1}^{g}, y_{2}^{g}, \ldots \ldots y_{n}^{g}, y_{1}^{c}, y_{2}^{c}, \ldots \ldots y_{m}^{c} \), de geschatte hoeveelheden molen van de componenten zijn in het evenwichtsmengsel.

Dan geldt voor de vrije enthalpie van het mengsel (gedeelde door RT) (zie vergelijking 1)

\[
G(y) = \sum_{i=1}^{n} \left(y_{i}^{g} c_{i} + y_{i}^{g} \ln \frac{y_{i}^{g}}{y} \right) + \sum_{h=1}^{m} y_{h}^{c} c_{h} \ldots \ldots (3)\]

Stel nu: \(\Delta_{1}^{g} = x_{1}^{g} - y_{1}^{g} \); \(\Delta' = \bar{x} - \bar{y} \) en \(\Delta_{h}^{c} = x_{h}^{c} - y_{h}^{c} \).

Invullen in vergelijking (3), toepassing van de reeks van Taylor en substitutie van de partiële afgeleiden \(\frac{\partial G}{\partial x_{1}^{g}} \) en \(\frac{\partial G}{\partial x_{h}^{c}} \) levert de nieuwe betrekking:

\[
Q(x) = G(y) = \sum_{i=1}^{n} \left(c_{i} + \ln \frac{y_{i}^{g}}{y} \right) \Delta_{i}^{g} + \sum_{h=1}^{m} c_{h} \Delta_{h}^{c} + \]

\[
\frac{1}{2} \sum_{i=1}^{n} y_{i}^{g} \left(\frac{\Delta_{i}^{g}}{y_{i}^{g}} - \frac{\Delta'}{y} \right)^{2} \ldots \ldots \ldots \ldots \ldots \ldots (4)\]

Voor details van deze wiskundige bewerking wordt verwezen naar literatuur 5.

Om te zorgen dat steeds voldaan wordt aan de massa-balansen, wordt vergelijking (4) als volgt uitgebreid:

\[
R(x) = Q(x) + \sum_{j=1}^{s} \pi_{j} \left(b_{j} - \sum_{i=1}^{n} a_{ij} x_{i}^{g} - \sum_{h=1}^{m} a_{hj} x_{h}^{c} \right) \ldots \ldots (5)\]
Hierin zijn de \(\pi_j \)'s Lagrange factoren.

De functie \(R(x) \) is minimaal als:

\[
\frac{\partial R(x)}{\partial x_i^g} = \frac{\partial R(x)}{\partial x_h^c} = 0.
\]

Voor de componenten in de gasfase wordt dit:

\[
\frac{\partial R(x)}{\partial x_i^g} = c_i + \ln \frac{y_i^g}{y} + \frac{x_i^g}{y} - \frac{\pi}{j=1} \pi_j a_{ij}^g = 0 \quad \ldots \ldots (6).
\]

en voor de componenten in de gecondenseerde fasen:

\[
\frac{\partial R(x)}{\partial x_h^c} = c_h - \sum_{j=1}^{s} \pi_j a_{hj}^c = 0 \quad \ldots (7).
\]

Uit vergelijking (6) volgt:

\[
x_i^g = -y_i^g \left(c_i + \ln \frac{y_i^g}{y} \right) + \frac{y_i^g}{y} + \sum_{j=1}^{s} \pi_j a_{ij}^g \quad \ldots \ldots (8).
\]

Sommatie over alle componenten in de gasfase geeft:

\[
\sum_{j=1}^{s} \pi_j \sum_{i=1}^{n} a_{ij}^g y_i^g = \sum_{i=1}^{n} y_i^g \left(c_i + \ln \frac{y_i^g}{y} \right) \quad \ldots \ldots (9).
\]

Substitutie van verg. (8) in verg. (2) geeft s vergelijkingen. Samen met de vergelijkingen (7) en (9) krijgt men tenslotte s + m + 1 lineaire vergelijkingen met de onbekenden:

\(\pi_1, \pi_2, \ldots, \pi_s, x_1^c, x_2^c, \ldots x_m^c, \frac{x_m^c}{y} \).

Dit zijn dus s + m + 1 onbekenden.

De lineaire vergelijkingen zien er als volgt uit:
a vergelijkingen:

\[\alpha_1 \left(\frac{1}{y} \right) + a_{11} c_1 + a_{21} c_2 + \ldots + a_{m1} c_m + r_{11} \tau_1 + r_{12} \tau_2 + \ldots + r_{1s} \tau_s = b_1 + \sum_{i=1}^{n} a_{1i}^g f_i^g \]

\[\alpha_2 \left(\frac{1}{y} \right) + a_{12} c_1 + a_{22} c_2 + \ldots + a_{m2} c_m + r_{21} \tau_1 + r_{22} \tau_2 + \ldots + r_{2s} \tau_s = b_2 + \sum_{i=1}^{n} a_{12}^g f_i^g \]

\[\vdots \]

\[\alpha_s \left(\frac{1}{y} \right) + a_{1s} c_1 + a_{2s} c_2 + \ldots + a_{ms} c_m + r_{s1} \tau_1 + r_{s2} \tau_2 + \ldots + r_{ss} \tau_s = b_s + \sum_{i=1}^{n} a_{1s}^g f_i^g \]

1. vergelijking: (zie verg.9)

\[\alpha_1 \tau_1 + \alpha_2 \tau_2 + \ldots + \alpha_s \tau_s = \sum_{i=1}^{n} f_i^g \]

m vergelijkingen:

\[c_1^c = a_{11} c_1 + a_{12} \tau_2 + \ldots + a_{1s} \tau_s \]

\[c_2^c = a_{21} \tau_1 + a_{22} \tau_2 + \ldots + a_{2s} \tau_s \]

\[\vdots \]

\[c_m^c = a_{m1} \tau_1 + a_{m2} \tau_2 + \ldots + a_{ms} \tau_s \]

Hierin is:

\[r_{jk} = r_{kj} = \sum_{i=1}^{n} \left(a_{ij}^g \cdot a_{ik}^g \right) y_i^g \]

\[f_i^g = y_i^g \left(c_i^g + \ln \frac{y_i^g}{y} \right) \]

en \[\alpha_j = \sum_{i=1}^{n} a_{ij}^g y_i^g \]
Oplossen van de vergelijkingen op de vorige bladzijde geeft de nieuwe benadering voor de molen van de componenten in de gecondenseerde fasen ($ x_n^c $).

De nieuwe benaderingen voor de gasvormige componenten ($ x_i^g $) worden berekend met vergelijking (8) door substitutie van de nu bekende factor $ \frac{x}{y} $.

De nieuw verkregen samenstelling ($ x_i^g, x_n^c $) is de eerste benadering van de werkelijke evenwichtssamenstelling. De gehele procedure wordt herhaald, door deze waarden weer als nieuwe ($ y_i^g, y_n^c $) waarden te gebruiken.

Dan wordt de tweede benadering verkregen, enz., net zo lang tot de uitkomsten van opeenvolgende iteraties binnen de gewenste nauwkeurigheid aan elkaar gelijk zijn. De vrije enthalpie is dan minimaal en heeft men de samenstelling van een mengsel dat in thermodynamisch evenwicht verkeert.

