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Abstract

Managing water resources for the future is challenging, given the wide range of climatic and hydrological
uncertainty. To support decision makers in formulating robust adaptation plans and finding their way
through the broad range of available climate data and models, decision scaling was introduced: an
approach for bottom-up climate vulnerability assessments, informed by Global ClimateModels (GCMs).
This study aims to improve decision scaling as developed by Brown et al. (2012) by introducing three
recent advances in climate adaptation and uncertainty science.

First, the concept of environmental flows (eflows) was adopted to represent the local ecology and
variable hydrology with a broad range of indicators for evaluating the impact of climate change. Second,
the GCM weighting strategy of Knutti et al. (2017) was applied to account for model performance and
interdependency when estimating the plausibility of future climate conditions. Lastly, climate stress
testing was not only done for annual average climate changes, but also for a prolonged dry season
to represent the interannually variable character of climate change. The potential application of the
novel decision scaling approach was illustrated through a case study of the Mokolo River. This river
is situated in the South African Waterberg Biosphere Reserve, which faces competing water demands
from tourism, industry, agriculture, and ecology under a changing climate.

It was found that the additions contribute to decision scaling, as eflows indicators introduced the climate
impact on multiple flow components, which provides extra information on the climate vulnerability of the
river during different flow conditions. InWaterberg, low and average flow conditions were found similarly
sensitive to climate change. Moreover, GCM weighting increased the range of temperature uncertainty
and showed high weights for both wet and dry GCM projections, which emphasizes the need for robust
climate adaptation in Waterberg. Next, the additional stress test showed that prolonging the dry season
by one month influences flows throughout the following year, especially in the posterior months. In this
way, understanding the impact of plausible characteristics of future climate was improved.

Finally, this study revealed that local activities, such as groundwater extractions and land use changes,
and available knowledge challenges the application of decision scaling to a real case study as it requires
models and quantification of indicators. Therefore, carefully matching models, performance indicators,
local concerns and knowledge are required for formulating climate adaptation strategies with decision
scaling.
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1 | Introduction

Global climate change impacts river flow regimes substantially (Arnell & Gosling, 2013), leading to
floods, drinking water shortages, crop failure, and ecological loss (Mendoza et al., 2018). This asks
water managers to focus more and more on climate adaptation. Planning for climate adaptation is
however not that straightforward, as there are many uncertainties in how future climate will evolve.
These uncertainties mainly originate from insufficient knowledge of natural variability, natural and an-
thropogenic forcing, model uncertainty and inadequacy, and from a relatively short observation time
(Stainforth et al., 2007; Herman et al., 2020). This type of planning is often referred to as “decision
making under deep uncertainty”: a situation in which the analysts do not know, or the stakeholders
cannot agree on how to capture the system in a model, the probability distributions of the associated
parameters, and the desirability of alternative outcomes (Lempert et al., 2003).

Typically, global climate model (GCM) projections are used in climate adaptation to inform on what
future climate might look like and the corresponding range of uncertainty. However, regional water
management assesses climate impact on a finer level by developing hydrological models that do not
match the coarse spatial and temporal resolutions of GCMs which are generally more than 100 km and
inmonthly timesteps (Whateley et al., 2016). For that, dynamical and statistical downscaling techniques
using high-resolution regional models and statistical relationships between climate variables have been
widely developed. However, as the GCMs do not capture subgrid scale features such as topography,
clouds, and land use, local phenomena are missed (Chokkavarapu & Mandla, 2019). This causes a
poor representation of climatic variability and the magnitude and duration of extremes (Rocheta et al.,
2014; Fowler et al., 2007), which could lead to an underestimation of the severity of climate change in
terms of interannual variability and monthly means (Murphy, 1998). Therefore, the possible range of
future climates might not be fully explored, leading to the fact that GCM projections often only show the
lower bound of the uncertainty range (Stainforth et al., 2007).

In reaction to the limitations of the top-down approach as described above, bottom-up approaches have
been introduced. These first identify system performance thresholds independently from GCM projec-
tions and subsequently assess the performance response when exposed to a wide range of plausible
climate changes that go beyond the bounds of GCM projections (Culley et al., 2016). One example
of such a bottom-up climate risk assessment linking climate-informed vulnerability assessments was
developed by Brown et al. (2012), named “decision scaling”. This is a three-step approach that be-
gins with identifying, mapping and modelling local problems and corresponding performance indicators
and thresholds together with stakeholders. Then, these indicators are stress tested against a wide
range of climate conditions to better understand the system’s climate vulnerability. This is done by
running a large set of stochastic timeseries simulated by a stochastic weather generator. Lastly, it is
evaluated which climate conditions lead to acceptable or unacceptable system performance. The plau-
sibility of these conditions is estimated based on information from GCMs. By not only relying on GCM
information and by using stakeholder-determined performance indicators, decision scaling allows for
transparency and well-informed discussions between scientists, planners, and stakeholders on what
adaptation measures to take (Poff et al., 2015).

Recently, decision scaling has been adopted by various researchers (e.g. by Ray et al. (2020); Conway
et al. (2019); Mendoza et al. (2018); Culley et al. (2016); Whateley et al. (2016); Poff et al. (2015);
García et al. (2014)). These studies focus on issues around human-made infrastructure, such as water
supply reliability, urban flooding, and water security. Only Poff et al. (2015) explored decision scaling in
ecological issues, though emphasizing the impact of human-made infrastructures rather than climate
change itself. Moreover, the studies demonstrate decision scaling in hypothetical or stylized case
studies based on synthetic data and simplifying assumptions. Three of these simplifications have been
identified by literature as points of improvement, where recent advances in climate adaptation might
be of help. Those simplifications and potentially helpful techniques are as follows.
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• In decision scaling, basin performance is commonly evaluated for time-independent performance
indicators such as average annual flow. In applied cases to for example dam operation, flood
control, and ecological protection, these static indicators might however not be sufficiently infor-
mative. Therefore, the concept of environmental flows is frequently used in watermanagement
projects to formulate such dynamic and ecologically relevant indicators. Environmental flows
(eflows) are defined as “the quantity, timing, and quality of water flows required to sustain fresh-
water and estuarine ecosystems and the human livelihoods and well-being that depend on these
ecosystems” (Poff & Matthews, 2013). As eflows are intended to mimic the natural river flow
dynamics (The Nature Conservancy, 2019), using eflow indicators in decision scaling would re-
quire a shift from testing one static variable towards testing multiple time-varying indicators (Poff,
2018). Likewise performance indicators in decision scaling, eflows should be determined by
involving both stakeholders and scientists to develop science-based policies and management
(Poff et al., 2003). Eflows application in decision scaling could therefore be beneficial for both
concepts.

• When estimating climate risk plausibility, GCM projections are assumed to be equiprobable, in-
dependent, and distributed around reality in the estimation of climate risk plausibility. However,
as models share codes and do not represent the locally observed climate equally well, these
assumptions cannot be validated (Merrifield et al., 2020; Sperna Weiland et al., 2021; Knutti et
al., 2017). To add more statistical reasoning behind the uncertainty range from GCM projections,
weighting strategies have been developed. One strategy is ClimWIP (Climate model Weighting
by Independence and Performance), which weighs each GCM based on how closely it resembles
the observed climate, and on its similarity to other models (e.g. in Brunner et al. (2020); Knutti
et al. (2017); Lorenz et al. (2018); Merrifield et al. (2020)). This method might provide additional
information to risk estimation in climate adaptation projects.

• In decision scaling, basins are commonly climate stress tested under changes in annual mean
temperature and precipitation (e.g. in Ray et al. (2020); Kim et al. (2018); Culley et al. (2016);
Poff et al. (2015); Brown et al. (2012)). Climate change, however, is often found to express
itself in a change in variability, magnitudes of local extremes, and the duration and timing of
seasons (Masson-Delmotte et al., 2021). This natural variation, which is larger for precipitation
than temperature, and larger for climate extremes than means (van den Hurk et al., 2014), is
thus not considered in stress tests. Stochastic weather generators in decision scaling have the
feature to adapt this variability and duration of climate events in weather timeseries. Employing
this feature in climate stress tests could give broader information on the climate vulnerability of a
region.

This study develops a novel approach to decision scaling, focusing on implementing the three hypothe-
ses detailed in the enumeration above. To demonstrate the application in a real case study, the South
African arid region of the Waterberg Biosphere Reserve which deals with drought problems is used. In
contrast to previously demonstrated cases of decision scaling, Waterberg is a data scarce environment
where the preservation of environmental quality is of high importance.

This thesis is organised as follows. The Waterberg Biosphere Reserve is further introduced in the
next chapter regarding its geographical, climatic, ecological, and societal characteristics. Then, the
methodology of this study is described by explaining the models, data, and methods for environmental
flow indicators, GCM weighting and stress testing. Chapter 4 shows the resulting indicators that can be
used as performance indicators, and how they fit into the concept of eflows. Also, this chapter presents
the results of GCM weighting and stress testing Waterberg under annual- and intra-annual climate
changes. The impact of the novel approach to decision scaling is subsequently discussed in Section
5. The thesis finishes with a conclusion on how the three methods contribute to decision scaling.



2 | Study Area

The Waterberg is a 14 000 km2 upland area located in the Limpopo Province of South Africa, with the
town of Vaalwater in its centre (see Figure 2.1). In 2001, UNESCO designated one-third of the area
(6500 km2) as a Biosphere Reserve that, together with 86 other South African reserves and 701 re-
serves worldwide, serves as a learning place for sustainable development in the field of biodiversity and
cultural diversity, economic development, and logistic support for research and education (UNESCO,
2021). The western and eastern parts of the Waterberg Biosphere Reserve (WBR) are hilly, rocky, and
at around 1300 m high. The central part close to Vaalwater consists of sandy plains below 1300 m. A
mountain range is situated on the southern and eastern sides.

