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Full length article 
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A B S T R A C T   

Background: To analyse and interpret gait patterns in pathological paediatric populations, accurate determination 
of the timing of specific gait events (e.g. initial contract – IC, or toe-off – TO) is essential. As currently used 
clinical identification methods are generally subjective, time-consuming, or limited to steps with force platform 
data, several techniques have been proposed based on processing of marker kinematics. However, until now, 
validation and standardization of these methods for use in diverse gait patterns remains lacking. 
Research questions: 1) What is the accuracy of available kinematics-based identification algorithms in determining 
the timing of IC and TO for diverse gait signatures? 2) Does automatic identification affect interpretation of 
spatio-temporal parameters?. 
Methods: 3D kinematic and kinetic data of 90 children were retrospectively analysed from a clinical gait data
base. Participants were classified into 3 gait categories: group A (toe-walkers), B (flat IC) and C (heel IC). Five 
kinematic algorithms (one modified) were implemented for two different foot marker configurations for both IC 
and TO and compared with clinical (visual and force-plate) identification using Bland-Altman analysis. The best- 
performing algorithm-marker configuration was used to compute spatio-temporal parameters (STP) of all gait 
trials. To establish whether the error associated with this configuration would affect clinical interpretation, the 
bias and limits of agreement were determined and compared against inter-trial variability established using 
visual identification. 
Results: Sagittal velocity of the heel (Group C) or toe marker configurations (Group A and B) was the most reliable 
indicator of IC, while the sagittal velocity of the hallux marker configuration performed best for TO. Biases for 
walking speed, stride time and stride length were within the respective inter-trial variability values. 
Significance: Automatic identification of gait events was dependent on algorithm-marker configuration, and best 
results were obtained when optimized towards specific gait patterns. Our data suggest that correct selection of 
automatic gait event detection approach will ensure that misinterpretation of STPs is avoided.   

1. Introduction 

Gait analysis allows detailed characterisation of specific movement 
and functional deficits and can provide critical support for screening, 
diagnosing, and monitoring disease progression. It has therefore become 
an established approach in paediatric medicine for assessing motor- 
developmental disorders. To effectively characterise motor deficits, 3D 

Clinical Gait Analysis (CGA) assists in objectively quantifying gait de
viations, informing clinical decision making, and monitoring the effec
tiveness of therapy [1]. Deviation are based on comparing ensemble 
averaged kinematic signals over the course of a gait cycle [0–100 %], 
that is critically dependent upon the accurate identification a gait cycle. 
Gait event detection measures the occurrence of events (initial contact, IC 
and toe-off, TO) to discriminate between gait phases (stance vs swing) in 
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a typical gait cycle. Incorrect identification of gait events could lead to 
errors in normalization of kinematic and kinetic data and its 
ensemble-averaging, as well as to inaccurate spatio-temporal parame
ters. So, the comparison of gait patterns between- and within-subjects, 
depends on accurate detection of gait events. 

Currently, gait events are identified in clinics through two main 
approaches (collectively referred to in this paper as clinical identifica
tion). The first approach, widely treated as the ‘gold standard’, involves 
setting thresholds on vertical ground reaction forces (GRFs) obtained 
using force plates. However, obtaining clean, isolated force plate “hits” 
is often limited due to the use of assistive devices, short step lengths, or 
partial contact with the plate. In this way, the number of steps from 
which events can be identified will be constrained to the number of force 
platforms. Furthermore, the acceptable force threshold to identify IC 
and TO events has not been standardized across clinics, especially for 
paediatric populations [2,3]. When force plate data is unavailable, 
events are determined through visual identification of segment kine
matics by trained experts. Besides being time-consuming, the reliability 
of this data is dependent on the expertise of the identifier and is thus 
subjective, furthermore its precision is limited to the video frame rate. 

As an alternative to these clinical identification methods, algorithm- 
based event detection (referred to in this paper as automatic identifi
cation), primarily using kinematic data from optoelectronic markers, 
was introduced in the early 1990s [4]. While many methods have since 
been developed to estimate gait events in both typically developing and 
pathological subjects [3,5–15], validation and standardization of these 
methods for use in a diverse gait patterns is lacking. Specifically, 
walking patterns commonly observed in Cerebral Palsy population 
involve a toe- or flat-foot initial contact rather than a heel-strike. In such 
cases, it might be difficult to assess the gait events as the typical kine
matics are different. Recommendations to improve accuracy of IC 
detection for pathological gait patterns include modification of existent 
algorithms, and the use of the hallux marker to increase accuracy in TO 
detection [2], unfortunately, these alternatives have not been evaluated. 
Furthermore, the influence of automatic identification on the estimation 
of spatio-temporal parameters has not been investigated, nor validated 
against the gold standard. 