Het is mogelijk dat, in een nieuw berekende serie, enkele waarden van $ x $ negatief worden. Deze mogen dan niet zonder meer nul gesteld worden. Heeft een $ x $ de waarde nul gekregen dan blijft deze bij elk volgende iteratie nul. De desbetreffende component komt dan niet in het evenwicht voor.

Om te voorkomen dat door een te grote sprong één of meer waarden van $ x $ negatief worden gaat men als volgt te werk: Men reduceert kunstmatig de verschillen tussen de $ x_i ' s $ en $ y_i ' s $ tot een uniforme fractie van de oorspronkelijke verschillen. Stel $ x_i ' $ zijn de nieuwe waarden voor $ x_i $, dan is $ y_i-x_i ' = \lambda (y_i-x_i) $.

Men kiest voor $ \lambda $ een waarde zodanig dat de waarden $ x_i ' $ ($ = y_i+\lambda(x_i-y_i) $) niet nul of negatief worden.

Hoe komt men nu aan een waarde voor $ \lambda $?

Eén methode is om van de serie verschillen $ x_i-y_i $, het grootste verschil op te zoeken. Nu is $ x_i = 0 $ als $ \lambda ' = \frac{y_i}{y_i-x_i} $. Voor $ \lambda $ nemen we een fractie (gewoonlijk 0,99) van $ \lambda ' $; dus $ \lambda = 0,99. \lambda ' = 0,99. \frac{y_i}{y_i-x_i} $, waarbij de index i slaat op de component waarvoor het verschil $ |y_i-x_i| $ het grootst is.
Hiermee is dus de waarde voor λ bepaald.

Om te zorgen dat aan de eisen van de massabalansen blijft voldaan, worden alle waarden van x_i gecorrigeerd, d.w.z. vervangen door $x_i' = y_i + \lambda (x_i - y_i)$.

Componenten, die voortdurend na elke iteratie een negative waarde voor x_i krijgen, moeten uit de berekening worden verwijderd. (Dit kan vooral bij gecondenseerde fasen het geval zijn.) In z'ón geval kan λ naderen tot nul en het gevolg is dat dan geen vorderingen gemaakt worden bij de opeenvolgende iteraties.

Ook moeten componenten in de gecondenseerde fasen, die een zeer kleine waarde voor x_n^c krijgen, verwijderd worden om matrix moeilijkheden te voorkomen.
OPMERKINGEN.

1) Het voordeel van de "minimale vrije enthalpie methode", boven de "klassieke methode", is haar algemene toepasbaarheid voor zowel eenvoudige als complexe evenwichtsberekeningen. Hierom werd (naast andere redenen, zie o.a. blz. 4) een algemeen "Algol" programma opgesteld.

2) In een aantal gevallen kan het bij gebruik van dit programma mis gaan. Bijvoorbeeld, wanneer alle aanwezige elementen zich verenigen tot één enkele component, dan verkrijgt men een onoplosbare singuliere matrix, waarin twee rijen (of anders gezegd twee vergelijkingen van de m + s + 1 vergelijkingen) gelijk of proportioneel (d.w.z. de ene vergelijking ontstaat uit de andere door vermenigvuldiging met een constante) zijn. Dit kan alleen gebeuren wanneer de reagerende elementen in stoechiometrische hoeveelheden aanwezig zijn en de condities (P en T) zodanig zijn dat bedoelde reakties optreden.

Deszelfs moeilijkheden trekken ook op, wanneer men systemen beschouwt met minder dan twee vrijheidsgraden; bijv. een zuiver vaste stof in evenwicht met zijn damp. Dit soort problemen zijn meestal op conventionele wijze optoe lossen, desnoods kan men, indien men beslist deze methode wil gebruiken, de onbekenden in de vergelijkingen op blz. 11 expliciet uitschakelen.

Mocht in een "normaal" geval toch matrixmoeilijkheden optreden, dan kan men de aanwijzingen opvolgen die op de "output" van de computer staan. (opdrachten voor de computer om deze aanwijzingen te geven zijn in het programma verwerkt). Geven deze aanwijzingen geen oplossing van het probleem, dan kan men de getallen voor de geschatte beginsamenstelling veranderen, door de getallenband te veranderen.

Krijgt men als "output" alarm no. 10 (d.w.z. er ontstaat in de rekenfase een groter getal dan 10^152 of kleiner dan -10^152), dan is het mogelijk dat men de totale hoeveelheid molen, die men beschouwt, een te extreme
waarde heeft gegeven (Normaal: 10 molen.) ; waarschijnlijk is, dat men weer met een singuliere matrix te maken heeft; door het divergeren van het systeem kunnen extreme getallen ontstaan.

3) Om het programma algemeen te houden is het noodzakelijk om, voor het oplossen van de $m + s + 1$ vergelijkingen, gebruik te maken van een wiskundige procedure. Men kan hiervoor nemen de procedure:

nu3: Het oplossen van een stelsel lineaire vergelijkingen, met behulp van de pivotmethode.

of:

nu28a: Het oplossen van een stelsel lineaire vergelijkingen volgens de eliminatie methode van Gauss.

4) Zoals reeds opgemerkt is (blz. 7), heeft het aantal gasvormige componenten geen invloed op het aantal op te lossen vergelijkingen. Wel is zij van invloed op de mate van convergeren; d.w.z. hoe groter het aantal gasvormige componenten des te kleiner de veranderingen in de concentraties der componenten, des te groter het aantal benodigde iteraties. Neemt men te veel componenten, dus componenten die niet in het evenwichtsmengsel voorkomen, dan heeft dit geen invloed op het resultaat, wel op de tijd, nodig voor de berekening van het evenwicht.

5) Bij gebruik van een computer speelt het aantal te kiezen componenten dus een ondergeschikte rol t.o.v. het gebruik van een tafelrekenmachine.

De meeste machinetijd van de computer wordt gebruikt voor het inlezen van het programma en de thermodynamische gegevens van de afzonderlijke componenten. (1 à 3 minuten).

De werkelijke rekentijd van de computer bedraagt ongeveer 8 à 9 seconden voor een systeem met 20 componenten en misschien slechts 3 seconden voor een systeem van 5 componenten. (lit. 2).

Ook hier komt het voordeel van een algemeen programma tot uiting. Is eenmaal het programma ingelezen, dan kunnen verschillende soorten evenwichten achter elkaar afgewerkt worden. Het is dan niet noodzakelijk dat voor elk nieuw evenwicht weer een nieuw programma ingelezen moet worden, waar de meeste tijd mee gemoeid gaat en dus kostbaarder is.
Algemeen "Algol" programma voor het berekenen van evenwichtsmengsels (volgens vrije enthalpie methode).