The plateau is a hot and dry region with a big range in altitudes that lead to high slopes and sparse
rainfall events that are very location dependent. The annual average rainfall is approximately 610 mm
and it knows a relatively wet season fromOctober to April, with the most precipitation occurring between
December and February. During the dry season, there is almost no rainfall. Temperatures range
between 14∘C in July and 25∘C in December. This climate pattern greatly influences the discharge
of the four rivers flowing through the WBR: the Mokolo, Lephalale, Matlabas and Mogalakwena, all
tributaries of the Limpopo River. The rivers function as an important source of water for the rest of the
region in terms of biodiversity and economic activity. The latter is nowadays mainly focused on game
farming and tourism, which is rapidly growing. Agriculture is also important in the region: large parts of
the Mokolo and Lephalale rivers are surrounded by irrigation fields, and small dams are built for water
regulation (see Figure 2.1). The Mokolo Dam (146 million m3) serves municipal and industrial water.
The most important industry is mining (Lyon et al., 2017).

Currently, the competing water demands in the reserve, combined with increasing stresses from a
changing climate, are causing problems with water availability and allocation, and the ability to sustain-
able management of water resources. This challenges the region to maintain its status as a biosphere
reserve. For that, monitoring programs for ecology and climate are starting up in the understudied area
(Government of South Africa, 2015). After all, the uncertain nature of climate effects, particularly con-
cerning changing seasonality and uncertain future rainfall patterns, asks for a better understanding of
the region’s hydrological behaviour and climate vulnerability to reveal adaptation possibilities. Decision
scaling could therefore provide relevant information.

Figure 2.1 – Map of the four river catchments that flow through the Waterberg Biosphere Reserve (in
orange), the town of Vaalwater, and the existing dams (green triangles). Dam locations are retrieved from

Mulligan et al. (2020). The location of Waterberg within South Africa is indicated on the right.
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3 | Materials & Methods

This chapter describes the data, models, and methods to apply and evaluate the decision scaling
approach as proposed in Chapter 1. An overview of the workflow designed to implement the environ-
mental flows concept, GCM weighting, and interannual variability in decision making can be found in
Figure 3.4. Before explaining the implementation of these three suggestions in Sections 3.4 to 3.6,
Section 3.3 presents how a historical and future climate analysis was done. This analysis forms the
basis for further decisions in model- and climate stress test setup. Because of model performance
and data availability, the methodology was performed for the Mokolo River catchment in the Waterberg
region.

3.1. Hydrological Model

The hydrological conditions in the Mokolo River basin were modelled with a daily distributed wflow-sbm
model (Schellekens et al., 2021). This conceptual bucket model simplifies the Richards equation by
assuming that infiltration, vertical flow through the soil column, and capillary rise are gravity based.
It makes use of the kinematic wave approach for lateral subsurface-, overland-, and river flow rout-
ing throughout the catchment. As flows are mainly controlled by topography, wflow-sbm parameters
physical characteristics such as vegetation and soil properties, and thus have a clear physical meaning
(Weerts et al., 2020). To derive these parameters, available pedotransfer functions from literature with
upscaling rules from the Multiscale Parameter Regionalization technique from Samaniego et al. (2010)
(both further explained in Imhoff et al. (2020)) are used by the model to convert spatial data maps to
model parameter maps. For this, land use maps of VITO (Buchhorn et al., 2020) and the ISRIC soil
database (Poggio et al., 2021) were used.

Figure 3.1 – Map of the wflow-sbm model extent for the Mokolo River basin (light orange). The Waterberg
Biosphere Reserve is shown in bright orange. Locations and names of the Mokolo Dam and discharge- and

rainfall observation stations are indicated.

The model was developed at a resolution of approximately 1km x 1km at the equator and the modelled
area extent is defined between 27.4∘ and 28.4∘E, and -23.3∘ and -24.7∘S. This area covers more than
19 000 km2, from which the central part belongs to the biosphere area (see Figure 3.1). To include
upstream influences, the whole catchment extent was modelled. The required daily spatially distributed
precipitation and temperature forcing data (see Section 3.2.a) were reprojected to WorldClim 2.1 high

4



3.1. Hydrological Model 5

resolution monthly climatology and meteorology data (approximately 0.04∘) (Fick & Hijmans, 2017).
The Mokolo Dam (146 million m3) was included in the model as a reservoir. The capacity of the three
other dams in the Mokolo (see Figure 2.1) is 2% of the annual streamflow and was assumed to be
negligible. Other groundwater or river extractions were also not included.

Given that wflow-sbm is mainly sensitive to the rooting depth and the lateral hydraulic conductivity
(Imhoff et al., 2020), calibration to observed streamflow data was done by tuning two parameters: the
saturated horizontal conductivity, and the decrease of vertical saturated conductivity over the soil depth.
Model output from ten combinations of parameter values was compared regarding their representation
of the environmental flow indicators that are also used in the climate stress tests (see Section 3.6.d.
These are listed and explained in Table 3.3. None of the model configurations was able to represent
both dry- and wet-seasonal flows well. Eventually, the set of model parameters that lead to the lowest
root-mean-square error between modelled and observed environmental flows was selected for this
study. The errors and Nash Sutcliff efficiencies (Nash & Sutcliffe, 1970) for the selected model can be
found in Table 3.1. Supplementary Material A provides these tables for the dry and the wet season.

Figure 3.2 presents part of the simulated and observed hydrograph at Dwaalhoek for the selected
wflow-sbm model. More monthly and annual model output can be found in Supplementary Material
A. The model simulates higher total annual and monthly runoffs than observed. This is mainly caused
by an overestimation of the high peak flows, and a slight overestimation of the baseflows. Calibration
to low flows by increasing the saturated hydraulic conductivity leads mainly to the elimination of small
peak responses, quick recession times, and even higher peak flows. This in its turn brings forward
the start and end of the dry season by approximately one month, resulting in the fact that the model
considers September as the driest month instead of October. Model performance differs per location:
the difference between observed and modelled flows is smaller in the mainstem- and downstream, than
at locations with small upstream areas such as Zandrivier and Blakeney. As can be seen in Table 3.1,
the lowest errors mainly occur at Doornspruit, especially during dry conditions.

Figure 3.2 – Daily ERA5 rainfall (mm/d) and modelled and observed daily discharge (m3/s) at Dwaalhoek
between 2001 and 2006.

Table 3.1 – Model performance compared to observed flows at the four gauge stations regarding eleven
metrics. Except for the Nash Sutcliffe Efficiencies (first two columns), the metrics are computed as
root-mean-square errors. Daily mean refers to mean error of all daily flows between 1981-2020.

NS
(-)

NSlog
(-)

Daily
mean (m3/s)

Annual
mean (m3/s)

BFI
(-)

Low pulse
count (-)

High pulse
count (-)

Low pulse
duration (d)

July
mean (m3/s)

September
mean (m3/s)

October
mean (m3/s)

Doornspruit 5.1 -10.8 0.2 0.7 0.6 72.8 44.9 17.8 0.4 0.3 0.6

Dwaalhoek 28.4 -1.8 0.1 5.2 0.6 68.4 50.9 126.4 1.7 1.4 3.5

Zandrivier 18.9 -101.7 -0.2 4.6 0.9 87.3 55.4 65.0 0.8 0.6 1.7

Blakeney 2.1 -0.7 0.0 0.5 0.8 170.1 92.0 160.3 0.1 0.1 0.2



3.2. Data 6

Table 3.2 – Overview of the data used: ECMWF Reanalysis v5 (ERA5), observed precipitation from the
National Oceanic and Atmospheric Administration (NOAA), streamflow timeseries from the Global Runoff
Data Centre (GRDC), and climate projections from WCRP Coupled Model Intercomparison Project Phase 5

(CMIP5).

Dataset Climate variable Data type Spatial resolution Temporal resolution Reference

ERA5 Precipitation, temperature, evaporation Reanalysis 0.25∘ (30 km) Daily (1979-2020) Hersbach et al. (2020)

NOAA Precipitation Observations 5 rain gauges Daily (1950-1997) NOAA (2020)

GRDC Streamflow Observations 4 stations Daily (1981 - 2020) GRDC (2020)

CMIP5 Precipitation, temperature Reanalysis 1.0-3.0∘ (100-300 km) Monthly (1960-2005 and 2020-2060) WCRP (n.d.)

3.2. Data

For this study, daily historical and projected climate and streamflow data were obtained from meteoro-
logical stations, satellites, and reanalysis studies. An overview of these datasets can be found in Table
3.2.

3.2.a. Historical climate data

The ERA5 reanalysis dataset from ECMWF provides daily precipitation, temperature and evaporation
between 1979 and 2020 at a spatial resolution of 0.25∘ (Hersbach et al., 2020). ERA5 precipitation
was compared to observed rainfall from five rain gauges between 1950 and 1997, provided by NOAA
(2020). The gauge locations are shown in Figure 3.1. Monthly precipitation and temperature of the
two datasets is presented in Figure 3.5. ERA5 monthly rainfall is higher in the driest months (April
to October) and lower in the wet months at all five locations. The monthly relative difference with the
observations varies per location and month, but was on average maximum 20%, except in June. The
higher resolution dataset from CHIRPS (Funk et al., 2015) was also compared to the observed rainfall,
but relative differences to the observations were found to be larger in the dry season.

As the intra-annual variability of monthly ERA5 precipitation is smaller than observed, data bias cor-
rection was applied to preserve the wide range of climate change in the stress tests. This also slightly
compensates for the overestimation of dry season flow by the wflow-sbm model. Bias correction was
done with monthly Empirical Quantile Mapping as described by Amengual et al. (2012). The correction
was applied to the average of the observation stations, thus spatial variability was not considered. The
corrected distribution can be found in Supplementary Material B.

3.2.b. Historical streamflow data

For hydrological model calibration, daily runoff timeseries from four GRDC (2020) gauge stations were
retrieved. Two of them are located in the main channel (see Figure 3.1). All stations provide data for the
period between 1981 and 2020. It should be noted that in some years many no flow observations are
reported, especially at Blakeney. Excluding these years from the calibration did not affect the selection
of the model configuration.