Therefore, the primary goal of this study was to determine and 
compare the accuracy of available (modified) automatic identification 
approaches in subgroups with different gait patterns. Our secondary 
goal was to estimate if automatic identification affects interpretation of 
spatio-temporal parameters. 

2. Methods 

2.1. Participants 

This study utilized a retrospective clinical database consisting of 3D 
kinematic and kinetic data of patients who underwent 3D CGA at a local 
hospital during regular clinical visits. Participants were included in the 
study if they were aged 3–18 years at time of measurement and visited 
the lab between 2015− 2017. Furthermore, subjects were excluded if 
they walked with assistance of orthotic devices, crutches or walkers 
during the measurement trial. 

Ninety participants who fulfilled the inclusion criteria were included 
in this study. Limbs were classified into one of 3 groups (each N = 30) 
according to the region of the foot which initially contacted the ground 
at IC –. Group A consisted of toe-walkers with forefoot contact; Group B 
were flat-foot walkers, where the entire sole or the side of the foot 
contacted the ground; Group C exhibited typically developing gait pat
terns with a heel-strike (Table 1). Only a single limb for each participant 
was randomly included in this study, where group categorisation was 
confirmed using video evidence. 

Informed consent was obtained from all children or their guardians, 
as approved by the local ethical committee (EKNZ Nr. 2018− 01640). All 
measurements were conducted according to the Declaration of Helsinki. 

2.2. Measurement procedure 

All participants walked barefoot on an 10 m instrumented walkway, 
without assistive devices, at their preferred walking speed for at least 6 
trials. Kinematic data was collected at a sampling frequency of either 
300 Hz (data collected until 2016) or 150 Hz (after 2016) using an op
toelectronic motion capture system (12-camera MTX20, VICON, Oxford, 
UK). A total of 64 markers were attached to the subjects according to the 
modified Plug-in Gait (PiG) model (9.5-mm diameter, see Supplemen
tary material S1). 3D ground reaction forces (GRFs) were collected 
through force platforms embedded in the walkway (Kistler, Switzerland, 
sampling frequency 1500 Hz). Walking trials were only included for data 
processing when at least one step with clean force plate contact was 
achieved. Trials with occluded marker data from the heel, toe, hallux or 
posterior superior iliac markers were excluded. In total, 90 trials were 
included for analysis. 

2.3. Data processing 

3D trajectories of the posterior superior iliac spine (PSI), calcaneous 
(HEE), second metatarsal head (TOE), and hallux (HLX) markers were 
extracted and low pass-filtered (Butterworth 2nd order; 10 Hz cut-off). 
Five algorithms for detecting gait events (Zeni, Desailly, Ghoussayni, 
Hrejac and Marshall, Hsue), as recommended by previous studies for 
assessing pathological gait [2,16], as well as the algorithm by O’Connor 
et al. [12], which focusses on typically developing gait, were imple
mented and compared in this study (Fig. 1). The Ghoussayni algorithm 
[6] was further modified to tune event detection as a function of walking 
speed, according to previous recommendations [2]. To allow stand
ardised comparisons across all groups (including forefoot, flat-foot, and 
heel-strike gait types), all algorithms were implemented using data from 

Table 1 
Participant description. IC: initial contact; SD: standard deviation; M: male, F: 
female, GMFCS: Gross Motor Function Classification System; CP: cerebral palsy; 
uni: unilateral, bi: bilateral, Neurological-Other: traumatic brain injury, 
incomplete spinal cord injury, infection, tumor; ITW: idiopathic toe-walking.   