begin
procedure nu 28a ; code ;
integer i,j,k,n,m,s,smw,zz,ff ;
real gasc,ystreep,somf,somd,t,p,h,th,v,z ;
read (n,m,s) ;
begin real array c,d,e,ygeschat,y,x [1:n+m] ,
somp,f[1:n],g,bj,alfa [1:s],r[1:s,1:s],b[1:s+m+1],
a[1:s+m+1,1:s+m+1] ;
integer array aij [1:n+m,1:s],w [1:n+m] ;
read (gasc,e,ygeschat,bj,aij,ff) ;
venus : read (p,h,v,z,zz,t) ;
if t < 0 then go to mars ;
comment hiermee wordt het programma gestopt ;
read (d) ;
for i:=1 step 1 until n do
c[i] := -d[i]/gasc*e[i]/(gasc*t) * 1000 + ln(p) ;
if m > 0 then for i:=1 step 1 until m do
c[n+i] := -d[n+i]/gasc*e[n+i]/(gasc*t) * 1000 ;
for i:=1 step 1 until n+m do
y[i] :=ygeschat[i] ;
for i:=1 step 1 until n do
ystreep := somf := 0 ;
ystreep :=ystreep+y[i] ;
for j:=1 step 1 until s do
alfa[j] :=g[j] :=0 ;
for i:=1 step 1 until n do
for j:=1 step 1 until s do
begin
f[i] := if y[i] ≤ 0 then 0 else
y[i] *c[i] +y[i] *ln(y[i]) -y[i] *ln(ystreep) ;
g[j] :=g[j] +aij[i,j] *f[i]
end ;
for i:=1 step 1 until n do
somf:=somf + f[i] ;
if m > 0 then for j:=1 step 1 until m do
b[j] :=c [n+j] ;
b[m+1] :=somf ;
for j:=0 step -1 until 1-s do
 b[m+2-j] := bj[s+j]+g[s+j] ;
if m > 0 then for i:=1 step 1 until m do
 for j:=1 step 1 until s do
 begin
 a[i,j] := aij[n+1,j]; a[i,s+1] := a[i,s+1+1] := 0 ;
 a[m+1,j] := alfa[j]; a[m+1,s+1] := a[m+1,s+1] := 0
 end ;
if m = 0 then for j:=1 step 1 until s do
 begin
 a[1,j] := alfa[j]; a[1,s+1] := 0
 end ;
for j:=1 step 1 until s do
 for k:=1 step 1 until s do
 r[j,k] := 0 ;
 for i:=1 step 1 until n do
 for j:=1 step 1 until s do
 for k:=1 step 1 until s do
 for i:=0 step -1 until 1-s do
 for j:=1 step 1 until s do
 begin
 a[m+2-i,j] := r[s+i,j]; a[m+2-i,s+1] := alfa[s+i]
 end ;
if m > 0 then for i:=0 step -1 until 1-s do
 for k:=1 step 1 until m do
 a[m+2-i,s+1+k] := aij[n+k,s+1] ;
 nu 28a (h, th, a, b, jupiter) ;
comment rooster b is zowel invoer als uitvoerparameter
dat wil zeggen de nieuwe waarden van rooster b zijn ge-
lijk aan de onbekenden in de lineaire vergelijkingen ;
if m > 0 then for i:=n+1 step 1 until n+m do
 x[i] := b[s+1-n+i] ;
 for i:=1 step 1 until n do
 somp[i] := 0 ;
 for i:=1 step 1 until n do
 for j:=1 step 1 until s do
 for i:=1 step 1 until n do
\[j := 1; \]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
\text{if } x[i] < 0 \text{ then } j := 2; \]
\[
\text{if } j \neq 2 \text{ then go to saturnus;}
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
d[i] := x[i] - y[i]; \quad \text{somm} := d[i]; \quad k := 1;
\]
\[
\text{for } i := 2 \text{ step 1 until } n + m \text{ do}
\]
\[
\text{if somm} > d[i] \text{ then}
\]
\[
\text{begin}
\quad \text{somm} := d[i]; \quad k := i
\]
\[
\text{end;}
\]
\[
\text{somd} := 0.99 \times (-y[k]) / d[k];
\]
\[
\text{if somd} < 10^{-11} \land k > n \text{ then}
\]
\[
\text{begin}
\quad \text{print ("component", k);}
\quad \text{write ("verwijderen 2 door 2 m 2 te 2 verkleinen");}
\quad \text{go to mars;}
\]
\[
\text{end;}
\]
\[
\text{if somd} < 10^{-11} \text{ then } y[k] := d[k] := 0;
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
x[i] := y[i] + somd \times d[i];
\]
\[
\text{saturnus: somd} := 0;
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
d[i] := \text{abs} (x[i] - y[i]);
\]
\[
\text{if } d[i] < v \text{ then } d[i] := 0;
\]
\[
\text{somm} := \text{somm} + d[i]
\]
\[
\text{end;}
\]
\[
\text{if somd} = 0 \text{ then go to maan else}
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
y[i] := x[i];
\]
\[
\text{go to aarde;}
\]
\[
\text{maan: somw} := 0;
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
w[i] := x[i] \times z;
\]
\[
\text{somw} := \text{somw} + w[i]
\]
\[
\text{end;}
\]
\[
\text{for } i := 1 \text{ step 1 until } n + m \text{ do}
\]
\[
x[i] := 100 \times w[i] / \text{somw};
\]
\[
\text{print (t); vasko (2, zz, x, ff);}
\]
\[
\text{go to venus;}
\]
\[
\text{jupiter: print ("matrix 2 singulier");}
for i:=1 step 1 until n do'
 if y[i]≤0 then
 begin
 print ("component", i);
 end;
 print (a,b,y); go to venus;
 mars : comment het resultaat is de samenstelling in mol %
 bij de gewenste temperatuur en druk ;
 end;
end;

Toelichting bij het "Algol" programma:

Op de getallenband moeten achtereenvolgens waarden gegeven worden aan de volgende variabelen en roosters:
n = aantal gasvormige componenten,
m = aantal componenten in de gecondenseerde fasen,
s = aantal elementen, waaruit de beschouwde componenten
 zijn opgebouwd,
gasc = gasconstante R = 1.98719 cal / °K / mol.

rooster e = de getallen reeks, die aangeeft:

 \(\Delta H^0_f \) in kcal / mol , voor alle componenten.

N.B. in het programma worden deze waarden met \(10^3 \)
 vermenigvuldigd (dit voorkomt extra schrijfwerk).

rooster ygeschat = de getallenreeks, die aangeeft:
 de geschatte beginsamenstelling van het mengsel,

rooster bij = de getallenreeks, die aangeeft:
 het aantal gr. at. der elementen, voor de beschouw-
 de hoeveelheid,

rooster aij = de getallenreeks, die aangeeft:
 het aantal atomen van de verschillende elementen
 in een molecuul van de componenten,

ff = een getal, dat het aantal te printen roosterelementen(d.w.z.
 in dit geval de getallen voor de samenstelling) per
 regel vastlegt. (één regel bevat maximaal 120 posities).
p = een getal, dat de druk in atm. aangeeft,

h = een getal, gereserveerd voor de pivot-tolerantie, die nodig is bij de procedure nu 28a.
Voor dit getal werd meestal de waarde 10^{-10} ingevuld.

v = een getal, dat het aantal decimalen achter de komma bepaalt van de getallen in de roosters x en y, die na elke iteratie met elkaar vergeleken worden.
(maximaal 12 decimalen).
Voorbeeld: is v=10^{-5}, dan moeten de eerste 5 decimalen van alle overeenkomstige getallen in de roosters x en y aan elkaar gelijk zijn, wil de evenwichtssamenstelling bereikt worden. (Na elke iteratie bevat rooster x de getallen, die de samenstelling van het mengsel aangeven en die een betere benadering van de evenwichtssamenstelling vormen dan de getallen in rooster y, totdat ze aan elkaar gelijk worden.)