3.2.c. Climate model projections

An ensemble of climate projections from the World Climate Research Programme (WCRP) CMIP5
(Coupled Model Intercomparison Project Phase 5) dataset (WCRP, n.d.) was retrieved. Monthly mean
precipitation and surface temperature projections between 2020 and 2080 and historical reanalysis
between 1960 and 2005 were used from 26, 41, 21, and 37 models for the scenarios RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 respectively. An overview of the GCMs included in this study can be found in
Supplementary Material C.
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3.3. Historical climate trends & future projections

Historical and future climate data were consulted about a plausible range of climate change in the
Mokolo region. This information forms the basis for the range of climate projections in the setup of
the climate stress test (see Figure 3.4). Also, it helps to understand the hydrological behaviour of the
Mokolo better and supports the selection of environmental flow indicators.

For the climate analysis, historical climate data and GCM projections were used. A Mann-Kendall
trend test for monotonic trends (Mann, 1945; Kendall, 1975) was performed on spatial averages of
ERA5 data, rainfall and discharge observations, and historical GCM simulations. Statistically significant
climate trends occur for a p-value lower than 0.05, according to theMann-Kendall trend test. In addition,
CMIP5 projections were used to give a first indication of the plausible range of future climate change.
Figure 3.3 shows the relative change in annual precipitation and temperature for the individual CMIP5
models under different scenarios. It shows a big range of uncertainty for climate projections in the
Mokolo. Though, in general, the more extreme scenarios project a warmer and drier climate.

Figure 3.3 – Relative average annual temperature and precipitation changes between 1960-2000 and
2020-2060 for all individual GCMs. The density of the model projections is shown on the sides (top:

precipitation, right: temperature).

3.4. Environmental flows

This study tested how the concept of environmental flows (eflows) contributes to the assessment of
the Mokolo’s performance under climate change. The application is moreover evaluated to whether
decision scaling is a suitable framework for the concept of eflows. The workflow consisted of three steps
that are presented in Figure 3.4. First, it was investigated what generic eflow indicators are available for
rivers under climate change. Then, indicators that can be applied as performance indicators for decision
scaling in the Mokolo were selected from this list. Finally, the selected indicators were evaluated with
three requirements of the eflows concept.

3.4.a. Existing environmental flow indicators

Three types of sources were consulted to get an overview of existing eflow indicators and corresponding
thresholds: scientific literature, technical reports or guidelines from local governmental or research
institutions, and local stakeholders. The latter two help to determine indicators and thresholds that are
specific for the Mokolo.
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Figure 3.4 – Workflow diagram for decision scaling, including environmental flows, GCM weighting, and an
additional stress test.

Scientific literature
The 32 Indicators of Hydrologic Alteration (IHA) of Richter et al. (1996) are commonly used by hy-
drologists and freshwater ecologists to assess the alteration of different streamflow components for
ecosystems over time (e.g. in Penas et al. (2016); Li et al. (2020)). They could thus be considered
as environmental flow indicators and are therefore adopted as indicators for this study. The IHA’s are
presented and explained in Table 3.3. Alghtough more hydrologic indices to characterize ecologically
relevant river flow regime components exist, Olden & Poff (2003) highlighted redundancy among the
indicators due to multicollinearity. They did this by identifying and reviewing 170 hydrological indica-
tors that have been used in literature. Hence, the 32 IHAs in this study are considered to sufficiently
represent the different streamflow components.

Technical reports and guidelines
Streamflow requirements for the Mokolo River were found in the River Quality Report of Department
of Water and Sanitation (2017). Monthly maintenance flows (30th percentile) and drought flows (5th
percentile) for different locations within the Mokolo River were given. These were determined based
on the South African National Water Act (1998) where every river has been assigned an annual and
monthly minimum flow requirement for water quality that meets the basic human needs in a reserve
and the protection of water ecosystems. In this study, drought flows were not considered, as they are
not well represented by the hydrological model (see Section 3.1). As Dwaalhoek is located centrally in
the main stem, and because flow simulation is relatively good there, maintenance flow requirements
for that region were used as environmental flow indicators.
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Table 3.3 – Overview of the Indicators of Hydrologic Alteration (IHA) from Richter et al. (1996), divided into
five parameter groups linked to the flow regime components. Low pulse and high pulse refer to the flows
below the long term 25th and above the 75th percentiles respectively. The table is adopted from Li et al.

(2020). The bold indicators are used as performance indicators in the climate stress test.

IHA Parameter Group Hydrologic Parameters

1. Magnitude of monthly water conditions

Mean value for each calendar month: mean flow in
January; mean flow in February; mean flow in March;

mean flow in April; mean flow in May; mean flow in June;
mean flow in July; mean flow in August; mean flow in

September; mean flow in October; mean flow in November;
mean flow in December

2. Magnitude and duration of annual extreme water conditions

1-day minimum; 3-day minimum; 7-day minimum; 30-day
minimum; 90-day minimum; 1-day maximum; 3-day
maximum; 7-day maximum; 30-day maximum; 90-day
maximum; Base Flow Index (7-day minimum flow/mean

flow for that year)

3. Timing of annual extreme water conditions
Day of year of each annual 1-day maximum: date of
minimum; Day of year of each annual 1-day minimum:

date of maximum;

4. Frequency and duration of high and low pulses

Number of low pulses within each water year: low pulse count;
Mean or median duration of low pulses (days): low pulse duration;

Number of high pulses within each water
year: high pulse count; Mean or median duration of high

pulses (days): high pulse duration

5. Rate and frequency of water condition changes

Mean of all positive differences between consecutive
daily values: rise rates; Mean of all negative

differences between consecutive daily values: fall rates;
Number of hydrologic reversals: numbers of reversals

Local stakeholders
A stakeholder meeting was held after performing the climate analysis as described in Section 3.3,
setting up the hydrological model, and executing an example stress test. The preliminary results could
be presented to the stakeholders to show how decision scaling works, discuss the first findings, and give
context to the environmental flow indicators. Furthermore, a brief general introduction on environmental
flows and performance indicators was given. After the presentations, a discussion was held by asking
three questions that were synthesized from the decision scaling steps and the environmental flows
concept:

• “Do you recognize the preliminary results in terms of historical climate, climate trends, river flow
behaviour, and the basin’s sensitivity to climate change?”

• “What are your concerns for the Waterberg Biosphere Reserve regarding the environment and
water availability? What role do climate change and human activities play?”

• “What type of river flow requirements (e.g. minimum/maximum flow throughout the year, or during
the dry season, minimum/maximum duration of the dry/wet season) do you consider important
for the Mokolo?”

Due to COVID-19 measurements, the meeting was organized online. Originally, it was aimed to have
a broad audience present in terms of policymakers, water users, and scientists such as hydrologists,
(freshwater) ecologists, morphologists and climate experts to have a good understanding of the differ-
ent climatic and ecological concerns. Eventually, nine local stakeholders were present, amongst whom
were two hydrologists, one agroecologist, and two zoologists. The other four were program coordina-
tors: two from the Waterberg Biosphere Reserve, one from SANParks National Parks, and one from
South African biospheres. Only the hydrologists and one zoologist were researchers by profession.
Two observers were present to confirm the documentation of the meeting afterwards.
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3.4.b. Selection of performance indicators

The selection of eflow indicators that are useful as performance indicators in the stress tests was based
on three preconditions given by the decision scaling approach: (1) it should be possible to calculate
the eflow indicators with the available model (wflow-sbm) output, (2) corresponding local performance
thresholds need to be available to quantify climate risk, and (3) the indicators should be in timesteps
of at least one month. The latter condition follows from the fact that GCMs can only provide plausibility
of risk for monthly changes in climate conditions. Therefore, climate stress tests should be performed
at similar timesteps. Evaluating flow performance indicators at smaller steps would then be irrelevant.

3.4.c. Compliance to the concept of environmental flows

The eflows concept has played an important role in the introduction of ecological components within wa-
ter management projects. However, challenges in the implementation and requirements for successful
application in adaptation projects have been reported (e.g. in Arnell & Gosling (2013); Arthington et al.
(2006); Bunn & Arthington (2002); Poff (2018); Poff & Matthews (2013); Poff et al. (2003); Pahl-Wostl
et al. (2013); Poff & Zimmerman (2010)). By addressing three frequently reported requirements for
success, this research evaluated how the selected performance indicators suit the concept of environ-
mental flows.

• Flow indicators should represent all five components of the flow regime: magnitude, timing, fre-
quency, duration and rate of change of flow conditions (Poff & Matthews, 2013).

• When using environmental flow indicators, the natural system complexity of rivers and ecology
should not be ignored in favour of finding simplistic, static, environmental flow ”rules” (Arthing-
ton et al., 2006). This spatial and temporal complexity is important for ecologists. Ecological
responses to flow namely vary within one river due to differences in climate and topography that
facilitate different types of species (Bunn & Arthington, 2002). However, this complexity also
disables ecologists to predict and quantify biotic responses of individual rivers to altered flow
regimes. This in its turn challenges decision makers to translate general hydrologic-ecological
principles and knowledge into specific management rules for a particular river (Arthington et al.,
2006).

• Selecting environmental flow indicators should be done with the input from a wide range of stake-
holders. Dialogue about sustainable water usage between a wide range of stakeholders is there-
fore required to map the different priorities amongst competing demands from scientists, policy-
makers, water managers and users, and local populations (Pahl-Wostl et al., 2013).

3.5. Global Climate Model Weighting

The weighting strategy accounting for regional performance and independence was adopted from the
approach developed and described by Knutti et al. (2017). In this strategy, each model is weighted
based on how closely it resembles observed climate (performance weight) and on its similarity to other
models over the historical period (independence weight). The weighting is based only on historical
behaviour to avoid penalizing for convergence in the future (Merrifield et al., 2020).