Group A 
(N = 30) 

Group B (N = 30) Group C 
(N = 30) 

Description The forefoot is 
in contact with 
the ground 
during IC 

The entire sole or 
the side of the foot 
is in contact with 
the ground during 
IC 

The heel is in 
contact with 
the ground 
during IC 

Sagittal joint angles 
at IC in degrees    

Foot-floor angle 
[Mean (SD)] 

− 20.7 (14.0) − 0.7 (2.5) 7.5 (6.7) 

Ankle-dorsiflexion 
angle [Mean (SD)] 

− 17.0 (11.8) − 2.6 (7.8) − 1.1 (5.7) 

Knee-flexion angle 
[Mean (SD)] 

17.9 (13.8) 16.6 (7.6) 11.6 (10.4) 

Hip-flexion angle 
[Mean (SD)] 

32.5 (13.7) 30.9 (10.6) 32.0 (9.0) 

Age in years [Mean 
(SD, range)] 

11.2 (3.2, 
5.9− 17.3) 

11.6 (3.4, 
5.6− 17.3) 

12.6 (2.6, 
7.7− 17.6) 

Sex [M/F] 15/15 18/12 18/12 
GMFCS level [I/II/ 

III] 
17/12/1 25/5/0 29/1/0 

Diagnosis    
Neurological [CP- 
uni/CP-bi/Other] 

7/10/4 13/4/3 2/5/0 

Skeletal 
[Malalignment 
syndrome/Foot 
deformity] 

2/2 4/2 13/8 

Muscle 
[Myopathy] 

2 1 1 

Other [Genetic 
disorder/ITW] 

1/2 3/0 1/0  
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two different marker sets for each event – HEE and TOE for IC, and TOE 
and HLX for TO detection (Table 2). All data was processed using 
MATLAB (v. 2019a, Mathworks Inc., Natick, MA, USA). Codes related to 
this publication can be found on GitHub, project ID: 20884 (https://gith 
ub.com/Roosje95/AGED_gait-event-detection). 

Event-detection-error was determined as the difference in timing of 

the IC and TO gait events obtained using each algorithm, compared 
against the ‘gold standard’ force plate measurement, using a vertical 
GRF threshold of 20 N. Additional GRF thresholds of 10 N, 15 N, and 2% 
of the maximum vertical GRF were also analysed in order to establish a 
possible effect on event timing. The best-performing algorithm for each 
group was determined on the basis of sensitivity and accuracy, explained 
below under statistical analysis. To examine efficacy for use in clinical 
settings, spatio-temporal parameters (stride time (ms), walking speed 
(m/s), stride length (mm), single limb support time (ms), and stride 
width (mm)) were calculated using the best-performing algorithm for 
each group. 

2.4. Statistical analysis 

The event-detection-errors obtained for each algorithm and group 
were analyzed for normal distribution with a Kolmogorov-Smirnov test. 
Sensitivity was defined as the percentage of participants for which the 
absolute event-detection-error was below 33 ms [2,16]. Bland-Altman 
analyses [17,18] were performed to compare a) the timing of gait 
events obtained using the implemented algorithms against the ‘gold 
standard’ (force plate identification), and b) the spatio-temporal pa
rameters obtained automatically and clinically (through force plate and 
visual identification). Accuracy was defined as the bias (mean difference 
between two methods of measurement) and 95 % limits of agreement 
(LoAs, 1.96 SD of the event-detection-error) resulting from the 
Bland-Altman analysis. Furthermore, to evaluate whether the deter
mined parameters were clinically meaningful, the bias and LoAs of the 
spatio-temporal parameters were compared against the inter-trial vari
ability (coefficient of variation, CV) determined over 6 CGA trials 
(supported by visual identification when the number of clean force plate 
hits was insufficient). Moreover, the linear association between the 
automatically and clinically identified spatio-temporal parameters was 
evaluated using the coefficient of determination (R2 value, from the 
Bland Altman analysis). The performance of automatic identification 
was seen as valid when the bias and LoAs fell within the inter-trial 
variability and the R2 value was >0.95. 

3. Results 

3.1. Comparison of GRF thresholds 

For group A, varying the force threshold from 10 N/15 N/2%GRF to 
20 N for estimating the timing of gait events using vertical GRFs led to a 
bias in event-detection errors of up to 4.8 ms with LoAs of 50 ms for 
estimating the timing of IC (Supplementary material S2). Smaller biases 

Fig. 1. Signals used in the selected methods for gait event detection. GRF: 
ground reaction force; IC: initial contact; TO: toe off. Velocity and acceleration 
are in mm/s and mm/s2. As the sampling rate was 150 Hz, 1 frame is equivalent 
to 7 ms. 