z = hetzelfde getal als v, maar nu met een positieve exponent,
Voorbeeld: is v=10^{-5}, dan is z=10^{+5}.

zz = een getal, dat aangeeft op hoeveel cijfers achter de komma de getallen, die de evenwichtssamenstelling geven, uitgeprint worden,
Voorbeeld: is zz=5, dan worden de getallen afgerond op 5 cijfers achter de komma uitgeprint.

t = de absolute temperatuur in °K,

rooster d = de getallenreeks, die aangeeft de waarden:

\[
\frac{(F^0_T - H^0)}{T} \text{ in cal/°K/mol, voor alle componenten.}
\]

Opmerking: De variabelen, geschreven op deze bladzijde, kunnen gevarieerd worden, zonder de noodzakelijkheid dat een nieuwe getallenband geschreven moet worden.
Dit is wel het geval voor de variabelen op blz. 19.
(De afzonderlijke getallenbanden moeten dan elk voorzien worden van een atuurinformatie voor de computer).
B) Berekening van de samenstelling van het evenwicht:

\[
\text{Buteen - 1} \leftrightarrow \text{cis - Buteen - 2} \\
\text{trans - Buteen - 2}
\]

Gebruikte gegevens:

\[n=3, \; m=0, \; s=2, \; \gamma=1,98719 \text{ cal/}^{0}\text{K/mol}, \; ff=3, \; \alpha=10^{-11}, \; v=10^{-5}, \; z=10^{+5}, \; z_{z}=4, \; \rho=1.\]

Uitgegaan werd van 10 mol. \(C_{4}H_{8}\), dus van: 40 gr. at. C (=bij [1])

Voor de thermodynamische gegevens (lit.12) der componenten werden de volgende waarden gebruikt:

<table>
<thead>
<tr>
<th>1</th>
<th>((\Delta H_{T}^{0}){0} (=e{i})) in kcal/mol</th>
<th>((-\frac{F_{i}^{0}}{T} - H_{0}^{0}) (=d_{i})) in cal/(^{0}\text{K/mol.})</th>
<th>(300^{0}\text{K})</th>
<th>(500^{0}\text{K})</th>
<th>(700^{0}\text{K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{4}H_{8} - 1)</td>
<td>+4,96</td>
<td>59,34</td>
<td>67,52</td>
<td>74,56</td>
<td></td>
</tr>
<tr>
<td>cis (C_{4}H_{8} - 2)</td>
<td>+3,48</td>
<td>58,75</td>
<td>66,51</td>
<td>73,19</td>
<td></td>
</tr>
<tr>
<td>trans (C_{4}H_{8} - 2)</td>
<td>+2,24</td>
<td>56,89</td>
<td>65,19</td>
<td>72,27</td>
<td></td>
</tr>
</tbody>
</table>

Uitkomsten:

De volgende tabel geeft de evenwichtsamenstelling bij verschillende temperaturen, berekent volgens de "klassieke" methode.

<table>
<thead>
<tr>
<th>Temperatuur in graden K</th>
<th>samenstelling in mol %</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buteen-1</td>
<td>cis-Buteen-2</td>
<td>trans-Buteen-2</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2,424</td>
<td>23,332</td>
<td>74,244</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>10,241</td>
<td>31,932</td>
<td>57,827</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>19,501</td>
<td>31,561</td>
<td>48,938</td>
<td></td>
</tr>
</tbody>
</table>

En volgens de "minimale vrije enthalpie" methode:

<table>
<thead>
<tr>
<th>Temperatuur in graden K</th>
<th>samenstelling in mol %</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buteen-1</td>
<td>cis-Buteen-2</td>
<td>trans-Buteen-2</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2,6437</td>
<td>23,5201</td>
<td>73,8362</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>11,8330</td>
<td>31,5700</td>
<td>56,5970</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>21,3380</td>
<td>31,0320</td>
<td>47,6300</td>
<td></td>
</tr>
</tbody>
</table>
Conclusie:

De samenstelling bij 300°K werd verkregen met behulp van het algemene programma. (als geschatte beginsamenstelling was genomen: 0,2 mol. C$_4$H$_8$-1, 2,5 mol. cis C$_4$H$_8$-2, 7,3 mol. trans C$_4$H$_8$-2).

De berekeningen bij de andere temperaturen leverden steeds een singuliere matrix op. (voor de geschatte beginsamenstelling werd 4 keer andere waarden ingevuld).

Om deze moeilijkheden te vermijden werd de samenstelling van de evenwichten bij 500°K en 700°K berekend met een ander programma. Hierin waren de onbekenden in de lineaire vergelijkingen (zie blz. 11) expliciet uitgedrukt. Men voorkomt dan het gebruik van een wiskundige procedure. Hier staat tegenover dat het programma in haar algemeenheid inboet.

Deze moeilijkheden deden zich alleen voor bij berekeningen van dit vrij simpele evenwicht; bij de volgende evenwichten traden geen matrix moeilijkheden op.

Zoals uit de resultaten op de vorige bladzijde is te zien, blijken de uitkomsten goed met elkaar in overeenstemming te zijn. Kleine verschillen in uitkomsten kunnen ontstaan doordat niet van precies dezelfde thermodynamische gegevens wordt uitgegaan.
C) Berekening van de samenstelling van het stoechiometrisch verbrandingsmengsel van etheen. (in de evenwichtstoestand).

\[\text{C}_2\text{H}_4 + 3 \text{O}_2 \rightarrow 2 \text{CO}_2 + 2 \text{H}_2\text{O} \]

Gebruikte gegevens:

\(n = 8, \quad m = 0, \quad s = 3, \quad \text{gasc.} = 1,98719 \text{ cal/} \quad ^\circ\text{K/mol} \), \(\text{ff} = 8, \quad h = 10^{-6}, \)
\(v = 10^{-5}, \quad z = 10^{+5}, \quad zz = 5. \)

Uitgegaan werd van 2,5 mol. \(\text{C}_2\text{H}_4 + 7,5 \text{ mol. O}_2 \), dat wil dus zeggen, dat beschouwd werd: 5 gr.at.C, 10 gr.at.H en 15 gr.at.O.

dus: bij \([1] = 5\), bij \([2] = 10\), bij \([3] = 15\).