The formula to compute weight 𝑤𝑖 for model i from an ensemble of M models is as follows (Knutti et
al., 2017):

𝑤𝑖 =
𝑒
𝐷𝑖
2

𝜎𝐷2

1 + ∑𝑀𝑗≠𝑖 𝑒
−
𝑠𝑖𝑗2

𝜎𝑠2

(3.1)

with 𝐷𝑖 the distance metric of model i to the observations, and 𝑆𝑖𝑗 is the distance metric between model i
and model j. Scaled ERA5 data at native resolution was used for the observations and the CMIP5 GCM
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output was used as model data (both described in Section 3.2). The period between 1980 and 2005
and the regional extent as shown in Figure 3.1 were considered. Root-mean-square error (RMSE)
was used for both distance metrics 𝐷𝑖 and 𝑆𝑖𝑗, which can be computed for any variable of the GCMs if
observations are available. However, the selection of diagnostics should be relevant for the target, and
add additional information to the other variables (Lorenz et al., 2018; Brunner et al., 2019). Therefore,
three diagnostics based on monthly precipitation and temperature were selected to calculate 𝐷𝑖 and 𝑆𝑖𝑗:
average annual precipitation (prANN), average dry season precipitation (prJJA) and the average annual
temperature (tasANN). This selection wasmotivated by the fact that prANN and tasANN are input variables
for the hydrological model and the stress tests, while prJJA is a relevant variable for Waterberg’s drought
problems. After computing the weights for each diagnostic, they were averaged in order to retrieve one
weight per model.

Constants 𝜎𝐷 and 𝜎𝑆 in equation 3.1 determine how strongly the model performance and similarity
are weighted. For example, a large 𝜎𝐷 leads closer to model democracy, and 𝜎𝑆 determines a typical
distance when two models are considered similar. This means that if 𝜎𝑆 is large, models are considered
dependent on each other under larger distances. If models i and j are identical, then 𝑆𝑖𝑗 = 0, and both
models get half of the weight. It should be noted, however, that a large 𝜎𝑆 treats all models dependent
and thus also leads to more equal weighting (Brunner et al., 2020).
For simplicity, this study used the same parameters for all diagnostics. They were determined by
testing multiple combinations of 𝜎𝐷 and 𝜎𝑆 between 0 and 1. Based on previous case studies and
expert judgement, the resulting 𝜎𝐷=0.6 and 𝜎𝑆=0.3. Most previous cases (mainly focussing on Europe
and North America) of this methodology found a 𝜎𝐷 around 0.5 (ESMValTool, 2022). Regarding model
interdependency, it is argued that shared codes lead to similar dependency on different scales (Brunner
et al., 2019). Therefore, the 𝜎𝑆 value in this study was based on values retrieved in global assessments
from Merrifield et al. (2020) and Brunner et al. (2020). The sensitivity of the parameters can be found in
Figures F.2 and F.3 in Supplementary Material F, which show that 𝜎𝑆 has a small effect on the weights.

3.6. Climate Stress Testing

This study investigated what extra information could be provided by stress testing for changes in inter-
annual variability. Therefore, two stress tests were performed. One represents average annual climate
changes, a scenario that is usually examined in decision scaling. The other represents interannual
changes that are environmentally relevant. As can be seen in the workflow diagram from Figure 3.4,
the stress testing methodology in this study consists of three steps. First, historical and future climate
data were consulted about a plausible range of climate change in the Mokolo region (detailed in Section
3.3). Based on the outcomes, the ranges of climate change for the two stress tests were determined.
Subsequently, future climate timeseries within this range were simulated with the stochastic weather
generator in order to maintain local weather characteristics (see the following section). The timeseries
are set up by imposing climate change projections on the historical ERA5 climate data. Then, these
simulations in its turn serve as forcing for the wflow-sbm model. Finally, flow performance indicators
were computed with the model output to evaluate the environmental performance of the Mokolo under
climate change.

3.6.a. Stochastic Weather Generator

An adapted version of the stochastic weather generator as developed by Steinschneider & Brown
(2013) was used (Deltares, 2022). It can detect, based on historical timeseries of precipitation and
temperature, characteristic statistics such as low-frequency climate oscillations, dry- and wet spells,
and the spatial distribution of the covariance between climate variables. Parameters to linearly change
the climate in the weather generator consist of monthly relative changes in temperature, precipitation
and rainfall variability. The simulated output includes potential evaporation which was calculated with
the Hargreaves equation (Hargreaves & Samani, 1985).
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3.6.b. Climate stress test for average annual mean changes

In the first test, rainfall and temperature averages were changed equally in all months, keeping the
variability unaltered. The range of change was determined based on Figure 3.3. To preserve the uncer-
tainty range, the stress test goes beyond the range of change projected by the GCMs. The temperature
was altered by six discrete increments from -1∘ C to 4∘ C, and precipitation by 15 discrete factors from
-70% to +70% (see Figure 3.5). The combination of all changes gives 90 climate projections between
2020 to 2060.

Figure 3.5 – Figures of the average historical monthly temperature (solid red line) and precipitation (bars) in
the Mokolo River basin (ERA5). The range of climates that was stress tested is depicted around the

historical means (temperature: -1 to +4∘ C; precipitation: -70% to +70%). The dashed line represents the
average observed precipitation of the five gauge stations in the biosphere area of the Mokolo basin.

3.6.c. Climate stress test for an prolonged dry season

The second test was aimed at representing the interannual variability of climate change. However, as
GCM-informed plausibility can only be assigned based on monthly values and as applying different
changes per month would make it difficult to track where the river changes originate from, a relatively
simple case was required. Therefore, one plausible projection according to the concentration of GCM
projections in Figure 3.3 was selected as a base case: +1∘C in temperature and -10% in rainfall. As dry
season length is an important climate statistic for river ecology, and because trend analysis and future
projections (which will further be described in Section 4.1) showed decreased precipitation at the end
of the dry season, the Mokolo was tested for an prolonged dry season. Therefore, the base case was
tested to a reduction of future average mean precipitation in October by -10% to -100%, with steps of
10%.

3.6.d. Performance thresholds and risk

To evaluate the impact of climate change on the performance of theMokolo, flow performance indicators
were computed with the wflow-sbm model output from the stress tests. Environmental flow indicators
served as performance indicators as explained in Section 3.4.b. However, performance threshold are
only reported by Department of Water and Sanitation (2017) in the River Quality Report regarding
monthly maintenance flows (70% quantile). As the stochastic weather generator does not change the
intra-annual rainfall distribution, the quantiles that are determined in the monthly maintenance flows do
not change in the stress test. Therefore, in the impact assessment the historical monthly 70% quantile
was used to evaluate how many days this threshold was reached each month. To give a broader view
of the changes in the flow regime, IHAs for different components of the monthly flow regime were also
computed: average annual flow, average flow in the driest months concerning rainfall and discharge
(July, September, October), low pulse count, high pulse count, low pulse duration, and the Base Flow
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Index (BFI). These are indicated in bold in Table 3.3. Again, the climate stress test does not influence
the high pulse count and the low pulse count and duration due to the static distribution of the historical
climate. Therefore, these indicators were replaced by the flows corresponding to low and high pulse
thresholds (75th and 25th percentile respectively).



4 | Results

This chapter describes the results that were found when applying the novel decision scaling approach
to the Waterberg region. First, the results from the historical and future climate analysis are presented,
followed by the environmental flow indicators. Then, the weights based on GCM performance and
interdependency are given and the sensitivity of the region is shown with the two climate stress tests.

4.1. Historical climate trends & future projections

An overview of statistically significant trends in historical climate data is presented in Table 4.1. Figure
4.1 shows both historical and future annual precipitation and temperature anomalies. Regarding daily
and monthly temperature, increasing trends were detected in ERA5, especially at the end of the dry
season (foremost in October). Likewise, Figure 4.1 shows that the multi-model mean of GCMs has
been increasing over time. 16 out of the 48 GCMs showed a significant increase in annual average
temperature, and no decreasing trends were found. Regarding monthly values, the highest number of
increasing trends were found in October. Up to 2080, increasing temperatures are projected to continue
and become more extreme according to more extreme scenarios.

Table 4.1 – Overview of historical trends in daily, monthly average, and annual average precipitation and
temperature timeseries of different datasets (ERA5, GCMs, and observations). An x indicates ”no trend”,

N/A ”not applicable”, and the months between brackets indicate the months when the trend occurs.

Precipitation Temperature
............. ERA5 Observations GCMs ............. ERA5 GCMs

Daily Decrease Decrease N/A Increase N/A

Monthly average Decrease (Aug-Sept)
& Increase (Dec) x N/A Increase

(Aug-Nov) N/A

Annual average x x x x Increase

Significantly decreasing daily rainfall and annual rain days (from 271 to 253 d/yr) were found in the
observations and ERA5 dataset. Decreasing trends in ERA5 were again mainly found at the end of
the dry season. An increasing rainfall trend was found in December. Average annual trends were not
detected, which is in line with the historical reanalysis from GCMs in Figure 4.1. This figure moreover
shows that precipitation projections are more spread than temperature, but the multi-model median
for the RCP8.5 scenario slightly decreases. Although rainfall has been decreasing, daily discharge
observations have been increasing at all gauges except at Zandrivier. Increasing trends were also
found in the monthly runoff during the dry season (April-October) at Doornspruit and Blakeney.

Monthly GCM projections are included in Supplementary Material D. Differences between monthly tem-
perature projections are small, and all monthly temperatures are projected to increase by up to 3∘ C
under all scenarios, based on the interquartile ranges. Monthly multi-model medians of rainfall projec-
tions decrease for each scenario and month (except in January and December for RCP6.0). In line with
historical data, seasonal projections show a larger change in the dry season than in the wet season
(illustrated in Supplementary Material D). Also, the correlation between RCP scenarios and changes
is clearer in the dry season.

14
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Figure 4.1 – Precipitation and temperature anomalies relative to 1980-2005 for the ERA5 dataset, the
multi-model median of the GCMs, and the observed precipitation, together with the 90% ranges for all

historical and future GCMs.