Table 2 
Definition of gait events (IC, TO) according to included algorithms. For convenience, the algorithms have been listed according to the primary author’s last names. 
HEE: calcaneus marker, TOE: second metatarsal head marker, HLX: hallux marker.  

Author Description of IC Markers used for IC 
determination 

Description of TO Markers used for TO 
determination 

Zeni (2008) Maximum horizontal marker position relative 
to sacrum 

HEE, TOE Minimum horizontal marker position relative to 
sacrum 

TOE, HLX 

Desailly (2009) High pass filtered maximum horizontal marker 
position (Cut-off frequency set at 0.5* cadence) 

HEE, TOE High pass filtered minimum horizontal marker 
position (Cut-off frequency set at 0.5* cadence) 

TOE, HLX 

O’ Connor 
(2004) 

Minimum vertical velocity of virtual foot 
centre. 

Virtual foot centre 
calculated between HEE 
and TOE 

Maximum vertical velocity of virtual foot centre. Virtual foot centre 
calculated between TOE 
and HLX 

Ghoussayni 
(2007) 

IC occurs when the sagittal velocity of the 
marker falls below a threshold of 500 m/s. 

HEE, TOE TO occurs when the sagittal velocity of the 
marker crosses a threshold of 500 m/s. 

TOE, HLX 

Modified 
Ghoussayni 

IC occurs when the sagittal velocity of the 
marker falls below a threshold of 0.78* walking 
speed 

HEE, TOE TO occurs when the sagittal velocity of the 
marker reaches a threshold of 0.66* walking 
speed. 

TOE, HLX 

Hrejac and 
Marshall 
(2000) 

IC occurs at the local maxima in the vertical 
acceleration of the marker and the point of zero- 
crossing of the jerk (as it decreases) 

HEE, TOE TO occurs at the local maxima in the horizontal 
acceleration of the marker and the point of zero- 
crossing of the jerk (as it increases) 

TOE, HLX 

Hsue (2007) Minimum of the horizontal acceleration of the 
marker 

HEE, TOE Maximum of the horizontal acceleration of the 
marker 

TOE, HLX  
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were found for groups B (bias: 0.3, LoAs: 0.9) and C (bias: 0.3, LoAs: 
0.5). Similar trends were observed for TO (groups A – bias: 4.9 ms, LoAs 
of 65 ms; B - bias: 1.2, LoAs: 1.9; C – bias: 0.9, LoAs: 1.4). 

3.2. Comparison of algorithms 

While 5 algorithms were successfully implemented, two algorithms 
(Hrejac and Marshall, Hsue) [7,8] were excluded from the study due to 
high levels of false positives in identifying gait events automatically 
(S3). 

The Kolmogorov Smirnov test accepted the normalcy hypothesis for 
the event-detection-error values in almost all groups except A and B 
when using the O’Connor algorithm, for which the Bland-Altman anal
ysis was adapted. 

For estimating the timing of IC, the Ghoussayni approach (threshold: 
500 mm/s) with TOE marker yielded the highest gait-event identifica
tion accuracy for groups A (bias: -1.0 ms; LoAs: 19 ms; sensitivity: 100 
%; Fig. 2A) and B (bias: -1.4 ms; LoAs: 23 ms; sensitivity: 96.7 %; 
Fig. 2A). The best result for group C was achieved using the Ghoussayni 
approach with HEE marker (bias: -6.0 ms; LoAs: 24 ms; sensitivity: 96.7 
%; Fig. 2B), which also achieved the lowest bias across all gait signatures 
(bias: -1.6 ms, LoAs: 33 ms, sensitivity: 96.7 %). 

For estimating the timing of TO, the modified Ghoussayni approach 
with HLX marker yielded the best results for all 3 groups (bias: 
0.1–1.3 ms; LoAs: 15− 22 ms; Fig. 2D). With regards to sensitivity, for 
groups A and C, all event-detection-error values were within the 
accepted 33 ms threshold, while only 96.7 % of the errors were within 
the threshold for group B. 