<table>
<thead>
<tr>
<th>i</th>
<th>((\Delta H_{f}^{o})_{i}) in kcal/mol (lit. 12)</th>
<th>((\text{F}{T}^{o} - \text{H}{o}^{o})) in cal/(^{\circ}\text{K/mol}) (lit. 12)</th>
<th>rooster aij</th>
<th>rooster ygeschat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(T)</td>
<td>2000 (^{\circ} \text{K})</td>
<td>2500 (^{\circ} \text{K})</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>-57,107</td>
<td>53,322</td>
<td>55,555</td>
<td>57,47</td>
</tr>
<tr>
<td>(\text{CO}_2)</td>
<td>-93,9686</td>
<td>61,85</td>
<td>64,61</td>
<td>66,94</td>
</tr>
<tr>
<td>(\text{CO})</td>
<td>-27,2019</td>
<td>54,078</td>
<td>55,842</td>
<td>57,314</td>
</tr>
<tr>
<td>(\text{O}_2)</td>
<td>0</td>
<td>56,104</td>
<td>57,937</td>
<td>59,471</td>
</tr>
<tr>
<td>(\text{OH})</td>
<td>10</td>
<td>50,414</td>
<td>52,104</td>
<td>53,521</td>
</tr>
<tr>
<td>(\text{H}_2)</td>
<td>0</td>
<td>37,669</td>
<td>39,328</td>
<td>40,719</td>
</tr>
<tr>
<td>(\text{O})</td>
<td>58,586</td>
<td>43,0027</td>
<td>44,1322</td>
<td>45,0524</td>
</tr>
<tr>
<td>(\text{H})</td>
<td>51,62</td>
<td>31,8803</td>
<td>32,9889</td>
<td>33,8947</td>
</tr>
</tbody>
</table>

Uitkomsten:

De getallen, in de eerste drie kolommen van de tabel op de volgende bladzijde, zijn verkregen uit een figuur, wegens het ontbreken van cijfermateriaal (zie figuur 7 in lit. 1 of lit. 10). In de laatste drie kolommen staan de berekende waarden.
<table>
<thead>
<tr>
<th></th>
<th>Evenwicht samenstelling (in mol %)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>volgens "klassieke"methode</td>
<td>volgens "vrije enthalpie"methode</td>
</tr>
<tr>
<td></td>
<td>"globale" getallen</td>
<td>berekent.</td>
</tr>
<tr>
<td></td>
<td>2000°K</td>
<td>2500°K</td>
</tr>
<tr>
<td>H₂O</td>
<td>49</td>
<td>45</td>
</tr>
<tr>
<td>CO₂</td>
<td>49</td>
<td>40</td>
</tr>
<tr>
<td>CO</td>
<td>0,9</td>
<td>8</td>
</tr>
<tr>
<td>O₂</td>
<td>0,5</td>
<td>4</td>
</tr>
<tr>
<td>OH</td>
<td>0,2</td>
<td>2</td>
</tr>
<tr>
<td>H₂</td>
<td>0,25</td>
<td>1,5</td>
</tr>
<tr>
<td>O</td>
<td>< 0,01</td>
<td>0,31</td>
</tr>
<tr>
<td>H</td>
<td>< 0,01</td>
<td>0,30</td>
</tr>
</tbody>
</table>

Conclusie:

Bij 2500°K en bij 3000°K blijken de getallen goed met elkaar in overeenstemming te zijn. Ook hier kunnen kleine verschillen veroorzaakt worden, doordat niet van dezelfde thermodynamische gegevens wordt uitgegaan. Bij 2000°K worden de verschillen groter, vooral voor de componenten CO en O₂; een derde berekeningsmethode zou moeten uitwijzen welke waarden beter zijn.
D) **Berekening van de evenwichtssamenstelling van het partijle verbrandingsmengsel van aardgas.**

Uit een stabiliteitsdiagram, vrije vormingsenthalpie, ΔG_f, als functie van de temperatuur en de druk als parameter, is te concluderen bij welke temperatuur en druk de omzetting van methaan in acetylene spontaan mogelijk is.

In dat geval moet immers de vrije enthalpieverandering ten gevolge van de reaktie, ΔG_r, negatief zijn.

Uit z' on diagram (lit.11) blijkt dat bij 1 atmosfeer de omzetting van methaan in acetylene mogelijk is bij een temperatuur van minstens $1500^\circ K$ (en dat acetylene tot een temperatuur van ongeveer $4000^\circ K$ onstabiel is ten opzichte van C en H₂).

De volgende evenwichten zullen berekend worden voor het temperatuurtraject van $1500^\circ K$ tot en met $2100^\circ K$, bij 1 atmosfeer en voor verschillend aantal componenten.

De thermodynamische gegevens der individuele componenten werden verkregen uit literatuur 12, 13 en 14.

De meeste gegevens konden slechts verkregen worden bij temperaturen tot en met $1500^\circ K$. Voor enkele componenten, zoals voor CH₄ en C₂H₂, werden in de literatuur (resp. lit. 15 en 16) ook gegevens bij hogere temperaturen vermeld.

De meeste gegevens der componenten moesten verkregen worden door extrapolatie van de bij lagere temperaturen bekende gegevens.

(een tweedegraads kromme bleek voor alle componenten de beste benadering). De door extrapolatie verkregen waarden bleken aardig in overeenstemming te zijn met de in de literatuur opgegeven waarden, zoals in onderstaande tabel is te zien:

<table>
<thead>
<tr>
<th>Component</th>
<th>uit lit. 15.</th>
<th>geExtrapol.</th>
<th>uit lit. 16.</th>
<th>geExtrapol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>-52,87</td>
<td>-53,82</td>
<td>-54,72</td>
<td>-55,60</td>
</tr>
<tr>
<td></td>
<td>-55,60</td>
<td>-56,45</td>
<td>-57,27</td>
<td>-58,08</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>-57,37</td>
<td>-58,28</td>
<td>-59,15</td>
<td>-59,98</td>
</tr>
<tr>
<td></td>
<td>-59,98</td>
<td>-60,79</td>
<td>-61,56</td>
<td>-62,31</td>
</tr>
</tbody>
</table>

De geExtrapoleerde waarden zijn"alle" iets minder sterk negatief als de literatuur waarden, daarom werden voor alle componenten consequent de geExtrapoleerde waarden gebruikt.
Bij de berekeningen werd uitgegaan van een mengsel:

aardgas (82 Mol\% CH\textsubscript{4}, 3 Mol\% C\textsubscript{2}H\textsubscript{6}, 1 Mol\% C\textsubscript{3}H\textsubscript{8}, 1 Mol\% CO\textsubscript{2},

en

+ 13 Mol\% N\textsubscript{2})

zuurstof (99 Mol\% O\textsubscript{2} + 1 Mol\% N\textsubscript{2}).

Beide onzuivere gassen werden in zodanige hoeveelheden gemengd, dat in het mengsel een verhouding in gr. at. van O : C = 1 : 2 werd verkregen. De samenstelling van het mengsel werd dan:

67,1\% CH\textsubscript{4}, 2,5\% C\textsubscript{2}H\textsubscript{6}, 0,8\% C\textsubscript{3}H\textsubscript{8}, 0,8\% CO\textsubscript{2}, 10,8\% N\textsubscript{2}, 18,0\% O\textsubscript{2}. (in mol%).

10 Mol. van dit mengsel bevat: 7,53 gr. at. C (= bj [1])

28,98 gr. at. H (= bj [2])

3,76 gr. at. O (= bj [3])

2,15 gr. at. N (= bj [4]).