4.2. Environmental Flows

Table 4.2 presents an overview of the existing eflow indicators from scientific literature (IHA’s) and local
reports used in this study. Stakeholders did not mention specific flow indicators, and thus this source
is excluded from the table.

4.2.a. Local stakeholder discussion

The responses and remarks to the questions asked during the stakeholder discussion (as listed in
Section 3.4) can be summarized as follows.

• The participants recognized the detected historical trends in climate change (see Section 4.1).
They illustrated this by mentioning that they observed parasites in animals and plants dying off
because of hotter summers. Also, they are experiencing longer droughts that lead to dips in the
boreholes used for drinking water. Changes in river flows were not explicitly mentioned.

• The participants drew attention to the fact that the Waterberg is a region with very sporadic and
location-dependent rainfall events due to the steep terrains, which are too local to be represented
in models.

• Their concerns about water availability were illustrated by the competing demands in the region.
Currently, they are already facing dips in their groundwater wells, and platinum mining puts more
pressure on that. The mining activities namely consume much water and go together with an
increasing amount of labour immigrants and new infrastructure for transportation which leads to
higher water demands and changes in land use. On top of that, more and more tourism lodges
are being constructed in the region which will also increase the water demand.

• The participants were not familiar with environmental flows that represent flow dynamics. They
rather associated the concept with water quality, which is in line with local studies and reports on
freshwater ecology. Those merely focus on water quality rather than water quantity (e.g. de Klerk
et al. (2016); Maeko (2020)). The stakeholders recalled that minimum requirements should be
available based on the National Water Act. One hydrologist guessed that this lies around 20%
of the annual mean flow for the Mokolo, based on his previous experience with other rivers in
the Limpopo Province. As they are just setting up monitoring studies in the Waterberg Biosphere
Reserve, they were not able to report eco-hydrological relations or indicators which was also
reported in other case studies (e.g. in Poff & Zimmerman (2010); Bunn & Arthington (2002);
Arthington et al. (2006)).
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4.2.b. Selection of performance indicators

The overview of eflow indicators in Table 4.2 also shows which indicators comply with the preconditions
of performance thresholds in this study. It becomes clear that scientific literature provides more diverse
indicators in terms of statistics and time steps than the local sources. Still, all 32 IHAs from Richter et
al. (1996) and the maintenance and drought flows from Department of Water and Sanitation (2017) can
be computed with wflow-sbm model output. However, local thresholds are only available for monthly
maintenance and drought flows. Therefore, the IHA’s cannot be used as local performance indicators
in the Mokolo. Maintenance and drought flows are at monthly timesteps and thus suit all boundary
preconditions to be applied as performance indicators. Regarding IHAs, the mean monthly flows and
90-day minimum and maximum flows are indicators with timesteps of at least one month.

Table 4.2 – Overview of environmental flow indicators found in literature and local reports, evaluated against
the three boundary conditions given by this study approach.

Source Indicators Compute with
wflow

Thresholds
available Monthly

Literature (IHA’s)

Mean monthly flows;
1-, 3-, 7-, 30-, 90-day minimum/maximum;

base flow index;
date of minimum/maximum;

low/high pulse count; low/high pulse duration;
rise rates; fall rates; number of reversals

all -

Mean monthly
flows;
90-day

minimum/maximum

Local reports Monthly maintenance flows &
drought flows all all all

4.2.c. Compliance to the concept of environmental flows

The three requirements from the concept of eflows as described in Section 3.4 are not met by the se-
lected performance indicators (maintenance and drought flows). In the first place, only one component
of the flow regime (magnitude of flow) is represented by the indicators. Moreover, the set of indicators
only covers monthly flows at in one part of the river, so does not consider the spatial dimensions of the
Mokolo. The natural system complexity is thus not preserved. Lastly, no indicators resulted from the
stakeholder meeting, and the selection of maintenance and drought flow indicators as performance in-
dicators was not done in consultation with a wide range of stakeholders. The group of stakeholders did
not represent policy-makers, users, or local inhabitants, but their responses detailed above do indicate
that their interests and priorities lie in managing the human activities rather than freshwater ecology.

4.3. Global Climate Model Weighting

Figure 4.2 presents the performance distance metric 𝜎𝐷 of the GCMs regarding the three diagnostics
(prANN, prJJA, tasANN). It shows that each model performs differently compared to the observations,
but also that their performance differs per diagnostic. This indicates that the selected diagnostics are
uncorrelated, which is substructured by Pearson correlation coefficients of 0.29 (prANN-prJJA), 0.39
(prANN-tasANN) and 0.26 (prJJA-tasANN. A correlation heatmap can be found in Figure F.1 of Supple-
mentary Material F. It was found that, compared to ERA5, all GCMs underestimate tasANN, most GCMs
underestimate prANN, and all overestimate prJJA.

Figure 4.3 shows the interdependence distance metrics 𝜎𝑆 of the GCMs. The figure shows that a high
model correlation regarding one diagnostic does not implicate a high correlation for another. A relation
between 𝜎𝑆 and the similar model names could be found. Comparing Figures 4.2 and 4.3 shows that
models with large RMSEs regarding ERA5 also have large RMSEs regarding other models.
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Figure 4.2 – RMSE between GCMs and ERA5 concerning annual average precipitation, dry season
average precipitation, and annual average temperature.

Figure 4.3 – RMSE between GCM’s concerning annual average precipitation (blue), dry season average
precipitation (green), and annual average temperature (orange).

The resulting relative weights per model can be found in Figure 4.4. When applying these weights to
each diagnostic, it was found that the median relative changes from all GCMs decrease (see Figure
4.5). For annual and dry season precipitation, the range of model projections narrows, but widens for
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annual temperature projections. The timeseries of precipitation and temperature change for RCP2.6
and RCP8.5 in Figures 4.6 and 4.7 show similar results. It can be seen that regarding temperature,
weighting of RCP8.5 decreases the multi-model median relatively more than RCP2.6, but it also widens
the range of uncertainty more. Concerning precipitation, weighting has the same effect on the multi-
model medians. However, the uncertainty range narrows for both scenarios similarly.

Figure 4.4 – Combined weights for all GCMs relative to equal weighting.

Figure 4.5 – Boxplots of projected change in 2020-2080 relative to 1980-2005 per RCP scenario for annual
average precipitation, average dry season precipitation, and average temperature. The grey boxplots

represent the unweighted range of projections, and the colored boxplots the weighted range.

Figure 4.6 – Time series of weighted and unweighted temperature projections for 2020-2080 relative to
1980-2005 under RCP2.6 and RCP8.5. The shaded area represent the interquartile range.
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Figure 4.7 – Time series of weighted and unweighted precipitation projections for 2020-2080 relative to
1980-2005 under RCP2.6 and RCP8.5. The shaded area represent the interquartile range.

The impact of weighting for combined precipitation-temperature projections can be found in Figure 4.8.
By comparing the weighted and unweighted density distributions, it can be seen that weighting leads
to more similar projections between the RCP scenarios. The projections shift towards less relative
change. Also, the weighted distributions of precipitation projections are similar under all scenarios,
whereas the density of weighted temperature projections decreases under all scenarios, except for
RCP2.6. This is in line with the changes in range of uncertainty due to weighting which were also
found from Figures 4.5, 4.6 and 4.7. Also, lower weights seem to be assigned to models projecting
a decrease in precipitation and a moderate increase in temperature (bottom left in the figure), and to
models projecting increasing precipitation with increasing temperatures (top right in the figure).

Figure 4.8 – Relative average annual temperature and precipitation changes between 1960-2000 and
2020-2060 for all individual GCMs. In the right figure, the model weights are indicated by the darkness of
the colors. The weighted density of the model projections is shown on the sides (top: precipitation, right:

temperature).
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4.4. Climate Stress Testing

The Mokolo River basin was stress tested with two types of tests: one for testing the impact of changes
in annual means and one for testing the impact of an prolonged dry season. This section shows the
stress test results and subsequent changes in flow performance at Dwaalhoek (see location in Figure
3.1). The plausibility of climate conditions is shown with weighted GCM projections.

4.4.a. Climate stress test for average annual mean changes

Figure 4.9 shows the annual mean flow change at Dwaalhoek for the changes in precipitation and tem-
perature that were imposed by the climate stress test. It can be seen that average flow is significantly
more sensitive to changes in precipitation than temperature. Moreover, it responds linearly to tempera-
ture changes and seems to respond quadratically to precipitation changes. Absolute flow changes are
thus larger for increasing precipitation than for decreasing precipitation. Figure 4.10 presents the histor-
ical and future annual mean flow and precipitation anomalies over time. It shows that the precipitation
anomalies from the stress test lead to much higher future discharge anomalies.

Figure 4.9 – Annual mean flow response to changes in temperature (left) and precipitation (right) between
2020-2060 relative to 1980-2020. Note that the vertical axes are different. The yellow star indicates the
average historical river flow and climate conditions. The distributions of average temperature and rainfall

projections between 2020-2060 from GCMs are given in the upper figures.

Figure 4.10 – Time series of annual mean discharge (top) and precipitation (bottom) anomalies relative to
1980-2020. The shaded area represent the 90% range.

Figure 4.11 combines precipitation change, temperature change, and the corresponding flow changes
in one image. This is presented for all flow indicators. The images show that all indicators respond
similarly to climate change: they are more sensitive to precipitation than temperature changes, and
flow changes are larger under increasing than decreasing precipitation. The contrary applies to the
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Base Flow Index, as groundwater influence becomes larger under drier climates. Additionally, some
indicators are more sensitive than others. In Supplementary Material E this is illustrated by expressing
the relative flow responses. It was found that the average annual flow, the flow in October, and the low-
and high pulse thresholds have the largest range of relative change under these climates. The Base
Flow Index showed the least relative change.