3.3. Comparison of automatically and clinically determined spatio- 
temporal parameters 

Results showed high agreement between automatic and clinical 
identification methods (R2>0.95) for most spatio-temporal parameters, 

except single limb support time (R2 values - groups A: 0.72; B: 0.88; C: 
0.88). The biases and LoAs for stride time, walking speed, and stride 
length all fell within the inter-trial variability (Fig. 3). While the biases 
for single limb support time and stride width fell within the inter-trial 
variability, LoAs exceeded it for single limb support time for all condi
tions, as well as for stride width for group A and when all gait signatures 
were taken together (Fig. 3). 

4. Discussion 

While gait analysis has become commonplace for clinical assessment 
of cerebral palsy, the robust identification of gait events remains chal
lenging and lack of standardization in this routine reduces reproduc
ibility and possibly its ecological validity. The purpose of this study was 
therefore to determine and compare the accuracy of available (modi
fied) automatic identification methods in subgroups with different gait 
patterns and evaluate the feasibility of incorporating such approaches 
into clinical settings. The accuracy and sensitivity of automatic identi
fication procedures were shown to be dependent on a combination of 
algorithm and marker selection and yielded best results when optimized 
towards a specific subgroup. Moreover, the best performing automatic 
identification approach per subgroup were shown to be valid for the 
calculation of stride time, walking speed and stride length, and are 
therefore able to yield robust metrics for supporting clinical decision 
making for these spatio-temporal parameters. 

4.1. Evaluating algorithm performance 

Within this study, the evaluation of algorithm performance was done 
against the gold standard of force plate identification; this sets it aside 
from previous work which was mainly based on visual event setting [2]. 
The sagittal velocity based approaches (Ghoussayni and modified 
Ghoussayni) outperformed the other algorithms (Zeni, Desailly, 
O’Connor; which only considered movement in a single direction) for 

Fig. 2. Error plots representing bias and limits of agreement for each algorithm and marker configuration for estimating timing of IC and TO. Positive values indicate 
a delay in the detection of gait events, compared to force plate event detection, whereas negative values indicate that the algorithm detected events before the force 
plate. The vertical black lines indicate the 33 ms threshold. IC: initial contact; TO: toe off; HEE: calcaneus marker; TOE: second metatarsal head marker; HLX: hallux 
marker; Group A: forefoot is in contact with the ground during IC; Group B: entire sole or the side of the foot is in contact with the ground during IC; Group C: heel is 
in contact with the ground during IC. 
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estimating the timing of IC and TO, which is in line with previous 
findings and recommendations [2]. For estimating the timing of TO, 
tuning event detection as a function of walking speed improved the 
accuracy of identification for the sagittal velocity approaches, as did the 
use of the HLX instead of the TOE marker for all groups, which is also in 
line with recommendations from literature [2]. For estimating timing of 
TO, the modified Ghoussayni approach demonstrated the greatest ac
curacy across all groups, while for estimating timing of IC it was clearly 
favourable to optimize the algorithm set-up to the walking behaviour of 
specific subgroups. Here, the use of the TOE instead of the HEE marker 
improved the results for the toe- and flat-foot walking groups (A and B) 
when using the Ghoussayni approach, as would be expected based on 
the part of the foot used at IC. However, no improvements were 
observed for the other algorithms when adapting input marker config
uration. This result is likely due to the consideration of local maxima in 
only one direction (horizontal position or vertical velocity), rather than 
Ghoussayni’s 2D approach. 

4.2. Impact of automatic approaches for gait event detection on spatio- 
temporal parameters 

The best performing algorithms per subgroup showed to be robust 
for calculation of stride time, walking speed and stride length when 
compared against the current clinical standard of visual identification. 
The inter-trial variability values observed in this study (CV 3.9–19.4 %) 
showed to be similar to those from literature on spastic Cerebral Palsy 
population (7.6–14 % [19] and 3.4–9.7 % [20]) and were therefore 
considered to be appropriate for the dedicated use. As all observed bias 
values between automatically and clinically identified spatio-temporal 
parameters fell within the inter-trial variability (Fig. 3), the automatic 
algorithms yield robust metrics that could support clinical decisions. 
However, it is important to consider that, for this study, results for 
automatically and clinically determined spatio-temporal parameters 
were computed for one gait cycle per trial, the differences between the 
methods could change over multiple consecutive gait cycles. Addition
ally, due to the LoA for single limb support and stride width exceeding 
the inter-trail variability, further evaluation of these parameters is rec
ommended before implementing automatic identification within clinical 

settings. 