Deze hoeveelheden werden als basis voor de berekeningen genomen. Voor de thermodynamische grootheden der componenten werden de volgende waarden gebruikt:

<table>
<thead>
<tr>
<th>i</th>
<th>(ΔH\textsubscript{T}^0)\textsubscript{o} (= e [i]) in kcal/mol.</th>
<th>- (H\textsubscript{T}^0 - H\textsubscript{o}^0) in kcal/mol.</th>
<th>- (H\textsubscript{T}^0 - H\textsubscript{o}^0) in kcal/mol.</th>
<th>(H\textsubscript{T}^0 - H\textsubscript{o}^0) in kcal/mol.</th>
<th>(H\textsubscript{T}^0 - H\textsubscript{o}^0) in kcal/mol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>+ 170,39</td>
<td>40,77</td>
<td>41,07</td>
<td>41,35</td>
<td>41,59</td>
</tr>
<tr>
<td>CH\textsubscript{4}</td>
<td>- 15,99</td>
<td>52,84</td>
<td>53,74</td>
<td>54,61</td>
<td>55,43</td>
</tr>
<tr>
<td>CH\textsubscript{3}</td>
<td>+ 33,40</td>
<td>25,14</td>
<td>14,61</td>
<td>13,73</td>
<td>12,87</td>
</tr>
<tr>
<td>CH\textsubscript{2}</td>
<td>+ 87,20</td>
<td>27,80</td>
<td>22,55</td>
<td>21,70</td>
<td>20,86</td>
</tr>
<tr>
<td>CH</td>
<td>+ 142,00</td>
<td>30,45</td>
<td>28,87</td>
<td>27,31</td>
<td>25,75</td>
</tr>
<tr>
<td>C\textsubscript{2}H\textsubscript{6}</td>
<td>- 16,52</td>
<td>69,46</td>
<td>70,95</td>
<td>72,40</td>
<td>73,86</td>
</tr>
<tr>
<td>C\textsubscript{2}H\textsubscript{4}</td>
<td>+ 14,52</td>
<td>63,94</td>
<td>65,40</td>
<td>66,87</td>
<td>68,34</td>
</tr>
<tr>
<td>C\textsubscript{2}H\textsubscript{2}</td>
<td>+ 54,33</td>
<td>57,23</td>
<td>58,70</td>
<td>59,16</td>
<td>60,62</td>
</tr>
<tr>
<td>C\textsubscript{3}H\textsubscript{8}</td>
<td>- 19,48</td>
<td>85,86</td>
<td>87,34</td>
<td>88,82</td>
<td>90,30</td>
</tr>
<tr>
<td>C\textsubscript{3}H\textsubscript{6}</td>
<td>+ 8,47</td>
<td>81,43</td>
<td>82,91</td>
<td>84,40</td>
<td>85,89</td>
</tr>
<tr>
<td>C\textsubscript{3}H\textsubscript{4}</td>
<td>+ 47,70</td>
<td>73,29</td>
<td>74,74</td>
<td>76,18</td>
<td>77,61</td>
</tr>
<tr>
<td>n-C\textsubscript{4}H\textsubscript{10}</td>
<td>- 23,67</td>
<td>101,95</td>
<td>103,52</td>
<td>105,09</td>
<td>106,66</td>
</tr>
<tr>
<td>i-C\textsubscript{4}H\textsubscript{10}</td>
<td>- 25,30</td>
<td>98,64</td>
<td>99,22</td>
<td>100,82</td>
<td>102,42</td>
</tr>
<tr>
<td>t-C\textsubscript{4}H\textsubscript{8}</td>
<td>- 4,96</td>
<td>97,27</td>
<td>97,85</td>
<td>98,48</td>
<td>100,05</td>
</tr>
<tr>
<td>1,2-C\textsubscript{4}H\textsubscript{6}</td>
<td>+ 42,00</td>
<td>91,18</td>
<td>92,77</td>
<td>94,34</td>
<td>95,91</td>
</tr>
<tr>
<td>C\textsubscript{4}H\textsubscript{2}</td>
<td>+ 40,00</td>
<td>61,23</td>
<td>62,82</td>
<td>64,40</td>
<td>65,98</td>
</tr>
<tr>
<td>C\textsubscript{6}H\textsubscript{6}</td>
<td>+ 24,00</td>
<td>90,45</td>
<td>92,04</td>
<td>93,64</td>
<td>95,24</td>
</tr>
<tr>
<td>H</td>
<td>+ 51,62</td>
<td>30,45</td>
<td>31,09</td>
<td>31,34</td>
<td>31,89</td>
</tr>
<tr>
<td>H\textsubscript{2}</td>
<td>+ 0</td>
<td>35,59</td>
<td>36,14</td>
<td>36,68</td>
<td>37,22</td>
</tr>
<tr>
<td>H\textsubscript{2}O</td>
<td>- 57,107</td>
<td>50,60</td>
<td>51,17</td>
<td>51,70</td>
<td>52,22</td>
</tr>
</tbody>
</table>
Bij het volgende evenwicht zullen eerst 8 componenten beschouwd worden. Deze componenten worden bij het S.B.A.proces in grotere hoeveelheden dan \(\frac{1}{2} \% \) verkregen. (Lit. 6, blz. 427).

Op de bijlage zullen de resultaten vermeld worden van berekeningen van evenwichten met resp. 22 componenten (alle voorkomende in het S.B.A.proces) en 36 componenten (verkregen door combinatie van de elementen C, H, O en N). Eveneens zal de kraking van CH\(_4\) berekend worden.

Opmerking:

Bij een eerste berekening bleek geen vast koolstof in het evenwicht voor te komen. Daarom werd vast koolstof uit de berekening verwijderd \((m=0) \), ter voorkoming van singulariteit.

<table>
<thead>
<tr>
<th>(\Delta H^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta H^0)</td>
</tr>
<tr>
<td>i</td>
<td>(\Delta H^0)</td>
<td>(\Delta H^0)</td>
<td>(\Delta H^0)</td>
<td>(\Delta H^0)</td>
</tr>
<tr>
<td>kcal/mol</td>
<td>1500 K</td>
<td>1600 K</td>
<td>1700 K</td>
<td>1800 K</td>
</tr>
<tr>
<td>C(_3)H(_4)</td>
<td>+46,02</td>
<td>74,19</td>
<td>75,63</td>
<td>77,00</td>
</tr>
<tr>
<td>1,3-C(_4)H(_6)</td>
<td>+29,78</td>
<td>88,52</td>
<td>90,59</td>
<td>92,56</td>
</tr>
<tr>
<td>1-C(_4)H(_6)</td>
<td>+42,74</td>
<td>90,81</td>
<td>92,85</td>
<td>94,80</td>
</tr>
<tr>
<td>2-C(_4)H(_6)</td>
<td>+38,09</td>
<td>88,09</td>
<td>90,10</td>
<td>92,03</td>
</tr>
<tr>
<td>OH</td>
<td>10,00</td>
<td>48,30</td>
<td>48,75</td>
<td>49,16</td>
</tr>
<tr>
<td>O</td>
<td>+58,59</td>
<td>41,54</td>
<td>41,85</td>
<td>42,12</td>
</tr>
<tr>
<td>O(_2)</td>
<td>0</td>
<td>53,81</td>
<td>54,29</td>
<td>54,73</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>-26,80</td>
<td>59,81</td>
<td>65,50</td>
<td>70,17</td>
</tr>
<tr>
<td>CH(_3)OH</td>
<td>-45,47</td>
<td>65,50</td>
<td>70,17</td>
<td>74,30</td>
</tr>
<tr>
<td>HCOOH</td>
<td>-88,65</td>
<td>70,17</td>
<td>74,30</td>
<td>77,10</td>
</tr>
<tr>
<td>CO</td>
<td>-27,20</td>
<td>51,86</td>
<td>52,33</td>
<td>52,76</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>-93,97</td>
<td>58,48</td>
<td>59,19</td>
<td>59,85</td>
</tr>
<tr>
<td>N</td>
<td>+85,12</td>
<td>39,67</td>
<td>40,24</td>
<td>40,80</td>
</tr>
<tr>
<td>N(_2)</td>
<td>0</td>
<td>50,28</td>
<td>50,74</td>
<td>51,16</td>
</tr>
<tr>
<td>NO</td>
<td>+21,48</td>
<td>54,96</td>
<td>55,53</td>
<td>56,10</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>+8,68</td>
<td>64,58</td>
<td>65,15</td>
<td>65,72</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>+20,31</td>
<td>60,27</td>
<td>60,83</td>
<td>61,39</td>
</tr>
<tr>
<td>NH(_3)</td>
<td>-9,37</td>
<td>53,03</td>
<td>53,60</td>
<td>54,16</td>
</tr>
<tr>
<td>HCN</td>
<td>+31,10</td>
<td>55,15</td>
<td>55,72</td>
<td>56,29</td>
</tr>
<tr>
<td>HCONO</td>
<td>+42,38</td>
<td>69,01</td>
<td>69,58</td>
<td>70,15</td>
</tr>
<tr>
<td>C (a)</td>
<td>+0</td>
<td>4,18</td>
<td>4,43</td>
<td>4,66</td>
</tr>
</tbody>
</table>
UITKOMSTEN:

<table>
<thead>
<tr>
<th>geschatte begin- samenstelling</th>
<th>samenstelling in mol % bij verschillende temperaturen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>in molen.</td>
<td>1500°K 1600°K 1700°K 1800°K 1900°K 2000°K 2100°K</td>
</tr>
<tr>
<td>C (g)</td>
<td>1,40 0 0 0 0</td>
</tr>
<tr>
<td>CH₄</td>
<td>2,50 8,32254 5,58547 1,73538</td>
</tr>
<tr>
<td>H₂</td>
<td>6,49 35,5726162 1001042 90,669</td>
</tr>
<tr>
<td>H₂O</td>
<td>2,00 26,15881 0,1113524 5,6807</td>
</tr>
<tr>
<td>CO</td>
<td>1,50 0 0 0</td>
</tr>
<tr>
<td>CO₂</td>
<td>0,13 0 11,32489 0</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>1,00 22,0323314 3380823 7,3308</td>
</tr>
<tr>
<td>N₂</td>
<td>1,08 7,51370 6,53831 7,05678</td>
</tr>
</tbody>
</table>

Bij 1800°K werd de berekening afgebroken, omdat de gevraagde rekentijd verstrekken was.

<table>
<thead>
<tr>
<th>geschatte begin- samenstelling</th>
<th>samenstelling in mol % bij verschillende temperaturen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>in molen.</td>
<td>1500°K 1600°K 1700°K 1800°K 1900°K 2000°K 2100°K</td>
</tr>
<tr>
<td>C (g)</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>CH₄</td>
<td>4,30 8,32254 3,77807 1,73538 0,84234 0,65666 0,27983 0,23568</td>
</tr>
<tr>
<td>H₂</td>
<td>2,89 35,9726140 7564342 9666943 8466766 189864 49722566 65217</td>
</tr>
<tr>
<td>H₂O</td>
<td>2,00 26,1588125 0,6123524 5,680724 3,5246 0,42259 0</td>
</tr>
<tr>
<td>CO</td>
<td>0,70 0 0 0 0 0</td>
</tr>
<tr>
<td>CO₂</td>
<td>0,53 0 0 0 10,78969 0 10,79904</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>1,00 22,0323323 20,56823 7,330823 9,6336 16,00768 9,6390516 10,941</td>
</tr>
<tr>
<td>N₂</td>
<td>1,08 7,51370 7,19847 7,65678 6,99485 6,23354 5,60280 6,20370</td>
</tr>
</tbody>
</table>

Conclusie:

Verondersteld wordt nu, dat meerdere minima mogelijk zijn, vooral bij toename van het aantal componenten. De grootte van deze minima zullen echter verschillend zijn, en alleen voor die samensel-
ling, waarvoor het minimum het grootst is, zal het mengsel werkelijk in thermodynamisch evenwicht verkeren. In combinatie met de andere getallen is het niet moeilijk te concluderen welke waarden bij 1600\(^0\)K de juiste zijn. Dit zijn zeer waarschijnlijk de waarden in de tweede serie, omdat in dat geval een regelmatige afname van CH\(_4\) en H\(_2\)O en een ge­leidelijke toename van H\(_2\) en C\(_2\)H\(_2\) wordt verkregen. In het algemeen is het beter om te kijken naar de vrije enthal­pie van het mengsel bij de verschillende samenstellingen. Het "Algol" programma zal dus aangevuld moeten worden met de berekening van de vrije enthalpie en een print opdracht.

Bij hogere temperatuur (1900\(^0\)K) blijkt het percentage aan acety­leen weer af te nemen door reactie met stoom volgens de reactie

\[
C_2H_2 + 4 H_2O \rightarrow 2 CO_2 + 5 H_2
\]

De uitkomsten bij de hogere temperaturen worden echter nog niet vertrouwd op hun juistheid. Het is verstandiger om met het aan­gevulde programma en met een andere beginsamenstelling nogmaals de berekeningen te herhalen.

Eindconclusie:

Geconcludeerd kan worden, dat de "minimale vrije enthalpie" methode zeker niet voor de "klassieke" methode onder doet. Immers ook voor gecompliceerde evenwichten is deze methode bruikbaar en leidt niet tot niet lineaire vergelijkingen, zoals bij de "klassieke" methode.

Het zwakke punt is, dat bij eenvoudige evenwichten gemakkelijk singuliere matrixen kunnen ontstaan. Dit wil echter nog niet zeggen dat deze methode niet bruikbaar is voor het bere­kenen van deze evenwichten. Een singuliere matrix is meestal te voorkomen, zoals bij de isomerisatie van butenen is aan­toond (blz.21 en 22).

Zijn de laatste "kinderziekten" verholpen, dan is met vrij gro­te zekerheid de samenstelling van evenwichten te berekenen, indien men de uitkomsten controleert, door van verschillende geschatte beginsamenstellingen uit te gaan. Deze schattingen behoeven niet nauwkeurig te zijn.
E) Zuivering van Acetyleen.

Het productgas, verkregen door partiële oxydatie van koolwaterstoffen (aardgas of naphtha), bevat naast acetyleen nog vele andere componenten. Sommige componenten, b.v. H₂ en CO₂, komen in grotere hoeveelheden in het mengsel voor dan acetyleen; andere in kleinere hoeveelheden, b.v. CO₂. Gewoonlijk wordt voor de scheiding van acetyleen van de andere componenten gebruik gemaakt van de relatief hoge oplosbaarheid van acetyleen t.o.v. de andere componenten. Vroeger werd het gasmengsel onder een druk van ongeveer 20 atmosfeer in water opgelost. (lit.9). Door stapsgewijze vermindering van de druk werden dan de verschillende componenten, t.g.v. hun verschillen in oplosbaarheid, in hogere concentraties teruggewonnen.

Tegenwoordig gebruikt men meestal organische oplosmiddelen zoals (naast vele andere) methanol, H₃COH, en dimethylformamide, HCON(CH₃)₂, of vloeibare ammoniak. Er bestaat geen oplosmiddel dat specifiek is voor bedoelde scheiding. De keuze zal daarom op economische gronden gemaakt worden.