Figure 4.11 – Responses to temperature and precipitation changes for seven flow indicators at Dwaalhoek.
The temperature and precipitation changes indicate relative changes between historical (1980-2020) and
future (2020-2060) conditions. The yellow star indicates the historical river flow and climate conditions.
Climate projections from different GCMs under different RCP scenarios are indicated with dots. Note the

different bar ranges and units.

4.4.b. Climate stress test for an prolonged dry season

Figure 4.12 presents the response of eflow indicators and monthly discharge to drier October months.
It should be noted that the results are based on an already drier climate (-10% annual rainfall). From
the figure, it can be seen that a rainfall decrease of -90% or -100% has almost similar output regarding
the eflow indicators and monthly flows. Eflow indicators show relatively more response up to -60%
than for more severe changes. Moreover, low pulse response is the largest, and the Base Flow In-
dex and high pulse response are the smallest. The monthly flow changes show that October rainfall
influences flow throughout the entire year, but the magnitude of the impact relates to the order of the
posterior months. January however, shows a larger response than December. When October rainfall
decreases by more than 70%, January flow is more impacted than November flow. Under more than
80% decrease, February is more impacted more than December. Monthly flows in March to Septem-
ber are impacted similarly. Lastly, it was found that the climate impact on monthly flows increases over
time between 2020 to 2060.

4.4.c. Performance thresholds and risk

Figure 4.13 presents how the monthly number of days below the historical 70% quantile changes un-
der average annual climate change. It can be seen that again temperature changes have hardly any
impact and that the sensitivity in each month is similar. Moreover, it was found that from -50% to +40%
precipitation change, the entire monthly flow regime can shift from all flow below the 70% quantile to all
flow above the 70% quantiles. This can be illustrated as follows. Under historical conditions, nine to ten
days per month have flows under the 70% quantile. Thus, when precipitation increases by more than
40%, the number of days below the threshold drops by nine days, which means that river flows does
not drop under the 70% anymore. The contrary applies for extremely decreasing scenarios (<-50%) in
March, May, July, August, and December.
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Figure 4.12 – Flow response of eflow indicators (middle) and monthly flow (bottom) to a porlonged dry
season, relative to the base case: the average historical climate conditions (1980-2020) imposed with -10%
rainfall. The density of GCM projections for October rainfall changes under the four RCP scenarios is shown

on top.

Figure 4.13 – Response of the number of days with flow under the historical monthly 70% quantile to
different climate changes. The number of days is indicated relative to the historical number of days. Red

colours indicate a relative increase and the blue colours indicate a relative decrease.



5 | Discussion

Application of the adapted decision scaling approach to the Waterberg region showed large uncertain-
ties in future climate behaviour and river response. This highlights the importance of performing such
a vulnerability assessment for robust decision making, as was also emphasized by Haasnoot et al.
(2013); Kwakkel & Haasnoot (2019); Shortridge & Guikema (2016); Verbist et al. (2020). However, the
study results also suggest that their strong model-dependency in terms of spatially distributed data, the
hydrological model, stochastic weather generator, and GCMs, leads to an oversimplification of local cli-
mate variability, characteristics and needs when applying to a real case. This will be further elaborated
on and discussed in the following sections.

5.1. Data

Although data uncertainties were beyond the scope of this study, it should be noted that the results
are highly dependent on the ERA5 reanalysis dataset, and the precipitation and discharge observa-
tions. The climate analysis, model calibration, stochastic weather simulations, and GCM weighting
are namely all based on these datasets. ERA5, however, results from a reanalysis model that uses
downscaling and data assimilation techniques which might not capture local climate phenomena at
resolutions less than 30 km, such as the rainfall sparsity and spatial variability that were found to be an
important characteristic of the Mokolo area (see Section 4.2).
ERA5 bias correction was therefore introduced to preserve the higher interannual rainfall variability
from the observations. This could moreover reduce the overestimated dry season flow from the hy-
drological model. However, the application of empirical quantile mapping might have led to overfitting
and overconfidence in the observational dataset. It should be noted that subgrid spatial variability of
observed rainfall was not considered which could have influenced the infiltration and runoff times. On
the other hand, the rain gauges and the spatially averaged rainfall were observed to be well correlated
with Pearson correlation coefficients for rainfall coincidence all above 0.5. On top of that, this research
mainly focussed on discharge changes at monthly timesteps which are not affected by these processes
on a small timescale, especially given that the hydrographs already showed short runoff response times
to rainfall. When examining the impact of climate change and land use change on discharge at smaller
timesteps, spatially distributed rainfall could however play a more important role.

To reduce the risk of overconfidence in observations or reanalysis models, and to preserve spatial
variability, it is recommended for climate scientists and decision makers to prioritize local data collec-
tion in data scarce environments such as the Mokolo. Up to then, it could be fruitful to use multiple
global datasets likewise ERA5 (e.g. NCEP, MERRA, CFSR) for model setup and simulations, and
GCM weighting. The latter was also advocated by Lorenz et al. (2018) and Brunner et al. (2020). A
similar GCM weighting strategy as suggested in this study might even be explored for those historical
reanalysis datasets. Moreover, uncertainties in climate variability could be simulated with the stochastic
properties of the weather generator which were not employed in this study. Whateley et al. (2016), for
example, tested a water supply system for almost 4000 stochastic timeseries in three climate scenarios
to represent the wide range of variance uncertainty for robust climate adaptation.

5.2. Hydrological model

This study found that the flow regime of the Mokolo was difficult to represent in wflow-sbm, due to the
quality of the observations, small scale climate- and geographical characteristics, and human interfer-
ence with the river. Therefore, the results of this study emphasize that in decision scaling the climate
sensitivity of onemodel configuration is stress tested rather than the actual basin. Thewflow-sbmmodel
is based on a simplified unsaturated zone component (Schellekens et al., 2021) and as groundwater
flows are dominating in the arid and sandy Mokolo catchment, this simplification was plausibly limiting

23



5.3. Environmental flows 24

the model performance of the region. In addition, hydrologists widely acknowledge the challenge of
river runoff simulation in arid and semi-arid catchments (e.g. (Koch et al., 2020; Mengistu et al., 2019;
Liu et al., 2021; Qureshi et al., 2022)). Other modelling studies of the basin and its surroundings also
reported unsatisfactory performance due to a lack of qualitative rainfall- and groundwater data and a
poor understanding of the geology (e.g. in Seaman et al. (2016), Prucha et al. (2016)). Kundzewicz et
al. (2018) did therefore suggest using multiple model configurations, rather than the best model con-
cerning the historical performance, to evaluate the impact of climate change in different seasons. In
climate stress tests, this should however be carefully adopted as model equifinality could divert to bad
model performance under climate change.
On the other hand, various studies (e.g. (Gosling et al., 2011; Kundzewicz et al., 2018; Her et al.,
2019)) have stated that it is better to focus on the uncertainty in climate model projections than in hy-
drological models as the latter was found to be rather small. Steinschneider et al. (2022) for example
found that the contribution of their systems model error to total uncertainty is approximately 5-15%
relative to climate based uncertainties. Likewise, in this study, the RMSE between modelled and ob-
served annual average flow at Dwaalhoek is 5.2 m3/s, whereas the most extreme GCM projections
lead to a difference of almost 32 m3/s (see Figure 4.11). Other flow metrics also show a difference
of approximately a factor of six. This factor was found to remain the same when stress testing with
the uncalibrated wflow-sbm model. However, it is important to mention that this comparison does not
involve the quality of the observations and the hydrological model performance under future conditions.
To validate whether a simplified systems model is sufficiently accurate to use in climate vulnerability
assessments, Steinschneider et al. (2022) developed an approach based on variance decomposition
in decision-relevant metrics for comparison to other sources of uncertainty, such as the choice of GCM,
RCP, and the interaction between them. Such an approach however involves GCM model output at
a daily time step, and thus requires temporal disaggregation techniques, which is tried to be avoided
in decision scaling. Additionally, Pastén-Zapata et al. (2022) assigned weights to hydrological models
based on their robustness under changing climate conditions. This helped to better understand the
uncertainty of the projections and increased the reliability of the climate change impact assessment.

5.3. Environmental flows

This study demonstrates that the limited local knowledge of eflows in the Mokolo and the preconditions
imposed by the model approach narrow the number of eflow indicators that are suitable as performance
indicators. This suggests that the selection of indicators oversimplifies the river dynamics, which dis-
ables fulfilment of requirements for successful eflows application. This is in line with the challenges
of implementation reported in previous studies (e.g. Arnell & Gosling (2013); Arthington et al. (2006);
Bunn & Arthington (2002); Poff (2018); Poff & Matthews (2013); Poff et al. (2003); Pahl-Wostl et al.
(2013); Poff & Zimmerman (2010)).
On the other hand, this research on eflows in decision scaling does contribute to the field of eflows with
an example case study, as was called for by Pahl-Wostl et al. (2013). Besides, the findings suggest
that the IHAs from Richter et al. (1996) can support decision scaling by providing indicators that give
a broader view on changes in different flow regime components than the static average indicators that
were usually applied in decision scaling. Although this study only adopted indicators on flow magni-
tude, it was still insightful to look at changes during different flow conditions, such as dry months, wet
pulses, and baseflows, rather than only average annual flows. The results of the two climate stress
tests showed namely that some environmental flow indicators were more sensitive than others. For
example, the average annual flow and the low pulse flow threshold were most sensitive to climate
change, while the Base Flow Index was most robust. The differences in sensitivity show that evaluat-
ing changes in different flow components, which can be partly captured by environmental flows, helps
to understand the vulnerability of the river better.