4.3. Limitations 

The clinical ‘gold standard’ for estimating the timing of gait events 
(force plate identification method) is dependent on the GRF threshold. 
To estimate the effect of different GRF thresholds on the timing of gait 
events, the 20 N threshold used in this study was compared against 3 
other thresholds (10 N, 15 N, 2%GRF) that have been reported in liter
ature (S2). This evaluation showed high agreement between the 
different force thresholds (R2 value >0.99) and therefore we consider 
the effect of threshold choice on our results to be limited. 

It is likely that the 33 ms window applied in previous studies might 
not be an acceptable range for identifying gait events with the different 
kinematic algorithms, and hence lead to a misinterpretation of spatio- 
temporal parameters. Use of this window in our study allowed com
parison of our results to previous investigations [2]. In addition, out
comes from our validation analyses showed that biases for 
spatio-temporal parameters remained within the inter-trial variability. 

Within this study, inter-trial variability was used to investigate if 
automatic identification would affect interpretation of spatio-temporal 
parameters. Inter-trial variability shows the difference in calculation 
of spatio-temporal parameters between trials of 1 individual during a 
measurement session. As a fast majority of clinical gait labs focuses on 
the average values for clinical decision making; the assumption was 
made that if the difference between visual identification and kinematic 
algorithm detection is smaller than the variation between trials, it 
should not affect the interpretation of average values. As no minimum 
clinically important differences are currently established for paediatric 
spatio-temporal parameters, inter-trial variability was seen as the best 
possible alternative. To be capable of calculating inter-trial variability, 
more than 1 stride was required, therefore in additional to force plate 
identification, visual event setting was used to gather the required 
reference values. 

4.4. Recommendations for further research 

Our results showed that event detection improved when input 

Fig. 3. Error plot representing bias and limits of agreement between kinematic and clinical identification for calculation of spatio-temporal parameters. Group A: 
forefoot is in contact with the ground during IC; Group B: entire sole or the side of the foot is in contact with the ground during IC; Group C: heel is in contact with the 
ground during IC. 
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marker configurations used within the algorithms were adapted to the 
gait pattern of the participant. For example, as a large number of par
ticipants from group B initially contacted the ground with the side of the 
foot, it might be worthwhile considering the use of marker configura
tions at the proximal and distal ends of the fifth metatarsal (PMT5 and 
DMT5 [21]) for estimating the timing of IC. 

While accounting for walking speed supported the tuning of indi
vidual thresholds for estimating the timing of TO, it did not improve our 
estimation of IC timing. Here, it would be worthwhile identifying pa
rameters that could lead to optimization of individualized thresholds for 
estimating IC timing. 

In a next step, the most promising method could be used to evaluate 
cases in which no force plate detection is available. In addition, the 
method could be used to investigate gait event detecting during eg. 
treadmill walking, or while wearing orthotics, or when ambulatory aids 
are used. 

4.5. Conclusions 

Our findings suggest that the sagittal velocity of the heel (Group C) or 
toe marker configurations (Group A and B) was the most reliable indi
cator of IC, while the sagittal velocity of the hallux marker configuration 
performed best for TO. Evaluation of the resultant spatio-temporal pa
rameters showed that automatic event identification is capable of pro
ducing reliable metrics consistent with clinical interpretation. 
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[9] T. Karčnik, Using motion analysis data for foot-floor contact detection, Med. Biol. 
Eng. Comput. 41 (5) (2003) 509–512. 

[10] X. Lv, Y. Wei, S. Xia, A new simple method for kinematic detection of gait events, 
Distances 2 (1) (2013) 1. 

[11] J. Mickelborough, M. Van Der Linden, J. Richards, A. Ennos, Validity and 
reliability of a kinematic protocol for determining foot contact events, Gait Posture 
11 (1) (2000) 32–37. 

[12] C.M. O’Connor, S.K. Thorpe, M.J. O’Malley, C.L. Vaughan, Automatic detection of 
gait events using kinematic data, Gait Posture 25 (3) (2007) 469–474. 