Als voorbeeld zal de zuivering van acetyleen genomen worden volgens de methode van S.B.A.- Kellogg. (lit. 6). Op het bijgaande flow-schema hebben de nummers de volgende betekenis:

1) gaswasser (H₂O).
2) bezinkvat (H₂O ↔ C).
3a en b) impulscompressoren.
4) CO₂ absorptie kolom.
5) idem.
6) idem.
7) gasdroger (CaCl₂).
8) diepkoeler.
9) dubbele absorptie kolom, (met naphtha).
10) C₅ - C₆ stripper.
11) C₂H₂ voorstripper.
12) C₃H₄ hoofdstripper.
13) C₂H₂ absorptie kolom, (met ammoniak).
14) verdringerpomp.
15) olefinenvoorstipper.
16) C₂H₂ hoofdstripper.
17) gaswasser (H₂O).
18) destillatiekolom (NH₃ ↔ H₂O).
19) gaswasser (H₂O).
20) gasdroger (CaCl₂).
Het gas, komende van de branderquench, wordt met water nagewassen om de eventueel nog aanwezige koolstof of teerachtige produkten, die in een bezinkvat (2) worden afgescheiden, te verwijderen. Deze wassing koelt het gas tevens verder af, voordat het gas gecomprimeerd wordt (3a).

Afhankelijk van de samenstelling van het gas en de gewenste zuiverheid van acetylene hoeft het gas bij gebruik van selectieve oplosmiddelen slechts gecomprimeerd te worden tot een absolute druk van 3 à 8 atm. (lit. 7). Deze lage druk reduceert niet alleen de compressiekosten, maar vermindert tevens de gelegenheid voor de hogere acetylenen om gedurende de compressie te polymeriseren.

Na compressie volgt de CO₂-verwijdering in 3 kolommen (4,5 en 6) in tegenstroom met respectievelijk een verdunne ammoniak-ammoniumcarbonaat oplossing, water en kalk oplossing. Het gas wordt gedroogd (7) en gekoeld (8), en ontstaan van koolwaterstoffen, zwaarder dan acetylene, met behulp van een zware nafta- of kerosine fractie in een tweetrap absorptiekolom (9). De koolwaterstoffen geabsorbeerd in de eerste trap worden in een stripper (10) gestripd en afgevoerd als stockgas. In een voorstripper (11) wordt de in de nafta opgeloste acetylene verwijderd en teruggevoerd naar de zuigkant van compressor (3a). In een hoofdstripper (12) wordt de nafta verder geregenered.

Voorgezuiverde acetylene wordt geabsorbeerd in watervrije NH₃ (13). Een voorstripper (15) verwijdert de opgeloste olefinen uit de oplossing en in een hoofdstripper (16) wordt de opgeloste acetylene, samen met een kleine hoeveelheid NH₃, gestripd. De vloeibare ammoniak uit deze stripper kan na gedeeltelijke zuivering van polymerisatieprodukten weer gebruikt worden in de absorptie kolom (13).

Dit systeem gebruikt dus twee selectieve absorptiemiddelen, die goedkoop en gemakkelijk te verkrijgen zijn. Bovendien zijn hun eigenschappen zodanig dat zij geregenererd kunnen worden onder condities, die de polymerisatie van hogere acetylenen en olefinen tot een minimum beperken. De nafta verwijdert het grootste gedeelte van de hoeveelheid aan polymeriserbare componenten, zodat slechts een zeer kleine fractie van de hoofdstromen der oplosmiddelen gespuid of gezuiverd behoefde te worden.
Door het grote verschil in selectiviteit van de beide oplosmiddelen en door het gebruik van voorstrippers ("stabilizers") voor de hoofdstrippers is een grote flexibiliteit in de scheiding der componenten te bereiken. Acetylene met een zuiverheid van 99,8% is gemakkelijk te verkrijgen (lit. 8).

Het gebruik van ammoniak heeft vele voordelen. Verdamping van NH$_3$ in de acetylene-absorptiekolom (13) geeft een koelend effect, zodat de absorber effectiever kan werken dan bij externe koeling. NH$_3$ is ook goed oplosbaar in H$_2$O, zodat het gemakkelijk uit het restgas en het productgas, acetylene, teruggewonnen kan worden (17 en 19).

Een extra voordeel van NH$_3$ is tevens, dat reeds bij kleine concentraties aan NH$_3$ het explosiegevaar van acetylene aanzienlijk verkleind wordt.

Na absorptie van acetylene in NH$_3$ kan de oplossing zonder enig gevaar tot een druk van 20 at. (normaal 0,3 à 0,4 ato.) (lit. 7) gecomprimeerd worden (14) en de acetylene kan onder druk samen met een kleine hoeveelheid NH$_3$ zonder risico uit de oplossing gestript worden (16). Dit voorkomt niet alleen een nodige koeling (om buiten het explosiegebied te blijven) van het topproduct van de C$_2$H$_2$-stripper, maar het acetylene-ammoniak mengsel van deze stripper (16) is onder hoge druk beschikbaar voor eventueel veilig transport per pijpleiding naar een acetylene verbruiker. De laatste zuivering van acetylene met water, om de NH$_3$ te verwijderen (19), zal in dat geval moeten gebeuren op de plaats waar men zuivere acetylene op industriële schaal nodig heeft. Na deze wassing en droging (20) verkeert het acetylene in een gevaarlijke toestand, zodat dan extra veiligheidsvoorzieningen getroffen moeten worden.
LITERATUUR:

1) College dictaat Chemische Werkwijzen II,
 Cursus 1964-1965, blz. 16.

2) R.C.Oliver, S.E.Stevhanou, R.W.Baier,

3) L.P.Smith,
 Mathematical Methods for Scientist and Engineers.

4) I.S.Sokolnikoff, R.M.Redheffer,
 Mathematics of Physics and Modern Engineering.

5) B.R.Kubert, S.E.Stephanoé,
 uitgegeven door: G.S.Bahn en E.E.Zukoski,

6) S.A.Miller,
 Ernest Benn Limited, London.

7) J.L.Patton, G.C.Grubb, K.F.Stephenson,

8) Acetylene, the S.B.A.-Kellogg Process (M.W.Kellogg Co. New York)

9) D.W.F.Hardie,
 Acetylene, manufacture and uses,

10) F.Horn, L.Kuchler,

11) W.B.Howard,
12) F.D. Rossini,
 Selected values of physical and thermodynamic properties
 of hydrocarbons and related compounds. (1953).

13) Landolt-Börnstein,
 Eigenschaften der materie in ihren aggregatzuständen(4)

14) G.N. Lewis, M. Randall,
 Thermodynamics, 682, (1961)

15) R.S. Mc Dowell, F.H. Kruse,

16) J.S. Gordon,

Wassen

Beznkvat

Gas van Branden

Lc

SPU

H2O (SUPPLEMENTIE)

CO2 Absorptie

Drogen + Koelen

Wassen

Drogen

Zie verslag voor betekenis nummers

NH4 (NH4)2 CO3 OPLOSSING (GEREGENEREERD)

WATER

Ca(OH)2 OPLOSSING (GEFILTEREERD)

ZUIVERING van ACETYLEEN volgens S.B.A. KELLOGG.

G.J. SMID

Januari 1957.