Although the stakeholder meeting could not be used to determine indicators and thresholds, the discus-
sion still provided valuable local information. The meeting summary indicates that there is a mismatch
between the concerns of the participants, the topics that are discussed in local reports, and the models
and indicators that were used in this study. The stakeholders were namely focused on the impact of
land use change, groundwater extractions and drinking water availability from groundwater resources,
whereas the IHAs and wflow-sbm examine ecological and surface flow changes. As explained in the
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previous section, wflow-sbmmodel is not suitable for assessing groundwater impact, and the model pa-
rameters were assumed to be static under changing climate conditions and human activities. Likewise
the stakeholders, local reports on rivers address primarily hydrological changes due to human activities
(e.g. Maeko (2020); Lyon et al. (2017); Seaman et al. (2016)). The Mokolo’s “State-of-Rivers Report”
(River Health Programme, 2006) does cover environmental issues such as longitudinal dysconnectiv-
ity, invasive species in the riparian floodplain and habitat availability, but these are components that
cannot be computed in wflow-sbm, as river dimensions and water levels are not included.
This mismatch between the local concerns, model objectives and indicators means that the questions
of the stakeholders could not be answered by this study adequately. It could moreover explain the
underperformance of the hydrological model, which suggests that human impact might be of more
influence on water availability than climate change. It was for example observed that some rivers ex-
perienced an increasing flow trend, although rainfall was decreasing. This may be explained by dam
control and land use changes leading to higher runoff coefficients. In addition, DWS (2015) reported
that the total water requirement in the Mokolo catchment was 8 mm/yr in 2015, from which two-third
is used for irrigational use and 7% is extracted from groundwater. For comparison, the annual river
flow is 30 mm/yr, 5% of the annual rainfall. The stress test results showed that a rainfall decrease of
10% (-60 mm/yr) within 40 years is very likely to occur and decreases the annual river flow by 20% (-6
mm/yr). These numbers show that the impact of climate change, future groundwater availability and
population increase are relevant concerns.
For more insight into the human impact and groundwater resources in the Mokolo, using groundwater
indicators such as drought duration and groundwater deficit, and developing a water allocation model,
groundwater model, or 3D-river model is recommended. Additionally, the wflow-sbm model could be
enhanced with a water extraction element. Although it is a frequently used assumption that model
parameters remain static under changing climate conditions and human activities (e.g. in Sperna Wei-
land et al. (2021); Fowler et al. (2007)), exploring the incorporation of dynamic land use changes and
soil properties in these types of models would be valuable for simulating the effect of human activities
(Engida et al., 2021; Lan et al., 2020). For example, multiple studies have tried to incorporate this by
making use of land cover scenarios (e.g. in Dwarakish & Ganasri (2015); Gao et al. (2020); Xiong
et al. (2017)), and Nijzink et al. (2016) attempted to represent deforestation with a dynamic root-zone
moisture capacity. (Öztürk et al., 2013) coupled their hydrological model to a land use dynamics model
via the Leaf Area Index and Root Depth parameters.

It should be addressed that conclusions on the stakeholders’ wishes and concerns are based on the
interpretation of statements from a small group of stakeholders. In addition, as data in the region
is scarce, they also had to base their statements on their perception and experiences. Other regions
nearby the Mokolo that have more hydrological and environmental data available have already focused
on environmental issues, substantiated by water quality and flow measurements. Future studies would
therefore benefit from doing a stakeholder analysis beforehand, in order to invite a wide and knowl-
edgeable audience to the stakeholder discussions and to have a good understanding of the available
knowledge and data in the region. Moreover, as stakeholders were unfamiliar with the eflows concept,
it is important to raise awareness of the relevance of eflows in river studies among local ecologists,
hydrologists, and policymakers. Next, the discussion should be a basis for selecting a model that
matches the concerns of the stakeholders. Collaborative, interactive or participatory modelling might
be helpful to preserve the decision scaling analysis on local wishes and concerns (Basco-Carrera et
al., 2017) and contributes to spreading knowledge on the eflows concept as was suggested in the pre-
vious paragraph. Such participatory methods improve the success of eflow implementation (Conallin
et al., 2018) and introduce relationships with fields that are beyond biophysical sciences (Anderson
et al., 2019).Videira et al. (2003), for example, applied participatory modelling to facilitate public and
stakeholder involvement in environmental decision-making. They found that it improved the compre-
hension of the problem, the area, and enhanced institutional trust and commitment towards actions.
Moreover, this type of modelling is relatively easy to introduce in decision scaling as it already involves
stakeholders.
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5.4. Global Climate Model Weighting

The implementation of the GCM weighting strategy from Knutti et al. (2017) led to more lower multi-
model median anomalies for future precipitation and temperature, which agrees with results from previ-
ous studies accounting for model performance and correlation (Lorenz et al., 2018; Knutti et al., 2017;
Brunner et al., 2020; Steinschneider et al., 2015; Kiesel et al., 2020). Moreover, it was found that the
weights had a different effect on the interquartile spread of precipitation than on temperature spread.
Regarding precipitation, weighting narrows the range of uncertainty similarly in all RCP scenarios,
whereas the range of temperature uncertainty was increased, especially in more extreme scenarios.
This suggests that the performance and correlation of GCMs are not related to the combination of rain-
fall and temperature they project. An increased range of temperature uncertainty was not found in other
studies, but it should be noted that this is the first application to a region in the Southern Hemisphere.
For example, Brunner et al. (2019) found a decreased temperature spread in Europe, likewise Lorenz
et al. (2018) for summer temperature in North America, Brunner et al. (2020); Merrifield et al. (2020)
for global temperatures, and Knutti et al. (2017) for Arctic temperatures. The effect on precipitation
projections was only presented by Brunner et al. (2019), who also found that weighting leads to lower
future precipitation anomalies. Steinschneider et al. (2015) have been the only ones so far reporting
an underestimation of climate variance when not accounting for model correlations.

It should be noted that the results from this study risk overconfidence, because only one dataset and
two climate variables were considered. Also, the small region size could decrease the robustness of the
method (Brunner et al., 2019). These limitations are however already extensively elaborated upon in
previous studies (e.g. in Lorenz et al. (2018); Knutti et al. (2017); Brunner et al. (2020); Steinschneider
et al. (2015); Kiesel et al. (2020)), and will therefore not be repeated in this chapter. Moreover, to avoid
penalizing for convergence in the future, the weights are based only on the historical behaviour of the
models. Only the reproduction of historical means was considered which may by definition not be an
indicator of future performance of simulating climate variability. Other studies have therefore suggested
weighting based on the representation of historical climate trends (Sperna Weiland et al., 2021; Knutti
et al., 2017; Kiesel et al., 2020). On the other hand, neglecting future GCM projections when weighting
also neglects the model correlation regarding their representation of the interaction between climate
variables and RCPs. This could be a fruitful extension of the strategy, as Steinschneider et al. (2022)
argued that ”climate uncertainty is dominated by the choice of GCM and its interactive effects with
RCPs, rather than the RCP alone”.

5.5. Climate stress test

In both climate stress tests, it was found that the selected indicators of the Mokolo’s river flow are more
vulnerable to precipitation than temperature changes. Moreover, increasing precipitation scenarios
were found to influence runoff indicators more than decreasing precipitation, especially in more ex-
treme scenarios. Although sensitivities in both tests were similar, the additional stress test contributes
to the average annual climate stress test by showing the duration of climate change impact within a
year. It was for example found that the impact lasts the entire year, but that the flows in November
and January were the most sensitive. This means that lengthening the dry season has a relatively high
impact on the total annual water availability as the posterior wet months are also impacted.
It should be noted, however, that this study was restricted by an unaltered rainfall distribution under cli-
mate change, which means that the (monthly) minimum, maximum, and mean flows changed similarly.
This could explain the robustness of the Base Flow Index and the similar response of indicators and
monthly flow to rainfall and temperature. Nevertheless, it also means that the results do not represent
the Mokolo’s climate vulnerability to inter- and intra-annual variability and rainfall extremes that are just
so characteristic of climate change (see Chapter 1). It is therefore recommended to continue examin-
ing the effect of multiple climate stress tests with a focus on climate inter- and intra-annual variability
and extremes. Although the plausibility and range of change in climate variability cannot be informed
by GCMs, as these provide only monthly information, such tests can still give further insight into the
river’s climate sensitivity.
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In this case study, the available knowledge and data were insufficient to determine corresponding local
performance thresholds for the environmental flow indicators. The monthly number of days below
the 70% quantile (maintenance flows) was in the first instance used to evaluate under what climate
conditions the ecology of the Mokolo River is at risk.
These could, however, not be directly adopted to assess risk. The original maintenance flows were
namely (1) based on a historical flow duration curve that does not match the output of the wflow-
sbm model, (2) based on an ecosystem and a flow regime that will be altered by climate change and
human activities, and thus may require another threshold, (3) setup to regulate minimum dam release
in the region, which will also change under climate change and is not included in the hydrological
model. In line with these findings, Acreman et al. (2014) demonstrated that the dynamic character
of ecosystems asks for dynamic adaptation. This suggests that using far-future thresholds based on
historical experience does actually not fit a methodology designed for robust adaptation. Moreover,
the relative flow changes in the Mokolo to a wide range of changes are also useful, as Stainforth et
al. (2007) already noted that information on relative changes may be just as important as detailed
climate forecasts to understand the local consequences. This is especially valuable in data scarce
environments such as Waterberg. It was, for example, found that average indicators such as annual
flows are not necessarily less vulnerable than flows under dry conditions such as October flow. Also,
groundwater contribution was relatively little influenced by climate change. This information could be
valuable to determine when and where (the river or ground) to extract water.
All in all, it may thus be more important to further study the locally relevant flow indicators that provide
broad information on a river’s climate vulnerability and what models and data match these indicators,
than to find exact indicator thresholds.



6 | Conclusion

The large uncertainty range and variable nature of climate change require dynamic adaptation strate-
gies. Therefore, the decision scaling methodology, which links bottom-up vulnerability assessment
with climate information from global models, has been developed. This study aimed to improve this
methodology in the Waterberg Biosphere Reserve in South Africa by extending it with environmental
flow indicators, a Global Climate Model (GCM) weighting strategy, and an additional climate stress test
for interannual precipitation changes. An approach involving historical and future climate analysis, a
hydrological model, a weather generator to impose climate change, and (local) expert discussions was
used.