[13] J.-d.-J. Salazar-Torres, Validity of an automated gait event detection algorithm in 
children with cerebral palsy and non-impaired children, Gait Posture 24 (2006) 
S130–S131. 

[14] A. Sharenkov, A.N. Agres, J.F. Funk, G.N. Duda, H. Boeth, Automatic initial contact 
detection during overground walking for clinical use, Gait Posture 40 (4) (2014) 
730–734. 

[15] J. Zeni Jr, J. Richards, J. Higginson, Two simple methods for determining gait 
events during treadmill and overground walking using kinematic data, Gait Posture 
27 (4) (2008) 710–714. 

[16] R.V. Gonçalves, S.T. Fonseca, P.A. Araújo, V.L. Araújo, T.M. Barboza, G.A. Martins, 
et al., Identification of gait events in children with spastic cerebral palsy: 
comparison between the force plate and algorithms, Braz. J. Phys. Ther. (2019). 

[17] J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two 
methods of clinical measurement, Lancet 1 (8476) (1986) 307–310. <Go to ISI>:// 
WOS:A1986AYW4000013. 

[18] J.M. Bland, D.G. Altman, Measuring agreement in method comparison studies, 
Stat. Methods Med. Res. 8 (2) (1999) 135–160. https://www.ncbi.nlm.nih. 
gov/pubmed/10501650. 

[19] A. Bregou Bourgeois, B. Mariani, K. Aminian, P.Y. Zambelli, C.J. Newman, Spatio- 
temporal gait analysis in children with cerebral palsy using, foot-worn inertial 
sensors, Gait Posture 39 (1) (2014) 436–442. https://www.ncbi.nlm.nih.gov/pub 
med/24044970. 

[20] G. Steinwender, V. Saraph, S. Scheiber, E.B. Zwick, C. Uitz, K. Hackl, Intrasubject 
repeatability of gait analysis data in normal and spastic children, Clin. Biomech. 
(Bristol, Avon) 15 (2) (2000) 134–139. https://www.ncbi.nlm.nih.gov/pubmed 
/10627329. 

[21] M. Carson, M. Harrington, N. Thompson, J. O’connor, T. Theologis, Kinematic 
analysis of a multi-segment foot model for research and clinical applications: a 
repeatability analysis, J. Biomech. 34 (10) (2001) 1299–1307. 

R.M.S. Visscher et al.                                                                                                                                                                                                                          

https://doi.org/10.1016/j.gaitpost.2021.02.031
https://www.ncbi.nlm.nih.gov/pubmed/28698802
https://www.ncbi.nlm.nih.gov/pubmed/28698802
https://www.ncbi.nlm.nih.gov/pubmed/24041468
https://www.ncbi.nlm.nih.gov/pubmed/24041468
https://www.ncbi.nlm.nih.gov/pubmed/18676147
https://www.ncbi.nlm.nih.gov/pubmed/2246935
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0025
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0025
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0025
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0030
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0030
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0030
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0035
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0035
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0040
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0040
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0040
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0045
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0045
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0050
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0050
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0055
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0055
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0055
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0060
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0060
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0065
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0065
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0065
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0070
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0070
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0070
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0075
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0075
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0075
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0080
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0080
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0080
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0085
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0085
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0085
https://www.ncbi.nlm.nih.gov/pubmed/10501650
https://www.ncbi.nlm.nih.gov/pubmed/10501650
https://www.ncbi.nlm.nih.gov/pubmed/24044970
https://www.ncbi.nlm.nih.gov/pubmed/24044970
https://www.ncbi.nlm.nih.gov/pubmed/10627329
https://www.ncbi.nlm.nih.gov/pubmed/10627329
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0105
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0105
http://refhub.elsevier.com/S0966-6362(21)00081-3/sbref0105

	Towards validation and standardization of automatic gait event identification algorithms for use in paediatric pathological ...
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Measurement procedure
	2.3 Data processing
	2.4 Statistical analysis

	3 Results
	3.1 Comparison of GRF thresholds
	3.2 Comparison of algorithms
	3.3 Comparison of automatically and clinically determined spatio-temporal parameters

	4 Discussion
	4.1 Evaluating algorithm performance
	4.2 Impact of automatic approaches for gait event detection on spatio-temporal parameters
	4.3 Limitations
	4.4 Recommendations for further research
	4.5 Conclusions

	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