It was observed that using environmental flow indicators as performance indicators contributed to de-
cision scaling by introducing non-static indicators that represent multiple flow regime components in
addition to static averages. In this study, Indicators of Hydraulic Alteration (IHA) were adopted, to-
gether with information from local reports and stakeholders. Although the selected IHAs for the stress
tests only represented average flows, and determination of corresponding thresholds to the IHAs was
not possible with local data, relative changes for the different indicators did provide a broader view of
the climate vulnerability of the Mokolo River. For example, a similar sensitivity in average- and low
flows and a small response to climate change in the Base Flow Index were detected.
However, it should be noted that applying environmental flows in decision scaling requires clear commu-
nication with stakeholders in an early stage of the process. The stakeholder meeting namely revealed
that local stakeholders are concerned about future groundwater availability due to land use changes,
immigration, tourism and mining. Yet, these activities were not included in the hydrological model and
IHAs. On the other hand, the combination of data scarcity and limited knowledge about freshwater
ecology and local hydrology raises the question of how well the Mokolo River is protected regarding its
future water availability and ecology.

This research illustrated the relevance of a weighting strategy in climate adaptation projects, as the
wide uncertainty range in future eflow indicator responses asks for supportive information for decision
makers. The GCM weighting strategy of Knutti et al. (2017) can be used in decision scaling to in-
corporate regional model performance and interdependency when evaluating the plausibility of future
climate conditions. The results showed that, by applying this approach, the weighted median of GCM
projections for Waterberg shifted towards less change in future precipitation and temperature. Although
weighting decreased the interquartile spread of precipitation projections for all Representative Concen-
tration Pathways (RCPs), the contrary was found for temperature projections. In this way, the weighted
results showed that both an increase and decrease in precipitation are plausible to occur in the future
and that future temperature remains highly uncertain. These results underline the need for preparing
for both types of climate.

Stress testing for interannual changes rather than only average annual changes provides new insight
into the duration and impact of the variable nature of climate change. This test was performed by
prolonging the dry season by one month (October). Its impact was observed throughout the entire
year, especially in the posterior wet months. Therefore, not only the low pulse quantile was sensitive
to this change, but also the average annual flow. The observations show that additional stress tests
in decision scaling are promising for a better understanding of the relation between local climate and
hydrology and its sensitivity to climate change. Future decision scaling applications would thus benefit
from performing multiple stress tests that represent the variable nature of climate change, such as
inter- and intra-annual variability and changes in climate extremes by further employing the stochastic
weather generator to simulate these changes.

In conclusion, the novel approach to decision scaling in the Waterberg Biosphere Reserve illustrates
that application to a real case is challenging when local data is scarce, the climate and hydrology are dif-
ficult to represent in a model, and the impact of human activities on the water resources is still unknown.
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Additionally, the strong dependency of the approach on models, climate data and indicators limits the
representation of the local spatial and temporal variability of climate (change), ecology, hydrology and
human activities. It is therefore recommended to thoroughly explore the local available knowledge,
activities, and concerns before simplifying the local complexity with models and indicators. In the Wa-
terberg region, one should prepare for future droughts that reduce the water availability, but also for
wetter periods that can influence the local freshwater ecology and may offer opportunities for water
storage. Moreover, water extraction regulations and monitoring could protect vulnerable communities
and ecology. As local data is scarce, future climate adaptation studies and strategies in Waterberg
would benefit from collecting spatially distributed runoff, groundwater, and ecological data and link this
to human activities intervening with the water system.
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A | Hydrological Model

A hydrological model was developed for the Mokolo River with a wflow-sbm model. The hydrographs
in Figure A.1 and A.2 present the modelled and observed total annual and average monthly discharge
respectively at the four gauge stations. Tables A.1 and A.2 show the performance of the calibrated
wflow-sbm model during the dry and wet season respectively.

Figure A.1 – Total annual discharge in m3/yr for the four locations with observation stations. Note the
different vertical axes.

Figure A.2 – Modelled and observed average monthly discharge in m3/s at the four gauge stations. Note
the different vertical axes.
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Table A.1 – Model performance compared to observed flows during the dry season (April-October). Except
for the Nash Sutcliffe Efficiencies (first two columns), the metrics are computed as root-mean-square errors.

Daily mean refers to mean error of all daily flows between 1981-2020.

NS (-) NSlog (-) Daily
mean (m3/s)

Annual
mean (m3/s) BFI (-) Low pulse

count (-)
High pulse
count (-)

Low pulse
duration (d)

Doornspruit -1.2 0.8 -0.1 0.4 0.7 42.4 36.0 44.2

Dwaalhoek -2.6 -0.5 3.3 1.7 1.1 35.9 25.9 71.1

Zandrivier -4.1 -0.4 1.7 0.9 1.0 45.1 25.8 65.4

Blakeney -1.2 -0.9 0.2 0.1 1.4 87.9 51.4 80.0

Table A.2 – Model performance compared to observed flows during the wet season (November to March).
Except for the Nash Sutcliffe Efficiencies (first two columns), the metrics are computed as root-mean-square

errors. Daily mean refers to mean error of all daily flows between 1981-2020.

NS (-) NSlog (-) Daily
mean (m3/s)

Annual
mean (m3/s) BFI (-) Low pulse

count (-)
High pulse
count (-)

Low pulse
duration (d)

Doornspruit -13.5 0.2 6.6 1.2 0.6 33.8 25.7 18.5

Dwaalhoek -1.9 0.2 37.1 8.7 0.5 39.1 32.2 37.7

Zandrivier -119.3 -0.3 24.5 7.7 0.8 46.2 34.3 21.6

Blakeney -0.7 0.2 2.7 0.9 0.8 100.1 54.1 47.9



B | ERA5 precipitation scaling

ERA5 monthly precipitation was bias corrected to spatially averaged observed rainfall between 1980
and 1997, using the empirical quantile mapping technique of Amengual et al. (2012). Figures B.1, B.2
and B.3 present the spatially averaged rainfall sum and distributions of the original ERA5 data, the
scaled ERA5 data and the observations during the period that was used for correction.

Figure B.1 – Total average monthly precipitation between 1980-1997 for ERA5, observed, and bias
corrected ERA5 data.

Figure B.2 – Cumulative distribution function for ERA5, observed, and bias corrected ERA5 precipitation
data between 1980-1997.
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Figure B.3 – Monthly cumulative distribution function for ERA5, observed, and bias corrected ERA5
precipitation data between 1980-1997.



C | Global Climate Models

Monthly precipitation and temperature from 48 different CMIP5 models were collected from this study.
An overview of this can be found in Table C.1. The table moreover shows for which emission scenarios
(RCPs) the models provide projections for 2020-2080. All models provide historical reanalysis for
precipitation and temperature between 1960 and 2005.

Table C.1 – Overview of the CMIP5 Global Climate Models used.

Model name RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

ACCESS1-0 x x
ACCESS1-3 x x
bcc-csm1-1 x x x x
bcc-csm1-1-m x x x x
BNU-ESM x x x
CanCM4 x
CanESM2 x x x
CCSM4 x x x x
CESM1-BGC x x
CESM1-CAM5 x x x x
CMCC-CESM x
CMCC-CM x x
CMCC-CMS x x
CNRM-CM5 x x x
CSIRO-Mk3-6-0 x x x x
EC-EARTH x
FGOALS-g2 x x x
FIO-ESM x x x x
GFDL-CM2p1 x
GFDL-CM3 x x x x
GFDL-ESM2G x x x x
GFDL-ESM2M x x x
GISS-E2-H x x x x
GISS-E2-H-CC x
GISS-E2-R x x x x
GISS-E2-R-CC x
HadCM3 x
HadGEM2-AO x x x x
HadGEM2-CC x x
HadGEM2-ES x x x x
inmcm4 x x
IPSL-CM5A-LR x x x x
IPSL-CM5A-MR x x x x
IPSL-CM5B-LR x x
IPSL-CM5B-MR x x
MIROC4h x
MIROC5 x x x x
MIROC-ESM x x x x
MIROC-ESM-CHEM x x x x
MPI-ESM-LR x x x x
MPI-ESM-MR x x x x
MRI-CGCM3 x x x x
NorESM1-M x x x x
NorESM1-ME x x x x
Total 26 41 21 37
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D | GCM projections

Boxplots of monthly GCM projections for a relative change in precipitation and temperature can be
found in Figures D.1 and D.2 respectively. The boxplots in Figure D.3 show the relative change in
precipitation during the wet and dry season.

Figure D.1 – Monthly GCM projections of precipitation for 2020-2060 relative to 1980-2005.
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Figure D.2 – Monthly GCM projections of temperature for 2020-2060 relative to 1980-2005.

Figure D.3 – Boxplots of relative average seasonal precipitation changes between 1960-2000 and
2020-2060 for the four RCP scenarios in the wet season (October-April) and the dry season

(May-September).



E | Climate stress test

Relative changes in the flow indicators to average annual changes in precipitation and temperature are
presented in Figure E.1.

Figure E.1 – Responses to temperature and precipitation changes for seven flow indicators at Dwaalhoek.
The flow, temperature and precipitation changes indicate relative changes between historical (1980-2020)
and future (2020-2060) conditions. The yellow star indicates the historical river flow and climate conditions.
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F | Global Climate Model Weighting

The correlation between historical average annual precipitation (prANN), dry season precipitation (prJJA),
and average temperature (tasANN) in the GCMs is presented in Figure F.1.
Furthermore, Figure F.2 shows the influence of the performance and dependence sigmas on the dis-
tribution of the weights over the GCMs. It can be seen that the value of the performance sigma has
significantly more influence than the dependence sigma. This is also illustrated in Figure F.3.

Figure F.1 – Correlation between the three weighting diagnostics and a heat map of the pearson correlation
coefficients (right).

Figure F.2 – Variance of model weights for different combinations of performance and dependence sigma’s.
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Figure F.3 – Model weights for four combinations of performance and dependence sigma’s.
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